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Abstract

Polymers are simulated with a bead-spring model, with a short-ranged repulsive
interaction between the beads. For a large number N of beads, the mean end-
to-end length,

@
~r2
epNq

D
scales as N2ν , For a finite number beads, the range of

our simulations, there are corrections to this scaling law of the form N2νeff �
N2νpa0 � a1{N

∆q. Determining the growth exponent by simulations is troubled
by these corrections. In this thesis simulations with various interactions between
the beads are done in order to minimize these finite-size corrections. This is done
by tuning the parameters of the potentials such that the effective growth exponent
converges towards a region of rν�0.02, ν�0.02s. The potentials that are used are
the hard sphere, Lennard Jones, and the Gaussian potential. The simulations are
done in both two and three dimensions. The hard sphere potential, with diameters
σ2D � 2.86 and σ3D � 2.05, was the best potential according to our criterion. For
the Gaussian potential we found parameters that give approximately the same
results as the hard sphere potential in both two and three dimensions, but it did
not significantly improve upon them.
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1 Introduction

In daily life we are used to a variety of substances that consist of very long molecules
with high molar masses, such as plastics, PVC, proteins, DNA, etc. These so-called
macromolecules consist of a chain of many repeating monomers connected by flexible
bonds. Usually the number of monomers is very large and lies in range of 104 � 105.
These polymers occur naturally but are also produced industrially by polymerization.
In this thesis unbranched polymers are considered. The key property of these polymers
is their size. In a solution with a high density of polymers the size of their end-to-end
length scales with the square root of the number of monomers, just like brownian
motion. The random walk model is often used to describe their size by its mean
squared displacement.

A physical property of the monomers is that they cannot overlap. In strong diluted
solutions, where polymers can be singled out, this property results in a swelling of the
polymer’s size. For very large polymers the squared end-to-end length scales as N2ν ,
with N the number of monomers and ν the growth exponent. For smaller polymers
(i.e. finite size) there are corrections to this scaling law. To describe these polymers on
a physical level, the self-avoiding walk (SAW) model is used. Both the random walk
and the SAW model will be treated in the second section of this thesis.

The growth exponent of the size of a single polymer, or the mean squared displace-
ment of the self-avoiding walk, is of great interest because its value is universal. This
means that it does not depend on the microscopic details of our model but only on
the dimension the self-avoiding walk lives in. However, the finite-size corrections do
depend on the microscopic details of the model. To determine the value of ν exactly
one needs simulations of (infinitely) large self-avoiding walks, but this is practically im-
possible. The most extensive simulations still suffer from the finite-size corrections to
this scaling law. Therefore it is important to get insight in these finite-size corrections
and by tuning the microscopic details of the model to minimize them.

For simulations of the SAWs on a cubic lattice this has been done by Grassberger [1].
He used the Domb Joyce model to tune the leading correction to zero. For simulations
of SAWs in continuous space this has not been done before. Our goal with this master
thesis project is to find a interaction potential between the beads aiming to reduce the
finite-size corrections.
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2 Polymers and Self-Avoiding Walks

2.1 Random Walks

A lot is known about random walks (RWs), which are often referred to as Brownian
motion or ideal chains. The basic idea behind a RW is that it is a Markovian process
where in a fixed time interval ∆ti, a step with length ∆~ri is taken into a random
direction in a d-dimensional space. Each step is uncorrelated with all others and
its direction is uniformly distributed, whereas the length of the steps has a normal
distribution with mean b. Mathematically, we assign a d-dimensional vector ~Ri (i
running from 1 to N) to each of the N time steps. The distance of the ith step, ∆~ri
and the end to end distance, ~re, are given by

∆~ri �~ri � ~ri�1,

~repNq �
Ņ

i�1

∆~ri.

Because of the Markovian character of the steps and normal distribution of their length
we know that

x∆~ri � ∆~rjy �δi,jb2,
x∆~riy �0,

with b2 the average squared length of the steps. The mean squared end to end length〈
~r 2
e

〉
is calculated by

x~repNq2y �x
Ņ

i�1

∆~ri �
Ņ

j�1

∆~rjy

�
Ņ

i,j�1

x∆~ri � ∆~rjy

�Nb2 (1)

which is independent of the dimension of the space that the RW is living in.
The probability distribution of a RW with length 1 from x1 to x2 in one dimension is
given by

Pxpx1, x2; 1q �
c

3
2πb2

exp
"
�3px2 � x1q2

2b2

*
,

where the constants are chosen such that in three dimensions the normalized probability
distribution is given by

P3p~r1, ~r2; 1q �Pxpx1, x2; 1qPypy1, y2; 1qPzpz1, z2; 1q

�p2πb2{3q� 3
2 exp

"
�3|~r2 � ~r1|2

2b2

*
. (2)
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This expression ensures that in three dimensions, the mean of the squared step length
is given by

x~rep1q2y �
» 8
�8

~r 2P3p0, ~r, 1qqd~r

�
» 8
�8

~r 2

c
3

2πb2
exp

"
�3~r 2

2b2

*
d~r

�b2.
To generalize eq.(2) to arbitrary length N , we write

P3p~r1, ~r2;Nq � p2πNb2{3q� 3
2 exp

"
�3|~r2 � ~r1|2

2Nb2

*
. (3)

We can prove this expression by induction: for N � 1 it is true by eq.(2). Assuming
that eq.(3) is true for N , then for N � 1, we have

P3p~r1, ~r2;N � 1q �
» 8
�8

P3p~r1, ~r,NqP3p~r, ~r2, 1qd~r

�p2πb2{3q�3N� 3
2

» 8
�8

exp
"
�3|~r � ~r1|2

2Nb2

*
exp

"
�3|~r2 � ~r|2

2b2

*
d~r

�p2πpN � 1qb2{3q� 3
2 exp

"
� 3|~r2 � ~r1|2

2pN � 1qb2
*
.

This calculation is explicitly done in Appendix 5.1. From this we can conclude that
this expression is true for all values of N . This means that depending on the number
of steps, the end to end distribution can be seen as a single step process with a squared
average step length of Nb2.

Physically, we could describe this RW as a number of connected springs with a
spring energy Esp∆~rq � 1

2ksp∆~rq2 . The spring constant is now temperature-dependent
and can be written as ks � 3

Nb2 kbT , with the corresponding Boltzmann distribution
for the connected springs given by

exp
"
�EpN,~req

kbT

*
� exp

#
�
°N
i�1Esp∆~riq
kbT

+
,

which is mathematically the same as the probability distribution of the RW.
From eq.(3), we can write down the probability distribution of a RW, starting in

the origin and having length r, after N steps

P3pr,Nq � 4πr2 exp
"
� 3r2

2Nb2

*
.

The entropy of this system is therefore equal to

S3pr,Nq � � kb logpP3pr,Nqq,

�S3,0 � 2kb logprq � kb
3r2

2Nb2
,

where S0 is a constant independent of r and N . Since there is no energy related to
these RWs, we consider the free energy F at temperature T to be

F3pr,Nq �Epr,Nq � TS3pr,Nq,

�F3,0 � 2kbT logprq � kbT
3r2

2Nb2
.
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Physically, this means that for minimizing the free energy there is a battle between
a stretching volume term and contracting springs. For the equilibrium length, re,
we must minimize the free energy. Solving B

BrF pr,Nq � 0 with respect to r yields
x~repNq2y � Nb2, which is in agreement with eq.(1). These results are valid for a three-
dimensional RW. In the rest of this thesis, part of the work will be done in two spacial
dimensions and therefore the results for that case are listed below:

P2pr,Nq �2πr exp
"
� r2

Nb2

*
,

S2pr,Nq �S2,0 � 2kb logprq � kb
r2

Nb2
,

F2pr,Nq �F2,0 � kbT logprq � kbT
r2

Nb2
,

where again, x~repNq2y � Nb2.
To relate the RW model to polymers, we have to assign to every ith step the ith

bond, and to every location after the jth step the jth monomer. Having done so, the
RW model can be used to predict the end-to-end length for highly dense polymers in
a solution.

2.2 Self-avoiding walks

In real life, the RW description is not sufficient to give a correct prediction for the mean
end-to-end length of a polymer in a strongly diluted solution. The main discrepancy
with the RW predictions is due to the fact that interactions of different origins play
an important role in the swelling of the polymer. These bead-bead interactions are
mainly expected to be excluded volume (hard sphere) and attractive van der Waals
interactions. An example for such a combined interaction is the Lennard Jones (LJ)
potential, see Fig.3, where also two other examples are given. For high enough temper-
atures (T " ε), the attractive part is negligible, and only excluded volume interactions
play an important role for the end to end length of the polymer. Therefore a more
accurate description of the size of the polymer is the size of a self-avoiding walk (SAW).
These were first introduced by Flory [2], to describe polymers and are essentially a RW
with an added rule: not visiting the same place more than once. An everyday example
of this kind of problem is the computer game called “snake”, which is lost when an
intersection occurs. There are numerous options to incorporate this feature in existing
models for the RW and a few of them will be described in section 2.4. Although few
analytical results exist, numerous numerical studies have been carried out towards a
better understanding the SAW.

2.3 The Growth exponent ν

The mean squared end-to-end length x~r 2
e y of the SAW for a very high number of steps

can be written as
lim
NÑ8

@
~r 2
e pNq

D � N2ν , (4)

where ν is called the growth exponent. For the RW (Brownian motion), this exponent is
1{2 regardless of the dimension. The growth exponent ν is a so-called critical exponent,
appearing in various continuous phase transitions. This exponent is believed to be
universal [3], which means that, for classical systems, ν only depends on the spacial
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Figure 1: six two-dimensional examples of random walks (left) and self-avoiding walks
(right).

dimension and the range of interaction, therefore it does not depend on the microscopic
details of the model. The following are the known values for ν

ν �

$'''&
'''%

1 if d � 1,
3{4 if d � 2,
� 0.587597p7q if d � 3,
1{2 if d ¥ 4,

where d is the dimension. The values for dimensions d � 1, d � 2 and d ¡ 4 are
analytical. In three dimensions the best numerical value was found by Clisby [4] and is
given in the previous list for the values of ν. In two dimensions the value 3

4 is found by
Nienhuis [5]. In dimensions larger than four, de Gennes [6] found, with a method called
renormalization, that ν � 1{2 so there is simply too much space for a SAW to run into
itself, and it therefore behaves like a RW. In four dimensions a logarithmic correction,
x~repNqy � NplogNq 1

4 , was found by the same author. A large group of physicists is
trying to obtain the numerical value for ν in three dimensions as accurately as possible,
but as we will see in section 3, finite-size corrections and computational limitations are
troubling these efforts.

2.4 Implementation of the self avoiding walk in the random
walk model

A physical interpretation for the RW, introduced in section 2.1, is the bead-spring
model, where each coordinate ~ri represents a bead and each step ∆~ri a spring (see
Figure 2 for an illustration). The Hamiltonian for this system is

H0 � 1
2
ks

Ņ

i�1

p1 � |~ri � ~ri�1|q2,

where ks is the spring constant. The Hamiltonian is written in this form to ensure
that, for high values of ks or low temperatures (when the bead-spring model becomes
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Figure 2: the bead-spring model (left) and the bead-stick model (right).

a bead-stick model), the springs have a non-zero length. To include the self-avoiding
feature into this bead-spring model we need to add a short-range repulsive interaction
term to the original Hamiltonian

H � H0 �
Ņ

i j�1

Up|~ri � ~rj |q.

However when an interaction potential is added to the Hamiltonian the model becomes
analytically unsolvable, a feature which leaves us no choice but to search for approxi-
mate methods (such as mean field approximations) and simulations. A natural choice
for this potential would be a hard-sphere interaction. The beads are assumed to be
impenetrable with a diameter σ,

Uhsp|~ri � ~rj |q �
#

0 if |~ri � ~rj | ¡ σ,

8 if |~ri � ~rj |   σ.

The repulsive interaction U does not necessarily have to be hard or become infinitely
large when r approaches zero. A model that incorporates a finite energy penalty ε
every time the bonds overlap, would describe a SAW with the same growth exponent ν
as the SAW with a hard-sphere interaction. In the one-dimensional case this is proven
[7]. This allows us to play around with different potentials as well, as long as they
are short-ranged. Examples of potentials that we could use are a Gaussian repelling
potential, or a simple positive square well potential, see Fig. 3.

2.5 The Flory calculation of the exponent ν

Paul J. Flory was the first to make an estimate for ν beyond the ideal chain con-
figurational approach. Documented in [2], using a surprisingly accurate mean field
approximation, he shows how a hard sphere interaction of the monomers leads to a
nontrivial growth exponent ν � 3

d�2 , in d dimensions.The argument is briefly described
below. We start with the distribution function of a gaussian chain in d dimensions with
end-to-end length RF

PdpRF , Nq � Rd�1
F exp

"
�1

2
ksR

2
F

*
.

To find Pd,SAW pRF , Nq, we have to multiply this distribution function with the fraction
of non-overlapping RWs:

Pd,SAW pRF , Nq � PdpRF , Nq � p1 � PoverlapqNpN�1q{2,

10
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Figure 3: a plot of a Gaussian potential, hard sphere potential and the Lennard Jones
potential.

where
Poverlap � ve

V
,

with ve the excluded volume of the monomer and V � RdF , roughly the volume of the
SAW. The excluded volume ve for any repulsive interaction φp~rq is simply given by
ve � 2B2, with B2 the second Virial coefficient

B2 � �1
2

»
V

pexp
"
� 1
kbT

φp~rq
*
� 1qd~r.

The entropy of the SAW is now written as

SSAW �� log pPd,SAW q

� � 1
2
ksR

2
F � log pRF qpd�1q � NpN � 1q

2
log p1 � ve

RdF
q

� � 1
2
ksR

2
F � pd� 1q log pRF q � N2

2
ve
RdF

.

Maximizing the entropy gives us the following equation for RF :

�ksR2
F � d� 1 � dN2ve

2RdF
� 0.

If we solve this equation for ve � 0, we get the same result as in section 2.1, namely

R2
F � d� 1

ks
.

Since ks � 1
N we conclude that R2

F � N . For a ve significantly large (i.e. larger than
some reference v�e ), and using the limit

lim
NÑ8

N2

pR2
F q

d
2
" pd� 1q, (5)
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we can neglect the second term of the eq.(5) and solve it for R2
F , which results in

R2
F �

�
dve
ks


 2
d�2

N
4
d�2 � N2p 3

d�2 q.

This implies that

ν � 3
d� 2

, (6)

which yields the correct results in one and two dimensions, being also remarkably close
to the three-dimensional value found by Clisby. If we put the result for ν back into
eq.(5), we can see that the limit is still divergent for large N in one and two dimensions.
If we investigate the limit of eq.(5) for the three-dimensional case, we see that it is not
divergent, but constant. Therefore, eq.(6) is only ‘valid’ when ve " v�e with

v�e �
4R3{2

F

3N2
. (7)

When ve ! v�e , the polymer behaves as a RW, with ve� vanishing in the N Ñ 8
limit. For a long time, Flory’s estimate for ν in three dimensions was considered to
be exact, but convincing numerical evidence has shown that this is not the case. We
have to ask ourselves why this result is this accurate. It seems that the estimate for ve
is overestimated, but so is the spring constant: its contribution is not 1{N but 1{N2ν

(since it is related to the mean squared displacement of the spring). It is due to these
two errors mostly canceling each other out that such good estimates for ν have been
obtained and attempts of independently correcting these errors have produced poor
estimations for ν as the cancellation does not happen anymore [6].

2.6 Finite-size corrections in self-avoiding walks

Because of the universal nature of ν, it is interesting to know this value as accurately
as possible. Therefore we would ideally simulate a polymer with the right behavior
in the appropriate limit: N Ñ 8. Unfortunately, computers have a finite amount of
system memory and time is always expensive, which means we can only simulate the
SAW for a finite number of steps and the higher we can push the number of steps,
the less important the finite-size corrections will become. However, instead of pushing
the limits of the number of steps, we can also try to make these finite-size corrections
smaller.

In order to do so, we have to find an interaction potential which minimizes the
finite-size corrections. To investigate the SAWs in the regime of finite N , we have to
extend eq.(4) to include finite-size corrections:

x~r2
ey � N2νpa0,e � a1,e

N
� a2,e

N2
� . . .� b1,e

N∆1
� b2,e
N∆1�1

� . . .� c1,e
N∆2

� c2,e
N∆2�1

. . .q, (8)

where ∆i are universal scaling exponents, independent of the choice of model, and ai,e,
bi,e, ci,e . . . are model dependent constants [8].

It is not a trivial job to numerically estimate the values of ∆i. In two dimensions,
there are not only two different theoretical predictions but also numerical results for ∆1.
The former are 3{2 and 11{16 while the latter varies from � 0.5 to � 1.5. Convincing
numerical evidence is found by both Caracciolo [9] and Jensen [10] that the first scaling
exponent is ∆1 � 3{2. We will focus on this value of ∆1, but keep in mind that
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other values can still be candidates. In three dimensions, Dayantis and Palierne[11]
worked out two different possibilities: ∆i � 1{2 and ∆1 � 0.47, ∆2 � 1.05 � 0.02 and
∆3 � 2.2�0.2. With their precision they were not able to distinguish these two choices,
but it will remain an important question which of the predictions in the end will survive
the always improving verdict of computer simulations. For sake of simplicity, we will
work with only one option, namely ∆i � 1{2, to fit our our data in the next chapter.

For our SAWs in continuous space it is not guaranteed that the correction exponents
∆i are the same as for the SAWs that live on a lattice. Although they are universal,
the prefactors determine the relative importance of the corresponding ∆i, and for this
case it is not known which correction exponents are important. There can be other,
not necessary analytical, correction exponents that we are not aware of yet. It is not
our goal to specify these so we will use the prescription of the lattice models to provide
fits for our results. This said, we have to remember that the fits may not represent the
theoretical predictions.
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3 Simulations of self-avoiding walks

Numerous problems in physics cannot be solved by exact equations. To find accurate
solutions to these problems one needs to look for numerical methods such as modeling
and simulation. The main goal of this thesis is to simulate the SAW with various
interaction potentials between the beads, for a small number of steps, and compare
their finite-size corrections. In this way we can find the a potential that minimizes these
corrections. In the next sections we will discuss different simulation techniques. At
first we will discuss exact enumeration, where we place a SAW of lengths up to N � 32
on a square lattice and let the computer calculate all the possible configurations in two
dimensions. From these configurations we can extract the mean square displacement
and get an estimate of its finite-size corrections. The next step will be generating a
representative subsection of the total number of SAWs (statistical enumeration), which
will allow us to push the maximal length up to N � 250. We will briefly explain this
method and show some results in three dimensions. After that, we will investigate
the finite-size corrections of the SAW in continuous space, by introducing a Metropolis
algorithm, and discus the results in the last section.

Figure 4: two examples of a SAW, on a square lattice (left) and a triangular lattice
(right).

3.1 Simulations on the lattice model

In this section we will address simulations of SAWs in lattices. We begin with exact
enumeration in two dimensions.

3.1.1 Exact Enumeration in two dimensions

The goal of exact enumeration is to generate all possible SAWs with N steps on a
lattice. The most used lattices are the triangular and square ones, but others could be
used as well. This can be done by a recursive program on a square lattice, an example
of which is listed in section 6.1. The basic idea behind this algorithm is that it invokes
a recursive function that produces a step in all possible directions. By calling itself, it
creates an iterative structure from which all possible combinations are rendered. During
the process it keeps track of the coordinates it already visited and the number of steps
it has taken. If the chain of steps hits an occupied coordinate, the algorithm will stop
this particular trial and move on from the previous step with a different move instead.

14
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Figure 5: A log -log plot of the mean displacement x~r 2
e y as a function of N .

If it keeps on hitting occupied coordinates, it will start subtracting steps until there is
an allowed move. If the SAW reaches the desired the length, the algorithm gives back
the coordinates of the nth step, and continues as if it has hit an occupied coordinate,
this way generating all possible end points of the SAWs (including its degeneracy),
from which we can calculate the mean squared end-tot-end length. The results of this
simulation are shown in Fig.5 and took the program approximatively 30 hours of CPU
time to get to N � 32. Once we have the results for the mean squared displacement,
we want to address the finite-size corrections of this model. Let us recall eq.(8) for
the finite-size corrections in two dimensions and take the three most important scaling
exponents

x~r 2
e y � N2νpa0,e � a1,e

N
� b1,e
N3{2

� a2,e

N2
. . .q. (9)

If we examine the results shown in Fig.5, we can see that in the small N regime the fit is
too small. The discrepancies with the slope are then considered to be due to finite-size
corrections. To make the finite-size corrections more visible, we take the derivative of
log x~r 2

e y with respect to logN finding

B log x~r 2
e y

B logN
� 2νeff � 2ν � a1,e

N
� 3b1,e

2N3{2
� 2a2,e

N2
. . . (10)

This means we have to take the numerical differential of the mean squared displacement,
given by

B log x~r 2
e y

B logN
� log x~r 2

e pN � ∆Nqy � log x~r 2
e pN � ∆Nqy

log pN � ∆Nq � log pN � ∆Nq , (11)

with different step sizes ∆N P t1, 2, 3 . . .u. The results of this method are shown
in Fig.6. Depending on the numerical step size one takes, the results will oscillate
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differently around the fit that is depicted in the plot. For this reason, the average
of step sizes until four was taken. The best fit comes with the values a1,e � 1.36
b1,e � �2.70 and a2,e � 2.01. The main problem with exact enumeration is that the
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Figure 6: A plot of the effective exponent 2νeff as a function of N .

CPU time will grow exponentially with N , being even worse for the three-dimensional
case. Due to excessive use of computer power (50.000 CPU hours) and a smart trick
to double the step length, Schram and al.[12] were able to generate all configurations
for the three-dimensional case till N � 36. We will treat the three-dimensional case
with a different method, called statistical enumeration, in the next section.

3.1.2 Statistical enumeration in three dimensions, including pruning and
enrichment

As mentioned above, we now treat the three-dimensional case with a different method.
For higher N it is not necessary to generate all possible SAWs, as we did with exact
enumeration, but it is sufficient to get a representative sample of the SAWs. With
statistical enumeration we will grow a number of SAWs on a cubic lattice, in the
meanwhile keeping track, at every ith step, of the number of possibilities mi the SAW
has. The probability that we end up in such a SAW would then be 1{wi, with

wi �
i¹

j�1

mj , (12)

the so called Rosenbluth weight [13]. However, in this procedure not all SAWs are
generated with the same probability and therefore, if we want to properly compute
x~r 2
e y, we need to compensate each SAW by giving it a weight equal to the inverse of
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its probability

x~r 2
e y �

°
k wkx~r 2

e yk°
k wk

. (13)

There are a few problems with this method. Because of the exponential behavior of
the Rosenbluth weight the SAWs that have a large wi dominate the results. This
is shown by Barkema[14] by finding the results for the partition function (the total
number of SAWs) to be very non-gaussian for N ¡ 150. This makes the results badly
reproducible.

To get rid of the dominance of one single SAW with a relatively high wi, we follow
the method called pruning and enrichment. It is statistically allowed, at any point in
the SAW generating process, to stop the process with chance p, or continue the process
(with chance 1 � p) and multiply the Rosenbluth weight with 1{p. This is called
pruning, as it cuts some branches branches in the tree of SAWs. Pruning decreases
the computational effort but increases the statistical errors. If, instead, the process is
not stopped with chance p but continues twice with half the Rosenbluth weight it is
called enrichment and has the opposite effect of pruning, increasing computing time
but decreasing statistical errors.

Neither process introduces a bias in the results, as a SAW twice with half the weight
will not change eq(13). If we apply pruning for SAWs with a low Rosenbluth weight
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Figure 7: A plot of the effective exponent 2νeff in three dimensions, as a function of
N .

(compared to the average), it will cut branches of SAWs that will not contribute much
to the measurements, whereas if we apply enrichment for SAW’s with a high Rosenbluth
weight, it will ensure us that there is not just one, or a few leading SAWs, but multiple
ones, therefore yielding better statistics overall. It is common to choose p � 1

2 and
apply pruning when wi is smaller than 1

2 times it’s average, and enrichment if wi is 5
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times bigger. In our program (see 6.2) we chose these values and let it generate 109

SAWs. The results for the finite-size corrections are shown in the figure 7, and for that
data, ∆1 � 1{2 is chosen and fitted to

2νeff � 2ν � b1,e
2N1{2

� a1,e

N
� 3b2,e
N3{2

. . . , (14)

with the corresponding values b1,e � �0.31, a1,e � 0.20, and b2,e � �0.12. These
outcomes suggests that if the scaling exponent ∆i � 1{2 is absent in two dimensions,
the signs of ai,e and bi,e are the same in two and three dimensions.

3.2 Monte Carlo simulations

We have seen in the previous section that when we cannot simulate all possible SAWs,
it is important to get a representative sample of them. A Monte Carlo simulation
does exactly that, it produces a suitable set of states such that, when measuring our
desired quantities, we end up with good statistics. In that sense, the previous method,
statistical enumeration including pruning and enrichment, is an example of a Monte
Carlo simulation. In the following section we will discuss an effective method that
ensures a sample of states equivalent to the Boltzmann distribution, closely following
the theory described by Newman and Barkema[14].

The goal of the simulation is to calculate the mean squared displacement of the
SAW which for one particular configuration ~ri has a Hamiltonian of the form

HSAWp~riq � H0p~riq �Hip~riq, (15)

as defined in section 2.4. Ideally we would get the estimator x~r 2
e y by integrating over

all possible states

x~r 2
e pNqy �

1
Z

N¹
i�1

»
d~ri|~rN � ~r0|2e�βHSAWp~riq, (16)

with the partition function

Z �
N¹
i�1

»
d~rie

�βHSAWp~riq. (17)

In these equations, β is the inverse temperature and ~r0 is placed in the origin. If we
take a subset of M configurations, with a certain probability distribution pi to measure
x~r 2
e y, then these equations change into

x~r 2
e pNqy �

°M
j ~r 2

e,jpriqp�1
j e�βHSAWp~riq°M

j p�1
j e�βHSAWp~riq

. (18)

If we give all chosen configurations the same weight, which means

x~r 2
e pNqy �

°M
j ~r 2

e,jpriqe�βHSAWp~riq°M
j e�βHSAWp~riq

, (19)

then our sample would be dominated by a few configurations in the low energy domain
and since our sample is always a very low fraction of the available configurations,
this would again lead to very poor estimates. If we choose pj � e�βHSAWp~riq{Z, the
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simulation spends the right amount of time in the chosen states. Our estimator, in this
case, is then simply written as

x~r 2
e pNqy �

1
M

M̧

j

~r 2
e,jprjq. (20)

The problem now is how to choose the states that have this distribution. If we would
generate states at random, we would not obtain a good sample as the higher energetic
states will be rejected exponentially fast. To provide the simulation with the appropri-
ate states we then make use of the so called Markov processes.

A Markov process starts with a certain state µ, and from this state it will generate
a new state ν with a transition probability PµÑν . Since a Markov process is inde-
pendent of time and previously visited states, PµÑν depends on states µ and ν only.
Moreover the probability of staying in the same state should be non-zero. If we let
the simulation run for a longer time it will generate a Markov chain of states, and to
ensure it resembles the Boltzmann distribution after a certain amount of running time,
and not another, we have to add two extra conditions, called ergodicity and detailed
balance which we will briefly describe in the following section.

3.2.1 Ergodicity and detailed balance

Ergodicity means that for any given state, all other states that should be available
according to the Boltzmann distribution, can actually be reached after applying a
finite number of steps in the Markov chain. Since we want to impose this on our
simulations, we must always prove that this condition is met before using a specific
algorithm.

The condition “detailed balance” is a little less straightforward and deserves more
attention. This condition says that, if our system is in equilibrium (it has reached
a certain stable probability distribution pµ), the sum over outgoing rates times the
probability distribution is the same as the sum over the incoming rates times their
probability distributions. We can write this condition as¸

ν

pµPµÑν �
¸
ν

pνPνÑµ, (21)

and using the normalization condition,

pµ �
¸
ν

pνPνÑµ. (22)

If we look closely to this equation, we see that it is possible to create cycles of probability
currents. To avoid these, we need to strengthen our condition by demanding that not
only the sum of incoming and outgoing rates are the same, but that the rates between
any two states must be equal

pµPµÑν � pνPνÑµ. (23)

This condition is called the detailed balance condition. By eliminating cycles, the
matrix PµÑν has the eigenvector pµ with eigenvalue one. A proof that if we start with
any distribution vµ, it will finally end up in in distribution pµ can be found in appendix
5.2. If we want our probability distribution pµ to be the Boltzmann distribution, we
have to tune our transition rates PµÑν such that

PµÑν

PνÑµ
� pν
pµ

� e�βpEν�Eµq, (24)
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with Eν the energy of the corresponding states.
In a Monte Carlo algorithm the transition amplitude PµÑν is defined by two pro-

cesses. Starting from state µ we have to design a move that picks a new state ν with
a certain probability gµÑν . After picking this new state, we have to accept it with
acceptance ratio AµÑν . Inserting this in the previous equation, we obtain

PµÑν

PνÑµ
� gµÑνAµÑν

gµÑνAνÑµ
. (25)

Depending on the structure of the program, we can choose gµÑν to be symmetrical.
In this case we can define acceptance ratios to be

AµÑν �
#
e�βpEν�Eµq if Eν � Eµ ¡ 0
1 if Eν � Eµ   0.

(26)

These choices make the algorithm a Metropolis algorithm, named after Nicolas Metropo-
lis who was the first in making these choices for the transition rates with a simulation
on the hard-sphere model for gases. One could make other choices, but this one has
proven itself to be one of the most efficient and widely used algorithms.

3.2.2 Measurements

Before we start measuring observables as the mean squared displacement from our
simulation, we have to make sure that the simulation has thermalized, by which we
mean that the distribution of the states has converged to the Boltzmann distribution.
Therefore we have run the program for a certain amount of time (the thermalization
time) to ensure that our simulation has thermalized. It is not that easy to determine
whether one has reached it or not because the simulation could be in a local minimum
of the free energy, and stay there for a long time. Therefore it is useful to compare the
measurements for different starting configurations. Another check could be that if we
found a thermalization time, to double it and check whether it affects the results or
not.
After we ensured thermalization we can start making measurements. How often we
can effectively measure a new independent state depends on how fast the states in
the Markov chain are changing. A very useful quantity that describes this rate is the
correlation time τ . If we measure the mean squared displacement, then the correlation
time τ is defined by the autocorrelation function

χp∆tq � 1
T � ∆t

Ţ

t1

�
~r 2
e pt1q � x~r 2

e y
� �
~r 2
e pt1 � ∆tq � x~r 2

e y
� � e�∆t{τ . (27)

The autocorrelation function falls of exponentially, the bigger ∆t is, the smaller the
states will be correlated to each other. A proof of this can be found on page 66 of
Newton and Barkema [14].

3.3 Simulations on continuous models

3.3.1 Our algorithm

In the previous section, we constructed a set of requirements that a Monte Carlo sim-
ulation has to meet in order to produce a set of states that represents the Boltzmann
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distribution. In the following section we will describe a Metropolis algorithm that sim-
ulates the SAW in continuous space and discuss the requirements of detailed balance
and ergodicity. Our algorithm consists of two Monte Carlo moves, one tick move and
one pivot move, which produce new states in the Markov chain. The tick move is a
simple move which takes a random state µ, with a bead configuration t~r0, ~r1 . . . ~rNuto
a new state of the SAW, ν, by taking a random bead coordinate ~ri to a nearby co-
ordinate ~r1i. A visualization of the tick move is shown in Fig.8. The probability of
selecting the new coordinates is uniformly distributed within a circle (a sphere, if in
three dimensions) of radius R centered in ~ri. This means that the selection probabil-
ity is symmetric under interchanging states µ and ν, i.e. gµÑν{gνÑµ � 1. Detailed
balance is then automatically satisfied if we choose our transition rates according to
the Metropolis algorithm, i.e. eq.(26). If the radius R is chosen large compared to the
average step size, the acceptance probability will be small (the energy of the springs
becomes very large), where on the other hand, if a small R is chosen, the acceptance
probability might be high but the correlation time will grow. We can then tune R in
order to keep the program fast and efficient. With this move it is trivial that all config-
urations can be reached within a final amount of steps and therefore the requirement
of ergodicity is satisfied.

Figure 8: visualization of the tick(left) move and the pivot move(right).

The pivot move starts in the same way with certain a bead configuration from which
a random bead ~rp is picked. Instead of moving it, it rotates all beads ~rj , with j ¡ p,
around ~rp, with an angle α chosen in the interval r�θ, θs. A visualization of this move
is given in Fig.8. Again we can tune θ to get a more efficient program. The probability
distribution within this interval is uniform, and therefore the move is symmetric under
interchanging the old and the new state and rotate with �α instead. For this reason,
we can satisfy detailed balance if we define the acceptance ratios to satisfy eq.(26).
This pivot move itself does not satisfy ergodicity, as it preserves the lengths of the
steps.

If we consider the transition towards a new state to be a combination of both
moves, the requirements of detailed balance and ergodicity are satisfied. I have chosen
to consider one Monte Carlo step (one move towards a new state) to be a combination
of twice the tick move and ten times the pivot move.

3.3.2 Thermalization and the Autocorrelation Function

To obtain the thermalization time for our algorithm, we have to feed it different initial
states. We have chosen to pick a fully stretched SAW with average step length b � 1, 2
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Figure 9: plot of the energy Eptq as a function of Monte Carlo steps t, for three different
starting configurations.

and 3. The repulsive potential is temporarily set to be a Gaussian one Up~ri � ~rjq �
4.5 exp t�2p~ri � ~rjq2u. To obtain a good estimate of the thermalization it is necessary
to check when these different starting states converge towards an equilibrium. We have
chosen to measure the thermalization time with the energy instead of the mean squared
displacement, since the variance in the measurement of the latter is too large, making
it unsuitable to do so. The results are shown in Fig.9.

As we can see, the longer the SAWs are the longer their thermalization time is. We
also see that in two and three dimensions the simulation with the starting configuration
associated with b � 2 are almost immediately in equilibrium. Although not strictly
necessary in all simulations, the thermalisation time has been chosen to be a thousand
Monte Carlo steps as a matter of caution.
The autocorrelation functions for this algorithm are depicted in Fig.10. If we attempt

to fit an exponentially decaying function as suggested by eq.(27) we find this is not
possible. The data suggests that it actually falls off with a stretched exponential
function written as

� log rχp∆tqs �
�

∆t
τ


α
,

with an exponent α smaller than one. Albeit an interesting point for further research,
it goes beyond the scope of this work. What is interesting to us is how fast the auto-
correlation function is decreasing with a factor of e�1. With this method we estimated
τ � 1.8 Monte Carlo steps, regardless of the chosen repulsive interaction. Note that the
acceptance ratio is approximately 50%, which means that after approximately every
four Monte Carlo steps we can measure a relevant new state.
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Figure 10: plot of the autocorrelation function χp∆t{τq. The time ∆t is measured in
Monte Carlo steps. The dots represent the autocorrelation function in two dimensions
and the squares the one in three dimensions.

3.4 Specific goal of our simulations

To specify what we mean by minimizing the finite-size corrections, we must define a
more specific goal. Simply tuning our chosen interactions such that all prefactors turn
zero is not always possible and judging by our first trial runs of our program, it is
suggested that this is not the case. Therefore we defined a criterion that our data has
to meet by the following,

Find a bead-bead interaction potential for which the effective growth exponent

2νeff � B log x~r2
ey

B logN
(28)

converges to a range of rν � δ, ν � δs, with δ � 0.02, for minimal N .

The Hamiltonian for the Metropolis algorithm, described in the previous section, is
given by

H � H0 �
Ņ

i j�1

Up|~ri � ~rj |q.

Note that the sum of the interaction is over all pairs of the beads except nearest
neighbors. The potentials we are going to use in our two-dimensional simulations are
the Gaussian, the Lennard Jones and the hard sphere,

UGp~ri � ~rjq �ae�b|~ri�~rj |
2
,

ULJp~ri � ~rjq � a

r12
� b

r6
,

UHSp|~ri � ~rj |q �
#

0 if |~ri � ~rj | ¡ σ,

8 if |~ri � ~rj |   σ.

In three dimensions, we restrict ourselves to the hard sphere and Gaussian potentials.
Note that only positive values for a and b are to be used, since the potential should be
repulsive.
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3.5 Results in two dimensions

We start the analysis of the two-dimensional case by taking a look at the hard sphere
potential. The results of running simulations with three different diameters σ are shown
in Fig.11.
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Figure 11: a plot of the effective growth exponent 2νeff, as a function of the number of
steps N , subject to the hard sphere potential with a diameter σ � 2.83, σ � 2.86 and
σ � 2.90.

From the figure, we see that the larger the diameter is, the higher the effective
exponent grows when compared to ν. The best value for the diameter according to our
criterion is then σ � 2.86. This value is larger than the average step size and therefore
nearest neighbors do overlap, but as has already been pointed out, nearest neighbor
interactions are not included in the Hamiltonian.
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Figure 12: a plot of the effective growth exponent 2νeff (top) in two dimensions, as
a function of the number of steps N , subject to the Lennard Jones potential Uprq �
a{r12 � b{r6. The colors represent the potential parameters corresponding to the ones
that are declared in the plot of potentials(down).

For the next simulation we have chosen to simulate the SAW with the Lennard
Jones potential. The results and the corresponding potentials are shown in Fig.12.
The best hard sphere result, in blue, is shown as a reference. For a standard Lennard
Jones potential i.e. a � 1 and b � 1, we see that the effective growth exponent is much
lower than our reference hard sphere case. The more we tuned the parameters a and b
to get the data to move to the region rν � 0.02, ν � 0.02s, the more the Lennard Jones
potential approaches the hard sphere potential.
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Figure 13: a plot of the effective growth exponent 2νeff (top) in two dimensions,
including a zoom of the rectangular area, as a function of the number of steps N ,
subject to the Gaussian potential given by Uprq � a exp p�br2q. The colors represent
the potential parameters corresponding to the ones that are declared in the plot of the
potentials (down).

For the simulations with the Gaussian potential, we have chosen to vary the param-
eters a and b such that it approaches the blue reference hard sphere case. The results
of the simulations including a plot of the corresponding potentials are shown in Fig.13.
We see that, according to our criterion, we get the best results for the values a � 107

and b � 7. We have to conclude that with these values it produces better results then
our best hard sphere potential, but it is a close call between these two. Furthermore,
we can see that there might be a better hard sphere potential if we pick a value for
the diameter between σ � 2.90 and σ � 2.86. The more our Gaussian approaches the
hard sphere, the closer our measurements become.
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3.6 Results in three dimensions

In three dimensions, we have restricted ourselves to the simulations with interactions
of the hard sphere potential and the Gaussian potential. The results of the former are
shown in Fig.14.
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Figure 14: a plot of the effective growth exponent 2νeff, as a function of the number
of steps N , subject to the hard sphere potential.

From these results we see that the finite-size corrections are more persistent then
in two dimensions, therefore suggesting an enlargement of the step size. For these
simulations we spend within the same order of CPU time as for the simulations that
are done in two dimensions. As a consequence our measurements are less precise. The
best value for the diameter that we found, is σ � 2.05, according to our criterion.

For the Gaussian potential, we adopted the same method as in the two-dimensional
case. We found values for a and b such that the hard sphere potential is gradually
approached. The results and their corresponding potentials are shown in Fig.15. We
see that the two gaussians with values a � 107, b � 16, and a � 100, b � 5, give
approximately the same results as our best hard sphere potential, even though the
latter is not one of the closer ones to the hard sphere. We therefore conclude there is
a close call between the Gaussian potential and the hard sphere potential as we had in
the two dimensions.
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Figure 15: a plot of the effective growth exponent 2νeff (top) in three dimensions,
as a function of the number of steps N , subject to the Gaussian potential given by
Uprq � a exp p�br2q. The colors represent the potential parameters corresponding to
the ones that are declared in the plot of the potentials (down).

28



4 Conclusion, discussion and further research

4.1 Conclusion

Various simulations of the self-avoiding walk in two-and three-dimensional space have
been performed in order to obtain insight about the finite-size corrections of the mean
squared displacement characterizing the self-avoiding walk. Subject to various bead-
bead interactions, these corrections could be measured and tuned in order to get the
effective growth exponent νeff in the desired region of rν�0.02, ν�0.02s for the smallest
number of steps. In both dimensions, the hard sphere interactions with σ2D � 2.86
and σ3D � 2.05 gave the best results that we have found. In two dimensions these
results were approached by both the Lennard Jones and the Gaussian potential. In
particularly, the Gaussian potential with values a � 106 and b � 7 produced a slightly
better result, remaining a close call between these two. In three dimensions the results
of the hard sphere potential can be approached by the Gaussian parameters a � 107,
b � 16 and a � 100, b � 5, but not improved.

4.2 Discussion

In our simulations we have found that the hard-sphere potential and the Gaussian
potential can produce results that are very close to each other. It is therefore hard
to tell which of the two potentials truly minimizes the finite-size corrections according
to our criterion. In our three-dimensional simulations, we have found Gaussian poten-
tials that approximately have the same results as the best hard sphere potential. It
is noteworthy that by tuning the parameters of the Gaussian potential we were able
to move the maximum of νeff to lower values of N , without altering its value. The
gaussian potential with values a � 100 and b � 5 produced the same result as the best
hard-sphere potential, but is not the steepest one we have tested. This suggests that
if we tune a and b further there is maybe a better potential to be found that could
improve on the hard sphere result. However as far as we can be sure, no potential is
performing significantly better than a simple hard-sphere potential with a fine-tuned
diameter.

4.3 Further Research

In this master thesis project we considered only a two-particle interaction. Since by
nature the beads are relatively close to their nearest and next-nearest neighbors, it
might be interesting to include a three-particle interaction to see how the finite-size
corrections are depending on these and if they can be tuned to minimize the corrections
further.

For the hard sphere potential, there seems to be a clear relation between the diam-
eter and the maximum value of the effective growth exponent; the bigger the diameter
the higher the maximum value of the effective growth exponent. Similarly for the
Gaussian potential, the bigger the amplitude a, the higher the maximum value of the
effective growth exponent, while higher values of b yielded a smaller maximum. A
combination of both parameters moved the maximum value for the growth exponent
towards a lower value of N , suggesting that there might be a relation between the
excluded volume ve, defined by the second Virial coefficient, and the prefactors of the
correction exponents. This might be very interesting to explore in further research.
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5 Appendices

5.1 Appendix A

To generalize (2) to arbitrary length N , we write:

P3p~r1, ~r2;Nq � p2πNb2{3q� 3
2 exp

"
�3|~r2 � ~r1|2

2Nb2

*
. (29)

We can prove this by Induction: For N=1 it is true by (2). Assuming that P3p~r1, ~r2;Nq
is true then for N � 1 we have:

P3p~r1, ~r2;N � 1q �
» 8
�8

P3p~r1, ~r,NqP3p~r, ~r2, 1qd~r,
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*
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*
exp

"
�3|~r 1 � ∆~r|2
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where ∆~r � ~r2�~r1. The last expression completes the proof, from which we deduce
that (3) is true for all N . In this calculation I have used a change of variables several
times, completing the square once, and finished it by a Gaussian integral.

5.2 Appendix B

In this appendix I will proof that when we start with a with a probability distribution
wµp0q and perform a Monte Carlo simulation with a long Markov chain, that we end
up in the desired probability distribution pµ defined by

pµ �
¸
ν

pνPνÑµ. (30)

Starting with wµp0q we end up in wµptq after t steps in the Markov chain, where

wµptq �
¸
ν

P tµÑνwνp0q.

30



If we write wνp0q in terms of eigenvectors vνi of matrix PνÑµ we obtain

wµptq �
¸
ν

P tµÑν

¸
i

aiv
ν
i p0q

�
¸
ν

¸
i

aiλ
t
ivi,µp0q,

with λi the eigenvalues corresponding to the eigenvectors vi. In the limit of large t,
this equation will be dominated by the largest eigenvalue λ0 of the Markov matrix and
therefore wµptq becomes proportional to v0

µ. If we combine the fact that there is at
least one eigenvalue of a Markov matrix that is one, with eq.(30) we can conclude that

lim
tÑ8

wµptq � pµ. (31)

If there are more eigenvalues that are one, then this would lead to a violation of the
condition of ergodicity, which we excluded by designing the Monte Carlo algorithm.
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6 C Programs

6.1 C-Program for exact enumeration

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <time . h>
#inc lude <pthread . h>
#d e f i n e N 10
double Z [N+1] , sumr2 [N+1] ;
i n t bezet [2∗N+1][2∗N+1] ;
double ZD[N+1] , sumr2D [N+1] ;
double ZR[N+1] , sumr2R [N+1] ;
i n t bezetD [2∗N+1][2∗N+1] , bezetR [2∗N+1][2∗N+1] ;
void godown ( i n t x , i n t y , i n t n)
{

i f ( ! bezetD [ x+N] [ y+N] )
{

bezetD [ x+N] [ y+N]=1;
ZD[ n]++;
sumr2D [ n]+=x∗x+y∗y ;
i f (n<N)
{

godown (x+1,y ,n+1);
godown (x�1,y ,n+1);
godown (x , y+1,n+1);
godown (x ,y�1,n+1);

}
bezetD [ x+N] [ y+N]=0;

}
}
void go r i gh t ( i n t x , i n t y , i n t n)
{

i f ( ! bezetR [ x+N] [ y+N] )
{

bezetR [ x+N] [ y+N]=1;
ZR[ n]++;
sumr2R [ n]+=x∗x+y∗y ;
i f (n<N)
{

go r i gh t (x+1,y ,n+1);
go r i gh t (x�1,y ,n+1);
go r i gh t (x , y+1,n+1);
go r i gh t (x ,y�1,n+1);

}
bezetR [ x+N] [ y+N]=0;

}
}
void threadD ( void ∗vargp )
{

bezetD [0+N][0+N]=1;
bezetD [1+N][0+N]=1;
godown (2 , 0 , 2 ) ;

}
void threadR ( void ∗vargp )
{

bezetR [0+N][0+N]=1;
bezetR [1+N][0+N]=1;
go r i gh t (1 , 1 , 2 ) ;

}
i n t main random1 ( )
{

unsigned o l d c l o c k = c lock ( ) ;
i n t o ld t ime = time ( 0 ) ;
pthread t down , r i g h t ;
i n t i , j ;
f o r ( i =0; i<=N; i++)
{

ZD[ i ]=0;
ZR[ i ]=0;
sumr2D [ i ]=0 . 0 ;
sumr2R [ i ]=0 . 0 ;
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}
f o r ( i =0; i<=2∗N; i++)

f o r ( j =0; j<=2∗N; j++)
{

bezetD [ i ] [ j ]=0;
bezetR [ i ] [ j ]=0;

}
pthr ead c r ea t e (&down , NULL, ( void ∗) &threadD , NULL) ;
p th r ead c r ea t e (&r ight , NULL, ( void ∗) &threadR , NULL) ;
p th r ead j o i n (down , NULL) ;
p th r ead j o i n ( r ight , NULL) ;
f o r ( i =2; i<=N; i++)

p r i n t f (”%d\ t%l f \ t%l f \ t%l f \n” ,
i , 4∗ ( sumr2D [ i ]+2∗sumr2R [ i ] ) , 4 ∗ (ZD[ i ]+2∗ZR[ i ] ) ,
( sumr2D [ i ]+2∗sumr2R [ i ] ) / (ZD[ i ]+2∗ZR[ i ] ) ) ;

p r i n t f (”%d seconds e lapsed (%.3 l f seconds CPU time )\n” ,
( i n t ) time (0)� old t ime , ( ( double ) ( c l o ck ()� o l d c l o c k ) )/CLOCKS PER SEC ) ;

re turn 0 ;
}

6.2 C-Program for Statistical Enumeration including Pruning and Enrichment

/∗
∗ enr i ched . c
∗ randomwalks
∗
∗ Created by Quir ine Krol on 6/6/11.
∗ Copyright 2011 Utrecht Un ive r s i ty . Al l r i g h t s r e s e rved .
∗
∗/

#inc lude ” enr i ched . h”
#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <time . h>
#inc lude <math . h>
#d e f i n e RUNS 1000// aanta l runs over
#d e f i n e ITER 100000
#i f n d e f N
#d e f i n e N 200
#e nd i f
#d e f i n e NUM THREADS 1
#d e f i n e T ITER/10 // c o r r e l a t i e t i j d
extern double drand48 ( ) ;
i n t seed ;
double sumsd [RUNS ] ;
double sumrw [RUNS ] ;
double avgRB [N+1] ;
i n t bezet2d [2∗N+1][2∗N+1] ;
i n t bezet3d [2∗N+1][2∗N+1][2∗N+1] ;
void f l o a t i n g l o t u s ( i n t i , i n t j , i n t k , i n t x , i n t y , double wN, double wPE){

i f ( k==N) {
sumrw [ i ]+=wPE;
sumsd [ i ]+=wPE∗ ( ( x�N)∗ ( x�N)+(y�N)∗ ( y�N) ) ;

}
i f (k<N){

i n t x l [ 4 ] ;
i n t y l [ 4 ] ;
i n t m=0;
bezet2d [ x ] [ y ]=1;
i n t p ;
i f ( ! ( bezet2d [ x +1] [ y ] ) ){ x l [m]=x+1; y l [m]=y ;m++;}
i f ( ! ( bezet2d [ x�1] [ y ] ) ){ x l [m]=x�1; y l [m]=y ;m++;}
i f ( ! ( bezet2d [ x ] [ y+1]) ){ x l [m]=x ; y l [m]=y+1;m++;}
i f ( ! ( bezet2d [ x ] [ y�1]) ){ x l [m]=x ; y l [m]=y�1;m++;}
i f (m>0){

p=f l o o r ( drand48 ()∗m) ;
avgRB [ k]+=m∗wPE;
i f ( j>T){

i f ( j ∗wPE<.5∗avgRB [ k ] ){// pruning
i f ( drand48 ( ) < 0 .5 ){}
e l s e f l o a t i n g l o t u s ( i , j , k+1, x l [ p ] , y l [ p ] ,wN∗m,wPE∗m∗2 ) ;

}
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e l s e {
i f ( j ∗wPE>5∗avgRB [ k ] ){// enrichment

i f ( drand48 ( ) < 0 .5 ) f l o a t i n g l o t u s ( i , j , k+1, x l [ p ] , y l [ p ] ,wN∗m,wPE∗m) ;
e l s e {

f l o a t i n g l o t u s ( i , j , k+1, x l [ p ] , y l [ p ] ,wN∗m,wPE∗m∗ . 5 ) ;
f l o a t i n g l o t u s ( i , j , k+1, x l [ p ] , y l [ p ] ,wN∗m,wPE∗m∗ . 5 ) ;

}
}

e l s e f l o a t i n g l o t u s ( i , j , k+1, x l [ p ] , y l [ p ] ,wN∗m,wPE∗m) ;
}

}
e l s e f l o a t i n g l o t u s ( i , j , k+1, x l [ p ] , y l [ p ] ,wN∗m,wPE∗m) ;

}
bezet2d [ x ] [ y ]=0;

}
}
void f l y i n g l o t u s ( i n t i , i n t j , i n t k , i n t x , i n t y , i n t z , double wN, double wPE){

i f ( k==N) {
sumrw [ i ]+=wPE;
sumsd [ i ]+=wPE∗ ( ( x�N)∗ ( x�N)+(y�N)∗ ( y�N)+(z�N)∗ ( z�N) ) ;

}
i f (k<N) {

i n t x l [ 6 ] ;
i n t y l [ 6 ] ;
i n t z l [ 6 ] ;
i n t m=0;
bezet3d [ x ] [ y ] [ z ]=1;
i n t p ;
i f ( ! ( bezet3d [ x +1] [ y ] [ z ] ) ){ x l [m]=x+1; y l [m]=y ; z l [m]=z ;m++;}
i f ( ! ( bezet3d [ x�1] [ y ] [ z ] ) ){ x l [m]=x�1; y l [m]=y ; z l [m]=z ;m++;}
i f ( ! ( bezet3d [ x ] [ y +1] [ z ] ) ){ x l [m]=x ; y l [m]=y+1; z l [m]=z ;m++;}
i f ( ! ( bezet3d [ x ] [ y�1] [ z ] ) ){ x l [m]=x ; y l [m]=y�1; z l [m]=z ;m++;}
i f ( ! ( bezet3d [ x ] [ y ] [ z +1]) ){ x l [m]=x ; y l [m]=y ; z l [m]=z+1;m++;}
i f ( ! ( bezet3d [ x ] [ y ] [ z�1]) ){ x l [m]=x ; y l [m]=y ; z l [m]=z�1;m++;}
i f (m>0){

p=f l o o r ( drand48 ()∗m) ;
avgRB [ k ] += m∗wPE;
i f ( j>T){

i f ( j ∗wPE<.5∗avgRB [ k ] ){// pruning
i f ( drand48 ( ) < 0 .5 ){}
e l s e f l y i n g l o t u s ( i , j , k+1, x l [ p ] , y l [ p ] , z l [ p ] ,wN∗m,wPE∗m∗2 ) ;

}
e l s e {

i f ( j ∗wPE>5∗avgRB [ k ] ){// enrichment
i f ( drand48 ( ) < 0 .5 ) f l y i n g l o t u s ( i , j , k+1, x l [ p ] , y l [ p ] , z l [ p ] ,wN∗m,wPE∗m) ;
e l s e {

f l y i n g l o t u s ( i , j , k+1, x l [ p ] , y l [ p ] , z l [ p ] ,wN∗m,wPE∗m∗ . 5 ) ;
f l y i n g l o t u s ( i , j , k+1, x l [ p ] , y l [ p ] , z l [ p ] ,wN∗m,wPE∗m∗ . 5 ) ;

}
}
e l s e f l y i n g l o t u s ( i , j , k+1, x l [ p ] , y l [ p ] , z l [ p ] ,wN∗m,wPE∗m) ;

}
}
e l s e f l y i n g l o t u s ( i , j , k+1, x l [ p ] , y l [ p ] , z l [ p ] ,wN∗m,wPE∗m) ;

}
bezet3d [ x ] [ y ] [ z ]=0;

}
}
void rosenbluth2D ( void ){

i n t i , j , i i , j j , k ;
f o r ( i i =0; i i <2∗N+1; i i ++){

f o r ( j j =0; j j <2∗N+1; j j ++){
bezet2d [ i i ] [ j j ]=0;

}
}
f o r ( i =0; i<RUNS; i ++){

sumsd [ i ]=0;
sumrw [ i ]=0;
f o r ( k=0;k<N; k++)avgRB [ k ]=0;
f o r ( j =1; j<=ITER; j++) f l o a t i n g l o t u s ( i , j , 0 ,N,N, 1 , 1 ) ;

}
}
void rosenbluth3D ( void ){
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i n t i , j , k , i i , j j , kk ;
f o r ( i i =0; i i <2∗N+1; i i ++){

f o r ( j j =0; j j <2∗N+1; j j ++){
f o r ( kk=0; kk<2∗N+1; kk++)bezet3d [ i i ] [ j j ] [ kk ]=0;

}
}
f o r ( i =0; i<RUNS; i ++){

sumsd [ i ]=0;
sumrw [ i ]=0;
f o r ( k=0;k<N; k++)avgRB [ k ]=0;
f o r ( j =1; j<=ITER; j++) f l y i n g l o t u s ( i , j , 0 ,N,N,N, 1 , 1 ) ;

}
}
i n t main ( i n t argc , char∗ argv [ ] )
{

seed=time (NULL) ;
srand48 ( seed ) ;
rosenbluth2D ( ) ; / / e i t h e r 2D or 3D

// rosenbluth3D ( ) ;
double msd avg , msd sig ;
msd avg = 0 ;
msd sig = 0 ;
i n t i ;
f o r ( i =0; i<RUNS; i++)msd avg+=sumsd [ i ] / sumrw [ i ] ;
msd avg /= RUNS;
f o r ( i =0; i<RUNS; i++)msd sig += ( sumsd [ i ] / sumrw [ i ]�msd avg )∗ ( sumsd [ i ] / sumrw [ i ]�msd avg ) ;
msd sig = sq r t ( msd sig )/RUNS;
p r i n t f (”{%d , %f , %f , %f , %f } , ” , N, msd avg , msd sig , s q r t ( msd avg ) , msd sig /(2∗ sq r t ( msd avg ) ) ) ;
r e turn 0 ;

}

6.3 C-Program for the tick and pivot algorithm

#inc lude <s t d i o . h>
#inc lude <math . h>
#inc lude ” rngmit . h”
#d e f i n e Nmax 64
#d e f i n e Nstart 36
#d e f i n e Nhalf 60
#d e f i n e Ns ta r tha l f 40
#d e f i n e Nstep 8
double p i ;
double beta =1.0;
double x [Nmax+1] ,y [Nmax+1] , z [Nmax+1] ,Nmsd [Nmax+1] ;
double ener ;
i n t tacc , t r e j , pacc , p r e j ;
double a =100.0 ,b=5.0 ,K=1.0;
i n t term =100;
i n t i t e r a t i o n s =5000000;
double p s t e p s i z e =3.14 , t s t e p s i z e =1.0;
FILE ∗ t i c kp i vo tda ta ;
double energy ( i n t N){

i n t i , j ;
double sumstretch =0.0 , sumgauss =0.0;
double dx , dy , dz , dr , dr2 ;
f o r ( i =0; i<N; i++) {

dx=x [ i +1]�x [ i ] ;
dy=y [ i +1]�y [ i ] ;
dz=z [ i +1]�z [ i ] ;
dr=sq r t ( dx∗dx+dy∗dy+dz∗dz ) ;
sumstretch+=(dr�1)∗(dr�1);

}
f o r ( i =0; i<=N; i++) {

f o r ( j=i +2; j<=N; j++) {
dx=x [ j ]�x [ i ] ;
dy=y [ j ]�y [ i ] ;
dz=z [ j ]�z [ i ] ;
dr2=dx∗dx+dy∗dy+dz∗dz ;
sumgauss+=exp(�b∗dr2 ) ;

}
}
re turn K∗ sumstretch+a∗sumgauss ;
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}
pivotmovez ( i n t i t e r , i n t N){

i n t i t , i , p ;
double ebef , e a f t ;
double xp , yp , dx , dy ;
double alpha ;
double xb [N+1] , yb [N+1] ;
f o r ( i t =0; i t< i t e r ; i t ++){

p=1+(N�1)∗ rngmit ;
alpha=1.0�2∗ rngmit ;
alpha∗=p s t e p s i z e ;
double cosa=cos ( alpha ) ;
double s ina=s in ( alpha ) ;
xp=x [ p ] ;
yp=y [ p ] ;
ebe f=ener ;
f o r ( i=p+1; i<=N; i ++){

xb [ i ]=x [ i ] ;
yb [ i ]=y [ i ] ;
dx=x [ i ]�xp ;
dy=y [ i ]�yp ;
x [ i ]=xp+cosa∗dx�s ina ∗dy ;
y [ i ]=yp+s ina ∗dx+cosa∗dy ;

}
e a f t=energy (N) ;
i f ( ( ea f t<ebe f ) | | ( rngmit<exp(�beta ∗( ea f t�ebe f ) ) ) ){

ener=e a f t ;
pacc++;

}
e l s e {

f o r ( i=p+1; i<=N; i ++){
x [ i ]=xb [ i ] ;
y [ i ]=yb [ i ] ;

}
pr e j++;

}
}

}
pivotmovex ( i n t i t e r , i n t N){

i n t i t , i , p ;
double ebef , e a f t ;
double yp , zp , dy , dz ;
double alpha ;
double yb [N+1] , zb [N+1] ;
f o r ( i t =0; i t< i t e r ; i t ++){

p=1+(N�1)∗ rngmit ;
alpha=1.0�2∗ rngmit ;
alpha∗=p s t e p s i z e ;
double cosa=cos ( alpha ) ;
double s ina=s in ( alpha ) ;
yp=y [ p ] ;
zp=z [ p ] ;
ebe f=ener ;
f o r ( i=p+1; i<=N; i ++){

yb [ i ]=y [ i ] ;
zb [ i ]=z [ i ] ;
dy=y [ i ]�yp ;
dz=z [ i ]�zp ;
y [ i ]=yp+cosa∗dy�s ina ∗dz ;
z [ i ]=zp+s ina ∗dy+cosa∗dz ;

}
e a f t=energy (N) ;
i f ( ( ea f t<ebe f ) | | ( rngmit<exp(�beta ∗( ea f t�ebe f ) ) ) ){

ener=e a f t ;
pacc++;

}
e l s e {

f o r ( i=p+1; i<=N; i ++){
y [ i ]=yb [ i ] ;
z [ i ]=zb [ i ] ;

}
pr e j++;

}
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}
}
pivotmovey ( i n t i t e r , i n t N){

i n t i t , i , p ;
double ebef , e a f t ;
double zp , xp , dz , dx ;
double alpha ;
double zb [N+1] ,xb [N+1] ;
f o r ( i t =0; i t< i t e r ; i t ++){

p=1+(N�1)∗ rngmit ;
alpha=1.0�2∗ rngmit ;
alpha∗=p s t e p s i z e ;
double cosa=cos ( alpha ) ;
double s ina=s in ( alpha ) ;
zp=z [ p ] ;
xp=x [ p ] ;
ebe f=ener ;
f o r ( i=p+1; i<=N; i ++){

zb [ i ]=z [ i ] ;
xb [ i ]=x [ i ] ;
dz=z [ i ]�zp ;
dx=x [ i ]�xp ;
z [ i ]=zp+cosa ∗dz�s ina ∗dx ;
x [ i ]=xp+s ina ∗dz+cosa ∗dx ;

}
e a f t=energy (N) ;
i f ( ( ea f t<ebe f ) | | ( rngmit<exp(�beta ∗( ea f t�ebe f ) ) ) ){

ener=e a f t ;
pacc++;

}
e l s e {

f o r ( i=p+1; i<=N; i ++){
z [ i ]=zb [ i ] ;
x [ i ]=xb [ i ] ;

}
pr e j++;

}
}

}
tickmove ( i n t i t e r , i n t N)
{

i n t i t , i ;
double dx , dy , dz ;
double ebef , e a f t ;
f o r ( i t =0; i t< i t e r ; i t ++){

ebe f=ener ;
i =(N+1)∗ rngmit ;
do{

dx=1.0�2∗ rngmit ;
dy=1.0�2∗ rngmit ;
dz=1.0�2∗ rngmit ;

} whi le ( dx∗dx+dy∗dy+dz∗dz>1 .0) ;
dx∗=t s t e p s i z e ;
dy∗=t s t e p s i z e ;
dz∗=t s t e p s i z e ;
x [ i ]+=dx ;
y [ i ]+=dy ;
z [ i ]+=dz ;
e a f t=energy (N) ;
i f ( ( ea f t<ebe f ) | | ( rngmit<exp(�beta ∗( ea f t�ebe f ) ) ) ){

ener=e a f t ;
tacc++;

}
e l s e {

x [ i ]�=dx ;
y [ i ]�=dy ;
z [ i ]�=dz ;
t r e j ++;

}
}

}
i n i t ( i n t N){

i n t i ;
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f o r ( i =0; i<=N; i ++){
x [ i ]=0 . 0 ;
y [ i ]= i ∗ 2 . 0 ;
z [ i ]=0 . 0 ;

}
ener=energy (N) ;

}
main (){

i n t i , k , p , q ;
i n t seed ;
double sumdr2 ;
i n t N;
f o r ( i =0; i <=200; i++) {

Nmsd [ i ]=0;
}
seed=time (NULL) ;
rngseed ( seed ) ;
p i=3∗acos ( 0 . 5 ) ;
p r i n t f (”%d\ t%l f \ t%l f \ t%l f \n” ,Nmax, a , b ,K) ;
f o r (N=Nstart ; N<=Nhalf ; N+=Nstep ){

i n i t (N) ;
f o r ( k=0;k<term ; k++){

tickmove (2 ,N) ;
f o r ( q=1; q<=10; q++){

pivotmovex (1 ,N) ;
pivotmovey (1 ,N) ;
pivotmovez (1 ,N) ;

}
}
sumdr2=0;
tacc=t r e j=pacc=pre j =0;
f o r ( k=0;k<i t e r a t i o n s ; k++){

tickmove (2 ,N) ;
f o r ( q=1; q<=10; q++){

pivotmovex (1 ,N) ;
pivotmovey (1 ,N) ;
pivotmovez (1 ,N) ;

}
sumdr2+=(x [N]�x [ 0 ] ) ∗ ( x [N]�x [ 0 ] )+( y [N]�y [ 0 ] ) ∗ ( y [N]�y [ 0 ] )+( z [N]�z [ 0 ] ) ∗ ( z [N]�z [ 0 ] ) ;

}
Nmsd [N]=sumdr2/ i t e r a t i o n s ;
p r i n t f (”%d\ t%l f \n” ,N,Nmsd [N ] ) ;

}
f o r (N=Nsta r tha l f ; N<=Nmax; N+=Nstep ){

i n i t (N) ;
f o r ( k=0;k<term ; k++){

tickmove (2 ,N) ;
f o r ( q=1; q<=10; q++){

pivotmovex (1 ,N) ;
pivotmovey (1 ,N) ;
pivotmovez (1 ,N) ;

}
}
sumdr2=0;
tacc=t r e j=pacc=pre j =0;
f o r ( k=0;k<i t e r a t i o n s ; k++){

tickmove (2 ,N) ;
f o r ( q=1; q<=10; q++){

pivotmovex (1 ,N) ;
pivotmovey (1 ,N) ;
pivotmovez (1 ,N) ;

}
sumdr2+=(x [N]�x [ 0 ] ) ∗ ( x [N]�x [ 0 ] )+( y [N]�y [ 0 ] ) ∗ ( y [N]�y [ 0 ] )+( z [N]�z [ 0 ] ) ∗ ( z [N]�z [ 0 ] ) ;

}
Nmsd [N]=sumdr2/ i t e r a t i o n s ;
p r i n t f (”%d\ t%l f \n” ,N,Nmsd [N ] ) ;

}
char f i l ename [Nmax+10] ;
s p r i n t f ( f i l ename ,”%g m%iGauss2a%gb%gK%gB%g . dat ” ,1 .0∗ i t e r a t i o n s /1000000 ,Nmax, a , b ,K, beta ) ;
t i c kp i vo tda ta= fopen ( f i l ename , ”w” ) ;
f o r (p=1; p<=Nmax+1; p++){

f p r i n t f ( t i ckp ivotdata ,”%d\ t%l f \n” ,p ,Nmsd [ p ] ) ;
}
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