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Abstract

In this thesis we look at theory and experiments with the purpose of
finding an experimental value for the specific heat of a Bose-Einstein con-
densate. First, we consider basic thermodynamics in a harmonic trap to
define the concept of specific heat in this context. A model is constructed
for the measurements and the measurements themselves are discussed.
The first part of this thesis considers a time dependent magnetic trap to
add energy to the system. We will predict this increase in energy by the-
ory to be able to calculate the specific heat. This method turns out to be
impractical and difficult to implement correctly experimentally. This is
partly because of experimental difficulties but mainly because the process
is not sufficiently understood. The second part concerns a laser beam
illuminating the cloud to induce heating like in phase contrast imaging.
Although theoretical predictions and experiments do not agree with one
another, a scheme is laid out to be able to determine the specific heat
from these experiments.
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1 Introduction

1.1 Bose-Einstein condensation

The history of Bose-Einstein condensates starts with a letter from Satyendra
Nath Bose to Albert Einstein. In that letter, Bose explains a way to derive
Planck’s radiation formula. Einstein subsequently published a paper in 1924
describing the quantum theory of an ideal gas using the theory Bose developed.
In this paper he writes that for monatomic ideal Bose gases at zero temperature,
the entropy must vanish and all particles should be in the lowest energy state.
This new phase of matter is now called a Bose-Einstein condensate (BEC) [1].

The easiest way to think of a BEC is to describe all particles of the Bose gas
as quantum mechanical wave packets with a wavelength given by the thermal
De Broglie wavelength, which is given by the formula1:

ΛdB :=

√
2π~2

mkBT
. (1.1)

The quantum mechanical uncertainty of the position of a particle is of the order
of the value of ΛdB. When ΛdB becomes larger than the inter-particle distance,
the concept of a particle loses its meaning. This is because two particles cannot
be distinguished in any way. The system can no longer be described as a group of
classical particles because quantum mechanical effects emerge on a macroscopic
scale. Instead, one should view the system as a coherent matter wave.

The average inter-particle distance is n−1/3, where n represents the density.
For dilute gasses, n is about 1020m−3 [2] and in order to get a Λdb that is larger
than the inter-particle distance, extremely low temperatures are necessary (in
the nanokelvin regime). For a long time this made it impossible for experi-
mentalists to create a BEC. So although this new state of matter was already
predicted in 1924, the first experimental observation of a gaseous BEC occurred
more than 70 years later. In 1995, BEC was realized for the first time by Cor-
nell and Wieman. Several months later, Ketterle also managed to create a BEC
[3]. In 2001 Cornell, Wiemann and Ketterle were awarded the Nobel Prize in
Physics [4].

The condensates are made by trapping a cloud of atoms and cooling the
system down. To achieve this, both laser cooling and evaporative cooling are
used. These two cooling techniques are both vital for reaching the temperature
necessary for Bose-Einstein condensation.

The temperature for which a BEC starts to form in the cloud of atoms is
called the critical temperature, Tc. For temperatures lower than this Tc, some
particles are in the condensate while other particles are in the thermal cloud.
However, the system cannot be treated as two separate parts. For example, the
temperature is only defined for the system as a whole and not for the condensate
by itself because all particles of the condensate are in the ground state.

These properties feel very counter-intuitive. To get a better understanding,
it helps to have a good analogy. To this end, we consider glass. When glass
melts, there is a temperature range for which the solid and liquid phase coexist.
This can be compared to the coexistence of the thermal cloud and the BEC.

1In this equation, T stands for the temperature and m, kB and ~ are constants whose
values are given in appendix A.
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The temperature of glass is obviously different from that of the BEC. The
temperature in the analogy where glass is a solid should be thought of as T =
0 K in the Bose gas and the temperature where all the glass has melted as
T = Tc. One similarity is that the two phases of the glass are spatially mixed,
just as the thermal cloud and BEC. Another is that the two phases are in
thermal equilibrium. If particles are removed from one of the two phases, the
remaining particles and the energy will be redistributed over the whole system.
The analogy should not be driven too far, of course. The BEC is a quantum
mechanical system while the glass is not, but this analogy can help develop an
understanding of the BEC systems.

In the current BEC experiments, it is possible to measure the temperature of
the cloud of atoms with an accuracy sufficient for quantitative analysis. This is
why, for instance, the condensate fraction versus temperature has been studied
experimentally [5]. On the other hand, there is no experimental value of the
specific heat of a system with a BEC. This is because measurements involving
the energy have not been successful in providing a quantitative result [6].

The main goal of this thesis is measuring the specific heat of the cloud
containing a BEC. Since the condensate has no temperature by itself, there is
no specific heat of a BEC. One should view the specific heat of a system with
a BEC as the relation between the total energy and the temperature of the
system. This thesis gives a model and compares it to experiments. During
these experiments, it became apparent that not all effects playing a significant
role are taken into account. Because of this, the results of this thesis also
have an impact on a range of future experiments in the Utrecht group that are
performed on BEC’s. The two most important examples of this are firstly the
results concerning the behaviour of a BEC in a time dependent harmonic trap
and secondly the effects of phase contrast imaging (PCI) on the BEC.

The main subjects of this thesis are the description of experiments and the
explanation of the corresponding theory. The experiments that we have done
had the aim of measuring the heat capacity of a system with a BEC. The theory
is required to get an understanding to what is happening and to be able to draw
conclusions from the measurements.

The experimental setup that is used to do the experiments in this thesis is
described in chapter 2. All theoretical considerations are combined in chapter 3.
In chapters 4 and 5 the measurements and results are discussed of two different
methods which were explored in order to determine the specific heat.

This thesis also contains an appendix which is attached after the conclusion
(chapter 6). The first section gives the values of some physical constants and
parameters of the experiment. Another section of the appendix is a reference
for some notations that are used in this thesis and finally, the last part of the
appendix gives some proofs of statements made in the main chapters.
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2 Experimental Setup

2.1 Overview

Figure 1 shows an schematic overview of the experiment denoting all of the
separate components.
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Figure 1: A schematic representation of the experiment setup. Used with
permission [7].

Starting from the right, the atoms that will form the condensate originate
from an oven with a temperature of about 600 K. Using two small diaphragms,
a collimated beam of particles is formed. The so called Zeeman slower slows
the beam down from a starting speed of 800 m s−1 to roughly 30 m s−1. This is
achieved by a laser beam propagating in the direction opposite to the flux of
particles. The frequency of the laser is resonant with the atoms such that the
atoms absorb and re-emit the light, thereby losing momentum. In order for this
to work, the laser has to be resonant with the atoms and due to the Doppler
effect, the frequency of the laser changes in the reference frame of the atoms.
The solution is to make use of the Zeeman effect. This effect is the shift of the
energy levels as a function of the magnetic field. By using a decreasing magnetic
field, the energy levels from the atoms can be tuned to match the frequency of
the laser for each velocity [2, p. 58].

Next, the particles enter the magneto-optical trap (MOT) in the BEC cham-
ber. In this trap the atoms are cooled further by a combination of laser light
and a magnetic field. The magnetic field together with laser beams ensure a
restoring force thus trapping the atoms. The laser beams also provide a force
opposing the velocity of the atoms, slowing them down. The setup consists
of six lasers such that for each of the three orthogonal axes there are two laser
beams, one coming from the positive and one from the negative direction. Laser
light which is slightly detuned to the red, relative to the cooling transition, is
used2. When atoms are moving they are pushed in the opposite direction by
the laser beam, since the beam they are moving to is closer to resonance than
the beam they are moving away from due to the Doppler effect.

The cloud is now cold enough to be captured in a magnetic trap in which the
final stage of the cooling process takes place. Atoms are trapped in a magnetic
field by the interaction of their spin with the magnetic field. Depending on
the direction of their magnetic moment relative to the magnetic field, they will

2This means that the laser light has a lower frequency than the resonance frequency of the
cooling transition.
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either move to a high or a low magnetic field (high-field and low-field seekers
respectively) or will be unaffected by the field. Particles that are unaffected
cannot be trapped by a magnetic trap. Furthermore, it is not possible to create
a magnetic field which has a local maximum in a position, where there is no
electrical current [2, p. 60]. This means that in every magnetic trap, only the
low-field seekers are trapped. To increase the efficiency of loading the atoms
from the MOT to the magnetic field, the atoms are optically pumped to the
low-field seeking state. This process has a typical efficiency of 60 %.

The cooling works by continuously removing the atoms with the highest
energy from the trap. This is done slow enough so that the system stays in
thermal equilibrium. This means that only the atoms from the tail of the
Boltzmann distribution are ejected and the bulk of the particles becomes cooler.
Ejecting the particles is done by a radio frequency field which induces a spin-
flip on the particles with a certain energy. This works because the resonance
frequency for a spin-flip depends on the magnetic field. The particles with a
high energy can reach parts of the trapping potential that other particles cannot
reach. These parts correspond to a certain magnetic field and by choosing a
frequency for the RF field that is resonant for particles in this magnetic field,
the spin-flip is induced only on these particles. The frequency is ramped down
until the atoms become cold enough to form a BEC. This way of cooling is
called forced evaporative cooling.

The whole setup is placed in a ultra-high vacuum to prevent the BEC being
destroyed by particles at room temperature moving through the condensate.
Our experiment uses several vacuum pumps, including a cryogenic pump which
turns out to be very important to get a pressure low enough for a BEC.

2.2 Magnetic trap

This experimental setup uses a cloverleaf trap[5] to generate the magnetic trap.
The trapping potential of this trap is harmonic. An anisotropic harmonic trap
can be characterised by the trap frequencies in three orthogonal directions. We
denote these frequencies by ω1, ω2 and ω3. These frequencies can be put in a
vector ~ω = (ω1 ω2 ω3)T.

The trap in this experiment has one so called axial and two radial directions
(call them respectively ω̂1, ω̂2 and ω̂3), which are all mutually orthogonal. The
axial direction is defined by the geometry of the magnetic trap, but the other
two are only defined up to a rotation along the axial axis. Following the normal
right-handed orientation of a coordinate system we take ω̂1 × ω̂2 = ω̂3.

The trap frequencies are controlled by specifying the current through the
coils of the trap. This means that, in order to know the trap frequencies, they
have to be measured because calculating the trap frequencies from the current
is far from trivial. To measure the trap frequencies, a cloud in the magnetic
trap is produced and given a kick using one of the available coils. The cloud
will then obtain a dipole oscillation around the center of the trap and we make
images of the cloud using PCI with a known time between two pictures. This
should be enough the determine the trap frequencies, but unfortunately, in our
case the imaging frequency is of the same order as the trap frequency in the
radial direction.

The result of this inadequate sampling frequency is that the fitting of the
dipole oscillation becomes difficult. The result of the fitting procedure can
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be increased if we use the beat frequency between the trap frequency and the
imaging frequency. The position rj of the jth measured point is given by

rj = a0 + a1 sin(ωτj + δ), (2.1)

with τ the time between two pictures. Here a0, a1 and δ are three extra fit
parameters to determine the offset, amplitude and phase of the oscillation. With
some standard trigonometric equations, it can be written as

rj = a0 + a1 cos

(
2π

xτ
τj

)
sin(ωbτj + δ), (2.2)

with the beat frequency ωb = ω − 2π
xτ and x an undetermined variable. Fitting

with this model gives much better results, with the only problem that remains
the fact that is x can have multiple values. This problem can be resolved by
using two separate measurements with two different values for τ . The initial
parameter for ωb is taken as ω̃b = ω̃ − π

τ . If ω̃ is close to the actual trap
frequency it turns out that x = 2. The measurement with a different τ can then
be used to check that ω̃ is sufficiently close to the trap frequency.

The process of determining the trap frequencies needs two steps. First the
positions of the clouds are determined by a fitting procedure (see section 2.3)
and then equation 2.2 is fitted to these positions. This process needs human
supervision at this point. The reason for this lies in the analysis of the images
of the cloud. The fitting procedure will not be able to find a position for the
cloud if for example the cloud has moved from the imaging frame. This results
in outliers in the data. As it turns out, all these outliers are caused by fits
that obviously do not correspond to the image as can be checked manually. To
circumvent the necessity of checking the fits by hand, we use another method.
The mean and standard deviation of the positions are calculated. Then all
points which lie farther than 3 standard deviations from the mean are removed
from the data set. This procedure is repeated until it does no longer filter any
data points from the set. This margin of 3 standard deviations turns out to
remove only the points resulting from a wrong fit caused by the reasons above.
This method works well, because in most cases it does not remove any data
points. In the cases that remain, one or two data points are removed from the
set. Equation 2.2 can then be fitted to the data. With this method, the trap
frequencies can by determined fully automatically.

2.3 Imaging

We have two different ways of making images of the cloud. These are absorption
imaging and phase contrast imaging. With the first method a shadow is cast by
the atoms on the CCD camera with a resonant laser beam. For dense clouds the
cloud becomes opaque to the laser and the resulting shadow cannot be used for
a qualitative analysis due to a poor signal to noise ratio. One solution for this
is to release the cloud from the magnetic trap letting it expand during several
milliseconds before making the picture. Absorption imaging is destructive be-
cause the laser beam is resonant with the atoms. This means that if a series of
pictures is needed to follow the dynamics of the system, a new cloud is needed
for each picture. This makes absorption imaging very sensitive to run-to-run
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differences of the cloud apart from the fact that this is a very time consuming
method.

In phase contrast imaging (PCI) the real part of the index of refraction is
measured instead of the imaginary part (the absorption). This method of imag-
ing is less affected by the limitations of absorption imaging. It works by using
a probe beam which is detuned from the resonant frequency3 and propagates
through the cloud. The refracted part of the beam is imaged by two lenses
on the CCD camera. The non-refracted part of the beam is first focused on a
phase spot such that this part of the beam accumulates an extra phase, which
depends on the phase spot. In this experiment the light through the phase spot
accumulates 5π/3 less phase than the other part of the beam which is equivalent
to an extra phase of π/3 [3].

A schematic representation of the PCI setup can be seen in figure 2. From
geometrical optics it is found that the magnification factor of both the probe
beam and the cloud is equal to M = f2/f1 = 3. Note that this factor is
independent of the distance d between the two lenses. In this experimental
setup, the magnification factor is determined to be M = 3.05(5) [3].

f1 d=150.mm f2

CCDf1=250.mm f2=750.mm

atoms PS

Figure 2: Schematic representation of a part of the PCI setup with the probe
beam (in yellow) and three propagating beams from the atoms (in red, green
and blue). The phase spot denoted by PS.

In order to get a picture of the cloud, three images are captured by the CCD
camera. The first image is the laser beam shining through the atoms, the second
image is taken after the atoms are gone and is a picture of the laser beam on the
camera. The third image is the background image with no laser beam. These
images are processed to one image ro reduce noise. The process used combines
these three pictures and uses singular value decomposition to reduce the noise.
For an accurate description of this process, see [8].

The next step is to extract the relevant data from the images. There are
multiple ways of fitting which can be used. The easiest one is to fit a Thomas-
Fermi profile [2] for the condensate and simultaneously a Gauss profile for the
thermal cloud. The Thomas-Fermi approximation is far from the best model

3Relative to the (F = 1) to (F ′ = 1) transition.
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available, but the advantages of our implementation are that it is a simple
method that does not assume that the cloud is in thermal equilibrium and it
does not need information about the magnetic trap in order the fit the data.
This makes the model ideal for measuring the trap frequencies, where by nature
of the experiment the trap frequencies are not known. The fact that there are
better approximations here is irrelevant because only the coordinates of the
condensate are used for which the Thomas-Fermi method is as good as any
other method.

Another procedure which can be used, fits a Hartree-Fock [2] model to the
data. This model is a far better approximation because it takes the interactions
between the condensate and the thermal cloud into account. Our implementa-
tion of this method gives more useful data to work with than our implication of
the Thomas-Fermi method. The parameters returned are the temperature and
the chemical potential. In addition, the Hartree-Fock model can also give the
number of particles, total energy and other thermodynamic variables. In order
for our implementation to work however, the cloud must be in equilibrium. To
reduce the number of fit parameters, the trap frequencies and the coordinates
are usually held fixed during the fitting procedure. However, in order for this to
work, the values for these parameters must be known. To find these parameters,
the Thomas-Fermi model is used.
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3 Theory

3.1 Thermodynamics

In a standard treatment of thermodynamics the first law of thermodynamics is
stated as

dU = ¡Q+ ¡W (3.1)

to equate the change in energy dU to an amount of heat added to the system
¡Q and an amount of work done on the system ¡W [9]. In this equation it holds
that

¡Q = TdS, (3.2)

where S is the entropy. The work done on the system is then often given in
terms of the volume V and the pressure p:

¡W = −pdV. (3.3)

However, in our experiment the system is contained in a harmonic trap for which
there is no volume. Instead, the work done on the system is given by a change
in the trap frequencies.

Following reference [10] we define two new thermodynamic quantities. The
first is a substitute for the volume and will be called the harmonic volume V,
which is defined in terms of the trap frequencies ωj :

V = ω̄−3. (3.4)

The second is a substitute for the pressure and will be called the harmonic
pressure denoted by P. Note that the dimension of the harmonic volume is
different from the dimension of the normal volume. The normal volume has the
dimension L3 while the harmonic volume has the dimension T3. Analogously,
the dimension of harmonic pressure is different from that of the normal pressure.
This does not matter as long as the harmonic pressure is the conjugate of the
harmonic volume such that the dimension of P · V is energy, or in SI symbols
L2MT−2.

This is a motivation to write

dU = TdS − PdV. (3.5)

We restrict ourselves here to a system of non-interacting bosons. The grand
potential is defined as ΦG := −kBT ln(Z). Using the quantum statistics of
bosons, a formula for the grand partition function Z can be obtained in terms
of the chemical potential µ and β = 1/(kBT )[9, p. 351]:

ln(Z) = −
∑
i

ln(1− eβ(µ−Ei)). (3.6)

In this formula, Ei denotes the energy of the ith energy level. We convert the
sum to an integral and substitute the density of states4 g(E).

ΦG =
1

β

∫ ∞
0

ln(1− e−β(E−µ))g(E)dE, (3.7)

4Changing the sum to an integral can lead to problems if the ground state is macroscopically
occupied. In this case, the contribution to the grand potential of the ground state is zero
because its energy is zero.
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with the density of states of a harmonic trap given by

g(E) =
E2s

2~3ω1ω2ω3
. (3.8)

In this formula, s is a factor to take into account the different spin states of the
bosons. In the experiment, only one spin state is trapped and therefore s = 1
in this case.

The integral that remains can be solved using a standard formula[9, p. 471]
and it is given by

ΦG =
−(kBT )4

~3ω̄3
Li4(z) (3.9)

with the fugacity z := eβµ. The polylogarithm Lin(z) is defined as

Lin(z) :=

∞∑
k=1

zk

kn
. (3.10)

Using the normal thermodynamic relation P = −∂VΦG, we obtain

P =
(kBT )4

~3
Li4(z). (3.11)

And with equation 3.11 we find ΦG = −PV.
The energy of the condensate can be written in terms of ΦG as U = −3ΦG =

3PV (see appendix C.1). The specific heat is defined as

CV =

(
∂U

∂T

)
V,N

. (3.12)

In order to be able to calculate the specific heat, the quantities that remain
constant must be known. In this case these are the harmonic volume and the
number of particles. Let us introduce the dimensionless variable χ := (kBT )3

~3ω̄3 .
The number of particles can be calculated with the relation N = −∂µΦG which
yields (see equation C.8)

N = χLi3(z). (3.13)

After some calculations the following expression for CV can be derived (for the
derivation, see proof C.2),

CV = 3kB

[
4χLi4(Li−1

3 (Nχ−1))− 3χ−1N

Li2(Li−1
3 (Nχ−1))

]
. (3.14)

In this formula Li−1
n denotes the inverse of a polylogarithm. This formula is

not very useful because of the normal and inverse use of the polylogarithms.
However, the formula can be simplified by looking at the high temperature
limit. In this limit Nχ−1 goes to zero and this means that Li4(Li−1

3 (Nχ−1))
and Li2(Li−1

3 (Nχ−1)) can be approximated by Nχ−1. Substituting this into
equation 3.14 yields

CV ≈ 3kB(N − 3) ≈ 3NkB. (3.15)

This equation looks like the heat capacity of an ideal gas in a constant volume
(CV = 3

2NkB). The extra factor of 2 is due to the fact that we are considering
a system in a harmonic trap and not in a fixed volume.
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3.2 Condensed Phase

Let the wave function ψ of the condensed state with N particles be normalized
to N . That is: ∫

|ψ(~r)|2d~r = N. (3.16)

The energy of a BEC is the sum of the internal energy, the potential energy and
the kinetic energy [2]:

E(ψ) =

∫ [
~2

2m
|∇ψ(~r)|2 + V (~r)|ψ(~r)|2 +

1

2
U0|ψ(~r)|4

]
d~r. (3.17)

In this equation U0 is used for the effective contact interaction and is defined by

U0 =
4π~2a

m
, (3.18)

with a the scattering length (see appendix A). By minimizing equation (3.17)
the Gross-Pitaevskii equation can be obtained,

− ~2

2m
∇2ψ(~r) + V (~r)ψ(~r) + U0|ψ(~r)|2ψ(~r) = λψ(~r). (3.19)

The λ appears as a Lagrange multiplier to keep the number of particles N
constant. For a Lagrange multiplier, the following equation holds [11]:

λ =
∂E

∂N
. (3.20)

We recognize the right-hand side of this equation as the thermodynamical equa-
tion for the chemical potential, so we can conclude that λ denotes the chemical
potential µ. An approximation for the wave function of the BEC in a time
independent trap can be found by neglecting the kinetic energy in the Gross-
Pitaevskii equation.

|ψ(~r)|2 =

{
µTF−U(~r)

U0
if µ ≥ U(~r)

0 if µ ≤ U(~r)
(3.21)

A subscript is added to the µ to show that we are working within the Thomas-
Fermi approximation.

In this thesis only a harmonic potential is considered, which is given by

U(~r, t) =
1

2

3∑
j=1

mω2
j r

2
j , (3.22)

with ωj the angular trap frequency in the j direction. The size Rj of the
condensate in the j direction is given by

Rj =

√
2µ

mω2
j

. (3.23)

The chemical potential µ can be calculated by using the normalization of ψ. It
turns out that (see proof C.4)

µTF =
1

2
~ω̄

(
15Na

√
mω̄

~

)2/5

. (3.24)
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Combining equations (3.23) and (3.24) a formula for the number of particles in
the condensed state can be found:

N =
m2ω̄2R̄5

15a~2
.

3.3 Selfsimilar Expansion

When we consider a BEC in a time dependent trap, the formula for the potential
is given by equation (3.22) with time dependent frequencies ωj . Due to this time
dependence, the BEC will scale in the three directions with a scaling factor λj ,
where λj satisfies [12]

λ̈j(t) =
ω2
j (t0)

λj(t)λ1(t)λ2(t)λ3(t)
− ω2

j (t)λj(t), (3.25)

with the boundary conditions:

λj(t0) = 1 and λ̇j(t0) = 0 for all j ∈ {1, 2, 3}. (3.26)

By numerically solving this coupled second order differential equation we can
calculate the behaviour of the BEC in the trap.

3.4 Energy considerations

With these λj , the time dependent wave function of the condensate can be de-
scribed. Starting with equation (3.21) and performing the scaling, this formula
turns into (see proof C.3)

|ψ(~r, t)|2 =
µTF(t0)− U({rj/λj(t)}j=1,2,3, t0)

U0λ1(t)λ2(t)λ3(t)
. (3.27)

Note that in general, the chemical potential is a function of time because the
trap frequencies ωj are time-dependent. However, in equation 3.27 only the
chemical potential at t0 appears. The internal energy is given by (see proof
C.5)

Et0int(t) :=

∫
1

2
U0|ψ(~r)|4d~r =

2NµTF(t0)

7λ1(t)λ2(t)λ3(t)
. (3.28)

The potential energy is given by (see proof C.6)

Et0pot(t) =
NµTF(t0)

7

3∑
j=1

γ2
jλ

2
j (t), (3.29)

with γj(t) := ωj(t)/ωj(t0). The ground state energy of a BEC at t0 is given by

Eground(t0) = Et0int(t0) + Et0pot(t0) =
5NµTF(t0)

7
. (3.30)

To calculate Et0kin we first approximate the trap frequencies as a piecewise con-
stant function with jumps at ti with i ∈ N. Then the energy of the BEC is con-
served in the time interval (ti−1, ti) and we denote this energy by Ei. Then Ei =
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Et0pot(t
+
i−1)+Et0int(t

+
i−1)+Et0kin(t+i−1) and also Ei = Et0pot(t

−
i )+Et0int(t

−
i )+Et0kin(t−i ).

But Et0int and Et0kin are continuous so we can drop the limit in these two func-
tions. By the Thomas-Fermi approximation, Et0kin(t0) = 0. Let ∆P t0(ti) :=
Et0pot(t

+
i )− Et0pot(t

−
i ) and we get

Et0kin(ti) =Et0kin(ti−1) + Et0int(ti−1)− Et0int(ti) + Et0pot(t
+
i−1)− Et0pot(t

+
i ) + ∆P t0(ti)

=Et0int(t0)− Et0int(ti) + Et0pot(t
+
0 )− Et0pot(t

+
i ) +

i∑
j=1

∆P t0(ti). (3.31)

It is now possible to calculate the energy added to the system by the time
dependent magnetic trap.

Etrans = Etspot(tf) + Etsint(tf) + Etskin(tf)− Eground(tf). (3.32)

In this whole section, the influence of gravity has been ignored. Gravity
certainly has an impact on the system because when the trap frequencies are
lowered, the cloud will drop. This will induce a dipole mode in the system but
the energy which is stored in a dipole mode cannot thermalize in a harmonic
trap. All dipole modes can be ignored, and therefore, the gravity can be left
out of the equations.[6, 13]

3.5 Scattering

When the laser beam illuminates the cloud, some atoms will scatter to excited
states. The excited atoms will then fall back to one of the ground states. Some
of the ground states are trapped whereas others are not. In this section we will
make a theoretical model to describe this process.

The chance that an atom will scatter by the laser light is expressed by the
so called scatter rate Γsc [14].

Γsc = − 1

~ε0c
Im(α(β))I. (3.33)

In this equation, c is the speed of light and ε0 is the vacuum permittivity. The
values for these constants can be found in appendix A. The intensity of the laser
is denoted by I and α(β) is the angle between the polarization of the light and
the quantization axis. For π-polarized light, β = 0 and for a linear combination
of σ+- and σ−-polarized light, β = π/2.

The initial state of the atoms in the cloud is the (F = 1,MF = −1) state.
From the (F = 1,MF = −1) state, there are three possible transitions, namely
to the F = 0, F = 1 and F = 2 state and the M -state depends on the po-
larization of the light. These three transitions each have a different resonance
frequency and a different transitions strength. Let the detuning of transition
e with the laser be denoted by δe and the transition strength by De(β). The
polarizability can be calculated and it is given by [3]:

α(β) =
3iε0λ

3

4π2

∑
e

DFe
(β)

1− 2iδe/γ
(3.34)
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where λ = 2πc/ω is the wavelength of the laser, γ = τ−1 is 1 over the lifetime
τ of the excited states. The transition strengths are given by:

D0(β) =
4

24
sin2(β)

D1(β) =
5

24
(1 + cos2(β))

D2(β) =
1

24
(6 + sin2(β)) (3.35)

We see that the scattering rate Γsc has a contribution from each of the three
transitions. This is a motivation to define a scattering rate Γesc per transition:

Γesc = − 1

~ε0c
Im

(
3iε0λ

3

4π2

DFe
(β)

1− 2iδe/γ

)
I. (3.36)

Note that Γsc =
∑
e Γesc. The probability distribution over the ground states

of the particle can be described with a vector. There are eight ground states,
three for F = 1 and five for F = 2. We can now write all the probabilities as
a vector in the R3

⊕
R5. The same can be done for the excited states of which

there are nine (ignore the seven F = 3 excited states because the atoms cannot
scatter to the F = 3 state). These nine probabilities can be written as a vector
in the R1

⊕
R3
⊕

R5.
Consider one atom in the (F = 1,MF = −1) state. When the laser beam

illuminates a particle, there is a chance that the particle will scatter to an excited
state. To prevent getting needlessly long equations, consider the most important
case of π-polarized light, i.e. β = 0. The probability vector of the excited states
can then be calculated. In the scattering event with linear polarized light, the
magnetic quantum number MF does not change. The vector therefore becomes:

φE = texp

(
0 Γ1

sc 0 0 Γ2
sc 0 0 0 0

)T
, (3.37)

with texp the duration of the laser pulse. In all experiments considered in this
thesis, texp � τ From these excited states, the atoms will fall back to a ground
state due to spontaneous emission of a photon. Using the branching ratios from
reference [15, p. 285] the probabilities of decaying to a certain ground states are
known. This decay can be conveniently written down as a matrix. Split the
decay in three parts, one for each of the polarization directions of an emitted
photon. These matrices act on the excited probability vectors and sends them
to a probability vector of the ground states. With these matrices we can write
the probability distribution of a particle that has scattered to the excited state
and decayed back to the ground state as

φG = (Sσ− + Sσ+ + Sπ) · φE. (3.38)

The explicit form of the matrices Sσ− , Sσ+ and Sπ is given below together with
a fourth matrix T . This matrix is defined on the probability vectors of the
ground states to be able to exclude any states that are not trapped by the
magnetic field. For F = 1, only the state with a negative magnetic quantum
number is trapped while for F = 2 the states with a positive magnetic quantum
number are trapped. This is due to the fact that the gyromagnetic factor for
F = 1 and F = 2 has an opposite sign.
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Sσ− =
1

60


0 0 20 0 0 0 0 0
0 25 0 0 0 1 0 0
0 0 25 0 0 0 3 0
0 0 0 0 0 0 0 6
30 0 0 0 10 0 0 0
0 15 0 0 0 15 0 0
0 0 5 0 0 0 15 0
0 0 0 0 0 0 0 10
0 0 0 0 0 0 0 0

 Sπ =
1

60


0 25 0 0 0 15 0 0 0
20 0 0 0 0 0 20 0 0
0 0 0 25 0 0 0 15 0
0 0 0 0 20 0 0 0 0
0 3 0 0 0 5 0 0 0
0 0 4 0 0 0 0 0 0
0 0 0 3 0 0 0 5 0
0 0 0 0 0 0 0 0 20



Sσ+ =
1

60


20 0 0 0 0 0 0 0
0 0 0 6 0 0 0 0
25 0 0 0 3 0 0 0
0 25 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 10 0 0 0 0
5 0 0 0 15 0 0 0
0 15 0 0 0 15 0 0
0 0 30 0 0 0 10 0

 T =


1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 (3.39)

The number of scattered atoms that are trapped per atom in the condensate
can be calculated by:

P (scattered ∧ trapped) = 18 · T · φG. (3.40)

Likewise, the same number for untrapped particles can be calculated by replac-
ing T with I8 − T .

When the atom is excited, it absorbs a photon and when it falls back to the
ground state, it emits another photon in a random direction. These 2 events
both give the atom a momentum of ~ω/c, but not in the same direction. The
correct total momentum transfer ~ptot has to be calculated by an integral.

~ptot =
~ωẑ
c

1

4π

∫
∂Sphere

|~r + ẑ|d~r

=
~ωẑ
c

1

4π

∫ π

0

∫ 2π

0

∣∣∣∣∣∣
 sin θ cosφ

sin θ sinφ
cos θ + 1

∣∣∣∣∣∣ sin θdφdθ

=
~ωẑ
c

4

3
. (3.41)

Now that the change in momentum is known, it is easy to calculate the corre-

sponding energy transfer by p2

2m .
If an atom falls back to a ground state with F=2, then there is a chance

that it decays to the ground state with F=1 when it collides with another atom.
When this happens, the energy difference (E21) between the F=1 and F=2
state is added to the colliding atoms. What happens subsequently is difficult
to predict. The amount of energy added to such an atom is enough to remove
dozens of particles from the trap (by sticking them to the inside of the vacuum
chamber). The energy can also be redistributed over remaining atoms giving
rise to a significant rise in temperature.
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4 Experiments with a time dependent trap

4.1 Behaviour of a BEC in a time dependent trap

When equation 3.25 is used to describe the behaviour of the BEC, the resulting
solution can be compared to experiment. In the experiment we can control the
current going to the coils of the magnetic trap. These currents can be measured
and used to calculate the resulting trap frequency. The frequency at the start
of the sequence is known and the trap frequency in the radial direction is linear
with the current through the cloverleaf coils. The trap frequency in the axial
direction is quadratic with the current through the pinch and bias coils [16].
The trap frequencies used in this experiment are shown in the next figure.
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Radial trap frequency
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TimeHsL
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80

100

wHs-1L
Axial trap frequency

Figure 3: The radial and axial trap frequency expressed in angular frequency.
This figure is the result from a calculation using the measured currents through
the coils.

The initial plan to have a variation only in the axial trap frequency did not
work out. The advantage of such a simple trap configuration is that the cloud
does not drop due to gravity. Therefore a much smaller dipole mode is expected
making imaging easier. There is also no longer any argument needed to show
that the energy in the dipole mode cannot contribute to the increase in energy.
Unfortunately, when this trap configuration is tried, the cloud obtains a signif-
icant velocity in the radial direction causing a non-negligible dipole oscillation.
The cause of this kick of the cloud is probably a slight misalignment of the mag-
netic coils in the trap. A very small variation causes a displacement of the trap
minimum, when the trap frequencies are independently changed. Therefore, a
trap configuration is chosen, which changes both the axial as the radial trap
frequency. Furthermore, the changes to the trap frequencies are relatively slow
compared to the speed of the feedback loop controlling the currents through
the coils. If a much faster change is tried, effects from the feedback loop be-
come visible. When the feedback loop is too slow, the current through the coils
overshoots. The feedback loop will subsequently lower the current resulting in
a current that is below the target value. This effect results in oscillating trap
frequencies, making the processing more difficult and less accurate. This is why
this experiment is restricted to slower varying frequencies. The configuration
of the trap is as follows: At t = 0 s the cloud is decompressed during a time of
200 ms. Then there is a wait time of 1 ms followed by the compression in 20 ms.
After the currents are back to their normal level, they are held constant for the
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Figure 4: A plot showing the measured and predicted values of λaxial. There
are in total 29 data sets in this plot. The colors of the points correspond to
equivalent image numbers in each dataset. This is done to be able to distinguish
between clouds which have not been illuminated by the laser (red) and clouds
which have been illuminated multiple times (violet).

rest of the experiment. Some noise can be seen between approximately t = 0.2 s
and t = 0.4 s (see figure 3). After that, the currents were no longer measured
but set to the level equal to the last measured value.

In order to reduce the amount of noise, a digital filter was used. This takes
the mean of the surrounding values as the new measured value for each data-
point, or

Pj =
1

2L+ 1

j+L∑
i=j−L

pi, (4.1)

with Pi the output, pi the input and L the length of the filter. In this case
L = 2 is used. The trap frequencies in the axial and the radial direction are
independently measured. These two graphs have to be synchronised in time and
this is done by calculating the standard deviation (σ) and the mean (µ) of the
first constant piece of the graph. Then define t = 0 s for the point where the
graph falls below µ− 10σ. The result is shown in figure 3.

Substituting these trapping frequencies into equation (3.25) gives a theoret-
ical prediction for λj . The lambdas can be measured from the images of the
condensate during the experiment. These images are made in rapid succession,
for example every 5 ms. The experiment is then repeated, acquiring pictures
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with a slightly different time offset to obtain a dense coverage of measurements
of the radius of the condensate. The result of the axial direction is shown in
figure 4. The same plot can be determined for the radial direction but then the
timescales are so small that no good coverage of the oscillations can be made.

The normalized width λj(t) = σj(t)/σj(t0) is the size relative to the situation
at t = t0, but because this initial size is not known for the experimentally
measured data, the first points per data set were multiplied such that they
agreed with the predicted line. The reason that the initial size is not known is
that due to experimental difficulties we cannot make images of the cloud, both
before and during the adjustments of the coils and the run-to-run difference
makes is impossible to use one reference image for the determination of the
initial size of the cloud.

4.2 Adding energy

It is now possible to calculate the change in energy with the knowledge of
the behaviour of a BEC in a time dependent trap. If in addition the starting
temperature and the final temperature are known, then it is possible to create
a graph of energy vs. temperature. The derivative of this graph with respect to
temperature yields a value for CV .

To get a theoretical prediction, the starting temperature and number of
thermal and condensed particles together with the trapping frequencies have to
be used in the equations of section 3.4. The cloud that is considered here has 26
million condensed particles and 13 million particles in the thermal cloud. The
starting temperature is in the order of several hundreds of nanokelvin. Equation
3.32 then yields the amount of energy added to the condensate. In this case it
is 7.4 yJ. This corresponds to a rise in temperature of the order 6.9 nK which is
difficult to measure.

When this is compared to experiment, the run-to-run difference makes it
hard to determine the exact increase in temperature. However, analysis of
the measured data indicates an increase in temperature of the order of several
hundreds of nanokelvin. It becomes apparent that there is a significant effect
which is not implemented in the theoretical model. Finding what extra factor
is difficult because there are many effects in the cloud that could be important.
For example there is a camera making images of the cloud using a laser pulse
which could heat the cloud. It is difficult to see if all the energy added to the
condensate has thermalized and if the cloud is in thermal equilibrium, such
that the normal analyzing tools can be used. Another factor of importance is
the fact that the dynamics of the thermal cloud have not been included in the
theoretical model. Taking this into account could easily cause an increase of the
theoretical prediction of the change in temperature.

To do this experiment correctly, for all measurements, there should be a
picture of the cloud at t = t0 and one after a thermalization time of 0.4 seconds
or more. This turned out to be very difficult in this experiment due to how the
camera is operated. The next section is devoted to exploring another method.
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5 Adding energy with a laser

5.1 Theoretical prediction

In the following experiments laser pulses are used to add energy to the cloud.
In this section, a theoretical prediction is calculated for these experiments by
using the equations of section 3.5. The values of the parameters can be found
in the appendix.

The scattering rate depends on the intensity of the laser. If we denote the
number of counts per pixel of the ith image of a series by Ni, the intensity of
the laser on the camera can be calculated by

Icam =
1

qes

NiEphoton

Atexp
, (5.1)

which is implicitly dependent on the frame number i. Here qe and s, the quan-
tum efficiency and the sensitivity compensate for the fact that not all photons
are registered by the camera. In this experiment qe = 0.65 and s = 0.569. The
area of a pixel is denoted with A, which equals 8µm2. The exposure time is
denoted by texp and Ephoton is the energy of a photon, which is given by

Ephoton = ~ω = 3.37 ∗ 10−19 J. (5.2)

Since the image is enlarged on the camera by a factor of 3, the intensity of the
beam through the cloud is 9 times as high, so Icloud = 9Icam. The scattering
rate can now be calculated from known parameters of the experiment.

The model consists of two parts. The first part is a model for the number of
particles in the cloud. Every time the cloud is illuminated by the laser beam,
some particles are lost from the trap. That number is proportional to the total
number of particles. This model can be written as

Ni = N0(1− g)i, (5.3)

where N0 and g are undetermined parameters and i counts the number of pic-
tures. The second part models the amount of energy added to the cloud each
shot. This will be proportional to the number of atoms and to an unknown
energy Epp. The particles that are lost from the trap also have to be accounted
for. This means that the energy of a certain frame equals the energy left from
the previous frame after the removal of the lost particles plus the energy added
by the laser. The amount of energy Ei in the cloud becomes

Ei =
Ei−1

Ni−1
Ni +NiEpp (5.4)

which can be simplified by introducing the energy per particle Ei := Ei/Ni. The
equation then becomes (with E0 and Epp the undetermined variables)

Ei = Ei−1 + Epp = E0 + iEpp. (5.5)

Here a prediction is made for the amount of particles lost and the amount of
heating due to the laser beam. Only π-polarized light is considered as this is the
polarization most used in our experiments. And one of our experiments shows

20



that the polarization of the light does not influence the effect on the cloud (see
figure 9).

The prediction is made that an untrapped F = 2 particle will not decay
to an F = 1 particle, which is a reasonable assumption because these particles
will vanish from the cloud because they are not trapped. For π-polarized light,
no trapped F = 2 atoms are created. This means that no model is needed to
describe the decay of F = 2 particles to the F = 1 state. Use equation 3.38 to
find that

g = 18 · (I8 − T ) · φG (5.6)

and

Epp =
p2

tot

2m
18 · T · φG (5.7)

However, before we can get a theoretical prediction we must fix the value for
the detuning of the laser. The detuning is measured with respect to the F = 1
to F ′ = 1 transition. If we denote the frequency of this transition by f , then the
frequency of the transition to F ′ = 0 is f − 15.8 MHz and the frequency of the
transition to F ′ = 2 is f+34.3 MHz. This means that if the laser has a detuning
δ with respect to f , the following equation holds (compare with equation 3.36):

(δ0 δ1 δ2) = (δ + 15.8 MHz δ δ − 34.3 MHz) (5.8)

In this experiment, the detuning used for the laser is δ = −4× 86.5 MHz. This
enables us to give a theoretical prediction:

g̃ := (39.3
m2

J
)Itexp = Ni × 5.03× 10−6 (5.9)

and

Ẽpp := (47.3
m2

J
)Itexp µK = Ni × 6.06 pK (5.10)

These are values that can be compared to the experiment.

5.2 A cloud without BEC

In this experiment the cloud with a temperature above Tc is illuminated by a
laser beam. This means that there is no BEC in this experiment. This is done
to test our model for the simplest case.

The intensity of the laser and the exposure time of the thermal cloud to the
laser are varied. Ten series were used to make the fits and continue with the
calculations. The trap frequencies are the same for all series and measured to
be ωax = 2π × 14.9 Hz and ωrad = 2π × 93.9 Hz. The laser is shot 100 times
through the cloud. These shots are in a rapid succession of about 10 ms and
the light used has π polarization. The results are shown in figure 5 and 6. The
first figure gives the relative number of particles on a logarithmic scale and the
second figure the temperature of the cloud.
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Legend

Number texpHmsL I <N> N0Hmilj.L
126 160 120 468 420.

127 160 120 475 340.

129 320 120 1119 310.

130 320 120 1034 310.

132 320 60 469 290.

133 320 60 503 330.

134 320 60 496 340.

135 160 60 241 330.

136 160 60 260 300.

137 160 60 247 260.
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Figure 5: A plot showing the renormalized number of particles on a logarithmic
scale. During the time of the experiment 100 laser pulses were fired at the cloud
with a length texp and an intensity of I in arbitrary units. The number of counts
per frame is listed under < N > and the number of particles in the first frame
is listed under N0.

Legend

Number texpHmsL I <N> T0HmKL
126 160 120 468 5.2411

127 160 120 475 5.1558

129 320 120 1119 5.0821

130 320 120 1034 5.1375

132 320 60 469 5.318

133 320 60 503 5.1359

134 320 60 496 5.1258

135 160 60 241 5.1957

136 160 60 260 5.2992

137 160 60 247 5.3187
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Figure 6: A plot showing the temperature of the particles in µK. These are
derived from the same measurements as in figure 5. In the legend N0 is replaced
with T0, the temperature of the cloud in the first frame.

The points in the graphs are joined to show the trend in the plots, rather
than the individual measurements themselves. With the number of counts on
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the camera, the model for the number of particles (see equation 5.3) can now
be compared to this experiment and the fit parameter g can be determined for
each series. Fitting this model to the number of particles corresponds to fitting
a straight line through the data points of figure 5. The g factors can be plotted
against the number of counts. The theoretical model predicts a line through
the origin and the data points in figure 7.
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N

0.005

0.010

0.015

0.020

0.025

0.030

g

Figure 7: The experimental g factor versus the number of counts (the mean of
Ni). The error bars in the g direction have been multiplied by 10 for visibility.

The slope of the line is the relevant parameter. In figure 7 the slope is
25.2(7)× 10−6, which is the fraction of particles lost per count on a pixel of the
camera. This does not correspond to g̃/N = 5.03 × 10−6 predicted by theory,
but at least they have the same order of magnitude.

Nearly the same analysis can be performed for the energy of the cloud.
The energy of the cloud can be determined by using a Hartree-Fock model and
putting the found values for µ and T in the equations.

For each data series, fitting E0 and Epp with equation 5.5 yields results as
in figure 8a. The fits of all the series can then be plotted versus the number of
counts on the camera (figure 8b).
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Figure 8: Left, the energy per particle of the cloud is plotted versus the time or
equivalently shot number of series 127. The red line is the fit of the theoretical
model. Right, the experimentally obtained Epp are plotted versus < N >

The slope of figure 8b is the relevant parameter that can be compared to the
theory. This is the amount of energy added per particle to the cloud per count of
a pixel of the camera. In this case the slope equals 97(4) pK. This is more than
a factor of 10 larger than the predicted value of Ẽpp/N = 6.06 pK. A check with
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formula 3.15 gives an energy increment per particle of Epp = 7.3× 10−31 J (this
is the value resulting from the fit) corresponds to a temperature increment of
17.6 nK per shot, or 1.76µK in total. This is in good agreement with experiment.
See for instance the line of number 126 in figure 6, which shows a temperature
increase of about 1.77µK. This means that that the high temperature limit
gives a good description in this case (see also figure 15). Another conclusion
is that the missing factor of 10 must be somewhere in the theory. The most
plausible reason for the failure of the model is that the assumption is made that
all particles in the (F = 2) states, which are not trapped for π-polarized light,
just vanish form the trap. If one of these particles will make the transition to a
(F = 1) state, the energy increase is large. The increase in energy per shot is
in the order of tens of millikelvins if all particles in an (F = 2) state fall back
to an (F = 1) state.

It is very difficult to predict the behaviour of particles in the (F = 2) state
and therefore a theoretical prediction is hard to find. However, the value for Epp

found in this experiment, uses only known facts from the system. In particular,
we are allowed to use the value of CV in the Hartree-Fock model to determine
Epp. If in the next experiment, where there is a BEC in the system, the Epp

derived in this section can be used to measure the specific heat of a system
containing a BEC.

5.3 A cloud with BEC

In this experiment the atoms are cooled such that there is a BEC in the sys-
tem that is studied. The trap frequencies differ somewhat from the previous
experiment and are determined to be 2π × 15.5 Hz in the axial direction and
2π × 104.5 Hz in the radial direction.

As in the previous section, fits can be made for the g factor and then plotted
against N (see figure 9).
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Figure 9: Left, an example of the measured exponential decay of the number
of particles. Right, the experimentally obtained g factors versus N , where the
laser beam is π-polarized (blue) or σ-polarized (red).

The slopes of the two lines can be compared to theory. The data for π-
polarization has a slope of 318(40) × 10−6 and the data for σ-polarization has
a slope of 286(29)× 10−6. This indicates that the slopes are equal within their
uncertainty and thus that there is no difference between π and σ polarized
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light, where the g factor is concerned. Both of the slopes are different from the
theoretical prediction.

This first part has been the same here as in section 5.2. Figures 10a and 10b
show respectively the temperature and the total energy versus the shot number.
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Figure 10: Left, the temperature of the cloud. Right, the energy per particle in
the cloud in microkelvin.

The temperature of the cloud increases in the first 8 points but then decreases
for the remaining data points. The total energy of the cloud shows the same
behaviour, increasing the first 8 points and decreasing for the remaining data
points. The decrease in temperature in temperature and energy is not predicted
by our model. We can analyse the first 8 points similar to the analysis in
section 5.2. This yields Epp/N = 227(8) pK From this we see that this value is
different from the theoretical prediction.

For the remaining data points, the laser beam cools the cloud down which is
normally much more difficult than randomly illuminating it with a laser beam.
The decline in temperature is not only surprising because it is not predicted
by our model, but also because an earlier experiment with similar experimental
conditions does not show this behaviour. The number of particles and the
temperature of this experiment are plotted in figures 11 and 12.

These correspond to a g factor of 0.0123 or equivalently g/N = 162(10) ×
10−6. This value is larger than the theoretical prediction and also larger than
in the measurement without a BEC in section 5.2, but is only half of the value
calculated from figure 9.
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Figure 11: This plot on a logarithmic scale shows the total number of particles,
combining the number of particles in the BEC and thermal cloud.
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Figure 12: This graph shows the temperature of the system versus the number
of shots.
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Figure 13: The temperature (left) and the condensate fraction (right) are plotted against the shot number. For each series, the number
of particles in the first shot is given in the legend.
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The phenomenon that the cloud seems to be cooled using a laser can be
reproduced. To reproduce the cooling of the cloud, we made a series of nine
condensates, each under the same experimental conditions. The results of these
measurements are shown in figure 13. However looking at the raw images them-
selves (see figure 14) it is hard to believe that the analysis of the data is correct.
Two conclusions can be drawn from these figures. The first is that the difference
between two runs is high (the number of particles varies about 50%). The sec-
ond significant effect is that the fitting procedure seems to find a higher µ and
lower T than one would expect from figure 14. The BEC seems to have vanished
in the second half of figure 14, while figure 13 seems to indicate a higher BEC
fraction. The problem is not simply that the fitting procedure used to find the
temperature of the cloud is stuck in a local minimum and that it can by solved
by giving better starting parameters. The procedure uses the last found fitting
parameters as starting parameters for the next frame and because the difference
between consecutive frames is small, this results in starting parameters close to
the actual minimum. When using the result of previous fits for the next fits,
one has to be careful that one failed fit does not lead to a series which goes com-
pletely wrong. In the series considered here however, each fitted profile shows
good correspondence with the picture.

Figure 14: The original pictures of the experiment. Every fifth picture is shown
to give an overview of the whole process. These are the images from Experiment
109 (compare with figure 13). The order is from left to right and from top to
bottom.

28



5.5 6.0 6.5
THmKL

2500

3000

3500

4000

4500

5000

5500
EHKL

Figure 15: The points in blue were calculated form the experimental data us-
ing the Hartree-Fock model, the points in red were calculated using the high
temperature limit of the heat capacity (formula 3.15). The fact that the energy
seems to decrease as temperature increases is due to the fact that the number
of particles is not constant but decreases as time progresses and temperature
increases.

The energy of the cloud can be plotted versus the temperature. Both the
temperature and the energy result from the Hartree-Fock fitting procedure. For
clouds with a temperature above the critical temperature, the resulting graph
is given in figure 15. The energies can be compared with the energy in the
high temperature limit resulting from equation 3.15, U = 3NkBT . The high
temperature limit in figure 15 corresponds better to the data for the higher
temperatures than for the lower temperatures.

For clouds containing a BEC we can compare the energy with both the high
temperature limit as the energy resulting from the approximation µ = 0. The
resulting graph is given in figure 16. The approximation µ = 0 corresponds
better with the data than the high temperature limit. If the energy and tem-
perature are determined independently, an experimental value for CV can be
obtained by taking the inverse of the derivative of the line through the data
points of figure 15 and 16. However in these graphs the energy and temperature
determined by the fitting procedure are not independent. The Hartree-Fock
model uses a theoretical value of CV to relate the energy to the temperature.
Therefore, figure 15 and 16 can be used to get a feeling for the behaviour of the
system in different regimes, but not for obtaining an experimental value for the
specific heat.
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Figure 16: The points in blue were calculated using the Hartree-Fock model,
the points in red were calculated using the high temperature limit of the heat
capacity (formula 3.15) and the points in green were calculated using the ap-
proximation that µ = 0 in equation 3.14. Note that the results of equation
3.14 are not plotted here, for these require extensive numerical integration and
would not increase the insight in the specific heat of the system.

5.4 Analyzing the difference

In the experiments analyzed in sections 5.2 and 5.3 it became apparent that
theory does not coincide with the experiment. In this section, some effects
are examined to determine which factors are important. Effects of the fitting
procedure are discussed in section 5.3 concerning the temperature of the cloud.
There is another effect which may influence the quality of the fits being made.
In fitting the cloud with a Hartree-Fock model, thermal equilibrium is assumed,
but if the effects of shooting at the condensate bring it from thermal equilibrium
and the system does not have enough time between two succeeding pulses to
rethermalize, the derived values for µ and T are no longer valid. To test this,
we did an experiment with different times between the pulses. In the first
series a time between the pulses of τ = 10.1 ms is used and in the second series
τ = 100.1 ms is used, leaving all other parameters fixed.

We measure g/g̃ to quantify the difference between the theoretical prediction
and the experiment. We find that g/g̃ = 17(3) for τ = 10.1 ms and g/g̃ = 16(3)
for τ = 100.1 ms. These two values are identical within their uncertainties and
therefore we conclude that the thermalization time is not a critical factor in the
experiment.

For all experimental data, the relative difference between the model and the
experiment g/g̃ can be determined and the result can be plotted against other
variables. On possibility is to make a graph of the relative difference versus the
chemical potential µ.
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The experimental results for a wide variety of chemical potentials are given
in figure 17. Because the scale of the chemical potential varies very rapidly, the
µ-axis is rescaled in a non conventional way.

-4096 -1024 -256 -64 -16 -4 4
mêhHkHzL

10

20

30

40

gêgè

Figure 17: This plot shows the relative difference of the model and the experi-
ment as a function of the chemical potential, Different colors represent different
experimental conditions.

A theoretical ground for this relation may be in the quantum statistical
effects of the atoms that influence the scattering rate, an effect that has not
been taken into account. The scattering rate calculated in section 3.5 treats
all atoms individually. However, in the experiment we have a cloud of atoms.
When the probability of finding another atom within one wavelength λ of the
atom, the scattering rate is modified.

These effects can enhance the absorption significantly. To give an idea ref-
erence [3] describes that for certain parameters this effect will increase the ab-
sorption by a factor of 3. As it is difficult to calculate a theoretical prediction
for this enhancement, no comparison with figure 17 is possible. However, this
will not be the only effect that causes the difference because one would expect
that the relative difference goes to 1 in the high classical limit (corresponding
with a large negative µ) which is not what can be seen in figure 17.

It is very difficult to get an accurate value for the g-factor because the
chemical potential also changes when the laser is shot at the cloud. This results
in data with a great amount of noise as can be seen form the figure. The
qualitative behaviour however, can still be seen. To measure the specific heat,
this enhancement factor must be understood with a greater precision and in
order to do that more experiments are needed.
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6 Conclusion

We have presented a model that describes the cloud in the trap but it does not
take all relevant processes of the system into account. The experiments show
larger effects to disturbances than theory predicts. The discrepancy between
theory and experiment is large enough that the model is not applicable for
finding the specific heat of a BEC.

The experiment of varying a magnetic trap to add energy to the system
is very difficult to implement correctly. The measurements done in this way,
described in this thesis lead to the conclusion that there are more effects playing
a role than have been described by our model. Therefore the model must be
expanded. The experimental difficulties, such as the run-to-run difference, must
be solved as well. It can be concluded that determining the specific heat of the
system by varying the trap frequencies is impractical.

Using laser excitations produces more useful results. The theory provides
a prediction within the order of magnitude for a system with no BEC. The
discrepancy can be solved by measuring the effects of the laser excitations on a
cloud with a high temperature. Because we can describe this system fully we
can use this to construct a gauge. This gauge can be used to determine the
energy added to the BEC. This can then be used to measure the specific heat
of a BEC. Our measurements indicate quantum enhancement of the scattering
rate. This enhancement has to be taken into account to determine the specific
heat and a multitude of experiments are needed to this end.

The behaviour of the cloud shows a decreasing temperature of the cloud
when a laser beam illuminates the cloud. However, we do not believe this to be
a physical effect, but rather an effect resulting from the fitting procedure. The
mechanisms leading to this effect have to be found as this is vital information
for making PCI images. In order to do this, more measurements are needed and
time to analyse them. The fitting procedure has to be changed, such that it fits
each image independently. When all these mechanisms are understood, getting
the specific heat will probably not impose further problems.
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Appendices

A Constants

Boltzmann Constant kB 1.3806× 10−23 J/K
Speed of Light c 299792458 m/s
Plank’s Constant ~ 1.05457× 10−34 J s
Vacuum permittivity ε0 8.854× 10−12 F m−1

Laser Frequency ω 2π × 508.8 THz
Natural line width γ 2π × 9.8 MHz [17]
Detuning from (F = 1) to (F ′ = 1) transition δ 2π × 4× 86.5 MHz
Camera quantum efficiency qe 0.65
Camera sensitivity s 0.569
Energy difference between F=1 F=2 E21 85 mK[17]
s-wave scattering length a 2.804(24) nm[3]

B Notation

a := b means that a is by definition equal to b.
aT denotes the transpose of a.
¡ denotes an inexact differential [9, p. 107].

(a, b) :={x ∈ R|a < x < b}

< a >:=
1

n
(a1 + . . .+ an)

ā :=(a1a2a3)1/3

1n :=
(

1 1 . . . 1
)T ∈ Rn

In =diag(1, 1, . . . , 1)

∂xf :=

(
∂f

∂x

)
ln(x) :=

∫ x

1

1

ξ
dξ

f(x+) := lim
ξ↓x,ξ 6=x

f(ξ)

f(x−) := lim
ξ↑x,ξ 6=x

f(ξ)

C Proofs

Theorem C.1.
U = −3ΦG (C.1)

Proof. Introduce the dimensionless variable χ.

χ :=
(kBT )3

~3ω̄3
(C.2)
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Begin with the standard thermodynamic relation:

U = ΦG + TS + µN (C.3)

With

ΦG =
−(kBT )4

~3ω̄3
Li4(z) (C.4)

The entropy and number of particles, S and N are derivatives of the grand
potential. To calculate these derivatives, first note that for polylogarithms:

∂zLin(z) = ∂z

∞∑
k=1

zk

kn
=

∞∑
k=1

∂z
zk

kn
=

∞∑
k=1

zk−1

kn−1
=

Lin−1(z)

z
(C.5)

This can be used to calculate S and N .

S = −∂TΦG = 4kBχLi4(z)− kBTχ
Li3(z)

z

µz

kBT 2
(C.6)

This leads to:

S = kBχ

(
4Li4(z)− µ

kBT
Li3(z)

)
(C.7)

For the number of particles N , the following equation holds:

N = −∂µΦG = kBTχ
Li3(z)

z

z

kBT
= χLi3(z) (C.8)

Substituting this into equation C.3 gives:

U = ΦG + kBTχ

(
4Li4(z)− µ

kBT
Li3(z)

)
+ χµLi3(z) (C.9)

This can be simplified to:

U = ΦG + 4kBTχLi4(z) = −3ΦG (C.10)

Theorem C.2.

CV = 3kB

[
4χLi4(Li−1

3 (Nχ−1))− 3χ−1N

Li2(Li−1
3 (Nχ−1))

]
(C.11)

Proof.

CV := (∂TU)N,V =

(
∂T

3(kBT )4

~3ω̄3
Li4(z)

)
N,V

(C.12)

The condition that N should be constant, means the µ and therefore z is not
constant. In order to replace µ by N , we invert the formula for N . Denote
the inverse polylogarithm by Li−1

n . The dimensionless variable χ is defined in
equation C.2. We can express Li4(z) in terms of N in the following way:

Li4(z) = Li4(Li−1
3 (Nχ−1)) (C.13)
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When we substitute this in the equation for the energy, we get:

CV =

(
∂T

3(kBT )4

~3ω̄3
Li4(Li−1

3 (Nχ−1))

)
N,V

(C.14)

Before we calculate the whole derivative, lets first calculate ∂xLin(Li−1
n−1(x)),

(use equation C.5) we get:

∂xLin(Li−1
n−1(x)) =

Lin−1(Li−1
n−1(x))

Li−1
n−1(x)

∂xLi−1
n−1(x) =

x

Li−1
n−1(x)

1

∂yLin−1(y)

(C.15)
Where y = Li−1

n−1(x), so we get:

∂xLin(Li−1
n−1(x)) =

x

Li−1
n−1(x)

Li−1
n−1(x)

Lin−2(Li−1
n−1(x))

=
x

Lin−2(Li−1
n−1(x))

(C.16)

Continue with the heat capacity:

CV =
12kB(kBT )3

~3ω̄3
Li4(Li−1

3 (Nχ−1)) +
3(kBT )4

~3ω̄3

Nχ−1(−3N 1
T χ
−1)

Li2(Li−1
3 (N

(
~ω̄
kBT

)3

))
(C.17)

To simplify the previous equation:

CV = 3kB

[
4χLi4(Li−1

3 (Nχ−1))− 3χ−1N

Li2(Li−1
3 (Nχ−1))

]
(C.18)

Theorem C.3.

|ψ(~r, t)|2 =
µTF(t0)− U({rj/λj(t)}j=1,2,3, t0)

U0λ1(t)λ2(t)λ3(t)
(C.19)

Proof. Because of the selfsimilar expansion, the following must hold for every
volume V ⊂ R3. Let V ′ be the corresponding volume at t = t0 (before the
expansion), so let V ′ = {L−1~x|~x ∈ V } with Lij = δijλi(t).∫∫∫

V

|ψ(~r, t)|2d~r =

∫∫∫
V ′
|ψ(~r, t0)|2d~r (C.20)

Using the substitutions xj = λj(t)rj , the right hand side of the equation becomes∫∫∫
V

|ψ(~r, t)|2d~r =

∫∫∫
V

|ψ({xi/λi(t)}i=1,2,3, t0)|2

λ1(t)λ2(t)λ3(t))
d~x (C.21)

Rename ~x to ~r on the right hand side, use equation 3.21 and note that, because
this holds for every volume, the integrands must be equal.

Theorem C.4.

µTF(t0) =
1

2
~ω̄(t0)

(
15Na

√
mω̄(t0)

~

)2/5

(C.22)
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Proof. The normalization of ψ gives that N =
∫∫∫
|ψ(~r, t0)|2d~r

N =

∫∫∫
µTF(t0)− 1

2

∑3
j=1mω

2
j (t0)r2

j/λ
2
j (t))

U0λ1(t)λ2(t)λ3(t)
d~r (C.23)

Where the integral is over the volume where the integrand is positive. Let
yj =

√
m
2 ωj(t0)rj/λj(t), then

N =
1

(
√

m
2 ω̄)3U0

∫∫∫ (
µTF(t0)− y2

1 − y2
2 − y2

3

)
d~y (C.24)

Where the integral is still over the volume where the integrand is positive.
This volume is equal to a sphere with radius

√
µTF(t0). Changing to spherical

coordinates gives:

N =
4π

(
√

m
2 ω̄)3U0

∫ √µTF(t0)

0

(
ρ2µ(t0)− ρ4

)
dρ =

8πµ
5/2
TF (t0)

15(
√

m
2 ω̄)3U0

(C.25)

Solving for µTF and using that U0 = 4π~2 a
m completes the proof.

Theorem C.5.

Et0int(t) :=

∫
1

2
U0|ψ(~r)|4d~r =

2NµTF (t0)

7λ1(t)λ2(t)λ3(t)
(C.26)

Proof.

Et0int(t) =
1

2
U0

∫ [
µTF(t0)− U({ri/λi(t)}i=1,2,3, t0)

U0λ1(t)λ2(t)λ3(t)

]2

d~r (C.27)

Let yj =
√

m
2 ωj(t0)rj/λj(t).

Et0int(t) =
1

2U0

(√
m
2 ω̄
)3
λ̄3(t)

∫ (
µTF(t0)− (y2

1 + y2
2 + y2

3)
)2

d~y (C.28)

Change to spherical coordinates.

Et0int(t) =
2π

U0

(√
m
2 ω̄
)3
λ̄3(t)

∫ √µTF(t0)

0

(
µTF(t0)− ρ2

)2
ρ2dρ (C.29)

Solving the integral gives.

Et0int(t) =
8πµ

5/2
TF (t0)

15U0

(√
m
2 ω̄
)3 2µTF(t0)

7λ1(t)λ2(t)λ3(t)
(C.30)

Recognizing a factor of N (see equation (C.25)) gives:

Et0int(t) =
2NµTF (t0)

7λ1(t)λ2(t)λ3(t)
(C.31)
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Theorem C.6.

Et0pot(t) :=

∫
V (~r, t)|ψ(~r)|2d~r =

NµTF (t0)

7

3∑
j=1

γ2
jλ

2
j (t) (C.32)

Proof.

Et0pot(t) =

∫ [
µTF(t0)− U({ri/λi(t)}i=1,2,3, t0)

U0λ1(t)λ2(t)λ3(t)

]
1

2

3∑
j=1

mω2
j (t)r2

jd~r (C.33)

Let yj =
√

m
2 ωj(t0)rj/λj(t).

Et0pot(t) =
1√

m
2

3
ω̄3(t0)U0

∫
(µTF(t0)− y2

1 − y2
2 − y2

3)

 3∑
j=1

ω2
j (t)

ω2
j (t0)

λ2
j (t)y

2
j

 d~y

(C.34)
Using equation (C.25) to remove the ω̄(t0) and interchanging the summation
and the integral yields

Et0pot(t) =
15N

8π
µ
−5/2
TF (t0)

3∑
j=1

∫
(µTF(t0)−y2

1−y2
2−y2

3)
ω2
j (t)

ω2
j (t0)

λ2
j (t)y

2
jd~y (C.35)

Note that γj(t) := ωj(t)/ωj(t0) and change to spherical coordinates. For each
integral, choose the z-axis in the j direction such that yj = ρ cos(θ).

Et0pot(t) =
15N

8π
µ
−5/2
TF (t0)

3∑
j=1

∫∫∫
(µTF(t0)−ρ2)γ2

j (t)λ2
j (t)ρ

2 cos2(θ)ρ2 sin(θ)dφdθdρ

(C.36)
Let u = cos(θ), calculate the φ part and split the integral in an ρ and u part.

Et0pot(t) =
15N

4
µ
−5/2
TF (t0)

3∑
j=1

[
γ2
j (t)λ2

j (t)
] ∫ √µTF(t0)

0

(µTF(t0)ρ4−ρ6)dρ

∫ 1

−1

u2du

(C.37)
Calculate the integrals.

Et0pot(t) =
15N

4
µTF(t0)

3∑
j=1

[
γ2
j (t)λ2

j (t)
]

(
1

5
− 1

7
)(

2

3
)

=
NµTF (t0)

7

3∑
j=1

γ2
j (t)λ2

j (t) (C.38)

D Fitting procedure

D.1 popov2d

In this section, some documentation is provided for the popov2d.pro variable

argument. This section is not intended for the average reader, but rather for
those needing to work with this routine.
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The popov2d can be started with a number of arguments. The only argument
covered here is the variable argument. The variable argument can be used to
control which parameters should be varied in the fitting procedure. This is very
useful to fix, for instance, the position. Each parameter is assigned a number
j. Let bj ∈ {0, 1}. If parameter j should be fixed, bj = 0, if it should be varied,
bj = 1. The parameters with their corresponding number are in the following
table:

j parameter

0 min
1 scale
2 chemical potential
3 amplitude of phase spot
4 phase of phase spot
5 x coordinate
6 y coordinate
7 binning x-direction
8 binning y-direction

j parameter

9 magnification
10 temperature
11 absorption
12 axial trap frequency
13 radial trap frequency
14 method
15 detuning laser
16 angle

Define the variable B as a Long (instead of an Integer), otherwise the value may
overflow, leading to undesirable results.

B =

16∑
j=0

bj2
j (D.1)

And finally call popov2d with the argument variable=B. For example, if the
only parameters that should vary are the chemical potential, x coordinate, y co-
ordinate, temperature and angle, then B = 66660. Then the procedure popov2d
must be called with variable=66660.

D.2 Determining initial parameters

In this section a method is laid out to determine the initial parameters inde-
pendent of earlier fits.

An approximation for the position of the cloud can be found by first binning
the image using a two dimensional variant of equation 4.1. Then calculate the
mean of every row and every column of the image to get a histogram. Determine
the mean value mx and my of both histograms. Then assign the lowest value of
x for which the value in the histogram is larger than 1

2mx to xl. Analogously,
assign the highest of these values of x to xh and do the same for yl and yh.
An approximation for the center of the cloud is then given by x̃ = xl+xh

2 and

ỹ = yl+yh
2 .

The width of the cloud can be determined using the difference between xh
and xl. This width can be used to fit a Gaussian profile to the edge of the cloud
to get an approximation of the temperature.

Finally, the number of particles can be approximated by calculating the
column density using reference [3] for all pixels and summing over the pixels.
From the number of particles, the chemical potential can be calculated using
the Hartree-Fock model.
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