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Abstract

The Forward Calorimeter, FoCal for short, is a proposed detector for the ALICE project
at CERN. It is an electromagnetic calorimeter with high position granularity layers allowing
separation of nearby particles like the decay photons of the neutral pion. Monte Carlo
simulations were used to simulate the detection of these particles and a clustering algorithm
is used to reconstruct the particle locations and energies based on the detector's response.
The methods used in the clustering algorithm that deal with separation of particles that are
close together will be discussed in this thesis. Modi�cations of the algorithm are introduced
which slightly improve the e�ciency from 85.8% to 87.4%.
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Introduction

In order to fully understand the laws of nature, it is of paramount importance to understand the
structure of the constituents of matter such as protons and neutrons. Scattering experiments are
done to reveal the structure of the proton on a deep level. In order to study the inside of the proton,
collisions at very high energies are needed. The Large Hadron Collider (LHC) at CERN in Switzerland
can accelerate particles up to very high speeds, allowing these high energy collisions. ALICE, short for
A Large Ion Collider Experiment, is one of the large experiments at the LHC. The Forward Calorimeter,
FoCal, is a proposed particle detector for ALICE.

Parton is the general term for the constituents of hadrons (compound particles like the proton).
These partons can be quarks, anti-quarks or gluons. Deep Inelastic Scattering experiments show that a
proton consists of three quarks, called valence quarks, which are bound within the proton via the strong
force carried by the gluons. Single partons are the actual particles colliding at the LHC and knowing
their energy before the collision is crucial to understanding the structure of the proton. When the
energy of the protons is increased in a scattering experiment, gluons will have an increased probability
of colliding and these gluons will carry a low fraction of the momentum of the proton. A variable
called the Bjorken-x is de�ned as the momentum of a parton as a fraction of the momentum of the
hadron. The low x regime is the region of interest for the FoCal project.

It is predicted that the high gluon densities, typical of the low x regime, will lead to gluon saturation

and this can be explained by a model for a new state of matter called the Colour Glass Condensate.
As a result of parton interactions, direct photons are emitted and studying these photons can give
insight into the gluon �eld at such low x values.

The FoCal detector is supposed to detect these, and the photons that are the most interesting for
investigating the colour glass condensate are the ones emitted at a very small angle with the beam pipe.
The detector will therefore be placed close to the beam pipe, at a large distance to the interaction
point. The scattering will also produce other particles, of which one is the neutral pion. This π0

particle will decay into two photons and these will also be measured by the detector. At high energies
these two photons will have a small opening angle. The FoCal detector is a specialized calorimeter
with high granularity layers that should be able to separate these nearby photons. This is necessary
because only the direct photons are the particles of interest so the detector should be able to recognize
π0 decay products and subtract them as background signal.

An important part of this process is the software that processes the measured data. Based on the
response of the detector, the software should decide where the particles hit the detector and what their
energies were. This can be a di�cult task if the particles hit the detector very close together, as the
regions in which they deposit energy overlap.

The goal of this research is to optimize the part of the clustering algorithm that deals with separation
of nearby gamma particles. This thesis will explain the steps taken and the results that were obtained.
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1 PARTICLE DETECTION

1 Particle detection

1.1 Particle detection in general

The particles of interest for the FoCal project are electrons, positrons and photons. Each of these
particles can interact with matter in several ways and this section will discuss the processes that are
the most important. The results of these interactions depend on both the particles and the medium
with which they interact. After an interaction, a part of the energy of the particle is often deposited
into the medium in some way and this makes it possible to detect the particles.

1.1.1 Electrons and positrons

At high energies, the dominant interaction process for electrons and positrons is bremsstrahlung. When
the charged particle moves through the electric �eld of another particle, typically the atomic nu-
cleus, it will decellerate and the lost kinetic energy is converted into a photon. The energy loss by
bremsstrahlung for electrons is given by

dE

dx
= 4αNA

Z2

A
r2e · E ln

183

Z
1
3

[1]. Here α is the �ne-structure constant, NA is the Avogadro constant, Z the atomic number, A the
total number of protons and neutrons and re is the electron radius.

At lower energies, other processes like ionization start to play a role. At ionization, the electron
will release a bound electron from the coulomb �eld of the nucleus. There are also other types of
interactions like δ-ray production, �erenkov radiation and excitation. Figure 1 shows that at energies
above a few tens of MeV, bremsstrahlung is the only dominant process.

The critical energy Ec is sometimes de�ned as the energy at which the loss rate for bremsstrahlung
is equal to the loss rate for ionization. Among alternate de�nitions is that of Rossi, who de�nes the
critical energy as the energy at which the ionization loss per radiation length (see Section 1.1.3) is
equal to the electron energy [2]. When using this de�nition, Ec is approximately given by

Ec =
550MeV

Z

where Z is the atomic number [1]. Figure 1 shows that the critical energy, for lead, is a little less than
10MeV. The particles of interest for the FoCal project range from a several GeV to a few hundreds of
GeVs so bremsstrahlung is the most important process here.

1.1.2 Photons

As opposed to electrons and positrons, photons are massless and have no charge. Therefore they
interact with matter in di�erent ways. At high energies the dominant process is e+e− pair production.
When a photon interacts with a nucleus, it can convert into an electron and positron. The cross section
for the pair production of photons, which is related to the probability of pair production occuring, is
given by

σpair ≈
7

9

(
4αr2eZ

2 ln
183

Z
1
3

)
[1]. At lower energies there are other interaction processes like compton scattering, the photo-electric
e�ect and rayleigh scattering. These are not of interest however for the high energy photons that will
be detected with the FoCal detector.
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1.1 Particle detection in general 1 PARTICLE DETECTION

Figure 1: Fractional energy loss per radiation length in lead as a function of the electrons energy.
Møller and Bhabha scattering in a medium lead to δ-ray production. Image taken from [2], page 19

1.1.3 Radiation length

As mentioned before, at high energies electrons mainly lose their energy by bremsstrahlung, and pho-
tons by e+e− pair production. This happens when the particles traverse through matter, and the
characteristic length at which these interactions occur is called the radiation length, denoted by X0.

The radiation length is de�ned as the distance over which an electron loses all but 1/e of its energy
by bremsstrahlung. It is also 7

9 of the mean free path for pair production by a high-energy photon.
[2] This means a photon produces an e+e− pair after traveling a distance of 9

7X0 on average. When
describing showers (see Section 1.1.4), X0 is the appropriate length scale. Note that the radiation
length depends on the materials through which the particles travel.

An approximation for X0 is given by

X0 =
180A

Z2

g

cm2

[1], where Z is the atomic number and A is the total number of protons and neutrons in the nucleus of
the atom. This quantity is measured in g/cm2 so that it can be used to compare materials of di�erent
density ρ. Dividing by ρ will give the radiation length in centimetres.

The cross section of e+e− pair production by photons can be expressed in terms of X0 by

σpair ≈
7

9

A

NAX0

and the energy loss of electrons and positrons by bremsstrahlung can be rewritten to

dE

dx
=

E

X0

[1]. This means E = E0e
−x/X0 from which one can see that after one radiation length, the electron

has only 1/e of its energy left.
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1.2 Detection speci�cs for FoCal 1 PARTICLE DETECTION

The radiation length of a mixture of several materials can be calculated by

1

X0
=
∑ wj

Xj

where wj is the fraction of weight and Xj the radiation length of the j-th material. The tungsten used
in the FoCal detector has a radiation lenght of 3.5mm. Combining this with the other materials of
the detector, a radiation length of about 0.6 cm is obtained. [3]

1.1.4 Showers

When a high-energy electron or photon is incident on a thick absorber, pair production and bremsstrah-
lung will generate more electrons and photons with lower energy. This will cause a chain reaction and
is also known as an electromagnetic shower. In such a shower, particles are constantly being created
and destroyed. At the start of the shower, the number of particles rises due to the high number of
creations until at some point, called the shower maximum the energy of the particles has dropped so
far that more particles are being destroyed rather than created.

The longitudinal development is governed by the high-energy part of the shower and scales as the
radiation length in the material. When the electron energies fall below the critical energy Ec, they
will dissipate their energy by ionization rather than by the generation of more particles.

1.1.5 Molière radius

The transverse development of electromagnetic showers is described by the Molière radius, denoted as
RM . It is given by

RM = X0
21MeV

Ec

For a compound material, the Molière radius is given by

1

RM
=

1

21Mev

∑ wjEcj
RM,j

where wj is the weight fraction of the element with critical energy Ecj . [2]
The importance of the Molière radius lies in the following. On average, 90% of the deposited energy

lies inside the cylinder with radius RM , and about 99% is contained within 3.5RM . The value of this
radius depends on the materials used and for the FoCal detector it is approximately one centimetre.

1.2 Detection speci�cs for FoCal

The FoCal detector is an electromagnetic calorimeter. It will be used to measure particles at high
rapidities, meaning particles with a small angle to the beam pipe, so in a forward direction. Two
options are being considered for the placement of the detector. It will either be at 3.6 m or at 8.0 m
from the interaction point. At a higher distance, particles with higher rapidity can be measured which
is preferred.

The detector is a sampling calorimeter, meaning it consists of an active medium that contributes to
the signal and a passive medium that does not. The passive medium is meant to cause interactions and
absorb energy. The material for this passive medium will be tungsten, because of its small radiation
length: tungsten has a radiation length of X0 = 3.5mm and a Molière radius of RM = 9mm. The
material used for the active medium is silicon. [3]

The FoCal detector will consist of di�erent segments, divided into di�erent layers. A schematic
overview of the currently proposed detector is given in Figure 2.

There are low granularity layers, also called coarse layers, where each cell has an area of approx-
imately 1 cm2. A measurement with these cells will return an analog value that is directly related
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1.3 Simulation 1 PARTICLE DETECTION

Figure 2: Schematic overview of the setup of the FoCal detector. Picture made by G. Zomer.

to the deposited energy in that cell. The responses of these layers are summed into segments on a
hardware level (in the current proposal), so the software will only have access to the full segments.

The detector will also have high granularity layers, also known as �ne layers, which are needed to
separate nearby particles. These layers will consist of approximately 0.1 mm wide micropixels that can
be either enabled or disabled, meaning they contain signal above a threshold or not. These micropixels
are grouped in squares of 10 by 10 to obtain pixels (with dimensions 1×1mm2) that have an amplitude

between 0 and 100 which is the amount of enabled micropixels. It is not known yet how small the
actual micropixels will be, but they will probably be smaller than 0.1 mm. The software will only be
able to access the result of the pixels, not the individual micropixels.

This combination of di�erent type of layers should allow a high position resolution while keeping
the costs down, as the high granularity layers are relatively expensive.

1.3 Simulation

For simulating particle showers, the GEANT software was used. This software can do Monte Carlo
simulations of the passage of elementary particles through matter. Given a a list of materials with all
their properties and their location, GEANT is able to simulate all the interactions that are known for
the simulated particles.

The detector setup that is currently being used for these simulations consists of 6 segments in total
(see Figure 2), placed at a distance of 360 cm from the interaction point. The second and fourth are
high granularity (�ne) segments and the others are low granularity (coarse) segments.

As mentioned before, the high granularity segments consist of 1 mm wide pixels (consisting of 100
micropixels) that have an amplitude between 0 and 100. For the simulation it is assumed that the
summing of the micropixels happens in the detector hardware so the state of the individual micropixels
can not be retrieved in the algorithm.

The low granularity segments consist of 1.0 cm wide pads that measure energy directly and return
a numerical value. The values of both type of segments have to be scaled and calibrated in order
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1.4 Rejecting π0 decay products 1 PARTICLE DETECTION

to obtain the actual deposited energy. In the real detector, the low granularity segments consist of
multiple layers, but for the simulations these layers were summed and treated as a single segment.

The simulations used in this thesis do not incorporate any form of noise and there is no space
between the cells. Furthermore all cells are perfect meaning that they always work and the measured
value they return is always directly related to the deposited energy in that cell. This means it is a
perfect detector in some sense, so any e�ciency obtained with this simulation can not be guaranteed
for the real detector. The data obtained by measurements with the real detector can have larger
uncertainties and there is noise involved. There will be dead chips and other faults in the hardware
which might be a fundamental issue that can not be solved directly by improving the hardware.
Therefore the �nal algorithm for the real detector will need another step to process the data before the
clustering algorithm is applied. All the research done for this thesis will be on the simulated perfect

detector.

1.4 Rejecting π0 decay products

One of the goals of FoCal is to measure the direct photons that are the result of parton interactions. A
dominant fraction of the other photons are the photons resulting from a neutral pion. The π0 particle
decays into two photons (π0 → γ+γ is 98.8% of π0 decays, see [4]) and these photons are not the ones
of interest so they must be recognized. At high energies these photons hit the detector under a small
opening angle: they can be less than a centimetre apart. Once the photons are successfully detected,
their energy and position information can be used to calculate the invariant mass of the system of two
photons. This can then be used to check if two photons originated from a π0 particle.

1.4.1 Invariant mass

The invariant mass, also called rest mass of an object is a characteristic of the total energy and
momentum of the object. The invariant mass has the same value in all frames of reference which are
related by Lorentz transformations. In the center of momentum frame of the object (if it exists) the
measured energy of the object is minimal and the mass is simply given by m = E/c2. When the object
is measured from another frame of reference the measured energy is higher and the momentum of the
object is subtracted so that the resulting mass is indeed invariant. From any frame of reference the
invariant mass can be calculated from the particles energy E and its momentum ~p with the energy-

momentum-relation:

m2c2 =

(
E

c

)2

− ‖~p‖2

Note that a rest frame does not exist for single photons and therefore their mass is zero. However
a system of two photons not going in the same direction does have a center of momentum frame and
therefore such a system does have an invariant mass. When using the four-momentum vector notation,
the invariant mass can be found by calculating the magnitude of the vector using the Minkowski norm:

m2c2 =

∥∥∥∥(Ec , ~p
)∥∥∥∥2 =

(
E

c

)2

− ‖~p‖2

In particle physics it is common to use natural units which means c = 1. This simpli�es the
energy-momentum-relation to simply

m2 = E2 − p2

With this system, the energy is often given in GeV, momentum is given in GeV/c and mass in GeV/c2.
This convention will be used in the following formula's.

When a π0 particle decays into two photons, the system being considered is the system of both
photons. Since energy and momentum are conserved during a decay, the invariant mass of the pair of
photons is equal to the mass of the π0 particle which is a known constant. This makes the invariant
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1.4 Rejecting π0 decay products 1 PARTICLE DETECTION

mass a useful tool to check if two clusters are two photons resulting from a π0 decay instead of being
direct photons.

Assuming that the energy and position of two measured particles are calculated correctly, the
invariant mass of the pair can be calculated. Let ~r = (x, y, z) be the location where the particle hit
the detector and E be the measured energy. The photon travels from the ogirin to the point ~r so
therefore its momentum will have the same direction. Since the particle is a photon the magnitude of
the momentum vector is given by E. This can be seen directly from the energy-momentum-relation
mentioned above by setting m = 0 for a massless particle. Combining this, the momentum vector of
the photon is given by:

~p = E
~r

‖~r‖
= Er̂

The four-momentum vector is then given by

(E, ~p) = E (1, r̂) = E

(
1,

x

‖~r‖
,
y

‖~r‖
,
z

‖~r‖

)
The length of the vector (using the Minkowski metric) is zero which is correct because a single photon
does not have invariant mass. However when two particles are detected, at di�erent locations ~r1 and
~r2 with energies E1 and E2 then the four-vectors can be added resulting in a vector with a non-zero
norm:

(E1 + E2 , E1r̂1 + E2r̂2)

This summed vector corresponds to the system of the two particles and the invariant mass of that
system can then be found by calculating the Minkowski norm of the summed vector. This can be
rewritten to express the mass in the opening angle θ between the two photons:

m2 =
(
(E1 + E2)

2 − ‖E1r̂1 + E2r̂2‖2
)

=
(
E2

1 + 2E1E2 + E2
2 −

(
E2

1 + 2E1E2(r̂1 · r̂2) + E2
2

))
= 2E1E2(1− r̂1 · r̂2) = 2E1E2 (1− cos θ)

m =
√
2E1E2(1− cos θ)

1.4.2 Invariant mass at multiple clusters

At a real measurement many particles will be detected at once resulting in many clusters. It can not
be known which of the clusters form a pair that originated from a single particle so it is not clear of
which cluster pairs the invariant mass should be calculated. Therefore, the invariant mass of every
pair of clusters will be calculated. A frequency distribution of these invariant masses should then
show a peak at the π0 mass, and at the rest masses of other particles. If the invariant mass of a pair
of clusters is close enough to that of the π0 mass then the pair can be marked as a π0 pair. If the
detector has enough accuracy this should recognize most of the π0 particles so they can be subtracted
as background signal.
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2 CLUSTERING

2 Clustering

2.1 Problem description

Clustering, or cluster analysis, is a general term not only applied in particle physics. Clustering is the
task of grouping data points in such a way that points in the same group have some kind of similarities,
whereas points in di�erent groups do not have these. There is no speci�c algorithm for clustering as it
depends on the type of data and on the kind of similarities that data points in the same cluster need
to have.

One can make a distinction between hard and soft clustering. In hard clustering, also known as
crisp clustering, each data point belongs to exactly one cluster. In soft clustering, or fuzzy clustering,
a data point can belong to di�erent clusters each with a certain probability.

The type of clustering algorithm also depends on prior knowledge of the data points or knowledge
of cluster properties. An example of this can be an expected number of data points in a cluster or a
maximum distance of a data point to a cluster (where distance can be any function that represents a
measure of similarity).

To further complicate things, the data points can have uncertainties caused by the limited precision
of a measuring device. There can also be noise involved which is the case for any kind of detector.
This means that it might not always be possible to perfectly clusterize the data but a good clustering
algorithm will take all of this into account and still produce reasonable results.

2.2 General solutions

A very basic and general approach for clustering an n-dimensional grid of pixels (grid points can be
enabled or disabled) would be �nding connected components. One could start at any enabled point
and keep searching in its neighbourhood for enabled points thare are connected to it and merge those,
repeating this until no more changes occur. One of the disadvantages of this method is that when two
actual clusters overlap then this method will produce a single cluster.

When one has more information about the data, for example an expected cluster size and an
expected shape (a circle for example) then the following procedure can be applied:

• Group pixels together in bins. The bin size incorporates knowledge of the expected cluster size.

• Search for local maxima (bins of which all neighbouring bins have lower counts) and de�ne those
as clusters.

• For each pixel, or for each bin, decide which local maxima it is closest to and assign it to that
cluster

This method will work in simple scenarios and can already separate overlapping clusters to some extent.
To further improve results one needs to incorporate more knowledge about the data points and cluster
properties.

2.3 The FoCal scenario

Roughly speaking, the FoCal detector could be seen as a three dimensional grid. The cells of this grid
are the objects that need to be clustered according to distance. Every cell has an amplitude that is
related to the deposited energy in that cell and this amplitude is also incorporated into the clustering.
The full detector setup, as used in the simulations, was explained in Section 1.3.

The clustering method presented in the previous section is by far too simple for the FoCal detector.
The general idea is still valid and is used in the clustering algorithm but many additional steps are
applied. Most of these steps are based on speci�c features related to the physics of particle showers.
These features can be used to distinguish clusters that overlap which would not be possible without
prior knowledge about the data.
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2.4 Description of the full algorithm

The algorithm that is currently used for the FoCal detector is split into two parts: �rst constructing
clusters at each segment of the detector and then combining those results to reconstruct a full cluster
at the level of the detector.

2.4.1 Cluster algorithm de�nitions

The amplitude is the detected signal of a single cell and it represents the deposited energy in that
cell. All cells have a �ag that speci�es if it can be considered as a seed which means it is a possible
cluster center. Each cell has a weight that is used to calculate the fraction of it belonging to a certain
cluster. The amplitude of a cell is distributed amongst di�erent clusters according to this weight.

2.4.2 Parameters

There are several parameters involved in both parts of the algorithm:

• MinRing speci�es the minium distance between two clusters. No two seeds can be created
within this distance from each other. In the current implementation the MinRing parameter has
a value of 1 ring for the coarse layers, meaning there must be at least one cell (1 cm) between
two clusters. The �ne layers have this parameter set to 2 rings which means a distance of 2 mm
between to clusters.

• MaxRing is the radius in which a seed can collect energy. It is assumed that the full particle
shower will be contained within this distance. In the current implementation this distance is set
to 5 cm for the coarse layers and 4 cm for the �ne layers.

• SeedThreshold is the minimum amplitude that a cell needs to have in order for it to be con-
sidered as a possible seed. In the current implementation this threshold is not used (set to
zero) because low energy clusters are already rejected at a later step of the algorithm by the
ClusterEnergyThreshold .

• NCellsThreshold is the minimum (weighted) number of cells that a cluster needs in order to
be kept.

• ClusterEnergyThreshold is the minimum energy that a cluster needs. In case of the coarse
segments this value is given in keV (for this simulation) but for the �ne segments this value is
being compared to the sum of cell amplitudes. These amplitudes are counts of micropixels that
have signal above a threshold (on a hardware level) and this count is directly related to energy.

• Weight function . This function describes the transverse pro�le of the cluster. This function
and its goals are the main topic of chapter 3. The function is used to distribute the energy of a
cell to di�erent seeds. It is scaled so that the amplitude at the center of the function matches
the amplitude at the center of a cluster. The weight function will give the expected amplitude
at nearby cells. This value is used as weight for the neighbour to specify how much of that
neighbour belongs to this cluster.

• RejectionRatio. The amplitude of a neighbour cell is compared to the expected value (based
on the weight function). If it is more than RejectionRatio times higher then the neighbour is
energetic enough to possibly become a separate cluster. This parameter is explained in chapter
3.

See table 1 for the values of these parameters in the current implementation.
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Segment MinRing MaxRing NCellsThreshold ClusterEnergyThreshold RejectionRatio
0 - coarse 1 rings 5.0 cm 2.0 5000 keV 10
1 - �ne 2 rings 4.0 cm 3.0 7 3.5
2 - coarse 1 rings 5.0 cm 3.0 10000 keV 10
3 - �ne 2 rings 4.0 cm 10.0 10 3.5
4 - coarse 1 rings 5.0 cm 6.0 15000 keV 10
5 - coarse 1 rings 5.0 cm 5.0 8500 keV 10

Table 1: Parameter values for the clustering algorithm (May 2013). Note that for segment 1 and 3 the
energy values are counts of micropixels that are hit, which is directly related to the energy.

2.4.3 Segment level algorithm

This section brie�y describes the algorithm that is executed separately for each segment of the detector.
The full version of this algorithm can be found in the appendix.

• The SeedEnergy is computed for each cell. It is the sum of the amplitudes of cells within (and
including) the MinRing radius.

• The cells are sorted according to their amplitude (energy) and the algorithm loops over the
cells from high to low amplitude in order to create seeds. Only cells with an amplitude above
SeedThreshold are considered here.

� The current cell (that is being looped over) is marked as a seed.

� Every neighbouring cell that lies within the MaxRing radius is then inspected to see
whether or not it can be part of a separate shower.

∗ The neighbour cell belongs to this seed if its SeedEnergy matches the expected value,
or when it is within MinRing radius. In this case the cell is marked so that it can
no longer form a separate seed. The algorithm computes the expected value of the
SeedEnergy of the neighbour based on the current cell's SeedEnergy, and a weight

function . If the neighbour is energetic enough, meaning its SeedEnergy is more than a
factor RejectionRatio times the expected value, then this neighbour is left unchanged
(not marked) so that the algorithm will �nd it later in the cell loop.
The research done for this thesis focusses on optimizing the expected value and rejection
ratio mentioned here. It will be explained in detail in Chapter 3.

� All neighbours are given a weight based on the current cell's SeedEnergy. This weight
indicates which fraction of the neighbour amplitude belongs to this seed.

• The list of seeds that has now been created is considered a second time to implement further
rejection criteria.

� The weighted number of cells is calculated: if a cell has weight contributions from multiple
seeds then only the fraction belonging to the current seed is used. If the weighted number
of cells is below NCellsThreshold the seed is rejected.

� The total amplitude is calculated, again only taking the fraction belonging to the current
seed. The seed is rejected if the total energy is below ClusterEnergyThreshold .

• The remaining seeds will make up the �nal cluster list

� The total energy is calculated the same way as in the previous step. This has to be repeated
because some seeds may have been removed changing the weights.

12
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� The mean position of the cluster is calculated. The amplitude of a cell is used as weight
and the mean is taken over cells within 3 rings (inclusive) distance.

~rmean =

∑
Ei~ri∑
Ei

sum taken over digits within 3 rings

Other ways of weighing, like using the logarithm of the amplitude, can give better results
in some cases but that is not part of this research.

� The semi-major and semi-minor width of the cluster are calculated.

2.4.4 Detector level algorithm

At this part of the algorithm the resulting clusters of the previous section, at the segment level, are
refered to as sub-clusters. These sub-clusters all have a �ag specifying whether they have beenmerged

and they have an energy weight, which is a variable used for this part of the algorithm and is seperate
from the energy of the cluster measured in the �rst part. The merged �ag and energy weight are reset
when this part of the algorithm starts. This section will give a summary of the algorithm and the full
description can be found in the appendix.

• First the segments are combined with other segments of the same granularity into semi-�nal
clusters. This results is two lists of semi-�nal clusters: one for the low granularity segments and
one for the high granularity segments.

� The algorithm looks for clusters in the other segments of same granularity and merges them
if they are less than MinRing distance apart. Energies are added and the position is
calculated as an energy weighted mean.

� The energy of the semi-�nal cluster is calculated according to the following formula:

E = p0

(
p1 +

∑
Esub

)p2
+ p3

where pi are parameters that can be calibrated and Esub are the energies of the sub-clusters.
The values used in the current implementation are given in Table 3 in the appendix. If the
resulting energy is not positive then the cluster is not saved.

• For each high granularity semi-�nal cluster, the closest low granularity semi-�nal cluster is taken
(withinMaxRing distance). This creates a �nal cluster where the position information is taken
from the high granularity semi-�nal cluster, and the energy information is taken from the low
granularity cluster.
If a low granularity cluster was used by multiple high granularity clusters, the energies of the
high granularity clusters are used as weights to divide the energy of the low granularity cluster
amongst them.

• If there are low granularity semi-�nal clusters that are not used yet then they also create �nal
clusters but with no high granularity information. The energy and position information are taken
directly from the low granularity semi-�nal cluster.

This completes the second part of the algorithm.
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2.5 Cluster properties

The �nal clusters that are the output of the clustering algorithm have the following information:

• position

• total energy and energy for each coarse segment

• semi-minor width and semi-major width per segment

The particle showers are symmetric and should therefore produce round clusters. If the shape of the
cluster is too elliptic (based on the semi-minor and semi-major width) then this is a sign that the
cluster could be caused by two particles very close together instead of a single particle. Note that
for the low granularity segments with 1 cm pads, calculating the widths is a hard task because the
resulting shape depends greatly on where the particle hits the pad. Using this shower shape in order to
distinguish particles is currently not implemented in the algorithm but it might be used in the future.

A property of every pair of clusters is their invariant mass, which can be used to decide whether
the two particles originated from a π0 decay as explained in Section 1.4.1.

14
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3 Transverse shower pro�le

The algorithm in Section A.2 mentions a weight function. It is this function that will be the focus
of this chapter and from now on it will also be referred to as the pro�le function. First its physical
interpretation is explained, followed by the goals of the function for the clustering algorithm.

3.1 Notation

At this point it is important to clear up the notation that is used for (density) distributions. The
following holds for any density but in this case the deposited energy E will be used. When considering
an energy distribution along the x-axis, the energy density is denoted as dE

dx . With this notation the
variable E is a cumulative quantity so that E(x) can be seen as the total energy from −∞ to x and
with that in mind dE

dx (x) will be the density at point x.
When generalizing this to a two-dimensional distribution the density is denoted as d2E

dxdy . However
when one wants to think of E(x, y) as a cumulative variable, it is not well-de�ned of which region this
is. For particle showers the distribution should be radial, meaning it only depends on the distance r
to the center. When one wants to describe the density as a function of r there is an important di�er-
ence caused by the Jacobian of a polar coordinate transformation. When transforming the cartesian
coordinates (x, y) to polar coordinates (r, ϕ), an in�nitesimal area dx dy transforms to r dr dϕ. This
means d2E

dxdy (x, y) is equal to
d2E
rdrdϕ (r, ϕ) and when the distribution does not depend on ϕ this can be

simpli�ed to
1

2πr

dE

dr
(r)

This quantity will then equal the density at a point with a distance r to the origin. To obtain the
cumulative energy within the region with radius R, the integral over this region must be taken and
one �nds ˆ R

0

ˆ 2π

0

(
1

2πr

dE

dr
(r)

)
rdϕdr =

ˆ R

0

r

r

dE

dr
(r)dr = E(R)− E(0)

So with this notation E(r) can be viewed as the cumulative energy within distance r to the origin (if
E(0) is set to zero).

When showing a radial energy distribution, 1
2πr

dE
dr is shown instead of dE

dr because this gives a
better visual idea of the distribution. However when one wants to generate random events according
to the distribution by randomly drawing values for r and ϕ, then values for ϕ can be drawn according
to a uniform distribution and values for r have to be taken from the distribution dE

dr instead of 1
2πr

dE
dr .

3.2 Physical interpretation

The physical interpretation of the pro�le function is that it describes the transverse pro�le of the
shower. An example of such a distribution can be seen in Figure 3. The analytical form of the
actual distribution function is not known, since the showering of the particle consists of many di�erent
processes with di�erent probabilities. Di�erent functions have been �tted to measured and simulated
data.

In a lecture on particle detectors [1] it is suggested that the distribution is of the following form:

1

2πr

dE

dr
= αe−r/RM + βe−r/λmin (1)

where α, β are free parameters, RM is the Molière radius and λmin is the range of low energetic
photons. The document suggests that the outer part (larger values of r) of this function is caused
by low energetic photons which implies λmin > RM . However when peforming �ts on simulated
data (single gamma events with 0.5GeV/c ≤ pT ≤ 20GeV/c) one �nds that the same function with
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Figure 3: Longitudinal and lateral electromagnetic shower pro�le for a 6 GeV electron in lead. The
top picture shows the distribution on a lineair scale and the bottom picture shows the same pro�le on
a logarithmic scale. The numbers on the horizontal axis and the depth axis both represent multiples
of the radiation length X0. The vertical axis shows the energy deposit in arbitrary units. Source: [1]
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λmin < RM matches the data signi�cantly better. In this thesis the function (1) is referred to as the
double exponential.

The distribution function that is implemented as the weight function in the algorithm was given
by

1

2πr

dE

dr
=

I(
r
σ0

)2
+ er/σ1

(2)

where σ0, σ1 are two parameters that specify the width of the shower and I is the energy or intensity.
This function is a modi�ed Cauchy distribution (also called Lorentz distribution) that is often used in
(particle) physics:

I

1 +
(
r
σ0

)2
The exponential part was added to make the function tend to zero faster at large r. This thesis will
refer to the function (2) as the damped cauchy function.

3.3 The pro�le function in the algorithm

In the algorithm the pro�le function is used for di�erent purposes. Recall the de�nition of seed
energy as mentioned in the algorithm: the seed energy of a cell is the sum of the amplitudes of cells
within MinRing radius. When a new seed is found, the pro�le function is scaled so that it matches
the seed energy of the seed cell at r = 0. The value of the pro�le function (at di�erent values of r)
will then give an estimated value for the seed energy of neighbouring cells. It must be noted that the
transverse shower pro�le as described previously refers to the energy deposited at di�erent positions
which is directly related to the amplitude. The seed energy however is a little di�erent from this. The
distribution of seed energies could be seen as a smoother version of the energy distribution.

The �rst reason for comparing seed energies instead of amplitudes is to counter �uctuations. The
amplitude of a single cell can be far above the average, especially at higher distances to the cluster
center (3 cm). At the smoother seed energy distribution these �uctuations are compensated for to
some extent.

The large pads in the low granularity segments give another reason for using the seed energy. The
cells in these segments are 1 cm wide and this is very close to the Molière radius of the showers that
need to be detected. This means that when a particle hits the detector in the center of such a cell,
almost 90% of the shower's energy will be deposited within that cell. The resulting cell amplitude
distribution will have a single large peak. However when a particle hits the detector on the edge of
two such cells then its energy will be divided among these two cells and the amplitude distribution
will have two peaked cells instead of one. Using the seed energy will compensate this e�ect because
the sum of the amplitudes of the two peaks should be almost equal to the amplitude of the single
peak. The seed energy distribution of the two di�erent cases should therefore more similar whereas
the amplitude distribution di�ers depending on where the particle hits the cell. The same e�ect is
present when the particle hits the cell under an angle, and also here the seed energy distribution will
compensate the e�ect to some extent.

3.3.1 Energy assignment

The �rst usage of the pro�le function assigning energy to di�erent clusters. When a new seed is added,
the expected seed energy for a neighbour is calculated and this value is added to the weight variable
of the neighbour. When all seeds have been processed, all cells will have some non-zero weight which
can be the sum of weights by di�erent seeds. The fraction of this weight that belongs to a seed is the
fraction of the amplitude that will be assigned to that seed.
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This weight function should resemble the previously discussed transverse shower pro�le and the
reasoning for that is as follows. If n particles hit the detector, and the energy deposition of particle
i at position x, y is given by fi(x, y) then the total energy deposition at position x, y is simply the
sum

∑n
i=1 fi(x, y). When the particles are of the same type the energy pro�le should only depend on

the distance to the particle hit location (because the shower is symmetric) and on the energy of the
particle. When multiple particles hit the detector close to each other, the energy deposition of the
single particles is not known (only their sum) so this must be estimated which is what the weight
function does. As explained, the weight function depends on the seed energy at the center and on the
distance from a neighbour to that center, so it can be written as g(Ei, |~r − ~ri|). The algorithm currently
uses the modi�ed cauchy distribution where the energy is a scalar: g(Ei, |~r − ~ri|) = Eig̃(|~r − ~ri|). The
fraction of the total deposited energy at position ~r that belongs to particle i is then given by

g(Ei, |~r − ~ri|)∑n
j=1 g(Ej , |~r − ~rj |)

Note that when the weight function is multiplied by a scalar, the resulting fractions remain the same
so only the shape of the function is important.

3.3.2 Seed rejection

The second purpose of the pro�le function is rejecting seeds. The algorithm starts by considering
the cell with the highest amplitude and uses that as a �rst seed. Cells in the neighbourhood of that
seed are then rejected as possible seeds based on the pro�le function. The expected seed energy of
the neighbour is calculated and if the actual seed energy is more than a factor RejectionRatio (see
table 1) higher, it can be considered as a separate seed (i.e. not rejected here). If the seed energy
of the neighbour is not high enough, the cell is rejected, meaning it can no longer be a seed. The
rejection ratio is based on the statistical �uctuations of the seed energies. It must be noted that the
rejection ratio does not depend on r (the distance to the center of the cluster) so this assumes that
the �uctuations in seed energy, as a ratio of the average amplitude, are the same at each distance.

The main topic of this research is optimizing the pro�le function and rejection ratio at the rejection
step of the algorithm. When trying di�erent functions and parameter values, the weight function used
for assigning energy was left unchanged to make sure there were no side e�ects caused by wrong energy
values. Since the rejection function is now di�erent from the energy weight function, the rejection ratio
parameter was ignored (set to 1.0) and this value was incorporated into the rejection function itself by
scaling it.
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4 Results

This chapter will discuss the di�erent methods that have been tried to improve the rejection function.

4.1 Measuring e�ciency

At every attempt for improving the rejection function, the algorithm was executed on 10,000 simulated
single gamma events and 10,000 single π0 events. Both gamma and π0 events were simulated with
transverse momenta ranging from 0.5GeV/c to 20GeV/c (uniform). The single gamma events should
produce exactly one cluster, whereas the π0 decays into two gammas and should produce two clusters.
This is unless one of the photons goes outside the acceptance range of the detector but that only
happened for 0.3% of the events so it can be ignored.

The peformance of the algorithm, after running it with di�erent parameters, was evaluated by
considering two variables. The �rst quantity that is considered is the number of clusters found by the
algorithm. The second variable is referred to as e�ciency in this thesis. For each event it is checked
whether there is a cluster present at the simulated particle incident location. If all simulated particles
(one for gamma events, two for π0 events) have a cluster within 0.135 cm distance to its real location
then a �ag is set to true. The e�ciency is de�ned as the percentage of events that have this �ag set
to true.

It is important to note that when the cluster algorithm �nds too many clusters, there is a large
probability that some of those clusters will be at the simulated particle positions and so this e�ciency
will then be very high. If every cell would be considered as a cluster for example, the e�ciency would
always be 100%. Therefore the total number of clusters that was found must also be taken into account.
In Section 4.3 it will be explained that it is better to �nd more clusters than �nding fewer clusters.

4.1.1 Single gamma e�ciency

In Figure 4 the results of the algorithm with the original (unmodi�ed parameters) Cauchy rejection
function can be seen for single gamma events. The resulting e�ciency is very high and the goal is to
maintain at least this level of results for single gamma events while improving the results of π0 events.
When trying di�erent rejection functions it turned out that the results of the single gamma events
did not change signi�cantly and the e�ciency was always high enough. Therefore, when comparing
the results of di�erent rejection functions in later parts of this thesis, only the results of π0 events are
shown.

4.2 Optimizing the pro�le function

To obtain reasonable parameters for the pro�le function one needs to have an idea of how a char-
acteristic single particle cluster looks. Therefore 10,000 single gamma particle events were simulated
and this results in 10,000 samples of a 6 grids (one for each segment) with amplitudes. The pro�le
function can then be chosen to match these samples. To do this, �ts were done on these samples as
will be explained below. In every case both the damped cauchy function and the double exponential

were �tted to the data points. Note that the simulated events have a wide energy range and one could
expect the shape of the pro�le to depend on the energy, whereas the current functions only depend on
the energy via a scale factor. This potential issue will be addressed in Section 4.2.5 after seed energy
distributions and the concept of rings have been explained.

4.2.1 Average amplitudes

To start with, the di�erent pro�le functions were �tted to the ampitude distributions of single gamma
events. Figure 5 shows an example of such �ts. The data is a two-dimensional grid of cells but since
these are di�cult to visualise the x-projections of the grids are shown. By doing this projection the type
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Figure 4: Results of the clustering algorithm for 10,000 single photon events using the original damped
Cauchy rejection function. The de�nition of e�ciency is explained in Section 4.1.

of distribution changes because the distribution is not of the form f(x, y) = g(x)g(y) so the resulting
�t parameters cannot directly be used. The �t however is also performed on the two-dimensional data
set and these projections are done only to visualise how well the functions �t the data. It can be seen
that the �uctuations, especially in the �ne segments, are large for this particular shower. In segment
2, for example, a peak is present on the left and one might expect this to be a separate particle with
lower energy but it is not. These �uctuations are also the cause of the poor �t results. Note that the
graphs have a logarithmic scale and at some points the �t deviates from the simulated amplitude by
more than 10 times its value so the resulting �t parameters are not very useful.

To overcome this e�ect di�erent events were added together, after translating them so the centers
of the clusters overlap, to obtain the average pro�le of multiple events. For every event the amplitudes
were �rst scaled so that the amplitude at the cluster center was equal to one. After this scaling, the
average was taken over 10,000 events and the results can be seen in Figure 6. The error bars show
the root mean square of the values (instead of the error of the mean), in order to visualise the shower
�uctuations. Even though segment 4 en 5 show higher values, the amplitudes in these segments are
not higher because all distributions were scaled. It only shows that the distribution in these segments
is less peaked. Since most of the segments are very similar, the �gure only shows segments 1, 2 and 5.

The �gure also shows the damped cauchy weight function that is used to assign energy to seeds
(in green) and a �tted version of that function (in red). The original un�tted cauchy weight function
does not seem to match the pro�le well at the �rst four segments and the �tted version does not seem
to improve this. However, as explained previously, multiplying the weight function by a scalar does
not in�uence the results of weighting cells. Since the plot has a logarithmic y-axis, a multiplication is
a translation in this plot. The weight function, after translation, does match the shape of the data.
As explained in Section 3.3.2, the energy assignment weight function was separated from the rejection
function so it is not very relevant for this research.

One can see that the average shower pro�le gives better �t results than �ts on single events.
However the error bars show that the amplitudes of single events can di�er from the average by large
amounts. This e�ect should be incorporated in the rejection function as will be explained later.
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Figure 5: Fit of di�erent pro�le functions on a single gamma event. The blue line is a �t of the double
exponential and the red line is a �t of the damped cauchy function (de�ned at the start of chapter 3).
The plots show the x-projections of the actual two-dimensional data.
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Figure 6: Fit of di�erent functions on the average of 10,000 single gamma events shown as a radial
distribution: 1

2πr
dE
dr . The error bars show the root mean square of the values. On the left the average

amplitudes are shown and on the right the average seed energies are shown. The blue line is the double
exponential �t, the red line is the damped cauchy �t and the green line is the damped cauchy weight
function (not �tted) that is being used for assigning energies to seeds. The green function on the right
includes the rejection ratio, so it is the function used for seed rejection. The vertical axis represents
deposited energy but at every event, at every segment, the amplitudes or seed energies were scaled as
explained in Section 4.2.1 and Section 4.2.2
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4.2.2 Average seed energies

As mentioned before, the algorithm compares the seed energies of di�erent cells instead of amplitudes.
Therefore the radial distribution seed energies was calculated, similar to the amplitude distribution
in the previous section. For di�erent events the seed energy distribution was then scaled so that the
cell at the center had a seed energy equal to one. After scaling, the average was taken over all events
and the �ts were then performed on this average. Since the algorithm is comparing seed energies, the
results of this �t should be more appropriate for a rejection function. The �t result can be seen in
Figure 6. It must be noted that the amplitude distribution is sharply peaked and in a coarse segment
a large portion of the energy is often deposited in a single cell. However when calculating the seed
energies, the value of this single center cell is also added to all eight neighbours. This results in a square
of nine cells with very high seed energies and this is seen in the �gure by the high value of the �rst bin
next to the origin. Since the damped cauchy and double exponential functions are very peaked, this
e�ect causes bad �t results near the origin. In Section 4.2.6 it is explained how the �ts are repeated
on a di�erent range. As a result of the �attening e�ect of the seed energies, this method should not be
used to �nd the weight function that assigns energy since this distribution does not describe a physical
quantity. The clustering algorithm does use the seed energies at the rejection process however and
therefore it is the right quantity to consider here, but it should be noted that the rejection function is
now very di�erent from the amplitude weight function.

4.2.3 Fluctuations

The �ts done so far are all based on average values. If the resulting function would be used directly
as a rejection function (without any additional rejection ratio) then every cell that �uctuates above
the average would be considered as a separate seed. This behaviour is not desired and it is therefore
necessary to �nd a function that does not describe the average seed energies but a good upper bound
of the seed energy �uctuations. The rejection function should be chosen so that, when the seed energy
of a neighbour cell is higher than the rejection value, the chance that it belongs to the same cluster
(as the seed) is, for example, less than 1 percent. To characterize the �uctuations (whether they are
Gaussian and so on), the distribution of amplitudes at a �xed distance from the cluster center was
computed.

The detector consists of square cells in a grid and therefore does not have all the same symmetries
that the showers have. When searching the neighbourhood of a cell, the algorithm loops around the
grid in so-called rings. Figure 7 shows how the rings are de�ned in the grid. Ring zero is the center
cell and ring one is the 8 cells in a square around it.

To start with, for each event, for each segment, for each ring, the maximum seed energy on of the
cells on that ring was calculated. The maximum is taken over the whole ring, per event, per segment.
This was done for 10,000 events and for each ring, for each segment, the average over all events was
calculated. Fits for the rejection function were then done on this average maximum pro�le. The results
of segment 1 and 2 can be seen in Figure 8. The other segments were similar and therefore not shown.

The data of segment 1 shows that the damped cauchy �t is very poor, due to the high values in the
�rst two rings. The double exponential function seems to match the data better, in both segments.
The plots also show that the original damped cauchy function, compared to the average maximum,
might have been too high at low range and too low at high range, suggesting that the exponential
term in this function might not be necessary. To �nd out whether this average maximum is a good
indication for the rejection function, more insight into the �uctuations is needed.

In order to learn more about the �uctuations, the amplitude and seed energy distribution per ring
was considered. For each segment, for each ring, the frequency of each amplitude and seed energy
occurring in a ring was saved. The amplitude distribution for some rings can be seen in Figure 9. The
plots show a very large peak at zero (logarithmic scale) and the distribution is not Gaussian at all. A
good rejection function should be bigger than, for example, at least 95% of the found seed energies
for single gamma events. To show the rejection value in the previous panels, it could be drawn as a
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Figure 7: Rings de�ned in a grid. The numbers on the colour scale represent the ring number. The
numbers on the axis represent row and column numbers of the grid.

vertical line (at that value on the horizontal axis) such that 95% of the events should be at the left
side of that line.

4.2.4 Quantiles

To apply this idea, di�erent quantiles of the amplitude distributions were calculated. A q-quantile is a
value x of the amplitude (or any variable that is being considerd) such that the fraction of entries with
an amplitude smaller than x, is equal to q. Graphically, in Figure 9, this means �nding the amplitude
such that the fraction of the area to the left of this amplitude is equal to q.

Using the amplitude distributions to calculate quantiles is not very useful because most of such
quantiles have a value of zero especially at rings more than 2 cm away from the origin. This could
be seen from the previous �gure because the peak at zero was so large that it contained 99% of the
events.

Instead, another distribution was considered: for each segment, for each ring, the maximum seed

energy on that ring was computed. This distribution can be seen in Figure 10. Note that this is no
longer any physical quantity both because of the seed energy and because the maximum was taken. It
does however provide information for the rejection function. For these average maximum seed energy

distributions the 90%, 95% and 99% quantiles were calculated. Fits were then done on the resulting
pro�les and the 95% quantile �t can be found in Figure 11. To clarify, the values of the darkest
coloured region, for example, show that 50% of the 10,000 events had their maximum seed energy (for
that ring) within this coloured region. The �gure also contains a �t on a partial range but this will be
discussed later in Section 4.2.6.

For the �ne segment the �t result is poor, again due to the values near the origin, similar to the
�ts on the average maximum. The coloured quantile regions show that the �uctuations in the �ne
segments are large compared to the �uctuations in the coarse segments, both because the regions are
larger and because the 95% quantile is further away from the average. The large �uctuations will make
it hard to discriminate between single photons and two π0 photons.
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Figure 8: The average maximum of 10,000 single gamma events shown as a radial distribution: 1
2πr

dE
dr .

The dots with error bars show the event average of the maximum seed energy on a ring as explained
in Section 4.2.3. The crosses show the average (instead of maximum, as in Figure 6) for reference. The
blue line is the double exponential �t, the red line is the damped cauchy �t and the green line is the
cauchy weight function (not �tted) including the rejection ratio that was being used before this study.

4.2.5 Energy dependence of shower pro�le

As explained before, the seed energies of every sample are scaled so that the centers coincide. By
doing this it is assumed that the shape of the pro�le is always the same. However one might expect
the pro�le to depend on the energy by more than a scaling of the amplitudes. In Figure 3 an example
of an electromagnetic shower pro�le was shown at di�erent longitudinal depths. It can be seen that the
transverse pro�le is more peaked at lower depths. For the FoCal detector and the particles of interest,
the peak in the longitudinal direction should always be located around segment 2. The location of this
peak does depend on energy: for high energy particles the peak is at a higher depth. Therefore the
shape of the pro�les measured in each segment should depend on the energy of the particle. However
the longitudinal depth of the peak depends logarithmically on the energy so this e�ect should not be
very large. Note that there could also be other reasons for the shape of the pro�le to depend on the
energy.

To test the energy dependence, the samples were divided in three di�erent energy ranges, and for
each range the seed energy distribution was calculated, similar to the �gure shown in the previous
section. The results can be seen in Figure 12.

The plots show that at the start of the detector (segment 0), the average pro�le for low energy
photons is more peaked, whereas at the end of the detector (segment 5), the high energy pro�le is
more peaked. The di�erence does not seem very large. The plots also show the maximum seed energy
at every distance (averaged over all events) and at segment 3 there is a notable di�erence for the
events with low energy. This suggests that even though the average pro�le is similar, the size of the
�uctuations depend on the energy of the particle.

In all other segments (all but segment 3), both the average and the average maximum do not seem
to di�er signi�cantly. Therefore, for this research it was assumed that a rejection function that does
not depend on the energy is su�cient. It might be an idea for further research to �nd out whether the
results can be improved with an energy dependent rejection function.
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Figure 9: Scaled amplitude frequency distribution of the coarse segments (left) and the �ne segments
(right) on a logarithmic scale. Each panel represents a ring. Each colour represents a segment. The
coarse segments 0, 2, 4, 5 correspond to colours black, red, green, blue on the left. The �ne segments 1
and 3 correspond to colours red and blue on the right. The amplitudes found in each ring are divided
by the amplitude of the center cell. The amount of entries increases at each ring because these rings
contain more cells.
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Figure 10: Scaled maximum seed energy frequency distribution of the coarse segments (left) and
�ne segments (right) on a logarithmic scale. Each panel represents a ring. Each colour represents a
segment. The coarse segments 0, 2, 4, 5 correspond to colours black, red, green, blue on the left. The
�ne segments 1 and 3 correspond to colours red and blue on the right. The maximum seed energy
found in each ring is divided by the seed energy of the center cell. The distributions at other rings did
not reveal any additional insight and were omitted in this �gure.
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Figure 11: The radial distribution 1
2πr

dE
dr of maximum seed energies per ring. The black crosses show

the average on each ring. The coloured areas indicate the quantiles of the maximum seed energies: the
center area (darkest) shows the middle 50% of all events (25% till 75%). The next area shows the 10%
till 90% quantiles, then 5% till 95%, ending with 1% till 99% (lightest). The red line is the damped

cauchy �t and the blue line is the double exponential �t, both �tted on the 95% quantile which is the
black line. The left side shows the �ts on the full range and the right side shows the �t on a partial
range (the other data is equal at both sides).
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Figure 12: Radial seed energy distribution for di�erent energy ranges. The ranges are as follows: blue
is E ≤ 100GeV, red is 100GeV < E ≤ 300GeV and green is 300GeV < E. The lines show the average
seed energy. The markers show the event-average of the maximum seed energy at each distance.
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Figure 13: Number of clusters found at 10,000 π0 events, with the unmodi�ed cluster algorithm, for
di�erent distances between the decay photons. The distance is the distance of the incident positions
at the detector.

4.2.6 Fit range

In Figure 13 the number of found clusters is shown for di�erent distances between the two incident
particles. The graph shows that when the two particles hit the detector less than 0.3 cm apart then
they are likely to be seen as one cluster. This behaviour is expected in the sense that the showers
almost completely overlap, but it is still important to try to �nd ways to separate such cases. For
larger distances the number of clusters found does not seem to depend on the distance anymore. The
�ts described in the previous section were therefore repeated but on a di�erent range.

TheMinRing radius is excluded from the �t because the cells within this radius are always rejected
as cluster seeds, no matter what their seed energy is. In previous plots it was also seen that the values
near the origin caused poor �t results which is another reason to exclude these values. The �ts on
the coarse segments were done from 2 cm to 4 cm (rings 2 to 4, inclusive) and the �ts on the �ne
segments were done from 0.3 cm to 2.0 cm (rings 3 to 20 inclusive). The motivation for this was that
any potential seeds that were found at larger distances would be rejected by other means (their total
energy would be too low) so this rejection function would not have a large e�ect at higher range.

These �ts were done on the 90%, 95% and 99% quantiles of the average maxima as described in
the previous section. The results of the 95% �t can be found in Figure 11. Comparing the �ts to the
ones at full range (in the same �gure) shows that the functions match the data better, especially in
the �ne segment. The clusterizer was run with this �t result of the double exponential as a rejection
function. The e�ciency results can be found in Figure 14. The �gure shows that the e�ciency did
not change very much compared to the original data, but the number of clusters that was found did
improve slightly, meaning two clusters were found more often. Note that the clusterizer was also run
with the 90% and 99% quantile �t results but the resulting e�ciencies were not as good. The 90%
rejection function was too low in the sense that it accepted too many additional seeds resulting in
many more events with 3 clusters. The e�ciency in this case did become higher. In Section 4.3 it
is explained whether this is desired because even though the amount of events with clusters at the
incident particle positions is higher (e�ciency), these clusters are less accurate because some of their
energy is taken by the third cluster.
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Figure 14: Results of the clustering algorithm for 10,000 π0 events. The de�nition of e�ciency is
explained in Section 4.1. The blue data is the result of the 95% average maximum quantile �t with
partial range of the double exponential function, as explained in Section 4.2.6. The red lines are is the
result of the clustering algorithm with the cauchy rejection function that was used before this research.
The average e�ciency for the blue data is 85.9% and for the original algorithm it is 85.8%
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4.2.7 Ringer distances

In the previous sections the concept of rings was used. When the clustering algorithm calculates the
expected value at a cell, it uses the ring number, multiplied by the pad size of the cell, as a distance
value r to calculate the function value. However the (Eucledian) distance between the center cell and
a neighbour is not equal for all neighbours on the same ring. The ring number is the nearest integer
of the actual distance. For large rings this di�erence becomes smaller but in the �rst few rings there
is a signi�cant di�erence.

Figure 7 shows that ring one consists of the 8 cell square. The distance from the center to one of
the corner cells is

√
2 ≈ 1.41 whereas the distance to the non-corner cells is equal to 1. For some more

rings these di�erences are shown in table 2. The table shows that the relative di�erence between ring
number and real distance does tend to zero as the rings get bigger. However, even at ring 20 (which
is a distance of 2 cm for a high granularity segment) the distance still di�ers up to 2%. This might
seem insigni�cant but the rejection functions decrease exponentially. When the function values are
calculated on each ring one obtains di�erences of 20% in values at all rings, even the large ones.

To try and improve results, the clustering algorithm was modi�ed to use the real distance (so√
x2 + y2 and not the nearest integer) to each cell when calculating the function value. When using

the rejection function that previously gave the best result (shown in the previous section), it turned
out that this did not make signi�cant di�erences in the resulting e�ciency.

4.2.8 Mean position

The next modi�cation that was considered was to not use the distance to the origin (of the center cell)
but to a mean position. To be more speci�c, the energy-weighted mean of cell positions is taken over
all cells within MinRing distance to the center cell. The reasoning for this was that mean particle
position can di�er signi�cantly from the cell center depending on where the particle hits the cell and
this is mainly an issue in the low granularity segments. When a particle hits the border of two coarse
cells its energy will be distributed evenly amongst them but one of the cells will have a slightly higher
amplitude (because of shower �uctuations) and therefore that cell will be used as cluster center. When
the cells are 1 cm wide this means the cluster center is up to 0.5 cm away from the particle position
which is a signi�cant amount. However, when the mean position is calculated this e�ect should be
greatly reduced.

The clusterizer was executed again with this modi�cation, using the same rejection function as
before (shown in the previous section). Since the �t data for the rejection function was based on the
ring number distance like the original algorithm, this rejection function might not be suitable for the
new method that is using real distances and a mean position.

In order to improve the results, new seed energy distributions were computed and instead of cal-
culating the distribution for every ring, each ring was divided into four bins (so they are no longer
rings at this point, just distance bins). When creating the distributions, the energy-weighted mean
position was calculated and then the distance from each cell to that position was used. Previously,
the maximum seed energy on each ring was calculated, and instead the maximum is now calculated
for each distance bin. The results of this can be seen in Figure 15.

Due to the higher number of distance bins, the amount of entries for each bin is now lower.
Furthermore, as a result of the geometry, when listing distances between squares in a grid, not all
distance bins are �lled. The �rst ring, for example, contains cells at a distance of 1 to the origin and
cells at a distance

√
2 = 1.41, so not all four bins are �lled. However, since the distance is taken to

a mean position (and not the cell center), it is still possible for these other bins to be �lled. The
�gure shows that this happens at the �ne segments, where the mean position can be anywhere in the
cell, resulting in a su�cient number of entries for all bins. In the coarse segments, however, the mean
position is more often reconstructed at the center of a cell and therefore some bins do not have enough
entries. In the �gure this e�ect is seen at segment 0, and also in the other coarse segments to some
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Ring number Minimum distance Maximum distance
1 1.00 100% 1.41 141%
2 2.00 100% 2.24 112%
3 2.83 94% 3.16 105%
4 3.61 90% 4.47 112%
5 5.00 100% 5.39 108%
6 5.66 94% 6.40 107%
7 6.71 96% 7.28 104%
8 7.62 95% 8.49 106%
20 19.65 98% 20.4 102%

Table 2: This table corresponds to the rings show in Figure 7. The (Eucledian) distance between the
origin and the center of cells on a certain ring is not constant on that ring. This table shows the lowest
and highest distance of the cells on a ring.

extent. Even though the �t results are poor in the �rst two coarse segments, the results in the other
segments seem reasonable and so the results were used to run the algorithm.

The clustering algorithm was executed with �t results for the double exponential function, using
the results obtained from the 90%, 95% and 99% average maximum quantiles. It turned out that
the optimal results were somewhere between the later two so the procedure was repeated for the 97%
quantile. The e�ciency results of this can be seen in Figure 16 where they are compared to the
results without the modi�cations of real distances and mean positions. The number of clusters found
did increase (when using the modi�ed algorithm) but not by a large amount. The �gure shows that
the results are better compared to the unmodi�ed algorithm at high energies and low distances (less
than 0.5 cm). This is expected because at these distances, the di�erence between ring numbers and
Eucledian distance is larger.

4.3 Too many clusters

In an ideal scenario the algorithm always �nds the correct amount of clusters which should be a single
cluster for each particle. However it turns out that such a perfect algorithm is not possible because of
the �uctuations of occuring in particle showers. In practice, either too few, or too many clusters are
found and the goal is to �nd an optimal balance. This section will explain how it is more favorable to
�nd too many clusters as opposed to �nding less clusters than the actual amount of particles.

In Section 1.4 it was explained that one of the goals of FoCal is to measure the energy of particles
and then combine clusters to calculate an invariant mass. To do this, the energy of a cluster must be
accurate enough. As seen in the e�ciency results, the algorithm sometimes �nds three clusters when
only two are expected. This third cluster will have some non-zero energy which is taken away from
the energy of the two valid clusters. If the energy of this third cluster is small enough, the two correct
clusters should still have fairly accurate information. This way the invariant mass could still be used
to decide whether the particles originated from a π0 decay.

In Figure 17 the reconstructed energy results of the modi�ed (as explained in Section 4.2.8) algo-
rithm are shown. The histogram shows the reconstructed energy of the two valid clusters for di�erent
total numbers of reconstructed clusters. The red line shows the cases with three or more reconstructed
clusters, where the other clusters take up some of the energy of the valid clusters. This is shown in
the �gure as the red distribution is shifted to the left by approximately 0.1 compared to the green
distribution, which shows cases with exactly two clusters. The �gure also shows the invariant mass
distribution which is shown to indicate whether this missing 10% of the energy is signi�cant. The
invariant mass plot shows that the red distribution is only shifted to lower values by a very small
amount. This means that the third cluster does indeed not take up much energy and therefore the
extra cluster not a problem.

33



4.3 Too many clusters 4 RESULTS

r (cm)
0 1 2 3 4 5

s
c
a

le
d

 s
e

e
d

 e
n

e
rg

y

5
10

410

3
10

210

110

1

Segment 0

r (cm)
0 0.5 1 1.5 2 2.5 3 3.5 4

s
c
a

le
d

 s
e

e
d

 e
n

e
rg

y

5
10

410

3
10

210

110

1

Segment 1

r (cm)
0 1 2 3 4 5

s
c
a

le
d

 s
e

e
d

 e
n

e
rg

y

5
10

410

3
10

210

110

1

Segment 2

r (cm)
0 0.5 1 1.5 2 2.5 3 3.5 4

s
c
a

le
d

 s
e

e
d

 e
n

e
rg

y

5
10

410

3
10

210

110

1

Segment 3

r (cm)
0 1 2 3 4 5

s
c
a

le
d

 s
e

e
d

 e
n

e
rg

y

5
10

410

3
10

210

110

1

Segment 4

r (cm)
0 1 2 3 4 5

s
c
a

le
d

 s
e

e
d

 e
n

e
rg

y

5
10

410

3
10

210

110

1

Segment 5

Figure 15: The radial distribution 1
2πr

dE
dr of seed energies. The black crosses show the average on each

distance bin. The coloured areas indicate the quantiles of the maxima: the center area (darkest) shows
the middle 50% of all events (25% till 75%). The next area shows the 10% till 90% quantiles, then
5% till 95%, ending with 1% till 99%. The red line is the cauchy �t and the blue line is the double

exponential �t, both �tted on the 95% quantile which is the black line. The distance of a cell to the
cluster is now the (Eucledian) distance to the energy-weighted mean position.
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Figure 16: Results of the clustering algorithm for 10,000 π0 events. The de�nition of e�ciency is
explained in Section 4.1. The blue lines are the result of using the double exponential rejection function
resulting from the �t shown in Figure 15. The modi�cations to the algorithm explained in Section 4.2.7
were used for this. The red lines are the result of the clustering algorithm without the modi�cations
using the rejection function that was �tted on the 95% quantile shown in earlier sections. The red
lines are the same as the blue lines in Figure 14. The average e�ciency for the blue lines is 86.3% and
for the red lines it is 85.9%
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Figure 17: The plot on the left shows the reconstructed energies of the two main clusters as a ratio of
the simulated energy of the π0 particle: (Erec,1 +Erec,2 −Eπ0)/Eπ0 . The plot on the right shows the
calculated invariant mass of the two main clusters. The vertical line is the value of the π0 invariant
mass. The di�erent colours indicate the total number of clusters that was found by the algorithm.
The main clusters are the two clusters that are the closest to the simulated hit location of the particle.
The rejection function that was used for this data was the one explained in Section 4.2.8 (the 97%
quantile �t) of which the e�ciency results were shown in Figure 16.

In previous sections, the results of the 97% quantile were shown as they were optimal regarding
the number of clusters. However, since the extra clusters turn out to not be a problem, the 90%
quantile �t was reconsidered. Figure 18 shows the results of the algorithm using this 90% quantile �t
together with the previously considered 97% quantile �t results. The plots show a larger e�ciency at
high energies but as a drawback there are more events with three clusters. To see whether these extra
clusters now form a problem, Figure 19 shows the invariant mass distribution. The invariant mass
distribution for events with three or more reconstructed clusters is again only shifted left by a small
amount. It could be concluded that this is therefore a better rejection function because the e�ciency
results are better.

4.4 Rejection ratio

The original algorithm used the energy assignment weight function multiplied by a rejection ratio as
a rejection function. During this research these functions were separated and a completely di�erent
rejection function was used (with a rejection ratio equal to 1). The purpose of this was to not cause
errors in energy assignment when optimizing the rejection function so that any changes in e�ciency
had to be the result of the changed rejection function.

When comparing the newly found rejection function with the weight function one can see that
they are not a constant multiple of each other. The energy weight function should match the average
transverse energy pro�le of the particle shower, whereas the rejection function should incorporate
�uctuations and it turns out that these �uctuations are not equally large at di�erent distances. In
previous sections it was explained that the rejection function was �tted onto the 95% quantile of the
maximum seed energies per ring. As a comparison between the weight and rejection function, Figure
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Figure 18: Results of the clustering algorithm for 10,000 π0 events. The blue lines show the results
of the algorithm using the rejection function obtained from the 90% quantile �t whereas the red lines
show the results using the rejection function obtained from the 95% quantile �t. The red lines are
the same as the blue lines in Figure16. In both cases, the modi�ed algorithm was used. The average
e�ciency for the blue lines is 87.4% and for the red lines it is 86.3%.
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Figure 19: This �gure shows the same information as Figure 17 with the di�erence that the rejection
function used here is based on the 90% quantile �t instead of the 97% quantile �t.
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Figure 20: The plots give an indication of what the rejection ratio should be: the data points where
the rejection function is based on, divided by the data points that the weight function is based on. In
this case the points show the values of the 95% quantile that was �tted in Figure 11, divided by the
average seed energy. The other segments showed the same behaviour and were omitted in this �gure.

20 shows the 95% quantile data points divided by the average seed energy on each ring. The graphs
clearly show that this is not a constant ratio.

It can therefore be concluded that the algorithm should use a separate function for assigning energy
and for rejecting cells as seeds.
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5 CONCLUSION AND OUTLOOK

5 Conclusion and outlook

During this study, the transverse shower pro�le of gamma particles was investigated in order to improve
the clustering of nearby showers. Based on simulated data, the �uctuations in deposited energy were
analysed in order to obtain a better rejection function for the algorithm. The double-exponential
rejection function has been implemented, as well as a modi�cation regarding the distance of a cell to
its cluster center. The results in Figure 14 and Figure 16 show that the new rejection function and the
modi�cation to the clustering algorithm yield improved results. There number of events with exactly
two reconstructed clusters is higher, and the average e�ciency did improve from 85.8% to 86.3%. The
distance modi�cation of the algorithm works especially well for distances smaller than 0.5 cm, as can
be seen in the second �gure. It can also be concluded, as explained in Section 4.4, that the rejection
function should be separate from the energy assignment weight function as they are not a multiple of
each other.

When considering the number of clusters that the algorithm �nds, the current rejection function is
near an optimal setting: when the algorithm was run with other parameters either too many clusters
were found (when the rejection function is too low) or only a single cluster was found (when the
function was too high). When considering the e�ciency (as de�ned in Section 4.1) instead of the
number of clusters, a lower rejection function will give better results, as shown in Figure 18. Future
research could �nd the optimal balance between a high e�ciency and the correct number of clusters.

Another idea for future research is to improve the weight function that is used for assigning energy
to seeds. This function should resemble the transverse energy pro�le, so the average amplitudes (and
not average maxima of seed energies). In Figure 6 on the left, this average was shown together with
the weight function in green. For this research the weight function was not modi�ed, but the �gure
shows, in particular at segment 1, that a better weight function should be possible. A better weight
function could result in a better reconstruction of the energies of two clusters, allowing a more accurate
invariant mass.
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A APPENDIX

A Appendix

A.1 Cluster algorithm de�nitions

A digit is the detected signal of a single cell of the segment. All digits have a �ag that speci�es if
it can be considered as a seed and a weight that is used to calculate the fraction of it belonging to
a certain cluster. The amplitude of a digit is distributed between di�erent clusters according to this
weight.

A.2 Full segment level algorithm

This section describes the steps of the algorithm that is executed separately for each segment of the
detector.

1. Initialization: set the above mentioned �ag to true for each digit (so the digit is not rejected)
and set the weight to 0. Make an empty list of seeds.

2. Sort digits according to amplitude (energy).

3. Calculate SeedEnergy for each digit which is de�ned as the sum of the amplitudes of digits
within (and including) the MinRing radius.

4. In case there are PreTracks available these are processed. PreTracks, also called PreSeeds,
are cluster lists from other segments.

(a) For each location in the PreTracks list

i. Find the digit with maximum amplitude within MinRing distance of the PreTrack
location.

ii. If a digit with non-zero amplitude is found, steps 5-b, 5-c and 5-d are applied for this
new seed. This will reject some of the neighbouring digits if those do not have enough
energy.

5. Loop over the sorted digits from high to low energy.

(a) Stop if the amplitude is below SeedThreshold .

(b) Skip if the �ag is set to false, meaning the digit has been rejected as a consequence of part
(d)

(c) Add this digit to the list of seeds.

(d) Loop over neighbouring digits within the MaxRing radius:

i. Add weight to the neighbour digit based on the current digit's SeedEnergy and the
weight function .

ii. If the neighbour is within theMinRing distance then set its �ag to false so that it can
no longer be a seed.

iii. Compare the neighbour's SeedEnergy with an expected value based on the current
digit's SeedEnergy, the weight function and a RejectionRatio. If the neighbour
has enough energy to become a seperate seed its �ag is unchanged and otherwise it is
rejected by setting its �ag to false.
The research done for this thesis focusses on optimizing the expected value mentioned
in this step. It is explained in detail in chapter 3.

6. Loop over the list of seeds that has been created from low to high energy. No new seeds can be
created, this loop only implements further rejection criteria.
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(a) Calculate some properties for the seed. Loop over neighbouring digits within theMaxRing

radius:

i. Calculate weighted number of cells: if a cell has weight contributions from multiple
seeds then only the fraction belonging to the current seed is used.

ii. Calculate the total energy, again only taking the fraction belonging to the current seed.

(b) Reject if the weighted number of cells is below NCellsThreshold .

(c) Reject if the total energy is below ClusterEnergyThreshold .

(d) If a seed was rejected then its weight is removed from all neighbours. The seed itself is
removed from the seed list.

7. Loop over the remaining seeds to calculate additional properties and create the �nal cluster list.

(a) The total energy is calculated the same way as in the previous step. This has to be repeated
because some seeds may have been removed changing the weights.

(b) The mean position is calculated. The amplitude of a cell is its weight and the mean is taken
over digits within 3 rings (inclusive) distance.

~rmean =

∑
Ei~ri∑
Ei

sum taken over digits within 3 rings

Other ways of weighing, like using the logarithm of the amplitude, can give better results
in some cases but that is not part of this research.

(c) The semi-major and semi-minor width of the cluster are calculated.

This completes the algorithm at the segment level.

A.3 Pre-seeds

The algorithm contains a step that depends on cluster information of other segments. The current
clustering algorithm �rst clusterizes segment 0, 1 and 2. The results of segment 1, the �rst high
granularity segment, are then used as PreSeeds for segment 3, the second high granularity segment.
The results of segment 2, a low granularity segment, are used as PreSeeds for segment 4 and 5 which
are also low granularity segments.

When this is completed the resulting cluster lists of each segment are combined in order to create
clusters at the level of the full detector.

A.4 Full detector level algorithm

At this part of the algorithm the resulting clusters of the previous section, at the segment level, are
refered to as sub-clusters. These sub-clusters all have a �ag specifying whether they have beenmerged

and they have an energy weight, which is a variable used for this part of the algorithm and is seperate
from the energy of the cluster measured in the �rst part. The merged �ag and energy weight are reset
when this part of the algorithm starts.

1. Loop over the segments. First the coarse segments, in this order: 2, 4, 0. Then the �ne segments,
in this order: 1, 3. The ordering provides some priority to the segments that are processed �rst.
The results of this step are called semi-�nal clusters. The sub-clusters of the coarse segments are
combined into a single list, and the sub-clusters of the �ne segments are combined into another
list.

(a) Loop over all the sub-clusters in the current segment.
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Cluster type p0 p1 p2 p3
coarse 9.375 · 10−5 8.532 · 103 1.000 3.898 · 10−1

�ne 1.605 · 10−3 3.968 · 102 1.352 −5.142 · 101

Table 3: Energy calibration parameters that are being used in the current implementation of the
algorithm (May 2013)

i. Loop over other segments that have the same granularity. Find sub-clusters that are
not yet merged. Note that it is possible that two sub-clusters in another segment are
merged with the same cluster of the current segment.

ii. If they are within theMinRing distance in the (x,y)-plane then mark them as merged:

A. Energies of the sub-clusters are added. Since the segments are of the same granu-
larity, the values should not need scaling. It is possible to have di�erent weights for
each segment but in the current implementation of the algorithm these weights are
all set to one.

B. Position is taken as an energy weighted average of the sub-cluster positions.

iii. When the sub-clusters from all other segments have been searched, the merged clusters
create semi-�nal clusters. The semi-�nal cluster contains a list of energies, semi-minor,
and semi-major widths for each sub-cluster that was merged into it. The energy of the
semi-�nal cluster is calculated according to the following formula:

E = p0

(
p1 +

∑
Esub

)p2
+ p3

where pi are parameters that can be calibrated and Esub are the energies of the sub-
clusters. The values used in the current implementation are given in table 3. If the
resulting energy is not positive then the cluster is not saved. Note that in this case the
sub-clusters are still marked as merged so they will not be used again.

2. At this point there is a list of low granularity semi-�nal clusters and high granularity semi-�nal
clusters. Loop over the high granularity semi-�nal clusters:

(a) Find the closest low granularity semi-�nal cluster that is within MaxRing distance (where
the MaxRing parameter is taken from segment 2, a coarse segment, see table 1). Assign the
energy of this high granularity cluster as weight to the low granularity semi-�nal cluster.

(b) If there is no semi-�nal cluster within the distance then the high granularity semi-�nal
cluster is thrown away.

3. Loop over the high granularity semi-�nal clusters again to create the �nal list of clusters:

(a) Take the appropriate amount of energy from each low granularity cluster: the energy as-
signed by the current high granularity cluster divided by the total weight. The high
granularity energies are only used for this weighting, they are not added to the total energy
in another way.

(b) Use the position of the high granularity semi-�nal cluster.

4. If there are low granularity semi-�nal clusters that had no assigned weight yet then they also cre-
ate �nal clusters but with no high granularity information. The energy and position information
are taken directly from the low granularity semi-�nal cluster.

This completes the second part of the algorithm.
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