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Abstract 
 Vegetation is a crucial component of system Earth as it plays an essential role in 

the water balance and the carbon dioxide cycle. Knowledge on the distribution and 

dynamics of vegetation is therefore very important. Imaging spectroscopy is a promising 

tool to monitor and understand complex vegetation patterns and dynamics. To map 

vegetation species is one of the most challenging objectives, as reflectance spectra of 

vegetation are very similar. Conventionally, areas are classified per species which 

assumes homogeneous compositions. However, natural vegetation compositions are 

often mixed – i.e. heterogeneous. Mapping species in natural environments with a 

homogeneous approach is therefore difficult. 

 This research proposes a new method of species mapping: spectral unmixing on 

the basis of heterogeneous endmembers as opposed to homogeneous endmembers. 

Next to that, two upcoming analysis methods are compared to their conventional 

version: object-based compared to pixel-based image analysis and image analysis based 

on original compared to continuum removed reflectance spectra.  

Six Mediterranean vegetation species were mapped in the Peyne catchment, 

southern France. These species typically occur in dense forests of mixed composition. 

Three different approaches were applied to investigate the effects: 1) linear spectral 

unmixing on the basis of heterogeneous and homogeneous endmembers. 2) Image 

analysis with an object-based approach and a pixel-based approach. 3) Image analysis 

with continuum removed reflectance spectra and original reflectance spectra. Lastly, the 

accuracy was assessed and correlations were checked to determine the differences in 

reliability. 

It is concluded that linear spectral unmixing on the basis of heterogeneous 

endmembers produces substantially better results than linear spectral unmixing on the 

basis of homogeneous endmembers. Average root mean square error for all species for 

the heterogeneous approach is 23 compared to 32 for the homogeneous approaches. 
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No differences in accuracy were found for the object-based compared to the pixel-

based approach, and for the image analysis based on original reflectance spectra 

compared to continuum removed reflectance spectra. A substantial negative correlation 

between average root mean square error per plot and the level of heterogeneity was 

found, indicating bias in favour of heterogeneous pixels. 

 
 
Key words 
Mediterranean vegetation patterns and species 
Imaging spectroscopy: HyMap 
Heterogeneous endmembers 
Object-based image analysis 
Continuum removed reflectance spectra  



 4 

Contents 
 

1 Introduction        9 

 

2  Background         14 

2.1 Mediterranean vegetation     14 

2.1.1  Mixed deciduous oak forest   14 

2.1.2 Maquis (tall matorral)    15 

2.1.3 Garrigue (middle matorral)   16 

2.1.4 Landes (short matorral)   16 

2.2 Imaging spectroscopy      18 

2.2.1 Object-based image analysis   19 

2.2.2 Continuum removed image analysis  19 

2.2.3 Linear spectral unmixing   20 

  2.3  Imaging spectroscopy and vegetation studies  21 

2.3.1 Spectral behaviour of vegetation  21 

2.3.2 Applications of imaging spectroscopy in  22 

vegetation studies 

 

3 Study area         24 

3.1 Climate       25 

3.2 Geology and soils      26 

3.3 Land use       27 

3.4 Natural vegetation      27 

 

4.  Methods         30 

4.1 Field data collection      30 

4.1.1 Plot selection     30 

4.1.2 Plot description    31 

4.2 Image analysis      33 

4.2.1 Imagery     33 

4.2.2 Pixel- and object-based analysis  34 

4.2.3 Original reflectance spectra and  35 

continuum removed spectra     

4.2.4 Linear spectral unmixing   35 

 



 5 

4.3 Accuracy assessment      39 

4.3.1 Leave-one-out analysis approach  40 

4.3.2 Root mean square error of the species  41  

 abundance per plot 

4.3.3 Dominant species confusion matrices 41 

4.3.4 Correlations between RMSE and   42 

vegetation parameters     

 

5. Results         43 

5.2  Field data       43 

5.2 Image analysis      45 

5.3 Image analysis accuracy assessment    49 

5.3.1 Root mean square error of the species  49  

  abundance per plot    

5.3.2 Dominant species confusion matrices 50 
5.3.3 Correlations between RMSE and   53 

vegetation parameters   

 

6.  Discussion         56 

6.1 Field data collection      56 

6.2 Image analysis      57 

6.3 Accuracy assessment      59 

 

7.  Conclusions and recommendations      62 

 

References          64 

Appendix A          68 

Appendix B          76 

Appendix C          78



 6 

List of figures 
Fig. 1.1: example of reflectance spectra extracted from HyMap imagery of six important 
Mediterranean natural vegetation species 
Fig. 1.2: diagram of the species mapping process 
Fig. 2.1: mixed deciduous oak forest vegetation type 
Fig. 2.2: Maquis vegetation type (tall matorral) 
Fig. 2.3: Garrigue vegetation type (middle matoral) 
Fig. 2.4: Landes vegetation type (short matorral) with pine forest in the distance 
Fig. 2.5: continuum removal for a vegetation spectrum  
Fig. 2.6: an example of a typical vegetation spectrum 
Fig. 3.1: location of the Peyne catchment area 
Fig. 3.2: Annual distribution of precipitation and temperature in St. Chenin, Hérault 
dept. 
Fig. 3.3: yearly average precipitation map including isotherms 
Fig. 3.4: forest area and population trends in France 
Fig. 3.5: the six vegetation species that are the main subject of this research: A) Quercus 
ilex, B) Arbutus unedo, C) Quercus pubescens, D) Castanea sativa, E) Erica arborea and F) 
Phillyrea latifolia 
Fig. 3.6: study area with the strata used as a basis for the field work 
Fig. 4.1: example of stratified nested random sampling scheme 
Fig. 4.2:  example of hemispherical photograph used for vegetation cover estimates 
Fig. 4.3: diagram of the image analysis process 
Fig. 4.4: diagram of the species abundance maps creation procedure 
Fig. 4.5: diagram of the leave-one-out analysis approach procedure, used in the accuracy 
assessment 
Fig. 5.1: topographic map of study area with strata and plots 
Fig. 5.2: abundance maps of six species based on the object-based, continuum removed, 
heterogeneous image analysis approach. In the light grey areas, the considered species 
is not present (i.e. 0%). The dark grey areas are masked out because there is too little 
vegetation present (NDVI < 0.5) or because they are located outside the hyperspectral 
image. 
Fig. 5.3: comparison of heterogeneous and homogeneous RMSEs between the predicted 
species abundance per plot and the field observations per plot, for the four species 
predicted by all image analysis approaches. (PB=pixel-based, OB=object-based, 
OR=original spectra, CR=continuum removed spectra) 
Fig. 5.4: relationship between groundtruth canopy cover values and predicted canopy 
cover values of four species for the object-based, continuum removed, heterogeneous 
image analysis approach. The perfect prediction is added for comparison. 

  



 7 

List of tables 
Table 2.1: HyMap sensor modules technical details 
Table 4.1: equations used for the field estimates of aboveground biomass 
Table 4.2: endmember classes for linear spectral unmixing and their respective number 
of training plots 
Table 5.1: averaged percentages of canopy composition per species 
Table 5.2: averaged physical vegetation characteristics: average height, vegetation cover 
and aboveground biomass 
Table 5.3: the number of plots in which the respective species are dominant 
Table 5.4: averaged percentages of canopy composition per species, per image analysis 
approach 
Table 5.5: the number of plots in which the respective species are dominant according 
to the various image analysis approaches 
Table 5.6: average root mean square errors between the predicted species abundance 
per plot and the field observations per plot – averaged per species and per image 
analysis approach 
Table 5.7a: confusion matrix of the dominant species per plot of the pixel based original 
reflectance, homogeneous, image analysis approach 
Table 5.7b: confusion matrix of the dominant species per plot of the pixel based, original 
reflectance, heterogeneous image analysis approach 
Table 5.7c: confusion matrix of the dominant species per plot of the pixel based, 
continuum removed, homogeneous image analysis approach 
Table 5.7d: confusion matrix of the dominant species per plot of the pixel based, 
continuum removed, heterogeneous image analysis approach 
Table 5.7e: confusion matrix of the dominant species per plot of the object based, 
original reflectance, homogeneous image analysis approach 
Table 5.7f: confusion matrix of the dominant species per plot of the object based, 
original reflectance, heterogeneous image analysis approach  
Table 5.7g: confusion matrix of the dominant species per plot of the object based, 
continuum removed, homogeneous image analysis approach 
Table 5.7h: confusion matrix of the dominant species per plot of the object based, 
continuum removed, heterogeneous image analysis approach 
Table 5.8: correlation coefficients between the RMSEs of the various image analysis 
approaches, and four vegetation characteristics: aboveground biomass, vegetation 
cover, average height and heterogeneity 

  



 8 

List of equations 
Eq. 2.1: linear spectral unmixing model 
Eq. 4.1: equation for the root mean square error 
Eq. 4.2: correlation equation 

 

List of appendices 
Appendix A – plot description and canopy composition 
Appendix B – training plot data 
Appendix C – physical vegetation characteristics per plot 

 

List of acronyms 
ARU – Arbutus unedo 
CAS – Castanea sativa 
ERA – Erica arborea 
LAI – leaf area index 
LOO analysis – leave-one-out analysis 
LSU – linear spectral unmixing 
OBIA – object based image analysis 
PHL – Phillyrea latifolia 
QIL – Quercus ilex 
QPU – Quercus pubescens 
RMSE – root mean square error 
ROI tool – region of interest tool 
SMA – spectral mixture analysis 



 9 

1.  Introduction 
 The monitoring of vegetation dynamics is increasingly important as climate 

change and human interference are expected to cause unprecedented change in the 

local and global environment (Solomon et al., 2007; Lambin et al., 2001). Vegetation is a 

crucial component of system Earth as it stores carbon dioxide, produces oxygen and acts 

as a buffer in the hydrological cycle. Moreover, it prevents soil erosion and produces a 

wide range of natural resources for human use. Therefore, it is important to understand 

and be informed about changes taking place in vegetation dynamics (Xie et al., 2008).  

The Mediterranean ecosystem is especially vulnerable. Mean precipitation is 

expected to decrease which makes desertification a serious threat (Christensen et al., 

2007), there is a long history of human overexploitation and population pressure 

continues to be very high (Shoshany., 2000). Due to intense human interference and 

distinct environmental conditions, ecosystems with unique floristic composition and 

characteristic vegetation dynamics developed. From the few studies that assessed 

region-wide vegetation trends, it was found that forest cover in the African and Asian 

part of the Mediterranean is decreasing by 2% per year, whereas forest cover is 

increasing with 1,5% in the European part. These developments threaten ecosystems in 

the south and east of the Mediterranean, whereas ecosystems in the north will 

experience substantial modifications.  

In order to prevent deterioration of ecosystems and to initiate conservation and 

restoration activities, region-wide information on the state of ecosystems and its 

vegetation dynamics is required (Shoshany, 2000; Xie et al., 2008). Spaceborne, 

multispectral remote sensing is a suitable tool that is commonly used to provide region-

wide information on the general distribution, basic dynamics and characteristics of 

vegetation. However, to gain more understanding of the occurring developments, and 

to detect small-scale modifications or deteriorations of the ecosystem, more detailed 

remote sensing is necessary. The conventional, multispectral remote sensing satellites 

are not able to detect the smaller, local differences in for example water content, 

nutrient availability or species distribution. These parameters are crucial however, to 

enhance understanding of trends and developments that take place. 

Imaging spectroscopy (hyperspectral remote sensing) is a technique developed 

in the 1990s in which the reflected solar radiance of the Earth is measured by acquiring 

hundreds of images in registered, contiguous spectral bands in the visible and infrared 

wavelengths. In this way, much more detailed information of reflectance surfaces is 

obtained compared to conventional, multispectral remote sensing. On the basis of this 

data, more advanced research can be performed on vegetation dynamics and 

characteristics, opening up a wide range of possibilities for future studies and 
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applications (Ustin et al., 2004). Up to now, most imaging spectroscopy is performed 

from airplanes – i.e. airborne remote sensing. This puts limits on the spatial extent of 

analyses. The launch of NASA’s experimental Hyperion instrument on the EO-1 satellite 

in the year 2000 announced the start of spaceborne imaging spectroscopy (NASA, 2012). 

In 2015, another hyperspectral instrument will be launched: the German EnMAP 

(EnMAP, 2012). Thus, imaging spectroscopy is a promising tool for vegetation research. 

It has the potential to provide the necessary detail on both small and large scales to 

monitor and understand complex vegetation dynamics.  

 

 
Fig. 1.1: example of reflectance spectra extracted from HyMap imagery of six important Mediterranean 

natural vegetation species 

 

Vegetation research by means of imaging spectroscopy has addressed many 

different topics: for example biochemical properties, water content, biomass, stress 

level, leaf area index and more (Ustin et al., 2004). One of the most challenging topics 

regards the mapping of vegetation species. The main problem of this subject is that 

reflection spectra of different plant species are very similar. Figure 1.1 shows the 

spectra of six important Mediterranean species: their spectra are very similar and 

therefore difficult to distinguish from each other, illustrating the challenges faced by 

studies aiming to map vegetation species. 

There is a substantial number of studies that investigated the possibilities to 

statistically distinguish between vegetation species on the basis of imaging 
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spectroscopy. Hyperspectral reflectance spectra of leaves have been measured in the 

laboratory, and reflectance spectra of canopies have been measured in the field. 

Statistical tests showed that there are indeed significant differences between 

reflectance spectra of species, making it possible to distinguish between them (Gong et 

al., 1997; Schmidt et al., 2001&2002; Van Aardt et al., 2001; Adam et al., 2009; 

Manevski et al., 2011). To apply this to hyperspectral imagery in order to map species 

has proven to be a bigger challenge. Clark et al. (2005) and Lucas et al. (2008) delineated 

large tree crowns in Australian eucalypt and Costa Rican tropical forests respectively, 

subsequently classifying them with reasonable success using discriminant analysis 

algorithms. Three other studies apply spectral unmixing to map vegetation species with 

hyperspectral imagery. This algorithm assumes that a spectrum is a mix of various 

components. Of each component, a known spectrum is required – a so-called 

endmember – on the basis of which unmixing is performed. The algorithm then 

calculates the degree of match of the endmembers in relation to the original reflectance 

spectrum. Li et al. (2005) and Youngentob et al. (2011) could discriminate rather 

accurately between two species in wetlands and eucalypt forests respectively. Sobhan 

et al. (2007) were able to determine the number of species present per pixel in the 

Apennine mountains with moderate accuracy. 

Vegetation species mapping studies generally aim to create a classification of a 

certain area per species. This implies that each pixel can only be classified as one 

species, i.e. it has to be of homogeneous composition. This was the case for the tree 

crown mapping studies (Clark et al., 2005; Lucas et al., 2008) where only large, 

homogeneous trees were considered. The same applies to the unmixing projects of Li et 

al. (2005) and Youngentob et al. (2011) where large areas of vegetation cover were 

classified as one out of two species. However, natural vegetation often does not have a 

homogeneous composition. Vegetation species usually occur mixed on a sub-pixel level, 

resulting in heterogeneous canopy compositions. Sobhan (2007) acknowledged this, and 

investigated which different species were present per pixel, instead of classifying pixels 

as one species or another. They also performed their analysis by means of spectral 

unmixing, and based their unmixing on homogeneous endmembers – i.e. reflectance 

spectra of single species. Li et al. (2005) and Youngentob et al. (2011) did this as well. 

But when the natural vegetation considered is of heterogeneous composition, spectral 

unmixing might work better if the endmembers used are also of heterogeneous species 

composition. To find out if spectral unmixing produces better species mapping on the 

basis of heterogeneous endmembers compared to homogeneous endmembers – the 

conventional approach – was the main objective of this research. 

The study area is located in the catchment of the river Peyne, and is 

characterized by dense forest cover. The dominant species are Quercus ilex, Arbutus 
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unedo, Quercus pubescens, Castanea sativa, Erica arborea and Phillyrea latifolia. These 

species most often occur mixed and single specimen canopies are relatively small. This 

results in heterogeneous canopy compositions on a sub-pixel level. Mapping species by 

classification into single species classes is therefore not suitable. The purpose is to map 

the abundance of each species throughout the study area. It is expected that spectral 

unmixing performs better on the basis of heterogeneous endmembers, because the 

vegetation composition in the area is very heterogeneous. Next to that, some species – 

Erica arborea and Phillyrea latifolia – only occur in combination with other species on a 

sub-pixel level. Therefore, these species cannot be detected if spectral unmixing on the 

basis of homogeneous endmembers is applied. To compare the results, spectral 

unmixing was performed on the basis of both homogeneous and heterogeneous 

endmembers (Fig 1.2). 

Besides the effect of spectral unmixing on the basis of heterogeneous compared 

to homogeneous endmembers, the effects of two other methodologies on species 

mapping with imaging spectroscopy were explored: first, image analysis is traditionally 

performed on the basis of pixels. In recent years, object-based image analysis has 

become a popular alternative to this approach as a method to improve mapping results 

(Blaschke, 2010). The object-based approach applies image segmentation by grouping 

together pixels with high spectral similarity. This creates objects – e.g. patches of similar 

vegetation composition – and is reported to improve results for studies on vegetation 

parameters (Addink et al., 2007). In this research, it was tested if the object-based 

approach yields better results than the pixel-based approach by performing species 

mapping with both methodologies (Fig. 1.2). Second, imaging spectroscopy generally 

uses original reflectance spectra as measured by airborne or spaceborne spectrometers. 

By applying the continuum removal procedure, spectra can be normalized which 

reduces differences in brightness and enhances reflectance features (Clark and Roush et 

al 1984). It is known to improve results in mineral detection (Kruse et al., 1993). Also in 

vegetation studies enhanced results are reported, though with less confidence (Schmidt 

& Skidmore, 2003, Youngentob et al., 2011). Both the conventional, and the continuum 

removed approach were applied in this research to assess the positive or negative 

effects of both methodologies on species mapping (Fig. 1.2). Finally, the accuracies of 

the vegetation mapping results were assessed to check the reliability of the applied 

methodologies. 
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Fig. 1.2: diagram of the species mapping process 

 

To summarize, in this research the following five research questions were investigated: 

1. Is it possible to map the spatial abundance of six natural vegetation species in 

the forested area of the Peyne river catchment in southern France? 

2. Which spectral unmixing methods yields the best results: a new proposed 

method on the basis of heterogeneous endmembers or a conventional method 

on the basis of homogeneous endmembers? 

3. Which image analysis approach yields the best results: the method of object-

based image analysis or the traditional method of pixel-based image analysis? 

4. Which image analysis approach yields the best results: analysis based on 

continuum removed reflectance spectra or analysis based on original reflectance 

spectra? 

5. Which species mapping methodology yields the highest accuracy, and are there 

any correlations or biases?  
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2.  Background 
In this chapter, the academic background of the main topics of this research is 

regarded. First, Mediterranean vegetation properties are discussed. Subsequently, 

imaging spectroscopy and some related methodologies will be elaborated upon. Finally, 

the application of imaging spectroscopy to vegetation is regarded. 

 

2.1 Mediterranean vegetation 

 The Mediterranean climate is characterized by warm, dry summers en 

temperate, wet winters. Water availability is limited during the summer which reduces 

plant growth and requires vegetation to adapt. Therefore, evergreen sclerophyll species 

are dominant in most Mediterranean ecosystems (Joffre & Rambal, 2001; Ritter, 2006). 

These species have an advantage over deciduous species due to their strong stomatal 

control which limits loss of moisture. They retain a larger percentage of their nutrients 

by not shedding leaves every year. Therefore, they can efficiently sustain themselves in 

nutrient-poor environments. The fact that they are evergreen means that they can be 

productive at any time of the year when moisture availability is sufficient and 

temperatures are high enough. This gives evergreen species an advantage over 

deciduous species. 

 In the Mediterranean ecosystems of southern France roughly four vegetation 

types can be distinguished: mixed deciduous oak forest, maquis, garrigue and landes. 

Mixed deciduous oak forest is considered to be the climax vegetation type in large parts 

of the Mediterranean, but due to human induced soil degradation its current extent is 

limited (Miller & Hajek, 1981; Nijland, 2011). Maquis, garrigue and landes are more 

degraded types of vegetation, which are described by Tomaselli (1981) as matorral: he 

defines this as ‘a formation of woody plants, whose aerial parts are not differentiated 

into trunks and leaves, because they are much ramified from the base’. Three types are 

defined: tall, middle and short matorral respectively. In practice, it turns out that no 

clear distinction between the various groups is possible: types are often intermixed and 

transitions are gradual. 

 

2.1.1 Mixed deciduous oak forest 

 The mixed deciduous oak forest is dominated by Quercus pubescens and Quercus 

ilex. Typically it grows ten to twenty meters high and has substantial undergrowth, most 

often consisting of Buxus sempervirens (Fig. 2.1). Other deciduous tree species are 

occasionally found, most importantly Castanea sativa and Acer monopessulanum. The 

mixed deciduous oak forest is mainly present in areas with relatively more precipitation, 

less agricultural land use and limited soil degradation.  
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Fig. 2.1: mixed deciduous oak forest vegetation type 

 

2.1.2 Maquis (tall matorral) 

 Maquis or tall matorral is the tallest and densest version of matorral. Typically it 

grows between two and five meters high, with little undergrowth as limited light 

penetrates the canopy. Ground and standing litter is often abundant due to 

unfavourable climatic conditions for organic decomposition. Quercus ilex and Arbutus 

unedo are the dominant species of the maquis vegetation type (Fig. 2.2). Erica arborea 

often occurs when canopy cover is slightly discontinuous. Occasionally, Phillyrea latifolia 

is encountered.  
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Fig. 2.2: Maquis vegetation type (tall matorral) 

 

2.1.3 Garrigue (middle matorral) 

 Garrigue or middle matorral is typically discontinuous of nature, has a height 

between a half and two meters, and is dominated by many different species. Most 

abundant are Quercus coccifera, Erica arborea and more scattered Quercus ilex, Pistacia 

lentiscus and Spartium junceum. The undergrowth consists of many herbaceous species 

such as Cistus albidus, Thymus vulgarus, Ulex parviflorus and grasses (Fig. 2.3). 

 

2.1.4 Landes (short matorral) 

 Landes or short matorral typically has very sparse vegetation and many areas 

with rocks or bare soil. Height is generally less than half a meter and it is dominated by 

Quercus coccifera, Cistus albidus, Thymus vulgarus, Ulex parviflorus and Lavendula 

latifolia (Fig. 2.4).  
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Fig. 2.3: Garrigue vegetation type (middle matorral) 

 

 
Fig. 2.4: Landes vegetation type (short matorral) with pine forest in the distance 
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2.2 Imaging spectroscopy 

 In imaging spectroscopy the reflected solar radiance of the Earth is measured by 

acquiring hundreds of images in registered, contiguous spectral bands in the visible and 

infrared wavelengths. Thus, it is possible to obtain a complete reflectance spectrum for 

each picture element (van der Meer & de Jong, 2002). In this way, detailed spectral data 

is available for every pixel of an observed area. From this, a wide range of information 

on surface and object properties can be derived.  

In this research, airborne hyperspectral imagery was used. This type of imagery 

provides continuous spectra of objects at the Earth surface with high spectral and 

spatial resolution. It was expected that information on vegetation can more successfully 

be derived with this type of imagery as opposed to more conventional multispectral 

imagery, because the larger number of bands contain more information. A disadvantage 

is the spatial limitation, as all measurements have to be made from airplanes. Satellite 

imagery has much larger geographic coverage, but on the other hand has lower spectral 

and spatial resolution. However, spaceborne imaging spectroscopy is experiencing 

significant developments: in recent years NASA successfully launched and operated the 

Hyperion instrument (NASA, 2012), and in 2015 Germany will launch EnMAP (EnMAP, 

2012). Both have spatial resolutions of about 30 meters, and measure reflectance in 

more than 200 spectral bands. The possibilities of hyperspectral remote sensing are 

expanding rapidly. 

The imagery used has been acquired by the HyMap hyperspectral scanner from 

the Australian company HyVista, which was manufactured by Integrated Spectronics Pty 

Ltd. It provides imagery with 126 bands in the wavelength region from 0.45 to 2.5 µm, 

and bandwidths between 15-20 nm. The instantaneous field of view is 2.5 mrad along 

track and 2.0 mrad across track, the field of view is 61.3 degrees (512 pixels) and the 

ground instantaneous field of view varies from three to six meters. The sensor consists 

of four modules (Table 2.1) (HyVista, 2012):  

Module Spectral Range 
Bandwidth across 

module 

Average spectral 

sampling interval 

VIS 0.45 – 0.89 µm 15 – 16 nm 15 nm 

NIR 0.89 – 1.35 µm 15 – 16 nm 15 nm 

SWIR 1 1.40 – 1.80 µm 15 – 16 nm 13 nm 

SWIR 2 1.95 – 2.48 µm 18 – 20 nm 17 nm 

Table 2.1: HyMap sensor modules technical details (HyVista, 2012) 

 

 In imaging spectroscopy many different techniques are developed to analyse 

imagery data. In this study, several methods were applied. The theory and some 

academic background of these methods is discussed in the following paragraphs. 
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2.2.1 Object-based image analysis 

 In object-based image analysis image segmentation is applied as one of the first 

steps in the analysis process. Neighbouring pixels with high spectral similarity are 

grouped into meaningful objects that form the basis of the subsequent analysis. This 

approach has become an increasingly popular tool over the last decade in image analysis 

for remote sensing (Blaschke, 2010). With advances in remote sensing techniques – 

specifically continuously increasing spatial resolutions – also small objects on the ground 

can be distinguished which enhances the possibilities of analyses based on objects. 

 This approach has various advantages. First, it reduces the effect of geometric 

inaccuracies, which is crucial in linking image data and ground observations. Second, the 

subjects of study are objects with actual meaning instead of artificial, squared pixels – in 

the case of this research vegetation patches. Third, the object-based approach yields 

additional variables than can be used in the analysis and can significantly improve 

results (Lillesand et al., 2008). Specifically, variables that are based on the relationships 

among objects such as connectivity and proximity to similar objects. In this way object-

based image analysis is more similar to human visual interpretation of images because it 

takes contextual arguments into account. Addink et al., (2007) have shown that also for 

vegetation parameters, an object-based approach yields more accurate results than a 

pixel-based approach. They modelled biomass and leaf area index on the basis of 

HyMap imagery. It turned out that the object-based approach yields more accurate 

results than the pixel-based approach, and that the object-based approach has a certain 

optimal object size which produces the best results. 

 

2.2.2 Continuum removed image analysis 

 The continuum removal procedure is regularly used in remote sensing 

studies. Especially in mineral detection it is acknowledged to improve results (Kruse et 

al., 1993). Also in vegetation studies it has led to better outcomes, though these are 

sometimes criticized (Schmidt & Skidmore, 2003, Youngentob et al., 2011). The 

procedure is a normalisation technique that fits a curve over the original spectrum – a 

so-called “convex hull”. The original data is subtracted from this curve and subsequently 

standardized to produce a normalized spectrum with a range from zero to one (Fig. 2.6). 

In this way, the technique normalizes brightness while emphasizing reflectance features 

(Clark & Roush, 1984).  

In vegetation studies continuum removal is occasionally known to enhance 

species detection accuracy. Schmidt & Skidmore (2003) found mixed results in their 

research on spectral discrimination between coastal wetland vegetation types: in the 

visible wavelengths spectral discrimination was enhanced, whereas it was weakened in 
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the near-infrared and the shortwave infrared. Youngentob et al., (2011) on the other 

hand, found an accuracy for Eucalyptus subgenera of 75% for original reflectance 

spectra as opposed to 83% for continuum removed spectra. 

 

 
Fig. 2.6: continuum removal for a vegetation spectrum (Youngentob et al., 2011) 

 

2.2.3 Linear spectral unmixing 

 The most common approach in remote sensing to extract information from 

images is by assigning pixels to a specific class on the basis of a classification procedure. 

The reflectance of a certain pixel usually is a mixture of various classes present within 

the pixel on the ground. For this reason, assigning only one class to a pixel leaves out 

interesting information (van der Meer & de Jong, 2002). 

 Singer & McCord (1979) showed that mixing of photons on a macroscopic scale 

can be considered a linear process. This means that the resulting reflectance spectrum is 

a linear summation of the classes present at a surface, multiplied by their relative 

fractions. ENVI applies the following linear mixing model to produce linear spectral 

unmixing results: 

    ∑           

 

   

 

Eq. 2.1: linear spectral unmixing model (van der Meer & de Jong, 2002) 

 

Where    is the reflectance of the modelled spectrum in image band  ,    is the fraction 

of each endmember  ,      is the reflectance of the endmember spectrum   in band  ,   

is the number of endmembers and    is the residual error. 

 

2.3 Imaging spectroscopy and vegetation studies 

2.3.1  Spectral behaviour of vegetation 

The high-resolution spectra of vegetation display some interesting features that 

directly relate to the physical characteristics of vegetation. A vegetation spectrum can 

be subdivided in three regions (Fig. 2.5): the high absorption area in the visible light 
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range (400-700 nm), the low absorption area in the near infrared region (700-1300 nm) 

and the mid-infrared region with characteristic water absorption bands (1300-2600 nm). 

The exact characteristics differ per plant species and with its status, e.g. age, health or 

phenological state (McCoy, 2005). 

 
Fig. 2.5: an example of a typical vegetation spectrum (McCoy, 2005) 

 

The high absorption area in the visible light range is most importantly caused by 

chlorophyll present in vegetation (400-700 nm). These are the pigments that absorb 

radiative energy which is used to produce organic material. As this is the only part of the 

spectrum that is visible it determines the visual appearance of vegetation. Typically, 

most light absorbed by chlorophyll is around 420, 490 and 660 nm which is red and blue 

light (van der Meer & de Jong, 2002). Consequently, there is a reflectance peak around 

500 nm indicating limited preference to absorb radiation around this wavelength. Light 

around this wavelength is green and thus causes the distinctive green color of 

vegetation. Chlorophyll most importantly determines the reflectance characteristics in 

the visible area of the spectrum, but also other pigments such as carotenoids and 

xantophylls are responsible. Especially when plants are under stress or during leaf 

senescence these become more distinct as chlorophylls degrade quickly, consequently 

reducing light absorption (Merzlyak et al., 1999). 

 In the low absorption area in the near infrared region most radiation is reflected 

or transmitted (700-1300 nm). As opposed to the visible light range the interaction in 

this area is determined predominantly by leaf structure rather than pigments (Roy, 

1989). This results in the relatively high percentages of reflectance and transmittance, 

which in turn causes the distinctive feature between approximately 690 to 720 nm. This 



 22 

is the red edge, which is typical for vegetation and which is often used as an indicator of 

vegetation status (Horler et al., 1983). The most prominent of these indicators is the 

normalized difference vegetation index (NDVI) which is a ratio of the red light on one 

side of the red edge and of infrared on the other side of the red edge. 

 The mid-infrared area is most importantly typified by major water absorption 

bands (1300-2600 nm). In the spectrum they are located around 1400 and 1900 nm, and 

also 1200 and 2500 nm are important water absorption locations (Fig. 2.5). In healthy 

vegetation, these are generally masked by the water absorption features. In case of leaf 

senescence they can become distinguishable, which results in observable features 

caused by biochemicals such as lignin, cellulose, starch, proteins and nitrogen (McCoy, 

2005). 

 

2.3.2  Applications of imaging spectroscopy in vegetation studies 

Imaging spectroscopy has only recently become a popular tool in remote sensing 

vegetation studies (Xie et al., 2008). Compared to multispectral imagery, hyperspectral 

imagery has much more potential to study vegetation because it does not have dozens, 

but several hundreds of bands. Consequently, hyperspectral imagery contains much 

more information and is therefore very suitable to investigate vegetation 

characteristics, or discriminate between vegetation types or species.   

Many studies have been executed to explore the potential of imaging 

spectroscopy to discriminate between vegetation species. Because vegetation spectra 

are very similar (Fig. 1.1), this is a difficult task. But when enough spectral samples are 

taken, statistical discriminant analysis generally find significant differences between 

plant species (Gong et al., 1997; Schmidt et al., 2001&2002; Van Aardt et al., 2001; 

Adam et al., 2009; Manevski et al., 2011). This proves the possibility to discriminate 

between species, and indicates the possibility to also discriminate between species in a 

geographical perspective.  

The mapping of vegetation species on the basis of hyperspectral imagery has 

been moderately successful though. An approach that yielded reasonable results 

classifies tree crowns: individual tree crowns are delineated and subsequently classified 

on the basis of their reflectance spectra by means of discriminant analysis. This yielded 

good results in the tropical forests of Costa Rica, with an overall accuracy of 86% (Clark 

et al., 2005). Also, good results were achieved in Australian forest communities with 

accuracies of 87% and 76% for training and testing datasets respectively (Lucas et al., 

2008). For this approach however, tree crowns need to be large and distinguishable 

from other vegetation. In natural environments, this is often not the case. Several other 

studies apply spectral unmixing algorithms on the basis of endmembers to classify 

vegetation. Li et al. (2005) discriminated two important species in Californian wetlands 
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for which they report high accuracy, and so did Youngentob et al. (2011) for Eucalypt 

forests in Australia (83%). Sobhan used the same method to map species present per 

pixel in the Apennine mountains of Italy, and reported an accuracy of 69%. These 

studies show that there are good possibilities to map species with hyperspectral 

imagery. However, the methodologies vary widely and the reliabilities of the studies are 

often difficult to compare.  



 24 

3.  Study area 
 The study area of this research is located in southern France in the Languedoc-

Rousillon region, Hérault department. The field campaign focused on the catchment of 

the river Peyne, a small tributary of the Hérault river (Fig. 3.1) located on the southern 

slopes of the Massif Central. An important landmark in the centre of the study area is 

the Barrage des Olivettes, an artificial lake used for irrigation and flood protection. The 

study area has an approximate size of 16 km2. Two major cities in the region are 

Montpellier (45 km to the east) and Béziers (25 km to the south). 

 This region is a long-term study area of the Utrecht University Department of 

Physical Geography. Therefore, a wide range of data from both field and earth 

observation campaigns is available. Next to that, a large variety of geological substrates, 

vegetation types and land-uses is present in a relatively small area, and stable and dry 

summer weather improves the possibilities for successful remote sensing. For these 

reasons, the Peyne study area is suitable for this research project. 

 

 
Fig. 3.1: location of the Peyne catchment area 
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3.1  Climate 

 The climate in the study area is characteristic for a Mediterranean region. 

Typically, Mediterranean regions are located between 30o and 45o latitude and to the 

east of oceans or seas. Their climate is characterized by warm, dry summers and 

temperate, wet winters (Fig. 3.2), and they form a transition zone between humid, 

temperate climates and warm, arid climates. Therefore, they are classified as sub-humid 

to semi-arid (Joffre & Rambal, 2001; Ritter, 2006).  

On a local level the climate also shows a significant trend: the elevation of the 

study area increases when moving from the coastal plain of the Mediterranean Sea up 

the Massif Central in the north. In line with the increasing elevation precipitation rates 

also increase (Fig. 3.3)(Bonfils, 1993). This in turn affects the characteristics of the 

vegetation in the area with relatively more drought-resistant species in the south and 

more deciduous species in the north. 

 
Fig. 3.2: Annual distribution of precipitation and temperature in St. Chenin, Hérault dept. (I.N.R.A., 1993)  
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Fig. 3.3: Yearly average precipitation map including isotherms (Bonfils, 1993) 

 

3.2 Geology and soils 

 The study area is located on the southern slopes of the Massif Central where the 

transition to the coastal plains of the Mediterranean Sea takes place. One of the 

characteristics of this transition zone is the complex geology of the area with a high 

variability of geological substrates. The tectonic forces that formed the Massif Central 

deformed the original geological formations and caused various substrates from 

different ages to surface at similar elevations. The most dominant types are 

sedimentary sandstones, mudstones and limestones, all of which are moderately 

metamorphized (Nijland, 2011; Sluiter, 2005). In addition to these geologically old 

formations, volcanic tuffs and basalt outflows are present at many locations. These 

originated in different periods of volcanic activity during the Quaternary, remnants of 

which are found throughout the Massif Central. The most recent lithological formations 

are found on the valley bottoms and consist of alluvial substrates. However, these only 

comprise a small part of the area’s surface. 

 Soil depth in the Peyne catchment area is generally shallow due to slow soil 

formation and human-induced soil degradation. Soils only develop slowly in this area 

because heat and humidity have peaks in different seasons, while both are necessary to 

decompose organic and mineral material in order to form soils. In addition, the steep 

slopes induce high rates of erosion which is enhanced by forest removal for agricultural 

purposes and intense rainfall events in spring and autumn. For these reasons, only 

shallow soils can be found which classify as lithosols, regosols or luvisols (Bonfils, 1993). 
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3.3 Land use 

 The Peyne catchment area has a long history of human presence and agricultural 

exploitation. Especially during the 18th and early 19th century rural population density 

was high, agriculture was intense and forest cover was relatively limited. With the onset 

of industrialization large portions of the rural population migrated to urban centres. 

Consequently, agricultural land was abandoned and often reverted to natural 

vegetation and forest regrowth (Fig. 3.4). Currently, some of the most suitable land is 

used for agriculture – mainly viticulture – and residential purposes. The majority of the 

Peyne catchment area consists of former agricultural land that is occupied by natural 

vegetation and forest regrowth. 

 
Fig. 3.4: forest area and population trends in France (Mather et al., 1999) 

  

3.4  Natural vegetation 

 The natural vegetation in the study area is mainly comprised of the maquis (tall 

matorral) vegetation type. In the north, mixed deciduous oak forest is present as this 

area is characterized by higher precipitation rates and less soil erosion. At the southern 

boundary of the area garrigue (middle matorral) and landes (low matorral) occurs.  

In the Peyne catchment large tracts of forest were cultivated as coppices. This 

practice was used for firewood and charcoal production, and had a large effect on the 

nature of the forest as trees often grow with many separate stems from a single root 

system. The cultivation of coppices still continues, but on a smaller scale. Many forests 

are affected by the practice though, causing forest degradation. 

This study focused on maquis and mixed deciduous oak forest vegetation types.  

The canopy of these vegetation types is mostly comprised of six species, which are the 

main subject of research: Quercus ilex, Arbutus unedo, Quercus pubescens, Castanea 

sativa, Erica arborea and Phillyrea latifolia (Fig. 3.5). If garrigue and landes were 

included, many more different species would be present which would make species 
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mapping much more challenging. Therefore, the study area and the strata used in the 

field campaign are mainly located in areas with maquis and mixed deciduous oak forest 

vegetation types (Fig. 3.6). 
 

 
 

Fig. 3.5: the six vegetation species that are the main subject of this research: A) Quercus ilex, B) Arbutus 

unedo, C) Quercus pubescens, D) Castanea sativa, E) Erica arborea and F) Phillyrea latifolia 
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Fig. 3.6: study area with the strata used as a basis for the field work  
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4.  Methods 
 The methodology of this study consists of three main components: the field data 

collection, the image analysis and the accuracy assessment. The field data collection was 

carried out in September and October 2011 during a field campaign in the Peyne 

catchment, southern France. The following sections will describe the methods of field 

plot selection and description in detail. Subsequently, the image analysis methodology 

will be discussed in the following order: the used image material, the pixel- compared to 

the object-based analysis, the original reflectance spectra compared to the continuum 

removed reflectance spectra and the linear spectral unmixing. Finally, the accuracy 

assessment is regarded: the application of the leave-one-out approach, the root mean 

square error, the confusion matrices and the correlation tests.  

 

4.1 Field data collection 

The goal of the field work was to obtain a representative database with the 

characteristics of the natural vegetation in the Peyne catchment area, which is 

sufficiently large for image interpretation and accuracy assessment. For this purpose, 

169 field plots were selected of which a detailed quantitative description of site and 

vegetation characteristics was made. In this section the working methodology in the 

field is discussed, which consisted of plot selection and plot description. 

 

4.1.1 Plot selection 

The selection of the field plots had to satisfy a range of requirements: 1) they 

had to be representative of the range of natural vegetation in the selected study area in 

terms of vegetation composition and characteristics, 2) a random component had to be 

included in the selection in order to prevent statistical bias, and 3) they had to be 

reasonably accessible in order to make data collection logistically feasible. Four strata 

were selected that were expected to satisfy the aforementioned requirements (Fig. 3.5). 

The selection was based on image analysis performed in advance of the field work, data 

available from earlier studies in the area, and road accessibility. 

Within the selected strata, a nested random sampling method was adopted to 

determine the plot locations (Fig. 4.1) (as suggested by Nijland, 2009). An initial nodal 

point - determining the first plot location - was identified in situ based on accessibility 

and species composition of interest. From this point, seven follow-up points were 

sequentially selected. These points were each located at a distance of 50 m from the 

previous point, and located in a randomly chosen direction. The random direction was 

determined on the basis of a list of random numbers in the range of 0 to 360. The 
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follow-up points were found using compass and a GPS device, which ensured the plot 

selection to be statistically unbiased. 

External factors could influence the data acquisition through for example 

weather conditions or phenology (e.g. leaf shedding). To prevent the concentration of 

these influencing factors in the data of single measurement locations, the strata were 

visited in a rotating order. In this way, the influence of possible external factors that 

showed a trend over time was minimized. 

 

 
Fig. 4.1: example of stratified nested random sampling scheme (Nijland et al, 2009) 

 

4.1.2  Plot description 

 At each selected location a square plot of 25 m2 (5x5 m) was measured and laid 

out using a tape-measure. The choice for 25 m2 plots is a compromise between the need 

to describe at least one pixel (the HyMap imagery has a spatial resolution of 5x5 m) and 

the logistical limitations of describing larger plots within a reasonable time span.  

The following plot characteristics are registered: 

- Date and time 
- Stratum number, cluster number and site number 
- Geometric location: XY coordinates measured with a Garmin eTrex [WGS84, 

UTM31N] 
- The vegetation cover density by visual estimate: low, middle or high 
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- The land cover class according to Tomaselli (1981): high matorral (dense, 
discontinuous or scattered) or middle matorral (dense, discontinuous or 
scattered) 

- The plot average vegetation height 
- The percentages of plot cover type by visual estimate that are covered by a 

closed canopy or not, and if their respective surfaces are vegetated or not: 
canopy, out-canopy vegetated or out canopy non-vegetated 

- The percentages per species that make up the canopy composition  
- The type and species of vegetation that are dominant in out-canopy vegetated 

area 
- The characteristics of the surface cover of the out-canopy non-vegetated area 

 
In addition, an overview photo of the plot was taken as a reference and notes were 

taken if the plot had any characteristics that might influence the spectral analysis or the 

measurements. 

 

Species Formula Source 

Quercus ilex 
Quercus pubescens 
Castanea sativa 
other species 

ln AB = 4.900 + 2.277 * ln D50 
Ogaya et al., 2003 
Quercus Ilex 

Arbutus Unedo 
Erica arborea 
Buxus sempervirens 
Phillyrea latifolia 
other species 

ln AB = 4.251 + 2.463 * ln D50 
Ogaya et al., 2003 
Arbutus unedo 

AB: aboveground biomass individual [g] 
D50: stem diameter at 50cm [cm]  

Table 4.1: Equations used for the field estimates of aboveground biomass (Ogaya et al., 2003) 

 

 Secondly, the aboveground biomass of each plot was estimated using allometric 

relations between stem diameter and biomass as described by Ogaya et al. (2003). They 

developed relations for the two species most dominant in the Peyne catchment area: 

Quercus ilex and Arbutus unedo. The biomass of other species was also estimated using 

either of these two relationships based on morphological similarity to Quercus ilex and 

Arbutus unedo (Table 4.1). For this purpose, in each plot the diameter at breast height 

of  all specimens with circumference larger than two centimetres was determined by 

measuring the circumference at breast height (±50 cm). 

Finally, the vegetation cover was measured using hemispherical photographs 

(Fig. 4.2). In each plot five photographs were taken: four at each corner and one in the 

middle. These photographs were processed using the Can-Eye software package 
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developed by INRA, Avignon France (Weiss & Baret, 2010; Jonckheere et al., 2004; Weiss 

et al., 2004). The program uses five photos per plot to increase the accuracy. First, the 

user has to mask out any areas with solar flare or non-canopy objects. Then, a binary 

classification is made indicating canopy cover and non-canopy cover based on a 324 

colour matrix. This is an important step and therefore user supervised. Finally, the 

program calculates the vegetation cover, leaf area index and other vegetation 

characteristic parameters by means of a look-up-table comparison based on the gap-

fraction distribution of the canopy. In addition, a correction is applied for non-random 

leaf distribution: the clumping factor. Thus, an objective measure of the vegetation 

cover and other vegetation characteristics is obtained. 

 

 
Fig. 4.2:  example of hemispherical photograph used for vegetation cover estimates 

 

4.2 Image analysis 

The image analysis process consists of several steps. This section describes these 

aspects in the same sequence as they have been applied. Most operations were 

performed with the remote sensing software ENVI 4.7 and the office suite Microsoft 

Excel 2003. In addition, the GIS-software packages eCognition 8.7 and ArcGis 10 were 

used. 

 
4.2.1 Imagery 

The airborne hyperspectral HyMap imagery used was acquired over the Peyne 

catchment area on the 23rd of July 2008. It consist of 126 spectral bands (Table 2.1) and 
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has a spatial resolution of 5x5 m, and it has been pre-processed to correct for noise and 

geometric errors according to the methods described by Schläpfer & Richter (2002) and 

Richter & Schläpfer (2002). For research purposes the study area was limited to the 

central portion of the HyMap image which is mostly covered by dense, natural 

vegetation (Fig. 3.5) A NDVI mask was applied to exclude non-vegetated areas from the 

analysis. In ENVI, bands 16 (0.6773 µm) and 24 (0.7920 µm) were used to calculate the 

index. The cut-off value to produce the mask was designated at 0.5. 

 

4.2.2 Pixel- and object-based analysis 

It was evaluated whether a pixel-based or an object-based approach works best 

for species mapping. In order to draw conclusions on this question, image analysis was 

performed using both approaches. Eventually, the respective results were compared 

(Fig. 4.3).  

In the pixel-based approach, the corrected, masked HyMap image was used. 

However, when a geographical location was taken in the field there was generally a 

certain error involved in the range of three to six meters. As the pixel-size is five by five 

meters, it is common that a sample site does not exactly match a pixel. For this reason, 

an averaging procedure was applied. Each pixel was recalculated by means of the ENVI 

convolution tool, to be the average of nine pixels: the pixel itself and its eight 

neighbouring pixels. In this method it is assumed that the area in the immediate 

surrounding is representative of the pixel considered. In this way, the effects of 

geometric error are limited because essentially spectral data from fifteen by fifteen 

meter plots are considered. 

In the object-based approach, eCognition 8.7 was used to perform image 

segmentation. The multiresolution segmentation algorithm was applied in order to 

exploit all spectral information embedded in the HyMap image. The scale parameter, 

which determines the maximum heterogeneity of the objects, was set to 25. This scale 

value resulted in objects in the natural vegetation area of approximately 100 to 200 

pixels in size (2500 m2 to 5000 m2). Thus, average object diameter is approximately 50 to 

70 meters, which is in the range of optimal pixel size for leaf area index predictions 

according to Nijland et al. (2009). The ratio between spectral and shape determines the 

importance of the reflectance spectra in the segmentation process as opposed to shape. 

It was set at 0.9 : 0.1, in order to maximize the influence of reflectance spectra while still 

including some effect of the shape. This reduced the number of objects with unusual 

shapes, that would cause difficulties in the analysis process and were more likely caused 

by landscape characteristics than by vegetation species composition. This effect was 

enhanced by setting the compactness criterion to 1.0. 
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For every object, the average reflectance spectrum was calculated. In this way, 

all pixels that were located in the same object had the same reflectance spectrum. 

Subsequently, the objects and their values were exported in vector format – an ESRI 

shapefile – to the ArcGis software environment. In ArcGis, every layer was identified as a 

separate attribute (i.e. 126 attributes). Using the composite bands tool all attributes 

were re-assembled into a multidimensional image with a cell-size of five by five meters. 

This image was then exported to ENVI and analyzed with the same methodology as the 

image used for the pixel-based analysis. 

 

4.2.3 Original reflectance spectra and continuum removed spectra 

 It was also investigated whether image analysis based on the original reflectance 

spectra performs better than image analysis based on continuum removed spectra. The 

beneficial effects of continuum removal in vegetation studies are ambiguous. To 

evaluate the effects in the case of this study, the image analysis was performed on the 

basis of both the original reflectance spectra and the continuum removed spectra (Fig. 

4.3). 

 To study the original reflectance spectra, the pixel-based and the object-based 

HyMap imagery of the Peyne study area was used. In this case the images did not have 

to be further adapted. For the continuum removed approach the same HyMap imagery 

was processed with the continuum removal tool in the ENVI software environment. 

Thus, two additional images were produced: a pixel-based, continuum removed HyMap 

image and an object-based, continuum removed HyMap image.  

 

 

4.2.4  Linear spectral unmixing 

The first step of the linear spectral unmixing procedure was the identification of 

suitable endmembers. Two sets of endmembers were selected to form a spectral library 

based on solely homogeneous vegetation patches, and to form a spectral library based 

on homogeneous as well as heterogeneous vegetation patches.  

A wide range of Mediterranean vegetation species is present in the Peyne 

catchment area. The image analysis however, focused on the natural forest vegetation 

present in the selected study area. On the basis of the field data it was decided that six 

species would be studied: Quercus ilex, Arbutus unedo, Quercus pubescens, Castanea 

sativa, Erica arborea, and Phillyrea latifolia. These are the species that have substantial 

presence in the top canopy (Appendix A) and therefore determine the characteristics of 

the reflectance spectra. Some other species were found, but they have limited influence 

on the reflectance spectra and would be difficult to detect. For this reason, they were 

left out of the analysis. 
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Homogeneous endmember 
training plot classes 

Number of 
training plots 

Heterogeneous endmember 
training plot classes 

Number of 
training plots 

100% Quercus ilex 15 100% Quercus ilex 15 

100% Arbutus unedo 8 75% Quercus ilex 
25% Arbutus unedo 

11 

100% Quercus pubescens 12 50% Quercus ilex 
50% Arbutus unedo 

7 

100% Castanea sativa 5 75% Arbutus unedo  
25% Quercus ilex 

6 

  50% Quercus ilex  
50% Quercus pubescens 

3 

  100% Quercus pubescens 12 

  75% Erica arborea  
25% Quercus ilex 

3 

  75% Erica arborea  
25% Arbutus unedo 

2 

  75% Quercus ilex  

25% Phillyrea latifolia 
6 

  100% Castanea sativa 5 

Table 4.2: endmember classes for linear spectral unmixing and their respective number of training plots 

 

For the homogeneous spectral library, four endmembers were selected that had 

sufficient training plots with 100% of a single species to build a library: Quercus ilex, 

Arbutus unedo, Quercus pubescens and Castanea sativa (Table 4.2; Appendix B). Three 

of the Castanea sativa training plots were situated outside the study area, but were 

nonetheless selected to make the Castanea sativa training-set more reliable. The 

percentage Arbutus unedo in the top canopy of the 100% Arbutus unedo training plots 

was in the range of 70% - 90%. These were assumed to represent 100% Arbutus unedo 

training plots to be able to perform an analysis based on homogeneous plots including 

these four prominent species.  

For the heterogeneous spectral library, various combinations of the six species 

were selected. The selection of these endmembers was based on the heterogeneous 

combinations of species that occur most regularly. Ten endmembers were selected 

based on three homogeneous and seven heterogeneous groups of training plots (Table 
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4.2; Appendix B). Again, three Castanea sativa training plots located outside the study 

area were selected to make the Castanea sativa training-set more reliable. 

In ENVI, the spectra of all training plots were located using their geographic 

coordinates and exported from the respective HyMap imagery as ASCII files using the 

region of interest tool. This was done for all image analysis approaches: both original 

reflectance and continuum removed spectra, from the object based as well as the pixel-

based images. Subsequently, the spectra were imported into Excel where the averages 

per class were calculated. These averages were the endmembers that were used to 

build spectral libraries.  

In total, eight spectral libraries were built that were subsequently applied to the 

respective HyMap images using linear spectral unmixing (Fig. 4.3). This resulted in eight 

abundance images with four bands for the homogeneous spectral libraries and ten 

bands for the heterogeneous spectral libraries. For every pixel, these bands displayed 

the fractional values per endmember. 

Finally, the spectral unmixing output maps were used to produce species 

abundance maps. It was assumed that the positive fractional values indicated the 

relative abundance per endmember. Therefore, in each abundance map all positive 

fractional values were summed. This was performed in ENVI by masking all the negative 

values, and then summing all positive values. Subsequently, in each band the pixels with 

positive values were divided by the total positive value of the pixels in the same 

locations. Thus, the relative fraction of each endmember with respect to the total 

positive value was calculated. In this way, linear spectral unmixing on the basis of 

homogeneous endmembers produced species abundance maps for four species. Linear 

spectral unmixing on the basis of heterogeneous endmember classes produced 

abundance maps for mixed classes, of which the fractions per species were summed in 

order to produce six species abundance maps (Fig. 4.4).  
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HyMap Peyne subsetHyMap Peyne subset

Continuum removed 
imagery

Linear spectral unmixing 
based on 4 homogeneous 

endmember classes

Linear spectral unmixing 
based on 10 heterogeneous 

endmember classes

8 species abundance maps (fig. 4.4)

Pixel based: 
3x3 averaged HyMap

Pixel based: 
3x3 averaged HyMap

Object-based: 
segmented HyMap

Object-based: 
segmented HyMap

Original reflectance 
imagery

Original reflectance 
imagery

Accuracy assessment

 
Fig. 4.3: diagram of the image analysis process 
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Fig. 4.4: diagram of the species density map creation procedure 

 

4.3 Accuracy assessment 

The accuracy of the predicted species abundance maps was assessed by 

comparing the species abundance per plot estimated during the field work, with the 

predicted species abundance per plot. This was done in combination with a leave-one-

out analysis approach in order to maximize the assessment results. On the basis of this 

comparison, root mean square error (RMSE) of the species abundance percentages per 

plot, confusion matrices of the dominant species per plot and correlation parameters 

between the RMSEs and various physical vegetation parameters were calculated to 

determine the accuracy. 
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4.3.1 Leave-one-out analysis approach 

 In this research only a limited amount of field data was available. Specifically for 

the less common species few plots were collected. The conventional approach is to split 

the field data into a training group and a validation group. In the case of this study 

however, it was preferable to use the collected plots for training as well as validation to 

maximize efficiency on the basis of the limited field data. However, if the same plots 

were used to train a model, and subsequently to validate the results, the accuracy 

results would be biased. To avoid this, a leave-one-out analysis approach was applied. 

 

Training plots

Build spectral library 
without plot i

Apply LSU to imagery

Unmixed imagery without plot i

Export endmember fraction values 
imagery from geo-location plot i

Unbiased, modelled species density values 
for all training plots

Repeat for 
plot i+1

 
Fig. 4.5: diagram of the leave-one-out approach analysis procedure, used in the accuracy assessment 

 

Linear spectral unmixing was applied on the basis of four homogeneous and ten 

heterogeneous endmembers (Fig. 4.3). These were trained with 40 and 70 plots 

respectively (Table 4.2). To use these spectral data for both training and validation, an 

extra step was included in the linear spectral unmixing stage: for every plot that was 

used both for training and validation, a separate spectral library was built. In this 
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spectral library, the plot concerned was not used for training – i.e. it was left out. 

Subsequently, linear spectral unmixing was performed on the basis of this library: the 

unmixed fractional values that were predicted for the geographic location of the plot 

considered, were used to assess its accuracy. This procedure was repeated for every 

training plot, and applied to the various study cases (Fig. 4.5). Thus, all selected plots 

were utilized to train the unmixing libraries, and all plots in the natural forest area could 

be used to assess the accuracy. 

 

4.3.2 Root mean square error of the species abundance per plot 

The most important results of the image analysis were the species abundance 

maps. The accuracy of the species abundance maps was assessed by comparing the 

predicted percentages per plot, for each image analysis approach, with the field data 

per plot. This was performed by means of the root mean square error (RMSE), a 

measure frequently used to determine the difference between predicted values and 

values actually observed on the ground. Thus, it provides a straightforward indication of 

prediction accuracy. The formula applied in this study is as follows: 

      √
∑   ̂     

  
   

 
 

Eq. 4.1: equation for the root mean square error (Lu, 2003) 

Where   is the number of observations,   is the plot considered,  ̂  is the predicted 

value of the plot and    the observed value of the plot.  

 

4.3.3 Dominant species confusion matrices  

Confusion matrices are often used in remote sensing studies to check whether 

pixels of which the ground truth is known are correctly classified, and what type of 

errors occur in the model (e.g. Dennison et al., 2003). It is a specific table layout that 

shows whether a model makes correct predictions by comparing its classifications to the 

ground truth. A confusion matrix has two sub-accuracy measures and one overall 

measure: the user’s accuracy checks whether a pixel that is predicted to be in a certain 

class, actually has this value on the ground. The producer’s accuracy does the opposite: 

it checks whether a pixel that is known to have a certain value on the ground, is 

correctly classified by a model. These two measures provide insight in the type of over- 

or underestimation that a model produces, and other trends that might occur. The 

overall accuracy combines the former two by calculating the percentage correctly 

classified pixels, thus providing a general accuracy measure (Congalton, 1991). 

 This study focused on species fractions per pixel instead of specific classes per 

pixel. This made it impossible to apply confusion matrices. Nonetheless, it would be 

interesting to apply this analysis because it investigates errors of inclusion and 



 42 

exclusion, and whether these over- or underestimate the predicted or the groundtruth 

data. Hence, for all plots it was calculated which species was dominant, i.e. which 

species had the largest fraction. By means of confusion matrices, it was checked 

whether the image analysis approaches found the same dominant species in these 

geographic locations. Specifically for the groundtruth data, it occasionally occurred that 

two species had the same fraction. These plots were omitted from the confusion matrix 

analysis, as neither of the species present was actually dominant. 

 

4.3.4 Correlations between RMSE and vegetation parameters 

The aim of this study was to map different vegetation species on the basis of 

differences in spectral reflectance. The accuracy of the image analysis was assessed by 

the RMSE and confusion matrices analyses. However, these did not check if the spectral 

differences between vegetation species were responsible for high or low accuracies, or 

if other vegetation characteristics had an effect. Three vegetation characteristic 

parameters were available for every plot: vegetation cover, aboveground biomass and 

average canopy height. Also, for every plot it was known how many different species are 

present, which is a measure of heterogeneity. The correlation between the RMSE and 

these four parameters was calculated to evaluate if they affect the accuracy. The first 

three were checked as the variables are independent of the type of species. The 

heterogeneity was checked as it is an important aspect of the image analysis procedure.  

 A correlation coefficient produces an indication of the dependency of one 

variable on another. It provides insight in relations between the data considered, and in 

this way indicates for example causal relations. To calculate the coefficient for the 

mentioned cases, the Pearson’s correlation was utilized: 

 

                  
∑     ̅     ̅  

   

√∑     ̅  ∑     ̅   
   

 
   

 

Eq. 4.2: correlation equation (Isaaks, 1989) 

 

In this formula the correlation between   measurements   and   is calculated, with  ̅ 

and  ̅ their respective means. 
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5.  Results 
The results section provides an overview of the field data and the results of the 

image analysis. In addition, the results of the accuracy assessment are presented. On 

the basis of this, conclusions are drawn regarding the research objectives. 

 

5.1 Field data 

 In total, 169 plots were sampled (Fig. 5.1). The basic properties of each plot were 

described and geometric location was noted. Additionally, the canopy composition in 

percentage per species and the vegetation height were estimated, and aboveground 

biomass and vegetation cover were measured (Appendix A and C). 

 

 
Fig. 5.1: topographic map of study area with strata and plots 
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The northern plots are mostly dominated by Quercus ilex (strata A and B) and 

Quercus pubescens (stratum A) (Table 5.1). This is in accordance with the dominance of 

mixed deciduous oak forest in the north. The southern plots are also characterized by 

Quercus ilex, but in combination with Arbutus unedo (strata C and D). In addition, Erica 

arborea has substantial presence in stratum D. The presence of Phillyrea latifolia is 

limited in all four strata. Castanea sativa is only found in a few occasions in stratum B.  

 

stratum averaged percentage canopy composition (%) 

 QIL ARU QPU CAS ERA PHL 

all plots (n=169) 56 21 14 1 6 2 

A (n=42) 48 4 46 0 0 1 

B (n=40) 75 7 9 5 0 4 

C (n=40) 55 40 1 0 3 1 

D (n=47) 47 32 0 0 18 2 
Table 5.1: averaged percentages of canopy composition per species 

 

 The northern plots (strata A and B) have a larger average height than the 

southern plots (strata C and D) (Table 5.2). The vegetation cover is nearly constant 

throughout the study area. The aboveground biomass shows a trend with relatively 

higher values in the north (strata A and B) and lower values in the south (strata C and D). 

This is related to the dominance of maquis in the southern part of the study area, as 

opposed to the deciduous oak forest in the north. The southern plots also have a lower 

average height compared to the northern plots. On the other hand, the heterogeneity 

shows that the northern plots (strata A and B) have on average fewer different species 

(1.7 – 1.8) than the southern plots (strata C and D) (2.3 – 2.5). In the northern plots, the 

canopy is often only composed of Quercus ilex or Quercus pubescens, and sometimes 

Castanea sativa. In the southern plots, Quercus ilex and Arbutus unedo usually occur 

mixed, and are often interspersed with Erica arborea and sometimes Phillyrea latifolia.  

 

stratum 
av. height 

(m) 
vegetation cover 

(%) biomass (ton/ha) 
heterogeneity (av. nr 
of species per plot) 

all plots 6.9 75 133 2.1 

A 9.5 75 163 1.7 

B 7.3 75 166 1.8 

C 5.7 76 117 2.3 

D 5.3 74 93 2.5 
Table 5.2: averaged physical vegetation characteristics: average height, vegetation cover, aboveground 

biomass and heterogeneity 
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 In accordance with the abundance of Quercus ilex as percentage of the canopy 

(Table 5.1), also the largest number of plots is dominated by Quercus ilex (Table 5.3). In 

the northern plots in stratum A, Quercus pubescens dominates a substantial number of 

plots. Castanea sativa is only present in stratum B, but when it is present it always 

dominates the canopy. In the southern plots, Arbutus unedo dominates a substantial 

number of plots in stratum C and D. Erica arborea only dominates a number of plots in 

stratum D. Phillyrea latifolia never dominates the canopy in this study area. 

 

dominant species QIL ARU QPU CAS ERA PHL 

all strata 99 25 22 2 10 0 

A 21 0 19 0 0 0 

B 32 2 3 2 0 0 

C 23 12 0 0 1 0 

D 23 11 0 0 9 0 
Table 5.3: the number of plots in which the respective species are dominant 

 

5.2 Image analysis 

The image analysis resulted in eight sets of species abundance maps. The 

percentages canopy cover based on the plot locations are shown in Table 5.4, and data 

on species dominance in the plots in Table 5.5. An example of a set of abundance maps 

is shown in Figure 5.2. An interesting observation is the difference between the 

homogeneous and heterogeneous approaches. The homogeneous approaches have 

comparable abundances for Quercus ilex, Arbutus unedo and Quercus pubescens 

whereas the heterogeneous approaches are dominated by Quercus ilex (Table 5.4). The 

latter situation is in accordance with the field data (Table 5.1), where Quercus ilex 

occupies more than 50% of the canopy. Next to that, it is interesting that only the 

homogeneous and heterogeneous approaches result in substantial differences. The 

results from the pixel-based compared to the object-based approaches, and the 

approaches based on original reflectance spectra compared to continuum removed 

spectra do not differ much. 

The same applies to the data on dominant species per plot (Table 5.5). The 

homogeneous approaches yield a comparable number of plots dominated by Quercus 

ilex, Arbutus unedo and Quercus pubescens. The heterogeneous approaches on the 

other hand yield the largest number of plots dominated by Quercus ilex. The latter 

situation is expected based on observations in the field (Table 5.3). Again, the 

differences between the pixel- and object-based approaches, and the analyses based on 

original and continuum removed spectra are limited. 

The set of species abundance maps (Fig. 5.2) provides insight in the differences 

in spatial distribution of the six species produced by the object-based, continuum 
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removed, heterogeneous approach. This set of maps is displayed because this image 

analysis approach had the best results according to the accuracy assessment (section 

5.3). Quercus ilex has high densities (± 50%) throughout the study area. Also Arbutus 

unedo has relatively high densities, most importantly in the central and southern parts. 

Both observations are in accordance with field observations. Quercus pubescens has 

lower densities, but is abundant in the north, which matches field observations. Erica 

arborea, Phillyrea latifolia and Castanea sativa have very low densities throughout the 

area. Castanea sativa does have some small, higher density spots in the north, which is 

plausible as this species mostly occurs there in small, homogeneous patches. Erica 

arborea has very low densities which is as expected because this species hardly ever 

dominates the canopy. However, it does have a relative high density in the south-

easternmost corner of the study area. This also confirms expectations as this is a Landes 

area: this type of vegetation is more similar to Erica arborea dominated areas than the 

densely forested areas. Phillyrea latifolia has low presence throughout the study area 

(±7%). It is as expected that this species has low density, but on the basis of field 

observations a more patchy pattern is expected. 

 
 

Image analysis approach stratum average canopy cover (%) 
 

  
QIL ARU QPU CAS ERA PHL 

pixel-based, original reflectance, homogeneous all plots 30 26 36 8 
  

 
A 30 27 35 8 

  

 
B 55 20 10 15 

  

 
C 29 47 15 9 

  

 
D 26 44 24 6 

  pixel-based, original reflectance, heterogeneous all plots 45 25 18 1 8 3 

 A 46 18 24 1 8 3 

 B 47 25 15 2 6 5 

 
C 44 29 15 2 8 3 

 
D 42 29 18 0 10 1 

  QIL ARU QPU CAS ERA PHL 

pixel-based, continuum removed, homogeneous all plots 28 33 27 12 
   A 26 23 38 13 
   B 44 20 20 16 
  

 
C 20 46 21 13 

  

 
D 24 41 27 9 

  pixel-based, continuum removed, heterogeneous all plots 42 27 19 1 9 3 

 A 41 23 24 1 9 3 

 B 48 23 18 1 7 4 

 
C 41 31 17 1 8 3 

 
D 40 30 16 0 11 2 
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  QIL ARU QPU CAS ERA PHL 

object-based, original reflectance, homogeneous all plots 32 36 30 2 
   A 29 21 49 1 
   B 65 20 9 6 
  

 
C 20 57 23 0 

  

 
D 18 44 37 1 

  object-based, original reflectance, heterogeneous all plots 48 30 7 1 10 4 

 A 50 21 10 1 11 6 

 B 47 36 7 0 6 3 

 
C 50 35 6 1 6 2 

 
D 44 27 5 1 17 5 

  QIL ARU QPU CAS ERA PHL 

object-based, continuum removed, homogeneous all plots 12 44 40 4 
   A 10 31 54 6 
   B 24 36 33 7 
  

 
C 7 59 32 2 

  

 
D 7 48 43 2 

  object-based, continuum removed, heterogeneous all plots 41 30 19 1 3 5 

 A 36 26 26 3 3 6 

 B 44 30 18 2 2 4 

 
C 41 32 21 0 1 4 

 
D 44 32 14 1 4 6 

Table 5.4: averaged percentages of canopy composition per species, per image analysis approach 
 
 
 
 

Image analysis approach QIL ARU QPU CAS ERA PHL 

pixel based, original reflectance, homogeneous 62 68 30 9 
  

pixel based, original reflectance, heterogeneous 142 20 6 0 1 0 

pixel based, continuum removed, homogeneous 50 61 41 15 
  

pixel based, continuum removed, heterogeneous 124 23 16 0 4 0 

object based, original reflectance, homogeneous 58 59 50 2 
  

object based, original reflectance, heterogeneous 141 24 3 0 1 0 

object based, continuum removed, homogeneous 5 83 77 3 
  

object based, continuum removed, heterogeneous 116 31 20 1 0 0 
Table 5.5: the number of plots in which the respective species are dominant according to the various 

image analysis approaches* 

 
 
* The application of continuum removal resulted in erroneous results at some plot locations. Therefore 
the pixel-based continuum removed image analysis misses data for two plots in the field dominated by 
ARU, and the object-based continuum removed image analysis misses data for one plot in the field 
dominated by QPU. 
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Fig. 5.2: abundance maps of six species based on the object-based, continuum removed, heterogeneous 
image analysis approach. In the light grey areas, the considered species is not present (i.e. 0%). The dark 
grey areas are masked out because there is too little vegetation present (NDVI < 0.5) or because they are 

located outside the hyperspectral image. 
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5.3 Image analysis accuracy assessment 

5.3.1 Root mean square error of the species abundance per plot 

The predicted species abundances per plot for each image analysis approach 

were compared to the field data per plot by means of the root mean square error 

(RMSE). The RMSE values that resulted from this comparison are rather large (Table 

5.6). The values are on average in the same range as the observed, groundtruth values 

(Table 5.1). This indicates substantial errors. 

Nonetheless, some interesting trends can be observed. 1) the pixel-based and 

object-based approaches do not yield different results: the RMSEs of the cases that are 

either pixel- or object-based are very similar. 2) the analyses based on original 

reflectance spectra compared to those based on continuum removed spectra also show 

little differences based on the RMSEs: average errors per species are similar when 

comparing the original reflectance approaches with the continuum removed 

approaches. 3) on the other hand, the differences between the RMSEs based on 

homogeneous spectra compared to those based on heterogeneous spectra do show 

substantial differences: of the four species predicted by all approaches, average RMSE 

for the homogeneous approaches is 32% as opposed to 23% for the heterogeneous 

approaches (Fig. 5.3). Clearly, the RMSEs of the homogeneous image analysis 

approaches are much larger than those of the heterogeneous image analysis 

approaches, which proves that the heterogeneous approach produces better mapping 

results than the homogeneous approach. 

 

 Average RMSE per species (%) 

Image analysis approach QIL  ARU QPU CAS ERA PHL 

pixel based, original reflectance, homogeneous 40 37 31 18   

pixel based, original reflectance, heterogeneous 31 22 28 10 14 7 

pixel based, continuum removed, homogeneous 42 33 34 23   

pixel based, continuum removed, heterogeneous 31 22 27 11 14 6 

object based, original reflectance, homogeneous 41 34 32 9   

object based, original reflectance, heterogeneous 31 26 28 10 16 8 

object based, continuum removed, homogeneous 52 44 35 12   

object based, continuum removed, heterogeneous 32 24 26 9 14 8 
Table 5.6: average root mean square errors in percentages between the predicted species abundance per 

plot and the field observations per plot – averaged per species and per image analysis approach 
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Fig. 5.3: comparison of heterogeneous and homogeneous RMSEs between the predicted species 

abundance per plot and the field observations per plot, for the four species predicted by all image analysis 
approaches. (PB=pixel-based, OB=object-based, OR=original spectra, CR=continuum removed spectra) 

 
5.3.2 Dominant species confusion matrices  

 Table 5.7a to 5.7h display confusion matrices of the species that dominate the 

canopy in the geographic locations of the plots, comparing the results from the eight 

image analysis approaches and the field data. The most interesting question of this 

analysis is whether the eight image analysis approaches applied in this research were 

able to correctly predict dominant species. 

The most important trend found is that the heterogeneous image analysis 

approaches perform better in predicting dominant species according to the overall 

accuracy measures than the homogeneous image analysis approaches: the average 

homogeneous overall accuracy is 0.43 whereas the average heterogeneous overall 

accuracy is 0.62. Comparing all image analysis approaches, the object-based continuum-

removed heterogeneous approach has the highest overall accuracy with 0.65. 

Moreover, its user’s and producer’s accuracies are also generally the largest. However, 

it did not correctly detect any of the dominant Erica arborea. The pixel-based, 

continuum removed, heterogeneous image analysis approach is the only one that did 

correctly find Erica arborea. This approach on the other hand did not detect any of the 

Castanea sativa plots, which the former as well as three out of the four homogeneous 

approaches found. 

Besides the better results of the heterogeneous approaches compared to the 

homogeneous approaches, it is interesting to investigate some trends that can be 

observed from the confusion matrices. Only the matrix results from the heterogeneous 

approaches are considered because these produced the best results (Table 5.7b; 5.7d; 

5.7f; 5.7h). Typically, the most dominant species is Quercus ilex: this species is dominant 

in the majority of the plots according to the image analyses (Table 5.5), even though on 
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the ground the dominant species is regularly Arbutus unedo, Quercus pubescens or Erica 

arborea (Table 5.3). This shows that the dominance of Quercus ilex is overestimated in 

the analysis. Furthermore, the only situation in which Quercus ilex was regularly 

erroneously predicted, is when it is mistaken for Arbutus unedo. This is probably caused 

by the fact that Quercus ilex and Arbutus unedo often occur in mixed compositions in 

the field, making it difficult to distinguish between them. 

 Image analysis prediction  

Field data QIL ARU QPU CAS producers's accuracy 

QIL 44 38 13 4 0.44 

ARU 7 13 2 3 0.52 

QPU 3 9 9 1 0.41 

CAS 0 1 0 1 0.50 

user's accuracy 0.81 0.21 0.38 0.11 0.45 

Table 5.7a: confusion matrix of the dominant species per plot of the pixel based original reflectance, 
homogeneous, image analysis approach* 

 

  Image analysis prediction  

Field data QIL ARU QPU CAS ERA PHL producer’s accuracy 

QIL 88 11 0 0 0 0 0.89 

ARU 18 6 0 0 1 0 0.24 

QPU 17 0 5 0 0 0 0.23 

CAS 2 0 0 0 0 0 0.00 

ERA 10 0 0 0 0 0 0.00 

PHL 0 0 0 0 0 0 - 

user’s accuracy 0.65 0.35 1.00 - 0.00 - 0.63 

Table 5.7b: confusion matrix of the dominant species per plot of the pixel based, original reflectance, 
heterogeneous image analysis approach* 

 

  Image analysis prediction  

Field data QIL ARU QPU CAS producer’s accuracy 

QIL 38 39 17 5 0.38 

ARU 2 11 5 5 0.48 

QPU 2 6 9 5 0.41 

CAS 0 1 1 0 0.00 

user’s  accuracy 0.90 0.19 0.28 0.00 0.40 

Table 5.7c: confusion matrix of the dominant species per plot of the pixel based, continuum removed, 
homogeneous image analysis approach*† 

 

  Image analysis prediction  

Field data QIL ARU QPU CAS ERA PHL producer’s accuracy 

QIL 80 12 5 0 2 0 0.81 

ARU 16 6 1 0 0 0 0.26 

QPU 13 0 9 0 0 0 0.41 

CAS 1 1 0 0 0 0 0.00 

ERA 7 1 0 0 2 0 0.20 

PHL 0 0 0 0 0 0 - 

user’s accuracy 0.68 0.30 0.60 - 0.50 - 0.62 

Table 5.7d: confusion matrix of the dominant species per plot of the pixel based, continuum removed, 
heterogeneous image analysis approach*† 



 52 

  Image analysis prediction  

Field data QIL ARU QPU CAS producer’s accuracy 

QIL 47 33 18 1 0.47 

ARU 1 20 4 0 0.80 

QPU 3 1 18 0 0.82 

CAS 1 0 0 1 0.50 

user’s accuracy 0.90 0.37 0.45 0.50 0.58 

Table 5.7e: confusion matrix of the dominant species per plot of the object based, original reflectance, 
homogeneous image analysis approach* 

 

  Image analysis prediction  

Field data QIL ARU QPU CAS ERA PHL producer's accuracy 

QIL 83 16 0 0 0 0 0.84 

ARU 22 3 0 0 0 0 0.12 

QPU 17 2 3 0 0 0 0.14 

CAS 0 2 0 0 0 0 0.00 

ERA 10 0 0 0 0 0 0.00 

PHL 0 0 0 0 0 0 - 

user’s accuracy 0.63 0.13 1.00 - - - 0.56 

Table 5.7f: confusion matrix of the dominant species per plot of the object based, original reflectance, 
heterogeneous image analysis approach* 

 

  Image analysis prediction  

Field data QIL ARU QPU CAS producer’s accuracy 

QIL 5 50 43 1 0.05 

ARU 0 20 5 0 0.80 

QPU 0 7 13 1 0.62 

CAS 0 1 0 1 0.50 

user’s accuracy 1.00 0.26 0.21 0.33 0.27 

Table 5.7g: confusion matrix of the dominant species per plot of the object based, continuum removed, 
homogeneous image analysis approach*† 

 

  Image analysis prediction  

Field data QIL ARU QPU CAS ERA PHL producer’s accuracy 

QIL 78 17 4 0 0 0 0.79 

ARU 17 8 0 0 0 0 0.32 

QPU 9 1 15 0 0 0 0.71 

CAS 0 0 0 1 0 0 0.50 

ERA 5 1 0 0 0 0 0.00 

PHL 1 0 0 0 0 0 - 

user’s accuracy 0.71 0.30 0.79 1.00 - - 0.65 

Table 5.7h: confusion matrix of the dominant species per plot of the object based, continuum removed, 
heterogeneous image analysis approach*† 

 
 

 

* The total number of field data (i.e. plots) is less than 169 because various plots were not dominated by a 
single species and therefore left out of the analysis. † The application of continuum removal resulted in 
erroneous results at some plot locations. Therefore the pixel-based continuum removed image analysis 
misses data for two plots in the field dominated by ARU, and object-based continuum removed image 
analysis misses data for one plot in the field dominated by QPU.  
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5.3.3 Correlations between RMSE and vegetation parameters 
To check the effects of four vegetation parameters on the classification accuracy, 

correlation coefficients were calculated between RMSE and the parameter values (Table 

5.8). The parameters considered were the average height, the aboveground biomass, 

the vegetation cover and the heterogeneity. These coefficients show how substantial 

the relation between these vegetation characteristics and the error of the image 

analysis is. This indicates their effect on the analysis or the potential bias of the results. 

The average height has negligible correlation coefficient values for the 

homogeneous image analysis approaches (-0.19 to  0.12), but small positive correlations 

for the heterogeneous image analysis approaches (0.38 to 0.63) (Table 5.8). The same 

applies to the aboveground biomass which has negligible correlation with the RMSEs of 

the homogeneous image analysis approaches (0.04 to 0.11), but does have a small 

positive correlation with the RMSEs of the heterogeneous image analysis approaches 

(0.35 – 0.37). These correlation coefficients are too small however to indicate 

substantial effects of the vegetation characteristics on the classification accuracy. The 

vegetation cover has negligible correlation coefficients for all image analysis approaches 

(-0.14 to 0.05). This means that there is no relation between the RMSE and the 

vegetation cover as measured in the field. The heterogeneity shows no correlation for 

the homogeneous image analysis approaches (-0.19 to 0.06). For the heterogeneous 

image analysis approaches there is a substantial negative correlation (-0.59 to -0.50). 

This means that when more species are present in a plot, the respective RMSE is lower 

in case of the heterogeneous approaches. 

 

CORRELATIONS 
Average 
height 

Aboveground 
biomass 

Vegetation 
cover 

Heterogeneity 
(nr of species) 

pixel-based, original reflectance, homogeneous 0.12 0.09 -0.06 0.06 

pixel-based, original reflectance, heterogeneous 0.51 0.36 -0.14 -0.51 

pixel-based, continuum removed, homogeneous 0.05 0.11 0.00 -0.01 

pixel-based, continuum removed, heterogeneous 0.43 0.37 -0.12 -0.51 

object-based, original reflectance, homogeneous 0.01 0.11 0.03 0.10 

object-based, original reflectance, heterogeneous 0.63 0.35 -0.12 -0.50 

object-based, continuum removed, homogeneous -0.19 0.04 0.05 -0.19 

object-based, continuum removed, heterogeneous 0.38 0.36 -0.09 -0.59 

Table 5.8: correlation coefficients between the RMSEs of the various image analysis approaches, and four 
vegetation characteristics: average height, aboveground biomass, vegetation cover and heterogeneity 

  

The negative correlations between heterogeneity and RMSE for the 

heterogeneous approaches indicate bias of the image analysis methodology in favour of 

areas with heterogeneous vegetation composition: the RMSE is lower in areas with 

more species which means that the methodology works better for heterogeneous areas. 

To illustrate this, the groundtruth values of the four most abundant species are plotted 
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against the predicted values of the object-based, continuum removed, heterogeneous 

image analysis approach (Fig. 5.4). This graph shows a consequence of the bias in favour 

of heterogeneous vegetation composition: species with low abundance (0%-20%) are 

overestimated, whereas species with high abundance (80%-100%) are underestimated. 

This results from the bias in favour of heterogeneous vegetation composition, because 

heterogeneous vegetation composition usually has average species abundances (e.g. 

40%-60%) whereas homogeneous vegetation composition usually has very low or very 

high species abundance (e.g. 0%-10% or 90%-100%). The image analysis most often 

produced heterogeneous vegetation compositions with average species abundances. 

Homogeneous vegetation compositions with very low or very high species abundances 

were produced much less. Thus, the more extreme values of groundtruth species 

abundance are generally over- or underestimated. 

 

 
Fig. 5.4: relationship between groundtruth canopy cover values and predicted canopy cover values of four 
species for the object-based, continuum removed, heterogeneous image analysis approach. The perfect 

prediction is added for comparison.  
 

Next to the over- and underestimation of the image analysis methodology, figure 

5.4 illustrates the limited prediction range: the maximum canopy cover fraction that is 

predicted is 68% for Quercus ilex, 60% for Quercus pubescens, 56% for Arbutus unedo, 

and 22% for Erica arborea. However, in the field Quercus ilex and Quercus pubescens 
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regularly make up 100% of the canopy. Arbutus unedo can make up 90% and Erica 

arborea up to 70%. This means that the range of predictable values of the image 

analysis methodology is substantially smaller than the range of values encountered in 

the field.  
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6. Discussion 

In this research, Mediterranean vegetation species were mapped by using 

airborne, hyperspectral HyMap images and homogeneous and heterogeneous 

endmember analysis in order to determine the best species mapping approach. In 

addition, it was investigated whether pixel- or object-based image analysis improved the 

results. Lastly, the advantage or disadvantage of using continuum removed reflectance 

spectra over original reflectance spectra was evaluated. In this chapter, the entire 

research process is reflected upon. The various steps are discussed in detail, in the 

following order: field data collection, image analysis and accuracy assessment. In 

addition to the discussion, recommendations for follow-up research are provided. 

 

6.1 Field data collection 

 The field data collection process was determined by a set of requirements: 1) the 

field plots should represent the selected study area in terms of vegetation 

characteristics and composition, 2) a random selection factor was required to prevent 

statistical bias and 3) the plots had to be reasonably accessible. The first two 

requirements were difficult to combine. The random selection factor as described in 

section 4.1.1 was nearly always applied when logistically possible. However, this means 

that dominant species were sampled most often – i.e. Quercus ilex and Arbutus unedo. 

Other species, most importantly Castanea sativa, Erica arborea and Phillyrea latifolia 

were relatively underrepresented in the dataset. Especially as the analysis approach of 

this research also used the field plots to create spectral libraries for linear spectral 

unmixing, the limited availability of study plots with the latter three species made their 

endmembers less reliable. This problem did not necessarily oppose the requirement of 

representativeness as these are indeed less common. However, training and validation 

became more problematic and therefore it was more difficult to fulfil the research goals.  

 Besides the issue of over- and undersampling, in the field some more practical 

concerns arose. In this study’s approach the percentages of species that made up the 

canopy composition were the most important parameter. However, relatively little time 

was spent on determining the composition as this was performed by visual estimation. 

Throughout the field campaign, the same methodology was used to perform the 

estimations. For this reason, the dataset is consistent and in that sense reliable. 

Nonetheless, it might have been possible to make more reliable measurements by 

developing a more automated and quantitative measuring system. Next to that, a 

portable GPS device was used to note the geometric locations of the field plots. These 

measurements were often taken below the canopy, which deteriorated reception and 

consequently reliability. The uncertainty was generally five meters for the 
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measurements. Especially in combination with additional geometric errors in the image 

analysis and accuracy assessment this might have increased uncertainty in the analysis, 

most notably in the pixel-based approaches. 

 When follow-up research is conducted, or studies with similar field campaigns, it 

will be important to develop a more automated and quantitative canopy composition 

measuring systems. For example, a grid with cells of one square meter could be laid out 

on the surface, and for each cell the overhead vegetation cover could be registered. This 

would lead to more accurate measurements. On the other hand, this method would 

cost substantial extra time, so the advantages and disadvantages of adopting such a 

method have to be carefully considered. Second, the importance of geometric 

localization should not be underestimated. If similar research is conducted, the use of a 

more advanced and more accurate GPS device is recommended, for example a DGPS 

system, in order to minimize geometric error. 

 

6.2  Image analysis 

 On the basis of field observations, eight image analysis approaches were applied 

to the hyperspectral imagery to produce eight sets of species abundance maps. In three 

steps, the following image analysis methods were alternately applied (Fig 4.3): 1) pixel- 

or object-based image analysis, 2) image analysis with original or continuum removed 

reflectance spectra, and 3) linear spectral unmixing with homogeneous or 

heterogeneous endmembers.  

In the literature, object-based image analysis is used next to the more traditional 

pixel-based image analysis and is recognized to improve results in some cases (Blaschke, 

2010; Addink, 2007). Also continuum removal is regularly applied and especially in 

mineral detection is known to improve results (Kruse, 1993). Both methods are popular 

in remote sensing studies, but whether their application leads to improved results in 

vegetation studies is debated. In this research neither the pixel- nor the object-based 

approaches, nor the image analysis with original or continuum removed spectra 

produced substantially better or worse results. Nonetheless, by continuing the 

application of the aforementioned methods in future remote sensing studies and 

comparing the results, effects of the methodologies will become more clear. 

 The main goal of image analysis was to map species composition in the Peyne 

catchment area. For this purpose, spectral unmixing on the basis of endmembers was 

applied to predict the abundance of the species considered. A wide range of spectral 

unmixing algorithms is available. The most important distinction regards linear and non-

linear spectral unmixing (Kesheva, 2003). Linear spectral unmixing assumes a linear 

relation between the relative surface area of a constituent and its addition to the 

reflectance spectrum. Non-linear spectral unmixing assumes a more complex situation 
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where the constituents of a reflecting surface are distributed randomly and the various 

surfaces do not contribute equally to the overall reflectance. In this study, only linear 

spectral unmixing is applied as this directly relates to the canopy composition 

measurements performed in the field. Many algorithms that could enhance results are 

available, some of which have been applied in other vegetation studies: e.g. Match 

filtering method by Sobhan (2007) and multiple endmember spectral mixture analysis by 

Youngentob et al. (2011). This would have required much additional modelling and 

computational efforts shifting the focus of the research. Therefore, it was decided to 

use standard linear spectral unmixing, and to concentrate on the effects of other image 

analysis aspects. Nonetheless, the application of more advanced unmixing algorithms 

might improve results. For this reason, it is an interesting topic for follow-up studies.  

 Linear spectral unmixing is based on endmembers. Therefore, the selection of 

endmember classes is an important step in image analysis. This is also reflected by 

studies that focus solely on the endmember selection algorithms that will produce the 

best results: e.g. Tompkins et al. (1997) state that ‘it is crucial to carefully choose the 

endmembers to be able to perform spectral mixing analysis with physically meaningful 

results’. In this research, no advanced algorithms were applied to select the best 

endmembers. First, this required too extensive computational efforts which would shift 

the focus of the study. More importantly, one of the main research objectives considers 

the difference between homogeneous and heterogeneous endmembers. If the 

endmembers were selected by means of algorithms, they would not be specifically 

homogeneous or heterogeneous. Therefore, the endmember selection was performed 

manually by selecting the field plots most suitable to create endmembers. 

 The spectral libraries with endmembers were based on a set of training plots 

manually retrieved from the hyperspectral imagery. The choices made were based on 

the available training plot compositions, and the most common canopy compositions as 

known from field observations. In some cases, no perfect solution was possible: for the 

homogeneous endmembers, sufficient training plots for Quercus ilex and Quercus 

pubescens were available. For Arbutus unedo, only plots with 70%-90% abundance were 

present. In order to still be able to detect Arbutus unedo, these were considered 

homogeneous training plots. For Castanea sativa, only five training plots were available 

which reduced linear spectral unmixing reliability. In the case of heterogeneous 

approaches,  four endmembers had five or less training plots which reduced linear 

spectral unmixing reliability: 100% Castanea sativa, 50% Quercus pubescens - 50% 

Quercus ilex, 75% Erica arborea - 25% Quercus ilex, and 75% Erica arborea - 25% Arbutus 

unedo. The limitations on endmember training plot selection were partly the result of 

the stratified random selection scheme which did not allow the selection of plots with 

less common compositions. In future studies, some additional training plots could be 



 59 

selected outside the stratified random selection scheme to increase the number of 

training plots. These plots cannot be used for validation purposes. 

Next to these limitations in training plot availability, in the heterogeneous 

approaches some species were only present in endmembers with a limited percentage 

(i.e. Arbutus unedo: 75%, Erica arborea: 75%, Phillyrea latifolia: 25%). This limits the 

analysis as these species could never be detected with abundances larger than the 

percentages they constitute in the respective endmembers. Moreover, in the 

homogeneous approach Erica arborea and Phillyrea latifolia were not present at all 

which excludes them entirely from the image analysis. In this way, the selection of 

endmembers influences the image analysis. In the case of the heterogeneous 

approaches, the composition of the training plots is a good representation of the 

species canopy compositions encountered in the field, so the limited percentages do not 

affect the results much. On the other hand, in the case of the homogeneous approaches 

two species are excluded even though they are regularly present in the canopy. The 

possibility to detect species that have lower abundance, is an inherent advantage of the 

heterogeneous approaches compared to the homogeneous approaches. 

 

6.3 Accuracy assessment 

The accuracy assessment of this study constitutes three components which will 

be discussed in the following paragraphs. First, the root mean square errors which 

compared the predicted species abundance per plot to the groundtruth as known from 

field observations, to check reliability of the image analysis. Second, the confusion 

matrices which compared how well the dominant species per plot were detected by the 

image analysis. Third, correlation coefficients between the average RMSE per plot and 

four vegetation characteristics, which investigated relations between parameters and 

possible bias.  

From the RMSE accuracy assessment it was found that image analysis on the 

basis of heterogeneous endmembers produces substantially better results than image 

analysis on the basis of homogeneous endmembers: of the four species predicted by all 

approaches (Quercus ilex, Arbutus unedo, Quercus pubescens and Castanea sativa), 

average RMSE of the homogeneous approaches is 32% compared to 23% for the 

heterogeneous approaches. The RMSE is relative to the species abundance values, 

which means that they differ per species. For example, Quercus ilex has relatively high 

abundance (average per approach: 12% – 48%) and therefore high RMSEs (31% - 52%). 

Phillyrea latifolia however has much lower abundance (average per approach: 3% - 5%) 

and consequently low RMSEs (6% – 8%). When considering the RMSEs (Table 5.6), it has 

to be kept in mind that their meaning differs per species in relation to their relative 

abundance in the canopy (Table 5.4). The total averaged RMSEs per approach shows the 
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clear advantage of heterogeneous approaches over homogeneous approaches though, 

which is the most important outcome of the accuracy assessment. 

 Assessing the accuracy of abundance values is uncommon in vegetation remote 

sensing studies as most researches use classification approaches (e.g. Clark et al., 2005; 

Lucas et al., 2008). Therefore, it is difficult to compare the results of this study to other 

researches. Li et al. (2005) applied spectral mixture analysis to map the fractions of 

three vegetation species in a coastal salt marsh. They do not report specific error values, 

but state that geographical trends as observed in the field are similar to those obtained 

from the image analysis, and that two species are often intermixed because they are 

spectrally similar. These are similar results to this research, but the number of species 

studied is three instead of six. Therefore, the research described in this report has 

achieved similar results with a more challenging approach. Sobhan (2007) performed 

spectral unmixing of hyperspectral imagery in a Mediterranean environment on the 

basis of twenty homogeneous endmembers. He investigated if the species present on 

the ground were correctly detected. The average number of species in the validation 

plots is three, for which an RMSE of slightly less than one species per validation plot is 

found (0.73). The accuracies of the respective abundances were not assessed however, 

which makes a comparison impossible. To conclude, vegetation research on the basis of 

abundance is uncommon and limited material for comparison is available. In future 

studies the methods to assess accuracies of species abundance values should be 

improved.  

 To obtain an additional measure of prediction accuracy, confusion matrices were 

applied. As this methodology only works for classification approaches, the matrix 

analysis was applied to the dominant species of the plots. The main disadvantage of this 

method is that it does not provide insight in the accuracy of species that typically have 

low abundance in the canopy – i.e. Castanea sativa, Erica arborea and Phillyrea latifolia. 

Indeed these species are hardly ever dominant and therefore their respective user’s and 

producer’s accuracy have little meaning for image analysis reliability. For the more 

dominant species – i.e. Quercus ilex, Arbutus unedo and Quercus pubescens – the 

method does provide useful insights. The most important result is that the 

heterogeneous approaches perform substantially better than the homogeneous 

approaches: on average respectively 0.62 compared to 0.43. Next to that, it is shown 

that Quercus ilex is regularly erroneously classified to be the dominant species – i.e. it is 

overestimated. Quercus ilex is indeed the most common species in the study area, and 

the image analysis methodology is biased in favour of this species. In future studies on 

species mapping, specific attention should be paid to this characteristic in order to 

prevent the more common species from erroneously dominating image analysis results. 
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 Studies on vegetation species mapping often classify pixels into distinct groups, 

which can be compared to the estimated dominant species of the validation plots. 

Based on confusion matrices, Clark et al. (2005) obtain an average accuracy of 0.86 and 

Lucas et al. (2008) of 0.76. This is substantially better than the 0.62 obtained in the 

research described in this report. Nonetheless, the two aforementioned studies 

specifically use homogeneous canopy spectra which makes classification easier than for 

heterogeneous canopy spectra. Youngentob et al. (2011) studied heterogeneous 

Eucalypt forests and obtained an accuracy of the dominant species of 0.83. This is better 

than the accuracies obtained in the research described in this report, but Youngentob et 

al. (2011) only considered two species groups which is easier to distinguish between 

than six species. 

 The final component of the accuracy assessment regarded the investigation of 

correlations and possible bias of the image analysis methodology. The only coefficients 

that show substantial correlation resulted from the average RMSE per plot in 

combination with the level of heterogeneity. The heterogeneous approaches show a 

distinct negative correlation (-0.51 to -0.59). As is discussed in section 5.3.3, this 

indicates a serious bias of the image analysis methodology in favour of pixels with 

heterogeneous vegetation composition. This also results in the overestimation of 

species with low abundance groundtruth values, the underestimation of species with 

high abundance groundtruth values, and it limits the predictive range of the image 

analysis (Fig. 5.4). These characteristics of the image analysis results show a distinct 

pitfall of the image analysis methodology applied in this study. When future studies plan 

to apply heterogeneous endmembers in their spectral unmixing analysis, serious 

attention has to be paid to this issue.  
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7.  Conclusions and recommendations 
 The main objective of this research was to map six Mediterranean natural 

vegetation species on the basis of hyperspectral imagery, in the natural forest area of 

the Peyne catchment, southern France. For this purpose, a new approach was 

suggested: linear spectral unmixing on the basis of heterogeneous endmembers, as 

opposed to the conventional approach of homogeneous endmembers. Both approaches 

were performed, in order to evaluate the difference in results. Next to this, two 

additional methodologies were tested: image analysis with an object-based approach 

compared to the traditional pixel-based approach, and image analysis on the basis of 

continuum removed reflectance data compared to image analysis on the basis of 

original reflectance data. Finally, an accuracy assessment was performed to check and 

compare the reliability of the results, and evaluate possible correlations and biases. The 

final conclusions are as follows: 

 

- Mediterranean vegetation species mapping by means of imaging spectroscopy is 

possible. However, the uncertainties remain large: RMSEs range from 9% to 52% 

for the homogeneous approaches (average canopy fractions: 2% to 32%), and 

from 6% to 31% for the heterogeneous approaches (average canopy fractions: 

1% to 48%).  
 

- Linear spectral unmixing on the basis of heterogeneous endmembers produces 

better mapping results than on the basis of homogeneous endmembers: average 

RMSE of the four species modelled by all approaches is 32% with homogeneous 

endmembers and 23% with heterogeneous endmembers. Moreover, the 

heterogeneous image analysis approaches are capable of mapping six species 

whereas the homogeneous approaches can map only four species. 
 

- Species mapping using pixel-based image analysis or object-based image analysis 

does not result in substantially different model performance. 
 

- Species mapping using original reflectance spectra or continuum removed 

reflectance spectra does not result in substantially different model performance. 
 

- The accuracy assessment showed the differences and similarities between the 

various analysis approaches. Also, a substantial negative correlation between the 

RMSE per plot and the level of heterogeneity was found, indicating bias of the 

image analysis procedure in favour of vegetation with heterogeneous 

composition. 
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Future research on natural vegetation species mapping should pay attention to 

various issues that were encountered during this research. During the field work, 

practical improvements could be made by improving the measurement methodology of 

the canopy composition. Visual estimates are reasonably consistent, but a more 

automated and quantitative method would increase reliability. The accuracy of 

geometric localization is also important. As canopy cover reduces the reliability of GPS 

devices, a more advanced instrument is recommended. With regards to the image 

analysis process, it is recommended to investigate the best spectral unmixing approach. 

Besides linear spectral unmixing – applied  in this research – various other algorithms 

are available that might improve analysis results (Kesheva, 2003). The same applies to 

the selection of endmembers. In this research endmembers were selected manually. 

Many studies have focused on the selection of the perfect endmembers with advanced 

algorithms, explaining most of the variance (Tompkins, 1997). If the choice of 

endmembers is based on such procedures, the accuracy of species mapping might be 

substantially improved. From the accuracy assessment it followed that few studies 

performed species mapping by detecting abundance, therefore making comparisons of 

accuracy with other studies difficult. Li et al. (2005) obtained similar results with less 

species, though clear error tests are not provided. Classification of homogeneous 

canopies achieve substantially better results: average overall accuracies of 0.86 and 0.76 

(Clark et al., 2005; Lucas et al., 2008) as opposed to 0.62 for the research described in 

this report. Also in heterogeneous environments good results have been obtained (0.83) 

(Youngentob et al., 2011), but in this case only two species were considered which is 

easier than six species. In follow-up studies, substantial attention should be paid to 

accuracy assessment to produce statistical tests that can easily be compared with other 

studies. Lastly, the correlation tests showed the bias of the model approach in favour of 

vegetation with heterogeneous compositions. This is a serious disadvantage of this 

image analysis procedure which has to be kept in mind. 

To conclude, spectral unmixing of hyperspectral imagery on the basis of 

heterogeneous endmembers is an innovative approach in vegetation species mapping. It 

provides a new step in the research towards detailed, accurate monitoring of vegetation 

dynamics. With the launch of hyperspectral satellites such as USA’s Hyperion (NASA, 

2012) and Germany’s EnMAP (EnMAP, 2012), the areal extent to which this type of 

research can be expanded is enormous. Therefore, the future possibilities for vegetation 

studies by means of imaging spectroscopy are very promising. 
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Appendices 
Appendix A – plot description and canopy composition 

  UTM   

vegetation 
cover 
density  land cover class (Tomaselli 1981) 

code X (East) 
Y 
(North)       

A0101 521511 4826453 high high matorral dense 

A0102 521554 4826426 high high matorral dense 

A0103 521602 4826441 high high matorral dense 

A0104 521601 4826394 high high matorral dense 

A0105 521578 4826440 high high matorral dense 

A0106 521549 4826400 high high matorral dense 

A0107 521524 4826354 high high matorral discontinuous 

A0108 521532 4826399 high high matorral dense 

A0201 521616 4826064 middle middle matorral dense 

A0202 521645 4826020 high middle matorral dense 

A0203 521695 4826025 middle high matorral dense 

A0204 521749 4826023 high high matorral dense 

A0205 521774 4825981 high high matorral dense 

A0206 521723 4825971 high middle matorral dense 

A0207 521677 4825982 high middle matorral dense 

A0208 521653 4826033 middle middle matorral dense 

A0301 521873 4826382 middle middle matorral dense 

A0302 521831 4826410 high middle matorral dense 

A0303 521800 4826371 high middle matorral dense 

A0304 521812 4826419 middle middle matorral dense 

A0305 521786 4826461 middle middle matorral discontinuous 

A0306 521808 4826430 high middle matorral dense 

A0307 521821 4826383 middle middle matorral discontinuous 

A0308 521774 4826372 high high matorral dense 

A0401 521056 4826009 high high matorral discontinuous 

A0402 521101 4826029 high high matorral dense 

A0403 521095 4825980 high high matorral discontinuous 

A0404 521121 4826022 high high matorral dense 

A0405 521129 4826069 high high matorral discontinuous 

A0406 521084 4826050 high high matorral discontinuous 

A0407 521068 4826092 high high matorral dense 

A0408 521108 4826063 high high matorral dense 

A0501 521152 4826254 high high matorral dense 

A0502 521129 4826209 high high matorral dense 

A0503 521116 4826162 middle high matorral discontinuous 

A0504 521086 4826199 middle high matorral discontinuous 

A0505 521059 4826156 middle high matorral discontinuous 

A0506 521017 4826189 high high matorral dense 

A0507 520965 4826186 high high matorral dense 

A0508 520962 4826241 middle high matorral discontinuous 
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A1001 521750 4826368 high high matorral dense 

A1002 521739 4826381 high high matorral dense 

B0101 522823 4826233 high high matorral dense 

B0102 522844 4826195 middle middle matorral dense 

B0103 522802 4826131 high middle matorral dense 

B0104 522769 4826095 high middle matorral dense 

B0105 522772 4826146 middle middle matorral dense 

B0106 522799 4826195 high middle matorral dense 

B0107 522752 4826187 high middle matorral dense 

B0108 522771 4826233 high middle matorral dense 

B0201 524243 4825795 high high matorral dense 

B0202 524201 4825770 high middle matorral dense 

B0203 524246 4825791 high high matorral dense 

B0204 524288 4825753 high high matorral dense 

B0205 524238 4825742 high high matorral dense 

B0206 524243 4825695 high middle matorral dense 

B0207 524194 4825682 high middle matorral dense 

B0208 524213 4825638 high middle matorral dense 

B0301 523203 4825977 high high matorral dense 

B0302 523246 4825953 middle middle matorral dense 

B0303 523211 4825993 high high matorral dense 

B0304 523177 4826031 high high matorral dense 

B0305 523131 4826054 high high matorral dense 

B0306 523088 4826024 high planted forest \ 

B0307 523130 4825994 high middle matorral dense 

B0308 523081 4826002 high middle matorral dense 

B0401 523720 4825820 high high matorral dense 

B0402 523770 4825830 high middle matorral dense 

B0403 523738 4825861 high middle matorral dense 

B0404 523784 4825836 high middle matorral dense 

B0405 523784 4825787 high middle matorral dense 

B0406 523740 4825762 high middle matorral dense 

B0407 523788 4825739 high middle matorral dense 

B0408 523826 4825709 high middle matorral dense 

B0501 522966 4826294 high high matorral dense 

B0502 523016 4826296 high middle matorral dense 

B0503 523047 4826260 high middle matorral dense 

B0504 522990 4826268 high high matorral dense 

B0505 522943 4826291 high high matorral dense 

B0506 522978 4826327 high high matorral dense 

B0507 523024 4826339 high middle matorral dense 

B0508 522992 4826373 high high matorral dense 

C0101 524954 4823251 high middle matorral dense 

C0102 524985 4823292 high middle matorral dense 

C0103 524946 4823327 high middle matorral dense 

C0104 524994 4823345 high middle matorral dense 

C0105 525011 4823394 high middle matorral dense 

C0106 525005 4823445 high middle matorral dense 
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C0107 524964 4823472 high middle matorral dense 

C0108 525017 4823458 high middle matorral dense 

C0201 525340 4823423 high middle matorral dense 

C0202 525290 4823419 high middle matorral dense 

C0203 525270 4823371 high middle matorral dense 

C0204 525278 4823421 high middle matorral dense 

C0205 525228 4823411 high middle matorral dense 

C0206 525202 4823369 high middle matorral dense 

C0207 525226 4823324 high middle matorral dense 

C0208 525262 4823283 high 
middle/high 
matorral dense 

C0301 524803 4823203 high middle matorral dense 

C0302 524797 4823153 high middle matorral dense 

C0303 524834 4823182 high middle matorral dense 

C0304 524830 4823228 high middle matorral dense 

C0305 524808 4823275 high high matorral dense 

C0306 524764 4823254 high middle matorral dense 

C0307 524814 4823263 high high matorral dense 

C0308 524855 4823289 high middle matorral dense 

C0401 525421 4823996 high middle matorral dense 

C0402 525376 4824016 high middle matorral dense 

C0403 525326 4824025 high middle matorral dense 

C0404 525300 4823982 high middle matorral dense 

C0405 525276 4823935 high middle matorral dense 

C0406 525281 4823885 high middle matorral dense 

C0407 525234 4823872 high high matorral dense 

C0408 525276 4823902 high middle matorral dense 

C0501 524880 4824025 high middle matorral dense 

C0502 524834 4824004 high middle matorral dense 

C0503 524837 4823955 high middle matorral dense 

C0504 524832 4823904 high high matorral dense 

C0505 524883 4823887 high middle matorral dense 

C0506 524871 4823937 high high matorral dense 

C0507 524822 4823925 high high matorral dense 

C0508 524781 4823892 high middle matorral dense 

D0101 523466 4823095 middle middle matorral  discontinuous 

D0102 523506 4823070 middle middle matorral  discontinuous 

D0103 523569 4823052 high middle matorral dense 

D0104 523553 4823103 high middle matorral dense 

D0105 523586 4823059 high middle matorral dense 

D0106 523584 4823102 high middle matorral dense 

D0107 523630 4823110 high middle matorral dense 

D0108 523591 4823135 high middle matorral dense 

D0201 523819 4823186 high middle matorral dense 

D0202 523782 4823154 high middle matorral dense 

D0203 523736 4823133 high middle matorral dense 

D0204 523761 4823169 high middle matorral dense 

D0205 523720 4823200 middle middle matorral dense 
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D0206 523706 4823154 high middle matorral dense 

D0207 523663 4823139 high high matorral dense 

D0208 523691 4823097 high middle matorral discontinuous 

D0301 523427 4823410 high middle matorral dense 

D0302 523429 4823460 high middle matorral dense 

D0303 523390 4823500 high middle matorral dense 

D0304 523436 4823488 high middle matorral dense 

D0305 523482 4823476 high middle matorral dense 

D0306 523433 4823497 high middle matorral dense 

D0307 523432 4823548 high middle matorral dense 

D0308 523397 4823583 high middle matorral dense 

D0401 523532 4823793 high middle matorral dense 

D0402 523572 4823822 high middle matorral dense 

D0403 523521 4823826 high middle matorral dense 

D0404 523472 4823836 high middle matorral dense 

D0405 523496 4823792 high middle matorral dense 

D0406 523448 4823793 high middle matorral dense 

D0407 523432 4823841 high middle matorral dense 

D0408 523381 4823844 high middle matorral dense 

D0501 523451 4823650 high middle matorral dense 

D0502 523410 4823685 high middle matorral dense 

D0503 523386 4823726 high middle matorral dense 

D0504 523344 4823753 high middle matorral dense 

D0505 523386 4823781 high middle matorral dense 

D0506 523431 4823805 high middle matorral dense 

D0507 523449 4823759 high high matorral dense 

D0508 523406 4823738 high high matorral dense 

D1001 523837 4823072 middle middle matorral discontinuous 

D1002 523850 4823050 middle middle matorral discontinuous 

D1003 523824 4823117 high middle matorral dense 

D1004 523866 4823139 high middle matorral dense 

D1005 523856 4823170 high middle matorral dense 

D1006 523549 4823289 high high matorral dense 

D1007 523431 4823041 high middle matorral discontinuous 

 

  
OUT-
CANOPY NON- CANOPY species abundances in the canopy (%) 

code 
vegetation 
(%) 

vegetation 
(%) % QIL ARU QPU CAS ERA PHL other 

A0101   100 100 0 0 0 0 0  

A0102   100 100 0 0 0 0 0  

A0103   100 90 0 10 0 0 0  

A0104   100 50 0 50 0 0 0  

A0105   100 100 0 0 0 0 0  

A0106   100 100 0 0 0 0 0  

A0107 20 - shrubs  80 65 0 35 0 0 0  

A0108   100 100 0 0 0 0 0  

A0201   100 70 15 0 0 0 15  
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A0202   100 50 20 0 0 0 0 30 

A0203   100 80 20 0 0 0 0  

A0204   100 20 0 80 0 0 0  

A0205   100 20 0 80 0 0 0  

A0206   100 50 0 40 0 0 10  

A0207   100 50 30 0 0 0 0 20 

A0208   100 90 0 0 0 0 10  

A0301   100 95 0 5 0 0 0  

A0302   100 90 0 10 0 0 0  

A0303   100 75 25 0 0 0 0  

A0304   100 90 10 0 0 0 0  

A0305   100 70 30 0 0 0 0  

A0306   100 95 5 0 0 0 0  

A0307 10 - shrubs 20 - litter 70 100 0 0 0 0 0  

A0308   100 0 0 100 0 0 0  

A0401   100 30 0 70 0 0 0  

A0402   100 50 0 50 0 0 0  

A0403   100 0 0 100 0 0 0  

A0404   100 10 0 90 0 0 0  

A0405   100 20 0 80 0 0 0  

A0406   100 0 0 100 0 0 0  

A0407   100 10 0 90 0 0 0  

A0408   100 20 0 80 0 0 0  

A0501   100 20 0 80 0 0 0  

A0502   100 20 10 70 0 0 0  

A0503   100 0 0 100 0 0 0  

A0504   100 0 0 100 0 0 0  

A0505   100 0 0 100 0 0 0  

A0506   100 0 0 100 0 0 0  

A0507   100 90 0 10 0 0 0  

A0508   100 0 0 100 0 0 0  

A1001   100 0 0 100 0 0 0  

A1002   100 10 0 90 0 0 0  

B0101   100 100 0 0 0 0 0  

B0102   100 75 0 0 0 0 20 5 

B0103   100 75 0 0 0 0 25  

B0104   100 15 50 25 0 0 10  

B0105   100 60 15 15 0 0 10  

B0106   100 40 10 40 0 0 10  

B0107   100 60 0 20 0 0 20  

B0108   100 90 0 10 0 0 0  

B0201   100 100 0 0 0 0 0  

B0202   100 100 0 0 0 0 0  

B0203   100 100 0 0 0 0 0  

B0204   100 100 0 0 0 0 0  

B0205   100 100 0 0 0 0 0  

B0206   100 100 0 0 0 0 0  

B0207   100 100 0 0 0 0 0  
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B0208   100 100 0 0 0 0 0  

B0301   100 100 0 0 0 0 0  

B0302   100 10 0 0 90 0 0  

B0303   100 60 40 0 0 0 0  

B0304   100 60 15 0 10 0 0 15 

B0305   100 75 25 0 0 0 0  

B0306   100 0 0 0 100 0 0  

B0307   100 20 30 50 0 0 0  

B0308   100 25 70 0 0 0 5  

B0401   100 100 0 0 0 0 0  

B0402   100 90 0 0 0 0 0 10 

B0403   100 100 0 0 0 0 0  

B0404   100 85 0 0 0 0 0 15 

B0405   100 100 0 0 0 0 0  

B0406   100 80 0 0 0 0 20  

B0407   100 80 0 0 0 0 20  

B0408   100 100 0 0 0 0 0  

B0501   100 20 0 80 0 0 0  

B0502   100 85 15 0 0 0 0  

B0503   100 80 0 20 0 0 0  

B0504   100 100 0 0 0 0 0  

B0505   100 100 0 0 0 0 0  

B0506   100 40 0 60 0 0 0  

B0507   100 75 0 25 0 0 0  

B0508   100 80 20 0 0 0 0  

C0101   100 100 0 0 0 0 0  

C0102   100 50 50 0 0 0 0  

C0103   100 70 30 0 0 0 0  

C0104   100 40 60 0 0 0 0  

C0105   100 30 65 0 0 5 0  

C0106   100 30 60 0 0 0 10  

C0107   100 55 30 0 0 5 5 5 

C0108   100 30 50 0 0 10 0 10 

C0201   100 30 70 0 0 0 0  

C0202   100 30 60 0 0 10 0  

C0203   100 60 30 0 0 10 0  

C0204   100 35 60 0 0 5 0  

C0205   100 50 50 0 0 0 0  

C0206   100 60 40 0 0 0 0  

C0207   100 35 60 0 0 5 0  

C0208   100 10 90 0 0 0 0  

C0301   100 50 50 0 0 0 0  

C0302   100 30 70 0 0 0 0  

C0303  10 - rocks 90 30 30 0 0 40 0  

C0304   100 60 30 0 0 10 0  

C0305   100 70 30 0 0 0 0  

C0306   100 75 25 0 0 0 0  

C0307   100 100 0 0 0 0 0  
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C0308   100 100 0 0 0 0 0  

C0401   100 65 35 0 0 0 0  

C0402   100 25 75 0 0 0 0  

C0403   100 60 40 0 0 0 0  

C0404   100 50 30 20 0 0 0  

C0405   100 80 20 0 0 0 0  

C0406   100 80 20 0 0 0 0  

C0407   100 60 40 0 0 0 0  

C0408   100 70 30 0 0 0 0  

C0501   100 90 10 0 0 0 0  

C0502   100 55 45 0 0 0 0  

C0503   100 80 10 0 0 5 0 5 

C0504   100 50 30 0 0 0 10 10 

C0505   100 50 50 0 0 0 0  

C0506   100 30 70 0 0 0 0  

C0507   100 70 15 0 0 0 15  

C0508   100 50 40 0 0 0 5 5 

D0101 10 - shrubs 5 - litter 85 40 0 0 0 60 0  

D0102 5 - shrubs 15 - litter 80 75 10 0 0 15 0  

D0103   100 65 30 0 0 5 0  

D0104   100 90 0 0 0 5 0 5 

D0105   100 50 40 0 0 10 0  

D0106   100 40 40 0 0 20 0  

D0107   100 10 20 0 0 70 0  

D0108   100 75 5 0 0 0 20  

D0201   100 30 40 0 0 30 0  

D0202   100 90 0 0 0 10 0  

D0203   100 90 0 0 0 10 0  

D0204   100 35 0 0 0 65 0  

D0205   100 40 40 0 0 20 0  

D0206   100 50 0 0 0 45 0 5 

D0207   100 75 25 0 0 0 0  

D0208 30 - shrubs  70 30 15 0 0 40 0 15 

D0301   100 60 40 0 0 0 0  

D0302   100 10 80 0 0 10 0  

D0303   100 20 70 0 0 10 0  

D0304   100 50 50 0 0 0 0  

D0305   100 65 35 0 0 0 0  

D0306   100 70 30 0 0 0 0  

D0307   100 40 60 0 0 0 0  

D0308   100 30 70 0 0 0 0  

D0401   100 75 25 0 0 0 0  

D0402   100 65 35 0 0 0 0  

D0403   100 40 50 0 0 0 10  

D0404   100 80 20 0 0 0 0  

D0405   100 50 50 0 0 0 0  

D0406   100 70 30 0 0 0 0  

D0407   100 80 0 0 0 0 20  



 75 

D0408   100 65 30 0 0 0 5  

D0501   100 10 80 0 0 10 0  

D0502   100 15 70 0 0 15 0  

D0503   100 20 60 0 0 10 0 10 

D0504   100 50 40 0 0 10 0  

D0505   100 60 30 0 0 10 0  

D0506   100 60 40 0 0 0 0  

D0507   100 60 35 0 0 0 5  

D0508   100 10 90 0 0 0 0  

D1001   100 20 0 0 0 80 0  

D1002   100 30 10 0 0 60 0  

D1003   100 30 0 0 0 70 0  

D1004   100 20 20 0 0 60 0  

D1005   100 10 50 0 0 40 0  

D1006   100 65 0 0 0 0 35  

D1007   100 10 30 0 0 60 0  
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Appendix B – training plot data 
homogeneous 
training plots species percentage canopy cover 

heterogeneous 
training plots species percentage canopy cover 

100% QIL QIL ARU QPU CAS ERA PHL 100% QIL QIL ARU QPU CAS ERA PHL 

A0101 100%       A0101 100%       

A0102 100%       A0102 100%       

A0106 100%       A0106 100%       

A0307 100%       A0307 100%       

B0101 100%       B0101 100%       

B0202 100%       B0202 100%       

B0204 100%       B0204 100%       

B0206 100%       B0206 100%       

B0207 100%       B0207 100%       

B0301 100%       B0301 100%       

B0401 100%       B0401 100%       

B0405 100%       B0405 100%       

B0504 100%       B0504 100%       

C0101 100%       C0101 100%       

C0308 100%       C0308 100%       

                 

100% ARU        
75% QIL  
25% ARU        

B0308 25% 70%    5% A0303 75% 25%      

C0201 30% 70%      A0305 70% 30%      

C0208 10% 90%      B0305 75% 25%      

C0302 30% 70%      C0103 70% 30%      

C0402 25% 75%      C0305 70% 30%      

C0506 25% 75%      C0306 75% 25%      

D0308 25% 75%      C0408 70% 30%      

D0508 10% 90%      D0207 75% 25%      

         D0306 70% 30%      

100% QPU        D0401 75% 25%      

A0308   100%     D0406 70% 30%      

A0403   100%             

A0404 10%  90%     
50% QIL  
50% ARU        

A0406   100%     C0102 50% 50%      

A0407 10%  90%     C0205 50% 50%      

A0503   100%     C0301 50% 50%      

A0504   100%     C0502 55% 45%      

A0505   100%     C0505 50% 50%      

A0506   100%     D0304 50% 50%      

A0508   100%     D0405 50% 50%      

A1001   100%             

A1002 10%  90%     
75% ARU  
25% QIL        

         B0308 25% 70%    5% 

100% CAS        C0201 30% 70%      

B0302 10%   90%    C0302 30% 70%      

B0306    100%    C0402 25% 75%      
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CAS0501*    100%    C0506 25% 75%      

CAS1001*    100%    D0308 25% 75%      

CAS1002*    100%            

         
50% QIL  
50% QPU        

         A0104 50%  50     

         A0402 50%  50     

         B0506 40%  60     

                 

         100% QPU        

         A0308   100%     

         A0403   100%     

         A0404 10%  90%     

         A0406   100%     

         A0407 10%  90%     

         A0503   100%     

         A0504   100%     

         A0505   100%     

         A0506   100%     

         A0508   100%     

         A1001   100%     

         A1002 10%  90%     

                 

         
75% ERA  
25% QIL        

         D0204 35%    65%   

         D1001 20%    80%   

         D1003 30%    70%   

                 

         
75% ERA  
25% ARU        

         D0107 10% 20%   70%   

         D1007 10% 30%   60%   

                 

         
75% QIL  
25% PHL        

         B0102 75%     20% 

         B0103 75%     25% 

         B0406 80%     20% 

         B0407 80%     20% 

         D0108 75% 5%    20% 

         D0407 80%     20% 

                 

         100% CAS        

         B0302 10%   90%    

         B0306    100%    

 *plots located outside study area CAS0501*    100%    

         CAS1001*    100%    

      CAS1002 *       100%     
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Appendix C – physical vegetation characteristics per plot 

code height (m) vegetation cover 
biomass 
(ton/ha) 

heterogeneity 
(nr of species 

per plot) 

A0101 6.0 80 230 1 

A0102 7.0 89 202 1 

A0103 8.0 86 170 2 

A0104 12.0 86 325 2 

A0105 8.0 89 150 1 

A0106 6.0 69 171 1 

A0107 4.0 74 51 2 

A0108 6.0 70 131 1 

A0201 6.0 68 136 3 

A0202 5.0 82 108 2 

A0203 9.0 83 332 2 

A0204 12.0 67 392 2 

A0205 17.0 85 102 2 

A0206 6.0 89 47 3 

A0207 4.0 87 75 2 

A0208 6.0 85 84 2 

A0301 4.5 62 177 2 

A0302 6.0 88 151 2 

A0303 6.0 57 89 2 

A0304 6.0 77 161 2 

A0305 6.0 82 101 2 

A0306 6.0 54 113 2 

A0307 5.0 76 34 1 

A0308 12.0 81 2 1 

A0401 12.0 73 219 2 

A0402 9.0 72 35 2 

A0403 12.0 85 267 1 

A0404 11.0 79 96 2 

A0405 12.0 86 181 2 

A0406 15.0 72 384 1 

A0407 14.0 81 140 2 

A0408 12.0 87 214 2 

A0501 14.0 70 136 2 

A0502 12.0 71 89 3 

A0503 10.0 67 49 1 

A0504 11.0 61 228 1 

A0505 12.0 62 207 1 

A0506 13.0 72 175 1 

A0507 13.0 90 228 2 

A0508 14.0 73 111 1 

A1001 13.0 54 186 1 

A1002 15.0 64 399 2 

B0101 7.5 88 176 1 

B0102 4.0 76 133 2 
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B0103 5.0 85 106 2 

B0104 6.0 89 131 4 

B0105 6.0 86 134 4 

B0106 6.0 82 103 4 

B0107 6.0 83 161 3 

B0108 7.0 87 155 2 

B0201 8.5 75 148 1 

B0202 5.0 79 95 1 

B0203 10.0 70 154 1 

B0204 10.0 80 287 1 

B0205 9.0 75 180 1 

B0206 4.0 83 79 1 

B0207 6.0 93 145 1 

B0208 6.0 71 171 1 

B0301 9.0 67 171 1 

B0302 12.0 78 184 2 

B0303 7.0 68 137 2 

B0304 8.0 65 75 3 

B0305 7.0 69 95 2 

B0306 17.0 82 1084 1 

B0307 7.0 65 146 3 

B0308 5.0 72 67 3 

B0401 7.0 77 185 1 

B0402 5.0 66 112 1 

B0403 6.0 69 76 1 

B0404 5.0 71 136 1 

B0405 5.0 68 106 1 

B0406 5.0 77 120 2 

B0407 5.0 79 105 2 

B0408 5.0 72 118 1 

B0501 12.0 68 221 2 

B0502 7.0 75 131 2 

B0503 7.0 70 150 2 

B0504 8.0 62 114 1 

B0505 8.0 79 239 1 

B0506 11.0 79 156 2 

B0507 7.0 67 155 2 

B0508 12.0 71 207 2 

C0101 7.5 71 318 1 

C0102 4.0 83 83 2 

C0103 4.0 80 189 2 

C0104 6.0 74 94 2 

C0105 6.0 84 95 3 

C0106 6.0 87 105 3 

C0107 5.5 85 50 4 

C0108 6.0 81 73 3 

C0201 3.5 78 63 2 

C0202 3.5 78 83 3 
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C0203 5.0 76 67 3 

C0204 6.0 68 122 3 

C0205 4.0 65 143 2 

C0206 5.0 76 98 2 

C0207 6.0 73 94 3 

C0208 7.0 79 57 2 

C0301 6.0 74 88 2 

C0302 5.0 57 96 2 

C0303 2.5 51 51 3 

C0304 5.0 77 97 3 

C0305 5.5 80 130 2 

C0306 4.0 77 107 2 

C0307 7.0 80 149 1 

C0308 6.0 76 116 1 

C0401 5.0 75 150 2 

C0402 5.0 82 100 2 

C0403 6.0 73 170 2 

C0404 7.0 83 129 3 

C0405 6.0 73 89 2 

C0406 6.0 87 126 2 

C0407 8.0 78 138 2 

C0408 5.0 82 192 2 

C0501 6.0 75 224 2 

C0502 6.0 72 126 2 

C0503 6.0 73 179 3 

C0504 7.0 71 113 3 

C0505 6.0 74 91 2 

C0506 7.0 71 78 2 

C0507 9.0 82 81 3 

C0508 6.0 89 143 3 

D0101 2.5 52 55 2 

D0102 4.0 63 14 3 

D0103 4.0 90 166 3 

D0104 5.0 81 193 2 

D0105 5.0 79 46 3 

D0106 4.0 89 76 3 

D0107 3.0 83 43 3 

D0108 6.5 83 153 3 

D0201 4.0 74 129 3 

D0202 6.0 84 32 2 

D0203 6.0 84 146 2 

D0204 2.5 62 79 2 

D0205 5.0 60 81 3 

D0206 4.0 87 80 2 

D0207 10.0 72 83 2 

D0208 3.5 72 23 3 

D0301 8.0 67 79 2 

D0302 5.5 74 123 3 
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D0303 5.0 71 71 3 

D0304 5.5 74 88 2 

D0305 6.0 79 88 2 

D0306 6.0 88 122 2 

D0307 6.0 77 73 2 

D0308 7.0 86 100 2 

D0401 6.0 70 174 2 

D0402 5.0 64 114 2 

D0403 6.5 63 120 3 

D0404 6.0 61 125 2 

D0405 6.0 77 108 2 

D0406 6.0 74 103 2 

D0407 6.0 78 154 2 

D0408 7.0 77 178 3 

D0501 5.0 78 74 3 

D0502 4.0 77 51 3 

D0503 5.0 81 132 3 

D0504 5.0 85 113 3 

D0505 6.0 69 97 3 

D0506 5.0 71 139 2 

D0507 9.0 80 181 3 

D0508 9.0 82 86 2 

D1001 3.5 64 21 2 

D1002 4.0 79 39 3 

D1003 4.0 81 41 2 

D1004 3.0 72 10 3 

D1005 4.0 52 37 3 

D1006 9.0 74 111 2 

D1007 3.0 54 31 3 

 
 


