
Marise Westbroek

Ion Distributions near an Oil-Water Interface

surface tension, antagonistic salt, and external voltages

Bachelor Thesis

Supervised by Prof. dr. René van Roij
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1 Introduction

The arrangement of ions at the charged interface of two immiscible liquids is crucial to many nanometer
scale assembly processes in electrochemistry and biology, such as electron and ion transfer across charged
biomembranes. The specific distribution of ions is also exploited in energy storage devices, where it
influences the charging properties of supercapacitors.

In this thesis ion distributions are predicted by means of Poisson-Boltzmann theory. In its simplest
form the Poisson-Boltzmann equation, which strongly builds upon Gouy-Chapman’s treatment of a single
planar charged surface in contact with a half space of electrolyte, describes the interaction of point-like
ions in a structureless continuum solvent via their self-consistent mean field.

A recent experimental study of ion concentrations near an electrified oil-water interface provided
the inspiration for an extension of this classical analysis. The ionic self-energy differences in oil and
water, as well as the presence of two planar walls (rather than one) are incorporated to describe the ion
distributions near an oil-water interface within an electrolytic cell. A schematic representation of such a
cell is given below.

Figure 1.1: Schematic depiction of an electrolytic cell [4]
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2 Electrostatic Forces

Salts easily dissociate into monovalent ions in solvents where the Coulombic attractions are weak, i.e.
solvents with a high dielectric constant ε. Dissociation is caused by the entropy gain involved.

2.1 The Bjerrum and Debye lengths

When two monovalent ions are a distance λB apart their Coulombic interaction is exactly kT , where k
is the Boltzmann constant and T the absolute temperature. The Bjerrum length λB is a property of the
solvent. In Gaussian units it is given by

λB =
e2

εkT
. (2.1)

The Bjerrum length in water is 0.72 nm at room temperature.

A unit charge e in ionic solution in equilibrium is surrounded by a cloud of net negative charge, which
reduces its electric field. This effect is known as Debye shielding and takes place on a typical length scale
called the Debye length

κ−1 =

√
εkT

8πe2ρs
. (2.2)

At fixed temperature κ−1 is a function of the solvent and the bulk ion concentration ρs. For a solution of
monovalent ions in water at room temperature we have 10−7 < ρs(M) < 10. The corresponding Debye
lengths, which are given in table 2.1, range from 0.096 to 960 nm [12].

ρs[M] κ−1[nm]
10−7 960
10−5 96
10−3 9.6
10−1 0.96
10+1 0.096
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3 Poisson-Boltzmann Theory

Summary

We consider a system of monovalent ions in a dielectric continuum of dielectric constant ε at temperature
T . The cations and anions interact with each other according to a Coulombic pair potential. In this section
we present a result known as the Poisson-Boltzmann equation, which involves a nonlinear differential
equation for the electrostatic potential. For the purpose of this thesis we restrict our attention to PB
theory near a planar electrode. An analytic solution to the Poisson-Boltzmann equation for this planar
geometry is known and will be generalized to predict ion distributions in a cell bounded by two planar
electrodes in later chapters. The adsorption of ions on the electrode and the interfacial tension will be
discussed briefly.

3.1 General grand potential functional

We describe a system of monovalent ions with densities ρ±(r), bulk density ρs and an external fixed
charge density q(r). Note that all densities are number densities, hence ρ+(r) provides a charge density
eρ+(r).

Assuming that long range pair interactions obey the Coulomb law we have the general grand potential
functional [12]

βΩ[{ρα}] =

∫
V

drρ+(r)
[
log
(
ρ+(r)Λ3

+

)
− 1
]

+

∫
V

drρ−(r)
[
log
(
ρ−(r)Λ3

−
)
− 1
]

+
λB
2

∫
V

drdr’
Q+(r)Q+(r’)

|r− r’|
+ β

∫
V

dr[ρ+(r)(V+(r)− µ+) + ρ−(r)(V−(r)− µ−)],

(3.1)

where Q(r) = ρ+(r)− ρ−(r) + q(r) is the total charge density and V±(r) is a non-electrostatic external
potential.

The dimensionless electrostatic potential φ is given by βeψ, with ψ the potential in volts.

φ(r) = λB

∫
V

dr′
Q(r′)

|r− r′|
. (3.2)

This dimensionless potential expresses an energy in terms of kT and is easily converted into ψ by the
relation φ = 1⇔ ψ = 25 mV. Eq. (3.2) can be rewritten in differential form,

∇2φ(r) = −4πλBQ(r),

where we have used that ∇ 1
|r| = −4πδ(r). This relation is known as the Poisson equation.

Combining Eq. (3.2) with the the chemical potentials µ± of an ideal gas,

βµ± = log(ρsΛ
3
±), (3.3)

Eq. (3.1) can be rewritten as

βΩ[{ρα}] =

∫
V

drρ+(r)

(
ρ+(r)

ρs
− 1

)
+

∫
V

drρ−(r)

(
ρ−(r)

ρs
− 1

)
+

1

2

∫
V

drQ(r)φ(r) + β

∫
V

dr[ρ+(r)V+(r) + ρ−(r)V−(r)]. (3.4)

The first two terms of Eq. (3.4) add to the entropy of an ideal gas, while the second term gives the
electrostatic energy of the system. The external potentials V±(r) can be added to account for specific
properties of the system. This potential will be used extensively in section 4.
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3.2 The Poisson-Boltzmann equation

The equilibrium condition δΩ[{ρα}]
δρα

= 0 yields the equilibrium distributions, known as the Boltzmann
distributions

ρ±(r) = ρs exp[∓φ(r)− βV±(r)]. (3.5)

See appendix (A.1) for a derivation of these equations. Relations (3.2) and (3.5) amount to

∇2φ(r) = 4πλB [−ρs exp(φ(r)− βV+(r)) + ρs exp(φ(r)− βV−(r))]− 4πλBq(r).

Setting V±(r) = 0 and requiring that φ goes to zero at infinity we obtain the well-known Poisson-
Boltzmann equation

∇2φ(r) = κ2 sinhφ(r)− 4πλBq(r)

lim
r→∞

φ(r) = 0. (3.6)

Depending on the form of q(r) and the geometry of the system an additional boundary condition should
be added.

For future reference we calculate the equilibrium grand potential of the system by inserting the
equilibrium distribution (3.5) into the functional (3.4),

βΩeq =

∫
V

dr
ρs
2
φ(r) [exp(φ(r)− βV−(r))− exp(−φ(r)− βV+(r))]

−
∫
V

drρs {[exp(φ(r)− βV−(r)) + exp(φ(r)− βV+(r))]− 2}

+ 2ρsV +
1

2

∫
V

drφ(r)q(r). (3.7)

3.3 The planar geometry

It is quite exceptional that the nonlinear PB equation can be solved analytically in the geometry of a
single wall in the plane z = 0 in contact with an electrolyte in the half space 0 < z < ∞. Translational
symmetry in the xy plane is assumed; the electrode’s presence is indicated by a fixed charge density
q(r) = σδ(z) and by the external potential

βV±(z) =

{
∞ if z < 0

0 if z > 0.
(3.8)

Combining the Boltzmann distributions as obtained from Eq. (3.5)

ρ±(z) = ρs exp(∓φ(z)− βV±(z)) (3.9)

with the Poisson equation
φ′′(z) = −4πλBQ(z), (3.10)

which follows from Eq. (3.2), we obtain a nonlinear differential equation for φ(z), known as the Poisson-
Boltzmann equation:

d2

dz2
φ(z) = κ2 sinhφ(z)− 4πλBσδ(z). (3.11)

For z > 0 an analytic solution to the Poisson-Boltzmann equation can be found for the planar geometry
of present interest, 

φ′′(z) = κ2 sinhφ(z)

limz→∞ φ′(z) = 0

lim
z↓0

φ′(z) = −4πλBσ,
(3.12)

where σ is the dimensionless charge density. We now derive the general solution to Eq. (3.12) [12].
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We introduce the dimensionless spatial coordinate s = κz, such that

d2φ(s)

ds2
= sinhφ(s).

The first boundary condition is straightforward, lims→∞ φ(s) = 0, and given that dφ
ds = βedψdz

dz
ds =

βeψ′(z) the second condition takes the form

lim
s↓0

φ′(s) = lim
z↓0

βeψ′(z)κ = βeκ
−4πσ

ε
=
−4πκσλB

e
,

where a prime denotes a total derivative. Multiplying both sides of the differential equation by dφ
ds we

find

dφ

ds

d2φ

ds2
=
dφ

ds
sinhφ(s)

d

ds

[
1

2

(
dφ

ds

)2

− coshφ(s)

]
= 0

1

2

(
dφ

ds

)2

− coshφ(s) = const.

In particular we may fix the integration constant by considering the limit s→∞,

lim
s→∞

[
1

2

(
dφ

ds

)2

− coshφ(s)

]
= −1

(
dφ

ds

)2

= 2[coshφ(s)− 1]

dφ

ds
=

√
4

[
1

2
(coshφ(s)− 1)

]
dφ

ds
= ±2 sinh

(
φ(s)

2

)
,

where the last step follows from the identity sinh(x2 ) =
√

1
2 [cosh(x)− 1]. Note that only the minus sign

of ± is compatible with the boundary condition. Now observe

d

ds
log

[
tanh

(
φ(s)

4

)]
=

1

tanh
(
φ(s)

4

) 1

cosh2
(
φ(s)

4

) 1

4

dφ

ds
=

1

4

1

sinh
(
φ(s)

4

)
cosh

(
φ(s)

4

) dφ
ds

=
1

2 sinh
(
φ(s)

2

) dφ
ds

,

so that upon using dφ
ds = 2 sinh

(
φ(s)

2

)
we find

d

ds
log

[
tanh

(
φ(s)

4

)]
= −1.

This equation is satisfied if we choose

tanh

(
φ(s)

4

)
= γw exp(−s) (3.13)
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where γw is an integration constant. From Eq. (3.13) we have, substituting s = κz,

φ(z) = 4 arctanh[γw exp(−κz)],

or equivalently

φ(z) = 2 log

[
1 + γw exp(−κz)
1− γw exp(−κz)

]
, (3.14)

and

φ′(z) =
−4κγw

exp(κz)− γ2
w exp(−κz)

,

where a prime denotes a derivative with respect to z. Finally, from

lim
z↓0

φ′(z) =
−4κγw
1− γ2

w

= −4πλBσ

we obtain

γw(σ) =

√
(2πλBκ−1σ)2 + 1− 1

2πλBκ−1σ
. (3.15)

Eq. (3.15) is equivalent to

σ =
8ρs
κ

γw
1− γ2

w

. (3.16)

Combination of relation (3.9) and solution (3.14) yields the equilibrium density profiles

ρ±(z) = ρw

[
1∓ γw exp(−κz)
1± γw exp(−κz)

]2

. (3.17)

The grand potential can be determined from Eq. (3.7)

βΩ(T, V, ρs)

A
= 2ρs

∫ ∞
0

dz

[
1

2
φ(z) sinh(z)− coshφ(z)− 1

]
+

1

2

∫ ∞
0

dzδ(z)σφ(z) + 2
ρsV

A
. (3.18)

3.4 Interfacial tension electrode-water

It is straightforward to simplify the equilibrium potential (3.7) for the planar geometry under consider-
ation

βΩeq = Aρs

∫ ∞
0

dz {φ(z) sinh(φ(z))− 2[cosh(φ(z))− 1]} − 2ρsV +
A

2
σφ(0).

This potential can be written as βΩeq = −pV β + βγA with p = 2ρskT the bulk osmotic pressure of the
electrolyte and V = A

∫∞
o

dz its volume, and γ the surface tension given by

βγ = ρs

∫ ∞
0

dz{φ(z) sinh(φ(z))− 2[cosh(φ(z))− 1]}+
1

2
σφ(0).

Substituting s = κz and using the relation [12]∫
ds
[
(Ξ(s)2 − Ξ(s)−2) log Ξ(s)− Ξ(s)2 − Ξ(s)−2 + 2

]
=

8γw(2γw − exp(s) log Ξ(s))

exp(2s)− γ2
w

+ const.

where we have substituted Ξ(s) = 1+γw exp(−s)
1−γ exp(−s) , or equivalently φ(s) = 2 log Ξ(s). Inserting the solution

to the nonlinear PB equation 3.14 yields

βγ =
ρs
κ

∫
ds
[
(Ξ(s)2 − Ξ(s)−2) log Ξ(s)− Ξ(s)2 − Ξ(s)−2 + 2

]
=
ρs
κ

8γw(2γw − exp(κz)φ(z)
2 )

exp(2κz − γ2
w)

∣∣∣∞
0

=
ρs
κ

8γw

 log
(

1+γw
1−γw

)
− 2γw

1− γ2
w

 .
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This is an explicit expression for the surface tension γ as a function of ρs, λB and σ, since the integration
constant γw depends on these quantities through Eq. (3.15). Fig. 3.1 shows γ(σ) for λB = 0.72 nm
(water), for ρs = 1 M, ρs = 100 mM and ρs = 10 mM. The interfacial tension is, like the electrostatic
potential, defined up to a constant. The presence of salt impedes the increase of the surface tension with
the charge density σ.

Figure 3.1: Interfacial tension electrode-water βγ as a function of the charge density σ, for ρs = 1 M
(dotted line), ρs = 100 mM (thick line) and ρs = 10 mM (dashed line). The interfacial tension grows
faster with σ for lower salt concentrations.

3.5 Adsorptions Γ±

To describe the excess number of ions near the electrode we introduce the adsorptions

Γ± =

∫ ∞
0

dz(ρ±(z)− ρs). (3.19)

Using the expressions for the equilibrium densities (3.17) we find

Γ± =

∫ ∞
0

dzρs

{[
1∓ γw exp(−κz)
1± γw exp(−κz)

]2

− 1

}
=
∓ρs
κ

4γw
1± γw

.

One checks that the electrode is electrically neutral:

Γ+ − Γ− =
−4γw
1− γ2

w

2ρs
κ

=
−4πλBσ

κ

2ρs
κ

= −σ. (3.20)
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4 Salts near Dielectric Interfaces

Summary

This chapter will focus on the equilibrium distributions of ions near an oil-water interface. Solvation
energies are illustrated by the Born energy and are defined as step functions with a discontinuity at
the interface. As a consequence of these self-energy differences the ions will partition unequally between
water and oil. A modified Poisson-Boltzmann theory is introduced for the dielectric interface. Special
attention is paid to the interfacial tension.

4.1 Born energy

An ion in a medium has an electrostatic free energy associated with it, even when not interacting with
other ions - the so-called self-energy. This energy is equal to the electrostatic work done in forming the
ion. For spherical particles in a medium it is commonly referred to as the Born energy. This quantity
determines the extent to which ions will dissolve and partition in different solvents. It will play an
important role in the rest of this thesis.

Consider the process of charging a spherical ion of radius a, located at the origin, by gradually
increasing its charge from 0 to its full charge e. If the charge at any time t is given by q(t) and is
increased by dq the work done in bringing this additional charge from infinity to r = a is given by
Coulomb’s law [5]

dw =
qdq

4πε0εa
(4.1)

and hence the Born energy is given by∫
dw =

∫ e

0

dq
q

4πε0εa
=

e2

8πε0εa
. (4.2)

The specific form of the Born energy will not be assumed the rest of this thesis. Rather, an ion’s generic
self-energy will be described as a step function across the interface between oil and water, gauged at zero
in water and taking a constant value f± in oil, where the index ± refers to the particle’s charge. If the
self-energies of cat- and anions have opposite signs the salt is called antagonistic. We will deal with this
type of salt extensively in section (5).

4.2 Poisson-Boltzmann theory near the interface

We consider a planar geometry with half spaces z < 0 and z > 0 filled with water and oil, respectively.
The liquids are assumed to be homogeneous, structureless dielectric media with respective dielectric
constants εw and εo. They form a flat interface at z = 0. From the generic grand potential functional [2],

βΩ[{ρα}] =
∑
α=±

∫
drρ±(r)

[
log

(
ρ±(r)

ρs

)
− 1

]
+

1

2

∫
drQ(r)φ(r) +

∑
α=±

∫
drρα(r)βVα(r), (4.3)

where Q(r) = ρ+(r) − ρ−(r) + q(r) is the total charge density, φ(r) is the dimensionless electrostatic
potential and ρs denotes the bulk concentration at limz→∞ in water. Eq. (4.3) can be rewritten for the
planar geometry of present interest as

βΩ[{ρα}] =
∑
α=±

A

∫ ∞
−∞

dzρα(z)

[
log

(
ρα(z)

ρs

)
− 1 + βVα(z) +

α

2
φ(z, [{ρα}])

]
, (4.4)

in terms of the dimensionless electrostatic potential φ(z, [{ρα}]) and the external potential

V±(z) =

{
0 if z < 0

f± if z > 0.
(4.5)
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The self-energies f+ of cations (charge e) and f− of anions (charge −e) have been gauged to zero in
water. The equilibrium conditions can be found by minimizing the functional (4.4), which gives

ρ±(z) = ρw exp(−βV±(z)∓ φ(z)). (4.6)

These account for the Poisson-Boltzmann equations in terms of the Debye lengths κw,o in water and oil,

φ′′(z) =

{
κ2
w sinh(φ(z)) if z < 0

κ2
o sinh(φ(z)− φD) if z > 0,

(4.7)

where the Donnan potential φD is given by φD = 1
2 (f− − f+). The corresponding boundary conditions

read

lim
z↑0

φ(z) = lim
z↓0

φ(z)

lim
z↑0

εwφ
′(z) = lim

z↓0
εoφ
′(z)

lim
z→−∞

φ′(z) = lim
z→∞

φ′(z) = 0. (4.8)

In the set (4.7) the Donnan potential φD appears in the argument of the sinh. This potential is determined
as follows. In the limits limz→−∞ and limz→∞ we require ρ+ = ρ− by neutrality of bulk fluids.Denoting

the potentials in these limits by

• limz→−∞ φ(z) ≡ φW

• limz→∞ φ(z) ≡ φD

we find that in water exp(−φW ) = exp(φW ), which implies φW = 0. In oil we have exp(−f+ − φD) =
exp(−f− + φD), hence

φD =
1

2
(f− − f+). (4.9)

The general solution to Eq. (4.7) with the boundary conditions of Eq. (4.8) is given by

φ(z) =


2 log

[
1 + Cw exp(κwz)

1− Cw exp(κwz)

]
if z < 0

2 log

[
1 + Co exp(−κoz)
1− Co exp(−κoz)

]
+ φD if z > 0.

(4.10)

The integration constants Cw en Co follow from the boundary conditions at z = 0 as

Cw =
κo + exp(φD)κo + 2 exp(φD2 )κw

εw
εo
− 2
√

exp(φD)(κ2
o + κ2

w( εwεo )2 + 2κoκw
εw
εo

cosh(φD2 )

κo(exp(φD)− 1)
(4.11)

Co = −
κw

εw
εo

+ exp(φD)κw
εw
εo

+ 2κo exp(φD2 )− 2
√

exp(φD)(κ2
o + κ2

w( εwεo )2 + 2κoκw
εw
εo

cosh(φD2 )

κw(exp(φD)− 1)
(4.12)

In oil we have that ρ±(z) = ρw exp(f± ∓ φ(z). Using Eq. (4.10) we can rewrite this as

ρ±(z) = ρw

[
1∓ Co exp(κoz)

1± Co exp(−κoz)

]2

exp(−f± ∓ φD) (4.13)

where
ρo = ρw exp(f± ∓ φD), (4.14)

so that the densities in oil are given by

ρ±(z) = ρo exp[∓(φ(z)− φD)]. (4.15)
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The equilibruim concentrations follow from Eq. (4.6)

ρ±(z) =


ρw

[
1∓ Cw exp(κwz)

1± Cw exp(κwz)

]2

if z < 0

ρo

[
1∓ Co exp(κoz)

1± Co exp(κoz)

]2

if z > 0.

(4.16)

Typical density profiles are shown in figure 5.2. Due to preferential partitioning a net charge is found in
the water phase, in a narrow band near the interface of approximate width κ−1

w . This is compensated by
an opposite net charge in the oil phase in a band of width ' κ−1

o .

The charge density σw that acculumuates in the water phase can be calculated from the Poisson-
Boltzmann equations and their boundary conditions

σw =

∫ 0

−∞
dz(ρ+(z)− ρ−(z)) = −2ρw

∫ 0

−∞
dz sinh(φ(z)) =

−2ρw
κ2
w

∫ 0

−∞
dzφ′′(z)

=
−2ρw
κ2
w

[φ′(z)]
0
−∞ =

−2ρw
κ2
w

lim
z↑0

φ′(z) = −8ρw
κw

Cw
1− C2

w

. (4.17)

In Fig. 4.1 the charge accumulation near the interface is shown as a function of the bulk concentration
in water for self-energies f∓ = (0, 6) kT, f∓ = (−3, 3) kT, f∓ = (−6, 6) kT. There is more interfacial
excess charge in the case of antagonistic salts, as will be discussed in section 5.

Figure 4.1: Charge accumulation σw at the water side of the interface as a function of the bulk concen-
tration ρs in water, for self-energies (f−, f+) = (0, 6) kT (dotted line), (f−, f+) = (−3, 3) kT (thick line),
(f−, f+) = (−6, 6) kT (dashed line).

4.3 Interfacial tension oil-water

The electrostatic component of the interfacial tension will be denoted by γ.

We have so far considered the grand-canonical (µ, V, T ) ensemble. The grand-canonical potential of
a bulk system depends linearly on the volume via

Ω(µ, V, T ) = −V p(µ, T ), (4.18)

where p is the pressure. In the particular case of the planar geometry we have V = Vw+Vo and p = pw+po,
where pw is the pressure in the half space z < 0. Following the ideal gas law we have pw = 2kBTρw.
Denoting the area of the interface by A the grand potential Ω can be split in three terms

Ω(µ, V o, V w,A, T ) = −pw(µ, T )Vw − po(µ, T )Vo + γ(µ, T )A. (4.19)
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From this equation we see that γ can be found from

βAγ = βΩ[{ρα}]ρ=ρeq − βΩ[{ρα}]ρ=ρo,w . (4.20)

We can now use Eq. (4.4). Noting that the electrostatic potential equals zero in bulk electrolyte,

βγ =

∫ 0

−∞
dzρ+(z)

[
log

(
ρ+(z)

ρw

)
− 1 +

1

2
φ(z)

]
+

∫ 0

−∞
ρ−(z)

[
log

(
ρ−(z)

ρw

)
− 1− 1

2
φ(z)

]
−2

∫ 0

−∞
dzρw

[
log

(
ρw
ρw

)
− 1

]
+

∫ ∞
0

dzρ+(z)

[
log

(
ρ+(z)

ρo

)
− 1 +

1

2
φ(z)

]
+

∫ ∞
0

ρ−(z)

[
log

(
ρ−(z)

ρw

)
− 1− 1

2
φ(z)

]
−2

∫ ∞
0

dzρo

[
log

(
ρo
ρo

)
− 1

]
(4.21)

or equivalently

βγ = −
∫ 0

−∞
dz(ρ+,eq(z) + ρ−,eq(z)− 2ρw)−

∫ ∞
0

dz(ρ+,eq(z) + ρ−,eq(z)− 2ρo)

− 1

2

∫ 0

−∞
dzφ(z)(ρ+,eq(z)− ρ−,eq(z))−

1

2

∫ ∞
0

dzφ(z)(ρ+,eq(z)− ρ−,eq(z)). (4.22)

Inserting the equilibrium density profiles (4.6) and combining these with relations (4.9) and (4.14) yields

βγ = −
∫ 0

−∞
dz {2ρw[cosh(φ(z))− 1]} −

∫ ∞
0

dz {2ρo[cosh(φ(z)− φD)− 1]}

+

∫ 0

−∞
dzφ(z) sinh(φ(z)) +

∫ ∞
0

dzφ(z) sinh(φ(z)− φD). (4.23)

The integrands are plotted in Fig. 5.4, which shows the effect of the self-energies on the surface tension.
Expression (4.23) will be adapted in section 11.1, where it is used to calculate the oil-water interfacial
tension within an electrolytic cell.
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5 Antagonism

Summary

In this section our attention will be restricted to the oil-water interface. The grand-canonical ensemble
is be used to describe the system of interest. Ionic equilibrium distributions near an oil-water interface
are calculated by means of a non-linear Poisson-Boltzmann theory. Antagonistic salts, characterized by
different signs of the self-energies fα±, are compared to non-antagonistic salts. Antagonism is found to
lead to a small Debye length. Antagonistic salts are shown to make a negative contribution to the surface
tension.

5.1 Potential and density profiles

5.1.1 Influence of the self-energies

The oil-water interface is located in the plane z = 0 and separates water (z < 0) and oil (z > 0). Both
solvents will be treated as structureless media of dielectric constants εw and εo, respectively. In the grand-
canonical ensemble the bulk density ρw far from the interface in water is fixed [11]. For ρw = 100 mM,
εw = 78.54, εo = 5.43 and T = 294 K we compare the following parameter sets:

1. f− = 0, f+ = 6 kT (κ−1
o = 1.6 nm)

2. f− = −3 kT, f+ = 3 kT (κ−1
o = 0.35 nm).

The cations’ positive self-energies in oil give rise to a net negative charge in oil in both cases. In case
1, which is non-antagonistic, the anions have no preference for either phase; in the antagonistic case
the cat- and anions have opposing interests. In equilibrium a balance is reached between the system’s
incompatible aims at minimal electrostatic energy and maximal entropy. The latter effect is relatively
weak in the antagonistic case, resulting in a thick double layer.

From Eq. (2.2) we see that the Debye length κ−1
w is uniquely determined by ρw, T and εw,o. For the

given parameters κ−1
w = 3.0 nm. From relation (4.14) we have that κ2

o = κ2
w
εw
εo

exp[− 1
2 (f− + f+)], hence

the Debye length in oil κ−1
o is linear in

√
exp[ 1

2 (f− + f+)] and will be smaller in the antagonistic case

2. From Eq. (4.14) it is immediate that the bulk density in oil ρo scales with exp[− 1
2 (f− + f+)]. The

Figure 5.1: The dimensionless potential φ near the dielectric interface as a function of the distance
z (nm), for a fixed bulk density ρw = 100 mM, dielectric constants εw = 78.54, εo = 5.43 and T = 294 K.
The dotted and thick lines show a non-antagonistic salt with self-energies (f−, f+) = (0, 6) kT and an
antagonistic salt with an equal difference between f+ and f−, namely (f−, f+) = (−3, 3) kT, respectively.
The dashed line, which depicts the potential for self-energies (f−, f+) = (−6, 6) kT, will be referred to
in section (5.2).

density ρo is thus significantly higher for the antagonistic salt, as can be seen from Fig. 5.2.
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Figure 5.2: Density profiles of cations (thick lines) and anions (dashed lines) as a function of the distance
z nm from the interface for self-energies (f−, f+) = (0, 6) kT (Fig. a) and (f−, f+) = (−3, 3) kT (Fig. b).
Near the interface in water the cations have a slightly higher density than the anions, which results in a
cloud of net charge with a width of less than 2 nm. The compensating charge is present in the oil.

5.1.2 Influence of the dielectric constant εo

For the antagonistic salt parameter set of section 5.1.1 we now consider the influence of the dielectric
constant εo. The permittivity εo is a measure of the oil’s electric susceptibility. Low values of this pa-
rameter indicate that the oil is difficult to polarize: that it only responds to the presence of an electric
field to a limited extent. Since E(z) = −dφdz we gather from figure 5.3 that the electric field is positive
and decreasing in the half-space z > 0.

Note that for εo = 78.54 we have εw = εo. Since one of the boundary conditions 4.8 reads
limz↑0 εwφ

′(z) = limz↓0 εoφ
′(z) the potential φ is differentiable near the interface.

5.2 Effect of self-energies on interfacial tension

The ions make a net negative contribution to the interfacial tension. Antagonism enhances this effect.
Antagonistic salts, which contain both hydrophilic and hydrophobic ions, resemble surfactants: they lower
the surface tension, more so than their non-antagonistic counterparts. This point is illustrated by Fig.
(5.1). In figure 5.4 the integrands in Eq. (4.23) are shown as a function of the distance from the interface.
The antagonistic salts’ small Debye lengths are compensated for by the high voltage drop across the
interface. The resulting contributions to the interfacial tension βγ as calculated in Eq. (4.23) are plotted
as function of the salt concentration in Fig. 5.5.
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Figure 5.3: Dimensionless potential φ as a function of the distance z nm from the interface for bulk
concentration ρw = 100 mM, self-energies f− = −3 kT and f+ = 3 kT and dielectric constants εo = 2.5
(dashed line), εo = 10 (thick line) and εo = 78.54 (dotted line). For small values of εo an electric field is
only present in the immediate vicinity of the interface.
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Figure 5.4: The expressions φ sinhφ and −2ρs[cosh(φ − φD)], which appear in the interfacial tension
(4.23), as a function of the spatial coordinate z, for ρw = 100 mM. The dashed line corresponds to the
strongly antagonistic self-energies (f−, f+) = (−6, 6) kT and has a greater negative effect on βγ than
salts with self-energies (f−, f+) = (−3, 3) kT (thick lines) or (f−, f+) = (0, 6) kT (dotted lines).

Figure 5.5: Electrostatic contribution to the interfacial tension as a function of the bulk density in water
ρw for self-energies (f−, f+) = (−6, 6) kT (lower dashed line), (f−, f+) = (−3, 3) kT (thick line) and
(f−, f+) = (0, 6) kT (upper dashed line). Antagonistic salts have the greatest lowering effect on the
surface tension.
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6 Two planar Electrodes, two Salts

Summary

In this chapter the Poisson-Boltzmann theory developed in chapters 3 and 4 will be adapted to determine
the electrostatic potential and density profiles within a finite thermodynamic system containing an oil-
water interface.

6.1 System

We consider a closed system of two charged planar electrodes with area A separated by a distance H.
The gap in between is filled with water (−H2 < z < 0) and oil (0 < z < H

2 ), with an interface located in
the plane z = 0. We consider salt concentrations such that the Debye lengths in oil as well as in water are
much smaller than H

2 , such that the electric double layers of the plates and the interface are separated
by a well-defined bulk electrolyte. Based on the assumption κH � 1 we can apply Poisson-Boltzmann
theory to ions near the electrodes and interface independently.

We use two salts and hence four types of ions. Since there is a fixed number of ions in this volume
we must employ the canonical ensemble for a physically accurate description. Within this ensemble we
cannot fix grand-canonical bulk densities ρw,oi , where i labels the two salt species. Instead, we specify
the numbers of ions Ni± = ρi±AH. The densities ρi will be referred to as canonical bulk densities. The
resulting grand-canonical bulk densities ρwi± in water and ρoi± in oil will be such that there is charge
neutrality in both phases once the system reaches equilibrium.1 It is non-trivial to find ρw,oi± from the
fixed number of ions Ni±, since the ions’ partitioning will depend on their self-energies fi±, the charge
density on the left electrode σ1, and H.

The degrees of freedom are

• Numbers of ions for both salts N1 and N2.

• Charge density σ1 on the water-immersed electrode at z = −H2 , which induces an equal but opposite
density on the right electrode and a density σ2 at the water side of the interface and −σ2 at the
oil side by neutrality.

• Four self-energies fi±.

• Lenght H.

6.2 Determination of the potential φ

Using the grand-canonical densities ρw1± and ρw2± as parameters and exploiting the PB theory discussed
in sections 3.3 and 4.2 we can express the potential φ in terms of these unknowns. Observe that the
grand-canonical bulk densities in oil depend on those in water via the corresponding self-energies and
the Donnan potential. These relations, together with the requirement of charge neutrality in bulk oil,
amount to five equations

ρoi± = ρwi± exp(−fi± ∓ φD)

ρo1+ − ρo1− + ρo2+ − ρo2− = 0. (6.1)

Solving for φD we find

φD =
1

2
(f1− + f2−) log

[
ρw1− exp(−f1+) + ρw2+ exp(−f2+)

ρw1+ exp(f2−) + ρw2− exp(f1−)

]
. (6.2)

1This constraint is taken care of by the Donnan potential φD. Problems may arise only if all ions have a preference for
a single phase because of their self-energies. We will not pursue this here.
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From section 3.3 we deduce the form of the potential φ near either electrode

φ(z) =


φel,w(z) = 2 log

{
1 + γw exp[−κw(z + H

2 )]

1− γw exp[−κw(z + H
2 )]

}
if −H2 < z < −H

4

φo,el(z) = 2 log

{
1 + γo exp[κo(z − H

2 )]

1− γo exp[κo(z − H
2 )]

}
+ φD if H

4 < z < H
2 .

(6.3)

The integration constants γw is fully determined by the parameters σ1 and ρwi+, since the boundary

condition at z = −H2 dictates that φ′(−H2 ) = −4πλBσ1.

γw =

√
(2πλwBκ

−1
w σ)2 + 1− 1

2πλwBκ
−1
w σ

. (6.4)

Similarly, since a charge density −σ1 accumulates at the oil-immersed electrode,

γo =

√
(2πλoBκ

−1
o (−σ1))2 + 1− 1

2πλoBκ
−1
o (−σ1)

, (6.5)

where κo =
√

8πλoB(ρo1+ + ρo2+). The integration constant γo is therefore also known in terms of σ1 and
the grand-canonical bulk densities in water. The Poisson-Boltzmann theory developed in section 4.2 can
be applied directly. The potential near the interface is given by

φ(z) =


φw,int(z) = 2 log

[
1 + Cw exp(κwz)

1− Cw exp(κwz)

]
if −H4 < z < 0

φint,o(z) = 2 log

[
1 + Co exp(−κoz)
1− Co exp(−κoz)

]
+ φD if 0 < z < H

4 .
(6.6)

Note that the potential φ is continuous at z = 0 and satisfies the boundary conditions near the interface

lim
z↑0

φw,int(z) = lim
z↓0

φint,o(z)

lim
z↑0

εwφ
′w,int(z) = lim

z↓0
εoφ
′int,o(z), (6.7)

which are met by the integration constants as given in Eq. (4.11).

6.3 Adsorptions Γw,oi±

For the determination of the grand-canonical bulk densities in water ρwi± we have eight equations,

Ni± = ρwi±
AH

2
+ ρoi±

AH

2
+ Γi±A, (6.8)

for i = 1, 2, 3, 4 and ± = + or −. Ions can adsorb on either electrode and on either side of the interface,
so the adsorption Γi± can be decomposed in the following four contributions

Γi± = Γw,eli± + Γw,inti± + Γint,oi± + Γo,eli± ,

yielding a total of 16 adsorption terms. By analogy with Eq. (3.19) the adsorption of type i ions on the
left electrode would be given by

Γw,eli± =

∫ H
4

0

dz

(
ρwi±

{[
1∓ γw(σ1) exp(−κwz)
1± γw(σ1) exp(−κwz)

]2

− 1

})
,

from which

Γw,eli− =
4γw(σ1)ρwi−

κw

[
1

1− γw(σ1)
− 1

exp(κwH4 )− γw(σ1)

]

Γw,eli+ =
−4γw(σ1)ρwi+

κw

[
1

1 + γw(σ1)
− 1

exp(κwH4 + γw(σ1))

]
.
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Taking the limit κH � 1 we can simplify these adsorptions to

Γw,eli− =
4ρwi−
κw

γw(σ1)

1− γw(σ1)

Γw,eli+ =
−4ρwi+
κw

γw(σ1)

1 + γw(σ1)
.

The remaining twelve adsorption terms can be found by the evaluation of similar integrals,

Γw,inti± =
∓4ρi±w

κw

γw(σ2)

1± γw(σ2)

Γo,inti± =
∓4ρoi±
κo

γo(σ2)

1± γo(σ2)

Γo,eli± =
∓4ρoi±
κo

γo(−σ1)

1± γo(−σ1)

These expressions enable us to find the grand-canonical bulk densities in water.

6.4 Grand-canonical bulk densities ρwi±

In order to find the grand-canonical bulk densities in water ρwi± we impose the constraints

• −ρw1− + ρw1+ − ρw2− + ρw2+ = 0 (bulk neutrality in water)

• ρ1− + ρ1+ = 2ρ1

• ρ2− + ρ2+ = 2ρ2

• ρ1− = ρ1+.

Note that bulk neutrality in oil is already imposed via the Donnan potential and that ρoi± are included
following Eq. (6.8). The third condition, ρ2− + ρ2+ = 2ρ2, follows from the system of equations (6.4). A
derivation can be found in appendix B.

By imposing the four constraints given in the set of equations (6.4) we can solve for the four grand-
canonical bulk densities ρwi± in water by means of a rootfinding procedure. 2

2The computational package Mathematica (Wolfram Research Inc, Version 8), in particular, the built-in function Find-
Root was used to solve the system of equations.
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Figure 6.1: Electrostatic potential φ(z) (Fig. a) and ion distributions in units of molarity (Fig. b) in a
planar slit of width H = 200 nm filled with water (−H2 < z < 0) and oil (0 < z < H

2 ). Canonical bulk
densities of the salts are ρ1 = ρ2 = 100 mM, charge density on the left plate is σ1 = 0.2 nm−2. Self
energies are f1− = −10 kT, f1+ = f2− = 0 and f2+ = 10 kT.
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7 Experimental Studies of an electrified Interface

Summary

A connection with a recent study of an electrified oil-water interface by Laanait et al. is made in this
chapter. Experiments that are relevant for this thesis are mentioned and the technicalities of applying a
potential difference are explained, both experimentally and theoretically.

7.1 Experiment

Many experimental and computational studies have related theoretical models of ion concentrations
near an electrified oil-water interface to the experimental investigation of these distributions. A recent
paper bij Laanait et al.3 focuses on an electrolytic cell: an electrical device that consists of two parallel
electrodes and is connected to a voltage source. This cell contains an aqueous (NaCl) and an oily so-
lution: bis(triphenylphosphoranylidene) ammonium tetrakis(pentafluorophenyl)borate (BTPPA-TPFB)
in 1,2dichloroethane (DCE), separated by a planar interface. We presented such a system in section 6,
albeit without the voltage source. Now we consider an additional potential difference, which is applied
between bulk water and bulk oil. The experimental procedure and the subtleties of simulating an applied

Figure 7.1: Schematic depiction of an electrolytic cell [4]

potential difference will be discussed in section 7.2. The accompanying variation in ion distributions near
the oil-water interface is probed by a technique known as X Ray Reflectivity Data Analysis [8]. The
so-called Wilhelmy plate method is used to measure the potential-dependent interfacial tension. From
these measurements the charge accumulation near the interface is determined via the Lippmann equation
[8], which will be discussed in section 11.2.

In the sections to follow we will extend our theoretical framework to fully cover this type of experiment.
We will refer to this particular research project and analyse the accuracy of the PB model.

7.2 Application of the potential difference

7.2.1 The electrochemical cell: ∆Φwo

The three relevant interfaces in the electrochemical cell of present interest are those between either solu-
tion and the adjacent electrode and the oil-water interface. The experimentalists are primarily interested
in the potential difference ∆Φwo across the oil-water interface. Only the difference in electric potential
between the electrons in either electrode ∆Φwo,cell is measurable and tunable, however, since it is equal
to the external voltage. The connection between the platinum electrodes ensures that ∆Φwo,cell is zero
when no external voltage is applied. A zero external voltage indicates that the sum of the voltage in- or

3Tuning ion correlations at an electrified soft interface, PNAS 109, 20326 (2012)
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decreases across the three relevant interfaces is zero: it does not indicate that ∆Φwo is trivial. By the
use of silver chloride (non-polarizable) electrodes a potential difference can, in very good approximation,
be applied directly between bulk oil and bulk water. The potential of zero charge ∆Φpzc across the
oil-water interface is determined via interfacial tension measurements, as explained in section 7.1. This
offset potential corresponds to zero charge accumulation σ2 at the interface. The interfacial tension has
its maximum at this point. This is apparent from the Lippmann equation, given in section 11.2. The

electric potential difference ∆Φwo is gauged so that ∆Φwo
∣∣∣
σ2=0

= 0, hence ∆Φwo is given by the applied

potential difference across the electrochemical cell minus the potential of zero charge [6]

∆Φwo ≡ ∆Φ = ∆Φwo,cell −∆Φpzc. (7.1)

7.2.2 Theory: φext and φD

While it is experimentally feasible to apply a potential difference ∆Φwo,cell it is theoretically convenient
to impose a charge density σ1 on the left electrode. The theoretical model that was developed in section 6
is similar but not identical to the electrochemical cell. An uncharged left electrode defines the equilibrium
situation. We consider two natural notions of potential difference.

The externally applied potential difference between the two electrodes,

φext = φ(
H

2
)− φ(−H

2
)

can be tuned by σ1, since this charge density determines the grand-canonical bulk densities ρwi±.

The boundary conditions for Poisson-Boltzmann theory near the electrodes and interface, as given
in Eq. (3.12) and Eq. (4.8), respectively, are such that the external potential is nonzero in equilibrium.
Rather, it is the earlier encountered difference between the bulk liquids: the Donnan potential φD. This
potential can be regulated by σ1 for the same reason.

Thus, while we do not directly enforce any potential and while φD is in general not equal to φext
4,

both potentials can be tuned by means of a single variable. The concept of a potential of zero charge is
superfluous here: a trivial Donnan potential corresponds to zero excess interfacial charge.

7.3 The canonical versus the grand-canonical ensemble

A closed system of two planar electrodes and two salts as introduced in section 6 serves as a starting
point. Potential differences φext (between both electrodes) and a Donnan potential φD (between bulk oil
and water) are applied by means of a charge σ1 on the left plate. The system’s equilibrium state will be
considered throughout this thesis.5 The following parameters play an important role.

• Self-energies fi±

• Distance H between both electrodes.

• Canonical concentrations of both salts ρ1 and ρ2.

We will study the effects of the aforementioned parameters on the potentials φext(σ1) and φD(σ1) and
examine the correlation coupling parameter. The consistency of our results with the study Tuning ion
correlations can then be verified.

4This is only the case for high self-energies |fi±| and/or a small value of H. We will shortly come back to this point.
5Strictly speaking, the system is in a dynamic equilibrium. See appendix C for more information.
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8 Importance of the Self-Energies for the relevant Ensemble

Summary

Charge accumulation at the water side of the oil-water interface will be used to examine the influence
of the self-energies of each of the four types of ions on the suitable ensemble to describe the electrolytic
cell. The grand-canonical ensemble is found to be appropriate when at least one type of ions is both
hydrophilic and hydrophobic. If all four self-energies are nonzero the ensemble depends on their values:
strong preferences for either phase indicate that the system is canonical.

8.1 Charge accumulation at the water side defined

Preferential partitioning of ions generates double layers near the interface, of typical widths κ−1
w and κ−1

o

in the water and oil phases, respectively. The charge at the water side of the oil-water interface, referred
to as σ2, is given by

σ2 = −
∫ 0

−H4
dz(−ρw1−(z) + ρw1+(z)− ρw2−(z) + ρw2+(z)),

where we have added the overall minus sign for convenience. This parameter is useful in determining
whether to treat the system in the canonical or the grand-canonical ensemble. For the system under
consideration we will speak of the grand-canonical limit when the interface is effectively separated from
the electrodes. In this limit σ2 is solely determined by the Poisson-Boltzmann theory near the dielectric
interface and σ2 is constant as function of σ1. This condition is equivalent to independence of σ1 and
the Donnan potential φD. By contrast, σ2 and φD can be manipulated by σ1 in the canonical ensemble.
The canonical limit is attained when σ2 = σ1.

For given Ni± and H the preferred ensemble depends on the self-energies. Ions may be highly hy-
drophilic, such as Na+ and Cl−, hydrophobic, such as carbon groups, or amphiphilic. These properties
are reflected by the self-energies. We recall that a positive self-energy indicates a preference for water.

8.2 Two or three hydrophilic and hydrophobic ion species

We introduce the convention fi± = (f1−, f1+, f2−, f2+), so all anions have a preference for water if
fi± = (f, 0, f, 0), with f > 0, and the Donnan potential increases with f . Fig. 8.1 shows the Donnan
potential as a function of σ1 for this parameter set. Even for f as high as 40 kT the Donnan potential
cannot be tuned by the external charge density.
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Figure 8.1: The Donnan potential as a function of the charge density σ1 on the left electrode, for
fi± = (f, 0, f, 0), ρi = 10 mM and H = 4 cm. From top to bottom: f = 10, f = 15, f = 20, f = 25
and f = 40 kT. The grand-canonical ensemble is appropriate for all values of f in this case, since φD is
unaffected by the charge density σ1.

Other possibilities include

1. fi± = (f, 0, f, 0) (all anions hydrophilic)

2. fi± = (0,−f, 0, 0) (cations type 1 hydrophobic)

3. fi± = (−f, 0, 0, f) (anions type 1 hydrophilic, cations type 2 hydrophobic)

For parameter set 1 the external potential is positive in equilibrium due to the anions’ preference for
water. If only one of the self-energies is unequal to zero the absolute values of φext are relatively small.
The Donnan potential as a function of σ1 is shown in Fig. 8.2 for f = 23 kT. The sign of φD can be
read off from the self-energies. For fi± = (−23, 0, 0, 23) kT, for instance, the type one anions have a
preference for water, while the type two cations are more likely to be found in oil. These self-energies
indice a negative Donnan potential. A constant φD(σ1) indicates that the system is grand-canonical.

Figure 8.2: The external potential as a function of the charge density σ1 on the left electrode, for
ρi = 10 mM and H = 4 cm. From top to bottom: fi± = (10, 0, 10, 0) kT, fi± = (0,−10, 0, 0) kT and
fi± = (0,−10, 0, 0) kT.
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Figure 8.3: The Donnan potential as a function of the charge density σ1 on the left electrode, for
ρi = 10 mM and H = 4 cm. From top to bottom: fi± = (23, 0, 23, 0) kT, fi± = (0,−23, 0, 0) kT
and fi± = (−23, 0, 0, 23) kT. Even for f as high as 23 kT the system is grand-canonical when two or
more self-energies are equal to zero.

8.3 The contrast between (−f, 0, 0, f) and (−f,−f, f, f)

There is an essential difference between a system where two out of four ion species have an affinity with
both phases and one where a distinction between a hydrophobic and an hydrophilic salt can be made.
For a macroscopic system with H = 4 cm and fixed ρi = 10 mM the grand-canonical ensemble would be
the obvious choice for fi± = (−f, 0, 0, f). For the latter parameter set the ensemble depends entirely on
the value of f . This point is illustrated in Fig. 8.4. If one ion species is amphiphilic (without a preference
for either phase) the effect on σ2 (σ1) is very similar to the presence of two amphiphilic species: it makes
σ2 independent of σ1.

The suitability of either ensemble depends largely on the length H. As a general rule, the validity of
the grand-canonical approximation at fixed fi± increases with the system size. Special attention to the
role of the system size will be paid in section 9.
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Figure 8.4: Charge density σ2 near the interface as a function of the density σ1 on the left electrode
for H = 4 cm and ρi = 10 mM. a) Self-energies are given by fi± = (−f, 0, 0, f). From top to bottom:
f = 40, f = 25, f = 20, f = 15 and f = 10 kT. Canonical effects only begin to show for self-energies
well above 25 kT . b)Self-energies are given by fi± = (−f,−f, f, f); f = 40, f = 25, f = 20, f = 15 and
f = 10 kT. The curve for f = 10 kT is constant and equal to zero by symmetry of the self-energies; σ1

has a noticeable effect on σ2 for f ≥ 20 kT. The system is perfectly canonical for f = 40 kT.
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Figure 8.5: Density σ2(σ1) for ρi = 10 mM. a)H = 104 nm. The linear (canonical) curve represents
fi± = (−23,−23, 23, 23) kT, whereas the system is entirely grand-canonical for fi± = (−10, 0, 0, 10) kT
(flat curve). Slight canonical effects are apparent for fi± = (−10,−10, 10, 10) kT. Note that the charge
density σ2 is nonzero in the grand-canonical limit for the case of two amphiphilic ions; no net charge
builds up in this limit if the two salts have equal but opposite preferences. b)H = 1 cm. The curves for
fi± = (−10, 0, 0, 10) kT and fi± = (−10,−10, 10, 10) kT are perfectly grand-canonical for this system
size. Canonical effects begin to show for fi± = (−23,−23, 23, 23) kT.

Figure 8.6: Charge density σ2 as a function of σ1 for H = 4 cm and ρi = 100 mM. For fi± =
(−20,−20, 20, 20) kT the relation is linear, while fi± = (−20,−20, 20, 0) kT gives rise to a grand-
canonical system.
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9 Importance of the System Size for the relevant Ensemble

Summary

We study the effects of the system size, characterized by the difference between the two planar electrodes,
on the choice of ensemble. The system turns out to become more grand-canonical for larger values of
this length. A crossover length marking the transition between the canonical and the grand-canonical
ensemble is defined and the dependence of this crossover length on the self-energies is investigated. The
potential difference between the electrodes and the Donnan potential as functions of the system size are
shown to increase notably at the crossover length.

9.1 Tunableness of interfacial excess charge

Keeping self-energies fi± and canonical bulk densities ρi = Ni
AH fixed we study the dependence of σ2

on σ1 for different values of H. The presence of a positive charge density σ1 induces the adsorption of
anions on the left electrode, leading to a decrease in ρwi− and making σ2 less negative. For small values of
H the density σ2 is linearly related to σ1 by charge neutrality. Note that limH→0 is not a physical limit
for this model since this does not allow for a bulk electrolyte. The number of particles Ni± increases
linearly with H as we take ρi to be constant. A large value of H thus implies the availability of many
ions to screen σ1 and the effect of σ2 on σ1 should become insignificant.

Figure 9.1: Charge accumulation σ2 as a function of σ1 for self-energies fi± = (−10,−10, 10, 10) kT;
ρi = 10 mM. The flat curve corresponds to H = 106 nm; increasingly steeper graphs show H = 105,
H = 104 and H = 103 nm, respectively.

9.2 Crossover H

In brief, we distinguish between the canonical and grand-canonical limits as follows

Grand-canonical limit Canonical limit
Density σ2 constant Density σ2 = σ1

Macroscopic length scale (typically H ' 1 −
10 cm)

Microscopic length scale (typically H ' 100 −
1000 nm)

Self-energies |fi±| ' 0 Self-energies |fi±| � 1

Large values of the system’s length H account for minimal influence of σ1 on σ2, since essentially
infinite amounts of ions will be available for screening. As H becomes larger the system moves towards
the grand-canonical end of the spectrum. For fixed values of fi± we define a crossover length H∗, such
that we speak of the grand-canonical regime for H > H∗.
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Determination of the crossover length H∗ is best illustrated graphically. At H = H∗ a transition
between the canonical and grand-canonical regime takes place.6

Figure 9.2: Linear graph showing σ2 (nm−2) as a function of the length H (nm) and the value σ2 attains
in the limit of infinite H (constant function) for ρi = 10 mM, σ1 = 0.3 nm−2 and fi± = (−15, 0, 0, 15) kT.
The crossover length H∗ is given by the value of H where the line tangent to the curve at small H and
the limiting (grand-canonical) value of σ2 intersect.

By means of this procedure crossover lengths for fi± of the form (−f, 0, 0, f) were calculated. The
results are shown in Fig. 9.3.

Figure 9.3: Logarithmic graph of crossover lenghts as a function of f , where fi± = (−f, 0, 0, f), for
σ1 = 0.3 nm−2 and for ρi = 10 mM (top curve), ρi = 100 mM (middle curve) and ρi = 1 M (bottom
curve). The length H∗ appears exponential in f .

The relation H∗ ' log f becomes more obvious when we consider fi± = (−f,−f, f, f). The crossover
length grows faster for this parameter set, as anticipated.

Taking fi± = (−f,−f, 20, 20) kT we let f run from 20 to 30 kT in Fig. 9.5 to study the effects of such
an asymmetry on H∗. The crossover length initially increases with f , and it reaches a constant value at
f ' 26 kT. For f � 20 kT species 2 can pass through the interface at a relatively low energetic cost and
will respond to changes in σ1.

6This model is reliable for H as small as 10 nm; values smaller than 100 nm have not been included in this fit. For
H ≤ 100 nm the density σ2 grows with H, for the simple reason that more ions become available for accumulation at the
interface. Curves that include these data do not allow for proper tangent lines.
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Figure 9.4: Logarithmic graph of crossover lengths as a function of f , where fi± = (−f,−f, f, f) (top
curve) and fi± = (−f, 0, 0, f) (bottom curve), for σ1 = 0.3 nm−2 and ρi = 1 M.

Figure 9.5: Crossover length H∗ (cm) as a function of f , where self-energies are given by fi± =
(−f,−f, 20, 20) kT, for σ1 = 0.3 nm−2 and ρi = 100, ρi = 500 and ρi = 1000 mM. For f ≥ 26 kT
the crossover length is controlled by f2±.

9.3 Potential differences φD and φext

The crossover length is apparent in the effect of H on the Donnan potential φD and the external potential
φext. At fixed fi± and σ1 the Donnan potential, given by equation (6.2), increases with the system size.
There is a critical range for H where enough ions become available for the screening of σ1. The system
increases its Donnan potential and the external potential follows. This process terminates at the crossover
length. For these parameters H∗ = 0.85 ∗ 106 nm.

Figure (9.7) shows the impact of H on φD(σ1). Greater values of H reduce the influence of the density
σ1 on the Donnan potential, as expected. The Donnan potential at the crossover length is shown by the
middle curve.
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Figure 9.6: Potentials kT
e φD (V) (top curve) and kT

e φext (V) (bottom curve) as a function of the system’s
length H (nm) for fi± = (−20,−20, 20, 20) kT, σ1 = 0.3 nm−2 and ρi = 100 mM. The Donnan potential
increases with H and reaches a constant value at H∗ = 0.85 ∗ 106 nm.

Figure 9.7: Donnan potential φD as a function of charge density σ1 for ρi = 100 mM, fi± =
(−20,−20, 20, 20) kT for H = 100 nm (linear curve), H = H∗ = 0.85 cm (crossover curve) and
H = 1.8 cm (gradual curve).
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10 Tunable ion-solvent Interactions near the Interface

Summary

The experiments of Nouamane Laanait, Mark Schlossman and others [7] formed a direct motivation to
study the electrolytic cell in more detail. In this section comparisons are made between theoretical and
experimental results. The electrolytic cell is shown to be nearer the canonical than the grand-canonical
end of the spectrum. Within our PB description the system becomes grand-canonical if two out of four
self-energies are set to zero. Predictions of the interfacial excess charge as a function of the Donnan
potential by Poisson-Boltzmann theory become less accurate as the latter increases. Calculations of the
correlation coupling parameters suggest that improvement of the PB model could be made by including
ion-ion correlations between the hydrophobic ions near the interfaces, where ion densities are high.

10.1 Experimental parameters

In the previously mentioned publication Tuning ion at an electrified soft interface an electrolytic cell
of length H = 4 cm containing aqueous (εw = 78.54) and organic (εo = 10.43) electrolyte solutions is
considered at T = 294 K. Sodium chloride was dissolved in water to produce a 10 mM solution. A solution
of BTPPATPFB in DCE was prepared at a concentration of 5 mM. Because of the low dielectric constant
of DCE only partial dissociation into BTPPA+ and TPFB− occurs, producing an organic solution with
a dissociated ionic concentration of 2.7 mM [7].

The authors include three energy terms for the ions: electrostatic, ion-solvent potential of mean force
fsoli± and excess chemical potential due to ion correlations µcorr. Including fsol1+ or fsol2− had little or no
effect on the data analyses in this setting, so these parameters were usually excluded.7 The equation for
the density profiles ρi± takes the form [7]

ρi±(z) = ρbulki± exp[∓φ(z)− fsoli± − µcorr].

This relation reduces to our PB relation of Eq. (4.6 if we ignore the ion correlations by setting µcorr = 0.
The ion-solvent potentials of mean force fsoli± describe the interactions of each ionic species with the
solvent; these are functions of the distance z from the interface. The potentials of mean force (PMFs)
were modeled by a molecular dynamics (MD) simulation [7]. An example is given in Fig. 10.1.

Figure 10.1: Ion-solvent potential of mean force (PMF) of a TPFB− ion at the water-DCE interface.
Points were calculated by an MD simulation [7].

10.2 Interfacial excess charge, density profiles and potentials

In this thesis the self-energies fi± are defined as step functions. In order to simulate this experiment the
differences between the bulk values of the PMFs should be used. These numbers are known as the Gibbs

7Thanks to Mark Schlossman for pointing this out to me.
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free energies of transfer. For NaCl and BTPPATPFB these self-energies are given by 8

(fTPFB− , fBTPPA+fCl−fNa+) = (−29.9,−22.9, 22.3, 21.2) kT

We will study three parameter sets of the self-energies

1. fi± = (−29.9, 0, 0, 21.2) kT (Gibbs free energies of transfer, where self-energies of BTPPA+ and
Cl− have been set to zero)

2. fi± = (−29.9,−22.9, 22.3, 21.2) kT (experimental values of the Gibbs free energies)

3. fi± = (−49.9,−42.9, 42.3, 41.2) kT (Gibbs free energies after addition of 20 kT : the canonical limit
is appropriate for these self-energies)

The first striking feature of a Fig. 10.2, which contrasts these self-energies, is the difference between set
(1) on the one hand and (2) and (3) on the other hand. In parameter set (1) two ions can pass through
the interface at no energetic cost. When a potential difference is applied the TPFB− and Na+ ions can
stay in their preferred phases, while the system’s electrostatic energy is minimized by the redistributions
of the species BTPPA+ and Cl−. By contrast, σ1 has a noticeable influence on σ2 when

∣∣fi±∣∣ > 20 kT.
Thus f2− and f1+ cannot be set to zero for a mean-field PB description. The canonical limit is also
shown in Fig. 10.2, for

∣∣fi±∣∣ ' 40 kT. The difference between both ensembles is immediate from the

Figure 10.2: Charge density σ2 near the interface as a function of density σ1 on the left elec-
trode for H = 4 cm, contrasing fi± = (−29.9, 0, 0, 21.2) kT (constant: grand-canonical), fi± =
(−29.9,−22.9, 22.3, 21.2) kT (almost entirely canonical) and fi± = (−49.9,−42.9, 42.3, 41.2) kT (lin-
ear: canonical). Canonical densities are ρ1 = 2.7 mM (oily solution) and ρ2 = 5 mM (aqueous solution).
Compare to Fig. 8.2.

density profiles. For parameter set (1), whose density profiles are given by the dashed line in figure (10.3)
there is no accumulation of the species with zero self-energies near the interface. The density profiles
for parameter sets (1) and (2) are almost identical near the electrodes. Figure 10.4 shows the relation
between the imposed charge density σ1 and the resulting potential difference between the electrodes
φ
(
H
2

)
− φ

(
H
2

)
. Grand-canonical PB calculations were also done. The grand-canonical bulk densities

were approximated by the canonical concentrations and the potential difference between the electrodes
was defined as

φext(σ1) = −
[
2 log

(
1 + Co(σ1)

1− Co(σ1)

)
+ 2 log

(
1 + Cw(σ1)

1− Cw(σ1)

)]
,

where the integration constants Cw and Co are given by equation (4.11). As the self-energies increase it
becomes easier to tune φext by adjusting σ1. The transition between the grand-canonical and canonical
ensemble is also visible in the Donnan potential φD as a function of φext in Fig. 10.5. The potential differ-
ence between the bulk phases is the potential we should really work with in order to mimic the experiment.

8Thanks to Mark Schlossman for providing these numbers.
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Figure 10.3: Density profiles of all ion species for σ1 = 0.3 nm−2 for self-energies fi± =
(−29.9,−22.9, 22.3, 21.2) kT (dashed lines) andfi± = (−29.9, 0, 0, 21.2) kT (thick lines) at kT

e φext =

−0.54 V and kT
e φext = −0.44 V, respectively.

Figure 10.4: The potential difference between the electrodes kT
e φext for H = 4 cm as a func-

tion of σ1, for grand-canonical (smooth curve) and canonical (dotted curves) PB theory, the lat-
ter for fi± = (−29.9, 0, 0, 21.2) kT (bottom curve), fi± = (−29.9,−22.9, 22.3, 21.2) kT and fi± =
(−49.9,−42.9, 42.3, 41.2) kT (steepest curve). The charge density has a maximal effect on the potential
for larger fi±. All data points have been translated by the corresponding Donnan potential at σ1 = 0.

In the canonical limit φD is equal to φext. The Donnan potential is equivalent to the experimental ∆Φ
(as defined in Eq. (7.1)) for self-energies fi± = (−49.9,−42.9, 42.3, 41.2) kT, since both potentials are
applied directly between the bulk phases. In Fig. 10.6 the charge accumulation at the water side of the
interface σ2 is shown for a suitable range of potential differences: experimentally

∣∣∆Φ
∣∣ ≤ 0.406 V. The

data were obtained by application of a potential difference ∆Φ between the bulk phases, a potential that
is not well-defined in our theoretical PB model. It makes a difference whether we compare the data with
σ2 (kTe φext) or with σ2 (kTe φD), as Fig. 10.6 shows. Although not directly applied the Donnan potential
is a potential between the bulk phases. From Fig. 10.6 we see that mean field Poisson-Boltzmann theory
predicts too high a charge density, especially for high values of the Donnan potential. A possibility to
improve this model is discussed in section 10.3.
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Figure 10.5: Donnan potential kT
e φD as a function of the applied potential φext between the plates, for

fi± = (−29.9,−22.9, 22.3, 21.2) kT and fi± = (−49.9,−42.9, 42.3, 41.2) kT (linear curve). A potential
difference can be applied directly between bulk water and bulk oil for the present parameter choice (fi±
large enough and small enough system size H < H∗).

Figure 10.6: Charge accumulation σ2 as a function of the potential differences kT
e φext (a) and kT

e φD
(b), for self-energies fi± = (−29.9,−22.9, 22.3, 21.2) kT and fi± = (−49.9,−42.9, 42.3, 41.2) kT (steep
curve). Experimental data (square symbols) are shown as a function of ∆Φ between bulk oil and bulk
water.
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10.3 Correlation Coupling Parameter

Correlations between ions are characterized by the correlation coupling parameter Γ. The oil and water
phases can be modelled as one component plasmas (OCPs) for this purpose. An OCP consists of N
ions carrying charge e in a uniform neutralizing background of volume V and dielectric constant ε. The
average ionic density is ρ = N

V . The advantage of working with the OCP is that it only contains two

independent length scales: the average separation between the particles d = ( 4πρ
3 )−

1
3 and the Bjerrum

length λB [9]. The dimensionless correlation coupling parameter (CCP) is given by

Γ =
λB
d
.

Ion correlations caused by their electrostatic interactions are expected to be important when the average
electrostatic interaction energy between neighbouring ions is larger than the thermal energy kT [7];
this situation corresponds to Γ > 1. Poisson-Boltzmann theory holds in the limit Γ � 1. Although
Ion-ion correlations are usually considered to be irrelevant for monovalent ions in aqueous solution, the
lower relative permittivity of the organic DCE (εr = 10.43) generates a large coupling strength Γ [7].
Correlations are negligible for ions far from the interface, because bulk concentrations are low [7].

Calculations for the CCPs of the ion species of interest as a function of z were done for the parameters
of Fig. 10.7. For φext > 0 correlations between TPFB− ions are relevant, indicating that our mean-field
PB model could be improved by accounting for these ion-ion correlations. The CCPs can be tuned by

Figure 10.7: Correlation coupling parameters as a function of z nm near the oil-water interface, for
φext = 0.4 V, for fi± = (−29.9,−22.9, 22.3, 21.2) kT, ρ1 = 2.7 mM, ρ2 = 10 mM and H = 4 cm. A
change in sign of φext interchanges the roles of cat- and anions in either phase.

the application of an external potential. In Fig. 10.8 the correlation coupling parameter for TPFB− near
the interface is shown for different values of the external potential φext. When no potential is applied
Γ ' 1 and the system is accurately described by Poisson-Boltzmann theory.
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Figure 10.8: The correlation coupling parameter for ions of type TPFB− as a function of z (nm)
for φext = 0 (dotted line), φext = 0.2 V (dashed line) and φext = 0.4 V (thick line), for fi± =
(−29.9,−22.9, 22.3, 21.2) kT, ρ1 = 2.7 mM, ρ2 = 10 mM and H = 4 cm.
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11 Surface Tension within the Electrolytic Cell

Summary

There are (at least) two ways to calculate the surface tension of the oil-water interface in the electro-
chemical cell. It can either be derived from the grand-potential functional (3.4) or obtained from the
Lippmann equation. Agreement between these two methods is shown to be good. Both appear to be in
agreement with the experimental data.

11.1 Transformed potential βY

For a calculation of the surface tension of each of the relevant interfaces within the electrochemical cell
we rearrange the terms in Eq. (3.4) as

βΩ[{ρα}] =

∫
V

drρ+(r)

(
ρ+(r)

ρs
− 1 + βV+

(
r))+

∫
V

drρ+(r)

(
ρ+(r)

ρs
− 1 + βV−(r)

)
+

1

2

∫
V

drQ(r)φ(r).

For a description of the electrochemical cell the potential βY [{µα}, φext] is obtained from a Legendre
transformation

βY [{µα}, φext] = βΩ[{ρα}]−
∫
V

drφ(r)q(r), (11.1)

where q(r) = q(z) = σδ
(
z + H

2

)
− σδ

(
z − H

2

)
, describes the electrode charges, such that

−
∫
V

drφ(r)q(r) =
A

2
σφext.

From the equilibrium condition δY
δρ±

= 0 we regain the Boltzmann distributions (3.9). Note that the

charge density q is independent of ρ±(z) within the description of the system by the grand potential Y ,
while φext varies with these distributions. The equilibrium potential is found by inserting the equilibrium
density profiles and taking into consideration that ρo± = ρo exp[∓(φ(z)− φD)]

βYeq
A

=

∫ 0

−H2
dzρwφ(z) sinhφ(z)−

∫ 0

−H2
dz {2ρw[coshφ(z)− 1]} − σ

2
φ

(
−H

2

)

+

∫ H
2

0

dzρoφ(z) sinh(φ(z)− φD)−
∫ H

2

0

dz {2ρo [cosh(φ(z)− φD)− 1]}+
σ

2
φ

(
H

2

)
.

Using the relation βγ = βYeq − βY
∣∣
ρ=ρw,o

we acquire the dimensionless surface tension βγ

βγ

A
=

∫ 0

−H2
dzρwφ(z) sinhφ(z)−

∫ 0

−H2
dz [2ρw coshφ(z)]− σ

2
φ

(
−H

2

)

+

∫ H
2

0

dzρoφ(z) sinh(φ(z)− φD)−
∫ H

2

0

dz [2ρo cosh(φ(z)− φD)] +
σ

2
φ

(
H

2

)
. (11.2)

The surface tension comprises four contributions which can be straightforwardly separated for the case
at hand:

βγel,w =

∫ −H4
−H4

dzρwφ(z) sinhφ(z)−
∫ −H4
−H2

dz [2ρw coshφ(z)]− σ

2
φ

(
−H

2

)
βγw,int =

∫ 0

−H4
dzρwφ(z) sinhφ(z)−

∫ 0

−H4
dz [2ρw coshφ(z)]

βγint,o =

∫ H
4

0

dzρoφ(z) sinh(φ(z)− φD)−
∫ H

4

0

dz [2ρo cosh(φ(z)− φD)]

βγo,el =

∫ H
2

H
4

dzρoφ(z) sinh(φ(z)− φD)−
∫ H

2

H
4

dz [2ρo cosh(φ(z)− φD)] +
σ

2
φ

(
H

2

)
.

(11.3)
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The interfacial tension, given by the sum of βγw,int and βγint,o, depends on σ1 via the potential φ and
the bulk densities ρw and ρo. The curve in Fig. 11.1,, as follows from Eq. (11.3), should be vertically
translated by an experimental constant: the interfacial tension is nonzero when no external potential is
applied.

Figure 11.1: Interfacial tension βγint = βγw,int + βγint,o as a function of the external potential in volts
for fi± = (−29.9,−22.9, 22.3, 21.2) kT, ρ1 = 2.7 mM, ρ2 = 10 mM and H = 4 cm, based on relations
(11.3).

11.2 Lippmann equation

The Lippmann equation

σ2 = −
(
∂γint

∂φD

)
T,V,µi

(11.4)

relates the tension at the oil-water interface to the interfacial excess charge σ2 at fixed chemical potentials
µi [8]. The interfacial tension can thus be obtained from

γint = −
∫

dφDσ2. (11.5)

There is good agreement between the interfacial tension as defined by the grand-canonical Lippmann
equation (11.5) and γint as given by the oil-water terms of (11.3). For the conversion to dynes/cm, which
was made for Fig. 11.2 density eσ2 was used, as opposed to the number density σ2. This change affects
the units of the tension:

[γ] = [eσ2][
kT

e
φD] =

CV

nm2
,

where

1
CV

nm2
= 1018 J

m2
= 1018 N

m
= 1021 dynes

cm
.

A constant of 28.3 dynes/cm was added to the interfacial tension.9 Surface tension measurements and
the interfacial tension as derived from the Lippmann equation are compared in Fig.(11.3). Qualitatively
similar results are found for small values of the applied potential ∆Φ.

9This translation was made based on the measurements in Tuning ion correlations at an electrified soft interface:
supplementary information.
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Figure 11.2: Interfacial tension βγint(φD) as given by relations (11.3) (line) and by Eq. (11.5) (dots) for
fi± = (−29.9,−22.9, 22.3, 21.2) kT, ρ1 = 2.7 mM, ρ2 = 10 mM and H = 4 cm.

Figure 11.3: The interfacial tension γint as a function of the Donnan potential as derived from the
Lippmann equation (11.5) (dotted line) and as measured at the oil-water interface of an electrolytic
cell [8], for fi± = (−29.9,−22.9, 22.3, 21.2) kT, ρ1 = 2.7 mM, ρ2 = 10 mM and H = 4 cm. Data were
translated by the potential of zero charge ∆Φpzc. An experimental constant of 28.3 dynes/cm was added
to the results of the Lippmann equation in order to account for the bare oil-water tension.
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12 Conclusions and Outlook

Throughout this thesis we studied monovalent ions near electrodes and oil-water interfaces by means
of nonlinear Poisson-Boltzmann theory, which describes the electrostatic potential and density profiles
near these surfaces. Self-energies were introduced to describe ion-solvent interactions. Antagonistic salts
with different signs of self-energies of cations and anions, were associated with small Debye lengths and
a strongly decreasing effect on the oil-water interfacial tension.

Poisson-Boltzmann theory was applied to study a finite system with the possibility of applying a po-
tential difference across the oil-water interface. This description would enable us to simulate experiments
recently done by Laanait et al. [7] The appropriate ensemble to treat this system in was shown to depend
on both the self-energies and the system length. We examined the conditions for a canonical treatment
of the electrochemical cell. One of these were one strongly hydrophilic and one strongly hydrophobic
salt, reflected in high values of the ions’ self-energies. Another important condition was a system length
well below the crossover length, which was defined to mark the transition from the canonical to the
grand-canonical ensemble.

These insights were applied to the experiments done by Laanait et al., leading to the conclusion that
the canonical ensemble should be used for a Poisson-Boltzmann description of this system. Comparisons
with experimental data of the charge accumulation at the water side of the interface showed that there
was room for improvement in the PB model. Calculations of the correlation coupling parameters indicated
that ion-ion correlations in the oil phase should be included.

Finally, expressions for the oil-water interfacial tension were derived from the theory developed in
early chapters. Good agreement between the result of this derivation and available data was found.
The Lippmann equation, which was taken from literature, also appeared suitable for this purpose. A
derivation of this expression would be the cherry on the cake.
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[4] I.C. Gârlea, Dynamics of charged particles in an electrolytic cell with an oil-water interface, master
thesis (2010). Utrecht University.

[5] J.N. Israelachvili, Intermolecular and surface forces, 2nd edition (page 37). London: Academic Press
(1991).

[6] N. Laanait et al., Communications: Monovalent ion condensation at the electrified liquid/liquid
interface, J.Chem.Phys., 132, 171101 (2010).

[7] N. Laanait et al., Tuning ion correlations at an electrified soft interface, PNAS, 109, 20326-20331
(2012).

[8] N. Laanait et al. (2012), Tuning ion correlations at an electrified soft interface, supplementary
information. Retrieved from http://www.pnas.org/content/early/2012/11/21.

[9] Y. Levin (2002), Electrostatic correlations: from plasma to biology, Rep.Prog.Phys. 65, 1577-1632
(2002).

[10] G. Luo et al., Ion Distributions near a Liquid-Liquid Interface, Science 311, 216-218 (2006).

[11] R. van Roij, Advanced Statistical Physics, lecture notes and problems. Utrecht University (2012).

[12] R. van Roij, Soft Condensed Matter Theory, lecture notes and problems. Utrecht University (2010).

[13] R. van Roij, Statistical thermodynamics of supercapacitors and blue engines, Cornell University
Library (2012). Retrieved from http://arxiv.org/abs/1211.1269.

[14] R.D. Weir et al., Electrochemistry at the interface between two immiscible electrolyte solutions (IU-
PAC Technical Report), Pure Appl. Chem., 76, 2147-2180 (2004).

[15] J.W. Zwanikken, Looking deeper into emulsions and suspensions, PhD thesis. Utrecht University
(2009).

44



Acknowledgements

My decision to start my first research project at the Institute for Theoretical Physics was met by more
than one discouraging face. When I was told that theoretical physics was not the field a bachelor student
should go into I became all the more curious. I thought my critics were right when I opened my first
source - a PhD thesis - and they would probably have turned out right if it hadn’t been for my fantastic
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A Derivations in Poisson-Boltzmann Theory

A.1 The Boltzmann distributions

These distributions can be obtained from the equilibrium condition δβΩ[{ρα}]
δρ+

= 0. The variation of Eq.

(3.1) with respect to ρ+(r) is found by substituting ρ+(r)→ ρ+(r) + δρ+(r):

βΩ[{ρα}] →
∫

dr(ρ+(r) + δρ+(r))
[
log
(
ρ+(r) + δρ+(r)Λ3

+

)
− 1
]

+ λB

∫
dr

∫
dr′

(ρ+(r) + δρ+(r)− ρ−(r) + σδ(z))(ρ+(r′) + δρ+(r′)− ρ−(r′) + σδ(z))

|r− r′|

+ β

∫
dr [((ρ+(r) + δρ+(r))(V+(r)− µ+) + ρ−(r)(V−(r)− µ−)] ,

where we have used that r and r′ are dummy variables. Inserting the first order expansion log(ρ++δρ+) '
log(ρ+) + 1

ρ+
δρ+ and collecting terms we find

βΩ[{ρα}] →
∫

drρ+(r)
[
log
(
ρ+(r)Λ3

+

)
− 1
]

+

∫
drδρ+(r) log

(
ρ+(r)Λ3

+

)
+ λB

∫ ∫
drdr′

(
Q+(r)Q+(r′)

|r− r′|
+
δρ+(r)Q+(r′)

|r− r′|

)
+ β

∫
dr [(ρ+(r)(V+(r)− µ+) + ρ−(r)(V−(r)− µ−))] +

∫
drδρ+(r)(V+(r)− µ+),

hence

δβΩ[{ρα}] =

∫
drδρ+(r) log

(
ρ+(r)Λ3

+

)
+ λB

∫
dr

(∫
dr′

Q+(r′)

|r− r′|

)
δρ+(r)

+ β

∫
dr(V (r)− µ+)δρ+(r), (A.1)

where λB
∫

dr′Q+(r′)
|r−r′| = φ(r). The equilibrium condition thus translates into

log
(
ρ+(rΛ3

+)
)

+ φ(r) + β(V+(r)− µ+) = 0.

Since βµ+ = log
(
ρsΛ

3
±
)

this implies

ρ+(r) = ρs exp(−φ(r)− βV±(r)).
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B Additional constraint for the bulk densities

By definition of the adsorptions Γi± we have

−Γ1− + Γ1+ − Γ2− + Γ2+ = 0, (B.1)

which is similar to relation 3.20. Using equation B.1 relation 6.4 can be rewritten in the form

H

2

(
ρw1− + ρo1−

)
+

1

H
Γ1− =

H

2

(
ρw1− − ρw1+ + ρo1− − ρo1+

)
H

2

(
ρw1− − ρw1+ + ρo1− − ρo1+

)
=

1

H
(Γ1+ − Γ1−)

H

2

(
ρw1− − ρw1+ + ρo1− − ρo1+

)
+

1

H
(Γ2+ − Γ2−) = 0. (B.2)

Finally, using charge neutrality in bulk water and bulk oil,

H

2

(
ρw1+ + ρo1+

)
+

1

H
Γ2− =

H

2

(
ρw1− + ρo1−

)
+

1

H
Γ2+

H

2

(
ρw2− + ρo2−

)
+

1

H
Γ2− =

H

2

(
ρw2+ + ρo2+

)
+

1

H
Γ2+

ρ2− = ρ2+. (B.3)

C The steady state

The main properties of the electrochemical cell are shown schematically in figure C.1. The electrodes
consist of platinum wires attached to square platinum meshes [6]. A potential difference is applied between

Figure C.1: Electrochemical cell diagram: a potential difference is applied between the electrodes. A
typical potential φ is shown.

the electrodes; this results in a charge density σ1 on the left plate. In this example σ1 < 0. A suitable ion
species will respond to the new situation. In the experiment under consideration there will be a flow of
Cl− ions from water to oil. Briefly, there is a strong current and ρwCl− decreases as a result. The depletion
of Cl− ions must be compensated for in order for the system to meet the imposed voltage. This is done
by means of redox reactions. Anions with a strong affinity for water, such as OH−, and cations with
a preference for oil are created in water and oil, respectively. This induces a net negative current from
water to oil, which in turn gives rise to more redox reactions: a dynamic equilibrium. The equilibrium
current is typically very weak (' 1− 10 µA) and will not be taken into account.
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D Derivation of the Lippmann equation

The electrolytic cell can be described by the potential Y [{µi}, φext], as defined in section (11.1). The
corresponding differential is given by

dY = −Nidµ
i − pdV + γdA− σAdφext, (D.1)

where γ denotes the total surface tension. The relation

Y[{µi}, φext] = −p[{µi}]V + γ[{µi}, φext]A (D.2)

holds by the extensivity of V and A. Combining equations (D.1) and (D.2) leads to

−Nidµ
i − σAdφext = −Vdp + Adγ. (D.3)

We note that Ni = (ρw
i + ρo

i )AH + ΓiA, hence the terms that scale with A in Eq. (D.3) can be separated
from those linear in V : {

(ρw
i + ρo

i )dµiAH = Vdp

−Γidµi − σdφext = dγ.
(D.4)

Collecting interfacial terms from the second relation in (D.4) gives

dγint = −σ2dφD − Γidµ
i,

which yields the grand-canonical Lippmann equation dγint = −σ2dφD at constant chemical potentials.
The canonical Lippmann equation in integral form becomes

γint = −
∫

dφDσ2 −
∫

dµiΓinti . (D.5)

The interfacial tension is directly obtained from this relation when σ2(φD) and Γi(µi) are known.
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