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Abstract

Agents are autonomous processes which together form multi-agent systems. Often we

want to make sure that these agents behave according to certain guidelines. To make

sure they do, we need control mechanisms. A possible control mechanism is an exoge-

nous normative organization. Such an organization contains norms that represent the

kind of behavior that we want from agents. Norms are regulations which can be vio-

lated. Therefore, when we program an organization we need to specify what happens

when agents violate norms. Existing programming languages for exogenous normative

organizations are used to make centralized control structures for multi-agent systems.

However, some multi-agent system applications require a distributed control mechanism

due to the structure and/or nature of the application. In this thesis we address this

problem by proposing a programming language for distributed exogenous normative or-

ganizations. Norms are handled by a set of suborganizations which observe and influence

a partition of the environment. We will cover the syntax, operational semantics and a

prototype interpreter of the proposed programming language.
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Chapter 1

Introduction

In this thesis we will explore a distributed control mechanism for multi-agent systems.

The first step we take is to introduce the field of agents and multi-agent systems. To

focus our exploits we will also pose a running example and the research questions. In the

overview section it is explained how the questions are answered throughout the thesis.

1.1 Agents and multi-agent systems

Agents fall under the scope of artificial intelligence. In short, an agent is an autonomous

entity which usually has some purpose. Think for instance of a service chat bot that tries

to answer your questions. The work on agents can be roughly divided in two categories.

On the one hand we have the science of artificial thinking, such as making rational

decisions in game theoretic environments and common sense reasoning with defeasible

logics. And on the other hand we have the software oriented approach, which is about

programming agents and controlling them. Our focus will lie heavily on the software

oriented side. We are especially interested in the how of agent software rather than the

why. Readers who are interested in the latter are referred to (Jennings, 2000).

The art of programming A.I. is a fast developing field. It started with the introduction

of declarative programming languages. Such languages, like Lisp and Prolog, allow us

to express knowledge in a concise manner. Expert systems, which deploy knowledge

to advice or instruct users, are therefore generally made with declarative languages1.

Of course if we have a system that stores knowledge and can reason with it, why not

allow the system to also act upon it? This question has led to the notion of agent

programming. Plenty of agent related languages haven taken an approach based on

1Popular knowledge system languages of today include Drools and JESS

1



Chapter 1. Introduction 2

the concepts Belief Desire Intention (BDI), which were introduced in (Bratman, 1987).

Beliefs are equal to a representation of knowledge. Desires are the goals of the agent, for

instance maximizing payoff is a desire in game theoretic settings. An intention is a course

of actions which the agent has decided upon. Generally these intentions require plans

and a mechanism that given the beliefs, desires and plans, decides to what actions the

agent should commit itself. An interesting paper on the background of agent technology

is (Wooldridge and Jennings, 1995).

The environment of a system is everything which influences or is influenced by agents.

Agents usually achieve their desires by doing actions in the environment. Because we

assume agents to be made from software, we usually assume that the environment is

electronic as well, or at least has an electronic interface. The difficult part of making

an environment interface, is to make it compatible to different kinds of agents. This

has lead to standardization attempts such as the Environment Interface Standard (EIS,

(Behrens et al., 2010)). The designer of an environment or its interface has the power

to influence the capabilities of agents. A database programmer for instance can prevent

certain records from being deleted. In this thesis we will make good use of the designer’s

power.

When you create multiple agents, then you have created a multi-agent system. Without

any interactions a multi-agent system does not provide us with additional functionalities.

Things get different when agents can communicate. Interaction between agents allows for

coordination. Because interaction is so important, most agent programming languages

introduce communication actions as first class citizens in the definition of the language.

These communication actions are referred to as speech acts and are inspired by the

work in (Searle, 1969). There are systems, some of which will have an appearance in

this thesis, that consider the communication among agents to be their sole possible

actions. For example, a call to a database in such systems is considered to be a message

that requests something from the database.

In (Shoham, 1993) a first shot at a generic agent programming language was taken. The

language described in Shoham’s work is Agent-0. This language contains all the previous

mentioned features: belief and desire representation, rules for creating commitments (in-

tentions), a built-in communication mechanism, and the possibility of performing actions

in an environment. The interpreter for the language was made in Lisp. Many differ-

ent agent languages, both commercial and open-source, came after Agent-0 (e.g. 2APL

(Dastani, 2008), Jason (Bordini et al., 2007), GOAL (Bordini et al., 2009)). Nowadays

Lisp is not so much used anymore, and Java in combination with Prolog has become

more or less the standard for agent technology. The reason is that both Java and Prolog

are interpreted languages and therefore have a high degree of portability. We can even
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increase portability by using middle-ware. For instance both 2APL and Jason can use

the Jade(Bellifemine et al., 2007) platform. Thus a combination of 2APL and Jason

agents can still work together. The management of the interaction between agents and

the environment can be quite complicated. This has given rise to new technologies to

cope with regulations.

1.2 Regulating multi-agent systems

The environment in a multi-agent system has a background. Usually we have a legacy

system or we create a platform on which agents operate. This implies that the designer

of the environment had some idea on how it should be used. The agents however might

be designed by other parties without the environment’s creator knowing how they work.

This is typically the scenario in an open multi-agent system. To steer the agent’s behav-

ior we can use low level regulations by means of predefined API’s (Ricci et al., 2007).

These provide constraints on the use of the environment by simply not providing the

possibility of certain actions. A more abstract method is to instantiate social concepts

such as roles and norms (Searle, 1995). We are interested in the latter approach be-

cause it preserves autonomous agency. In this thesis we shall use the term organization

to indicate a system that handles regulatory measures. A distributed organization is

an organization that consists of multiple suborganizations to handle the regulations. If

the regulations consist only of norms, then the organization is called normative. If the

organization is a clear separate entity from the environment, then we call the organi-

zation exogenous. The smart roads system of the next section will be an example of a

distributed exogenous normative organization.

Regulations change the way the multi-agent system runs. Thus, regulations are a refine-

ment of multi-agent systems (Astefanoaei, 2011). The application of rules/norms adds

a computational burden to the overall system. Due to the nature of agent systems there

are three main concerns for controlling mechanisms. First, the more rules and agent

activity, the heavier the burden. Second, once a system runs, it has to be maintained.

Different parties can be involved in this. And third, the environment can be physically

distributed. In the latter case, if we process the norms centrally and require information

from the environment, then a distributed environment relies on a lot of communication

(and communication is a notoriously slow operation). The topic of this thesis is a control

mechanism that handles these three concerns. We will use distributed organizations to

deal with the aforementioned issues.
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1.3 Running example: Smart roads

To help understand concepts and idea’s throughout the thesis, we will consider a running

example. The need for distributed exogenous normative organizations can be illustrated

by so-called smart roads. These are road systems which are extended with an ICT

infrastructure that helps to regulate and manage traffic. The goal of these roads is to

maximize throughput and road safety. The ICT infrastructure monitors the roads and

can for instance adapt road signs automatically. From an organizational perspective

vehicles are interpreted as agents. The application of agent technology to traffic issues

is a fairly new but fruitful approach. For an example see (Adler and Blue, 2002).

The three earlier mentioned concerns when regulating multi-agent systems all apply to

a smart roads application. The more traffic is on the road, the heavier the regulation

burden becomes. With thousands upon thousands of cars joining an arbitrary road

network we soon have to deal with scalability. The regulations for roads can be very

local. Municipalities can regulate their own roads if they want to. So for maintenance we

are depended on multiple parties. And very evident is the actual physical distribution

of our environment; the road.

In the smart roads application that we use as an example, each road segment is enriched

with an organization. Together the organizations form a distributed organization. The

organization exogenously monitors the behavior of cars (using necessary sensors), evalu-

ates them based on the actual norms and regulations, imposes sanctions (i.e., sending a

fine to the car owner or changing the maximum speed) and, if necessary, modifies norms.

Like actual highways we assume that there are electronic road signs at regular intervals.

Attached to these road signs are the sensors. These can detect the identity of a car, its

lane, and its speed. For a schematic overview see Figure 1.1. The main norm we will

look at is that agents ought to drive at velocity that is less than the indication on the

road signs.
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Figure 1.1: Schematic view of a smart roads application.

1.4 Research questions

In this thesis we will use distributed exogenous normative organizations to deal with the

issues that surround the use of norms. These organizations have only recently entered

the spotlights. Consequently a lot of open questions still remain. The main research

question in this thesis is:

Main Question: How can we model and program distributed exogenous normative

organizations?

The model part of this question can be answered by making ourselves familiar with

the current work on organizations. There has been a lot of work on the subject of

organizing agents. Most of that work is oriented towards centralized organizations, but

we will also see some work on distributed systems. The question to be answered by

literature research is:

Subquestion 1: How can we organize agents?

As for the programming part we already have a beginning, namely 2OPL (Dastani

et al., 2009). This normative programming language provides us with support on norms

for centralized settings but has to be extended. By comparing existing languages and

defining a new one, we will answer the following question:

Subquestion 2: How can we program organizations for a distributed setting?

When multiple organizations operate in a distributed setting, then they only have a

partial view of the overall system. This has consequences for the way in which we can

regulate agent behavior. For some regulations we might require our organizations to

cooperate. A questions that follows is:
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Subquestion 3: How can different organizations interact?

A natural question that follows from programming an organization is how we can inter-

pret this programming language. As a result we pose the following subquestion:

Subquestion 4: How can we execute a normative program?

1.5 Overview

The rest of this thesis is structured as follows:

First we familiarize ourself with the background literature of the topic. In chapter

2 we start with the theory on organizations. We will discuss the various works on

how we can organize agents, and thus answer the first subquestion. In chapter 3 we

describe a programming language to program distributed normative organizations which

answers the second and third subquestion. Chapter 4 answers the fourth subquestion by

explaining how the language from chapter 3 can be implemented. We will also provide a

new interpreter for 2OPL in chapter 4. Chapter 5 concludes the thesis by summarizing

the answers to the subquestions, and consequently the main research question. Also

some pointers for future work are given in chapter 5.



Chapter 2

Background

Organizations have originated from the urge to guarantee cooperability in multi-agent

systems. There has always been some tension between on the one hand letting the agents

be totally free, and on the other hand making them fulfill some purpose. In this chapter

we will discuss the solutions to the organization issue that have been proposed over the

years. Roughly the path will lead us from very closed to open systems. We will also

briefly describe what kind of distributed control mechanisms have been proposed.

2.1 From MAS to organizations

It is quite unlikely that we make a multi-agent system just for the sake of having one.

There must always be a design to steer the development of the platform. In a smart roads

application the goal is to increase safety and throughput. Agents (cars) are completely

autonomous and in essence selfish. For some global goals, like safety, we need an extra

influence in order to get the agents act together. Non-cooperative selfish agents could

try to maximize their own speed, which in turn would compromise safety. Even though

safety is also in the interest of selfish agents.

There are many possible mechanisms that we can deploy to allow for cooperation. Pop-

ular choices are Linda tuples and blackboards. There, agents can publicly announce

statements and/or change the artifact such that other agents can act upon it. But we

can also choose to solely rely on communication (mailboxes, vehicle to vehicle transmit-

ters etc.). Alas, having the possibility to coordinate still does not make agents cooperate.

And besides cooperation we perhaps also want to take certain security measures. For

instance a car agent should not be able to add fines in the fine database. It is not

unimaginable that some other agent is allowed to change the fines. So we can see a

distinction between types of agents.

7
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The design of a multi-agent system can be made easier by adopting sociological concepts

like organizations, norms and roles. By using this abstraction we can more intuitively

design complex systems with plenty of autonomous processes. Having an organization

means that agents have certain types or roles. We can no longer talk about a multi-agent

system with any kind of agents, as the agents must at least fit the organization. In a

smart roads application we have car agents, and perhaps some other types, but not for

instance a groceries dealing agent. Though of course a car agent in one organization can

deal vegetables in another. A question that still remains is how we can make agents act

according to our organizational design.

The best way to make sure that agents behave well is by building them ourself, and

conform to our design. This is what happens in some of the earlier organization method-

ologies such as Gaia (Zambonelli et al., 2003) and Prometheus (Padgham and Winikoff,

2002). A comparison of related methodologies can be found in (Neumann, 2010). The

multi-agent system by organizational design approach goes through three stages. First

the organization is analyzed to determine its goals, suborganizations, the available re-

sources (sensors, databases, etc.) and global agent categories (cars, trucks, emergency

task forces). Then comes the architectural part where the structure of the organization

is given form. Also part of the architecture is a more detailed view of the types of agents

and how they interact. And finally the structure is translated into actual agents and the

specification of the environment. All the agents beliefs, desires and intentions should

come forth from the requirements of the organization.

Obtaining your agents’ description directly from your design process can be handy as it

is very straightforward to show a non-designer of the system how the agents obtain the

global goals. It is also very safe as the agents will not likely do something unexpected.

What is not so good is that changing the design means changing a potential huge amount

of agents. This had lead to proposals for explicit organizational programming, where

the agent implementation details are left open.

2.2 Explicit organizational programming (with S-Moise+)

Among the possible organizational design tools are OperettA(Aldewereld and Dignum,

2011) (based on OperA (Dignum, 2004)), ISLANDER(Esteva et al., 2002) (and the

related framework AMELI (Esteva et al., 2004)) and S-Moise+(Hübner et al., 2006)

(which has its roots in Moise(Hannoun et al., 2000)). With all the three techniques we

can program organizational specifications explicitly. An extensive discussion of all three

is not necessary, but we will look in more detail at the S-Moise+ as its implementation is

more conform the design choices in this thesis. Using S-Moise+ to create an organization
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is done by defining high level organization constructs, and these can be translated to

lower level languages(Hübner et al., 2011).

A Moise+ (Hübner et al., 2002) (an extension of Moise) organization contains a function-

ing, structural and normative dimension. The functioning dimension is the embodiment

of the global goals. Think for instance of plans to fulfill a goal, such as a choreography

for cars that approach a crossroads simultaneously from different directions. The struc-

ture of the organization is based on roles, relations between them and groups of them.

Like in a theater performance, a role defines behavior which can be adopted by an entity

(actor/agent). Generally, given an organizational goal and its plans, roles are focused

coherent subparts of plans, called missions. The third dimension, based on norms, is the

link between roles and missions. Because we do not want to force a specific sequence

of actions on an agent, we define to what kind of activity it is committed because of

adopting a role. This can be viewed as telling a car that it should change lanes and not

telling it to first rotate the steering wheel by x degrees, then wait some time, and finally

turn the wheel by −x degrees. An agent should be able to receive from the organization

its responsibilities so that it can decide how it can act upon them. From a developer’s

point of view it is therefore the case that the agents have to adapt to the organization,

instead of the other way around.

Moise+ is an explicit way of defining an organization. Thus, we end up after the spec-

ification with an organizational entity that also exists without agents being present.

The organizational entity stores all the specifications (goals, roles, etc.), and runtime

data (which goals are already achieved, who is playing what role, etc.). For agents in-

side the organization the organizational entity is a middleware solution. S-Moise+ is

a middleware specification based on Moise+. Two basic entities make up a S-Moise+

organization: an OrgBox, and an OrgManager agent. The OrgBox’s API allows agents

to interact with the organization. Based on the organizational rules, there are decisions

to be made such as determining whether an agent may enact the role it is requesting.

These kind of activities are performed by the OrgManager. Agents in the organization

do need to be compatible/familiar with the Moise organization in order to act upon

it. A possible agent technology to deal with Moise organizations is J -Moise+(Hubner

et al., 2007).

Basically the organization influences the agent’s activities in two ways. First, hard

constraints, such as the number of agent that are allowed to play a certain role, are

forced upon the agents by the OrgManager. Second, soft constraints, which follow from

the norms, can be violated but violation might be sanctioned (or obedience rewarded).

These two kinds of constraints are henceforth called norms. A norm that cannot be

violated (i.e. the hard constraints) are what we call regimented. The violable norms
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(soft constraints) are enforced by a sanction/reward mechanism. So to implement a

higher level organizational framework we only need a programming language to properly

handle norms. For Moise a normative language was presented in (Hübner et al., 2011).

There are however numerous other alternatives for normative entities.

2.3 Structure of normative languages

Besides NPL, the normative language from(Hübner et al., 2011), we will shortly discuss

2OPL(Dastani et al., 2008) including its temporal extension from (Tinnemeier, 2011) and

the language from (Garćıa-Camino et al., 2009). Typically a normative programming

language is used to program an active entity. Because the entity influences the multi-

agent system it often “sits” between the agents and the environment, so it can influence

actions, and it can be positioned between agents, so it can influence communication.

In this thesis we take the view that the organization sits between the agents and the

environment. Even though sometimes this feels unintuitive. For instance a car does not

call actions in the environment, it simply modifies its steering angle, adjusts its velocity,

etc. Nevertheless we can imagine that the organization senses these actions and acts as

if the agent called them on the organization. Though in the case of regimentation this

means that blocking an action is not an option.

Normative languages are based on logic. Searle made the observation that within a

social system we have both brute and institutional facts (Searle, 1995). Brute facts are

the literal facts of an environment’s situation such as “Agent 1 is located at (21,35) and

drives in the direction of 1
4π radians”. Institutional facts are impositions on the brute

facts, like: “Agent 1 is driving on the wrong side of the road”. These impositions can

become quite complicated since they are context depended. In one situation one might

consider skateboards to be vehicles and in other situations perhaps not. In (Grossi,

2007) this issue is tackled with description logics (Baader et al., 2002). In the normative

languages that occur in this thesis brute and institutional facts are ground first-order

atoms. The logical interpretation of the environment is called its model.

The norms of an organization are also based on first order logic, including modal logic for

deontic constructions. Norms in natural language are generally of the form “A ought-to

X”, or “A is-forbidden-to X”. For ought-to we can make a distinction between ought-

to-do (Tunsollen) and ought-to-be (Seinsollen) (Meyer et al., 1998). This distinction is

important or else we can get confusion when we formalize these notions. To see the

difference: (Tunsollen) “Agents ought to hit the break when approaching a traffic jam”

or (Seinsollen) “Agents ought to have a low velocity when approaching a traffic jam”.

The latter states simply the end result and gives the agents their own autonomous choice
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what to do. The language NPL takes the ought-to-do stance, 2OPL and the language

from (Garćıa-Camino et al., 2009) are on the ought-to-be side. This thesis builds on

2OPL and therefore also uses ought-to-be. To reason about obligations and prohibitions

we can use deontic logics (von Wright, 1951). We shall not go into the details of deontic

logic here. The reason is that in the papers (Tinnemeier, 2011; Dastani et al., 2008, 2009;

Hübner et al., 2011) its use is abandoned for practical reasons. Producing extensive

deontic models is a tough programming task. Furthermore, sentences like “A is obliged

that A is obliged that X holds” tend to be highly exotic. A full-fledged deontic logic

is too unpractical for the limited use of its capabilities. 2OPL and the language from

(Garćıa-Camino et al., 2009) do not use any deontic operators at all. With the extension

from (Tinnemeier, 2011) 2OPL does use the notion of obligation and prohibition.

Given the model of the environment, and the norms, we want to be able to derive

produce new brute and institutional facts or remove them. The basic way for this is the

notion of counts-as rules. In (Garćıa-Camino et al., 2009) the norms consist solely of

this kind of implication rules. Such a rule has on both sides a conjunction of literals,

meaning that if the left hand side holds, then the right hand side must be made true as

well. They present first the implication rules and how to execute them, and afterwards

they define an example norm language that can be translated to these rules. 2OPL

uses similar implication rules. In 2OPL there are two kinds of norm related constructs:

counts-as rules and sanction rules. Counts-as rules are used to determine what system

states constitute what kind of violations. With the sanction rules these violations are

coupled to model changes. The sanction rules can be seen as counts-as rules on a different

domain (the institutional instead of the brute facts). In (Tinnemeier, 2011) temporal

norms consisting of a precondition, a deontic influence and a deadline were introduced

to replace 2OPL’s counts-as rules. NPL norms are labeled counts-as rules. Instead of

modification on the right hand side, NPL norms only create obligations or fail. Thus

if we want something in the environment changed as a consequence of a norm, then a

submissive and able agent has to become obliged to make the change.

We made a distinction between regimentation and enforcement. Beside others, 2OPL

and NPL have the possibility for regimentation. Their strategy is to check all the norms

after any agent’s action. When a special institutional fact is derived (e.g. viol⊥), then

all the norm effects are reversed and the action itself too, which as a result fails. Rolling

back actions is not the only way of implementing regimentation, but it is quite common

in interpreters. Another popular choice is to work with a try-out version of the envi-

ronment’s model. If during the try-out it is detected that the action should be blocked,

then it is not performed in the real environment. Regimentation is only applicable in a

limited amount of situations. For instance in a smart roads implementation we cannot
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undo an agent’s actions and neither do we want to check all the norms after each action,

because of the computational cost.

2.4 Dealing with distribution

In (Piunti et al., 2010) a unified programming model for multi-agent systems is given.

The model integrates Jason, CArtAgO (Ricci et al., 2009), and Moise. With Jason

the agents are programmed. With CArtAgO the environment. And Moise is used for

the environment. Their approach is to embody the organization into the environment.

Because CArtAgO and Moise are not designed to be used in the same system, we

must glue them together. To this end Emb-Org-Rules (embody organization rules)

are used. We have two types of Emb-Org-Rules; counts-as and enact. The counts-as

rules connect environmental events to organizational changes. For instance entering a

road system makes an agent automatically adopt the role of driver. Enact rules couple

organizational events to environmental changes. For example if an agents adopts the

role of fine database administrator, then the enact rule will change the database in

such a way that the agent has all the administrator rights. Distribution is achieved

by separating the environment in workspaces and adding the rule constructs to these

workspaces. It seems that it is implicitly assumed that the environment can be divided

in clear workspaces that have no organizational relations among each other. For instance

adopting a role cannot result in commitments in different workspaces. They also do not

provide the possibility that one commitment might overlap several workspaces.

A similar but less elaborate approach is presented in (Okuyama et al., 2008). Their

distribution is also obtained by specifying norms for subdomains of the environment.

A subdomain is either a normative space or a normative object. The norms can be

obtained by agents so they can reason about them. The monitoring of the norms to

check for compliance is delegated to special agents called norm supervisors. Some of

the issues surrounding distributed normative systems are not solved. One of their own

examples is a factory environment where agents may work longer consecutive periods

in noiseless places than in noisy places. What cannot be described is a norm to handle

a situation where some agent has worked a while in a noiseless environment and then

moves to the noisy one. I.e. norms that overlap artifacts/places are still problematic,

as was the case in (Piunti et al., 2010). Also the compliance of norms is not formalized

which makes it hard to define properties of such systems.

The tactic in (Vasconcelos et al., 2012; Gaertner et al., 2007) is different. Instead

of workspaces and objects they consider activities to be central in regulations. This

works especially well in large environments where interactive process are independent
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of each other. For instance their scenario is an electronic market. If two agents are

involved in a transaction, then no other agents are bothered by the norms that hold for

that transaction. Thus the normative task can be distributed among processing units

that handle the norms for different interactions. Each activity has its own normative

state which contains the uttered speech acts (only speech acts are considered to be

possible actions) and the current obligations, prohibitions and permissions. The norms

themselves take the form of basic counts-as constructs. The left hand side of a norm is a

formula on the normative state (and cannot cover multiple states) and the right hand side

is the addition or retraction of an obligation/prohibition/permission. The monitoring

system they propose is quite rigorous. Each activity (or: scene) has two monitoring

agents assigned to it. One is for handling the changes in the scene and one is for the

guarding the normative state. Per participating agent there is a governor which can

block a speech act if it does not comply with the norms. Thus, the earlier mentioned

approach is used where the organization is situated between the agents. Agents are

assumed to be unable to communicate directly. The system from (Vasconcelos et al.,

2012; Gaertner et al., 2007) is not easily applicable to our smart roads example. On

the highway it would be considered added value if agents can directly communicate with

each other through vehicle-to-vehicle transmitters. Also the notion of interaction is hard

to apply. For instance, is speeding on an empty road a breech of an interaction protocol?

And all the norms in (Gaertner et al., 2007) are regimented whereas traffic regulations

are more naturally represented by enforced norms.

The last distributed norm mechanism we look at is presented in (Minsky and Ungureanu,

2000) and is called LGI (law governed interaction). As in (Gaertner et al., 2007) the

central topic is interaction. The LGI approach is to put a part of the organization

between a group of agents, give a law to it, and then govern the interaction. They also

make use of special agents to monitor the law, called controllers. Basically every member

of a regulated group has a proxy which they can use to make their communication wishes

known. This proxy is then used by controllers to effectuate the wishes, if they comply

with the law of the group. One controller can operate on multiple proxies. LGI’s

language looks a lot like Prolog. In (Minsky and Ungureanu, 2000) attention is also

given to LGI’s performance, which shows that distributed control mechanisms are ideal

for large multi-agent systems. Organizations described in (Minsky and Ungureanu, 2000)

are also not directly applicable to smart roads systems for the same reasons as posed

for the method from (Gaertner et al., 2007). Again it’s the interaction approach that is

the problem because the regulations for roads are not always about interaction.

We have seen in this section that distributed norms are currently investigated from

different angles. The key in all approaches is to divide the system’s activity. In (Pi-

unti et al., 2010; Okuyama et al., 2008) this is done through environment analysis, in
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(Gaertner et al., 2007; Minsky and Ungureanu, 2000) this is done by looking at coherent

agent activities. In this paper we will adopt the environment partitioning approach. A

difference with current work though is that our partitions are still dependent on each

other in the sense that norms can span multiple partitions.

2.5 A comparison of languages

We have seen different languages. Each of those has its own special features. NPL

was designed for implementing Moise organizations, making it limited for general use.

A telling difference between NPL and other languages is that in NPL sanctions are

actions which are delegated to agents. In other languages any action that follows from

a sanction is often performed by the organization itself. In (Gaertner et al., 2007)

a universal underlying language for norms is represented based on implication rules.

Programs in that language are hard to maintain because these implications have little

structure in the sense of what rules effectuate actions, and what rules are for norms.

In (Garćıa-Camino et al., 2009) there is also another language presented that can be

translated to implication rules. 2OPL is more structured and provides means to program

action effects separately from counts-as rules and sanction rules. 2OPL differs from NPL

and the language from (Garćıa-Camino et al., 2009) mainly because it is state based. In

2OPL we do not define norms about actions, but about system states. Both NPL and

2OPL have regimentation incorporated in their language by using special facts (false

and viol⊥ respectively). The work in (Garćıa-Camino et al., 2009) does not provide

special consideration for regimentation. Though in their framework actions are part of

the system state which allows norms to delete them, thus having a form of regimentation

as well. NPL, 2OPL and the language from (Garćıa-Camino et al., 2009) are all not

tailored for distributed organizations.

The languages from (Piunti et al., 2010), (Okuyama et al., 2008), (Gaertner et al., 2007)

and (Minsky and Ungureanu, 2000) (LGI), were the ones that considered distribution.

They are all action based. In (Piunti et al., 2010) distribution is mainly handled by the

architecture of the system. They only provide rules to interpret environment events as

organizational events and to let agents enact roles and adopt missions. In (Okuyama

et al., 2008) the compliance of norms is checked in a distributed manner by assigning

this task to agents. In the language from this thesis we define compliance monitoring as

part of executing the normative language. The systems from (Piunti et al., 2010) and

(Okuyama et al., 2008) both consider roles which is not the case for the other systems.

Also in this thesis we do not use the notion of roles. In (Gaertner et al., 2007) the

language from (Garćıa-Camino et al., 2009) is analysed and reconsidered for distributed
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systems. Norms are distributed by grouping them together for certain activities. They

take special care to avoid conflicts between norms if an agent participates in multiple

activities. The approach in LGI is comparable to that of (Gaertner et al., 2007). Here

also interactions are central.

The language from the next chapter differs from the other distributed languages because

it regulates states. Like (Piunti et al., 2010; Okuyama et al., 2008) we divide the envi-

ronment. We however consider also situations where norms span multiple divisions. For

instance norms about agents moving from one environment division to another can be

programmed. Another difference is that in our language we can also add consequences

to obedience. Just like 2OPL’s extension we will work with both obligation and prohi-

bition. We also take over the use of special constructs to indicate how actions change

the state of the system.

2.6 Chapter summary

To come to grips with how we can organize agents we have looked into the background

literature on multi-agent organizations. We saw that there are various ways to organize

an agent system. The safest way is to design the agents ourselves and hardcode orga-

nizational behavior into them. A more maintainable approach is to explicitly program

organizational components as is done in theMoise+ framework. Explicit organizational

components have explicit rules that need to be processed somewhere in the system. We

have looked at different ways to process norms distributively. As a basis to all distributed

approaches lies the idea that the agent activity must be partitioned, either by looking

at the environment or at coherent interactions.



Chapter 3

Programming organizations

In this chapter we look at how we can program norms for distributed settings. Current

normative languages do not provide us with appropriate features, so we propose a new

language. This language contains many common features with current languages. A no-

table lacking feature is regimentation, which would complicate distributed organizations

a lot. We will discuss the syntax of the language and its operational semantics.

3.1 Requirements of the normative language

To illustrate the need of various features in our normative language, we consider an

example scenario from the smart roads application. Let us assume some highway is

partitioned in two road segments A and B, and traffic flows from A to B. To sense

the status of the road we have sensors attached to each electronic road sign. In our

scenario an accident has happened at the beginning of segment B. We would like our

infrastructure to react to this incident by adjusting the speed regulation for segments A

and B. Our example norm in this scenario is that cars ought to keep their velocity lower

than the speed which is depicted on the electronic road signs.

In order to control and coordinate the behavior of agents in an open multi-agent system

one needs to be able to exert power on agents. In an open multi-agent system, it is

impossible to directly adjust the agents’ decision mechanisms. We cannot so to speak

hard code our regulations in the agents. However, as the designer of a multi-agent

platform one has other means to influence agents. We can exert power on agents by

controlling the entities on which they depend, i.e., the environment. In this perspective,

also presented in Dastani et al. (2008), agents running on an open platform perform

actions and the organization decides how they are realized. The environment in a smart

16
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roads application could be the electronic road signs with sensors, and a registration

system for fines. We can store the sensor data in a database. The actions a car can

do are, among others, passing a sensor and causing an accident. The organization then

updates its data (e.g., car velocities and accidents) and checks whether agents behave

according to the norms (in our example: whether they have exceeded the speed limit).

A programming language for exogenous normative organizations must therefore be able

to represent and change the environment. We build on the programming language

proposed in Tinnemeier (2011) and extend it with additional constructs to support the

implementation of distributed organizations. The first change is that we partition the

environment. The language should be able to represent a partition, which we do with

facts (ground first-order literals). We modify facts by means of update rules which

are essentially Hoare triples (Hoare, 1969). An update has a head, a precondition and

a consequence. The update’s consequence consists of sequences of fact assertions and

retractions. A sequence of updates can be considered as one single action because they

are executed in a non-interleaving mode. In our scenario an accident causes adjustment

of the speed limitation, which is reflected by the signs on the road. So after an accident

the facts should be updated in such a way that the new speed limitation holds and is

projected on the road signs.

In a normative language we need of course constructs for norms. We distinguish be-

tween norm schemes and norm instances. Norm schemes can be instantiated when their

precondition is satisfied. An instantiated norm creates a deontic influence. We limit

ourselves in this thesis to obligations and prohibitions. We do not bind our deontic op-

erators to actions, but to the state of the environment. If something which is obliged is

not brought about, or if something which is forbidden is brought about, then this counts

as a violation of the norm. Otherwise it counts as obeying the norm. For detecting the

violation of obligations and the consideration of prohibitions we need deadlines. We can

also make use of expiration clauses. The difference between deadlines and expiration

clauses is that a deadline is used to generate either an obey or violate effect, while an

expiration removes the norm instance without any consequences. Example time lines

for a norm are displayed in figure 3.1.

We mentioned as an example norm that cars ought to drive slower than the speed

indication on the road signs. After an accident the speed indication changes. We can use

the passing of a road sign, and the fact that the sign displays an adjusted limitation, as

a precondition which instantiates this norm for an individual car. The deontic influence

is that the car is obliged to have the lower velocity. To see if a car is in violation we

need a deadline. Cars are notified of the speed limit when they pass a road sign. So

when the speed limit is adapted after the accident, the cars ought to have the adjusted
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¬ϕp ϕp ∧ ¬ϕd ∧ ¬ϕe ∧ ¬ϕx ∧ O(ϕx) obeyed

¬ϕd ∧ ¬ϕe ∧ ϕx ∧ O(ϕx)

obeyed

ϕd ∧ ¬ϕe ∧ ϕx ∧ O(ϕx)

violated

ϕd ∧ ¬ϕe ∧ ¬ϕx ∧ O(ϕx)

none

ϕe

history

¬ϕp ϕp ∧ ¬ϕd ∧ ¬ϕe ∧ ¬ϕx ∧ F (ϕx) violated

¬ϕd ∧ ¬ϕe ∧ ϕx ∧ F (ϕx)

violated

ϕd ∧ ¬ϕe ∧ ϕx ∧ F (ϕx)

obeyed

ϕd ∧ ¬ϕe ∧ ¬ϕx ∧ F (ϕx)

none

ϕe

history

Figure 3.1: Some time lines for an arbitrary norm with as precondition ϕp, as de-
ontic content M∈{O,F}(ϕx) (O is obligation, F is prohibition), as deadline ϕd and as

expiration ϕe. Values of literals that are not shown are not relevant.

velocity at the road sign after the next. An expiration clause would be that the sensor

system fails or that the accident site is cleared. A violation effect for our example could

be a fine.

A novel feature of our extension is the use of labeled literals in norms and update rules.

Each road segment has its own organization which we identify by a unique label. We

can also have other organizations to handle different aspects such as a fine database

that stores the fines. One organization might have relations to another. In our scenario,

if a car is notified of the new speed at the last sensor of segment A, then it should

have adapted its speed at the first sensor of segment B. In the organization of segment

A the obligation to adapt the speed is created. To check whether the car obliges, the

organization of segment A has to get this information from the organization of segment
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B. A labeled literal indicates a literal from another organization. The programmer only

has to type the label and the interpreter then handles all the necessary interactions to

get the right information. When a norm’s precondition is given, then without the use

of labels that precondition can be seen as a query on the organization’s own fact base.

When labels are used, then the query spans multiple fact bases. We also use labels

for fact modifications (removing or adding a fact). In our scenario the organization of

segment B can also make environment changes in segment A, such as manipulating the

road signs.

One feature which is not present in this programming language is regimentation. See

section 3.5 for a small discussion on this topic.

3.2 Syntax

A distributed normative organization can be implemented by programming a set of

separate organizations. The syntax of the programming language for organizations is

given in figure 3.2. An organization can be implemented by programming the initial

state of the environment partition on which it operates, the set of norms that can be

enforced by the organization, and the set of updates that realize the effects of agents’

actions. We view norms as consisting of several (optional) attributes. The parts of a

norm are: a name, a precondition, a prohibited state ór an obligated state, a deadline, an

expiration clause, a consequence for violation and a consequence for obeying the norm.

The notation of norms has to be pragmatic. In (Dastani et al., 2008), (Hübner et al.,

2011) and (Garćıa-Camino et al., 2009) norms are notated as counts-as/implication rules.

In (Tinnemeier, 2011) they are notated as tuples. Both views provide nice single line

norms if the norms are small. But for larger norms they become a bit more awkward.

The proposed syntax in this paper states an attribute after which its value is given. We

can now keep using the comma for conjunction - as in Prolog - and just leave out an

attribute if we want to give it a standard value. If a programmer wants to modify an

attribute, (s)he can immediately see which formula to change. The syntax is given in

table 3.2.

As a basis for programs we take the 2OPL syntax with facts and effect rules. Although we

call the effects rules updates. We drop the sanctions section. Originally the sanctions

were meant to pose consequences to norm violations or combinations of them. By

writing a sanction for each norm we cannot produce a sanction for violating another

norm directly. It can still be done by asserting a violation fact as the consequence of a

violation, and use that fact in the precondition of another norm. The words “sanction”

and “reward” are not used but instead “violated” and “obeyed”, to keep the syntax more
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〈ORG〉 ::= (〈ATOM〉 | 〈UPDATE〉 | 〈NORM〉)*
〈UPDATE〉 ::= “update” “{” 〈HEAD〉 [〈PRECONDITION〉]

〈POSTCONDITION〉 “}”
〈HEAD〉 ::= “head” “:” 〈ATOM〉 “.”
〈POSTCONDITION〉 ::= “postcondition” “:” 〈MOD〉 (“;” 〈MOD〉)* “.”
〈MOD〉 ::= [〈LABEL〉] (“+”|“–”) 〈ATOM〉
〈QUERY〉 ::= 〈LITERAL〉 (“,” 〈LITERAL〉)* “.”
〈LITERAL〉 ::= [〈LABEL〉] [“not”] 〈ATOM〉
〈LABEL〉 ::= “$” (〈ATOM〉|〈VAR〉) “:”
〈NORM〉 ::= “norm” “{” 〈NAME〉 [〈PRECONDITION〉]

[(〈PROHIBITION〉|〈OBLIGATION〉)] [〈DEADLINE〉]
[〈EXPIRATION〉][〈VIOLATED〉] [〈OBEYED〉]“}”

〈NAME〉 ::= “name” “:” 〈ATOM〉 “.”
〈PRECONDITION〉 ::= “precondition” “:” 〈QUERY〉
〈PROHIBITION〉 ::= “prohibition” “:” 〈QUERY〉
〈OBLIGATION〉 ::= “obligation” “:” 〈QUERY〉
〈DEADLINE〉 ::= “deadline” “:” 〈QUERY〉
〈EXPIRATION〉 ::= “expiration” “:” 〈QUERY〉
〈VIOLATED〉 ::= “violated” “:” 〈MOD〉 (“;” 〈MOD〉)* “.”
〈OBEYED〉 ::= “obeyed” “:” 〈MOD〉 (“;” 〈MOD〉)* “.”

Figure 3.2: Proposed syntax for writing norms. Atoms are first-order atoms and may
contain variables. Variables are notated as Prolog variables (starting with an upper

case character or underscore).

neutral. The counts-as rules are replaced with explicit norms. Variables inside a norm

quantify over the entire norm. Note that unlike 2OPL we do not force the programmer

to write keywords for different sections. The syntax is unambiguous in whichever order

facts, updates and norms are put.

Any literals or fact updates concerning other organizations are notated with a label.

Literals and fact updates without labels refer to the organization itself. Those with

labels refer to organizations that are identified by the label. With the positive literal

$a:p we indicate the positive literal p from the model of organization a. With the fact

assertion $a:+p we indicate that organization a should add p to its model. In this syntax

it is actually safe to leave out the dollar sign. We did include it for three reasons. One

is that dollar signs stand out, so they are not easily overlooked while programming.

A developer can immediately see if a norm depends on other organizations. Secondly

when we implement the language we want to allow infix notation for operators, and ‘:’

might be part of someone’s operators. And thirdly we want the interpreter to be able

to feature abbreviations such as: $a:p, $b:p ⇒ $a,b:p. In the second and third case

we get ambiguity problems if we do not use the dollar sign.

Programmers might not need all the attributes. For instance an expiration clause is

not often used in the literature. The semantics (section 3.4) do require input for several
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attributes. To ensure that programmers are not forced to clutter their code with phrases

like expiration: false., we deploy standard values. They are listed in table 3.1 and

can be interpreted as the values of attributes when they are not specified. Only the name

is at all times mandatory, because it is used for identification purposes. If programmers

do not agree with the standard values, then the interpreter should provide possibilities

to change these values. Norm program sections are considered empty when not defined.

For updates the head and the postcondition must always be provided. The precondition

is optional, and is initially set to true.

Attribute Standard value Notes

precondition true. Norms with no precondition instantiate always.

prohibition false. No prohibition if not provided.

obligation false. No obligation if not provided.

deadline false. Without a deadline the norms holds forever.

expiration false. Without an expiration clause the norm never
expires.

Table 3.1: Standard values for norms.

3.3 Syntax example

Figure 3.3 shows a simplified implementation of a smart roads speeding limit norm. The

example contains all three sorts of constructions: facts, an update rule and a norm.

Agents can perform the action pass sensor/3 where the first argument is the acting

agent, the second the sensor that is passed, and the third with which speed the agent

passed. The update rule for pass sensor removes old facts about the agent and adds

the new data. Note that for a real application one would also have to add a rule for the

case that a car passes the first sensor, and no data is yet available.

The norm is about speed limits. Given that a car passed a sensor, we know for certain

that it is (or should be) notified of the speed limit which is depicted on the road sign on

which the sensor is attached. The norm states that once a car passed a sensor, then it

should have the adapted speed at the next sensor. The location of the next sensor might

be in another segment, as is the case for sensor3, where the next sensor is in segment

b. So after car2 passed sensor3, segment a queries segment b to check whether the car

exceeds the limit, has passed its first sensor, or whether its sensors are broken. Should

a car be in violation, then the fine is stored in a fine database which is an independent

organization. One might use norms in the rule database to express norms like “having

two fines adds a third”, or “given 100 obey points one fine is retracted”. The last one can
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1 // Organization for segment ‘a’

2 // Facts:

3 passed_sensor(car1 ,sensor1 ).

4 passed_sensor(car2 ,sensor3 ).

5 velocity(car1 ,114).

6 velocity(car2 ,108).

7 speed_limit(sensor1 ,120).

8 speed_limit(sensor2 ,80).

9 speed_limit(sensor3 ,80).

10 next(sensor1 ,sensor2 ,a).

11 next(sensor2 ,sensor3 ,a).

12 next(sensor3 ,sensor1 ,b).

13 exceeds_limit(Car ,Limit):- velocity(Car ,V), V > Limit.

14
15 // An update rule:

16 update {

17 head: pass_sensor(Agent ,Sensor ,Velocity ).

18 precondition: velocity(Agent , V), passed_sensor(Agent , S).

19 postcondition: -velocity(Agent ,V) ; -passed_sensor(Agent , S) ;

20 +velocity(Agent ,Velocity) ; +passed_sensor(Agent , Sensor ).

21 }

22
23 // A norm:

24 norm {

25 name: speed_limit.

26 precondition: passed_sensor(Car ,Sensor), speed_limit(Sensor ,Limit),

27 next(Sensor ,Next ,Segment ).

28 prohibition: $Segment:exceeds_limit(Car ,Limit).

29 deadline: $Segment:passed_sensor(Car ,Next).

30 expiration: $Segment:broken(sensors ).

31 violated: $fineDB :+fine(Car ,Sensor ,100).

32 obeyed: $fineDB :+ obey_point(Car ,Sensor ).

33 }

Figure 3.3: An example organization.

be achieved by adding a point for a car in the fine database organization as is depicted

in the obeyed attribute of the norm.
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3.4 Operational semantics

Operational semantics provide meaning to the syntax of a programming language. We

use labeled transition systems from (Plotkin, 1981). Transitions are descriptions of the

way in which the state of the system is changed by performing an operation of the pro-

gramming language. We discriminate between organization transitions, and distributed

organization transitions. But first we start with some necessary definitions and function.

3.4.1 Preliminary definitions

When we program norms, we actually program norm schemes, i.e., abstract norms that

need to be instantiated to create deontic influence. All attributes of norms are stored in

tuples. To keep semantic rules short we use the notation nsatt to indicate the value of the

attribute att from the norm scheme ns. A norm scheme ns is uniquely instantiated by

using nsname and the substitution for nsprecondition. This substitution should instantiate

all variables in a norm scheme. To formalize this we define besides norm schemes also

their well-formedness.

Definition 3.1. Norm scheme A norm scheme ns is a tuple 〈name, precondition,
prohibition, obligation, deadline, expiration, violated, obeyed〉. nsname is an atom.

nsprecondition, nsprohibition, nsobligation, nsdeadline and nsexpiration are conjunctions of lit-

erals. nsviolated and nsobeyed are sequences of fact assertions and retractions.

A well-formed norm scheme should satisfy two constraints. First, either the prohibition

or the obligation (not both) formula should be ⊥. Second, all variables should be

instantiated by the substitution resulted from the precondition.

Definition 3.2. Well-formedness of norm schemes Given a norm scheme ns =

〈name, precondition, prohibition, obligation, deadline, expiration, violated, obeyed〉,
the set of variables v1 that occur in nsprecondition, and the set of variables v2 that occur

in nsprecondition, nsprohibition, nsobligation, nsdeadline and nsexpiration, ns is well-formed iff

v2 ⊆ v1 and either nsprohibition = ⊥ or nsobligation = ⊥, but not both.

The configuration (state) of an organization is represented by a tuple consisting of a

set of facts representing its environment partition, a set of updates representing the

effects of agents’ actions on its environment partition, a set of norms schemes, a set

of instances of norm schemes, and the actions that are performed by the agents in the

organization. In the following, we use also the terms “update calls” to refer to the

performed agents’ actions as the effect of these actions are realized by the updates.
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Facts are first order literals. Updates are triples consisting of a head, a precondition

(a conjunction of literals) and a postcondition (a sequence of assertions/retractions). A

norm instance is a tuple containing a norm scheme and the substitution which made the

precondition of the scheme entailed by the facts at the moment of instantiation. Update

calls are assumed to be stored in a queue.

Definition 3.3. Organization configuration The configuration of an organization is

a tuple 〈ι,Σ,∆, δ, σ, ξ〉, where ι is a unique identifier, Σ is a set of updates, ∆ is a set of

well formed norm schemes, δ is a set of norm instantiations, σ is a set of ground positive

first order literals representing the environment partition, and ξ is a queue of ground

positive first order literals, which represent the update calls. The initial configuration

of an organization is a tuple 〈ι,Σ,∆,∅, σ, []〉.

A distributed organization is in essence a set of organizations. Other natural properties

would be roles, power, responsibility, delegation structure and so forth. But for our

purposes we consider only the suborganizations.

Definition 3.4. Distributed organization The configuration (state) of a distributed

organization is O = {O1, . . . , On}, where Oi is the configuration of an organization.

We need an entailment operator for deriving whether a certain formula is entailed by

the configuration of an organization. Labels used in the formula indicate literals that

are stored elsewhere. Our entailment operator is notated as O � ϕθ, indicating that

the organization O = 〈ι,Σ,∆, δ, σ, ξ〉 entails ϕ under substitution θ. A label can be an

atom with variables, or a variable itself. These variables are handled equally as other

variables. Thus `θ indicates the label under substitution theta. The definition of � are

shown in table 3.2.

〈ι,Σ,∆, δ, σ, ξ〉 � ϕθ ⇔1 ϕθ ∈ σ (1 only if ϕ 6= $`:ψ)
〈ι,Σ,∆, δ, σ, ξ〉 � not ϕ ⇔2 6 ∃θ : ϕθ ∈ σ (2 only if ϕ 6= $`:ψ)
〈ι,Σ,∆, δ, σ, ξ〉 � ($`:ϕ)θ ⇔ 〈`θ,Σ′,∆′, δ′, σ′, ξ′〉 � ϕθ
〈ι,Σ,∆, δ, σ, ξ〉 � not $`:ϕ ⇔ 6 ∃θ:〈`θ,Σ′,∆′, δ′, σ′, ξ′〉 � ϕθ
〈ι,Σ,∆, δ, σ, ξ〉 � (ϕ(x̄) ∧ ψ(ȳ))θ ⇔ ∃θ1 : [θ1 = θ|x̄ and 〈ι,Σ,∆, δ, σ, ξ〉 � ϕθ1 and

∃θ2 : [θ2 = θ|(ȳ \ x̄) and 〈ι,Σ,∆, δ, σ, ξ〉 � ψθ1θ2]]
〈ι,Σ,∆, δ, σ, ξ〉 � (ϕ ∨ ψ)θ ⇔ 〈ι,Σ,∆, δ, σ, ξ〉 � ϕθ or 〈ι,Σ,∆, δ, σ, ξ〉 � ψθ

Table 3.2: Definition of the entailment operator. ‘|’ is read as ‘restricted to the
domain’. ‘ϕ(x̄)’ is read as ‘formula ϕ which variables form the set x̄’.

In distributed organizations, updates in one organization may require updates in other

organizations as well. In order to apply a sequence of updates, we define a function

update that given a fact base σ and a sequence of modifications Π returns a new fact
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base. Each modification either removes or adds a fact. A fact modification π can be

labeled in which case it is represented as $` : φ, where φ is either +ρ or −ρ, and ρ is a

fact. A sequence of modifications Π is represented as [π0; [. . . ; [πn; []] . . .]]. Let Π∗denote

the set of possible modification sequences. The update function update : σ∗ × Π∗ → σ∗

is defined as follows.

update(σ,Π) =



update(σ ∪ {ρ},Π′) Π = [+ρ; Π′] & ρ 6= $` : ψ

update(σ \ {ρ},Π′) Π = [−ρ; Π′] & ρ 6= $` : ψ

update(σ,Π′) Π = [$` : +ρ; Π′]

update(σ,Π′) Π = [$` : −ρ; Π′]

σ Π = []

Note that in update only non-labeled modifications are taken into account. If a sequence

is received from another organization, then we need to extract the relevant modifications

from it. The function extract does this. Given a label ` and a sequence Π, extract

returns the unlabeled sequence of modifications in Π with label `. Let L denote the set

of possible labels. The extract function extract : L×Π∗ → Π∗ is defined as follows.

extract(`,Π) =



[+ρ; extract($`,Π′)] Π = [$` : +ρ; Π′]

[−ρ; extract($`,Π′)] Π = [$` : −ρ; Π′]

extract($`,Π′) Π = [+ρ; Π′]

extract($`,Π′) Π = [−ρ; Π′]

extract($`,Π′) Π = [$`′ : +ρ; Π′] & `′ 6= `

extract($`,Π′) Π = [$`′ : −ρ; Π′] & `′ 6= `

[] Π = []

Norm instances can be cleared from the configuration of an organization because their

deontic content is satisfied/violated when their deadlines arrive or because they are ex-

pired. Two tasks must be performed to clear a norm: first check whether the deontic con-

tent, deadline or expiration holds and then modify the configuration appropriately. The

can clear function returns, given an organization configuration and a norm instantiation,

whether the instantiation can be cleared. Let O∗ denote the set of all possible organiza-

tion configurations and 〈ns, θ〉∗ denote the set of possible norm schemes in combination

with their possible substitutions. The function can clear : O∗×〈ns, θ〉∗ → {true, false}
can be defined as follows.

can clear(O, 〈ns, θ〉) =


true O � (nsprohibition ∨ nsobligation∨

nsdeadline ∨ nsexpiration)θ

false otherwise
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Moreover, given an organization configuration O and a norm instantiation, the function

mod returns the appropriate modification sequence. If the norm is expired, then the

sequence is empty. Otherwise it is checked whether the norm was obeyed or violated.

The function mod : O∗ × 〈ns, θ〉∗ → Π∗ is defined as follows.

mod(O, 〈ns, θ〉) =



[] O � nsexpirationθ

nsobeyedθ O 6� nsexpirationθ & O � nsobligationθ

nsobeyedθ O 6� nsexpirationθ & nsprohibition 6= ⊥ & O 6� nsprohibitionθ
nsviolatedθ O 6� nsexpirationθ & nsobligation 6= ⊥ & O 6� nsobligationθ
nsviolatedθ O 6� nsexpirationθ & O � nsprohibitionθ

3.4.2 Transition Rules

What follows are the organization transitions when norms and update calls are handled.

3.4.2.1 Modify facts

If an organizationO receives an update sequence Ψ, then the proper sequence is extracted

from Ψ and applied to the local fact base of O. The result is configuration O′. This

transition is denoted by O
Ψ?−−→org O

′, where Ψ? is used to indicate that the transition

takes place by receiving Ψ.

σ′ = update(σ, extract(ι,Ψ))

〈ι,Σ,∆, δ, σ, ξ〉 Ψ?−−→org 〈ι,Σ,∆, δ, σ′, ξ〉
(update facts)

3.4.2.2 Instantiate norms

A norm scheme of an organization can be instantiated when the configuration of the

organization entails its precondition. The norm instance is then added to the set of

norm instances.

δ′ = δ ∪ {〈ns, θ〉 |ns ∈ ∆ & 〈ι,Σ,∆, δ, σ, ξ〉 � nspreconditionθ}
〈ι,Σ,∆, δ, σ, ξ〉 →org 〈ι,Σ,∆, δ′, σ, ξ〉

(instantiate norms)

3.4.2.3 Clear norms

The following transition rule is to clear norm instances. For a norm instance ni we

first check whether ni can be cleared. Then we determine the consequences which

is a sequence of fact modifications. The sequence is applied to the fact base and is

also broad casted. The broadcast is denoted by adding Π! to the transition. All the
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other organizations receive and extract the subsequences for their fact bases and make

a transition. This is guaranteed by the modification synchronization transition rule

presented later on. Note that those organizations which have no labeled modifications

for themselves in the sequence can still make a transition. Their subsequence from

update will be empty and does not change their fact base. Finally the norm instance

can be removed. We can clear all clear-able norm instances by repeating this operation

until no transition can occur. Let O = 〈ι,Σ,∆, δ, σ, ξ〉, the following transition will clear

norm instances.

ni ∈ δ & can clear(O,ni) & Π = mod(O,ni) & σ′ = update(σ,Π) & δ′ = δ \ {ni}

〈ι,Σ,∆, δ, σ, ξ〉 Π!−→org 〈ι,Σ,∆, δ′, σ′, ξ〉
(clear norm)

3.4.2.4 Perform update

Update calls (i.e., the agents’ actions performed/perceived by an organization) are added

to the queue ξ. We assume that the combination of update heads and preconditions will

always enable us to apply an update rule. Future research might include exceptions. We

reuse the earlier mentioned update function. In the following rules ε is used to indicate

an update call. ε is a ground positive first order literal.

〈ϕ, α, ψ〉 ∈ Σ & ε = αθ & 〈ι,Σ,∆, δ, σ, ε : ξ〉 � ϕθτ & σ′ = update(σ, ψθτ)

〈ι,Σ,∆, δ, σ, ε : ξ〉 ψθτ !−−−→org 〈ι,Σ,∆, δ, σ′, ξ〉
(perform update)

3.4.2.5 Distributed organization transitions

The distributed organization as a whole changes when its suborganizations change. On

this level we can also synchronize transitions. The first transition describes how the

distributed organization changes if an suborganization makes an internal transition,

such as instantiating norms.

O ∈ O & O →org O
′& O′ = (O \ {O}) ∪ {O′}

O→d−org O′
(suborganization operation)

We use O
Ψ!−→org O

′ to notate that organization O broadcasts a sequence of fact modifi-

cations Ψ. If this transition occurs, then the receiving organizations have to handle this
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sequence and make a transition, which is notated as O
Ψ?−−→org O

′.

Oi ∈ O & Oi
Ψ!−→org O

′
i & ∀Oj ∈ O \ {Oi} : Oj

Ψ?−−→org O
′
j

{O0, . . . , Oi−1, Oi, Oi+1, . . . , Ok} →d−org {O′0, . . . , O′i−1, Oi, O
′
i+1, . . . , O

′
k}

(modification synchronization)

3.4.3 Execution cycles

We can use the operational semantics to create and categorize execution strategies as

in Astefanoaei (2011). Here we will consider two strategies: totalism and liberalism. A

totalitarian normative process fully checks all norms after any fact update. Our clear

norm transition only considers one clearable norm instantiation at a time. So we repeat

it until all clearable instances are handled. After clearing norms it is possible that new

norms can be instantiated. Therefore we repeat instantiation and clearance until no

more transitions can occur. If an organization never queries another organization, then

given the fact base of the organization and the sequence of actions/fact modifications

it receives, we know exactly how it will behave. And if we immediately check norms,

then no action can escape notice, so correct consequences are always guaranteed. This

might be relevant for safety properties. Therefore, if possible, one can choose to assign

a totalitarian strategy to one or more of the suborganizations. A totalitarian strategy

can be expressed by the following process description:

((perform update ‖ update facts); (instantiate norms; clear norm∗)∗)∗

Liberal strategies look much alike in theory, but can be very different in practice. In a

liberal strategy any number of fact modifications can occur before the norms are checked.

Think for example of checking the norms after every ten updates. It depends on the

problem at hand how the liberal strategy is implemented. The strategy is relevant for

mainly practical reasons. Having to fully check all norms all the time can cost a lot of

precious CPU time if an organization receives a rapid stream of events. We mentioned

earlier a highway system as an example. Cars cannot execute actions like “change lane”

and “adapt speed” arbitrarily fast. So the probability of a car escaping notice by quickly

performing an action is virtually zero if we check all the norms for instance once every

30 milliseconds. Considering systems where the sensors are attached to road signs, then

we only need to make sure that the norms are checked at an interval that is similar to

the minimal time it takes for a car to move between two sensors. A liberal strategy can

be expressed as follows:

((perform update ‖ update facts)∗; (instantiate norms; clear norm∗)∗)∗
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3.5 A note on regimentation

We have not included regimentation in our language. The reason is that regimentation

would complicate the language whereas the primary focus was to create a language for

distributed organizations. We will discuss some considerations that have to be made

when regimentation is added to the language in the future. We start with some remarks

for both centralized and distributed sytems, and then move on to issues for distributed

systems specifically.

The core idea of regimentation is that some environment states are so undesired that

they are made impossible to reach. For instance having an opening bridge while there

is a traffic jam on it should be avoided. We must link states of the environment/model

to the notion of unwanted. One possible way to do this is by using counts-as rules as

in 2OPL. Implementing regimentation efficiently is quite hard. As an example we take

2OPL where the last action is blocked if performing it would result in an illegal state.

The main issue is determining the consequences of an action (especially the indirect

consequences). A straightforward way to do this is to just do the action, see if an illegal

state is obtained, and roll back if this is the case. A roll back option requires a lot of

overhead. We can either register all the fact changes, or even copy the entire fact base

as a back up.

Also designing an organization with roll back is hard. If we can roll back actions then a

responsibility lies at the developer to make sure that all defined actions are reversible.

Note that in some of the examples in this thesis we cannot reverse the actions. For

instance reversing the action of passing a sensor does not teleport a car back to the

previous sensor. Another point of interest is that after any fact changes, all the unwanted

states have to be checked to see if one of them currently holds. In 2OPL, where unwanted

states are detected by sanction rules, this means that we have to check all the norms

after each fact change, thus forcing us to use a totalitarian strategy.

Besides implementation and design, also the theoretical part of the language requires

extra care. 2OPL has one transition rule which effectuates the action, takes the closure

of the counts-as rules and then the closure of the sanction rules. If after the closure of

the counts-as rules an illegal state is obtained, then the transition cannot occur (i.e. the

action is blocked). Consider the following 2OPL organization (viol bot is the desig-

nated literal for regimentation):

1 Facts:

2 // none

3 Effects:
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4 {true} alpha1 {q}

5 {true} alpha2 {z}

6 Counts -as rules:

7 p => viol_bot.

8 q => viol1.

9 Sanction rules:

10 viol1 => p.

If an agent does action alpha1, then this will not be regimented. Because first q is

asserted. Then the closure of the counts-as rules is taken, which results in viol1 being

asserted in the institutional fact base. Then the closure of the sanction rules is taken

which will result in p being asserted. All subsequent actions by any agent will be blocked

because now each time an agent does an action, the organization will derive viol bot

as a consequence of p. This issue can be solved by changing the theory (for instance

repeatingly taking the closure of counts-as and sanction rules) or by restricting the use

of the language. In any case it shows that regimentation can be quite subtle in its

consequences for the system.

Additional issues emerge when we implement a distributed organization. Because orga-

nizations operate in parallel the direct effects of actions may not be immediately known.

Consider an action that causes changes in organization A and B, and B reaches an un-

wanted state. B can roll back the changes in its own fact base, but organization A might

have processed a thousand other actions in the meantime. Then it might not be proper

to also roll back the effects in A, because the same effects might the consequence of

other actions. Thus we get a partial rollback which differs in terms of action properties.

An action now has cases where its effects are only partially realized. The easiest way to

circumvent these and other issues is to restrict the use of regimentation. For instance

we can limit its use to organizations that have a totalitarian regime and do not have

actions and norms that change other organizations. Future research must explore the

ways in which regimentation can be applied to distributed organizations in general (both

in theory and in practice). For now the only way we can prevent an unwanted state is to

know which actions directly cause it. If we know that an action α under circumstances

ϕ is not allowed, then all update rules for α should include ¬ϕ in their precondition.

Given the operational semantics, if ϕ holds then α will be ignored without needing a

rollback.

3.6 Chapter summary

In this chapter we have presented a language to program organizations. A novel feature

is the use of labeled literals. We use labels for norms in distributed settings. With
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labels an organization can retrieve information from other organizations or modify their

model. We defined the syntax and gave an example. After the example we discussed

the operational semantics. We also discussed how two types of executions cycles that we

can make with the operations of the language. A totalitarian strategy checks all norms

after every model update. A liberal strategy would occasionally check the norms.



Chapter 4

Building interpreters

In this chapter we are going to construct an interpreter for the norm language of the

previous chapter. The interpreter that we are going to create step-by-step is for pro-

totyping. We want students and researchers to be able to easily construct a prototype

organization for any application. We also want to implement the theory as literal as pos-

sible, so that changes/extensions in the theory can be implemented in a straightforward

way.

4.1 Global design choices

Ideally our interpreter will work smoothly alongside existing agent technology such as

agent platforms. The current work on agent related software is heavily based on Java

due to its ease of programming and portability. As the main implementation language

we choose Java as well. We use Java to implement the interface between the organization

and the outside world. A normative organization becomes an instantiable Java class.

An instantiated organization can load a program file in the language of the previous

chapter. For communication between organizations we use the TCP/IP protocol. A

network module in Java, which implementation is not explained in this thesis, is added

as an class attribute to the Java class of the organization. Future work can increase

compatibility by using the Jade platform for communication.

A developer has to do some additional programming before agents can use an organiza-

tion. First of all, we need an environment interface that is compatible with the agent

platform. This interface will have as a Java-attribute an instantiation of the organi-

zation. The interface also has to make sure that the organization’s program files are

loaded upon initialization. Second, agents’ actions will have a format which has to be

32
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translated to the format of the organization. Third, the interface has to call the organi-

zation to process the translated actions. The organization will return true if the action

was processed succesfully. Lastly, after the organization processed an action there might

be other data which has to be manipulated (such as a graphical user interface).

To process an action we have to implement an execution strategy which in turn requires

an implementation of the operational semantics. We implement both the strategy and

the semantics with Prolog, because of the declarative nature of the organizational pro-

gramming language. We use a pure Java Prolog engine to keep the system requirements

of the interpreter as minimal as possible (only Java)1. Because the operational seman-

tics are programmed in Prolog, it makes sense to also store the organizational language

constructs (facts, update rules and norms) in Prolog, or at least in a Prolog format.

Processing an action now boils down to translating the action to a Prolog format and

querying the Prolog engine to process the action using a preprogrammed execution strat-

egy. The implementation details of the operational semantics and execution strategies

are explained in this chapter. For the Java interface between the outside world and the

organization see Figure 4.1.

In the remainder of this chapter we will use the convention of using @ in front of

predicates that belong to our interpreter and are not standard in Prolog. In the en-

gine we use, external calls for Prolog are available via @external/3. The first ar-

gument is the source to call, the second argument the function call, and the third

argument the return value. For network calls we use network as source. For instance

@external(network,entailed(a,p(x)),R) means that the method entailed from the

source network is called, with arguments a and p(x). The result of the method call will

be returned to Prolog by instantiating R with the result of the action. External calls

cannot be backtracked.

1The Prolog engine for this paper was self-made and is not yet available as an open-source project.
Some suggestions for pure Java Prolog engines:
JLog http://jlogic.sourceforge.net
Jtrolog http://java.net/projects/jtrolog
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1 public class Organization {

2 private Prolog prolog = new Prolog ();

3 private NetworkNode networkNode;

4
5 /**

6 * Constructor .

7 * @param sourceFile Source file for the organization .

8 */

9 public Organization(String sourceFile ){

10 load(sourceFile ); // load the source file

11 networkNode = new NetworkNode (); // make a network module

12 prolog.addExternalTool(network ); // make network available

13 }

14
15 /**

16 * Handle an action call.

17 * @param event The event in Prolog predicate representation .

18 * @return Whether the action could be processed successfully .

19 */

20 public boolean action(String action ){

21 return prolog.query("@totalitarian_execution_cycle("+

22 action+",action_call)");

23 }

24
25 /**

26 * Load a file.

27 * @param file File name.

28 */

29 public void load(String file){

30 prolog.rulebase.clear (); // clear the Prolog base

31 // load the operational semantics:

32 prolog.loadfile("DistributedNormLibrary.pl");

33 Parser parser = new Parser(new FileInputStream(file ));

34 parser.parseToProlog (); // stores constructions Prolog format

35 // Add the Prolog representation to the Prolog rule base:

36 prolog.takeOverRules(parser.getPrologRepresentation ());

37 }

38 }

Figure 4.1: Organization class, which acts as an interface between the outside world
and the implementation of the organization.

4.2 The fact base

One of the interpreter’s tasks is to make a connection between elements of the organi-

zational programming language and the application domain. The interpreter has to be

able to answer queries about the state of the environment which is implemented as a

set of facts. So, for each fact that might be queried, the interpreter has to contain a

method to determine whether the fact is in or out of the fact base. For labeled literals

there must be a way to get information out of other organizations.

The environment is represented as facts in the Prolog base. For pragmatic reasons we

allow the use of inference rules (p :- q). Our entailment operator works similar to

Prolog’s entailment with the exception of labeled literals. There are two distinct types

of labeled literals when we convert code from our language to Prolog. The first type

are labeled literals inside the preconditions of norms and update rules, which are stored

in Prolog as @pre lbl/2. The second type are labeled literals in all other parts of our
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language (the postcondition of update rules, and all the norm attributes aside from

the precondition), which are stored as @lbl/2. The reason for this distinction is the

difference in the kind of information that we require from other organizations when we

try to determine whether the model entails a labeled literal. For literals of the first type

we require a list of ground instantiations as a reply, for the literals of the second type

we only require a true or false answer.

Unbound variables can occur in a precondition. When we try to determine whether a

precondition is entailed by the model, we need to search through possible variable instan-

tiations. Queries to another organization use external calls and cannot be backtracked.

Thus, when we query another organization we do not need a single ground version of

the literal, but all of them so we can try out different alternatives (if any). To illustrate

this, consider an organization a and b, where a’s fact base equals {p(a),p(b)}, b’s fact

base equals {q(b)}, and b contains a norm with as precondition $a:p(X),q(X).. An

external call to organization a to test whether p(X) is entailed might just return p(a)

and is not backtrackable. We need as an answer all the possible instantiations of p(X).

To implement this we use an external call which returns a list of ground versions of the

literal that is asked, and afterwards we use the built-in member/2 predicate of Prolog to

match the literal with one of the list’s items. Literals which occur in preconditions are

parsed as @pre lbl/2, where the first argument is the label and the second the literal

itself.

1 @pre_lbl(Label ,Literal):-

2 @external(network ,all_ground_instances(Label ,Literal),List),

3 member(Literal ,List).

Instantiations of well-formed norm schemes do not have free variables inside the pro-

hibition, obligation, deadline, expiration, sanction and reward. Therefore, if there are

labeled literals inside these attribute values, then we only need a response whether they

are entailed in the organization that is identified by the label. A labeled literal which is

outside a precondition is notated as @lbl/2, where the first argument is the label, and

the second the literal. The network module of each organization contains the function

entailed which returns true if the literal can be entailed in another organization and

false otherwise. Deriving labeled literals is now done as follows:

1 @lbl(Label ,Literal):-

2 @external(network ,entailed(Label ,Literal),true).

For consequences of norms and the postconditions of updates we need to implement

assertion and retraction. Asserting facts in the norm language constitutes to adding

facts to a set. So it is impossible to have the same fact twice in the model. Retracting a

fact equals removing it from a set. So if the fact was not present, then system does not
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change, but the action always succeeds. The modifications are given as sequences and

might contain labeled assertions and retractions.

We cannot use assertz/1 and retract/1 as equivalences of the theoretic +ρ and −ρ.

The reason is that Prolog does allow for fact duplicates. We need an assertion that only

asserts when the fact is not already present. Retraction should always succeed but this

is not the case for Prolog’s retract. That one fails in case the argument is already not

present. The changed assertion/retraction might be built-in in Prolog, but can otherwise

be created as follows:

1 @assertunique(X):- not(X),assert(X),!.

2 @assertunique(_).

3 @succeedretract(X):- retract(X),!.

4 @succeedretract(_).

Sequences of modifications are implemented with lists. Unlabeled elements are of the

form plus/1 and min/1, where the argument is the fact to be added/removed. Labeled

elements are notated as @lbl/2, where the first argument is the label and the second the

modification. So the sequence [+p ; $b:-q] from the programming language syntax

is translated to [plus(p), @lbl(b,min(q))] in Prolog. Executing sequences is done

with @update/1, as is shown below. We try to mirror with @update/1 the update

function from the operational semantics. In the update function we had five possible

cases: unlabeled addition/removal of a fact (lines 1 and 2), labeled addition/removal

which were ignored (line 3), and the empty sequence (line 4).

1 @update ([plus(Rho)|Pi]):- @assertunique(Rho), @update(Pi).

2 @update ([min(Rho)|Pi]):- @succeedretract(Rho), @update(Pi).

3 @update ([@lbl(_,_)|Pi]):- @update(Pi).

4 @update ([]).

There is a transition in which an organization receives a sequence of modifications from

another organization. In the operational semantics we defined the extract function

to filter out all the elements which where labeled with the identity of the receiving

organization. The Prolog equivalent, @extract/3, requires a label and a sequence of

modifications. In a third argument the unlabeled subsequence of modifications that use

the label is constructed. We have an exact correspondence between the cases of extract

and Prolog clauses. If a label of an element matches that of the input label, then the

element is added to the result list (lines 1 and 2). All unlabeled elements, and elements

with a label different than the input label are ignored (lines 3 to 6). When we reach the

empty sequence, then we are finished (line 7).

1 @extract(Label ,[@lbl(Label ,Mod)|Pi],[Mod|Rest]):-

2 @extract(Label ,Pi,Rest).

3 @extract(Label ,[plus(_)|Pi],Rest):- @extract(Label ,Pi,Rest).

4 @extract(Label ,[min(_)|Pi],Rest):- @extract(Label ,Pi,Rest).
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5 @extract(Label ,[@lbl(Label2 ,_)|Pi],Rest):-

6 Label\=Label2 , @extract(Label ,Pi ,Rest).

7 @extract(_,[] ,[]).

The first operation we implement is update facts. In this transition the organization

receives a sequence of modifications Ψ, extracts the relevant modifications out of the

sequence, and then updates its belief base with them. Each organization contains a fact

@id/1 that stores its own label (ι from the organization configuration). The received

sequence of modifications is provided as an argument. To let the system make this

transition, one can let the Prolog engine try to prove @update facts(Ψ), where Ψ is a

sequence of modifications which is received.

1 @update_facts(Psi):- @id(I),@extract(I,Psi ,Pi),@update(Pi).

4.2.1 Update rules

Agents can perform actions that change the brute facts of the organization. We defined

the update rules to program in Hoare-triple style how an action changes the brute facts.

The implementation we are building stores these update rules as facts. They have the

form @update rule(Phi,Alpha,Psi), where Phi is the precondition, Alpha is the ac-

tion, and Psi is the postcondition. We parse the precondition as a parenthesized goal,

the head is a positive literal and the postcondition a list with modifications. To illustrate

this, consider the following update rule and its parsed equivalent:

update{
head: the head. @update rule((p(A),q(A)),the head,

precondition: p(A),q(A). ⇒ [min(p(A)),plus(r(A))]).

postcondition: -p(A);+r(A).

}

The code below shows how an action is processed. When an agent performs an ac-

tion, the organization first searches for an appropriate update rule (lines 1 and 2). The

rule has a precondition, and we need to check whether it holds (line 3). If not, then the

engine will backtrack and try other rules until one is found for which the precondition

does hold. The organization ignores the action in the event that there is no rule ap-

plicable (line 6). If we do find an applicable rule, then the facts are updated with the

postcondition Ψ by using the earlier explained @update/1 predicate (line 4). Because

the modification sequences might hold updates for other organizations, we broadcast the
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postcondition through our network of organizations (line 5). This will cause other orga-

nizations to make the earlier mentioned update facts transition. An action is processed

by querying @perform update/1, where the argument is the action.

1 @perform_update(Alpha):-

2 @update_rule(Phi ,Alpha ,Psi),

3 Phi ,

4 @update(Psi),

5 @external(network ,broadcast(Psi)),!.

6 @perform_update(_).

4.2.2 Instantiation and clearing of norms

Norm schemes and instances are also stored as Prolog facts. For schemes we use

@scheme/8. The arguments are the values of the various attributes: name, precon-

dition, prohibition, obligation, deadline, expiration, violated and obeyed. After a norm

scheme is instantiated we need to store the substitution which grounds all the variables

from the precondition. In Prolog it is not possible to explicitly store a substitution.

We resort therefore to storing the full precondition with all variables being replaced by

their values. Norm instances are notated as @ni/2, where the first argument is a norm

scheme name and the second is its precondition in the form of a ground parenthesized

conjunction of literals. The norm from Figure 3.3 would be parsed to Prolog as:

@scheme(speed_limit,

( passed_sensor(Car,Sensor),speed_limit(Sensor,Limit),

next(Sensor,Next,Segment)),

(@lbl(Segment,exceeds_limit(Car,Limit))),

(@lbl(Segment,passed_sensor(Car,Next))),

(@lbl(Segment,broken(sensors))),

[@lbl(fineDB,plus(fine(Car,Sensor,100)))],

[@lbl(fineDB,plus(obey_point(Car,Sensor)))],

)

An instantiation of this scheme could look like:

@ni(speed_limit,

( passed_sensor(car1,sensor4),speed_limit(sensor4,120),

next(sensor4,sensor1,segmentB)))

The following code shows how an organization can instantiate all applicable norm

schemes. First retrieve a scheme (line 2). Second we check whether its precondition
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holds (line 3). If the precondition is true then we need to add an instantiation of the

scheme. Norm instances are unique, because they form a set. Therefore we reuse the

earlier mentioned unique assertion (line 4). If there are other substitutions possible for

the precondition, then we need to make instances for those as well. By using a failure

driven loop we keep returning to the precondition and move through all its possible

substitutions (line 5). If none are found then we try another scheme until all schemes

are tried. In the end we will always succeed (line 6). To let the organization instantiate

the norms, we only need to query @instantiate norms.

1 @instantiate_norms:-

2 @scheme(Name ,Pre ,_,_,_,_,_,_),

3 Pre ,

4 @assertunique(@ni(Name ,Pre)),

5 fail.

6 @instantiate_norms.

Checking whether we can clear a norm instance was represented with a can clear func-

tion in the operational semantics. Its Prolog equivalent is shown below. We implement

this function in Prolog using “;” as an or operator. Because of well-formedness, we can

obtain the Prolog substitution of a norm scheme by unifying the scheme’s precondition

with the instance’s precondition. Given a norm instance, @can clear/1 gets the appro-

priate scheme (line 2) and is true if the prohibition, obligation, deadline or expiration

clause is true (line 3). We add a cut in the end because we do not want to backtrack on

the disjunction.

1 @can_clear(@ni(Name ,Pre)):-

2 @scheme(Name ,Pre ,Pro ,Obl ,Dead ,Exp ,_,_),

3 (Pro;(Obl;(Dead;Exp ))),!.

If we can clear a norm instance, then we have to decide which sequence of modifications

to execute. We yet again implement a function, mod, from the theory to obtain this

functionality. The function mod has different cases to select which kind of changes must

occur (the sanction, reward or nothing). Each of these cases is literally implemented

in Prolog. If the expiration clause holds, then nothing happens (lines 1 and 2). If the

expiration does not hold, and the obligation does hold, then the obey consequence is

selected (lines 3 and 4). If the prohibition was not set to false, and is also not provable,

then we also select the obey consequence (lines 5, 6 and 7). Note that this last case

depends on the fact that it was already determined that the norm instantiation from the

argument is clearable. Otherwise we would have to add a check whether the deadline

holds. The violation consequence is selected if the instance is clearable, the obligation

was not set to false, and the obligation does not hold (lines 8, 9 and 10). We also select
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the violation consequence if the prohibition does hold (lines 11 and 12).

1 @mod(@ni(Name ,Pre),[]):-

2 @scheme(Name ,Pre ,_,_,_,Exp ,_,_), Exp.

3 @mod(@ni(Name ,Pre),Obey):-

4 @scheme(Name ,Pre ,_,Obl ,_,Exp ,_,Obey), not(Exp), Obl.

5 @mod(@ni(Name ,Pre),Obey):-

6 @scheme(Name ,Pre ,Pro ,_,_,Exp ,_,Obey), not(Exp),

7 Pro \= false , not(Pro).

8 @mod(@ni(Name ,Pre),Viol):-

9 @scheme(Name ,Pre ,_,Obl ,_,Exp ,Viol ,_), not(Exp),

10 Obl \= false , not(Obl).

11 @mod(@ni(Name ,Pre),Viol):-

12 @scheme(Name ,Pre ,Pro ,_,_,Exp ,Viol ,_), not(Exp), Pro.

The last operation we have to implement is the clear norm operation. First we pick a

norm instance (line 2) and check whether it is clearable (line 3). If not, then backtracking

will select another instantiation. Otherwise we use the @mod/2 predicate to select which

changes must occur (line 4). We apply the sequence of modifications using @update/1

(line 5). Afterwards we can take the instance away (line 6). Like the postcondition of

an update rule, the selected sequence of modifications can hold labeled literals. Thus

we need to broadcast the sequence to the other organizations (line 7). Originally the

clear norm operation was defined as an operation for clearing a single norm instance.

In our implementation we use a failure driven loop to immediately handle all clearable

norm instances (line 8). The transition always succeeds (line 9).

1 @clear_norm:-

2 @ni(Name ,Pre),

3 @can_clear(@ni(Name ,Pre)),

4 @mod(@ni(Name ,Pre),Pi),

5 @update(Pi),

6 retract(@ni(Name ,Pre)),

7 @external(network ,broadcast(Pi)),

8 fail.

9 @clear_norm.

4.3 Reacting to requests and actions

Organizations communicate through network modules. The possible functions are entailed,

all ground instances and broadcast. If one organization request another whether a cer-

tain literal l is entailed, then the receiving party simply queries the Prolog base for l and

returns the result. The function all ground instances also provides a literal as argu-

ment. To react to this call, an organization must query findall(L,L,Result), where
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L is the argument literal. Afterwards it returns the list that is built in the variable

Result. The broadcast function does not need to reply. When receiving a modification

sequence from another organization’s broadcast it is important to consider an execution

strategy. Because after processing a sequence of modifications, new norms may hold or

instantiated norms can be cleared. Thus, one has to consider the question whether to

check all the norms immediately after the sequence is applied to the Prolog base. The

same holds for actions that agents perform. An action call must be handled by applying

an update rule, and afterwards we can check for norms. In section 3.4.3 we defined two

execution cycles, one liberal and the other totalitarian. We will shortly discuss both

approaches.

In a liberal regime we want to check the norms occasionally but not after every change

of the fact base. Thus, when a broadcasted sequence Ψ comes in, we can let the network

module query @update facts(Ψ), which processes the sequence. If an agent performs

action α, then we query @perform update(α). Because the full transitions were pro-

grammed in Prolog, we would not need to do anything else in Java besides performing

these queries on the Prolog engine. But from time to time we do apply the norms.

For instance we could make a separate Java thread that every 100 milliseconds asks

the Prolog engine to check all the norms. When we check the norms we repeat two

transitions: instantiating schemes, and clearing scheme instantiations. After instantia-

tion, new norms might be clearable. While clearing an instance we might change the

facts due to some violation or norm obedience, which in turn can allow new instanti-

ations. Therefore we have to repeat the two until no more fact changes occur. This

can become complicated because we store norm instances as facts too. When we have

a norm scheme for which both the precondition and the expiration hold at the same

time, then the norm is instantiated and the instance cleared right after one another.

Thus the fact base would be changed. Such a situation would cause an infinite loop.

Several possible solutions to this problem can be designed. For the prototype of this

thesis the Prolog engine was enriched with the possibility of keeping track of whether

the facts aside from norm instances were changed. With this possibility a predicate

@repeat until stable/1 was defined which repeats the argument until no more fact

changes, aside from norm instances, occur. The implementation details of the repeat

predicate are not discussed as this relies heavily on the Prolog engine that one uses. We

implement the norm check with @check norms/0 as is shown below. A Java program

can make Prolog process the norms by querying @check norms.

1 @check_norms:-

2 @repeat_until_stable (( @instantiate_norms ,@clear_norms )).
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In a totalitarian regime we check all the norms immediately after any fact change. So

when a broadcasted sequence comes in we process the sequence and follow it up with

checking the norms. The same holds for an action by an agent; we process the action

and then check the norms immediately. We wrap the call to the Prolog engine in a

single query, because some Prolog engines are quite slow when it comes to preparing the

engine for a new query. A received action call A or fact update U is first transformed

in the query @totalitarian(E,action call) or @totalitarian(U,update facts) re-

spectively, and then queried in the Prolog engine. For the action calls this is shown in Fig-

ure 4.1. To answer the queries two things must happen: first either @perform update/1

(line 2) or @update facts/1 (line 5) must be called, second we must check the norms

(lines 3 and 6).

1 @totalitarian_execution_cycle(Alpha ,action_call ):-

2 @perform_update(Alpha),

3 @check_norms.

4 @totalitarian_execution_cycle(Psi ,update_facts ):-

5 @update_facts(Psi),

6 @check_norms.

4.4 Interpreting 2OPL

To illustrate the flexibility of our interpretation approach we will adapt our interpreter

such that it can handle 2OPL files as well. 2OPL was briefly mentioned in section 2.3 be-

cause it is also an explicit programming language for organizations. The main differences

with the language in this thesis is that 2OPL uses no obligations/prohibitions, no dead-

lines, no expiration and no literal labels, but it does have the possibility of regimenting

norms. The language 2OPL already has an interpreter (Adal, 2010). That interpreter,

however, is not working properly. Our strategy is to mould 2OPL constructs (effect

rules, counts-as rules and sanction rules) into the format from the normative language

from this thesis. We also add the temporal norms from (Tinnemeier, 2011) which were

never before incorporated in a 2OPL implementation (only a prototype Jess interpreter

exists).

4.4.1 2OPL syntax translation

The norm language from this thesis reused 2OPL’s approach towards facts and their

updates. Facts are again Prolog facts with Prolog rules for practical reasons. 2OPL’s

effect rules are called update rules in this thesis but work exactly the same. Therefore,

all the earlier explained processing of facts and update rules apply to 2OPL as well. The

difference is in the norms.
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The original 2OPL version implemented norms with counts-as rules and sanction rules.

These have the form Φ => Ψ, where Φ and Ψ are conjunction of literals. Positive literals

in Ψ equal fact additions, the negative literals equal fact removals. Because conjunctions

are commutative we can safely transform Ψ to a sequence of literals Ψ′, which then

represents a sequence of fact additions/removals. What a counts-as or sanction rule

says is that at any time if Φ is true given the fact base, then the literals from Ψ must

hold. We can mold these implication rules in the norm format which we use for the

language in this thesis. For the name of the norm we append to @imply rule the

rule number i (the amount of counts-as and sanction rules that came before it). The

precondition is set to true. The prohibition is set to Φ, with the addition of @countsas

for counts-as rules, and @sanction for sanction rules. The reason is explained when we

discuss the execution of 2OPL. We use the sequence Ψ′ for the violation consequence and

the empty sequence for the obey consequence. The other attributes are set to false.

The following norm is a translation of the counts-as rule p and q => not r and s.

norm {

name: imply_rule_0.

precondition: true.

prohibition: @countsas,p,q.

deadline: false.

expiration: false.

violated: -r ; +s.

}

And parsed to Prolog:

@scheme(@imply rule 0, true, (@countsas, p, q), false, false, false, [min(r),

plus(s)], []).

4.4.2 Executing 2OPL

After we have parsed the 2OPL constructions in the format that we used for the lan-

guage in this thesis, we only have to define an execution cycle. We take the totalitarian

approach. In (Dastani et al., 2008) the transition rule for 2OPL contains three parts:

applying the effect of an agent’s action, determine the closure of the counts-as rules,

determine the closure of the sanction rules. Processing an action is handled by reusing

@perform update/1. Rule closure means in our case applying the counts-as or sanction

rules until no more fact changes occur. However, both counts-as rules and sanction

rules are stored as norms. There exists a risk of firing sanction rules when the closure of

counts-as rules is computed, and vice versa. This is why we added before the @countsas
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and @sanction literals to the different rules. Now we can create a rule closure predicate

@rule closure/1 that takes as an argument the type of rule for which we determine

the closure. See below the definition in Prolog. If we provide as argument @countsas,

then first this argument is asserted (line 2). Now we check the norms as usual (line

3). All the norms with @countsas in the prohibition might be able to fire. After no

more fact changes occur, we retract again @countsas (line 4). If the predicate is queried

afterwards with @sanction then all the norms which have @countsas in the prohibition

cannot fire. In short, we use the type to exclude norms when determining the closure of

counts-as and sanction rules.

1 @rule_closure(Type):-

2 assert(Type),

3 @check_norms ,

4 retract(Type).

Our totalitarian cycle resembles a lot the one from the language in this thesis. See below

its Prolog code. First we process the action (line 2) and then we determine first the clo-

sure of the counts-as rules (line 3), and second the closure of the sanction rules (line 4).

To make a 2OPL organization, one has to edit the Java interface from figure 4.1. Namely,

the query from line 21 has to be replaced with "@execution cycle oopl("+action+")".

1 @execution_cycle_oopl(Alpha):-

2 @perform_update(Alpha),

3 @rule_closure(@countsas),

4 @rule_closure(@sanction ).

There is only one thing left to be done. The 2OPL language allows regimentation.

This means that if for whatever reason viol⊥ is derived, that then all fact modifications

are reversed and the action fails. This is something which we do not implement inside

Prolog. Rather, we can record each assert and retract call inside the Prolog engine and

upon asserting viol⊥ we undo the modifications. This adds quite a lot of work to the

engine so it is advised to make normative programs without regimentation.

4.5 Adding temporal norms

In (Tinnemeier, 2011) temporal norms were added to the 2OPL language. These norms

replace the counts-as rules. The facts, effect rules and sanction rules remain the same.

The only work we need to do is to parse the temporal norms to the format from this

thesis, and then we can reuse the 2OPL execution cycle. Temporal norms are notated
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as φ` : 〈ϕc, M(ϕx), ϕd〉, where (M) ∈ {F,O}. Temporal norms are converted to the

format from this thesis as follows:

• A temporal norm’s label φ` will become the scheme’s name.

• The precondition is set to ϕc.

• If (M) equals O, then the obligation is set to ϕx, if the modality is F then the

prohibition is set to ϕx.

• The deadline is set to ϕd.

• To make sure that norms do not interfere with the closure of sanction rules, we

must add the @countsas fact to ϕx and ϕd. We use @countsas because that is

the one the 2OPL execution cycle uses first.

• The violated attribute gets the value +viol(φ`).

• The obeyed attribute is set to the empty sequence.

• The expiration attribute is set to false.

For example the temporal norm a:<b and c,F(d and not e), f> is translated to:

norm {

name: a.

precondition: b,c.

prohibition: @countsas,d,not(e).

deadline: @countsas,f.

expiration: false.

violated: +viol(a).

}

And the Prolog representation becomes:

@scheme(a, (b,c), false, (@countsas, d, not(e)), (@countsas, f), false, [plus(

viol(a))], []).

4.6 Chapter summary

In this chapter we have constructed an interpreter for the normative language from

chapter 3. The interpreter is created by combining Prolog and Java. It is easy to
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redesign parts of the language because we implemented the operational semantics as

literal as possible. We also illustrated the generality of the interpreter by discussing how

2OPL can be interpreter in the same system.



Chapter 5

Conclusions & Future work

In this thesis we focused on the question how can we model and program distributed

exogenous normative organizations? To answer this question we posed four subquestions

about organizing agents, programming organizations, interaction between organizations,

and executing organizational code. In this chapter we briefly go over the answers of these

questions. We also give some pointers for future research.

5.1 Answering the research questions

The chapters in this thesis were ordered to answer the subquestions in the same order

as they were posed. The first subquestion how can we organize agents? was mainly

answered in chapter 2 where we looked at the background literature on organizations.

Multi-agent systems can be designed by means of organizational concepts. In such

cases we hardwire the agents to behave according to the organizational needs. Because

hardwired organizations are difficult to maintain, we can also organize agents by means

of explicit organizational programming. When we program organizations we are mainly

concerned with programming hard and soft constraints which we call norms. Hard

constrains are non-violable norms, also called norms which are regimented. Violable

norms are enforced with a sanction/reward mechanism.

For programming organizations we discussed in chapter 2 various languages. We also

looked at how we can make distributed organizations. We can choose between split-

ting the agents, splitting regulated interactions, or splitting the environment. The last

approach is the one we took. Because organizations only partially view the overall sys-

tem they can depend on each other for information and the consequences of norms. In

chapter 3 we discussed a normative programming language for distributed settings. We

47
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incorporated the use of labels in our language to let the organizations interact on the

level of norms, which answers the subquestion how can different organizations inter-

act? Both the syntax and operational semantics were explained, thus answering the

subquestion how can we program organizations for distributed settings?

The fourth question was about executing normative programs. In chapter 4 an inter-

preter was presented. This interpreter is a combination of Prolog and Java. A Prolog

base was used to implement the operational semantics, store facts about the environment

and store data from the normative process, such as norm instantiations. Because of a

near one on one implementation of the operational semantics it is quite straightforward

to adjust the normative language in the future.

5.2 Future work

The presented language in chapter 3 is quite minimal for distributed settings. The

normative language can be extended to increase its expressiveness. Think for instance

of allowing label formula’s or hierarchical structures. The latter can be used to model

national versus local traffic regulations. A more serious lacking feature is regimentation.

Currently there is no way to define norms which are regimented.

Our programming language can use a more efficient interpreter for simulation purposes

where time is of the essence. In a traffic simulator we want multiple organizations to

regulate the road. The more efficient our interpreter, the larger the scale of the simula-

tion, and the more relevant the results. At the moment the bottleneck of the interpreter

is the communication between suborganizations, which happens through sockets. After

every sequence of assertions and retractions the same sequence is broadcasted, even to

organizations for which no literals with their label occur. And besides the interpreter it

would be good to have programming guidelines. To create a distributed organization is

not a trivial task. A methodology is needed to help this process. We saw in chapter 2

different methodologies and frameworks, so it is possible that one of them is adaptable

to the language of this thesis. For instance the Moise framework is a nice starting point.

In recent years the work on Moise has focused on the implementation of organizations.

They made some design decisions that differ from the ones in this thesis. It would be

interesting to see if we can still apply Moise’s basic idea’s about organizing agent systems

to our state based and autonomous type of organizations.

On a more theoretical note we still need to analyze how exactly a normative language

refines a multi-agent system. This work was initiated in (Astefanoaei, 2011). Clearly

the overall execution of a multi-agent system is changed by adding an organization. It
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is worthwhile to investigate how the language from this thesis affects the behavior of

the agents. Especially underlying properties of the system can help to detect possible

safety issues.
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