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Abstract

This research is focused towards the prediction of Free Libre Open Source
(FLOSS) project failure and non failure. By using the characteristics of open
source projects, referred to as determinants, we strive to create a classification
model that predicts project failure and additionally, project non-failure. Ex-
amples of project characteristics are the number of developers, the number of
downloads, the number of releases and other indicators that relate to success or
failure. In order to arrive at such classification model, we adopted the method
to predict corporate bankruptcy by E. Altman, also known as the Z-score in
economic context. The research method employed by Altman provides us with
the necessary steps towards a classification method for FLOSS project failure.
That is, creating a sample based on a priori groupings (failed and non-failed
projects), possibly one year prior to the event, and performing multiple dis-
criminant analysis to create a linear function that best discriminates between
the chosen groups. This enables project administrators, or other stakeholders
of open source projects, to assess their project outcome and possibly steer it
into a more successful outcome. The Z-score model for open source projects,
as we have named it, is able to predict 65% of the cases correctly. Meaning,
any new project can be classified with 65% accuracy for its outcome, being a
failure or non-failure. Furthermore, the model works best for predicting open
source project failure, as approximately 70% of the cases can be correctly pre-
dicted. Although we believe that essential indicators for open source success or
health are hard to measure in numeric values, making the classification model
only a reflection of data that can be operationalized, we believe this is first step
towards a concrete model to assess open source projects.
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Chapter 1

Introduction

Free/Libre Open Source Software (FLOSS) covers a diversity of software and
development approaches. In general, Free/Libre Software or Open Source Soft-
ware refers to software released under a license that permits the inspection,
use, modification and redistribution of the software’s source code (Crowston,
Wei, Howison, & Wiggins, 2012). There are, however, distinctions between The
Free Software movement and the Open Source movement that set both devel-
opment communities apart. Richard Stallman, founder of the GNU project1,
recapitalizes these as follows (Stallman, 2010):

” The fundamental difference between the two movements is in their values,
their ways of looking at the world. For the Open Source movement, the issue of
whether software should be open source is a practical question, not an ethical
one. As one person put it, Open source is a development methodology; free
software is a social movement. For the Open Source movement, non-free software
is a suboptimal solution. For the Free Software movement, non-free software is
a social problem and free software is the solution. ”

FLOSS projects differ in many ways compared to the principles and practices
advocated by traditional software engineering (SE) (Feller, Fitgerald, Hissam,
& Lakhani, 2005). Software development is done globally and performed by
members of their respective open source community, who are culturally and ge-
ographically dispersed. G. Lee and Cole (2003) characterize this as community-
based development. Besides that, developers often participate without mone-
tary rewards and little or no intrinsic management. In addition, despite their
perceived lack of organizational support, there are FLOSS projects with large
numbers of developers working collaboratively to create software of complex-
ity and quality that rivals their commercial counterparts (Raymond, 1999;
Kuwabara, 2000). Forges such as SourceForge.net2 and Github.com are often
used to organize FLOSS development efforts.

As a consequence, large numbers of FLOSS projects are now being used by
thousands, and even by millions of end-users, ranging from web-servers (e.g.,

1 http://www.gnu.org
2 SourceForge.net is the world’s largest Open Source software development web site, with

the largest repository of Open Source code and applications available on the Internet.

1
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Apache), e-mail servers (e.g., Sendmail), programming languages (e.g., Ruby,
Perl, Java, Python, PHP), and operating systems (e.g., Linux, Unix). Some
of these FLOSS projects, e.g. Linux, Mozilla web browser and Eclipse entail
millions of lines of code and thousand of active developers. With this growth,
there has been a concurrent increase in research examining the phenomenon.

1.1 Problem Statement

In recent years, the traditional paradigm of software innovation based on intel-
lectual property rights has been challenged by the emergence of FLOSS (Comino,
Manenti, & Parisi, 2007). Various studies have been devoted to understanding
FLOSS’ underlying structure and to assessing the potential benefits of a more
widespread adoption of FLOSS, possibly fueled by the popularity of Mozilla,
Apache, Linux etc. Apart from these successful FLOSS projects, there is a vast
amount of software that is not publicly known or has started but ended rapidly.
Various studies have shown that successful FLOSS projects attract more tal-
ented developers, more users and even sponsors (Hann, Roberts, & Slaughter,
2004; Lerner & Tirole, 2002). As a consequence, the need to assess FLOSS
projects can help all project stakeholders, e.g. project administrators, sponsors,
developers, users etc., to get insights in the health of their project and are able
to act upon accordingly. To conclude, the problem statement addressed in this
research can be summarized as:

Due to the strong emergence of Open Source Software in commercial
companies, heavily depending on the survival of their software systems, the
need to assess Open Source software is of high value to its stakeholders. Fur-
thermore, Open Source project administrators need to have insights in their
software in term of being successful or not, easily assessing their software
can aid in this respect and possibly steer it into a better project. Current
research focusses solely on certain success determinants, such as the num-
ber of downloads, they however fail to operationalize success factors into a
simple formula to assess open source projects. Creating a formula, based on
the concept of the z-score, extends current research in this matter.

1.2 Objective

This research’s objective is to define a measurement scale that assesses the
health of FLOSS projects by taking into account relevant success and failure
characteristics. It uses the concept of a Z-score, a formula in economics to
predict whether a company will file for bankruptcy or not (Altman, 1968),
and translates variables (e.g. characteristics of a company or project) into a
scalar value by using discriminant analysis. The original Z-score’s objective is
to predict corporate bankruptcy, similarly, the objective of a Z-score for FLOSS
projects is to predict FLOSS project failure prior to the event happing.

The FLOSS Z-score will produce a scalar value where a cutoff point (point
that divides the chosen groups) classifies a project as either becoming a failure or
not. Additionally, projects that are not in the distressed zone, being above the
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cutoff point, can be classified to prolongate its existence, and more interestingly,
projects that score much higher than the cutoff point, being in the upper region
of the non-distressed zone, can be seen as more successful or healthy projects.
Despite these additional uses, the main objective and its intended purpose is to
predict FLOSS project failure, preferably one year prior to the event happing.

1.3 Relevance

This section discusses the relevance of the problems investigated in this work
and the research contribution. Two perspectives are employed, a scientific per-
spective that outlines the benefits to the academic community, and a societal
perspective that describes the worth of this research to society in general.

1.3.1 Scientific Contribution

From a scientific point of view, this research contributes to the body of empirical
knowledge on the topics of FLOSS success, FLOSS failure, and to some extent,
FLOSS health. In addition, it provides a valuable instrument for measuring
FLOSS project outcome, and more specifically, FLOSS project failure by using
retrospective data. Several researchers have already defined success and failure
determinants for FLOSS, e.g. (Crowston, Howison, & Annabi, 2006; English &
Schweik, 2007; S.-Y. Lee, Kim, & Gupta, 2009; Midha & Palvia, 2012; Samo-
ladas, Angelis, & Stamelos, 2010). This research will, however, extend their
work by incorporating the determinants under study and translate them into
a simple formula, like the Z-score in economic context (Altman, 1968), with
respect to FLOSS project failure. In addition, researchers are often interested
in identifying successes or failures in order to investigate the potential causes of
success or failure. This research can also provide lessons and directions for future
empirical research on FLOSS. Finally, assessing FLOSS survivability would be
beneficial for educational purposes as universities incorporate participation in
open source projects as part of their software engineering curriculum. Instruc-
tors supervising such courses are highly interested in their students participating
in successful projects, rather than projects that are destined to fail (Stamelos,
2009).

1.3.2 Societal Contribution

This research contributes to society in general, and more specifically to FLOSS
stakeholders, in numerous aspects which are listed below:

I Better management and more accurate identification of FLOSS project out-
comes for project administrators. Ultimately, this could lead to a project’s
success both in terms of market penetration and technical achievements
over time (Midha & Palvia, 2012).

II Better understanding of the chances of survivability for project administra-
tors

III In cases where FLOSS projects are sponsored by third parties, it can be
useful for sponsors to understand the return on their investment.
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IV Having a practical measure for assessing the health of FLOSS projects is
beneficial for companies who are willing to invest resources in new and
relatively unknown projects.

V Volunteer programmers might be more interested in entering a project that
has high chance to evolve than to fail and be abandoned. Being able to
assess FLOSS projects can assist them in their choice.

1.4 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 will elaborate on the
Research Method. A detailed description is provided on the various steps under-
taken that led to the FLOSS Z-score model. Chapter 3 serves as a Theoretical
Framework underpinning the determinants that will ultimately affect FLOSS
project outcomes. We will discuss the current body of knowledge on FLOSS
project success and failure, and try to distill operationalizations they have used.
These in turn will serve as a foundation for our development of a FLOSS project
Z-score. Additionally, we will describe the original Z-score that was developed
for economic purposes by Altman and explain how it was developed. Also, we
will define FLOSS project failure and non-failure. Chapter 4 describes the data
preparation phase of our research method. We will elaborate on the determi-
nants that were taken into account for further analysis, and why we discarded
some of them. Chapter 5 discusses the data extraction phase. We will focus
on the creation of our sample and how we collected data from various sources.
We will provide details how we queried the archives, mined APIs and spidered
project web pages. Furthermore, we describe how we classified projects that
serve as a basis for performing multiple discriminant analysis. In Chapter 6
we will address the results of our research. More specifically, we will provide
a step by step view of our statistical analysis and we will present our classifi-
cation model with classification results. In Chapter 7 we will elaborate on the
discussion part, conclude our research, and provide directions for improvements
and future research.



Chapter 2

Research Method

This chapter will discuss our research question and the sub-questions involved
that serve as a basis for this thesis. In addition, we will provide a detailed
description of the various steps that try to answer our research questions.

2.1 Research Questions

The main research question formulated below addresses the need for FLOSS
project stakeholders to assess their project in a simple manner. The use of avail-
able metrics that characterize their project will serve as input for the assessment.
The assessment is based on the Z-score principles developed by Altman (1968).
More specifically, the assessment is focused towards predicting FLOSS project
outcome in a negative sense, i.e. the prediction of a failed FLOSS project. The
main research question is therefore formulated as follows:

RQ How can a model be created to predict FLOSS project failure by
taking into account the project’s own characteristics?

The model, in this case a classifier, will be constructed by employing Multiple
Discriminant Analysis (MDA). The classifier will serve as a means to classify
FLOSS projects into either becoming failed or non-failed projects. In order to
construct such a model, several sub-question need to be answered first, which
are listed below:

S-RQ 1 What determinants (variables) are important that affect FLOSS
project outcomes, albeit in success or failure, and how are they
operationalized?

A FLOSS project has several characteristics that can positively or negatively
affect its outcome. For example, number of developers, number of users, tar-
geted audience etc. These characteristics are labeled as determinants, as they
may or may not influence the project’s outcome in the long run. It is, however,
redundant to incorporate all project characteristics as some may even not influ-
ence the project. Answering sub-question 1 (S-RQ 1) will serve as the first step
towards developing the Z-score model.

5
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S-RQ 2 How do we define and operationalize FLOSS project failure?

In order to classify FLOSS projects into failed and non-failed, we need a
concise and workable definition of FLOSS project failure and non-failure. What
determinants can be used to label projects as failed, and more importantly,
what values of these determinants are used to label them as such? For example,
a determining variable would be the number of downloads, we operationalize
this as projects that constitutes less than x downloads within a time-period of y
months. The answer of sub-question 2 (S-RQ 2) will help to compose a sample
for further statistical analysis. All projects that do not adhere to the definition
of a failed project are labeled as a non-failed project.

S-RQ 3 How do we deal with incomplete, inconsistent and poor quality
of data?

To construct a sample we need to collect data from various sources. We
want to use a large selection of determinants and therefore need data on various
characteristics of FLOSS projects. As we want to construct our sample as
complete as possible, we need to obtain data on as much characteristics as
possible and doing this for each project. The main problem lies within the fact
that not all data is readily available. The data that can be collected need also be
complete and reliable in order to construct a sample that represents the actual
state of a project. We therefore need to check the completeness, consistency
and quality of the data before proceeding. How to deal with cases where one or
several of these conditions are not met is crucial for the validity of our proposed
model.

2.2 Research Design

The development of the Z-score model for FLOSS projects will take several con-
current steps that will be discussed in this section. To provide an overview of
these steps, a Process Deliverable Diagram (PDD) is constructed. A Process de-
liverable diagram (Weerd v.d. & Brinkkemper, 2008) is especially helpful when
providing a clear overview of the various activities and its corresponding deliv-
erables. The left-hand side of the diagram are the research activities which are
based on the UML activity diagram (OMG, 2003). The right-hand side shows
the corresponding deliverables that are based on the UML class diagram (OMG,
2004). Figure 2.1 depicts the PDD.

First, an extensive literature study is performed on the topics of FLOSS
health, FLOSS success, FLOSS failures and the determinants that affect its
outcomes. This literature will serve as a basis for the remainder of this research
and is captured in a theoretical framework. Second, based on the theoretical
framework, several determinants are important that can possibly affect FLOSS
project outcomes. These determinants will be extracted and assessed on their
availability based on (retrospective) SourceForge.net data. Another important
step is to define project failure. As our main goal is to predict FLOSS project
failure, a concise and working definition will be extremely important as the
remainder of our research is based on it. Third, we will make use of Source-
Forge.net data and of its research database. Several scripts and queries will be
constructed that are necessary for data extraction. The extracted data will be
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cleaned and processed for further analysis. In addition, a sample will be con-
structed that forms the basis for statistical analysis. Finally, from the available
data and by performing statistical analysis, mostly in perspective of Multiple
Discriminant Analysis, a model (classifier) is constructed. This classifier, de-
fined as a function, is able to predict whether a FLOSS project will fail or not,
and can to some extent, indicate if a FLOSS project is healthy or not. The
next step in this process is to validate the model on its accuracy, i.e. test to
what extent the model is able to predict FLOSS project failure. This is done
by performing cross validation techniques. For example, the jack-knife method
for discriminant analysis can be used. One observation is excluded and a dis-
criminant function is estimated. The latter is then used to classify the omitted
observation; this observation may be classified correctly or incorrectly. Subse-
quently another observation is omitted from the first population and replaced
by the observation which was excluded originally. Again the discriminant func-
tion is estimated and used to classify the omitted observation. This process is
repeated for the entire sample. The relative proportion of misclassifications will
then approximate the unbiased estimator of the Type I error.

To further explain the process visualized in Figure 2.1, Table 2.1 provides
a succinct description of the activities involved in the research process, while
Table 2.2 displays the definitions of the corresponding deliverables and concepts.
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Activity Sub-Activity Description
Literature study Perform literature search Search for scientific LITERATURE on the

topics of FLOSS success, failure, health,
survival, impact etc.

Write theoretical frame-
work

Capture relevant literature and summarize
in a THEORETICAL FRAMEWORK.

Data preparation Extract failure/success de-
terminants

Extract from THEORETICAL FRAME-
WORK all relevant DETERMINANTs
that can possibly affect FLOSS project
outcomes.

Assess determinants on
available data

Check whether the DETERMINANT can
be captured in either categorical or numer-
ical value from SourceForge.net.

Define operationalization
fail project

Define a concise and workable DEFINI-
TION of a FAILED PROJECT that forms
the basis of further classification.

Data extraction Write data mining script(s) Write DATA MINING SCRIPT(s) that are
executable in order to retrieve data from
Sourceforge.net portal or research data
base.

Perform data mining
SourceForge.net

Execute DATA MINING SCRIPT in order
to retrieve DATA from SourceForge.net
portal.

Perform data mining
SourceForge Research
Data Base

Execute DATA MINING SCRIPT in order
to retrieve DATA from SourceForge.net re-
search database.

Perform data cleaning Check for abnormalities in the DATA and
possibly use data cleaning methods.

Classify data Use the DEFINITION of a FAILED
PROJECT to classify the projects in the
DATA into failed and non-failed projects.

Compose training sample Compose TRAINING SAMPLE on a
stratified random basis that form the basis
for further statistical analysis.

Prepare data for statistical
analysis

Adjust or export TRAINING SAMPLE
into workable data for appropriate statis-
tical package.

Data analysis Perform multiple discrimi-
nant analysis

Use the TRAINING SAMPLE as input
and perform MDA to create a first INI-
TIAL MODEL.

Construct test sample Compose TEST SAMPLE from the DATA
on a stratified random basis to test the INI-
TIAL MODEL’s accuracy.

Check accuracy model Perform classification with the INITIAL
MODEL on the TEST SAMPLE to vali-
date the model’s accuracy.

Refine model Refine the INITIAL MODEL’s parameters
to construct a new REFINED MODEL.

Check accuracy model Perform classification with the REFINED
MODEL on the TEST SAMPLE to vali-
date the model’s accuracy.

Table 2.1: Activity table of research steps
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Concept Description

FLOSS LITERATURE Academic literature on Free/Libre Open Source soft-
ware that is focused on the topics of health, success,
failure, survival and other related topics.

THEORETICAL FRAMEWORK An overview of all related FLOSS LITERATURE that
is summarized together and highlights results from
previous studies.

DETERMINANT A variable/factor/characteristic that may affect
FLOSS project outcome.

DEFINITION FAILED PROJECT A concrete definition when a FLOSS project can be
labeled as failed.

DATA MINING SCRIPT A programming script that can be executed to retrieve
data stored in repositories.

DATA The DATA on FLOSS projects with all values of the
predefined DETERMINANTS.

TRAINING SAMPLE A subset of the DATA that is used for initial statistical
analysis.

INITIAL MODEL A first or preliminary model that is able to predict
FLOSS project failure.

TEST SAMPLE A subset of the DATA that is used to test the INITIAL
MODEL on its accuracy.

ACCURACY RESULT The results of correct classification of the INITIAL
MODEL on the TEST SAMPLE.

REFINED MODEL An altered, and possibly improved version in terms of
accuracy of the INITIAL MODEL

FINAL MODEL The FINAL MODEL that best predict FLOSS project
failure.

Table 2.2: Concept Table

2.3 Literature Review

In order to develop a comprehensive theoretical framework, a literature study
was first conducted. The literature study follows the three-stage systematic
process as defined by Levy and Ellis (2006). Their systematic literature review
process is especially applicable to the challenges inherent in information systems
research. More specifically, the information systems literature is comprised of
diverse and interdisciplinary work (Webster & Watson, 2002), which may be
a potential cause to overlook some important work conducted in other IS sub-
disciplines. The three-stage process as defined by Levy and Ellis comprises:
Input, Processing and Output.

The literature study is based upon a concept-centric approach (Webster &
Watson, 2002) and utilizes sources that are linked to keywords such as FLOSS
health; FLOSS failure; FLOSS success; open source success; open source failure;
FLOSS survival; open source determinants; FLOSS determinants and various
combinations of these.

Two approaches were applied for obtaining relevant scientific literature that
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were based on the work of Webster and Watson (2002). The first one was
the usage of specialized search engines for scholarly work, and the second one
was following the relevant references from articles already identified as perti-
nent. Two iterations of each approach were applied in the following order, a
preliminary search engine search, a reference follow-up, another search engine
search, and a final reference follow-up. The scholarly search engines used for
the literature review were Google Scholar1 and ISI Web of Knowledge2.

In addition to the structured approach, a more explorative search was con-
ducted on the aforementioned keywords by using the search engine of ScienceDi-
rect3 to obtain high quality journal papers from Elsevier. Furthermore, the
search engine from Omega4 was used to obtain additional papers that were not
obtainable from scholarly sources only.

The next phase is to process relevant literature and to extract applicable
knowledge from it. The output will provide a clear and logical structure of
literature of the domain under study. This process was the second step in the
work of Levy and Ellis (2006) and comprises: know the literature; comprehend
the literature; apply; analyze; synthesize and evaluate. Ultimately, this forms
the theoretical framework which Levy and Ellis (2006) label as output.

Approximately 50 scientific papers were found and analyzed upon their use-
fulness. Any relevant determinant that may affect FLOSS project outcome,
positively and negatively, were extracted and summarized in our theoretical
framework. As a result, the theoretical framework comprises determinants and
describe how they affected FLOSS projects on the long run. Various definitions
and operationalizations of success measures and project failure were documented
as well.

2.4 Statistical Analysis

Besides a literature study, the ample part of this thesis is performed by ap-
plying statistical techniques on the gathered data. Several techniques exist for
regressions and/or classification. Examples are linear regressions, logistic regres-
sion, classification trees, clustering, discriminant analysis and machine learning.
Which one to use and which one provides us with best results depends on our
intentions. We want an easy to use model that is able to predict a categorical
variable. Furthermore, we want to take into account several variables and check
which ones perform best by also taken into account the relationship between
these variables. The same approach has been undertaken by Altman (Altman,
1968) when constructing the Z-score model for companies. The idea is to see
what characteristics (variables) of companies best predict a so called categorical
variable, which are distresses and non-distressed firms. It is similar to our ap-
proach, where we want to classify projects into failed and non-failed groups by
using a set of variables and calculate which one best predict the groupings we
defined upfront. The use of multiple discriminate analysis best suits our needs
for the following reasons: MDA is a statistical technique used to classify an
observation into one or several a priori groupings by utilizing the observation’s

1 http://scholar.google.com
2 http://apps.isiknowledge.com
3 http://www.sciencedirect.com.proxy.library.uu.nl/
4 http://omega.library.uu.nl/seal/omegasearch.php
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individual characteristics. It is primarily useful when the dependent variable ap-
pears in qualitative form, for example, distressed or non-distressed companies,
successful or failed FLOSS projects. MDA in its most simple form attempts to
derive a linear combination of characteristics which best discriminates between
the groups. MDA has the advantage of considering all characteristics of the
observation, as well as the interactions between them. Altman’s Z-score uses
two groups that reduces the complexity to just one dimension: resulting in a
discriminant function in the form of Z = v1x 1 + v2x 2 + + vnxn. As we will
see, the Z-score model is linear in that five measures are objectively weighted
and summed up to arrive at an overall score. This score becomes the basis
for classification into the a priori groupings, e.g. distressed and non-distressed
firms.

Keeping in line with Altman’s Z-score, as it most resembles our intentions,
using its research method will suit our needs best. We therefore apply multiple
discriminant analysis to construct the Z-score model for open source projects.



Chapter 3

Theoretical Framework

This chapter elaborates on the available literature that focuses on the success
and failure determinants of FLOSS projects and how they are operationalized.
We begin this chapter by discussing Altman’s Z-score and how it was developed
to predict corporate bankruptcy one year prior to the event. The various steps
undertaken to create such measure will aid in understanding its origin. Subse-
quently, we will discuss various studies with respect to FLOSS project success
and failure, and more specifically, the used variables (determinants) and their
operationalization. These in turn will contribute to our initial list of variables
to construct the Z-score for open source projects.

3.1 Altman’s Z-score

Edward Altman developed the so-called Z-score model for assessing the dis-
tress of industrial corporations (Altman, 1968). The Z-score is a widely used
model to predict corporate bankruptcy based on a number of variables. Alt-
man’s model originates from the work of Beaver (Beaver, 1967), who used ratio
analysis for bankruptcy classification. Beaver’s univariate analysis set the stage
for Altman’s multivariate analysis, who replaced ratio analysis by multiple dis-
criminant analysis (MDA).

The development of the Z-score model originates from an initial sample of
66 corporations: 33 firms in each of the two groups. The distressed firms (group
1) filed for bankruptcy in the periods 1946 through 1965. The non-distressed
firms (group 2) consist of a paired sample of manufacturing firms chosen on a
stratified random basis by industry and size. This to cope with the not com-
pletely homogeneous group of distressed firms. Both groups had asset sizes
ranging from $1 to $25 million. Firms in group 2 were still in existence at the
time of the analysis. Also, the collected data are from the same years as those
compiled for the bankrupt firms, being financial statements dated one annual
reporting period prior to bankruptcy. A list of 22 potentially helpful variables,
which must be seen as ratios of variables, was compiled for evaluation (see 2nd
column of Table 3.1 for examples). These ratios were selected on the basis of
their popularity in the literature and their potential relevancy to the study.
Furthermore, Altman included some new variables to his analysis which were
not mentioned by previous studies. From the original list of 22 variables, five

13
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were selected as best predictors of corporate bankruptcy. Worthily to mention,
the selected variables did not contain all of the most significant variables mea-
sured independently. As Altman (1968) stated, ”the contribution of the entire
profile is evaluated and, since this process is essentially iterative, there is no
claim regarding the optimality of the resulting discriminant function.” The fi-
nal function, however, does the best job among the alternatives after numerous
computer runs with different ratio profiles, and is as follows: Z = 0.012x 1 +
0.014x 2 + 0.033x 3 + 0.006x 4 + 0.999x 5. The description of the final ratios are
shown in Table 3.1.

Ratio Variables (ratios) Description (Altman, 1968)

x1 Working capital/total assets A measure of net liquid assets of the firm relative
to the total capitalization.

x2 Retained earnings/total assets Retained earnings is the account which reports
the total amount of reinvested earnings and/or
losses of a firm over its entire life.

x3 Earnings before interest and
taxes/total assets

A measure of true productivity of the firm’s as-
sets, independent of any tax or leverage factors.

x4 Market value equity/book
value of total liabilities

Equity is measured by the combined market
value of all shares of stock, preferred and com-
mon, while liabilities include both current and
long term. The measure shows how much the
firm’s assets can decline in value before the lia-
bilities exceed the assets and the firm becomes
insolvent.

x5 Sales/total assets Known as capital-turnover ratio and is a stan-
dard financial ratio illustrating the sales gener-
ating ability of the firm’s assets.

Table 3.1: Description of variables used by Altman’s Z-score

Caution must be taken when using the formula. Variables x 1 to x 4 must
be calculated as absolute percentage values, e.g. a firm with 10% working
capital/total assets should be included as 10.0 rather than 0.10. Furthermore,
variable x 5 should be expressed in a different manner: sales/total assets ratio
of 200% should be included as 2.0 rather than 200. Several other studies have
found a more convenient specification of the model: Z = 1.2x 1 + 1.4x 2 +
3.3x 3 + 0.6x 4 + 1.0x 5. Only variables x 1 to x 4 are now inserted as the more
commonly written percentage notation, e.g. 10% as 0.1.

An F-test can be used to determine the overall discriminating power of the
model. It calculates the ratio of the sum of squares between the groups to the
sum of squares within the groups. Ideally, we want this to be maximized as it
spreads the means of the groups apart and, simultaneously, reduces dispersion
of the individual point with respect to its group mean (Field, 2009). Logically,
this test is appropriate because the objective of MDA is to identify and utilize
variables which best discriminates between groups and, at the same time, are
most similar within groups. The F-test for Altman’s Z-score for the distressed
group is F=20.7 (mean = -0.29), similarly, the non-distressed group is F=3.84
(mean = 5.02). The significance test therefore rejects the null-hypothesis that
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the observations come from the same population.
As stated before, the initial sample was examined using data compiled one

financial statement prior to bankruptcy. The model classified 95% of the total
sample correctly, being extremely accurate. A second test was conducted to
observe the model’s ability to predict bankruptcy two financial statements (be-
ing two years). The model classified 72% of the firms correctly. The accuracy
is, however, biased upward due to sampling errors in the original sample and
search bias (Altman, 1968). Without going into details, Altman used several
validation techniques, such as test and training samples, introducing new sam-
ples to test the model, and varying the cutoff point (the point where distressed
and non-distressed firms intersect) over various time periods. A classification
and prediction accuracy of bankruptcy firms is shown in Table 3.2.

Year(s)
prior to
failure

Original
Sample (33)

Holdout
sample (25)

1969-1975
Predictive
sample (86)

1976-1995
Predictive
sample (110)

1997-1999
Predictive
sample (120)

1 94% (88%) 96% (92%) 82% (75%) 85% (78%) 94% (84%)

2 72% 80% 68% 75% 74%

3 48% - - - -

4 29% - - - -

5 36% - - - -

Table 3.2: Z-score classification and prediction accuracy of distressed firms
with cutoff point 2.67 (1.81 cutoff in parenthesis)

At this point, we have described Altman’s original Z-score as developed in
1968. Table 3.2 shows its predictive power on various samples and remark-
able high accuracy and robustness despite its development over 40 years ago.
Subsequently, several revised Z-score models have been developed and even a
second-generation model known as the ZETA R© Credit Risk Model (Altman,
Haldeman, & Narayanan, 1977), which contains several enhancements to the
original Z-score approach. Despite these evolutions, we were merely concerned
with describing the initial model and pointing out the various steps that led
to the formula. Describing other improved models at length may even distract
the reader from our initial focus, a similar Z-score model for FLOSS projects.
We will continue our literature search by discussing variables that characterize
distressed FLOSS projects, which we will label as failed FLOSS projects. These
variables in turn are relevant to compose our initial sample for further analysis.
At this stage, unfortunately, the definition of a failed FLOSS project is not so
evident as a distressed firm, where filing for bankruptcy labels the company as
such.

3.2 Success and Failure Determinants within
Open Source (FLOSS) Projects

The definition and the study of success and failure in the context of open source
projects have gained considerable interest from scholars and researchers. An
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important question herein lies within the definition of success and failure. What
constitute a successful FLOSS project and, similarly, when is a FLOSS project
a failure? Despite the overwhelming amount of studies on the subject of project
success, little is written about the factors that determine project failure. We
believe that this does not necessarily pose a problem, as the lack or absence
of any success factor could imply a failure factor. In the next sections we will
elaborate on various studies that specifically defined determinants for FLOSS
success or failure. Besides that, we will report on the operationalization they
used, i.e. the way a determinant was concretely measured.

3.2.1 Success and Failure in Initiation and Growth Stage

English and Schweik (2007) have conducted eight interviews with FLOSS de-
velopers to get insights into the independent variables that are important to
FLOSS project success and tragedy. By tragedy they refer to the tragedy of the
commons, a famous article by Garrett Hardin about how to manage commons
appropriately (Garett, 1968). In the sequel, we will continue to use the term
failure instead of tragedy, as we believe they constitute the same meaning and
help to avoid unnecessary confusion. Rather than focusing solely on project suc-
cess, they specifically tried to define project failure. Based on their results, they
developed a six-class system to describe success and failure of FLOSS projects,
which can be seen in Table 3.3. Data was retrieved from the SourceForge.net
database on August 2006.

Initiation is defined as the start of a project up to the point of their first
release, and Growth as the period after this release (Schweik, 2005). Therefore, a
project is classified as Success in the Initiation stage (SI) when it has produced a
first public release. Projects that are abandoned before producing a first public
release are classified as Failure in the Initiation stage (FI). The word abandoned
is, however, subjective and leaves room for potential wrong classification. They
define abandoned projects as projects that have few forum posts, few emails to
emails lists, no code commits or few other signs of project activity over a time
period of one year. In addition, they state that abandonment could be more
precisely measured by taking into account the changes in lines of code in the
concurrent versioning system (CVS).

CVS enables team members to store code at a central location. This enables
members to retrieve the source code to make changes. The CVS keeps track of
every change, including what was changed, when it was changed and who made
the change. This helps developers to work in parallel and to avoid situations
where developers can overwrite each other’s work accidentally. A commit occurs
when a developer uploads an altered source code file (Midha & Palvia, 2012).
Furthermore, little activity on developer email lists and forums during a one-
year time period are precursors for abandonment. In general, their analysis
indicates that projects in the Initiation phase, that have not had a release for a
year, are generally abandoned.

Projects are classified as Success in the Growth stage (SG) when it exhibits
three useful releases divided over a 6-month time period. Again, useful release is
subjective and was measured by taking into account the number of downloads, as
this captures the concept of utility. In addition, they emphasize that it could be
measured more precisely by including a content analysis on utility of software on
data collected from user forums, email archives or web searches. Furthermore,
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Class (abbreviation) Definition (D) and Operationalization (O)

Success Initiation (SI) D: Developers have produced a first release.
O: At least 1 release (Note: all projects in the growth
stage are SI).

Failure Initiation (FI) D: Developers have not produced a first release and the
project is abandoned.
O: 0 releases AND ≥ 1 year since SourceForge project
registration.

Success Growth (SG) D: Project has achieved three meaningful releases of the
software and the software is deemed useful for at least a
few users.
O: 3 releases AND ≥ 6 months between releases AND does
not meet the download criteria for failure detailed in the
FG description below.

Failure Growth (FG) D: Project appears to be abandoned before producing 3
releases of a useful product or has produced three or more
releases in less than 6 months and is abandoned.
O: 1 or 2 releases and ≥ 1 year since the last release at
the time of data collection OR <11 downloads during a
time period greater than 6 months starting from the date
of the first release and ending at the data collection date
OR 3 or more releases in less than 6 months and ≥ 1 year
since the last release.

Indeterminate Initiation (II) D: Project has no public release but has significant devel-
oper activity.
O: 0 releases and <1 year since project registration.

Indeterminate Growth (IG) D: Project has not yet produced three releases but shows
development activity or has produced 3 releases or more
in less than 6 months and it has been less than 1 year since
the last release.
O: 1 or 2 releases and <1 year since the last release OR
3 releases and <6 months between releases and <1 year
since the last release.

Table 3.3: Six FLOSS success/failure classes and their methods of operational-
ization (English & Schweik, 2007).

it can be improved by considering a more careful constructed download criteria
that take into account the project’s lifecycle and downloads from various time
periods. Projects are classified as Failure in the Growth stage (FG) when they
are abandoned before producing three releases or, in cases where three releases
have been produced, failed to deliver a useful product.

English and Schweik (2007) extent their classification by adding an indeter-
minate stage for Initiation and Growth. Projects that show developer activity
but have not released a first public release are classified as Indeterminate in
the Initiation Stage (II). A project that is successful in the initiation phase
automatically becomes an indeterminate project in the growth stage. Finally,
projects that have not produced three releases but show developer activity, or
released three releases over less than six months, are classified as Indeterminate
in the Growth stage (IG).

English and Schweik (2007) made a first attempt to classify projects in either
success or failure for two development stages. Furthermore, they have opera-
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tionalized their classification by defining specific parameters to mine projects
from SourceForge.net. Such classification is extremely helpful when identify-
ing failed projects for the development of a Z-score for FLOSS projects. Just
as Altman (1968) sought for information on distressed firms one year prior to
bankruptcy, we need similar information on FLOSS projects, preferable one year
prior to becoming a failed project. Therefore, projects in time period ti, which
are classified as failed, can be a success in period ti-1. Similarly, information
is needed on projects that are classified as failed in ti-1, but a success in ti-2.
Doing so, we can research the defining determinants to predict failure one year
prior to the event.

3.2.2 Reclassification of Success and Failure in Initiation
and Growth Stage

Wiggins and Crowston (2010) have build upon English and Schweik’s first at-
tempt to classify FLOSS projects into success and failure by reclassifying FLOSS
projects in a similar manner. Their re-operationalization to extract data was
modified in two respects: (1) the success in growth stage had ≥ 3 releases AND
≥ 6 months between most recent and third most recent release AND >10 down-
loads. (2) The failure in growth stage had 1 or 2 releases AND ≥ 1 year since
the most recent release OR 3 or more releases AND ≥ 1 year since most recent
release OR ≤ 10 downloads (Wiggins & Crowston, 2010). Another important
difference between English and Schweik’s original work is the qualification of
release rate as an indicator of the sustainability of project activity. The original
measure evaluates release rates by whether consecutive releases have at least
a 6-month time period between them. Wiggins and Crowston argue that this
would privilege older projects rather than more stable projects. Two possible
solutions are presented to overcome such misclassification: (1) setting a thresh-
old for the amount of time between the most recent series of releases, rather
doing so for all releases (English & Schweik, 2007). (2) Evaluate the average
time between each release against a threshold (Wiggins & Crowston, 2010).

Wiggins and Crowston reclassified FLOSS projects by replicating English
and Schweik’s original work, followed by two variations for measuring release
rates as described above. Although their work found slight differences in clas-
sification, these are not important for our interest. We are primarily concerned
with the parameters for classification, rather than knowing exact percentages.
An important commentary from Wiggins and Crowston is that a success remains
a success, even if a project becomes inactive. This is a conservative classifica-
tion choice, reflecting the reality that successful projects may enter a retirement
stage after active development stops, but in which it is still useful to others.
This is another view than English and Schweik’s, where a successful project can
be abandoned and fall into disrepair.

3.2.3 Survival Factors in Initiation and Growth Stage

Wang (2012) studied survival factors for FLOSS projects by taking into ac-
count the same non-static project lifecycle approach as described by English
and Schweik (2007), i.e. the presence of an Initiation and Growth stage. She
rationalizes that FLOSS projects evolve from one stage to the next, and what
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works at one stage may not necessarily work in another. Thus, her research dis-
tinguishes FLOSS projects that are at the initial stage from those at the growth
stage, and that the survival factors are subject to change depending on the stage
of the project. These survival factors can function as warning indicators and
hence be interesting for our FLOSS project failure prediction, i.e. a Z-score for
FLOSS projects.

Wang’s research was performed using data drawn from SourceForge.net. It
consisted of a stratified random sample of 2,220 projects taken from January
2005 to January 2010. The definition of initiation and growth stage was adopted
from English and Schweik’s work (2007). Wang’s analysis showed that survival
factors do in fact change when FLOSS projects evolve. In both stages, user/de-
veloper participation and service quality are associated with project survival.
It is thus essential to have high quality developers who are devoted to partici-
pate in the project development activity and to provide quality service to the
users. License restrictiveness has a marginal impact on survival at the initiation
stage, but has no impact at the growth stage. License restrictiveness relates to
the type of license used to redistribute the software. This can vary from very
restrictive, e.g. strong-copy-left license that require any subsequent or deriva-
tive software to inherit the original license, to less restrictive, e.g. weak-copy-left
license where subsequent software can be licensed under a different, or similar li-
cense. There are also non-copy-left licenses where subsequent or derivative work
is not obliged to inherit the original license (Lerner & Tirole, 2005). FLOSS
projects targeted at technical users have, in both initiation and growth stage,
a higher likelihood of survival compared to other types of projects. Wang con-
cludes that technically sophisticated users are still the niche market for FLOSS
applications (Wang, 2012).

One network property that has been recurrently found to positively affect
FLOSS project outcomes is network size (Grewal, Lilien, & Mallapragada, 2006;
Wu, Goh, & Tang, 2007). In an affiliation network, a FLOSS project develops
an internal network, whose size is captured by the number of developers in the
project, and an external network, whose size is captured by the total number of
projects in which this particular project’s developers are members (Wang, 2012).
The sizes of internal and external networks have significant survival effect in the
initiation stage, but negligible effect in the growth stage. In contrast, the quality
of an external network positively impacts survival in both stages. To conclude,
an overview of Wang’s findings is shown in Table 3.4, categorized into three
classes: developer, software and community characteristics.
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Class Predictor Definition Studies Outcome

Developer
charac-
teristic

User and
developer
partic-
ipation
effort

Level of par-
ticipation from
users and de-
velopers

(Mockus,
Fielding, &
Herbsleb,
2002)

Positively impacts survival
rates for both initiation
and growth stage

Software
charac-
teristic

License
restrictive-
ness

Whether the
license of
FLOSS soft-
ware contains
highly restric-
tive terms

(Stewart,
Ammeter, &
Maruping,
2006)

Highly restrictive licenses
have a (marginally) posi-
tive effect on survival in the
initiation stage, but no ef-
fect in growth stage.

Targeted
users

Whether a
FLOSS project
is targeted
at general
end-users or
tech-savvy end
users

(Stewart et al.,
2006; Wu et al.,
2007)

FLOSS projects targeted
at tech-savvy users have
a higher likelihood of sur-
viving in both stages com-
pared to other type of
FLOSS projects

Community
At-
tributes

Social net-
work ties

The number
of direct and
indirect ties a
FLOSS project
has

(Grewal et al.,
2006; Wu et al.,
2007)

Both internal and exter-
nal networks have positive
survival impact in initia-
tion stage, but no effect in
growth stage.

Quality of
social ties

The extent
to which a
FLOSS project
is connected to
other impor-
tant FLOSS
projects

(Grewal et al.,
2006)

The quality of external
network positively impacts
survival rates in both
stages.

Table 3.4: Overview of survival measures for FLOSS projects categorized into
three classes

Wang’s results demonstrate that FLOSS project outcomes must be examined
in its dynamic context. More specifically, time effects are important when study-
ing survival measures and should not be ignored. Although not fully adopted
by all researchers, many have researched survival and/or success factors from a
more static point of view. We will continue our literature review section by de-
scribing them at length. It is, however, important to incorporate as much initial
success or failure variables for the development of our FLOSS Z-score, similar
as Altman developed his measure out of an initial set of 22 variables (Altman,
1968).

3.2.4 FLOSS Success in the Context of Traditional Infor-
mation System Development

Crowston et al. (2006) made a first attempt to develop success measures for
FLOSS projects in the context of traditional Information System (IS) devel-
opment. For that, they looked at DeLone and McLean’s Model of IS success
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(DeLone & McLean, 1992) and adopted several measures to fit the FLOSS con-
text. Additionally, they have assessed several FLOSS success measures found
in literature and commented on their appropriateness and utility. Their work is
summarized in a set of possible measures of FLOSS development effectiveness
and related operationalization.

DeLone and McLean’s IS model consists out of six interrelated measures of
success: system quality, information quality, use, user satisfaction, individual
impact and organizational impact. Their model was built by considering a pro-
cess model that has only three components: the creation of a system, the use of
a system, and the consequences of a system (Crowston et al., 2006). Table 3.5
shows a summary Crowston’s et al. study of concepts for IS success in FLOSS
context.

As can be seen from Table 3.5, Crowston et al. (2006) extracted various mea-
sures from traditional IS development that can be used in the context of FLOSS.
These measures with their potential indicators hence contribute to our initial
list of variables for the development of the FLOSS Z-score model. Crowston
et al. (2006) also analyzed SourceForge.net data by looking at three poten-
tial indicators for success: developer counts, speed of bug fixing and popularity.
Again, we are not interested in the classification of the various projects hosted
in SourceForge.net, rather it is interesting to know how they operationalized
their indicators. In addition, their classification is based on data from 2001 up
to 2005, leaving a big gap in time for valid trend analysis.

The number of developers involved in a project was operationalized in two
ways. First, SourceForge.net provided developer counts on the project’s sum-
mary page. Second, they counted the number of individuals who posted a bug
report or message to the SourceForge.net bug tracker. The speed of bug fixing
was calculated by using the average time span of open and close timestamps
recorded by the bug tracker. The popularity of a FLOSS project was measured
in three ways. First, the number of downloads and project page views were ex-
tracted from SourceForge.net. These in turn were recalculated to downloads and
page views per day to compensate for difference in project ages, as some projects
were older than others. Another used measure for popularity was whether the
project produced programs that were included in the Debian Linux distribu-
tion. This not so apparent measure is supported by their argument ”In keeping
with a portfolio approach to success measurement, we also measured popular-
ity by examining whether the project produced programs that were included
in the Debian Linux distribution, the largest distribution of FLOSS. Debian is
distributed as a base installation and a set of additional packages for different
programs. Not all the programs produced by FLOSS projects are candidates
for inclusion in a Linux distribution (for example, some projects are written
only for the Windows or Mac OS X platform), so this measurement was taken
only for projects producing programs eligible for inclusion in the distribution
(Crowston et al., 2006).”
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Process
phase

Measure Potential indicator

System cre-
ation and
maintenance

Activity effort File releases, CVS check-ins, mailing list discus-
sions, tracker discussions, surveys of time invested

Attraction and re-
tention of develop-
ers (developer sat-
isfaction)

Size, growth and tenure of development team
through examination of registration, CVS logs.
Posts to dev. mailing lists and trackers. Skill cov-
erage of development team. Surveys of satisfaction
and enjoyment

Advancement of
project status

Release numbers or alpha, beta, mature
self-assessment, request for enhancements
implemented

Task completion Time to fix bugs, implementing requests, meeting
requirements (e.g. J2EE specification). Time be-
tween releases

Programmer pro-
ductivity

Lines of code per programmer, surveys of program-
mer effort

Development of
stable processes
and their adoption

Documentation and discussion of processes, ren-
dering of processes into collaborative tools, naming
of processes, adoption by other projects/endeavors

System quality Code quality Code analysis metrics from software engineering
(modularity, correctness, coupling, complexity)

Manageability Time to productivity of new developers, amount
of code abandonment

Documentation
quality

Use of documentation, user studies and surveys

System use User Satisfaction User ratings, opinions on mailing lists, user
surveys

Number of users Surveys (e.g. Debian popularity contest), down-
loads, inclusion in distributions, package depen-
dencies, reuse of code

Interest Site pageviews, porting of code to other platforms,
development of competing products or spin-offs

Support effective-
ness

Number of questions effectively answered, time re-
quired to assist newbies

System conse-
quences

Economic implica-
tions

Implementation studies, e.g. total cost of owner-
ship, case studies of enablement

Knowledge cre-
ation

Documentation of processes, creation of tools

Learning by devel-
opers

Surveys and learning episode studies

Future income and
opportunities for
participants

Longitudinal surveys

Removal of com-
petitors

Open sourcing (or substantial feature improve-
ment) of competing proprietary applications

Table 3.5: Summary of concepts for Information System success in FLOSS
context (Crowston et al., 2006).
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Crowston, and others, also studied other possible measures with respect to
FLOSS project success that are not specifically related to traditional IS de-
velopment. These measures include developer activity / effort, the size of the
development team, project development status, task completion, interest and
copies in circulation (Crowston, Annabi, Howison, & Masango, 2004; Crowston
& Scozzi, 2002). Developer activity/effort was operationalized by looking at the
SourceForge.net activity level, whereas the size of the development team was
operationalized by the number of posters in the bug tracker. Furthermore, the
project development status was observed by looking at the development stage
as reported by SourceForge.net and task completion as the speed in which bugs
were closed. Interest and copies in circulation were operationalized as Source-
Forge.net page views and downloads, respectively.

Building on the work of Crowston et al. (2006) and DeLone and McLean
(1992), S.-Y. Lee et al. (2009) studied OSS success characteristics by looking at
traditional Information System development. Their study adapted a new IS suc-
cess model from DeLone and McLean, which included service quality (DeLone
& McLean, 2003). S.-Y. Lee et al. (2009) developed an OSS success model that
consists of software quality and community service quality as determinants of
user satisfaction and OSS use, which in turn, determine individual net bene-
fits (job and decision making performance). Software quality and community
service significantly affected user satisfaction, and OSS use was significantly in-
fluenced by software quality and user satisfaction. Furthermore, OSS use and
user satisfaction together significantly influence individual net benefits. In con-
trast to DeLone and McLean’s (2003) model, community service quality has
no significant effect on OSS use. It is, however, important to note that Lee’s
et al. study was conducted mostly in Korea and that their results may not be
generalizable due to cultural differences. Nevertheless, their determinants can
be incorporated in our study and added to the initial list of variables for the
development of the FLOSS Z-score model.

3.2.5 FLOSS Success Measures and their Determinants

Midha and Palvia (2012) studied factors affecting the success of open source
Software. Their purpose was to understand the impact of various factors, cat-
egorized as intrinsic and extrinsic factors, on OSS project success over the first
three years of its life. They furthermore distinguished success into technical
success and market success. Defining technical success as the degree of contri-
butions to enhance the software, operationalized by the total number of commits
made in the source code of the N-1th version. Whereas market success is defined
as project popularity, i.e. a high level of interest displayed in the project by its
consumers (Midha & Palvia, 2012). Market success was operationalized by us-
ing the number of downloads as a surrogate, which was adopted from (Grewal
et al., 2006) and (Rai, Lang, & Welker, 2002). Their study include license type,
user base, developer base, language translation, responsibility assignment, com-
plexity and modularity as factors influencing either technical or market success.
Similar to other studies (English & Schweik, 2007; Wang, 2012; Wiggins &
Crowston, 2010), Midha and Palvia (2012) studied factors over different time
periods of a project’s lifecycle. In contrast to these studies, Midha and Palvia
used a four time period classification to represent the four stages noted by Wynn
(2003) and Schweik and Semenov (2003). For each project, data was collected
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for the first version (T = t1) representing the initiation stage; a version released
within 3 months of the first version (T = t2) and another version released
within 6 to 9 months of the first version (T = t3) representing intermediate
growth stage; and, yet another version within 2-3 years of the first version (T =
t4) representing growth stage (Midha & Palvia, 2012). Data was collected from
SourceForge.net. An overview of their results is shown in Table 3.6.

Factor Description Operationalization Results

License Type
(DV: market
and technical
success)

The type of
license used to
comply with
Open Source
Development

GPL projects (restric-
tive=1) and others
(non-restrictive=2)

License restrictiveness
plays a significant role in
the project’s popularity
only for the first versions
of the OSS project with
respect to market success.
OSS projects in t3 / t4
that use a non-restrictive
license have lower technical
success.

User Base
(DV: market
success)

The number
of users of
the project’s
software

(Cumulative) number
of times the project has
been downloaded until
the N-1th version

OSS projects that have
a large user base are
more popular in all stages,
i.e. leads to more market
success.

Developer Base
(DV: market
and technical
success)

The number of
developers con-
tributing to the
software

(Cumulative) unique
number of developers
that have contributed
to the development of
the project until the
N-1th version

A high developer base
leads to more market suc-
cess except at t3. The
number of developers has a
positive impact on techni-
cal success only at t2.

Language
translation
(DV: market
success)

The ability
to use the
software in the
user’s native
language

The number of lan-
guage translations for
each version

OSS projects with a high
number of translations are
more popular with respect
to market success.

Responsibility
assign-
ment(DV:
technical suc-
cess)

OSS projects
that delegate
responsibilities
to the teams
developers

The fraction of the
number of tasks as-
signed to someone over
the total number of
tasks listed for N-1th
version after its release

Assigning responsibilities
to developers increases
technical success in all
stages

Complexity(DV:
technical suc-
cess)

The structural
and algorith-
mic complexity
of the source
code

McCabe’s cyclomatic
complexity measure

OSS projects with high
code complexity lead to
lower technical success in
all stages.

Modularity
(DV: technical
success)

The way the
software is
build so devel-
opers can work
in parallel

The number of mod-
ules (group of member
functions, including
classes, namespaces,
and interfaces) in the
software

OSS projects with high
modularity gain more tech-
nical success in all stages.

Table 3.6: Overview of Midha and Palvia’s (2012) results to determine success
factors for OSS projects.
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Comino et al. (2007) studied FLOSS project success by looking at the differ-
ent stages a project can reside in. They measured success of a FLOSS project
in terms of the development stage it has reached (Comino et al., 2007). Their
analysis showed that FLOSS projects that are distributed under restrictive li-
censing terms have a lower probability of reaching a more advanced development
stage. The effect of license restrictiveness fades away for more recent projects.
License restrictiveness is hence a popular indicator that impacts FLOSS devel-
opment as several other studies have also studied this measure, e.g. Midha and
Palvia (2012); Wang (2012); Subramaniam, Sen, and Nelson (2009). Further-
more, applications for technically more sophisticated users have greater chance
of evolving to a more stable release. We have discussed this finding earlier from
Wang’s research (2012). Sophisticated applications for high end-users are thus
more likely to stimulate the contributions from OS developers and, consequently,
leading it to a more successful FLOSS project. Another interesting result found
was a non-linear relationship between the size of community of developers and
the probability of success of a project. Comino et al. (2007) argue that possible
coordination problems might emerge when enlarging the group of developers.

Sen, Singh, and Borle (2012) investigated two success measures for FLOSS
projects, namely subscriber base (the number of subscribers in a certain time
period) and developer base (the number of developers in a certain time period).
Similar to a large number of other studies, data was collected on projects from
SourceForge.net for which complete information was available, and which had
been registered between January 1999 and December 2005. The variables under
study included OSS license, operating system, programming language, whether
or not the project accepted financial donations, and user type (target audi-
ence) (Sen et al., 2012). Their analysis showed that the age of a FLOSS project
resulted in an increase in both the number of subscribers and developers. In
addition, FLOSS projects that develop software for the Windows/Unix/Linux
operating system, and are written in C/C#/C++ attract more subscribers and
developers than projects that do not have these characteristics. Another inter-
esting results can be found in FLOSS projects that receive financial donations
and are targeted at IS / IT professionals. Sens et al. (2012) analysis revealed that
these projects have more subscribers than other FLOSS projects. We have dis-
cussed similar results for FLOSS projects targeted at specific groups, e.g. Wang
(2012); Comino et al. (2007). As noted by various other studies described in
previous subsections, Sen et al. (2012) also found that FLOSS projects that use
a semi-restrictive license experience a decrease in the number of subscribers and
attract fewer developers.

Subramaniam et al. (2009) investigated open source software success us-
ing longitudinal data from SourceForge.net. Their research spanned 5 years
to account for any changes found within FLOSS projects and the differences
among them. The success measures under study were developer interest, project
activity and user interest. Instead of interpreting these factors as indepen-
dent, Subramaniam et al. (2009) also studied the potential relationships among
them. They determined two categories of factors that affect their success mea-
sures: time invariant factors (license use, operating system and programming
language) and time variant factors (project status, project activity, user interest
and developer interest). These results are comparable to other studies we have
discussed in preceding sections. However, Subramaniam et al. (2009) showed
that the success measures under study are in fact inter-related and affecting each
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other. For example, they demonstrated that developer interest has a positive
impact on developer activity. Furthermore, the interest levels of OSS partici-
pants and the project activity in any given time period affect the project success
measures in the subsequent time period (Subramaniam et al., 2009).

3.2.6 Survival Analysis on Future Development of FLOSS
Projects

Samoladas et al. (2010) applied survival analysis techniques for estimating the
future development of FLOSS projects. In contrast to various other studies, they
used data from FLOSSMetrics. FLOSSMetrics consists of data on thousands of
FLOSS projects from various forges, e.g. SourceForge and Github. Their study
looked at the probability of continuation in the future, by examining project
duration, combined with other project characteristics such as application do-
main and number of committers (Samoladas et al., 2010). Interestingly, the
definition of a non-active or abandoned project was operationalized when the
project had less than two commits per month. This in contrast to another re-
lated study, where abandoned projects are defined as projects with no activity
at all (Evangelopoulus, Sidorova, Fotopoulos, & Chengalur-Smith, 2009). To
predict survival of a FLOSS project, Samoladas et al. (2010) used Cox regres-
sion models to identify prognostic (determining) factors. Their stepwise Cox
regression revealed one significant variable, being the number of committers.
Samoladas et al. model shows that projects that exist for more than 10 years
are difficult to be abandoned. Regarding the probability of survival of FLOSS
projects, projects that are older than 5 year have 40% survival chance, and up
to 80% when taking into account follow up projects (projects that suddenly
have no commits, possibly caused by coordinators that move the project to an-
other location or make use of another source code management system). They
furthermore found that certain types of software have higher probability of sur-
vival. For example, projects in ’Software Development’ and ’Science’ category
have more chance to evolve, while ’Database’ and ’Security’ have less chance.
A similar effect was also noticed by Sen et al. (2012); Wang (2012); Comino
et al. (2007). To conclude, adding a new developer to the project increases its
survivability with 15.8%. This is in contrast to Cominos et al. (2007) study, as
they found a non-linear relationship between the number of developers and the
success of a project.

3.2.7 FLOSS Project Activity Indicators and Classifica-
tion

Rainer and Gale (2005) provide a preliminary evaluation of the quantity and
quality of 50,000 projects hosted on SourceForge.net. The quality evaluation
criteria relate to the responsibility of the owner/developer of the respective
project, rather than the reflection of the quality of service provided by the
SourceForge.net portal (Rainer & Gale, 2005). Their analysis shows that the
projects hosted on SourceForge.net during data analysis are not, or have never
been active. To measure activity they have distinguished between two types of
activity indicators, namely major and minor indicators. Number of commits,
numbers of files added to CVS, number of developers, number of forum mes-
sages, numbers of forums, number of mailing lists, total number of bugs, total
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number of technical support requests, total number of patches and total number
of feature requests are considered major project activity indicators. In contrast,
number of open bugs, number of open technical support requests, number of
open patches and the number of open feature requests are minor project ac-
tivity indicators. The number of projects that are active across all activity
indicators account for less than 1% of the entire sample. Looking at less strin-
gent indicators, implying those projects with at least some code development,
account for approximately 11.6% of the sample. In addition, by solely looking
at activity indicators, most projects can be classified as being non-active, or
having low code and low user activity.

3.3 Definition Failed FLOSS Project

In order to classify FLOSS projects into failed and non-failed projects, we must
first have a definition of a failed FLOSS project. Unfortunately, we can not
revert to simple measures used by corporations, such as bankruptcy statements.
Focusing on the lack of success, in the context of traditional software prod-
uct success definitions, seem inapplicable (e.g., profit) or nearly impossible to
measure for most projects, e.g. market share, user satisfaction, organizational
impact (Crowston, Annabi, & Howison, 2003).

Several studies have indicated that project failure or abandonment differs
among development stages or life cycles (English & Schweik, 2007; Wiggins
& Crowston, 2010; Wang, 2012; Midha & Palvia, 2012). What works in one
stage may not work in another stage. English and Schweik (2007) were among
the first to propose that FLOSS projects typically go trough two identifiable
stages: initial and growth. Initiation Stage is defined as the period before a
first public release, generally the initial period of time when team members
of a FLOSS project are collaborating on the first release of the core software
code. FLOSS project typically commences because one or a small group of like-
minded programmers decide to tackle a shared but unfilled personal software
challenge. Software development at the initial stage is typically confined within
this small tightly knit group and not open to outside developers for feedback and
contribution (Wang, 2012). Growth Stage is defined as the period after a first
public release. During this stage, the project is able to attract other developers
who want to contribute to the code. Also, the priority of the team shifts from
focusing solely on the development of the software product to focusing on the
growth of both the software product and the user base (English & Schweik,
2007). Figure 3.1 shows the two stages over time.

In terms of predicting FLOSS project failure by utilizing the projects char-
acteristics, availability of data is essential. Projects residing in the initiation
phase, having no public release at all, do not contain important indicators such
as number of downloads, number of feature requests, number of technical sup-
port requests. Composing an initial test sample for further analysis would yield
projects containing just several characteristics. Furthermore, several studies
have indicated that projects in the initiation phase, that have not produced a
first public release within 1 year after registration, are generally abandoned. We
therefore focus on predicting FLOSS project failure for projects that at least
have produced a first version, i.e. projects residing in the growth stage. Do-
ing so enables us to use characteristics that describe both the software and the
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Figure 3.1: FLOSS lifecycle stages (Wang, 2012)

community characteristics.

3.3.1 The Definition

A small number of studies have defined FLOSS project failure and operational-
ized the definition. We adopted the definition proposed by English and Schweik
(2007). They define FLOSS project failure in the growth stage, which they label
as tragedy, “A project is considered a Tragedy in the Growth Stage (TG) when
it appears to be abandoned without having produced three releases or when it
produced three releases but failed to produce a useful software product.” They
furthermore state that project failure could be more precisely measured by “(1)
no code commits or changes in lines of code in the concurrent versioning system
(CVS) or other repository over the course of a year, or (2) little or no activity
on developer e-mail lists and forums over the course of a year.”

The project failed definition as proposed by English and Schweik (2007) can
be summarized as:

• 1 or 2 releases and ≥ 1 year since the last release at the time of data
collection

• < 11 downloads during a time period greater than 6 months starting
from the date of the first release and ending at the data collection
date

• 3 or more releases in less than 6 months and ≥ 1 year since the last
release.

• 0 activity in SVN, CVS or Git’s versioning system during 12 month
period

• ≤ 1 forum posts during 12 month period

Projects that do not adhere to the criteria of a failed project are automat-
ically labeled as non-failed. Furthermore, by defining project failure we have
answered our sub-research question 2 (S-RQ 2) as stated in Section 2.1.



Chapter 4

Data Preparation

4.1 Relevant Determinants

In Chapter 3 we discussed numerous determinants that may positively or neg-
atively affect FLOSS project outcomes. These determinants serve as the basis
for data extraction in subsequent steps of our research. To categorize these de-
terminants we adopted the categorization classes as proposed by Wang (2012).
Her categorization is based on three broad classes, namely developer, software,
and community characteristics. Developer characteristics refer to the attributes
of individual developers affiliated with a particular FLOSS project; software
characteristics refer to the attributes related to the software product; and com-
munity characteristics refer to the attributes describing the project team and
the interaction between the team and its larger social environment. An overview
of determinants, derived from our theoretical framework are shown in Table 4.1.

By identifying all determinants that may influence FLOSS project outcomes,
we have answered our sub-research question 1 (S-RQ 1) as stated in Section 2.1.

4.2 Availability of Data

The construction of the Z-score model for FLOSS projects is based on the avail-
able project metrics as listed on SourceForge.net. This enables project adminis-
trators, and other relevant stakeholders, to easily calculate the project’s future
classification, i.e. failed or non-failed. The availability of projects characteris-
tics (determinants) must be easy to obtain to ease the use of the classification
model.

29
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Category Determinant Study
Developer
Character-
istics

-Number of releases (Schweik, 2005; Crowston et al., 2006)

-Number of forum posts (Schweik, 2005; Rainer & Gale, 2005)
-Number of emails to emails
lists

(Schweik, 2005)

-Number of code commits (Schweik, 2005; Midha & Palvia, 2012;
Samoladas et al., 2010; Rainer & Gale,
2005)

-Changes LOC in CVS (Schweik, 2005)
-Number of developers (Wang, 2012; Crowston & Scozzi, 2002;

Crowston et al., 2004; Midha & Palvia,
2012)

-Skills of developers (Wang, 2012; Crowston et al., 2006)
-Speed of bug fixing (Crowston & Scozzi, 2002; Crowston et

al., 2004, 2006)
-Number of CVS check-ins (Crowston et al., 2006)
-Number of mailing list discus-
sions

(Crowston et al., 2006; Rainer & Gale,
2005)

-Time between releases (Crowston et al., 2006; Wiggins & Crow-
ston, 2010)

–LOC per programmer (Crowston et al., 2006)
-Number of posters in bug
tracker

(Crowston & Scozzi, 2002; Crowston et
al., 2004)

-Responsibility assignment (Midha & Palvia, 2012)
-Code complexity (Midha & Palvia, 2012)
-Modularity (Midha & Palvia, 2012)
-Total number of bug reports (Crowston et al., 2006; Rainer & Gale,

2005)
-Total number of technical sup-
port requests

(Rainer & Gale, 2005)

-Total number of patches (Rainer & Gale, 2005)
-Total number of feature re-
quests

(Rainer & Gale, 2005)

-Number of open bug reports (Rainer & Gale, 2005)
-Number of open technical sup-
port requests

(Rainer & Gale, 2005)

-Number of open patches (Rainer & Gale, 2005)
-Number of open feature re-
quests

(Rainer & Gale, 2005)

Software
Character-
istics

-Type of license (license re-
strictiveness)

(Wang, 2012; Stewart et al., 2006; Midha
& Palvia, 2012; Comino et al., 2007; Sub-
ramaniam et al., 2009; Sen et al., 2012)

-Targeted audience (Wang, 2012; Stewart et al., 2006; Wu et
al., 2007; Comino et al., 2007; Sen et al.,
2012)

-Supported platforms/OS (Crowston et al., 2006; Sen et al., 2012;
Subramaniam et al., 2009)

-Code quality (Crowston et al., 2006; S.-Y. Lee et al.,
2009)

-Documentation availability (Crowston et al., 2006)
-Supported languages (Midha & Palvia, 2012)
-Programming language (Sen et al., 2012; Subramaniam et al.,

2009)
-Age of software (Sen et al., 2012)
-Category (Samoladas et al., 2010)

Community
Character-
istics

-Number of downloads (Schweik, 2005; Wang, 2012; Crowston et
al., 2006; Mockus et al., 2002; Crowston
& Scozzi, 2002; Crowston et al., 2004; Rai
et al., 2002; Midha & Palvia, 2012; Sen et
al., 2012)

-Number of web searches (Schweik, 2005)
-Number of External networks (Wang, 2012; Grewal et al., 2006; Wu et

al., 2007)
-Quality of social ties (Wang, 2012; Grewal et al., 2006)
-Number of project page views (Crowston & Scozzi, 2002; Crowston et

al., 2004, 2006)
-User satisfaction/ratings (S.-Y. Lee et al., 2009; Crowston et al.,

2006)
-Number of forums (Rainer & Gale, 2005)
-Accept financial donations (Sen et al., 2012)

Table 4.1: Overview of determinants that may affect FLOSS project outcomes
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As our main objective is to construct a model that enables prediction, the
use of retrospective data is essential. Performing data mining on the Source-
Forge website “as is” provides metrics that are stored on the date of extraction,
which in our case are non relevant. For historical data, we should focus on the
availability of project data delivered by various SourceForge APIs, as they en-
able us to specify a date range when collecting data. Additionally, SourceForge
provides a monthly dump of their data to the University of Notre Dame which is
stored in the so called SourceForge Research Data Archive (SRDA). This data
is made available to the academic and scholarly research community under a
sublicense from SourceForge.net.

The determinants extracted from our Theoretical Framework (Table 4.1)
need to be assessed based on the availability of:

• Historical data provided by SourceForge APIs1

• Data available in the SourceForge Research Archive

• Completeness of data starting from January 2011 up to January 2013

• The data needs to be easily obtainable and should contain sufficient
valid data points to construct a representative sample.

4.2.1 Availability of Determinants

This sub-section of the paper provides a detailed description of the determi-
nants and the way they are operationalized. Table 4.1 serves as input for the
assessment of available data that needs to be extracted for further analysis.

Number of releases The SRDA provides data on the number of releases in
the frs schema. The data, however, contains no values after July 2009, making
data unusable for current years. Fortunately, SourceForge provides an API to
obtain information on file releases. A release is defined as an increment in the
version numbering with file sizes larger than 0 bytes. The number of releases
was extracted during a 12 month time period.

Number of forum posts Data on the number of forum posts are stored in
the SRDA. However, scanning this data revealed lots of inconsistencies with
actual forum posts on SourceForge. We therefore reverted back to the original
data provided by SourceForge’s Forum API2. This API was used to extract data
on the number of forums posts during a 12 month time period.

Number of developers Data on the number of developers was collected from
the SRDA in the user groups table, which connects users to projects (groups)
due to the many-to-many relationships (n:m). Each project was given a non-
negative integer for the number of developers.

2 e.g. https://sourceforge.net/api/post/index/forum-id/526557/rss
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Number of CVS check-ins The SRDA provides CVS data but, unfortu-
nately, seems incomplete in several respects. The glitch in the data was also
reported on the SRDA wiki. Moreover, we did not find any API that could
be used to extract versioning control data. Though we believed this determi-
nant to be important, we extracted data from the SourceForge project pages by
spidering the data ourselves.

Total number of bugs/ technical/ feature/ patch requests The SRDA
provides data on the total number of bug reports, technical support requests,
feature requests and the number of patches. Data was extracted from the SRDA
artifact schema. These determinants were operationalized by adding all open/-
closed/deleted and pending requests for bug reports/tech requests/ feature re-
quests and patch requests during a time period of 12 months.

Total number of open bugs/ technical/ feature/ patch requests Sim-
ilar to the total number of bug/ tech / feature and patch requests, the number
of open requests were extracted from the SRDA artifact schema. We counted
only requests which were labeled as “open”. These determinants were opera-
tionalized by counting the number of open bug reports/tech requests/ feature
requests and patch requests during a time period of 12 months.

Type of license The SRDA stores information on the project’s license type
in the trove group link table. Unfortunately, data is stored as nominal values
and projects can contain multiple licenses. Examples of licenses are: Mozilla
Public License 1.1 (MPL 1.1); GNU General Public License version 2.0 (GPLv2);
MIT License; Academic Free License (AFL). A total of 85 different licenses are
available to characterize the project. Taking the type of license into account for
further analysis proved difficult, especially when projects can contain multiple
licenses. Therefore, we operationalized this determinant by counting the number
of distinct licenses a project contains.

Targeted audience The SRDA stores information on 29 different audiences
in their trove group link table. A project can target its software to e.g. develop-
ers, researchers. Furthermore, projects can contain one or multiple audiences,
making classification troublesome. Therefore, we operationalized this determi-
nant by counting the number of distinct audiences.

Supported languages This determinant was extracted from the SRDA in
the trove group link table. A total of 66 different languages are supported,
examples are English, Chines, Spanish, Dutch and Greek. We operationalized
this determinant by counting the total number of distinct languages that a
project supports, i.e. the oral/written language for the development and use of
the software.

Programming language This determinant was extracted from the SRDA in
the trove group link table. A total of 105 different programming languages are
available, examples are C#, ASP.NET, Curl and Ruby. We operationalized this
determinant by counting the total number of distinct programming languages
the project is written in.
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Age of software The SRDA stores information on the project’s age in the
groups table. A unix timestamp is used to store the register date of the project.
This determinant was operationalized by taking the difference in time between
date of the data dump and the register date of the project. The difference
between the unix timestamps was recalculated into difference in years, creating
a value for the project’s age in years. For example, 1.5 stands for 18 months.

Category The SRDA stores information on the type of category the project
belongs to. A total of 366 different categories are applicable, examples are
3D Modeling, Algorithms, Collaborative development tools, Medical/Healthcare
and Web Services. Projects can reside in multiple categories. This determinant
was operationalized by counting the number of distinct categories the project
resides in.

Number of downloads Various studies have identified this determinant to be
an important indicator for project use (Schweik, 2005; Wang, 2012; Crowston
et al., 2006; Mockus et al., 2002; Crowston & Scozzi, 2002; Crowston et al.,
2004; Rai et al., 2002; Midha & Palvia, 2012; Sen et al., 2012). Data stored on
the SRDA allows extraction on the number of downloads. Furthermore, even
downloads during a certain time period can be extracted by subtracting different
monthly dumps. However, data seems incomplete and not consistent with data
provided by the SourceForge website. Fortunately, SourceForge provides an API
to extract download counts for each project. We programmed several scripts
to extract download counts from SourceForge APIs. Monthly download counts
were accumulated to yearly downloads.

Number of project page views The SRDA stores no information on the
number of page views or another representative indicator for web traffic. Fortu-
nately, the SourceForge website provides data on page views which are accessible
by mining the project pages. Project administrators are asked to incorporate
the SF logo on project’s website. Doing so enables SourceForge to keep track of
the number of logo requests, i.e. to determine the web traffic of a project outside
the SourceForge repository. Furthermore, SourceForge also keeps track of web
traffic from the project’s repository page. We programmed several scripts to
extract information on web traffic data. Data of each project were extracted for
a time period of 12 months.

Financial donations Data on financial donations are stored as a binary value
in the SRDA. However, we were unable to extract the amount of financial do-
nations and use this as a scale variable. We therefore operationalized this data
by using a dummy variable: 0 for no donations, 1 for having received some sort
of financial donation.

4.2.2 Discarded Determinants

Several determinants extracted from our Theoretical Framework were not easily
captured, not available at all, or have insufficient data points from Sourceforge’s
APIs or the SRDA. These determinants were discarded from our analysis. We
list these determinants in Table 4.2. The determinant is assessed based on the
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availability of data on the SRDA or SourceForge API. A checkmark is placed
if data was available, and an x-mark was placed when data was not available.
The right two columns indicate, when data was available, why the determinant
was discarded.
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Number of emails to emails list 7 7
Number of code commits 7 7
Changes LOC in CVS 7 7
Skills of developers 3 7 -
Speed of bug fixing 3 7 -
Number of mailing list discussions 7 7
LOC per programmer 7 7
Number of posters in bug tracker 3 7 -
Number of forums 3 7 -
Responsibility assignment 7 7
Code complexity 7 7
Modularity 7 7
Supported OS 3 7 -
Documentation available 3 7 -
Number of external networks 7 7
Quality of social ties 7 7
User satisfaction 7 7

Table 4.2: Discarded determinants

No data on Lines Of Code was available from the SRDA or SourceForge
APIs. SourceForge did provide an API for file releases and file sizes. We believed
that file size would not be a representative indicator for the LOCs, as adding
graphical or audio/video to a project would increase its size considerable without
a significant difference in LOCs. The same applies to LOC per programmer.

The determinant Speed of bug fixing could be extracted from the SRDA by
averaging the open and close timestamps of bug reports. Unfortunately, doing
so would yield too few data points for further analysis.

The SRDA provides data on bug reports of projects in the artifact schema.
However, counting the number of posters seems to be a troublesome task. The
query request did not provide any information but hanged instead. Moreover, a
limited query, or a query for a single project, timed out after a period of time.
The SRDA failed to provide any information on this determinant, therefore, we
discarded this determinant.

The SRDA stores data on the number of forums used for each projects.
Scanning this data shows that approximately 99% of all projects contain 2
forums. The meaning of this determinants therefore seemed irrelevant.

Data on supported platforms is stored in the SRDA in the trove group link
table. A total of 83 different operating systems are applicable to characterize
the project. Unfortunately, there exists a value “OS Independent (Written in
an interpreted language)”, making data hard to interpret when counting the
number of different supported platforms. For example, supporting 5 different
platforms may not necessarily imply software that can be used on more platforms
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than a project that lists a 1 for supported platforms. We therefore discarded
this determinant from further analysis.

Data on available documentation and other related information is stored
in the SRDA. This data, however, is incomplete as there is no data available
after 19th October 2009. Our analysis is focused on data from current years,
therefore, we discarded this determinant. Furthermore, we were unable to easily
extract documentation data from SourceForge APIs.

4.3 Overview of Determinants

Determinants that are used for analysis are selected based on their availability
and the selecting criteria as defined in Section 4.2. We extracted data from the
SourceForge Research Archive and from APIs provided by SourceForge. Because
the Z-score model for FLOSS projects is used for prediction, the availability of
historical data is essential. For that reason, the monthly dumps of SourceForge
data provided to the University of Notre Dame was our main point for data
extraction. In all cases were this data does not suffice, we reverted to data
provided by SourceForge APIs. These APIs enable us to extract data by indi-
cating a time region, e.g. data from January 2012 to January 2013. Table 4.3
provides an overview of determinants for which we found valid and sufficient
data. A checkmark is placed to indicate from which source we extracted the
data: SRDA or SourceForge API. Additionally, we provided the name of the
table/schema or API name.

Determinant SRDA SF API Schema/Table/API
Number of releases X File releases API
Number of forum posts X Forum API
Number of developers X user groups
Number of CVS check-ins X SCM activity on SF
Time between releases X File releases API
Total number of bug reports X artifact
Total number of tech. support requests X artifact
Total number of patches X artifact
Total number of feature requests X artifact
Number of open bugs X artifact
Number of open tech. support requests X artifact
Number of open patches X artifact
Number of open feature requests X artifact
License type X trove group link
Targeted audience X trove group link
Supported languages X trove group link
Programming language X trove group link
Age of software X groups
Category X trove group link
Number of downloads X Downloads API
Number of project page views X Traffic activity on SF
Financial donations X groups

Table 4.3: Determinants selected for further analysis
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4.4 Extra Determinants

Apart from the determinants listed in our Theoretical Framework, we included
several other indicators that represent some form of project activity. These
determinants were extracted when mining SourceForge APIs, SourceForge’s
project pages, or found to be interesting when creating queries to extract data
from the SRDA. The following indicators were added to our analysis:

Tracker activity Opened and closed tracker activity is stored on the project
pages hosted on SourceForge. We extracted bug reports, support requests, fea-
ture requests and patches from the SRDA, but have extracted tracker informa-
tion directly from SourceForge. This determinant was labeled tracker activity
and contains, apart from the standard trackers, custom trackers to meet the
information management needs of the project. We accumulated the opened and
closed trackers for a time period of 12 months.

Number of news items SourceForge provides an API3 to extract informa-
tion on news items. We used this information to compute the number of news
items a project released during a 12 month time period.

Number of news item posters The data on news items contained email
addresses on who posted the message. We used this information to calculate
the number of distinct posters during a 12 month time period.

Number of Runtime dependencies Some projects needs certain runtime
environments to operate correctly. This can for instance be graphical user in-
terface, a certain tool-kit, a plug-in or webkit. Because this data was available
in the SRDA, we extracted the number of runtime dependencies and counted
the distinct environments.

3 e.g. https://sourceforge.net/api/news/index/project-id/156708/rss
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Data Extraction

This chapter describes the data extraction methods we performed to collect data
on FLOSS projects from the SourceForge Research Database, the SourceForge
APIs, and the project pages from SourceForge.

5.1 Sample Creation

Our initial focus was to extract data from the SourceForge Research Archive
(SRDA), as it enabled us to extract data from various monthly dumps. A
schematic overview of our data collection phase using the SRDA is depicted in
Figure 5.1. We extracted data from projects that were registered on Source-
Forge.net between January 1st 2011 and January 1st 2012. A total of 523,522
project IDs (SRDA and SourceForge.net label them as group IDs) were ex-
tracted. A large part of these projects contain no data or insufficient data to
work with. As a prerequisite, we continued with projects that have listed the
following on their project page:

• Type of audience

• Type of category

• Number of developers

• Type of license

• Type of programming language

• Type of runtime dependency

Joining (i.e. using an inner-join) the data on these determinants resulted in
a total of 90,683 projects. The following determinants were extracted from the
SRDA trove group link table for all 90,683 projects.

• Number of open bug reports

• Number of open feature requests

• Number of open patches

• Number of open tech requests

• Total number of bug reports

• Total number of feature requests

• Total number of patches

37
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• Total number of tech requests

523,522
projects

90,683
projects

432,839
projects

num. developers
type of audience
type of category
type of license
programming language
runtime dependency discarded projects- insufficient data

SourceForge Research Data Archive

90,683
projects

Num. open bugs
Num. open features
Num. open patches
Num. open tech req.
Total num. bug reports
Total num. features
Total num. patches
Total num. tech req.

used to mine SourceForge APIs

Figure 5.1: Schematic view of the data collection phase using SRDA

SourceForge provides several APIs to extract data directly for each project.
A database was constructed that consisted out of all 90,683 project IDs (the
result of our previous table join). We used the following APIs to extract our
remaining determinants: File release API, Forum API, Downloads API and
Traffic API. We programmed several scripts that used the project IDs, as stored
in the database, and created a loop that used Curl to extract XML data, as pro-
vided by the API. This data was then parsed into an array, which contained the
elements as provided by the API. We used PHP to extract only those elements
which were relevant and stored them in a database containing the other deter-
minants we got from querying the SRDA. Data on the following were stored:

• Number of forum posts

• Number of open and closed trackers (accumulated to tracker activity)
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• Number of downloads

• Number of releases

• Average time between releases

• Number of news items

• Number of different news posters

Unfortunately we had to discard the determinant average time between re-
leases. When scanning the data we found some problems interpreting the data.
This was caused by several reasons. First, projects that produced a single release
had no average time between releases. We need to have at least two timestamps
to calculate the average time. Second, projects that released e.g. 4 releases in
a small period of time would yield a better average time between releases that
projects than for instance release monthly. Our calculation for average time
between releases (averaging between the youngest and oldest timestamps) was
therefore not usable. Moreover, calculating average time between releases by di-
viding the number of releases over a 12-month period would yield, in statistical
sense, not more information than solely using the number of releases.

- Num. releases
- Avg. time releases

SourceForge APIs

Release API Forum API Downloads API

- Num. forum posts
- Num. forum posters

- Num. downloads

90,683 projects Data mining script

Figure 5.2: Schematic view of the data collection phase using SourceForge
APIs

An important indicator for project activity is the number of CVS checkins
and the number of project page views. SourceForge provides this data on the
project pages by checking the project statistics. We believed this indicator to
be important and therefore spidered the project pages to extract this data. By
checking out the HTML source code of the project page we were able to receive
JSON data on various CVS metrics and project page views. We programmed
scripts to store this data into a database. SourceForge labels statistics on ver-
sioning systems as SCM activity. Data on SVN, CVS and GITrepository were
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stored for both the read and the write transactions. Read transactions con-
sisted out of CVS anonymous read, CVS developer read, Git anonymous read,
Git developer read and SVN read txn. Write transactions consisted out of CVS
write, Git write, SVN write txn and SVN write files. We accumulated all the
CVS, SVN and GitRepository write transactions and labeled them versioning
control write. The same was done for read transactions which were labeled as
versioning control read. An example of JSON data where SourceForge shows
CVS data is displayed here. For example, anonymous read activity is shown for
a certain project. The first number indicates the (unix) time stamp together
with the activity count.

Listing 5.1: Excerpt of SourceForge JSON data on CVS activity

1 {
” data ” : {

3 ” anon read ” : [
[ 1277942400000 .0 , 2 0 ] ,

5 [1293840000000 .0 , 3 ] ,
[ 1296518400000 .0 , 1 ] ,

7 [1298937600000 .0 , 7 ] ,
[ 1301616000000 .0 , 6 ] ,

9 [1304208000000 .0 , 3 ] ,
] ,

11 ” wr i t e ” : [
[ 1230768000000 .0 , 2 ] ,

13 [1233446400000 .0 , 1 ] ,
] ,

15 ” dev read ” : [
[ 1325376000000 .0 , 1 ]

17 ]
}

19 }

The data collection process started in May 2013 and took several days. Due
to the fact that SourceForge blocks ip addresses after a number of requests have
been sent, we were blocked several times during our collection phase. To over-
come this, or reduce the time lost when blocked, we used several VPS (Virtual
Private Servers) and run several scripts from multiple ip addresses. A schematic
view of our data collection set-up is depicted in Figure 5.3. Because we collected
data all at once, meaning retrieving data on various determinants per project,
we were able to collect 20,000 records daily.

At this point, our database contained data on several determinants of all
90,683 projects. Although a large part of the projects have been filtered out
by solely looking at projects that at least have selected their target audience,
operating systems etc., a large part of these projects can be considered to be
inactive, abandoned or still in initiation phase. To make predictions whether
or not a project is destined to be failed or non-failed (see section 3.3.1 for the
definition of failed and non-failed projects), we looked at projects that are at
least active, are in the growth stage, show some sort of development activity
and more importantly, adhere to the definition of being non-failed. These are
projects that have produced a public release, show development activity, have
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Spidering SourceForge Project Pages

VPS IP1

- CVS, SVN and Git Activity

90,683 projects VPS IP2

VPS IP3

Data mining script

Data mining script

Data mining script

Sourceforge URLs

Figure 5.3: Schematic view of the data collection phase extracting data from
SourceForge project pages

at least been downloaded once, and adhere to the definition of being non-failed
as proposed in Section 3.3.1. A total of 1,447 projects satisfy these criteria. For
illustrative purposes we depicted our sample creation method in Figure 5.4.

Another import of aspect of filtering on these criteria is to avoid anomalies
in the data. For example, a project can be hosted on SourceForge, have valid
data on projects characteristics but show no downloads or releases. This can
for instance be seen from the squirrelmail project, where it shows substantial
tracker and versioning system control activity, but have 0 downloads.

5.2 Classification

We used a time interval of 12 months to create our base sample, which was used
to perform multiple discriminant analysis on. More specifically, we used data
from January 1st 2011 to January 1st 2012 to create our sample. In order to
make predictions, we mined date from January 1st 2012 to January 1st 2013 and
searched for projects that were characterized as failed and non failed and labeled
them in our initial sample as such. Doing so, we created a dichotomous variable
in our base sample where projects that are going to be classified (the following
year) are labeled as 0, and projects that were classified as non-failed were labeled
as 1. This sample serves as input for performing MDA. Our classification method
is depicted in Figure 5.5 for clarification purposes.

5.3 Used Determinants

After querying the SRDA, extracting data from SourceForge APIs and spidering
project pages hosted on SourceForge, our initial list of determinants are altered
or operationalized in a different manner. Because we were merely concerned
of finding determinants which are measured on a scale level, this affected some
of the determinants. For example, one of our initial determinants was type
of category. As projects can contain multiple categories, and the number of
different categories was quite large, it was troublesome to create nominal values.
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523,522
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90,683
projects

432,839
projects

SRDA Data 
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discarded projects- 
insufficient data
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projects

SourceForge 
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1,447
projects
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Inactive / Abandoned / Initiation 
Phase

>=1 public release
>= 1 SVN/CVS/Git activity
>=1 download

Figure 5.4: Sample creation method

Jan 2011 Jan 2012 Jan 2013

Active Project Failed

Active Project Non-Failed

= 0

=1

Sample

Figure 5.5: Classification method to label projects within our sample as 0 =
failed and 1 = non-failed in subsequent year
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As a result, we counted the number of categories and used that as a scale
variable. At the end, we ended up with the following variables:

1. Number of downloads

2. Number of releases

3. Age of project (years)

4. Number of forum posts

5. Tracker activity (accumulated
from open and closed tracker ac-
tivity)

6. Traffic of SourceForge logo

7. Traffic hits

8. Versioning control read trans-
actions (accumulated from CVS
anonymous read, CVS developer
read, Git anonymous read, Git
developer read and SVN read
txn)

9. Versioning control write trans-
actions (accumulated from CVS
write, Git write, SVN write txn
and SVN write files)

10. Number of news items

11. Number of news posters

12. Number of open bugs

13. Number of open features

14. Number of open patches

15. Number of open tech requests

16. Total number of open bugs

17. Total number of open features

18. Total number of open patches

19. Total number of open tech re-
quests

20. Number of audiences

21. Number of categories

22. Number of developers

23. Number of licenses

24. Number of programming lan-
guages

25. Number of runtime dependencies
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Analysis

In previous chapters we have selected relevant determinants that may positively
or negatively affect FLOSS project outcomes. We have collected data on these
determinants from the SourceForge Research Archive (SRDA), or have mined
SourceForge APIs or project pages to collect other essential data that were not
stored in the SRDA. Based on this data, we created a sample that consisted out
of projects that were hosted on SourceForge between January 1st 2011 to Jan-
uary 1st 2012. A total of 90,683 projects with corresponding data was stored.
Projects that were in their growth stage and show activity in downloads and
versioning control system were selected for further analysis, 1,447 projects satis-
fied these criteria. We have adopted the project failure definition from English
and Schweik (2007), and improved the definition as defined in Section 3.3.1.
Projects were labeled as failed (0 as dummy variable), if in subsequent year, be-
ing January 1st 2012 to January 1st 2013, they adhere to the definition of being
failed. All other projects were labeled as non-failed (1 as dummy variable).

This chapter describes the process of statistical analysis, and more specifi-
cally, how we applied Multiple Discriminant Analysis on our dataset.

6.1 Descriptives

Before proceeding to the main part of our analysis, Table A.1 shows the de-
scriptives of statistics of our complete sample. Determinants that we included
in our sample are listed for all 1,447 FLOSS projects. We see large ranges for
the determinants traffic SF logo, traffic hits and number of downloads. These
determinants vary as they constitute activity from the developers side, as well
as the community side, that can easily grow for more successful projects. The
descriptive statistics for the failed group are shown in Table A.2, and for the
non-failed group in Table A.3.

6.2 Multiple Discriminant Analysis

We have discussed the application of Multiple Discriminant Analysis (MDA),
or Discriminant Analysis (DA) in short when explaining Altman’s Z-score in
Section 3.1. In contrast to multiple linear regression, MDA is able to predict an
outcome when the dependent variable appears in categorical form, rather than

44
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being on interval level. This statistical regression technique, therefore, suits our
needs best as we have failed and non-failed groups.

MDA involves the determination of a linear equation that will predict which
group the case belongs to. The form of the equation or function in its general
form is:

D = v1x 1 + v2x 2 + ... + v ix i + a.

Where: D: Discriminant function
v : The discriminant coefficient or weight for that variable
x : Respondent’s score for that variable
a: A constant
i : The number of predictor variables

The v ’s are unstandardized discriminant coefficients analogous the the b’s
in a regression equation. The coefficients try to maximize the distance between
the means of the dependent variable. For best results, the function must have
strong discriminating power. Once a function has been created from a sample,
any new cases can then be classified. The number of discriminant functions is
one less than the number of groups. In our case, we have two groups which
results in a single discriminant function.

6.2.1 Assumptions

In order to correctly apply MDA, several assumptions of the data must be met.
The assumptions are as follows:

• All observations come from a random sample

• Each predictor variable must be normally distributed

• Each of the allocations for the dependent categories in the initial sample/-
classification are correctly classified

• At least two or more groups must be defined, with each case belonging to
only one group so that the groups are mutually exclusive and collectively
exhaustive, i.e. all cases can be placed in a group

• Groups must be defined before collecting the data

• Group sizes of the dependent variable must not be grossly different and
should be at least five times the number of independent variables.

The collected data show in various cases highly skewed data, for instance
by looking at the number of developers. The assumption that the data must
be normally distributed has therefore been violated. However, violations of
the normality assumption are usually not “fatal”, meaning that the resultant
significance tests etc. are still “trustworthy”. In addition, we have tried several
methods to rectify the skewness of the data. A popular and often used method to
transform non-normal distributed data into normal distributed data is the Box-
Cox transformation (Box & Cox, 1964). We have applied this transformation
technique to our dataset to improve the basis of MDA. Unfortunately, the Box-
Cox method seem to have no effect on the distribution of the data. Other
transformation techniques, such as log and square-root transformation also have
negligible effect on the distribution of the data.

The minimum ratio of valid cases to independent variables for discriminant
analysis is 5 to 1, with a preferred ratio of 20 to 1. We have 26 independent
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variables and 1,447 cases, resulting in a ratio of approximately 55 to 1. It
thus satisfies the minimum as well as the preferred ratio. In addition to the
requirement for the ratio of cases to independent variables, discriminant analysis
requires that there be a minimum number of cases in the smallest group defined
by the dependent variable. The number of cases in the smallest group must be
larger than the number of independent variables, and preferably contain 20 or
more cases. We have 517 cases in the failed group and 930 cases in the non-
failed group. The number of cases in the smallest group, being 517, is more
than the number of independent variable, satisfying the minimum requirement.
In addition, the number of cases in the smallest group satisfies the preferred
minimum of 20 cases.

6.2.2 Stepwise Analysis

When using stepwise discriminant function analysis, a discriminating model is
built step-by-step. More specifically, at each step all variables are reviewed and
evaluated to determine which one will contribute most to the discrimination
between groups. That variable will then be included in the model, and the
process starts again. This in contrast to using all variables at once. As we want
to find the best set of predictors, a stepwise method suits our specific needs
best. Moreover, a stepwise method is often used in an exploratory situations to
identify those variables that might later be used for a more rigorous theoretically
driven study. The selection of variables to be entered in the analysis is based
on the F to remove and F to enter criteria. The F value for a variable indicates
its statistical significance in the discrimination between groups, that is, it is a
measure of the extent to which a variable makes a unique contribution to the
prediction of group membership.

6.3 Results

We used the statistical software package SPSS to perform MDA. This section
elaborates on the output tables and analysis of the results.

By looking at mean scores of the variables between the two groups we can
infer some sort of difference. Big differences between means are usually indi-
cators for good discriminating variables. We would prefer, however, statistical
evidence in this matter. Table 6.1 shows the result of a simple F-test between
the mean scores for each variable between the two groups (failed and non-failed
classification). The table shows that several variables, when taking α = 0.05, to
have a significant difference between groups. The variables are number of cate-
gories, number of licenses, number of programming languages, versioning control
write transaction, number of releases, average time between releases, number of
news items, and the age of a project. The smaller the Wilk’s Lambda is, the
more important the variable is to the discriminant function.

Table A.4 shows the pooled within groups matrix. This matrix shows the
correlation between the variables taking into account when performing MDA.
The matrix must be inspected for multicollinearity. Multicollinearity occurs
when one independent variable is so strongly correlated with one or more other
variables that its relationship to the dependent variable is likely to be misinter-
preted. Its potential unique contribution to explaining the dependent variable is
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minimized by its strong relationship to other independent variables. The corre-
lation matrix shows high correlations among the variables total number of bugs
in relation with number of open bugs (r = 0.988), total number of features in
relation with number of open features (r = 0.846), total number of patches in
relation with number of open patches (r = 0.99). We have tried to adjust the
variables that represent open patches, open bugs, open features and open tech
requests by converting them as percentages of the total number. Due to the
fact that a large part of the projects contain 0 total and 0 open e.g. bugs (pos-
sibly causing the high correlation coefficient), the division ends up with a null
value. Furthermore, the high correlation could also be caused as one variable
basically is a sub-set of another variable. When performing MDA, SPSS will
exclude these cases, leaving us with too few cases to continue. Numerous runs
by excluding several variables resulted in no improvements in terms of correct
classification results. We therefore continued the analysis by including both
types of variables, i.e. open and total.

Tests of Equality of Group Means

Wilks' Lambda F df1 df2 Sig.
Num audiences
Num categories
Num developers
Num licenses
Num pr. languages
Num of runtime dep.
Num open bugs
Num open features
Num open patches
Num open techrequests
Total num bugs
Total num features
Total num techrequests
Total num patches
Num forum posts
Tracker activity
Traffic SF logo
Traffic hits
Versioning control Read
Versioning control Write
Num downloads
Num releases
Avg time releases
Num newsitems
Num newsposters
Age of project

,998 3,215 1 1445 ,073
,991 12,774 1 1445 ,000
,999 1,308 1 1445 ,253
,981 27,754 1 1445 ,000
,992 12,104 1 1445 ,001

1,000 ,702 1 1445 ,402
,998 2,287 1 1445 ,131
,998 3,585 1 1445 ,058
,999 1,756 1 1445 ,185
,999 1,241 1 1445 ,266
,999 1,531 1 1445 ,216
,999 2,001 1 1445 ,157
,999 ,892 1 1445 ,345
,999 1,487 1 1445 ,223
,999 1,619 1 1445 ,203
,999 1,806 1 1445 ,179

1,000 ,695 1 1445 ,405
,999 ,882 1 1445 ,348
,998 2,686 1 1445 ,101
,990 14,170 1 1445 ,000
,998 2,460 1 1445 ,117
,927 113,580 1 1445 ,000
,907 147,597 1 1445 ,000
,989 16,635 1 1445 ,000
,997 3,754 1 1445 ,053
,969 46,640 1 1445 ,000

Page 1

Table 6.1: Tests of equality of group means

Another important and remarkable determinant is the number of downloads.
The F-test as shown in Table 6.1 shows a high Wilk’s Lambda for this deter-
minant. Several studies have, however, reported that the number of downloads
is an important indicator for being a success or failure (Schweik, 2005; Wang,
2012; Crowston et al., 2006; Mockus et al., 2002; Crowston & Scozzi, 2002;
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Crowston et al., 2004; Rai et al., 2002; Midha & Palvia, 2012; Sen et al., 2012).
Table 6.1 shows however no significant difference between the two groups (i.e.
failed and non-failed).

6.3.1 Box’s M

Another assumption when performing MDA is that the variance-co-variance
matrices are equivalent. A test to check this assumption is the Box’s M test,
which tests the null-hypothesis that the covariance matrices do not differ be-
tween groups formed by the dependent variable. This test is very sensitive to
meeting the assumption of multivariate normality. The assumption of equal
dispersion for groups defined by the dependent variable only affects the clas-
sification phase of discriminant analysis, and so is not evaluated until we are
determining the final accuracy rate of the model. Ideally, we want this test not
to be significant, so that the null hypothesis that the groups do not differ can
be retained.

Box’s M 1885.379
F approx. 89.337
df1 21
df2 4297414.580
Sig. .000

Table 6.2: Box’s M test results

Table 6.2 shows the SPSS output of the Box’s M test. We see that this test is
in fact significant, implying that we have equal population covariance matrices.
Moreover, in case we did violate this assumption, we could still proceed the
process. MDA is robust even when the homogeneity of variances assumption
is not met, provided the data do not contain important outliers. Moreover, we
can request the use of separate group dispersion matrices in the classification
phase of the discriminant analysis to see if this improves our accuracy rate. If
classification using separate covariance matrices were more accurate by 2% or
more, we would report classification accuracy based on this model rather than
the one that use within-groups covariance. The accuracy of the model, which
will be discussed in subsequent sections, did not improve by using the separate-
groups covariance matrix. We continued the analysis by using the within-groups
covariance matrix as this test proofed to be not significant.

6.3.2 Eigenvalues

Table 6.3 provides information on the discriminant function. The maximum
number of discriminant functions is the number of groups - 1. In our case, we
have two groups, failed and non-failed group. This results in a single discrim-
inant function. The eigenvalue indicates the proportion of variance explained,
being the between-group sums of squares divided by the within-groups sums
of squares. Ideally, we want this number to be large as it is associated with a
strong discriminant function. Table 6.3 displays an eigenvalue of .078, implying
that the discriminant function is weak.
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The canonical correlation is the multiple correlation between the predictors
and the discriminant function. This provides an index for the overall model
fit, as should be interpreted as the proportion of variance explained (R2). The
canonical correlation of .270 suggests that the model explains approx. 7.3% of
the variation in the grouping variable.

Function Eigenvalue % variance cumulative % Canonical correlation
1 .078 100.0 100.0 .270

Table 6.3: Eigenvalues

6.3.3 Standardized Canonical Coefficients

The standardized discriminant function coefficients (Table 6.4) serve the same
purpose as beta weights in multiple regression (partial coefficient): they indicate
the relative importance of the independent variables in predicting the dependent.
The signs indicate the direction of the relationship. The numbers in the tables
allow us to compare variables measured on different scales. Large numbers,
when taking the absolute value of a coefficient, correspond to variables with
greater discriminant power. Tabel 6.4 furthermore shows the variables that
were included in the discriminant function. Determinant Age of project has the
highest coefficient, being a strong predictor for project failure and non-failure.

Value
Number of licenses -0.312
Number of prog. languages 0.293
Number of news posts 0.335
Number of releases 0.313
Age of project -0.624
Versioning control write 0.309

Table 6.4: Standardized Canonical Discriminant Function Coefficients

6.3.4 Canonical Discriminant Function Coefficients

The unstandardized coefficients are used to create the discriminant function,
which can be used in a similar manner as a regression equation. Table 6.5 shows
the coefficients with their corresponding value. The discriminant coefficients,
the b’s, indicate the partial contribution of each variable to the discriminant
function controlling for all other variables in the equation.
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Translating Table 6.5 results in the following discriminant function:

Z = -0.407v1 + 0.059v2 + 0.134v3 + 0.004v4 - 0.239v5 + 0.105v6 + 1.779

Where: Z: Discriminant score (Z-score)
v1: Number of licenses
v2: Number of programming languages
v3: Number of news posts
v4: Number of releases
v5: Age of project
v6: Versioning control write

Value
Number of licenses -0.407
Number of prog. languages 0.059
Number of news posts 0.134
Number of releases 0.004
Age of project -0.239
Versioning control write 0.105
Constant 1.779

Table 6.5: Canonical Discriminant Function Coefficients

When calculating the Z-score for open source projects by using the function
as displayed above, a higher score implies a higher likelihood to be classified
as non-failed. Positive coefficients thus increase the z-score and have a positive
effect. On the other hand, negative coefficients causes a lower z-score and hence
a higher likelihood that a project is going to be classified as failed. Table 6.5
shows the coefficients with their values. Interestingly, we see that the number of
licenses and the age of the project have negative coefficients. This implies that
multiple licenses causes the z-score to decrease. Similarly, projects that have
been around for some time are more likely to receive a lower z-score as the age
of the project has a negative effect on the score. When looking at the age of a
project, this effect contradicts a lot of studies on open source success and health,
as older projects are more likely to survive and are generally not abandoned.
We believe this is caused by the definition of project failure. For example,
projects that are mature and in existence for years could still be useful and be
downloaded frequently, however, project administrators could not produce any
more releases as the software is mature enough. According to the definition
proposed by English and Schweik (2007), producing no releases in a 12-month
period is accompanied with project failure.

6.3.5 Classification Results

Table 6.6 shows the classification table, also known as a confusion matrix. It
shows the observed counts (rows) in relation to the predicted counts (columns).
Both the original classification, as well as the cross-validated counts are dis-
played. Cross validation is based on the leave one out method. It creates a
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function with n-1 cases, and use the function to classify the case that was left
out. The process is repeated with each case left out in turn. By performing
cross-validation, the analysis produces a more reliable function.

Looking at the cross-validation matrix (Table 6.6 ), we see that the projects
that were labeled as becoming failed cannot be predicted with high accuracy.
Out of 517 projects, only 18.8% were classified correctly, making errors in 81.2%
of the cases. In contrast, projects that were labeled as becoming non-failed,
i.e. being still in existence with no abandonment and sufficient activity, are
classified with high accuracy. Out of 930 cases, the discriminant function is
able to classify 90.6% correctly.

The overall classification results show that 65.0% of the cases were classified
correctly into failed and non-failed projects when performing cross-validation
(model predicts 65.2% correctly without cross-validation). This number is also
referred to as the hit-ratio. Ideally we want this number to be as high as possible,
as it indicates how well we can predict project failure and non-failure.

Predicted group membership
classification failed non-failed total

original
count

failed 99 418 517
non-failed 85 845 930

%
failed 19.1 80.9 100
non-failed 9.1 90.9 100

cross validated
count

failed 97 420 517
non-failed 87 843 930

%
failed 18.8 81.2 100
non-failed 9.4 90.6 100

Table 6.6: Classification results

Prior Probabilities

The classification results as shown in Table 6.6 are calculated based on the
prior probabilities of their respective group size. More specifically, we have 517
cases in the failed group and 930 cases in the non-failed group. Without any
knowledge, our best guess would be to classify any new project as non-failed,
as we are right in 64.3% of the cases (35.7% for the failed group).

We could however change the prior probabilities to 50% for both groups,
implying we have no prior knowledge. This would alter our classification results
(the discriminant function stays the same). It turns out when doing so, the
overall classification power of the model decreases from 65.0% to 61.4%, as it
decreases the likelihood that a project is classified as non-failed, which is the
largest group (we had 64.3% as prior probability and changed this to 50%).
As a result, a greater percentage of the non-failed group is misclassified, and a
larger percentage of failed projects is classified correctly (see Table 6.7 for exact
percentages).

In terms of predicting open source project failure, we increased our classifica-
tion accuracy from 18.8% to 69.4%. Making the Z-score for open source projects
more suitable for predicting project failure when classifying any new project and
having no knowledge on prior probabilities, thus using 50% probability for both
groups.
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Predicted group membership
classification failed non-failed total

original
count

failed 359 158 517
non-failed 399 531 930

%
failed 69.4 30.6 100
non-failed 42.9 57.1 100

cross validated
count

failed 359 158 517
non-failed 400 530 930

%
failed 69.4 30.6 100
non-failed 43.0 57.0 100

Table 6.7: Classification results with equal prior probabilities

6.3.6 Histograms

Figures 6.1(a) and 6.1(b) graphically depict the distribution of the canonical
function (discriminant function). It is an alternative way of illustrating the
distribution of the discriminant function scores of each group. We see that both
distributions have some sort of overlap, implying that the function does not
discriminate too well.
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(a) Failed group: Mean = -0.38, Std.
dev. = 0.814, N = 517
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(b) Non-failed group: Mean = 0.21, Std.
dev. = 1.090, N = 930

Figure 6.1: Histograms showing the distribution of discriminant scores for
failed and non-failed FLOSS projects

6.3.7 Cut-off Point

The discriminating function as proposed in Section 6.3.4 is a linear function that
takes into account 6 determinants to achieve an overall score, the discriminant
score. To classify new projects into failed and non-failed projects, we need to set
a threshold, also known as a cut-off point. Values below and above this cut-off
point are labeled according to the a priori groups that we defined. Looking
at the histograms (see Figures 6.1(a) and 6.1(b)), the failed group has a mean
score of -0.38 and the non-failed 0.21. The cut-off point is calculated as ((-0.38
+ 0.21) / 2) = -0.085. Scores below this value are projects that are classified as
failed, values equal or above are destined to be non-failed.

Figures 6.2(a) and 6.2(b) show the linear distribution of the Z-score for
FLOSS projects. The predictor variable number of programming languages is
varied in Figure 6.2(a). Other predictor variables are set to their mean values
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(see Table A.1). We see that we need at least two programming languages,
together with all other mean values, to be classified as non-failed. Figure 6.2(b)
shows a similar graph, but for the number of write transactions in the versioning
control system. Note that this number needs to be multiplied by 1000. Approx-
imately 1000 transaction, and other predictors variables with their mean scores,
are needed to be classified as non-failed.
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Figure 6.2: Linear distribution of FLOSS Z-score with predictors (a) number
of programming languages and (b)versioning control write trans-
action



Chapter 7

Conclusion & Discussion

We have proposed a classification model by performing multiple discriminant
analysis on a sample that consisted out of 1,447 open source projects. These
projects were labeled as failed (517 cases) or non-failed (930 cases) if in sub-
sequent year they adhere to the definition of failed and non-failed projects.
The project failure definition was adopted from English and Schweik (2007).
We used an initial set of 25 determinants (variables) that were collected from
Sourceforge’s research database, SourceForge’s APIs and the project pages of
SourceForge itself. These determinants were derived from approximately 50 sci-
entific papers on open source health, success and failure. Doing so, we were
able to find a set of variables that are essential for the prediction of open source
project failure and non-failure. At the end, the model uses 6 variables that best
predict the classification of failed and non-failed groups. As our approach of
finding such classification model is similar to the construction of the Z-score
model for firms (classifying distressed and non-distressed firms), as developed
by Altman (Altman, 1968), we named our model: A Z-score for Open Source
Projects. We used the same approach as Altman but in the context of open
source.

The model we constructed was able to classify 65% of the cases correctly
by performing cross validation and taking prior probabilities into account (the
percentage of cases in a certain group). Setting the prior probabilities to 50%,
meaning we have no additional knowledge on group sizes, the model is able
to classify 61.4% correctly when using cross validation as well. Although we
violated the normality assumption for multiple discriminant analysis, this was
not severe as discriminant analysis is quite robust and the significance tests are
still thrustworthy. Apart from the overall classification, when we want to predict
open source project failure, we can classify approximately 70% of the cases
correctly when setting the prior probabilities to 50% (this is a better estimation
because for future classification we cannot base our prior probabilities on the
group sizes). For example, when taking any new open source project, we can
predict project failure with 70% accuracy. This makes the Z-score for open
source projects more suitable for predicting open source project failure than
non-failure (57.0% of the non-failed cases can be correctly classified).

Due to the complexity of some determinants, and due to the availability of
data, we were unable to include some important variables in our study. For
example, the number of code commits (Schweik, 2005; Midha & Palvia, 2012;
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Samoladas et al., 2010; Rainer & Gale, 2005), Changes LOC in CVS (Schweik,
2005), Skills of developers (Wang, 2012; Crowston et al., 2006) and number of
external networks (Wang, 2012; Grewal et al., 2006; Wu et al., 2007) are all
essential determinants that are proven to have an important impact on project
success. Another important aspect is the construction of the sample. As we
were focused on retrieving data on as much determinants as possible, we could
have extracted projects that were more mature and stable in their existence.
For example, we joined several determinants with an inner join because we were
trying to avoid null values in our dataset. This reduced the size of the sample
considerably, but at the same time provided information on a large selection
of determinants. This choice in sample construction could favor more mature
projects. On the other hand, we excluded for some determinants empty values.
Extracting these cases would result in null and 0 values. This could then have
two meanings: (1) no data available or (2) 0 activity in that respect.

An important indicator for project success, or the lack of success, is the
number of downloads. Several studies have indicated that this determinant
reflects project use and that in a large part of the cases it has influenced FLOSS
project success (Schweik, 2005; Wang, 2012; Crowston et al., 2006; Mockus
et al., 2002; Crowston & Scozzi, 2002; Crowston et al., 2004; Rai et al., 2002;
Midha & Palvia, 2012; Sen et al., 2012). When performing multiple discriminant
analysis, this determinant seemed to have no significant effect on classifying
projects into failed and non-failed, nor has it been included in the stepwise
analysis with its relationship to other variables (MDA has the advantage of
considering all characteristics of the observation, as well as the interactions
between them).

We adopted the open source project failed definition from English and Schweik
(2007) and have taken into account their recommendations for improving the
definition. During their data collection phase they were unable to retrieve cer-
tain determinants which caused their definition to be scoped down. An im-
portant remark in this respect, also noted by Wiggins and Crowston (2010), is
that a success remains a success, even if a project becomes inactive. This is a
conservative classification choice, reflecting the reality that successful projects
may enter a retirement stage after active development stops, but in which it is
still useful to others. This is another view than English and Schweik’s, where
a successful project can be abandoned and fall into disrepair. We could there-
fore argue that projects that do not produce any releases, but are still being
downloaded and are found to be useful, should not really be labeled as failed.

Any future work in this respect should try to focus on these remarks. At
the end, the classification of projects into dummy variables (i.e. 0 for failed and
1 for non-failed) to perform regression or classification techniques is extremely
important. Not only when using multiple discriminant analysis, but also when
the researcher would like to try other classification/regression techniques such
as logistic regression, classification trees, cluster analysis or machine learning.
Furthermore, one should carefully look at the data as this often is a reflection
of the project administrator. For example, one might only upload new releases
when a significant change has been implemented, others might fade away from
what is considered a minor or major update. It could be the case that 5 re-
leases for one project are still less than one release from another. Moreover,
certain determinants are not representative indicators of reality. For example,
the number of downloads are only counted when the software is directly down-
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loaded from the repository, any automatically updated software package are not
counted. How does this reflects reality is a point of worry. At the end, open
source is diverse, not completely understood and extremely hard to capture in
numeric values. Creating regression or classification models are therefore easily
impaired by using values that do not really reflect reality. Still, based on the
model we created, we were able to predict 70% of the failed projects correctly,
which makes it better than flipping a coin.
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Table A.1: Descriptives of determinants for total sample
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Table A.2: Descriptives of determinants for failed group



APPENDIX A. STATISTICAL OUTPUT 63

D
es

cr
ip

tiv
e 

St
at

is
tic

sa

N
M

in
im

um
M

ax
im

um
M

ea
n

Va
ria

nc
e

St
at

is
tic

St
at

is
tic

St
at

is
tic

St
at

is
tic

St
d.

 E
rr

or
St

at
is

tic
St

at
is

tic
A

ge
 o

f p
ro

je
ct

D
on

at
e 

op
tio

n
N

um
 d

ow
nl

oa
ds

Fo
ru

m
s 

po
st

s
N

um
 o

f a
ud

ie
nc

es
N

um
 o

f c
at

eg
or

ie
s

N
um

 o
f d

ev
el

op
er

s
N

um
 o

f l
ic

en
se

s
N

um
 n

ew
s 

po
st

s
N

um
 n

ew
s 

po
st

er
s

N
um

be
r o

f r
el

ea
se

s
N

um
 o

pe
n 

bu
gs

N
um

 o
pe

n 
fe

at
ur

es
N

um
 o

pe
n 

pa
tc

he
s

N
um

 o
pe

n 
te

ch
 re

q.
N

um
 o

f p
r. 

la
ng

ua
ge

s
N

um
 o

f r
un

tim
e 

de
p.

Ve
rs

io
ni

ng
 c

on
tr

ol
 re

ad
Ve

rs
io

ni
ng

 c
on

tr
ol

 w
rit

e
To

ta
l n

um
 b

ug
s

To
ta

l n
um

 fe
at

ur
es

To
ta

l n
um

 p
at

ch
es

To
ta

l n
um

 te
ch

 re
q.

Tr
ac

ke
r a

ct
iv

ity
Tr

af
fic

 h
its

Tr
af

fic
 S

F 
lo

go
Va

lid
 N

 (l
is

tw
is

e)

93
0

,4
0

12
,1

7
6,

11
29

,0
86

53
2,

63
86

8
6,

96
3

93
0

0
1

,3
0

,0
15

,4
60

,2
12

93
0

5
86

80
67

4
61

05
3,

05
15

07
5,

34
9

45
97

36
,3

44
2,

11
4E

+1
1

93
0

0
18

81
2

51
,5

3
21

,2
65

64
8,

49
2

42
05

41
,5

09
93

0
1

10
2,

50
,0

50
1,

51
4

2,
29

3
93

0
1

10
2,

65
,0

47
1,

41
8

2,
01

2
93

0
1

13
2

4,
74

,2
84

8,
67

2
75

,1
98

93
0

1
7

1,
59

,0
24

,7
20

,5
19

93
0

0
44

1,
00

,0
99

3,
01

4
9,

08
7

93
0

0
3

,2
8

,0
15

,4
70

,2
21

93
0

1
19

91
26

,6
8

3,
30

8
10

0,
86

8
10

17
4,

37
9

93
0

0
10

7
2,

59
,3

05
9,

30
0

86
,4

89
93

0
0

10
1

1,
36

,1
92

5,
86

5
34

,3
97

93
0

0
34

,3
2

,0
63

1,
93

5
3,

74
5

93
0

0
53

,3
6

,0
84

2,
54

7
6,

48
8

93
0

1
48

3,
33

,1
82

5,
55

6
30

,8
70

93
0

1
8

1,
81

,0
37

1,
12

6
1,

26
9

93
0

1
84

82
17

10
24

9,
43

16
35

,6
42

49
88

0,
36

4
2,

48
8E

+9
93

0
0

44
31

2
10

39
,6

8
10

8,
05

7
32

95
,2

85
10

85
89

00
,2

93
0

0
38

2
7,

87
,9

29
28

,3
33

80
2,

77
0

93
0

0
11

9
2,

10
,2

63
8,

02
0

64
,3

19
93

0
0

16
2

1,
19

,3
05

9,
29

8
86

,4
48

93
0

0
56

5
1,

59
,6

78
20

,6
61

42
6,

88
3

93
0

0
11

72
27

,6
0

3,
12

1
95

,1
72

90
57

,7
98

93
0

18
0

23
33

68
85

34
07

89
,5

3
45

82
5,

79
6

13
97

49
8,

97
1,

95
3E

+1
2

93
0

0
16

90
57

66
12

31
33

,8
1

25
70

9,
82

5
78

40
44

,2
81

6,
14

7E
+1

1
93

0

a.
 

Pa
ge

 1

Table A.3: Descriptives of determinants for non-failed group
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Table A.4: Pooled within groups matrix


