

Extending the Agile Development
Discipline to Deployment

The Need For a Holistic Approach

Master Thesis

Version: 1.0

Date: June 29, 2013

Onno Dijkstra

Master Business Informatics

Institute of Information and

Computer Science

Utrecht University

Master Thesis

Thesis title: Extending the Agile Development Discipline to Deployment:
The Need For a Holistic Approach

Student number: 3783936

Author: Onno Dijkstra

Master Business Informatics
Utrecht University
o.dijkstra@gmail.com

First supervisor: prof. dr. S. Brinkkemper

Department of Information and Computing Sciences
Utrecht University

Second supervisor: drs. K. Vlaanderen

Department of Information and Computing Sciences
Utrecht University

External supervisor: ir. M.J. Schudel

BUC OSD J-Technologies
Ordina

Above all, applying the DevOps approach is a change of
mindset. It is essential to build a team of Devs and Ops,

which is aligned with shared incentives.

- Hüttermann (2012)

Abstract

In the last decade information system development has made a shift towards the agile way of

working. Agile teams are responsible for realizing requirements in a multidisciplinary set up, where

business and development are represented in a single project. DevOps is a new movement to

improve IT service delivery agility. DevOps fosters closer collaboration and communication between

development and operations personnel. Until recently, operational issues and requirements

remained underexposed in the project, which affected the quality of the software. DevOps aims to

break down the functional silos and extends the scope of the project to the release deployment. In

this thesis we propose an incremental method engineering approach to identify suitable process

patterns for a Dutch IT organization, and be able to implement them into Scrum. The resulting

method increments are sequentially implemented during an 8-week pilot project to demonstrate the

effectiveness of DevOps practices on the experienced problem areas.

Version Information

Version Date Description Author

0.1 December 3rd, 2012 Set-up Onno Dijkstra
0.8 June 11th, 2013 First review version Onno Dijkstra
0.8 June 14th, 2013 Review by Kevin Vlaanderen Kevin Vlaanderen
0.8 June 14th, 2013 Review by Michel Schudel Michel Schudel
0.8 June 17th, 2013 Review by Patrick Debois Patrick Debois
0.8 June 21th, 2013 Review by Jan-Hein Bührman Jan-Hein Bührman
0.9 June 24th, 2013 Second review version Onno Dijkstra
0.9 June 26th, 2013 Review by Kevin Vlaanderen Kevin Vlaanderen
0.9 June 28th, 2013 Review by Sjaak Brinkkemper Sjaak Brinkkemper
1.0 June 29th, 2013 Final version Onno Dijkstra

Contents

List of Figures ... 8

List of Tables... 10

1. Introduction ... 11

1.1 Problem Definition ... 11

1.2 Case Company .. 11

1.3 Objective and Problem Statement ... 12

1.4 Scientific Relevance .. 12

1.5 Business Relevance ... 12

1.6 Challenges .. 13

2. Research Method ... 14

2.1 Research Questions .. 14

2.2 Research Model .. 15

2.3 Concepts and Scoping... 15

2.4 Research Approach ... 16

2.4.1 Design Science Research ... 16

2.4.2 Research Activities... 17

3. Theoretical Background.. 20

3.1 Software Development Practices ... 21

 Scrum... 21 3.1.1

 Continuous Integration .. 22 3.1.2

 DevOps .. 24 3.1.3

 Continuous Delivery .. 26 3.1.4

3.2 Software Process Improvement ... 27

3.3 Method Engineering ... 29

 Situational Methods .. 30 3.3.1

 Method Increments ... 31 3.3.2

4. Current Situation .. 33

4.1 Case Study Approach .. 33

4.1.1 Case selection .. 34

4.1.2 Data Gathering .. 34

4.1.3 Processing the Interview Results ... 34

4.2 Scrum Process Assessment ... 35

4.2.1 Meta-Modeling Process ... 35

4.2.2 Scrum Reference Method .. 37

4.2.3 Adapting the Reference Method ... 37

4.2.4 The Scrum Process at CaseComp ... 39

4.3 Results .. 41

4.3.1 Process-Deliverable Diagram for the Current Situation ... 41

4.3.2 Main Drivers and Requirements for DevOps ... 43

5. Desired Situation .. 46

5.1 The Creation of a Situational Method .. 46

5.1.1 Project Characterization .. 46

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 7

5.1.2 Selection of Method Fragments .. 46

5.1.3 Assembly of the Fragments ... 50

5.2 Situational Method ... 62

6. Integration Scenario ... 64

6.1 Implementation Requirements .. 64

6.1.1 Organizational Requirements .. 64

6.1.2 DevOps Requirements ... 65

6.1.3 Optimal integration scenario ... 66

7. Pilot Experiment ... 68

7.1 Scenario Execution Process .. 68

7.1.1 Iterative Improvement Process ... 68

7.1.2 Improvement Planning .. 69

7.2 Case Study Approach .. 69

7.3 DevOps Integration... 71

7.3.1 Cross-functional Delivery Team ... 71

7.3.2 Integrate Production Stories.. 72

7.3.3 Early Feedback by Operations ... 72

7.3.4 Develop for Production ... 73

7.3.5 Sync Meeting ... 73

7.3.6 Adaptations to the Situational Method ... 74

7.4 Analysis ... 74

7.4.1 D1. Poor alignment between projects and operations .. 74

7.4.2 D2. Lack of standardization for quality guidelines ... 76

7.4.3 D3. IT operators are not well represented .. 76

7.4.4 D4. Complex release process ... 77

7.4.5 D5. Moderate communication between projects and operations 78

7.5 Findings .. 78

7.5.1 Method Increment Case Descriptions ... 78

7.5.2 Iterative Improvement Process ... 79

7.5.3 Effects on the Problem Areas .. 79

8. Conclusion .. 82

9. Future Research ... 83

Acknowledgements .. 84

References ... 85

Appendix I. Definitions ... 94

Appendix II. Case Study Protocol for the Current Situation .. 96

Appendix III. Alterations to the Activities and Concepts .. 104

Appendix IV. Activity and Concept Tables for the Baseline .. 105

Appendix V. DevOps Patterns .. 108

Appendix VI. Process Pattern Descriptions... 110

Appendix VII. Updated Activities and Concepts for the Situational Method 114

Appendix IIX. Case Study Protocol for the Pilot Experiment .. 116

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 8

List of Figures

Figure 1. Research steps ... 14

Figure 2. Research model ... 15

Figure 3. I-E-O conceptual model of study variables .. 16

Figure 4. Design science research model applied to this research (Hevner et al., 2004) 17

Figure 5. PDD of the research approach ... 19

Figure 6. Topics relevant to this study .. 20

Figure 7. Overview of the Scrum process (from Lakeworks, 2009) .. 22

Figure 8. The process of Continuous Integration (redrawn from Duvall, 2010) 23

Figure 9. DevOps key areas (redrawn from Debois, 2012) ... 25

Figure 10. Abstraction layers (redrawn from Henderson-Sellers, 2006) .. 28

Figure 11. The configuration process for situational methods (redrawn from Brinkkemper, 1996) 30

Figure 12. Activities types .. 36

Figure 13. Sequential activities ... 36

Figure 14. Concept types .. 36

Figure 15. Example of standard, open and closed concepts... 36

Figure 16. Process-deliverable diagram of the Scrum reference method (from Blijleven, 2012) 38

Figure 17. Figure for indicating a recurring activity .. 39

Figure 18. Legend for method increments ... 39

Figure 19. Reference method: deleted project team, inserted production date.................................. 39

Figure 20. Reference method: deleted risk monitoring strategy .. 40

Figure 21. Reference method: updated assessment, deleted product standards 40

Figure 22. Reference method: changes to finalize release ... 41

Figure 23. Adaptations to the Scrum reference method .. 42

Figure 24. Practices, patterns, and principles ... 47

Figure 25. Visual representation of the process pattern mapping approach 49

Figure 26. Process patterns linked to the key drivers ... 50

Figure 27. Process Framework (from Gnatz et al., 2001) ... 51

Figure 28. Legend for method increments ... 52

Figure 29. Method fragment: form delivery team .. 53

Figure 30. Method increment: cross-functional delivery team .. 54

Figure 31. Method increment: Develop for Production ... 55

Figure 32. Method fragment: develop backlog components ... 55

Figure 33. Method increment: early feedback by operations .. 57

Figure 34. Method fragment: assess and adapt current system architecture 57

Figure 35. Method increment: develop for production (production stories) 60

Figure 36. Method increment: develop for production (acceptance criteria) 60

Figure 37. Method increment: develop for production (explicit list) ... 61

Figure 38. Method increment: develop for production (hybrid approach) .. 61

Figure 39. Method increment: sync meeting ... 62

Figure 40. Meetings during the project .. 62

Figure 41. Situational method for the desired situation... 63

Figure 42. Composition of the integration scenario ... 67

Figure 43. Iterative improvement process (redrawn from Salo and Abrahamsson, 2007) 69

file:///D:/Dropbox/Thesis/Thesis/Thesis%201.0.docx%23_Toc360090771
file:///D:/Dropbox/Thesis/Thesis/Thesis%201.0.docx%23_Toc360090782
file:///D:/Dropbox/Thesis/Thesis/Thesis%201.0.docx%23_Toc360090789
file:///D:/Dropbox/Thesis/Thesis/Thesis%201.0.docx%23_Toc360090807

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 9

Figure 44. Improvements projected to the available time slots of the pilot experiment 69

Figure 45. Quantity of project velocity ... 75

Figure 46. Quantity of realized quality requirements and user stories ... 77

Figure 47. Quantity of positive and negative experiences, and improvement actions 79

Figure 48. Improvements to the pattern mapping table .. 80

Figure 49. Iterative improvement process (based on Salo and Abrahamsson, 2007)......................... 119

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 10

List of Tables

Table 1. Identified drivers and requirements for DevOps .. 43

Table 2. Method increment description: cross-functional delivery team ... 53

Table 3. Method increment description: develop for production .. 55

Table 4. Method increment description: early feedback by operations ... 57

Table 5. Method increment description: develop for production .. 59

Table 6. Method increment description: sync meeting .. 62

Table 7. Necessary time and resources for the SPI effort ... 65

Table 8. Hypotheses mapped to the main drivers .. 70

Table 9. Comparison of sprint velocity ... 75

Table 10. Comparison of PAT issues ... 76

Table 11. Comparison of quality requirements .. 76

Table 12. Comparison of idle time.. 77

Table 13. Comparison of quality defects .. 78

Table 14. Mapping table for interview questions (example) .. 97

Table 15. Changes to the concepts of the reference method .. 104

Table 16. Changes to the activities of the reference method... 104

Table 17. Activity table for the baseline ... 106

Table 18. Concept table for the baseline .. 107

Table 19. DevOps patterns ... 109

Table 20. Process pattern description: cross-functional delivery team .. 110

Table 21. Process pattern description: develop for production ... 111

Table 22. Process pattern description: early feedback by operations .. 112

Table 23. Process pattern description: integrate production stories ... 113

Table 24. Process pattern description: sync meeting ... 113

Table 25. Updated activities for the situational method .. 115

Table 26. Updated concepts for the situational method .. 115

Table 27. Hypotheses mapped to the main drivers .. 118

Table 28. Characteristics of the case project .. 118

Table 29. Improvements planned for the Scrum iterations .. 119

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 11

1. Introduction

1.1 Problem Definition

Nowadays, many software development methods are available to the IT organization. Some of them

emerged due to deficiencies in the existing methods and others are created completely from scratch

to meet a new development philosophy. IT organizations can freely choose a method they prefer

based on the project’s characteristics. Occasionally the need arises to improve the current method

through new experiences. This is the case at a financial services company located in the Netherlands,

where they use the Scrum method for their development projects. The project teams encounter

several problems during development projects. At the case company there is a misalignment

between the development team and operations staff. Most development teams build software in a

high pace, but felt there are not responsible for the deployment process performed by operations.

The result is the release is thrown over ‘the wall’ to operations, resulting in many production issues.

Vice versa, operations personnel do not act as the owner of the system under development.

Therefore, they are not attending project meetings and do not know what to expect with the

upcoming release. Also, quality requirements and guidelines are not properly addressed during the

development. These problems could be addressed with the use of DevOps practices, that attracted

the attention of the company. The organization wants to adopt DevOps, starting with the

implementation of practices to complement their current development method.

DevOps breaks the functional silos in the team to foster collaboration and focuses on business value

by filling the gap between the development and operations departments (Hüttermann, 2012; Smith,

2011; Swartout, 2012). The term DevOps was first coined during the DevOps Days in 2009 and is

supported by many practitioners in this area. Other methods often go by strict definition resulting in

process fundamentalism, whereas DevOps is being maintained by the community and leaves room

for your own interpretation. Therefore no official process definition is available, though the

underlying theory suggests several modifications and additions to the agile method to gain

advantage from the DevOps facilities. Since Scrum supports the agile methodology too, research

needs to be performed on how the company can integrate DevOps into their Scrum development

projects.

1.2 Case Company

The case company of subject is a Dutch firm in the financial sector with more than hundred

subsidiaries which operate both nationally and internationally. Due to confidentiality issues we

cannot provide the name of this organization, therefore we prefer to use the term CaseComp. The

umbrella organization facilitates IT services and is responsible for compliance with laws for its

subsidiaries. In terms of IT the company addresses the demand for information systems (IS) in the

entire organization and is responsible for the development, testing and quality control, deployment,

maintenance and management of the IS by considering its subsidiaries as customers. Since most IS

are tailor made, CaseComp composed several development teams of hired industry experts. Each

development team is assigned to a specific (part of a) product, e.g. mortgages and investments. The

customer relationship management interface (CRMI) − a central service layer − binds all IS together.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 12

1.3 Objective and Problem Statement

This research identifies the different paths that can be chosen to implement DevOps for companies

that use Scrum as their current development method and experience the same issues. DevOps

proposes solutions to the drivers in the interest of the company. The research shows what the

rationale is of using DevOps by providing an in-depth explanation what drivers trigger the company

to implement this extension. Also, the implementations paths are provided to help other companies

that face the same problems with their development process.

The formal problem statement for this research project is formulated as follows:

How can the IT organization be supported in the implementation of DevOps?

1.4 Scientific Relevance

In the last decade the area of method engineering (ME) got its attention in scientific studies. ME is

the scientific discipline that focuses on the design, construction and improvement of software

development methods, techniques and tools (Brinkkemper, 1996). Since ME is already a mature

discipline, the underlying theory and techniques enables researchers and practitioners to adapt

information system development methods (ISDMs). Since the study improves an existing method, it

is directly related to the field of incremental method engineering (IME). This field focuses on evolving

a method in time towards a higher maturity level by changing small parts of the method (Mirandolle,

Van de Weerd, & Brinkkemper, 2011). Once method improvements are identified for the current

method, method increments can be elaborated. Method increments are method fragments that

improve the performance of a method (Van de Weerd, Brinkkemper, & Versendaal, 2007). However

the implementation of method increments and the effect in practice is not extensively discussed.

Therefore, knowledge and experiences on these implementations form a useful contribution to the

field of IME.

This study applies the concepts and techniques of ME in practice by expanding an existing method in

order to fulfill the companies’ needs. This is realized by creating a situational method, a method that

is tuned to the project-specific needs. A common technique that can be used for crafting methods

and visualizing incremental differences is called meta-modeling, which supports the process of

situational method engineering (Souer, Van de Weerd, Versendaal, & Brinkkemper, 2007). Currently,

there is no way that supports decision-making in adopting method increments derived from the

method base. Especially when a single method is used as a source. Also, there is no uniform solution

that determines how method increments should be incorporated in practice. Thus this research

elaborates on how the implementation of method increments can be supported.

1.5 Business Relevance

Large numbers of ISDMs exist to the IT organization. Based on the project’s characteristics a suitable

method can be selected. Over time projects may encounter that a method is performing poorly and

the need arises to improve the method’s performance in order to stay efficient.

Agile has become a popular development philosophy resulting in several methods that adheres to its

main principles, such as extreme programming (XP) and Scrum. Its main concept is to let the

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 13

developers build software incrementally and to obtain feedback of the customer as soon as possible.

This highly iterative process ensures that the developers build the software the customer actually

wants and bugs are solved at a high pace.

A new movement focuses on DevOps, which streamlines the software delivery process by composing

a multi-disciplinary team aiming to fill the gap between the development and operations

departments (Edwards, 2010; Hüttermann, 2012; Swartout, 2012). In traditional development

approaches these departments strive to achieve their own goal. For instance, development aims to

frequently release new features and IT operations aims to provide stable applications. These

contradictory goals impede the performance of the process. DevOps bridges the two departments by

providing one overarching goal, namely to deliver value to the customer.

Since many IT organizations are using agile methods such as Scrum and there is increasing interest in

DevOps, it would be helpful to support them in adopting DevOps into their agile development

projects. Besides providing a practical framework for extending Scrum, the instruments provided by

this research can also be used for all other kinds of method improvement implementations.

1.6 Challenges

There are several challenges in the execution of this research. First, the solutions proposed by

DevOps are hard to discover. The method is maintained by the community and can best be

characterized as a set of best practices. As a result there is a lack of a formal process definition. There

is only a limited number of resources available, such as Internet blogs and a few books. Also, the

solutions can be viewed through different perspectives resulting in different implementations. To

ensure that the right solutions are implemented, only those will be identified that tackles the

company’s issues. This ensures the method’s rationale is being preserved. Furthermore, it could be

possible that not all problem areas can be covered by DevOps. Another challenge is to elaborate on

an approach for selecting method increments in the process of creating a situational method. Also,

since DevOps has strong ties with automation, adequate tools are needed to support the

development, testing and deployment processes. The challenge is to find out how process

improvements are dependent on tools. Finally, the last challenge is to find out how the method

increments can be assessed in order to provide an optimal implementation schedule.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 14

2. Research Method

2.1 Research Questions

The research questions are formulated by taking into account the problem statement and research

objectives. By answering the main question we contribute to the field of incremental method

engineering by showing how methods increments can be implemented with the use of integration

scenarios. To answer the main question, sub questions need to be answered first. In this research

each research activity answers one sub question.

First, the important drivers for an organization to implement DevOps are identified by the use of

expert interviews (SQ1). These drivers ensure the method’s rationale is preserved. Second, a

procedure is elaborated for linking method fragments to drivers for improvement (SQ2). Third, based

on the best practices described in literature, solutions are identified which result in several method

increments (SQ3). Third, the proposed solutions are mapped to the main drivers which result in

different scenarios to incorporate DevOps practices into Scrum (SQ4). Also, the optimal scenario is

provided based on important considerations. These activities are supported by expert validations to

ensure consistency and prevent common mistakes. The optimal scenario is validated in a DevOps

pilot. Finally, the causal factors that shape the optimal integration scenario contribute to the

knowledge base (SQ5). The relations between the research steps and sub questions are illustrated in

Figure 1.

MQ. How can method engineering support the incremental implementation of DevOps?

SQ1. What are the main drivers and requirements for an organization to integrate DevOps into

their Scrum development process?

SQ2. How can method fragments be linked to key problem areas?

SQ3. Which method fragments proposed by DevOps address the key problem areas?

SQ4. How can the selection of method increments in alternative integration scenarios be

supported?

SQ5. How can the optimal integration scenario be executed in a real development project?

A

Scrum

B

E

D

+

A B E

A E B

E A B

A

B

E

Scrum + DevOpsDevOps Integration scenarios

(a) (b,c) (d) (e)

C

C

C

Figure 1. Research steps

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 15

2.2 Research Model

The research model is depicted below and is created using the research model method adopted from

Verschuren & Doorewaard (2007). Rectangles in Figure 2 represent the research objects, where the

most important ones have a solid border. Arrows indicate a conclusion between two or more objects

resulting in a following object. The research questions are derived from the related arrows in this

model.

A study on the topics of Scrum (a) together with expert interviews result in the process-deliverable

diagram (PDD) of the current situation (d). The PDD is the blueprint of the process and is discussed in

4.2.1. The PDD is used as foundation for the development of a situational method (d) by

implementing improvements proposed by DevOps. This activity is assisted by a study on the topics of

DevOps and Method Engineering (b). Thereafter, method increments are identified (b). These

provide input to determine the optimal integration scenario (c). The validation is twofold (c). First,

interviews are held to ensure the consistency and to validate the method increments. Second, a pilot

experiment is performed to demonstrate the effect on the experienced problem areas.

Academic Research Objects Corporate Research Objects

PDD of the current situation

Optimal integration scenario

Situational Method

Interviews on the

topic of Scrum

Theory on the topic

of DevOps

ValidationTheory on the topic

of Scrum

Method Increments

Integration

scenarios

Theory on the topic

of Method

Engineering

(a) (b) (c) (d)

Figure 2. Research model

2.3 Concepts and Scoping

The conceptual model of this research is illustrated in Figure 3. The model was created by applying

the input-environment-outcome (I-E-O) model developed by Astin (1993). Originally it is a guiding

framework for assessments in higher education, but can be applied to other research areas as well.

This framework states assessments are not complete unless the evaluation includes information on

inputs (I), the environment (E), and outcomes (O) (Astin, 1993). The input variables indicate the

independent variables of the research, which together with the business context are related to the

dependent variables (output).

The input for this study is provided by the organization (i.e. development and operations personnel,

processes, and documents), resulting in the identification of drivers for improvement, process

difficulties, and business requirements for the process implementation. The organization resembles

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 16

the environment in which the case studies are performed. Part of the environment are project

stakeholders and the project configuration (i.e. capacity, knowledge, experience). The loopback

implies the obtained or created results are validated through iterative feedback (e.g. by the use

expert validations, post iteration workshops). The output of the study is the set of improvement

materials (e.g. method increment descriptions, process-deliverable diagrams, activity and concept

tables) labeled as a situational method, integration scenario, and the perceived effectiveness by the

team as well the quantitative feedback on the process metrics.

For the scoping of this research project we adhere to the concepts and constructs defined in

Appendix I. The research is limited to enhancements to the Scrum process.

Input

Project team drivers

Process difficulties

Business requirements

Output

Situational method

Optimal integration scenario

Improved process performance

Increased software quality

Environment

Software development project

Project stakeholders

Figure 3. I-E-O conceptual model of study variables

2.4 Research Approach

In this section the research approach is discussed by describing the activities that are performed and

the methods used during the execution of this research project. The research steps are described by

the use of the process-deliverable diagram (PDD) technique. Since the study provides artifacts that

contribute to the information systems (IS) discipline we first discuss the relation with the research

area of design science.

2.4.1 Design Science Research

According to Hevner, March, Park, and Ram (2004), there exist two types of research in the IS

discipline: behavioral science and design science. Behavioral science seeks to develop and verify

theories that explain or predict human or organizational behavior. Design science seeks to extend the

boundaries of human and organizational capabilities by creating new and innovative artifacts that

define the ideas, practices, technical capabilities, and products through which the analysis, design,

implementation, management and use of information systems can be effectively and efficiently

accomplished (Denning, 1997). In this thesis we describe the process to extend the agile

development discipline to deployment. As this study produces viable artifacts we can relate this

research to the design science problem-solving paradigm. The viable artifacts for this research

include a situational method which represents the Scrum development method expanded by a set of

method increments derived from DevOps. These method increments can be reused by other

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 17

organizations. The research also consists of a framework to set up integration scenarios, process

alternatives in which method increments can be incorporated within a method to meet the

situational method. The designed artefacts are important to the relevant business problems and are

verifiable contributions to problem statement. The artifacts will be produced by using the design

science research guidelines provided by Hevner et. al (2004). These seven guidelines ensure that

knowledge and understanding of a design problem and its solution are acquired in the building and

application of an artifact. Part of it, is the use of design evaluation methods which are available in the

knowledge base. For instance, the iterative improvement process (IIP) which prescribes post iteration

workshops (PIWs) to obtain positive as well as negative experiences on the method. The designed

artifacts are assessed on a predefined set of validation criteria. By using such methods the goodness

and efficacy of an artifact can be rigorously demonstrated. The research framework of Hevner et al.

(2004) is applied to this research project and is depicted in Figure 4.

People
· Management
· Program manager
· Project manager
· Developers
· Testers
· Quality assurance
· Functional application

managers
· Technical application

managers

Organization
· Process issues
· Stakeholder expectations
· Requirements
· Processes

Environment IS Research

Foundations
· DevOps theories
· DevOps experiences

Methodologies
· Data analysis techniques
· SPI methods
· Method Engineering
· Situational ME
· Incremental ME
· Measures
· Validation criteria

Knowledge base

Develop
· Theory: DevOps
· Artifact: situational

method
· Artifact: method

increments
· Artifact: integration

scenarios

Evaluate
· Expert validation
· Pilot experiment
· PIW workshops

KnowledgeBusiness needs

A
ss

es
s

R
ef

in
e

Relevance Rigor

Application in the appropriate environment Additions to the knowledge base

Figure 4. Design science research model applied to this research (Hevner et al., 2004)

2.4.2 Research Activities

In this subsection the research steps are provided accompanied with the PDD. The PDD shows both

the activities and deliverables over the nine distinct phases. The research consists of a single case

study for which the current situation is captured. Based on the identified drivers at the case

company, the appropriate method increments of DevOps are selected to tackle their process issues.

The outcome of the research is a situational method accompanied with the adequate steps to

integrate DevOps into the Scrum development process.

The PDD of the research method is depicted in Error! Not a valid bookmark self-reference.. The

phases in which the research activities are performed are discussed next.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 18

Phase Description

Prepare research

In this research phase the long proposal is created in accordance with the
business and research needs. This document describes the relevant
methods for the execution of this research project.

Perform literature study

The literature study is the foundation for this research as it provides the
important concepts and constructs. Topics include Scrum, continuous
integration (CI), DevOps and continuous delivery (CD) as these are
interrelated to each other.

Capture current situation

This phase identifies the main drivers and requirements relevant to
DevOps and elaborates on the PDD of the current situation. At the end of
this phase, the first subquestion (a) of the research is answered.

Capture desired situation

The desired situation is captured by creating a situational method. First,
the literature is consulted for the identification of DevOps patterns. The
patterns that tackle the company’s issues are assembled into the Scrum
method. The PDD technique is used to formalize the method increments.
Experts are asked to review the PDDs to ensure that they are correct and
the actual integration is not at risk. At the end of this phase, the second
and third subquestions of the research are answered (b,c).

Identify scenarios

In this phase the different paths are explored in how the method
increments can be introduced in the current situation. The method
increments are assessed and an optimal scenario is provided by taking
into account the pros and cons. At the end of this phase, the fourth
subquestion of the research is answered (d).

Integrate practices This phase consists of a project experiment in which the method
increments are implemented incrementally to the Scrum method
according to the described scenario. Findings on implementing DevOps
using this scenario are reported.

Improve process

This phase ensures the method increments are implemented correctly by
evaluating and improving the method continuously. At the end of this
phase, an answer is provided for the last subquestion of the research (e).

Finalize thesis and paper These two parallel running activities ensure the research’s artifacts are
produced and revised.

Figure 5. PDD of the research approach

Finalize paper

Write short proposal

Write long proposal

Prepare research

SHORT PROPOSAL

LONG PROPOSAL

Perform literature study

Study literature on

Scrum/CI

Study literature on

DevOps

Study literature on

Method Engineering

Write theoretical background

THEORETICAL BACKGROUND

SCRUM LITERATURE

DEVOPS LITERATURE

ME LITERATURE

Capture current

situation

Conduct expert interviews

Arrange meetings with experts

Write case study protocol

INTERVIEW NOTES

THESIS

Chapter 1: Introduction

Chapter 2: Theoretical Background

Chapter 3: Methodology

Chapter 4: Current situation

Chapter 5: Desired situation

Chapter 6: Integration Scenarios

Chapter 7: Conclusion

Chapter 8: Discussion

Elaborate PDD CURRENT SITUATION PDD

Determine issues ISSUE

Capture desired

situation

Identify DevOps patterns DEVOPS PATTERN

solves

Elaborate method increments

METHOD INCREMENT

provides

Validate findings

Elaborate situational method PDD

Elaborate method increments

CASE STUDY PROTOCOL

Interview questions

Identify scenarios

Identify integration scenarios

Prioritize integration scenarios

Determine optimal integration scenario

Integrate practices

Integrate method increments

Conduct expert validation

Report findings

Improve situational method

Improve optimal integration scenario

Improve process

INTEGRATION

SCENARIO

Priority

Increment sequences

Advantages

Disadvantages

SCIENTIFIC PAPER

RESEARCH METHOD

Finalize thesis

Write thesis

Submit draft thesis

Revise draft thesis

Submit final thesis

Submit draft paper

Revise draft paper

Submit final paper

Develop final presentation

Write paper

1

1

1

1

1

1

1

1

based on

1

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

SITUATIONAL METHOD PDD

1

1..*

CURRENT SITUATION

1

1..*

DESIRED SITUATION

1

1..*

1..*

realizes1..*

1..*

1

PRESENTATION

based on

1

1

1

Researcher

Researcher

Researcher

Researcher

Researcher

Researcher

Researcher

Researcher

Researcher

Researcher

Conduct expert validation

Study literature on

Continuous Delivery

Evaluate method performance

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 20

3. Theoretical Background

In this chapter we provide the theoretical background for the topics of interest to this study. We start

with the introduction of two system development practices as well their supporting techniques.

Scrum is an information systems development method (ISDM) relevant for the identification of the

current situation at CaseComp. Continuous integration is a technique applied within Scrum. Topics

relevant for the desired situation include DevOps and continuous delivery, terms which are often

used interchangeably (Pais, 2012; Smith, 2013). DevOps is a movement attempting to break down

functional silos in organizations that need to deliver software (Phifer, 2011; Swartout, 2012).

Continuous delivery elaborates on the technical aspects of implementing a so called deployment

pipeline. Continuous delivery and DevOps have one goal in common, namely encouraging a greater

collaboration between stakeholders involved in software delivery in order to release valuable

software faster and more reliably (Hüttermann, 2012). In addition to these four topics, method

engineering (ME) is discussed to support the process of integrating DevOps patterns into the Scrum

method. The concepts and constructs are provided for this research as well an overview of the state

of the art on incremental method engineering and its applicability in practice.

The relations between the five topics are illustrated in Figure 6. Note that topics with a solid border

are extensively discussed in the thesis, whereas the topics on continuous integration and continuous

delivery are only briefly discussed in this chapter to provide a coherent overview. These techniques

support the ISDM in the left column, but a wide discussion about the implementation of these

techniques is outside the scope of this research project.

Scrum
Continuous

Integration

 Scrum
Continuous

Delivery

supports

supports

evolves

evolves

ISDM Technique

Current situation

Desired situation

Method Engineering supports

DevOps

Figure 6. Topics relevant to this study

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 21

3.1 Software Development Practices

 Scrum 3.1.1

Scrum is a specific approach of the agile development movement. Agile ISDMs should be carried out

under agile values in order to answer the challenges of rapid development and changing

requirements principles (Agile Manifesto, 2001). The manifesto states that agile development

focuses on four core values:

I. individuals and interactions over processes and tools,

II. delivering working software over comprehensive documentation,

III. customer collaboration over contract negotiation,

IV. responding to change over following a plan.

Agile is now a mainstream development discipline and is adapted to the workplace of the

organization (West & Grant, 2010). Unlike the traditional methods, agile methods deal with

unpredictability by relying on people and their creativity rather than on processes (Cockburn &

Highsmith, 2001). Agile enables rapid development and testing through multiple iterations, but does

not prescribes procedures for the release deployment. As a result new features are not directly

offered to the customer since the release is waiting for a manual, often slow deployment by IT

operations. As the deployment process is not coordinated with the development, all new features

stack up and wait to be released and thus, many advantages gained with agile are lost.

Over the last few years, surveys confirm the success of agile practices. The latest industry report by

The Standish Group (2011) shows agile projects have a 42% success rate, compared to traditional

waterfall projects at a dismal 14% success rate. Several methods have adopted the agile way of

working, including XP, FDD, DSDM and Scrum.

Scrum is an agile framework for completing complex projects, originally developed for organizing

software development projects, but suitable for any domain (ScrumAlliance, 2012). Schwaber (1995)

defines Scrum as “a loose set of activities that combines known, workable tools and techniques with

the best that a development team can devise to build systems”. The method is used for the

management, enhancement and maintenance of an existing system. Scrum assumes existing design

and code and addresses totally new systems or legacy systems which are subjected to re-engineering

(Schwaber, 1995). The name of the method is from rugby − a tight formation of forwards, who bind

together in specific positions when a scrumdown is called. Initially, the approach was proposed by

Takeuchi & Nonaka (1984) and is elaborated by Jeff Sutherland in 2003. Thereafter, Jeff Sutherland

worked with Ken Schwaber to formalize the Scrum process. Nowadays it is by far the most popular

method used in agile implementations worldwide (VersionOne, 2011).

Scrum has control mechanisms to deal with unpredictability and complexity that comes with the

project. For example, the method uses an iterative approach to test the feasibility of a subsystem in

the initial iterations. Scrum divides workload in sprints – cycles of 2-6 weeks containing user stories

or functionalities that need to be ready at the end of the sprint. The project contains as many sprints

are desired to evolve the system. Team members integrate their work frequently by applying

continuous integration, which is discussed in the following section. In the last phase the release is

prepared for deployment.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 22

There are three phases in the Scrum method: planning, architecture design, and development. The

planning phase involves the creation of a backlog, which contains functionality requirements that are

not adequately addressed by the current product release (Schwaber, 1995). Afterwards, a release

plan is created along with an estimate of its schedule and costs. The architectural design phase

consists of the analysis on the domain models and architecture to check whether they are sufficient

to support the user stories that are planned for the current release. Also, product standards are

defined where the team adheres to when developing the system. During the development phase the

functionalities described in the release plan are built and tested. This is done in an iterative cycle.

Once all user stories are realized, they are put together to provide a fully integrated build. A visual

representation of the features of the Scrum process is depicted in Figure 7.

Figure 7. Overview of the Scrum process (from Lakeworks, 2009)

 Continuous Integration 3.1.2

In the early days of the software industry the integration of a software project was often a painful

and tense moment. Separate application modules where put together, resulting in major integration

problems. As expected, the modules worked well individually. Solving these problems took lots of

effort because over time the complexity of the system increased significantly. Yet in the last few

years, integration problems largely disappear as it is diminished to a non-event. This is due to the

introduction of the continuous integration (CI) technique. “Continuous integration is the practice of

making small well-defined changes to a project’s code base and getting immediate feedback to see

whether the test suites still pass” (Duvall, Matyas, & Glover, 2007; Fowler, 2006). CI was first named

and proposed as part of extreme programming (XP), containing twelve agile development practices.

Its aim was to prevent integration problems such as described above, referred to as “integration hell”

(Jeffries, 2001).

The first perception of CI was to pass the unit tests before the system was committed to production,

as described by the test-driven development approach part of XP (Janzen & Saiedian, 2005). Later

elaborations of the concept introduced build servers, which run unit tests automatically or after

every commit. In practice CI is supported by a version control system (VCS) of which the repository

maintains the latest version of the systems source code (called the mainline or trunk). The developer

extracts (or checks-out) a copy of the mainline to its local environment. Once adaptations have been

made to the system, the used copy of the mainline is already out of date since other developers may

have updated the code base already several times. Therefore before the so called commit is

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 23

performed – the action in which the working copy is transferred to the repository – the copy in the

local environment first needs an update to include the recent adaptations of the mainline. These

actions can easily be performed within an integrated development environment (IDE). The CI

technique expects developers to check-in their code several times a day, so integration with other

parts of the application proceeds smoothly. The features of the CI process include a connection to a

source code repository, an automated build script, a feedback mechanism and a process for

integrating source code (Duvall, 2010). This process prescribes frequent small changes as opposed to

infrequent large changes. The four features are illustrated in Figure 8.

Commit Changes

Version Control

Repository

Feedback

Developer

Developer

Developer

CI Server

======

======

======

======
Commit Changes

Commit Changes

Generate

Poll

Build script

Figure 8. The process of Continuous Integration (redrawn from Duvall, 2010)

The following 10 key principles of Fowler (2006) should be considered for an effective continuous

integration:

 Maintain a single source repository

 Automate the build

 Make the build self-testing

 Everyone commits to the mainline every day

 Every commit should build the mainline on an integration machine

 Keep the build fast

 Test in a clone of the production environment

 Make it easy for everyone to get the latest deliverables

 Everyone can see what’s happening

 Automate deployment

Continuous integration addresses integration risks earlier by the use of smaller increments and

increases opportunities for feedback (Duvall et al., 2007). Continuous delivery uses CI as foundation

and ensures the mainline is always in a state to be deployed to users and makes the actual

deployment very rapid (Humble & Farley, 2010). The improvements aim on achieving business value

rather than providing functionality.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 24

 DevOps 3.1.3

Problems frequently occur in the deployment phase of the development process, where bugs and

performance delays are detected once the software release is deployed to the production machine.

Close cooperation between the development and operations departments may prevent that an

application becomes unstable. Often the operations department has its own methods (such as ITIL,

ASL, BiSL) and their release cycle is not aligned with the schedule of development. A common

mindset in projects is people thinking and acting as functional silos – i.e. do nothing more than is

required by their user role. Once software features are built, developers ‘throw’ the software build

over the wall to operations, subsequently resulting in many issues.

DevOps is a portmanteau of development and operations, a term for practices that foster

collaboration between these departments in order to help an organization rapidly produce software

(Edwards, 2010; Hüttermann, 2012; Pant, 2009). The term DevOps was first coined by Patrick Debois

during the DevOps Days in September 2009, but the philosophy itself is not entirely new to

practitioners. DevOps has its origins in the proliferation of cloud services that changed the way of

software development and the relationship between developers and operations (Jawalka, 2012;

Smith, 2011; Yap, 2012). Earlier Debois conducted a research on the topic of agile infrastructures and

states the current technology is mature to use as foundation to integrate the infrastructural work in

the project (Debois, 2008). As we have discussed in the previous section, the ability to rapidly build

and test new features satisfies only a small part of the overall development process. The demand

grows towards a holistic approach that ties together every part of the delivery process and

everybody involved in it. Therefore DevOps extends the definition of done or even banish the word

done - so the process doesn’t stop at the end of development. Instead the scope of the project

includes the deployment of the actual software release. DevOps removes the barriers by composing

multi-disciplinary teams that provide the information system as a team, so the overall process from

inception to delivery proceeds more smoothly.

DevOps has emerged from the agile community and there is no concrete set of mandates or

standards. Instead there are good practices for IT organizations which should be considered as a set

of guiding principles to improve the agile development process. The term DevOps is associated with

different types of content as it can be seen through different perspectives. Therefore, DevOps lacks

of a formal definition. Gartner's definition of DevOps takes a broad perspective and formulates it as

“an IT service delivery approach rooted in agile philosophy, with an emphasis on business outcomes,

not process orthodoxy” (Smith, 2011). Practitioners more commonly agree to the definition of

DevOps as a set of processes, methods and systems for communication, collaboration and

integration towards a common goal between departments for development and technology

operations (Pant, 2009; Rowe & Marshall, 2011; Swartout, 2012). Hüttermann (2012) elaborates on

this definition – “DevOps describes practices that streamline the software delivery process,

emphasizing the learning by streaming feedback from production to development and improving

cycle time (i.e., the time from inception to delivery)”. As the definitions address all aspects of

DevOps, we reformulate the definition of DevOps to fit the scope and goal of the research project.

We define DevOps as practices that embed operations knowledge into the project and foster

bidirectional feedback between the development and operations departments in order to streamline

the software delivery process.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 25

Debois (2012) elaborated four key areas for DevOps to indicate which aspects are relevant to

DevOps. The DevOps key areas are discussed below and visualized in Figure 9. The interaction flows

between development (dev) and operations (ops) are bi-directional, resulting in knowledge exchange

and feedback. As the research focuses on the expansion of the development process, suitable

DevOps practices are identified in the fourth key area. However, this would not mean that the other

areas are irrelevant for the case company and should be addressed at a later stage. The emphasis of

the two central areas (1 and 2) is merely on tools rather than processes.

· Area 1: Extend delivery to production. The development and operations departments

collaborate to improve the delivery process from project to production.

· Area 2: Extend operations feedback to project. The feedback flow which ensures all

information from production is radiated back to the project.

· Area 3: Embed project knowledge into operations. The development team takes co-

ownership of everything that happens in the production environment.

· Area 4: Embed production knowledge into project. Operators are involved from the beginning

of the development project.

OPS

Area 3: Embed Project

knowledge into Operations

Area 1: Extend delivery

to production

Area 2: Extend operations

feedback to project

Area 4: Embed Operations

knowledge into Project

DEV

Figure 9. DevOps key areas (redrawn from Debois, 2012)

In the key areas from above, Debois (2012) makes a distinction between three different layers: (1)

tools, to make things technically possible; (2) process, to show how it should be done; and (3) people

or culture; to enable people to do something. The purpose of these layers is to assign the appropriate

labels to DevOps practices to make clear where these are aimed at.

Another view of DevOps is by Damon Edwards and John Willis who proposed CAMS, an acronym

representing the core values of DevOps: Culture, Automation, Measurement and Sharing (Willis,

2010). Jez Humble later added an L for Lean, to form CALMS (Willis, 2012). In this order the DevOps

method should be introduced and improved. Culture is seen as the most crucial and hardest part of

DevOps and forms the basis for the other core values. The cultural aspect addresses the longstanding

tension between development and operations in order to compose a cross-functional delivery team.

Without being aware of the culture, all automation attempts will be less effective. We are aware that

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 26

some of the proposed process changes which emerge from this study could be impossible without

changing the culture in the firm. Therefore we will investigate requirements for the method

improvements to make such change possible. A pre-condition is attached that determines whether a

process change can be introduced. Automation is the first core value that needs to be addressed

once a DevOps culture is established (Willis, 2010). Automation enables quicker feedback and more

gradual deployment of software increments. Continuous delivery elaborates on setting up a

deployment pipeline, a technique which is discussed in the next section. Measurement is of

importance to continuously improve the workflow. Lean is a systems development paradigm which

also applies to DevOps. Lean has its focus on creating value for the customer, eliminating waste,

optimizing value streams, empowering people, and continuously improving (Ebert, Abrahamsson, &

Oza, 2012). Sharing is the loopback in the CALMS cycle, enabling people to share ideas and problems.

Although there are many theories that support DevOps, the biggest challenge is to codify DevOps

practices. Some attempts are done by Lee (2011); Debois (2012); Swartout (2012) and Hüttermann

(2012). Debois (2012) created a template for codifying practices into patterns and principles. The

template uses the aforementioned DevOps key areas and layers which can be assigned to a practice.

Below we provide some examples of practices captured by Lee (2011):

· Cross-functional teams. Whereas agile integrates development and quality assurance into a

single team, DevOps takes this further by integrating operational roles.

· Develop for Production. The artifacts (e.g. deployment scripts, release notes, etc.) needed to

put a release into production are developed earlier. This increases the focus on delivering

non-functional requirements.

· Pushed Phased Releases. Before the application is rolled out to all customers, the contents of

releases are typically pushed to a small number of servers. Any problems could be addressed

much faster, before the whole of a community is affected.

The findings from the latest industry survey indicate the DevOps adoption is accelerating since 2011

(PuppetLabs, 2013). Over 4000 IT operations and development professionals from over 90 countries

participated in this survey. The outcome shows 63 % of respondents have implemented DevOps

practices, a 26 % increase since 2011.

DevOps maintains the agile aspect of the project and enables incremental deployments by fostering

automation and closer collaboration. DevOps is quite new in the field, but some of the described

practices are not. However a common approach and term makes IT organizations aware of the shift

towards a holistic development approach that embraces both departments aiming on delivering

value to the customer.

 Continuous Delivery 3.1.4

In the last few years continuous delivery (CD) has received attention by practitioners. CD is a set of

good design practices within the field of software development, which can also be called a pattern

language (Alexander, 1977). CD elaborates on the principles of continuous integration and automates

the repetitive actions involved in information system (IS) development by means of a tool. The

purpose of CD is to deliver software much faster. Originally, the term is derived from the first

principle of the Agile Manifesto (2001) which states “our highest priority is to satisfy the customer

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 27

through early and continuous delivery of valuable software” and is elaborated and popularized by

Humble & Farley (2010).

CD aims to deliver business value to the customer, whereas CI has its focus on getting new features

quickly release-ready. Business value is achieved by means of stable applications, therefore CD

focuses more on the technical aspects. CD emphasizes on the concept of staged builds, also called a

deployment production line or deployment pipeline (Humble & Farley, 2010; Humble, Read, & North,

2006). During each stage the build is tested and obviously, when all tests are passed the release is

finally distributed to the customer.

Continuous delivery rests on the three pillars configuration management, agile testing, and the

deployment pipeline (Humble & Farley, 2010). First, in configuration management all artifacts

relevant to the project are stored, retrieved, uniquely identified, and modified (Hass, 2003).

Especially in CD, it is a synonym for version control. Second, agile testing relies on quality built into

the delivery process by testing throughout the process. Third, the deployment pipeline refers to how

information systems gets from the development phase to the release phase (Humble & Farley, 2010;

Humble et al., 2006). Every change goes through the deployment pipeline where build generation,

unit testing, performance testing, user acceptance testing and deployment are performed

automatically (Humble & Farley, 2010; Mikita, Dehondt, & Nezlek, 2012).

According to Humble & Farley (2010) the following 8 principles should be considered for an effective

software delivery process:

 Create a repeatable and reliable process for releasing software

 Automate almost everything

 Keep everything in version control

 If something is difficult or painful, do it more frequently

 Focus on built-in quality

 Done means released

 Everybody is responsible for the delivery process

 Improve continuously

Continuous delivery evolves both IS development as deployment to the next level. CD enables an

efficient and highly automated delivery pipeline to provide stable applications. The process supports

the common goal of DevOps targeting on business value and makes no distinction between

departments. CD prescribes patterns to set up the deployment pipeline and to automate the various

tasks involved in development, testing and deployment. The solutions proposed by CD are mainly

technology-driven but give solid support to the DevOps processes.

3.2 Software Process Improvement

Methods exist in many variations to support the process areas of the IT organization, such as

requirements management and change management. Over time project experience accumulates into

knowledge which could lead to improvements for the method that is used. In the last decades lots of

initiatives has moved its focus on improving processes of organizations. Business process

management (BPM) was a response to the workflow wave of the nineties. As the workflow is

oriented on enactment (i.e. to support the execution of operational processes), it was considered as

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 28

too restrictive (Van der Aalst, Ter Hofstede, & Weske, 2003). Aalst et al. (2003) define BPM as

“supporting business processes using methods, techniques, and software to design, enact, control,

and analyze operational processes involving humans, organizations, applications, documents and

other sources of information”. An overview of the techniques that support business process

modeling is presented by Aguilar-Savén (2004). Process improvement is also addressed by software

process management (Florak, Park, & Carleton, 1997). Software process improvement (SPI) supports

the IT organization to improve the processes related to information system (IS) development. The

improvements enable the organization to raise their maturity level. In the past many case studies

investigated the success factors in software process improvement. An overview of numerous SPI

studies is presented by Dyba (2005). Despite the commonly recognized success factors such as

management commitment and employee participation, operational measures are still unavailable

(Dyba, 2005).

Macintosh (1993) defines five maturity levels for process improvement which are adopted by several

SPI methods (e.g. CMMI, ITIL, and COBIT). The maturity level is achieved by implementing all

processes in a certain maturity level including these of the underlying layers.

1. Initial. Setting up of processes.

2. Repeatable. Repeatable processes.

3. Defined. Documented processes standardized throughout an organization.

4. Managed. Measured and controlled processes.

5. Optimizing. Continuous process improvement.

Metamodel As standardized

Method or Process Model As documented

Process
As enacted by

real people on a

specific project
Static

aspects

Dynamic

aspects

Figure 10. Abstraction layers (redrawn from Henderson-Sellers, 2006)

The process is a term for way of acting and describes what is done in real time with a real team on a

real project (Conradi, 1993; Henderson-Sellers, 2006). It follows the prescribed steps of the method

to produce an artifact. The process has both a static as dynamic aspect, in which the process steps

represent the static aspect and the data (i.e. deadlines, deliverables) to create an instance of the

process model represent the dynamic aspect. In contrast, the process model or method is an abstract

entity that only exist in the mind of the user and needs to be captured in terms of some concrete

artifact (Guizzardi, 2005). In concrete terms a method has documented the steps to execute. On the

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 29

other hand a process is the method applied in a real project environment. A meta-model is from a

higher abstraction level and describes a method by representing the syntactical structures and

provides formal statements about the model (Van de Weerd & Brinkkemper, 2008). The meta-model

integrates the meta data model and meta process model (Harmsen et al., 1994). Meta-models are

created using a meta-modeling technique, which we discuss later. The separation of the abstraction

layers is illustrated in Figure 10.

3.3 Method Engineering

Method engineering (ME) supports the design, construction and adaptation of methods, techniques

and tools for the development of information systems (Brinkkemper, 1996, p. 276). Brinkkemper

(1996) defined a method as ”an approach to perform a systems development project, based on a

specific way of thinking, consisting of directions and rules, structured in a systematic way in

development activities with corresponding development products”. The method describes

instructions on how to perform development activities (i.e. the stages, activities and tasks to be carry

out) and defines the structural requirements for the products (i.e. documents, models and diagrams),

also called deliverables (Brinkkemper, 1996). Herein Brinkkemper (1996) distinguishes two types of

method fragments, process fragments and product fragments.

A method fragment is defined as “any coherent product, activity, or tool being part of an existing

generic or situational method” (Harmsen et al., 1994). The process and product fragments can each

be subdivided into two subtypes, namely conceptual fragments and technical fragments. Conceptual

fragments represent methods or part thereof, whereas technical fragments are required in order to

include CASE tools in the engineered method (Harmsen et al., 1994).

Ralyté and Rolland (2001) address the notion of a method chunk. A method chunk integrates the

process fragment and product fragment in one fragment to form a coherent module (Ralyté &

Rolland, 2001). As a result, the method can be viewed as a set of loosely coupled method chunks

expressed at different levels of granularity (Ralyté, 1999). Brinkkemper, Saeki and Harmsen (1998)

provided five possible granularity levels for method fragments:

1. Method – addresses a comprehensive approach for performing a systems development

project.

2. Stage – addresses solely a part of the information system life-cycle.

3. Model – addresses a perspective of an information system.

4. Diagram – addresses the representation of the model layer method fragment.

5. Concept – addresses the concepts and associations of the diagram layer method fragment.

The structure of a method component resembles that of the method chunk. According to Wistrand

and Karlsson (2004) “each method component consists of method elements and their goals, which

are anchored in the values of the method creator”. In this approach much attention is paid to the

rationale of the component. Method rationale argues why and how the method has been established

and is considered important as information on decisions that lead to a certain meta-model has been

not so well codified in the past (Rossi, Tolvanen, Ramesh, Lyytinen, & Kaipala, 2000).

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 30

 Situational Methods 3.3.1

Situational method engineering (SME) involves the creation of methods based on a set of project-

specific requirements (Brinkkemper, Saeki, & Harmsen, 1999; Brinkkemper, 1996; Harmsen, 1997;

Mirandolle, Van de Weerd, & Brinkkemper, 2011; Ralyté & Rolland, 2001). The SME discipline

emerges as a reaction to the problems arisen in standardized methods. When a method is tuned at

hand to meet the project-specific requirements, it is called a situational method (Brinkkemper,

1996). In situational method engineering route maps (i.e. scenarios for method fragments) are used

to tune methods into situational methods (Slooten & Hodes, 1996).

Situational methods reuse method fragments, parts from the existing methods. The method

database or method base is filled with reusable method fragments for this purpose. The method

fragments are described in formal process definitions (e.g. books, manuals). Once identified, these

are elaborated using a common notation (such as PDD), and finally stored in the method base.

Project environment

Characterisation

of project

Selection of

method fragments

Assembly of

method fragments

Project performance

project factors

characterisation validation

selected

method fragments

requests for

new method fragments

situational method requests for adaption

Method Base

method

fragments

Methods

administration

methods

techniques

tools

method fragment

additions/updates

experience accumulation

Figure 11. The configuration process for situational methods (redrawn from Brinkkemper, 1996)

The construction of a method depends on the objective of SME. Therefore Ralyté (2002) identified

four objectives in order to aid the method engineer: (1) to define a brand new method to satisfy a set

of requirements, (2) to add alternative ways of working in an existing method, (3) to extend a

method by new functionality, or (4) to select only relevant functionalities. Several SME approaches

exist to support the creation of a situational method, e.g. Brinkkemper (1996); Ralyté (2002); Ralyté,

Deneckère, and Rolland (2003); Burns and Deek (2007); Luinenburg, Jansen, Souer, and Van de

Weerd (2008). For example, the SME approach by Brinkkemper (1996) is depicted in Figure 11. A

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 31

generic SME approach is presented by Van de Weerd, Brinkkemper, Souer, and Versendaal (2006)

which assumes the method base is already filled with method fragments or requires at least a set of

methods selected for inclusion. The steps involved in this process are as follows:

1. Analyze project situation and identify needs.

2. Select candidate methods that meet one or more aspects of the identified needs.

3. Analyze candidate methods and store relevant method fragments in a method base.

4. Select useful method fragments and assemble them in a situational method by using

route map configuration to obtain situational methods.

Part of the SME approach is to elaborate on method fragments (step 3 and 4). This is supported by a

meta-modeling technique, which assists the method engineer in crafting a blueprint of the method in

order to store relevant fragments to the method base. Also, for assessing the quality of a method, it

is essential to explicitly describe the steps in high detail to find areas for improvement. Several meta-

modeling techniques and their languages are discussed in an article of Harmsen and Saeki (1996).

Van de Weerd et al. (2006) proposed a generic meta-modeling technique, based on work of Saeki

(2003); Van de Weerd and Brinkkemper (2008). The technique combines UML activity diagrams and

class diagrams in one diagram, called a process-deliverable diagram (PDD). A PDD or meta-model

attaches semantic information to artifacts for measuring its quality (Saeki, 2003). The meta-model

can also be used to analyze the method evolution of a company over the years (Van de Weerd et al.,

2007).

Examples of situational method engineering applied in practice include the research of Van de Weerd

et al. (2006), in which an implementation method is constructed for web-based CMS applications.

The resulting method can be used for standard and complex situations by following the described

routes in the route map. Coulin, Zowghi, and Sahraoui (2006) provide practitioners with a lightweight

approach to requirements elicitation. The pre-constructed situational method can be tuned to the

project at hand. Another example is from Seidita, Cossentino, and Gaglio (2007) who created their

own SME approach for the construction of multi-agent systems design processes. In an experiment

they adapted the Passi process by adding the requirements analysis phase from Tropos.

 Method Increments 3.3.2

Methods are adapted over time to improve the process performance for information systems (IS)

development. This is part of incremental method engineering (IME). IME is concerned with improving

methods in an evolutionary way rather than in a revolutionary way by changing small parts of the

method to obtain a higher maturity level (Mirandolle et al., 2011; Rossi et al., 2000; Tolvanen, 1998).

The IME discipline is considered as a subtype of situational method engineering.

An adaptation of a method to improve the overall performance is called a method fragment

increment, or simply method increment (Van de Weerd et al., 2007). A method snapshot is a method

configuration valid at a particular time. By comparing two method snapshots it is possible to identify

method increments. Van de Weerd et al. (2007) addressed the evolution of methods by the use of

method increments and proposed 18 elementary method increment types. A method adaptation can

either be an insertion, editing or removal of method fragments or its properties (Van de Weerd et al.,

2007).

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 32

Currently, there are several IME approaches available to the method engineer. Ralyté, Rolland, and

Ayed (2005) created the evolution-driven method engineering approach which captures various

evolution ways as different strategies to create the product part of the model under construction.

Brinkkemper, Van de Weerd, Saeki, and Versendaal (2008) proposed an approach for incremental

method evolution by applying requirements engineering techniques to information system

development methods (ISDMs). Van de Weerd (2009) provides an approach for incremental process

improvement by assessing a company’s maturity level and selecting method fragments based on

situational factors and desired maturity level.

IME approaches are however, not widely applied in practice. A case study by Mirandolle et al. (2011)

shows how a requirements prioritizing method can be adapted through marching situational factors.

Their IME approach was based on comparing candidate methods and the case company method to

visualize how a suitable method could be selected. Kevin Vlaanderen, Van Stijn, Brinkkemper, and

Van de Weerd (2012) elaborated on the various implementation paths of the Scrum development

method in the context of incremental method evolution. The study shows the implementation styles

(e.g. disruptive or incremental) of Scrum method increments at several case companies. Another

useful contribution to the field of IME is from Van Stijn, Vlaanderen, Brinkkemper, and Van de Weerd

(2012), who provided a template for method increment case descriptions with the aim to structure

improvement paths in a clear and concise manner.

In the field of method engineering lots of “big bang” method initiatives take place (e.g. Van de Weerd

et al., 2006; etc.), however method improvements are incremental in nature. Therefore it is

important to track the changes over time as the method rationale is a crucial part for the success of

ME (Rossi et al., 2000). Incremental process improvement initiatives are often supported by a SME

approach (e.g. Vlaanderen, Valverde, and Pastor, 2006; Mirandolle et al., 2011), by integrating new

method fragments into the existing method.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 33

4. Current Situation

This chapter elaborates on the development processes at the case company in order to find areas for

improvement. First, we discuss the case study approach that is applied in this research phase.

Second, by using a reference method we are able to validate the Scrum process at the case company.

As the Scrum method is loosely defined by sets of core processes and optional processes, expert

interviews are held to adapt the reference method to the situation of the organization. A process-

deliverable diagram is provided together with their explanatory tables. Finally, based on the

interview results, main drivers and requirements are elicited which allows us to answer the first

question of the research:

SQ1. What are the main drivers and requirements for an organization to integrate DevOps

into their Scrum development process?

The answer on this research question is used as input for the next research phase, which enables us

to search for solutions for the identified problem areas.

4.1 Case Study Approach

The case study approach is ideally suited for the purpose of the research. First, we want to identify

the issues and main drivers in the information systems (IS) development process at CaseComp in

order to find areas for improvement. Second, we want to make sure that the proposed

improvements by DevOps are relevant for CaseComp. Third, we want to evaluate the elaborated

paths for implementing the improvements. As the latter needs feedback from the environment, a

case study is therefore ideally suited for these purposes. The case study protocol we employed for

the current situation phase is provided in Appendix II. In this phase we applied the research methods

for case studies by Runeson and Höst (2008); Miles and Huberman as both the principles for case

study research by Yin (2009). The steps of the case study research method by Runeson and Höst

(2008) are discussed below.

1. Case study design. Objectives are defined and the case study is planned. The research

objective is formulated in accordance with the case company and the interviews have been

planned in advance.

2. Preparation for data collection. Procedures and protocols for data collection are defined. To

ensure all steps are carried out consistently, the case study design and data collection plan is

developed using the protocol template for case study planning by Brereton, Kitchenham,

Budgen, and Li (2008). Thereafter the protocol is validated by using the checklist of Runeson

and Höst (2008).

3. Collecting evidence. Execution with data collection on the studied case. Interviews are held

using a semi-structured interview technique. The interview questions are mapped to the

main themes regarding to DevOps and the goals of the case study.

4. Analysis of collected data. Distill findings from the collected data. In order to answer the

research question at the beginning of this chapter, we have to set up distinct groups of

answers. For this step we followed the qualitative data analysis approach by Miles and

Huberman (1994), which is discussed in section 4.1.3.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 34

5. Reporting. Present the findings to the audience. The findings of the interviews are mapped to

their main themes and presented in a matrix. The final results are discussed in section 4.3.2.

4.1.1 Case selection

In this case study we investigate the Scrum process of a project team with a high maturity, which is

also available to participate in a pilot experiment. In this manner we try to avoid the problems are

inherent to their Scrum process (i.e. the alignment between business and development) rather than

DevOps (i.e. the alignment between development and operations). During a regular project,

development teams are assessed by an external company that determines the Scrum maturity.

Teams with scores above 3 are considered to be mature. For this case study we have selected a

single team with an overall maturity score of 3.2 / 5. Therefore, the case study design consists of a

single-case with a single unit of analysis. When the baseline (i.e. PDD and issues) is applicable to

multiple teams, these teams will also be included for the case study pilot in the desired situation

phase.

4.1.2 Data Gathering

This case study is provided with data from the following sources:

· Interviews. Main source for asking targeted questions in order to elicit main drivers and

issues regarding to DevOps.

· Documents: process instructions, project documents, wiki, presentations, summaries of

retrospective meetings.

· Direct observations. Since our research took place at a development team of CaseComp, we

are able to attend all kinds of meetings (e.g. start and mid-sprint sessions, retrospective

meetings, daily stand-up meetings). Important observations are documented.

4.1.3 Processing the Interview Results

A qualitative data analysis approach is used to extract suitable data from interview transcripts which

are stored in the central case study database. We followed the three steps of Miles and Huberman

(1994) which suggest that qualitative data analysis consists of three procedures:

1. Data reduction. Qualitative data is reduced and organized by discarding irrelevant data and

assigning codes to relevant data.

2. Data display. In order to draw conclusions, good display of data is essential. Such as tables,

charts, summaries and diagrams.

3. Conclusion. Develop conclusions based on the analysis, by comparing, contrasting, searching

for patterns, triangulation etc.

An important aspect of the data reduction process is coding qualitative data. According Miles and

Huberman (1994): “Codes are tags or labels for assigning units of meaning to the descriptive or

inferential information compiled during a study. Codes are usually attached to ‘chunks’ of varying

size – words, phrases, sentences or whole paragraphs”. In the context of the research, codes are

oriented on the problems and issues arisen from the current development process. The procedure is

supported by four stages for data coding:

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 35

1. Open coding. All statements related to the research question are identified and each is

assigned a code, or category.

2. Axial coding. By using the developed codes, the researcher is able to search for statements

that may fit into any of the categories.

3. The researcher analyzes the codes to look for patterns and explanation.

4. Selective coding. Raw data is analyzed again with the purpose to illustrate the analysis, or

explain the concepts.

Using this procedure each interview transcript is scanned for internal forces, external forces and

requirements that are relevant to the implementation of DevOps. All statements are placed in a

spreadsheet document by assigning them to a category. Note that no frequency numbers are added

to this table. As stated by Krane, Anderson, and Stean (1997): “Placing a frequency count after a

category of experiences is tantamount to saying how important it is; thus value is derived by number.

In many cases, rare experiences are no less meaningful, useful, or important than common ones. In

some cases, the rare experience may be the most enlightening one”.

4.2 Scrum Process Assessment

Part of the current situation phase is to develop process-deliverable diagrams for the Scrum process

at CaseComp. The diagrams are used as baseline for implementing the proposed process

improvements. The pilot case study in the desired situation phase only includes the development

teams that comply with the baseline. A Scrum reference method is used to validate the Scrum

method at CaseComp. Expert validations tuned the reference method to the project-specific

situation of the case. We start with an explanation of the meta-modeling technique to provide the

reader with basic knowledge for understanding a PDD. Then the reference method is provided and

adaptations to this method are discussed. Finally the Scrum PDD for the case is provided

accompanied with the concept and activity tables.

4.2.1 Meta-Modeling Process

The meta-modeling technique presented by Van de Weerd and Brinkkemper (2008) is used for

crafting a baseline for the current situation. This technique is used to elaborate on the development

process. The resulting diagram is called a process-deliverable diagram (PDD), which combines the

UML process diagram and UML class diagram into a single diagram. In the PDD, each activity from

the process side is linked to an artifact (e.g. document, requirement, etc.) on the deliverable side of

the diagram. In this section we briefly discuss the basic concepts for understanding a PDD.

The process side of the PDD consists of activities and transitions. The activities may also embed sub

activities to support hierarchical activity decomposition. For the creation of a meta-process model,

there exist four types of activities (Figure 12):

 Standard activity: an activity that contains no further sub activities.

 Complex activity: an activity that contains several sub activities. A complex activity could

either be an open activity or a closed activity.

 Open activity: a complex activity of whose sub activities are described. These activities may

be described in the same diagram or in another diagram, therefore two notational variants

exist.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 36

 Closed activity: a complex activity of whose sub activities are not described since it is not

known or not relevant in the specific context.

The transitions show the control flow between activities, of which four types exist: sequential,

unordered, concurrent, and conditional activities. Sequential activities are connected with an arrow

and need to be performed in a predefined order (Figure 13). Unordered activities do not have a

predefined execution sequence and can be performed in any order. Concurrent activities are

executed concurrently. A synchronization bar is depicted for the purpose of forking and joining the

activities. Conditional activities are only performed if a predefined condition is met. The branch is

depicted using a diamond and both an incoming and outgoing transition.

Figure 12. Activities types

Figure 13. Sequential activities

The deliverable side of the process-deliverable diagram consists of a concept diagram, of which the

important parts are discussed below. The diagram supports the following concept types (Figure 14):

 Standard concept: a concept that contains no further concepts.

 Complex concept: a concept that consists of several concepts. A complex concept could

either be an open concept or a closed concept.

 Open concept: a complex concept of whose sub concepts are described. The aggregate

structure may be described in the same diagram or in another diagram, therefore two

notational variants exist.

 Closed concept: a complex concept of whose sub concepts are not described since it is not

known or not relevant in the specific context.

Figure 14. Concept types

Figure 15. Example of standard, open and closed concepts

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 37

Other important concepts in meta-delivery modeling are: generalization, association, multiplicity and

aggregation. Generalization is used to express a relationship between a general concept and a more

specific concept. It is visualized by a solid arrow with an open arrowhead, pointing to the parent. An

association is used to describe the structural relation between two or more concepts and is visualized

with an undirected solid line. Multiplicity is a characteristic of a relationship between concepts, it

states how many objects of a certain concept can be connected across an instance of association

(e.g. 1..* corresponds to one-to-many). An aggregation represents the relation between a concept

containing other concepts. An example of an aggregation and multiplicity are illustrated in Figure 15.

Finally, a PDD integrates the meta-process model and meta-data model by connecting a dotted

arrow from the activities to the deliverables. More details about the syntactical structure of the PDD

can be found in the paper by Van de Weerd and Brinkkemper (2008).

4.2.2 Scrum Reference Method

The Scrum approach consists of core practices and additional practices. The core practices have been

grouped into a Scrum guide (Sutherland & Schwaber, 2011). Additional practices are maintained by

the agile community. These practices come from practitioners who elaborate on new patterns, e.g.

Välimäki and Kääriäinen (2008) proposed patterns that can be applied in distributed project teams.

ScrumPLoP (2012) provides a comprehensive overview of the patterns that are available to Scrum

practitioners. The patterns are divided into various categories, such as team patterns, retrospective

patterns, and organizational patterns. Scrum is no one-size fits all approach, and thus, practices need

to be tuned at hand to meet the project environment. For example the length of the sprint may vary

from project to project. The ability to adjust Scrum to the situation is confirmed by Beedle, Sharon,

Schwaber, and Sutherland (1999), who describe the Scrum method as an extension pattern language

to the existing organizational pattern languages. An organization selects the Scrum patterns that are

applicable to their specific situation (Beedle et al., 1999). Due to the customizability of Scrum, we

cannot fully assume the general process description applies to CaseComp. Therefore we have to

validate the Scrum process that is used within CaseComp. For this purpose we use a Scrum reference

method.

The Scrum reference method is developed by Blijleven (2012) using the meta-modeling technique as

described in the previous section. The method is based on the process definition of Schwaber (1995),

the creator of the Scrum approach. A PDD of the reference method is depicted in Figure 16. This

blueprint is used to validate the Scrum process at CaseComp. However, a fully comprehensive

explanation of Scrum is outside the scope of this chapter and can be found in Blijleven (2012); and

Schwaber (1995).

4.2.3 Adapting the Reference Method

The PDD suggests the development process uses a waterfall approach as the process proceeds from

top to bottom. This contradicts with the iterative approach from the agile philosophy. Therefore, for

the adapted reference method we make a distinction between two types of activities on the PDD,

one-off and recurring activities. One-off activities are only performed at the beginning or end of the

project, such as setting up the project plan or creating marketing materials. Recurring activities are

performed in every sprint and address the iterative aspect of the process.

Figure 16. Process-deliverable diagram of the Scrum reference method (from Blijleven, 2012)

Plan project

Create product backlog

Define delivery dates for releases

Define release plan

Form project teams

Identify required development resources

Estimate development budgets

Verify management approval and funding

Design architecture

Define product standards

Develop release

[approved]

Develop backlog components

Wrap developed backlog components

Review working executable

[else]

Finalize release

Create release documentations

Create marketing materials

Prepare training materials

DOCUMENTATION

MARKETING

MATERIAL

Define functionalities for releases

DELIVERY DATE

RELEASE FUNCTIONALITY

PROJECT TEAM

1..*

1

RELEASE PLAN

Customer requirements

Time pressure

Competition

Quality

Vision

Resource

PRODUCT BACKLOG

Bugs

Defects

Enhancements

Functionalities

Technology upgrades

is based on

1

1..*

Assess risks

Analyze risk impact

Prioritize risks

ASSESSMENT

REPORT

IMPACT

PRIORITY

1..*

1..*

is derived from

RESOURCE PLAN

BUDGET PLAN

1..*

[else]

is based on

1

Assess current system

architecture

Assess current domain

models

PRODUCT STANDARD

is able to support

is able to support

applies

1

0..*

1

1..*

1

1

COMPONENT

SOURCE CODE

Review project plan

defines

1

1..*

realizes

1

1..*

1

EXECUTABLE

VERSION HISTORY

Code

Effective date

Status

Version

has1 1..*

is based on

is based on

TRAINING MATERIAL
is based on

1

1..*

1..*

EXECUTABLE

VERSION

Code

Authors

Identify risks

RISK
has

1

1..*

1

RISK LIST
Define risk monitoring strategy ACTIVITY LIST FOR

RISK MONITORING

PROJECT PLAN

SYSTEM

ARCHITECTURE

DOMAIN MODEL

[approved]
1

1..*

1..*

1..*

implemented

by

1

is based on 11

1

11..*

1

1..*

Product owner

Product owner

Product owner

Product owner

Team

Product owner

Scrum master

Product owner

Product owner

Product owner

Product owner

Product owner

Product owner

Product owner

Team

Team

1

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 39

We considered to add arrows that flow back into previous steps, but found diagrams became hard to

interpret as the PDDs contained lots of detail. For clarity purposes we introduced a cyclic icon (Figure

17) that is positioned right next to recurring activities, to make the distinction clearly visible.

Figure 17. Figure for indicating a recurring activity

Before we discuss the adaptations to the PDD, we explain how the incremental differences can be

interpreted. The concepts and activities of which name or type is changed are colored light grey.

Activities and concepts that are inserted to the reference method are colored dark grey. Crossed

stripes indicate concepts or activities which are removed as they do not apply in the current

situation. A legend is shown in Figure 18.

 Insertion

 Modification

 Deletion

Figure 18. Legend for method increments

4.2.4 The Scrum Process at CaseComp

In this section we discuss the adaptations made to the reference method (Figure 16) in order to meet

the project-specific situation of the case. In the end the final PDD is provided together with the

activity and concept tables. When elaborating the Scrum process we have to take into account the

feedback mechanisms that are inherent to Scrum, such as the daily stand-up, mid-sprint review, and

retrospective meeting are omitted in the Scrum reference method as the results are intangible,

meaning no specific deliverables are generated (Blijleven, 2012). Any changes to these meetings

should therefore be textually described.

Figure 19. Reference method: deleted project team, inserted production date

To ensure the baseline is consistent with the development process at CaseComp, we use the names

of the concepts and activities that reflect the actual process. Therefore the name of seven concepts

has changed (consult Appendix III for more details). The PROJECT TEAM concept and its

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 40

corresponding activity are deleted, as the team is already established before the Scrum process takes

place (Figure 19). At CaseComp a project team is assigned to an application module prior to the

execution of the project.

Besides a COMPLETION DATE is set during the first Scrum phase, one indicating when the sprint is

complete and the user stories are built, there is another date concept introduced. As the day of

completion and the day of the actual deployment of the working software build are never on the

same day, we need a new concept called PRODUCTION DATE (Figure 19). CaseComp has four release

moments a year to deploy the information system (IS), while parts of the IS are developed in

biweekly sprints or iterations. This means working builds stack up and wait for deployment. Because

of this we also need a new concept called RELEASE, which aggregates all working builds into one

singe release (Figure 22). Once the PRODUCTION DATE is met and all sprints are completed, the

release is handed over to the operations department that deploys the IS.

Figure 20. Reference method: deleted risk monitoring strategy

Instead of defining a risk monitoring strategy for the project, the risks are determined in a simple way

and hence there is no need for a complex activity and concept (Figure 20). At CaseComp identified

risks provide new input for existing user stories. For example if it appears that the application module

is sensitive to memory leaks, there is added a new task to review the application for possible

memory leaks. The consulted experts indicate that risks are not actively addressed. They argue that

top prioritized risks should be eliminated at an early stage.

During the Plan project activity the PROJECT PLAN is elaborated and afterwards sent to the project

initiators for approval. There is only need for one PROJECT PLAN at the beginning of the project,

before the first sprint takes place. Whether there is given a formal agreement or not, the project still

continues. Team members are hired on a project basis and therefore cannot be without work.

Figure 21. Reference method: updated assessment, deleted product standards

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 41

The parallel activities to assess the current system architecture and domain models are changed to

an open complex activity (Figure 21). The activities now also include the refinement of the system

architecture and domain models when these are insufficient to support the user stories. The activity

Define product standards and its related concept are deleted since no product standards are defined

for the project (Figure 21). Instead, there is a reference architecture available that is used by all

project teams.

The Review working executable of the Develop release phase is renamed to Test working build, as it

better reflects the underlying activities. The concept has also changed to a complex concept. Part of

the test is also the sprint demo meeting as part of the mid-sprint review, in which the customer gives

its commitment to the project by giving a formal approval.

Figure 22. Reference method: changes to finalize release

The Finalize release activity is expanded by two sub activities (Figure 22). The first sub activity is

Package release for operations which combines the builds into a single release together with the

required software, installation files, and release documentations (such as release notes, installation

guide, and maintenance guide). The second new sub activity is Deliver release to operations, in which

the release package is handed over to the operations department. Afterwards, the team is standby to

fix any errors that occur during the production acceptance test (PAT) and deployment to the

production environment. The two latter activities are included in the Provide support activity.

So far we have discussed the adaptations to the Scrum reference method. An overview of the

adaptations to the activities and concepts is provided in Appendix III.

4.3 Results

4.3.1 Process-Deliverable Diagram for the Current Situation

The final PDD is depicted in Figure 23 which illustrates the incremental differences as well. The PDD is

used as baseline when implementing the process improvements in the next research phase. The

corresponding activity and concept tables are provided in Appendix IV. These tables provide brief

descriptions of the activities and concepts used in the PDD.

Figure 23. Adaptations to the Scrum reference method

1

Plan project

Create product backlog

Define delivery dates for releases

Define release plan

Form project teams

Identify required development resources

Estimate development budgets

Verify management approval and funding

Design architecture

Develop release

Develop backlog components

Wrap developed backlog components

[else]

Finalize release

Create release documentations

Create customer demo

Prepare training materials

CUSTOMER DEMO

Define functionalities for releases

COMPLETION DATE

USER STORY

PROJECT TEAM

1..*

1

SPRINT PLAN

Customer requirements

Time pressure

Competition

Quality

Vision

Resource

PRODUCT BACKLOG

Bugs

Defects

Enhancements

Functionalities

Technology upgrades

is based on

1

1..*

Assess risks

Analyze risk impact

Prioritize risks

ASSESSMENT

REPORT

IMPACT

PRIORITY

1..*

1..*

is derived from

RESOURCE PLAN

BUDGET PLAN

1..*

is based on

1

PRODUCT STANDARD

is able to support

is able to support

applies

1

0..*

1

1..*

1

1

COMPONENT

SOURCE CODE

Review project plan

defines

1

1..*

realizes

1

1..*

1

BUILD HISTORY

Code

Effective date

Status

Version

has1 1..*

is based on

TRAINING MATERIAL
is based on

1

1..*

1..*

BUILD

Code

Authors

Identify risks

RISK
has

1

1..*

1

RISK LIST
Define risk monitoring strategy ACTIVITY LIST FOR

RISK MONITORING

PROJECT INITIATION

DOCUMENT

SYSTEM

ARCHITECTURE

DOMAIN MODEL

[approved]

1..*

1..*

1..*

implemented

by

1

is based on 11

1

11..*

1

1..*

Product owner

Product owner

Product owner

Product owner

Team

Product owner

Scrum master

Product owner

Product owner

Product owner

Product owner

Product owner

Product owner

Product owner

Team

Team

1

PRODUCTION DATE

RELEASE

1

1..*

Test working build

is based on and results in

Team

Functional application management

Define product standards

Assess and adapt

current system

architecture
Assess and

adapt current

domain models

MAINTENANCE GUIDE

INSTALLATION GUIDE

1

1

1

DOCUMENTATION

Package release for operations

Deliver release to operations

Provide support

Provide support for PAT

Provide support for deployment to

production

Team

Team

Team

Team

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 43

4.3.2 Main Drivers and Requirements for DevOps

To come to a structured answer on the research question, we applied the qualitative data analysis

approach as described in 4.1.3 for analyzing statements in interview transcripts. To recap, the

research question was formulated as follows:

SQ1. What are the main drivers and requirements for an organization to integrate DevOps

into their Scrum development process?

The following user roles are subjected to an interview in order to answer this research question:

Scrum master, developer, tester, product owner, functional application manager, technical

application manager, and implementation manager. Each role is involved in the software delivery

process and has experience with the team for at least one year. In case there are multiple persons

available for a single role, the participants are randomly selected across the development team.

According Miles and Huberman (1994) this enhances generalizability as well as deepening the

understanding and explanation of a phenomenon.

We distinguish 8 unique codes or key drivers and implementation requirements at CaseComp that

support the need for DevOps practices. The key drivers are related to internal and external driving

forces (e.g. problems experienced in certain process areas). Implementation requirements refer to

the organizational requirements for implementing adapted processes. The answer on the research

question is summarized in Table 1 and is discussed below. We link the DevOps layers by Debois

(2012) to key drivers so we are able to focus on the problem areas related to the process (i.e. code 1-

5), which is the scope of the research. Note that the findings are unsorted and weighted equally.

Code / category Type Layer

1. The processes of the development and operations departments are
not aligned with each other.

Driver Process

2. Lack of standardization for quality guidelines. Driver Process, tools

3. IT Operations is not well represented in the project. Driver Process

4. Too comprehensive process for releasing information systems. Driver Process, tools

5. Moderate communication between development and operations. Driver Process, people

6. Dispersed or missing knowledge on development and operations. Driver, requirement People

7. Too complex IT infrastructure. Driver Tools

8. Tools are not aligned with the process. Driver, requirement Tools

9. For each process change, time and resources have to be estimated. Requirement -

Table 1. Identified drivers and requirements for DevOps

1. The processes of the development and operations departments are not aligned with

each other.

The interview results indicate the processes of the development and operations departments are not

aligned with each other. Development uses an agile way of working and teams are assigned to a

project. This is in contrast with the operations department at CaseComp, which uses a less flexible

waterfall method. According to developers “there are many people outside the process who want to

believe they are stakeholder of the project, though they are not ready to work with agile“. The

operations department is more business-oriented rather than project-oriented with the aim on

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 44

stable information systems. The development (sprint) schedules are not aligned with the release

schedules. As the sprint length is two weeks and there are four release moments a year, there is a

huge impact of each release that is deployed to production. Furthermore, when the development

team is unable to meet the deadline – fixed time schedules for testing and deployment forces

operations to perform the same activities within a smaller amount of time. As a result there is less

time available to provide feedback for the development team. The processes regarding to both

departments are not consequently executed. At the development side the Scrum implementation

differs among the individual project teams so operations does not know what they can expect from

each team. Also, the project team is not well informed on the processes at operations.

2. Lack of standardization for quality guidelines.

There is a lack of standardization for quality guidelines across the development and operations

departments. For example, there are no proper requirements for logging mechanisms. Also,

operations does do not provide a coherent checklist (e.g. for release notes) that can be used by all

development teams. Current guidelines for obtaining approval to put an application into production

are not adequately addressed as they are selectively monitored. According to one of the participants

“one time they perform a syntactical check, whereas the other time they perform a quantitative

check”.

3. IT Operations is not well represented in the project.

Operators, such as functional and technical application managers are too late involved in the

development. Developers have already begun developing the system without consulting operations

for e.g. technical requirements. Hence operators are missing project-context and do not know what

they can expect from the system. Initiatives have already tried to bridge the departments by inviting

the operators to development meetings. During these meetings, the application module is

demonstrated and the completed user stories are discussed. The operators indicate these demo

meetings are a good attempt to improve communication, but turned out to be unnecessary to attend

as only functionalities are communicated. Details regarding to infrastructure and application services

were omitted. Despite the resources are made available, no attention is paid to the added value for

operators during these meetings.

4. Too comprehensive process for releasing information systems.

To put an application module into production you have to go through a complicated change

management process. Five types of approvals are required to put the system into production. The

processes make the actual deployment more complicated and time-consuming. Also it slows the

feedback for the system development. According to some interviewee “there is too much hassle to

get something to production, e.g. release notes are not consistent or missing a comma somewhere.

Technical application management is very strict in the release notes - a tough process.”

5. Moderate communication between development and operations.

The involved parties are unsatisfactory about the way and frequency of communicating feedback to

each other. Personnel from development indicate they are “dissatisfied with the way we

communicate and the way in which feedback is given”. The departments have also too little insight

into each other's activities. For example development seldom knows which changes result in an

increased number of reported incidents. Finally, the development and operations departments are

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 45

separated over two physical locations which make it impossible to walk along a colleague. Therefore

they use e-mail as their main communication, which is an impediment for informal communication.

6. Dispersed or missing knowledge on development and operations.

Respondents notice a gap in the knowledge and experience of colleagues. Some argue that “the lack

of knowledge sharing impedes the collaboration between development and operations”. Due to the

strict separation of the departments, only necessary information is exchanged. Users keep their own

knowledge up to date, but they are not aware of new developments on the topics of its colleagues.

Due to this knowledge gap people do not know what they can expect from each other. This issue is

also considered an implementation requirement, as the basic understanding of jargon and know-how

is a precondition for enabling close cooperation.

7. Too complex IT infrastructure.

At CaseComp there exist multiple environments for the development and testing activities. As the

environments have their own configuration, requirements, and procedures and these are managed

separately, we consider them as too complex. Examples of complex infrastructures include chain

testing and the deployment of a fully furnished project environment. As the configuration of the test

environments are not updated adequately, it ultimately leads to increased cycle time and creates

obstacles to the customer acceptance test.

8. Tools are not aligned with the process.

This issue corresponds to the tools that provide insufficient information to the user. The tools are not

aligned with the development process as the desired information could not be retrieved or does not

match the actual situation. We explain this issue by providing brief examples provided by the

interviewees:

I. Multiple releases are constructed in a single sprint but cannot be made visible in the project

management system.

II. One of the principles for continuous integration aims that a failed build should become quickly

visible for the team. This principle is not properly addressed.

III. The development team cannot retrieve the log files of their application module as they do not

have the required access rights.

IV. Feedback or requests between the departments are mainly handled by e-mail due to the

absence of a central tool for both departments. We consider this issue also an implementation

requirement as the proposed process changes should be covered by tools, otherwise

temporary workarounds are needed to cover them.

9. For each process change, time and resources have to be estimated.

A formal implementation requirement that is elicited during the interviews is the one stated above.

The management should be timely informed on the amount of time and resources that is needed for

the project team. An estimate for each process change has to be given. The estimations could be

determined by the use of planning poker as applied in Scrum. In this way a unanimous consensus can

be achieved between the involved parties.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 46

5. Desired Situation

In this chapter we propose several process improvements that address the captured drivers from the

previous chapter. Before we are able to incorporate the practices that are needed by the case

company into the current situation, we first elaborate on the approach that links DevOps patterns to

the identified problem areas as part of the situational method engineering (SME) approach. Finally,

the situational method for the desired situation is captured using the meta-modeling technique. This

chapter provides an answer on the second and third research subquestion:

SQ2. How can method fragments be linked to key problem areas?

SQ3. Which method fragments proposed by DevOps address the key problem areas?

5.1 The Creation of a Situational Method

For the construction of the adapted method we apply the situational method engineering (SME)

approach by Brinkkemper (1996), which is based on work of Harmsen et al. (1994); Slooten and

Brinkkemper (1993). In this section we elaborate on the SME approach which consists of the

following steps:

1. Project characterization

2. Selection of method fragments

3. Assembly of the fragments

4. Validation of the situational method

5. Adaptation of the situational method

Method construction depends on the objective of SME, therefore for the research we identified the

objective to extend a method by new functionality (Ralyté, 2002). The functionality is derived from

DevOps patterns, which is discussed in the second step. According to Ralyté et al. (2003) the

technique for extending a method by applying extension patterns is referred to as the extension-

based strategy.

5.1.1 Project Characterization

Normally, the project characterization leads to suitable method fragments in the SME approach.

Characteristics of the project describe the project-specific situation (e.g. level of innovation,

expertise). Instead we use main drivers that gave rise to the demand for DevOps. In this point of view

the existing method is refined based on the experienced problems, rather than constructing a

method from scratch that fits in the situational context. This evolutionary approach is supported by

incremental method engineering. The identified drivers for improvement are reported in section

4.3.2.

5.1.2 Selection of Method Fragments

The second step is probably the most challenging one in the process of creating a situational method.

First of all, we need to codify the relevant DevOps practices and make them implementable for the

current process. As we want to improve the current situation, we only include DevOps patterns that

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 47

tackle one or more problems. Only DevOps is used as source for identifying new method fragments.

According to Harmsen et al. (1994) this is referred to as the uni method involvement (UMI) approach.

The advantage of using one method as a source for method fragments is that it omits all kinds of

integrity and consistency problems.

Practices, Patterns, and Principles

The second research subquestion relates to the selection of method fragments. For this we need to

develop an approach that links DevOps patterns to the main drivers from Chapter 4. To recap, the

research question is formulated as follows:

SQ2. How can method fragments be linked to key problem areas?

In contrast to Scrum, DevOps patterns are not formally specified and stored on a single location.

Sources include books, Internet blogs and conference presentations. The patterns provided by the

community are generic applicable to any organization, therefore we need to make them tangible in

order to incorporate them into the current process. To codify DevOps practices, Debois (2012)

distinguishes practices, patterns, and principles. By grouping similar practices (either anecdotal or

systematically described), patterns arise in the same manner as software design patterns. A pattern

is commonly defined as “a description of a general solution to a common problem or issue from

which a detailed solution to a specific problem may be determined” (Ambler, 1998).

Practice A

Pattern AMeta-model level

Process model
or method level

Process instance

Practice B Practice C Practice D

Pattern B Pattern C

Principle A Principle B
Meta-meta-
model level

Process A Process B

Figure 24. Practices, patterns, and principles

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 48

Patterns for system development exist in many variations, such as analysis patterns, design patterns,

organizational patterns, and process patterns. The patterns rely on their underlying principles, just

like Scrum that is guided by the agile process patterns (Tasharofi & Ramsin, 2007). In Chapter 3 we

discussed that DevOps patterns are either focused on the tools, process, or people (culture) layer.

The aim of the research is to extend the current process, therefore we only include patterns from the

process layer. The hierarchy is made visible by placing the practices, patterns, and principles on the

method abstraction levels (Figure 24). This figure clearly shows practices are distillated from process

patterns to incorporate them in processes at IT organizations. This means the identified process

patterns need to be codified as practices for the situational context at CaseComp in order to

incorporate them on the same level (process model) as the baseline method.

Method Selection Techniques

In a regular SME project, the project characterization is input to the selection process (Brinkkemper,

1996). Some multi-criteria techniques for selecting method fragments are discussed by Kornyshova,

Deneckere, and Salinesi (2007). Examples include simple addition, weighted sum, and outranking.

The techniques aim on choosing the most appropriate method fragment (or chunk) from a collection

of method fragments, based on a predefined set of criteria. However, problem-solving based

selection techniques are very scarce. A MEMA-model is proposed by Punter (1996) which is based on

an extensive investigation of the problem situation and method characteristics. The MEMA-model

selects suitable modeling techniques that address the problem characteristics on different

abstraction levels. In contrast to the regular selection process in SME, we start with the selection of

method fragments and validate this choice against the main drivers from Chapter 4. Currently there

is no approach that supports this purpose, therefore we propose the process pattern mapping

approach.

Process Pattern Mapping Approach

The process pattern mapping (PPM) approach supports the selection of process patterns and the

assembly of method fragments in the creation of a situational method. The PPM approach (Figure

25) maps process patterns to problem areas and transforms the required process patterns into

method fragments in the following seven steps:

1. Collect the drivers for improvement.

2. Record all related process patterns by means of a brief description.

3. Set up a matrix by placing the main drivers on the vertical axis and the process patterns on

the horizontal axis.

4. Indicate which process patterns address the drivers by ticking the corresponding cells.

5. Select the process patterns that cover at least one driver.

6. Describe in detail the selected patterns.

7. Elaborate on the method fragments for the given project context.

For step 1 we already identified the drivers for improvement in section 4.3.2. Since the sixth till the

eighth business driver are not related to the process, we exclude them from the first step. Based on a

thorough investigation of mixed sources, such as books, Internet blogs, and conference transcripts

we identified a set of 30 DevOps patterns. An overview of the collected DevOps patterns is provided

in Appendix V. In step 2 we only included patterns from DevOps area 4, which is the scope of the

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 49

research. To recap, DevOps area 4 embeds operational knowledge into the project by extending the

development process. Step 4 is supported by literature, which prescribes process patterns to solve

problems. Also, this step is validated by means of an expert interview. The quality scenarios pattern

(P5) is not directly related to any of the problem areas, therefore the process pattern is excluded in

step 5. Quality scenarios (P5) elaborate on quality requirements using scenarios. We consider this

pattern as an extension for integrate production stories (P4), which introduces quality requirements

to the product backlog.

Collect drivers

for improvement

Process pattern selection

Document process patterns

key problem areas

process patterns

process pattern

mapping table

selected

process patterns

Process pattern

catalogue

Obtain related

process patterns

Linking process patterns to problem

areas

process patterns

Elaborate method fragments

process pattern

descriptions

Project

environment

method fragments

project experiences

process pattern

descriptions

Method base

method

fragments

Figure 25. Visual representation of the process pattern mapping approach

Despite the tasks described by PPM are quite easy to perform, some of them are very time

consuming. Such as obtaining all relevant patterns and documenting them. The former requires that

the scope is determined for the SME effort. In this case study we were limited to DevOps process

area 4 only. The latter needs an extensive investigation of mixed sources. The approach becomes

harder to use when dozens of process patterns are included. Therefore, process pattern mapping can

be helped when all process patterns are documented on forehand. The documented process

patterns are stored for further reuse to the process pattern catalogue. The resulting method

fragments may be different when assembled in the process for another organization.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 50

PPM does not resembles an enhanced version of the situational method engineering (SME) approach

by Brinkkemper (1996). Instead, PPM supports the SME approach in the codification of practices for

the project context. The PPM approach is supported by the pattern based process model proposed

by Ralyté et al. (2005). According to this model, PPM supports SME by two strategies: situation-based

and goal-driven, which supplement each other. The goal-driven strategy identifies a set of atomic

actions to be carried out in order to achieve the goal, whereas the situation-based strategy considers

possible situations in which these goals are relevant (Ralyté et al., 2005).

The PPM approach can be incorporated by a computer-aided method engineering (CAME) tool to

support problem-solving in SME. Such tool makes the pattern mapping table and manual selection

irrelevant and the process pattern linking becomes less error prone. The CAME tool may come with a

link to the method base, so elaborated method fragments can directly be stored into the method

base for further reuse. A major challenge is to document drivers for improvement in a systematical

way so the software application is able to propose suggestions for relevant process patterns.

Layers P
1

. C
ro

ss
-f

u
n

ct
io

n
al

d
el

iv
er

y
te

am

P
2

. D
ev

el
o

p
 f

o
r

p
ro

d
u

ct
io

n

P
3

. E
ar

ly
 f

ee
d

b
ac

k
b

y

o
p

er
at

io
n

s

P
4

. I
n

te
gr

at
e

p
ro

d
u

ct
io

n

st
o

ri
es

P
5

. S
yn

c
m

ee
ti

n
g

P
6

. Q
u

al
it

y
sc

en
ar

io
s

Process D1. Departmental alignment X X X X

Process, tools D2. Lack of standardization X

Process D3. Ops are not well represented X X X X

Process, tools D4. Complex release process X X

Process, people D5. Moderate communication X X X X

Drivers

Patterns

Figure 26. Process patterns linked to the key drivers

The outcome of step 4 is depicted in Figure 26. The matrix shows patterns that are linked to the

drivers from Chapter 4. We are now able to provide an answer on the third research subquestion:

SQ3. Which method fragments proposed by DevOps address the key problem areas?

Based on the process pattern descriptions from Appendix VI, we identified a set of DevOps patterns

that cover the process-oriented drivers from Chapter 4. The following process patterns are selected

for the assembly of the fragments: cross-functional delivery team (P1), develop for production (P2),

early feedback by operations (P3), integrate production stories (P4), and sync meeting (P5). As step 6

and step 7 are related to the assembly of method fragments (as in the SME approach), we discuss

them in the next section.

5.1.3 Assembly of the Fragments

The selected process patterns need to be captured as method fragments in order to incorporate

them into the current process. We apply the process framework of Gnatz, Marschall, Popp, Rausch,

and Schwerin (2001), which is based on the process pattern approach by Bergner, Rausch, Sihling,

and Vilbig (1998). This framework is a set of basic notions and definitions common for all process

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 51

models (or methods) and is described on the level of a meta-model (Gnatz et al., 2001). The process

framework (Figure 27) implies that the problem is tackled by one or more process patterns. The

process framework looks very similar to the method meta-model by Henderson-Sellers & Ralyté

(2010), of which the product part and process model are based on a guideline. Other frameworks

using process patterns in SME are the pattern meta-model by Ralyté et al. (2005) and the pattern

based framework by Asadi and Ramsin (2009).

A process pattern describes and documents process knowledge in a structured, well defined, and

modular way. The pattern is realized by an activity which represents the actual implementation to

solve the problem in the situational context. Since DevOps process patterns are located on the

meta-model level (Figure 24), we need to translate them to concrete activities in order to integrate

them on the method level.

We elaborate on the DevOps process patterns by using the description template for process patterns

by Gnatz et al. (2001). The purpose of a pattern description is to grasp the essence of a pattern

immediately (Gnatz et al., 2001). The descriptions of the selected process patterns are provided in

Appendix VI. Now the process patterns are fully documented, we are now able to elaborate on the

method fragments in the project-specific context at CaseComp.

Figure 27. Process Framework (from Gnatz et al., 2001)

The method fragments are documented using the description template for method increments by

Van Stijn et al. (2012). This template is based on UML’s use case descriptions which enables

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 52

organizations to reflect on their software process improvement (SPI) initiatives. Instead of describing

success or failed improvement scenarios, we use the template to propose incremental

implementation paths for method increments. Therefore we make some minor changes to the

template to fit this purpose. As the trigger, pre-conditions and post-conditions are already addressed

by the pattern descriptions (labeled as problem, initial context, and result context, respectively), we

omitted them from the descriptions. Also, the property Failed paths is omitted since no information

on implementations is available yet. Proposed incremental path describes the incremental changes to

the process by using the elementary increment types by Van de Weerd et al. (2007). Unordered

increments are any additional steps which cannot be accommodated in the sequential

implementation steps. A PDD is attached to provide more insight into the impact of the described

changes. A legend is shown in Figure 28, which indicates how incremental differences should be

interpreted.

 Insertion

 Modification

 Deletion

Figure 28. Legend for method increments

Cross-Functional Delivery Team

The purpose of this method fragment is to shape a cross-functional delivery team where team

members act together to ensure the software delivery process proceeds smoothly. The major

difference with the baseline method is that IT operators are also part of the team, so they are able to

support developers in their activities to ensure the information system is production-proof. As the

operations department of CaseComp is established in another location, the team would virtually exist

(i.e. a geographically dispersed team). However, operators still need to attend the project meetings

periodically to ensure both parties are aligned with each other. A prerequisite for this method

fragment is that resources are made available for operators so that their regular activities are not at

risk. A result of implementing this fragment is that the definition of done (DoD) changes for the

project team. The updated definition includes the actual delivery to production. The sub activities are

defined by Hüttermann (2012), who proposes activities on how to succeed in transforming the work

group into a team. The activities aim on setting up shared definitions in a workshop session.

Name Cross-Functional Delivery Team

Goal in context Effective collaboration and smoother operations.
Scope Entire Scrum process.

Primary and secondary stakeholders
Developers, testers, Scrum master, technical application manager,
functional application manager

Proposed incremental path 1. Introduction of the activity to form a delivery team at the
beginning of the Plan project phase. The delivery team is
responsible for the entire software delivery process and
exists either virtual or physical. The activity is executed
before the project starts. During this activity a workshop
session is held by the Scrum master where all team
members elaborate on shared definitions for the team.
- Driver: development and operations departments are

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 53

disconnected from each other.
- Stakeholders: Scrum master, technical application

manager, developers, testers, product owner.
Unordered increments - Developers should be educated to make it for operations

easier in their work, e.g. they need to know how the
technical guidelines related to the IT infrastructure can be
properly addressed.

- Also, developers and testers need to learn the basics of
operations (at least need to know how the software is
distributed to the production environment).

- Testers should be adequately informed on technical
requirements, e.g. how to cope with quality requirements,
and how to test them.

- All team members should work on their soft skills such as
communication and writing skills, to ensure the barriers in
communication are eliminated.

- The technical application manager and functional
application manager should have basic knowledge about
development and testing.

Reference to PDD Figure 30, Figure 29
Table 2. Method increment description: cross-functional delivery team

Form delivery team

Define foundations SHARED GOAL

Team

Define quick wins

STEP

PATH TO SOLUTION

Define scope

realizes

Define path to solution

Define next steps

Define slack time

SCOPE

QUICK WIN

SLACK TIME

1..*

1

1

1..*

Figure 29. Method fragment: form delivery team

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 54

Figure 30. Method increment: cross-functional delivery team

Develop for Production

This method increment ensures the production artifacts are updated in an iterative way. Right after

the development of a backlog component, the materials related to production are updated

accordingly. These include release documentations such as the installation and maintenance guide,

and two scripts. The health script is used to check whether the release is ready to put into

production. This script tests the quality requirements. If needed, the database update script is

updated accordingly. There has been added a new activity and corresponding concept for each script.

As the documents and scripts are in sync with the system, the transition to production is less error

prone.

Name Develop for Production
Goal in context Early creation of operational artifacts.
Scope Fits into the phase Develop release.
Primary and secondary
stakeholders

Developers, testers, technical application manager.

Proposed incremental path 1. The name of the activity Develop backlog components has changed
to Develop for production.
- Driver: The activity now entails more than just the development

of backlog components.
- Stakeholders: developers, testers, technical application manager.

2. Deletion of the activity Create release documentations from the
Finalize release phase.
- Driver: The operational artifacts were created post-mortem (i.e.

when the development is done), which lead to problems in the
software delivery process.

- Stakeholders: developers, testers, technical application manager.
3. Introduction of the activity Update health script and its

corresponding product concept within the Develop for production
activity.
- Driver: To ensure the quality requirements are properly

addressed.
- Stakeholders: developers, technical application manager

4. Introduction of the activity Update database script and its
corresponding product concept within the Develop for production
activity.
- Driver: To ensure the production database scheme reflects the

actual situation.
- Stakeholders: developers

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 55

5. Introduction of the sub activity Update release documentations
and its corresponding product concepts in the Develop backlog
components activity. The target activity switches to a complex
concept.
- Driver: to keep the release artifacts up to date during the

development.
- Stakeholders: developers, testers, technical application manager.

Unordered increments - The project team need to know how the release process works, so
developers know what the crucial details are when developing
operational artifacts.

- The project team should be informed on how the release scripts
can be written and executed.

Reference to PDD Figure 31, Figure 32
Table 3. Method increment description: develop for production

Figure 31. Method increment: Develop for Production

Develop for production

Develop backlog components COMPONENT

SOURCE CODE

Team

Update health script

Update release documentation

MAINTENANCE GUIDE

INSTALLATION GUIDE

1

1

1

DOCUMENTATION

QUALITY

REQUIREMENT

HEALTH SCRIPT

validates

based on

Code

BUILD

Code

1..*

RELEASE

1

1..*
1

1..*

1

11

Update database script

DATABASE SCRIPT

Figure 32. Method fragment: develop backlog components

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 56

Early Feedback by Operations

The goal of this method increment is to involve IT operations in the development of the information

system so that early feedback is obtained about the design of the system. During the system

development, IT operators review the system design in order to identify eventual problems in an

early stage. In this manner the system is checked in time so that the system complies with the

operational guidelines, such as logging, monitoring, security, etc. IT operations assesses whether the

IT infrastructure is sufficient to support the realization of user stories and quality requirements

planned for the current sprint. Below we provide a summary of the design documents that are

produced during the project at CaseComp. The last four documents are selected for inspection by IT

operations as the first two documents only address the creation of user functionalities, which are not

relevant for operations. In this method fragment we use the term SYSTEM ARCHITECTURE to refer to

these four documents.

 Project start architecture (PSA). This document provides a high level overview of the system

architecture.

 High level solution (HLS). This document describes the required user stories as well the

system interactions by the use of sequence diagrams.

 High level solution integration (HLSI). This document describes the application landscape

and service calls across the systems.

 Project architecture constrains (PAC). This document describes the general architectural

principles and the standards to be met. Also it provides a technological model with a detailed

description of the systems and interfaces involved.

 System development and production environment (SOPO). This document describes the

development and production environment.

 Interface specification & protocols (ISP). This document describes the input and output of

the system interfaces.

Name Early Feedback by Operations
Goal in context IT operators provide feedback about the design of the application

under development, early and often.
Scope Develop release and Design architecture Phase
Primary and secondary stakeholders Developers, technical application manager
Proposed incremental path 1. Introduction of the activity Assess and adapt current

infrastructure and its corresponding concept.
- Driver: Sometimes the infrastructure is not able to

support the new features, therefore the infrastructure
should be assessed before the development takes place.

- Stakeholders: technical application manager (TAB)
2. Introduction of the following unordered activities with its

corresponding concepts within the Assess and adapt current
system architecture activity: inspect HLSI, inspect PAC,
inspect SOPO, and inspect ISP.
- Driver: The system design needs to be inspected by IT

operators to ensure issues are found in an early stage.
- Stakeholders: technical application manager (TAB)

3. Introduction of Report findings within the Assess and adapt
current system architecture activity.
- Driver: The inspection findings need to be presented so

that issues can be corrected on time.
- Stakeholders: technical application manager

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 57

4. Introduction of Adapt system architecture within the Assess
and adapt current system architecture activity.
- Driver: The required change need to be incorporated in

the system design.
- Stakeholders: business analyst integration (BAI), architect,

project manager
Unordered increments - The technical application manager should be informed on

both architecture of the system and domain models.
- All documentation should be stored on a central location.
- Technical application manager should use a formal

technique or method to support the design inspection.
- The developers are well informed on the current state of

the IT infrastructure.
- The team should be trained on communication skills.
- Technical application managers should attend, at least start-

sprint, mid-sprint and demo meetings to provide their
feedback on the system.

Reference to PDD Figure 33, Figure 34
Table 4. Method increment description: early feedback by operations

Figure 33. Method increment: early feedback by operations

Assess and adapt current

system architecture

Inspect HLSI

Adapt system architecture

1

1

1

SYSTEM

ARCHITECTURE

Inspect PAC

HLSI

Inspect SOPO

Inspect ISP

PAC

SOPO

ISP

1

1

Report findings INSPECTION

FINDINGS

Provide

input for

1
1

TAB

TAB

TAB

TAB

TAB

BAI, architect, project manager

Figure 34. Method fragment: assess and adapt current system architecture

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 58

Integrate Production Stories

The following method fragment integrates production stories into the product backlog of the project.

Production stories are based on quality requirements (e.g. the system should respond fast) and

constrains (e.g. the system should be built on a Unix platform). According to Ambler (2012) there

exist three strategies to implement this pattern, therefore we provide an incremental path for each

variant. At the end we determine the approach that is most suitable for CaseComp. Ambler (2012)

distinguishes production stories, acceptance criteria for individual user stories, and an explicit list for

quality requirements. The technical or production stories strategy is identical to user stories. The

strategy ensures that production stories are captured as a separate story that is meant to be

addressed in a single sprint. Another strategy is attaching quality requirements to user stories. In this

manner quality requirements are handled as acceptance criteria for existing user stories. A logical

result is that the quality acceptance criteria becomes part of the definition of done (DoD) for the

project. The last strategy uses an explicit list (i.e. a separate artifact) for capturing quality

requirements. In addition to these strategies, Hüttermann (2012) proposed a combined approach of

which the acceptance criteria are derived from the explicit list. The list contains high-level quality

requirements for the system and is addressed when formulating acceptance criteria for individual

user stories. The quality requirements list is filled with entries by operations just as intended by the

pattern, however the list is maintained by the product owner so other stakeholders are also invited

to provide their input.

Name Integrate Production Stories
Goal in context Eliminating the discrepancies between development and operations.
Scope Plan project phase
Primary and secondary
stakeholders

Product owner

Proposed incremental path for
production stories

1. The name of the activity Define functionalities for releases has
changed to Define stories for releases.
- Driver: Quality stories are also defined.
- Stakeholders: Product owner.

2. The introduction of the concepts PRODUCTION STORY and
STORY. USER STORY has changed to a subtype of STORY. A
STORY can either be a USER STORY or PRODUCTION STORY.
- Driver: To make a distinction between user functionalities

and quality (production) requirements.
- Stakeholders: Product owner.

3. The insertion of an association relationship between
PRODUCTION STORY and BUILD.
- Driver: The BUILD is checked whether it meets the

PRODUCTION STORY.
- Stakeholders: developers, testers, technical application

manager.
Proposed incremental path for
acceptance criteria

1. The introduction of the concept QUALITY CRITERIA. USER
STORY has changed to an open complex activity.
- Driver: To attach quality requirements to user functionalities.
- Stakeholders: Product owner.

2. The insertion of an association relationship between QUALITY
CRITERIA and BUILD.
- Driver: The BUILD is checked whether it meets the QUALITY

CRITERIA.
- Stakeholders: developers, testers, technical application

manager.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 59

Proposed incremental path for
the explicit list

1. The introduction of the concept QUALITY REQUIREMENTS LIST.
The list is created simultaneously with the product backlog.
- Driver: To make a distinct requirements list for quality

(production) requirements.
- Stakeholders: Product owner.

2. The name of the activity Define functionalities for releases has
changed to Define contents for releases.
- Driver: Quality requirements need to be defined.
- Stakeholders: Product owner.

3. The introduction of the concept QUALITY REQUIREMENT.
- Driver: To make a distinct requirements list for quality

(production) requirements.
- Stakeholders: Product owner.

4. The introduction of an association relationship between
QUALITY REQUIREMENT and USER STORY.
- Driver: The USER STORY is checked whether it meets the

QUALITY REQUIREMENT.
- Stakeholders: developers, testers, technical application

manager.
Proposed incremental path for
the hybrid approach

1. The introduction of the concept QUALITY REQUIREMENTS LIST.
The list is created simultaneously with the product backlog.
- Driver: To make a distinct requirements list for quality

(production) requirements.
- Stakeholders: Product owner.

2. The introduction of the concept QUALITY REQUIREMENT.
- Driver: To make a distinct requirements list for quality

(production) requirements.
- Stakeholders: Product owner.

3. The introduction of the concepts TECHINAL STORY and STORY.
USER STORY has changed to a subtype of STORY. A STORY can
either be a USER STORY or PRODUCTION STORY.
- Driver: To make a distinction between user functionalities

and quality (production) requirements.
- Stakeholders: Product owner.

4. The introduction of the concept QUALITY CRITERIA. USER
STORY aggregates the QUALITY CRITERIA, therefore USER
STORY changed to an open complex activity.
- Driver: To attach quality criteria to user functionalities.
- Stakeholders: Product owner.

5. The name of the activity Define functionalities for releases has
changed to Define contents for releases.
- Driver: Quality requirements need to be defined.
- Stakeholders: Product owner.

Unordered increments - Technical application manager should be made responsible for
providing and maintaining the quality requirements list as both
the operational constrains.

- The product owner should be made responsible for eliciting the
production stories and quality criteria based on the quality
requirements list.

- The team should be informed on how quality requirements
should be addressed during the project. Trainings are essential
to ensure these requirements are efficiently processed by the
team.

Reference to PDD Figure 35 (production stories), Figure 36 (acceptance criteria), Figure 37
(explicit list), Figure 38 (hybrid approach)

Table 5. Method increment description: develop for production

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 60

At CaseComp a project management tool is used for the project administration. The tool records all

project artifacts, such as the product backlog, sprint plan, and stories on a central location, which is

accessible by all team members. It also maintains the relationship of work items to its parent

products in order to foster traceability. The choice of which method variant is selected for

implementation depends on the support and customizability of this tool. Since the research is limited

to process improvements only, the changes should be supported by the current tool.

The production stories approach (Figure 35) seems the most easiest solution. Production stories can

be inserted right into the existing product backlog so they can be planned just like traditional user

stories. The distinction between user stories and production stories can be made visible within the

tool by selecting a type. A functional requirement is recorded as a user story, whereas a production

story is labeled as a generic task. This approach seems very logical to CaseComp, however quality

requirements may apply to multiple user stories so it could take a long time to finish a single

production story. This issue complicates the sprint planning as the estimation for stories becomes

less accurate.

Figure 35. Method increment: develop for production (production stories)

The second approach (Figure 36), assigning quality criteria to individual user stories, is a practical

solution when there are only a few quality requirements. The project team receives many cross-

cutting quality requirements from external parties which probably result in the same quality

acceptance criteria for multiple user stories.

Figure 36. Method increment: develop for production (acceptance criteria)

The third solution (Figure 37), an explicit list for quality requirements is not of relevance as there is

already a quality requirements list available for the system under development. This list is

maintained and provided by external stakeholders. As the list is already available but it is not part of

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 61

the process (i.e. the list is not actively addressed during the development because no work items are

linked to it), there is practical no difference when implementing this increment variant.

Figure 37. Method increment: develop for production (explicit list)

The final solution uses a hybrid or mixed approach (Figure 38). This approach combines the

aforementioned approaches into a single solution. The quality requirements can either result in

quality criteria for user stories or developable production stories. This solution is ideally suited to

support both low and high-level quality requirements. As the original quality requirements list is

unaltered, the responsibilities stay the same (i.e. the creation is still done by external stakeholders).

The quality requirements are written in a different context (e.g. business or operations) at different

levels, therefore the requirements need to be adjusted for the team. The hybrid variant is chosen as

this approach supports the characteristics of quality requirements at CaseComp.

Figure 38. Method increment: develop for production (hybrid approach)

Sync Meeting

The purpose of this method increment is to have an evaluation meeting in which the team, especially

development and operations, closely discuss the changes that need to be rolled out by the current

release. The team also operational issues from the last deployment are discussed to learn from early

experiences. Communication and alignment extend working relationships and, thus, foster

collaboration.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 62

Name Sync meeting
Goal in context Eliminate risks in the transition to production and learn from early

experiences.
Scope Finalize release phase
Primary and secondary stakeholders Developers, testers, technical application manager, functional

application manager
Proposed incremental path for
production stories

1. The introduction of the activity Evaluate release contents.
- Driver: To foster communication and increase the quality

of the system.
- Stakeholders: Developers, testers, functional application

manager, technical application manager, product owner.
Unordered increments - Operational issues from the last deployment should be

collected by the functional application manager.
- Developers provide a summary of the important changes in

the current release.
- Team members should have advanced skills in

communication.
Reference to PDD Figure 39
Table 6. Method increment description: sync meeting

Figure 39. Method increment: sync meeting

5.2 Situational Method

In the previous sections the method fragments are elaborated for the situational context at

CaseComp. At this moment we are able to assemble these fragments into the baseline from Chapter

4. The result is a situational method that describes the desired situation for the selected case. The

process-deliverable diagram (PDD) of the situational method is depicted in Figure 41. The (open)

complex activities are further elaborated in Figure 29 and Figure 32. The updated activities and

concepts for the situational method are provided in Appendix VII. Descriptions from Appendix IV still

apply to the unchanged parts of the PDD. Scrum meetings were initially omitted from the reference

method (Blijleven, 2012), so we provide a model (Figure 41) to show the sequence of meetings

during the entire project. The model includes the introduced meetings team workshop and sync

meeting as well.

Start sprint
meeting

Mid sprint
review

Daily
stand-up

End sprint review

Retrospective

Demo

Sync meeting

Team
workshop

Daily
stand-up

Figure 40. Meetings during the project

1..*

Plan project

Create product backlog

Define delivery dates for releases

Define release plan

Identify required development resources

Estimate development budgets

Verify management approval and funding

Design architecture

Develop release

Wrap developed backlog components

[else]

Finalize release

Create customer demo

Prepare training materials

CUSTOMER DEMO

Define contents for releases

COMPLETION DATE

QUALITY CRITERIA

SPRINT PLAN

Customer requirements

Time pressure

Competition

Quality

Vision

Resource

PRODUCT BACKLOG

Bugs

Defects

Enhancements

Functionalities

Technology upgrades

is based on

1

1..*

Assess risks

Analyze risk impact

Prioritize risks

ASSESSMENT

REPORT

IMPACT

PRIORITY

1..*

1..*

is derived from

RESOURCE PLAN

BUDGET PLAN

1..*

is based on

1

is able to support

is able to support

1

1

1..*

1

1

COMPONENT

SOURCE CODE

Review project plan

defines

1

1..*

realizes

1

1..*

1

BUILD HISTORY

Code

Effective date

Status

Version

has1 1..*

is based on

TRAINING MATERIAL
is based on

1

1..*

1..*

Code

BUILD

Code

Identify risks

RISK
has

1

1..*

1

RISK LIST
PROJECT INITIATION

DOCUMENT

DOMAIN MODEL

[approved]

1..*

1..*

1..*

1

1

1

1

1..*

Product owner

Product owner

Product owner

Product owner

Team

Product owner

Product owner

Product owner

Product owner

Product owner

Product owner

Product owner

Team

1

PRODUCTION DATE

RELEASE

1

1..*

Test working build

is based on and results in

Team

Functional application management

Assess and adapt

current system

architecture

MAINTENANCE GUIDE

INSTALLATION GUIDE

1

1

1

DOCUMENTATION

Package release for operations

Deliver release to operations

Provide support

Provide support for PAT

Provide support for deployment to

production

Team

Team

Team

Team

Write release documentation
Team

0..*

Assess and

adapt current

domain models

QUALITY REQUIREMENT

1..*

1..*

1
QUALITY

REQUIREMENTS LIST

1..*

is derived from

0..*

1..*
1..*

USER STORY

0..*

1

STORY

PRODUCTION STORY

d

is derived from

1..*

0..*

Form delivery team
Team

IT INFRASTRUCTURE
is able to support

Assess and adapt

current IT

infrastructure

1

Develop for production

Evaluate release contents
Team

SYSTEM

ARCHITECTURE

Figure 41. Situational method for the desired situation

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 64

6. Integration Scenario

This chapter elaborates on the optimal integration scenario, the path in which method increments

are incrementally added to the baseline method. The small improvement packages focus on a limited

number of issues, by taking small evolutionary steps. Implementing process changes in such

evolutionary way, reduces both risks and implementation costs. The chapter has the aim to provide

an answer on the fourth research subquestion:

SQ4. How can the selection of method increments in alternative integration scenarios be

supported?

We define an integration scenario as the process alternative to incorporate method increments into

a baseline method. An integration scenario is considered fully executed when the incremental steps

as described by the method increment descriptions from 5.1.3 are performed in the prescribed

sequence. The scenario execution process is supported by a set of activities that are needed to shape

the target situation (e.g. educating users, obtaining data).

6.1 Implementation Requirements

Before we elaborate on the integration scenario we need to make sure that implementation

requirements are properly addressed. The requirements and fragment’s characteristics aid us in

shaping the optimal scenario for CaseComp. Ultimately, this integration scenario is executed and

validated in a pilot experiment.

6.1.1 Organizational Requirements

In Chapter 4 we identified three implementation requirements that need to be addressed. The

requirements for DevOps were captured as follows:

R1. The knowledge should be up to date.

R2. Tools need to be aligned with the process.

R3. For each process change the necessary time and resources have to be estimated.

The quality of software is shaped by the controllable factors product, people, and technology (Paulish

& Carleton, 1994). It becomes obvious that the first two implementation requirements are the logical

result of people and technology factors. To address the first requirement, we identified knowledge

themes and skills which team members must master for the updated process areas. The training and

education needs for the improvements are discussed in the method increment descriptions in

Chapter 5. The second requirement that states tools need to be aligned with the process, is already

covered because method fragments are elaborated using input from the project team. This has

ensured that method fragments are supported by the current tools and requires no further

adaptations. Lastly, we address the third requirement by providing an estimation about the required

time and resources for implementing the proposed improvements. This estimation is done by

considering how much time is needed for each stakeholder to perform the activities prescribed by

the patterns. Note that the SPI facilitator also needs time for preparation activities (e.g. education,

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 65

 FA
B

 =
 F

u
n

ct
io

n
al

 a
p

p
lic

at
io

n
 m

an
ag

er

TA
B

 =
 T

ec
h

n
ic

al
 a

p
p

lic
at

io
n

 m
an

ag
er

C
M

 =
 C

h
an

ge
 m

an
ag

em
e

n
t

data collection, planning), the actual implementation, and coaching activities. The cross-functional

delivery team requires a workshop session that takes at least a half day (Hüttermann, 2012).

Therefore we assume 5 hours for each stakeholder. The review activities for early feedback by

operations requires 3 hours to review the documentation by FAB and TAB. The feedback may result

in adaptations of the system, of which 4 hours are planned for developers. The integrate production

stories requires in total 4 hours by IT operations (i.e. FAB and TAB). The product owner has the

responsibility to prioritize their input accordingly to ensure the ratio between functionalities and

production stories is maintained. The pattern develop for production requires a minimum effort of 1

hour by developers and testers to update and validate the release artifacts in an early stage. The Sync

meeting requires at least 3 hours for a meeting (of which 1 hour for preparations) in which

development and operations discuss the lessons learned, release contents and expected issues for

the current release.

The outcome is provided in Table 7 which shows the total estimated hours per stakeholder. The time

is calculated by summing the required time for each pattern.

Time/resources D
e

ve
lo

p
e

r
(4

x)

Te
st

e
r

(3
x)

B
u

si
n

e
ss

 a
n

al
ys

t

P
ro

d
u

ct
 o

w
n

er

FA
B

TA
B

C
M

SP
I f

ac
il

it
at

o
r

P
ro

je
ct

 m
an

ag
e

r

Es
ti

m
at

e
d

 h
o

u
rs

D1. Cross-functional delivery team 20 15 5 5 5 5 0 8 5 68

D2. Early feedback by operations 4 0 0 0 3 3 0 2 0 12

D3. Integrate production stories 4 3 0 3 2 2 0 3 0 17

D4. Develop for production 4 3 0 0 0 0 0 2 0 9

D5. Sync meeting 6 6 0 0 2 2 0 3 0 19

Total 38 27 5 8 12 12 0 18 5 125

Table 7. Necessary time and resources for the SPI effort

6.1.2 DevOps Requirements

Beside organizational requirements for implementing DevOps, there are multiple requirements

inherent to DevOps. According to Paulish and Carleton (1994), a well-established culture is seen as

one of the success factors for adopting a software process improvement method. Therefore, the

focus is first on the cultural aspects before we move on to any other efforts. During the DevOpsDays

in Rome, Edwards (2012) stated that the best way to begin is to infuse cultural aspects (i.e. values,

norms, language, systems, symbols, beliefs, and habits) with the DevOps vision. A DevOps vision is

shaped in the following four steps:

1. See the system. End-to-end view of the system, from inception to technological

implementation.

2. Focus on flow. Examine how to improve the flow in which business ideas are transformed

into working products.

3. Recognize feedback loops. Learn from feedback on how to improve the system.

4. Look for continuous improvement opportunities. Monitor and enhance the process by the

use of feedback loops.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 66

According to Walls (2013) a DevOps culture is characterized by open communication, clear alignment

of incentives and responsibilities, respect, and mutual trust. Edwards (2012) proposes a set of

practices that successful DevOps organizations have adopted to create a DevOps culture. An

overview of examples that support the organization in establishing a DevOps culture is provided by

Pais (2012b). An important practice is to banish the word ‘done’ from the project, so the team is

responsible for the system during the entire application lifecycle. Also, bottlenecks can be removed

by realigning ownership and control:

· Development owns uptime for their code.

· Operations owns uptime for platform and tooling.

· Quality assurance owns standards, tooling, and enforcement.

· Everyone owns test writing and test coverage.

The culture requirement is addressed by applying the cross-functional delivery team pattern. The use

of this pattern requires team members to participate in a workshop session to elaborate on the

shared goals and vision for the team. This method fragment should be implemented as first as it is

the foundation for any other improvement regarding to DevOps.

Another implicit requirement for adopting DevOps (as well for most other SPI initiatives) is

commitment from management. Management should be adequately informed and engaged in

setting up a DevOps pilot. As stated by McFeeley (1996), “without strong, informed, and steadfast

commitment and sponsorship from senior management, the effort is doomed from start”. Before the

pilot experiment takes place, management is required to provide a formal approval for allocating the

necessary resources and SPI budgets.

6.1.3 Optimal integration scenario

The kind of relationships between the method fragments such as precedence, deliverance, and

requirements should be taken into account when composing an optimal integration scenario. We

used the dynamic diagram box notation by Mullery (1997). This diagrammatic notation is part of the

CORE method, a method that specifies requirements adequately. The notation uses a composite of

widely used notations for expressing requirements or design, and is ideally suited to show how an

integration scenario can be composed. The relationships that are inherent to the method fragment

are built into the diagram, illustrating the integration process from left to right (Figure 42).

The cross-functional delivery team fragment is put in front as it is required by all method fragments.

Without this, all implementation attempts related to DevOps will be fruitless. For the completeness

we include all variations of the integrate production stories fragment. Variants use a circle in the

upper right corner, which means that one of the alternatives needs to be chosen. This method

fragment is put as second as the quality requirements need to be early addressed in the

development process. Realizing quality requirements after the system is developed is very cost-

inefficient. The third column provides an alternative, as either one of the two may be implemented

as first, followed by the other. However, they also can be implemented in parallel. Finally, the sync

meeting fragment should be implemented as last, since this meeting cannot be held as the

development has not yet finished.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 67

Cross-functional
delivery team

Sync meeting

Integrate
production

stories
(technical story)

Early feedback
by operations

Develop for
production

Integrate
production

stories
(quality criteria)

Integrate
production

stories
(explicit list)

Integrate
production

stories
(hybrid)

Figure 42. Composition of the integration scenario

We already determined to use the hybrid approach of the integrate production stories fragment in

section 5.1.3, so we only have to determine the sequence of the two fragments in the third column in

order to finish the composition. We argue to implement early feedback by operations before develop

for production, because the assessment of the system is likely to be done before the backlog

components are constructed. Based on this reasoning, the preferred implementation order of the

method fragments is as follows:

1. Cross-functional delivery team (P1)

2. Integrate production stories (hybrid) (P4)

3. Early feedback by operations (P3)

4. Develop for production (P2)

5. Sync meeting (P5)

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 68

7. Pilot Experiment

In this chapter we discuss the results of the pilot experiment which was performed at CaseComp.

During an 8-week pilot project we introduced the set of proposed improvements. Based on feedback

we are able to make conclusions about the effectiveness of applying these method fragments in a

Scrum project. First, we discuss the outline of the conducted case study approach. Second, we

elaborate on the integration execution process. Third, we discuss the observations that were made

during the implementation of the method fragments. Fourth, we reflect on the integration using

PIW-sessions, and discuss any additional improvements to shape the situational method. Fifth, the

measurements are presented and evaluated. These steps contribute to the answer on the fifth

research subquestion:

SQ5. How can the optimal integration scenario be executed in a real development project?

7.1 Scenario Execution Process

Earlier studies investigated how large improvements can be separated into small increments. For

example, Van de Weerd et al. (2007) discusses how a method increment can be visualised. Van Stijn

et al. (2012) provided a template for describing multiple method increments within one

improvement effort. However, few methods exist that introduce these small changes into a living

process in a real project. In this section we elaborate on the improvement planning procedures.

7.1.1 Iterative Improvement Process

Salo and Abrahamsson (2007) propose an iterative improvement process (IIP) for conducting SPI

within agile software development projects. “The short development cycles of agile software

development provide continuous and rapid loops to iteratively learn, to enhance the process and to

pilot the improvements” (Salo & Abrahamsson, 2007). The iterative improvement process is founded

on the principles of agile and is, therefore ideally suited for introducing improvements in the process

and getting quick feedback on it. We apply this approach to support the implementation of method

fragments in the preferred order.

After every sprint, a post-iteration workshop (PIW) is held in which the team exchanges experiences

and results from the previous sprint (Figure 43). Each PIW session lasts about 2.5 hours, which

requires additional 82.5 man-hours for the entire SPI effort. The PIW is carried out in the following

steps:

1. Preparation. The appropriate metrics and techniques are selected for the PIWs.

2. Experience collection. Problems and obstacles are identified by the project team.

3. Planning of improvement actions. Improvement actions are planned based on the negative

experiences.

4. Piloting. The improvements are implemented according to the defined plans and

measurement data is collected.

5. Follow-up and validation. Experiences of the team and analysed metrics provide feedback on

the implemented improvements.

6. Storing. Agreements with the team are stored for the next PIW.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 69

Sc
ru

m
 s

o
ft

w
ar

e
d

ev
el

o
p

m
en

t
p

ro
ce

ss

It
er

at
iv

e
im

p
ro

ve
m

en
t

p
ro

ce
ss

Iteration 1:
Agile development activities

(Initial)
preparation

Iteration 2:
Agile development activities

Iteration ... n:
Agile development activities

Experiences
Metrics

Experiences
Metrics

Experiences
Metrics

PIWPiloting Piloting Piloting

Preparation
Follow up and

validation
Experience
collection

Improvement
actions

Storing

PIW PIWPIW

Figure 43. Iterative improvement process (redrawn from Salo and Abrahamsson, 2007)

7.1.2 Improvement Planning

The scenario execution process must adhere to the length of the pilot experiment, therefore we first

determine the duration for the entire scenario execution process. The scenario should be executed

within the allocated time for the software process improvement (SPI) effort. At CaseComp there are

four, biweekly sprints reserved for the SPI effort, starting at the beginning of a new project. The

integration scenario should be aligned to this project schedule. Based on the preferred order of the

method fragments from section 6.1 we can map the improvements on the available sprints. Note

that a single sprint may serve multiple improvements during a pilot.

Integrate
production

stories

Early
feedback

by
operations

Develop for
production

Sync
meeting

Cross-
functional
delivery

team

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Figure 44. Improvements projected to the available time slots of the pilot experiment

7.2 Case Study Approach

An important guideline in design science is that the utility, quality, and efficacy of a design artifact

must be rigorously demonstrated via well-executed evaluation (Hevner et al., 2004). The evaluation

of the experiment was twofold. First, the method is empirically validated by the team. Second,

measurements are compared with previous project results. We applied a pilot case study to validate

the method fragments and integration scenario in a real project. “Case studies help industry evaluate

the benefits of methods and tools and provide a cost-effective way to ensure that process changes

provide the desired results” (Kitchenham, Pickard, & Pfleeger, 1995). During the pilot project, we

introduced the improvements step by step and obtained feedback from the team. According to

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 70

McFeeley (1996) “the solutions will require some tailoring and refinement to fit them into projects

across the organization, and the pilots will help determine the tailoring needs and guidelines for the

rest of the organization”. The case study consisted of a single-case design with multiple units of

analysis, which is also referred to as an embedded design (Yin, 2009). The aim is to demonstrate the

usefulness of the method fragments and its corresponding process patterns, whether they affect the

key problem areas from Chapter 4. The findings enable us to validate and improve the process

pattern mapping table (Figure 26) in section 5.1.2. We followed the guidelines for case study

experiments by Kitchenham et al. (1995), which support the execution of the pilot project in the

following 7 steps:

1. Define the hypothesis

2. Select the pilot projects

3. Identify the method of comparison

4. Minimize the effort of confounding factors

5. Plan the case study

6. Monitor the case study against the plan

7. Analyze and report the results

To check whether the problem areas are tackled by the proposed method fragments, we provide a

hypothesis for each key problem area (Table 8) that can be tested once the pilot project has ended.

The hypotheses are justified in the case study protocol (Appendix IIX).

Code / category Hypothesis

D1. The processes of the development
and operations departments are not
aligned with each other.

H0. The standard deviation of the project velocity is
equal.
H1. The standard deviation of the project velocity is
decreased.

D2. Lack of standardization for quality
guidelines.

H0. The number of production acceptance testing (PAT)
issues per release is equal.
H1. The number of production acceptance testing (PAT)
issues per release is decreased.

D3. IT Operations is not well represented
in the project.

H0. The ratio of finished backlog items addressing
quality requirements compared to the ratio of finished
user stories is equal.
H1. The ratio of finished backlog items addressing
quality requirements compared to the ratio of finished
user stories is increased.

D4. Too comprehensive process for
releasing information systems.

H0. The time between the last PAT approval and the
time of release is equal.
H1. The time between the last PAT approval and the
time of release is increased.

D5. Moderate communication between
development and operations.

H0. The ratio of the number of quality defects per
quality requirement is equal.
H1. The ratio of the number of quality defects per
quality requirement is decreased.

Table 8. Hypotheses mapped to the main drivers

For this pilot case study we selected the same development team for whom we have elaborated the

current situation in Chapter 4. The pilot results are compared with the results of the baseline, which

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 71

is the average of recent projects by the same team. For the baseline we included the last two

projects which each had 8 sprints, with a total duration of 8 months. The pilot project is assisted by

the iterative improvement process (IIP), a software process improvement method with an

“integrated collection of procedures, tools, and training for increasing product quality, improving

development-team productivity, or reducing development time” (Paulish & Carleton, 1994). For

details regarding the case study planning and procedures consult Appendix IIX.

7.3 DevOps Integration

The pilot experiment is performed in parallel with a real information system development (ISD)

project. The development project was an emergency branch for an application module that is already

deployed to production. The process differs from a regular project as the team has never been

discharged. This probably affects the implementation of some method fragments. The SPI facilitator

was represented by the Scrum master and was assisted by the lead researcher. The Scrum master

was also the supervisor of this research, so this person is familiar with the concepts of DevOps and is

well informed on how to coach the team. In the following sections we discuss the observations

during the implementation of the method fragments according to the method increment

descriptions from 5.1.3.

7.3.1 Cross-functional Delivery Team

We started with the introduction of a cross-functional delivery team. Originally, the pattern suggests

a kick-off meeting. Since the team has never been discharged, the SPI facilitator announced the

meeting as an update meeting (rather than a project kick-off) in which the participants are informed

on the project. The goal of the meeting remained the same as intended by the original process

pattern, namely to create a shared vision for the team. The one-hour workshop consisted of two

parts. The first part was to inform the participants on the user functionalities and release deficiencies

planned for the subsequent sprints. The second part was a brainstorm session to elicit and discuss

any operational needs. In total, 2 functional application managers (FAB), 2 technical application

managers (TAB), 2 functional managers (FB), and 2 developers attended the workshop.

The session brought some useful discussions. For instance, a TAB correctly noticed that operations

should have access to the project backlog to add any operational tasks and issues. This resulted in

the creation of accounts for the project management system (PMS) by the Scrum master. One must

note the method fragment realigns the responsibility of the product owner, who should manage

operations as a new stakeholder. During the pilot, operations personnel was able to insert stories to

the product backlog, however, any submission is approved and prioritized by the product owner to

ensure the balance between production related tasks and user functionalities is maintained. Both

product owner and Scrum master monitored the involvement of operations as they should not be

discouraged to use the system at all. A downside is that they have to maintain a duplicate set of

records for multiple management systems (i.e. project and operations). Another discussion was on

guidelines for version numbering, which were not enforced by operations. These discussions would

not have taken place without this meeting.

During the second part of the workshop participants placed notes on the wall to share their input to

improve the software delivery process. The brainstorm session resulted in the identification 15

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 72

quality requirements, defects, and issues, which were used as input for the integrate production

stories fragment.

Afterwards participants were asked to provide their opinion on the workshop. Generally, the

participants were satisfied with the results that were obtained. However, some of the team members

indicated they have experiences with numerous SPI projects. They told these initiatives create

expectations among involved stakeholders, therefore they are somewhat reluctant towards the SPI

pilot. The method fragment has ensured all (virtual) team members were committed to the same

project. We argue this fragment plays an important role to establish a DevOps culture in near future

since this meeting was the first initiative to shape the attitude and behavior of the team. New

incentives may aim on knowledge sharing processes to encourage communication even more.

7.3.2 Integrate Production Stories

The integrate production stories fragment was implemented during the second sprint. The Scrum

master decided to include only production stories that were strictly relevant for that iteration since

the team has been forced to focus on the chain testing procedures. Due to this high workload the

team was not able to realize all production stories. The stories that were inserted can be considered

as general improvements related to IT rather than stories specific to the project. Operations

personnel provided their feedback on the identified production stories. According to IT operators the

improvements shall have more impact on the long term. Both FABs and TABs were positive on the

collaboration and felt they were more involved in the project. They are however, not familiar with

the program schedule for the Scrum teams which hinders their understanding for the project. Since

operations staff operates software for multiple project teams, they notice huge differences in the

alignment and collaboration with other teams. A critique on production stories is that they are often

postponed when separated, whereas quality criteria can be easily integrated by definition of done in

functional stories.

7.3.3 Early Feedback by Operations

The main purpose of this method fragment is to inspect the system design by human rather than

machine. The software inspection process is employed by operations staff. According Fagan (2001)

early inspections are “a formal, efficient, and economical method of finding errors in design and

code”. An early study by Kitchenham et al. (1995) showed that inspections are a very cost-effective

fault-detection method. However, we prevent the pitfall that is described by Kitchenham et al.

(1995). During a pilot case study, the modules that were subjected to design inspection were not

randomly allocated. In this study, only “difficult” modules were included and “easy” modules were

not given design inspections. Due to this bias the researcher was unable to make valid conclusions on

the effectiveness of the improvements. Based on this lessons learned we included all documentation

on the system design. Note that the unordered increments of the method increment description

(Table 4) require that all documentation is stored on a central location. This precondition cannot be

met since there are multiple decentralized document management systems (DMS) at CaseComp.

Therefore, during the pilot the required system documents are shared by e-mail to ensure IT

operations is inspecting the appropriate materials.

Personnel from operations needed only a half hour to review the system documentation. It appeared

that the SOPO and ISP documents were strictly relevant to the technical application manager (TAB).

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 73

The functional application manager (FAB) noticed that some document sections were frequently

reused over time, thereby provide no added value for the reviewer. Ultimately, no issues on the

system design were found. However, TAB found it useful to get access to such documents allowing

him to provide early feedback. FAB argues that reviewing these documents is irrelevant part for its

role and said the documents are relevant once major production issues occur (e.g. to find a root

cause).

In near future the method fragment can be extended by applying a formal technique to support the

design inspection. An example that can be used is the scenario-based analysis by Kazman, Abowd,

Bass, and Clements (1996). “Scenarios are important tools for exercising an architecture in order to

gain information about a system’s fitness with respect to a set of desired quality attributes” (Kazman

et al., 1996). Furthermore, the company should use a single DMS that is accessible by all stakeholders

rather than exchanging the documents by mail. Also, attention must be paid to improve the overall

quality of the system design documents (i.e. to keep the documents up to date and remove

irrelevant sections) to provide IT operations with value.

7.3.4 Develop for Production

This method fragment involves the creation of operational artifacts in an early stage to prevent any

mistakes during the test and release phase of the project. Without good documentation the software

must be operated by those who built it. The method fragment ensures the health script, database

script, installation guide, and maintenance guide are updated according to the recent adaptations of

the system. To make sure the activities are performed in time, the Scrum master attached tasks to

existing user stories in the project management system. In this manner all necessary artifacts are

updated before the status of a user story can be changed to done.

7.3.5 Sync Meeting

The purpose of the sync meeting is to align the activities of operations and development staff for the

system deployment. This meeting is held with the expanded team (i.e. both personnel from

development as operations), three days before the release is rolled out to production. In this manner

both parties are focused on the finalization and deployment of the release. First, the issues and

lessons learned from the last system deployment are discussed. For example, version numbers for

updated system files were not always equally registered in two separate systems. To address this

issue, agreements were made to stick to a version numbering convention. Second, the team

evaluated the release contents by discussing the key changes of the system. Third, expected issues

for the current release were shared with the team. Application time-out errors were expected, which

would have to be reported to the team. Also, the team was uncertain if database update scripts are

performed. Thus, procedures were provided to check if these scripts were executed correctly.

Another expected issue, was that the release introduces new user roles which were not adequate

tested during the production acceptance test (PAT). Participants indicated that user roles should be

tested during the chain test (which is executed before the PAT). This issue was input to improve the

chain test procedures. This deployment extra attention is paid to check whether problems occur as of

the new user roles.

For the team it was not always clear which third parties were involved in the release process. As the

sync meeting suggests a ‘pre-launch’ meeting were all representatives on the last release are

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 74

involved, it is important to figure out which other stakeholders need to participate during the sync

meeting. This improvement is recorded by Scrum master to ensure that all representatives are

present during the next sync meeting.

7.3.6 Adaptations to the Situational Method

The last step of the situational method engineering approach by Brinkkemper (1996) (as mentioned

in section 5.1) is to adapt the situational method based on empirical validation. The pilot experiment

provides us with new insights about the execution of the situational method in practice. We made

the following observations:

- The multiplicity of QUALITY REQUIREMENT in relation with PRODUCTION STORY should be

zero-to-many rather than one-to-many. In practice it appeared that PRODUCTION STORY(ies)

didn’t always derive from QUALITY REQUIREMENTs. Sometimes findings from production

directly result in the identification of new PRODUCTION STORY(ies).

- For each activity regarding to develop for production, there is added a subtask to the STORY

concept. All attached tasks should be performed before the status of a STORY can be set to

done. Therefore, the TASK concept is inherent to the introduction of the develop for

production fragment.

Also, during the pilot we have encountered the following issues:

- The QUALITY REQUIREMENTS LIST is maintained by IT operations and is invisible for the

team, therefore cannot be easily retrieved by the product owner, who is responsible for

managing stakeholder participation and requirements during the project. A new version of

the list should be created and managed by the product owner, so quality requirements are

elaborated in the correct context for the team.

- All design documents should be stored on a central location as IT operators have no access to

the required documents. Since operations staff is granted access to the project management

system (PMS), the documents should be stored into the PMS, so they can look up the

documents themselves (rather than requesting them by e-mail). In the same way, IT

operations should store the inspection findings on the system design on the same location

ensuring all materials are available for the team.

7.4 Analysis

In this section we discuss the final step of the approach for case study experiments by Kitchenham et

al. (1995), which evaluates the effects by testing the hypotheses from section 7.2. Based on the

obtained data we are able to draw conclusions about the effectiveness of the proposed

improvements on the key problem areas.

7.4.1 D1. Poor alignment between projects and operations

In a regular project the sprint velocity fluctuates between 70 and 80 story points, except for the last

sprints in which IT operations gets involved to prepare the release for production. The collapse of the

baseline velocity can be seen in Figure 45. The development project that took place during the pilot

was a special branch with a different duration (4 sprints rather than 8 sprints). Therefore, we cannot

draw conclusions by simply comparing the results from the chart. In the pilot project the release was

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 75

deployed during the fourth sprint, whereas the deployment in a regular project is typically scheduled

for the eighth sprint. Hence we use the standard deviation of the project velocity to compare the

results. For both the baseline as the pilot we used the corrected velocity to take into account the

availability of team members. The corresponding formula is provided below and is discussed in

Appendix IIX.

Vi = ∑ of original estimates of all accepted work in period i

The results on the metric are provided in Table 9. The pilot data shows an increase of 2,25 story

points in the mean of the sprint velocity, which indicates the team was slightly more productive than

in a regular project. Furthermore, the decrease of 10,22 in the standard deviation of the mean tells

us the process efficiency is more stable. Based on this improvement we can reasonably conclude that

hypothesis H0 for D1 is rejected.

Figure 45. Quantity of project velocity

Comparison of the sprint velocity

Baseline Pilot

Mean velocity 70 Mean velocity 72,25

Standard
deviation

20,25 Standard
deviation

10,03

Table 9. Comparison of sprint velocity

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8

R
e

al
iz

e
d

 s
to

ry
 p

o
in

ts
 (

ve
lo

ci
ty

)

Sprints

Pilot velocity

Baseline velocity

Pilot/baseline

release

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 76

7.4.2 D2. Lack of standardization for quality guidelines

The pilot data tells us an improvement in the number of production acceptance testing (PAT) issues.

These issues relate to the compliance with quality guidelines. The only PAT issue that occurred during

the pilot was related to the product naming convention. Although this issue resulted in a redelivery

of the system, it didn’t affected the quality of the release process. For that reason we have omitted

this PAT issue. We conclude that hypothesis H0 for D2 is rejected as there is an improvement

observed. Actually it is the optimal scenario as no relevant issues were found. Note that the issues

per release ratio (IR) for the baseline is quite low, which means that there is no strong evidence for

the results of the pilot.

The metric corresponds to the number of production acceptance testing (PAT) issues found (In) per

number of releases (Rn) in order to pass through quality control. The formula is provided below and

is discussed in Appendix IIX.

Comparison of production acceptance testing (PAT) issues

Baseline Pilot

PAT issues 6 PAT issues 0

of releases 2 # of releases -

IR ratio 3 IR ratio 0

Table 10. Comparison of PAT issues

7.4.3 D3. IT operators are not well represented

The baseline tells us that 6,04 % of the realized backlog items addresses quality requirements by IT

operations, whereas the remaining part addresses user stories (Table 11). Based on this baseline data

we can conclude IT operators are hardly represented as a stakeholder during a regular development

project as the production issues are not planned in the backlog. The figures for the pilot project tell

us an improvement of 6,66 %. The effect is relatively greater as the duration for the pilot project is

only half of the duration for a regular project. Based on the pilot data we reject hypothesis H0 for D3.

The metric corresponds to the total points of finished backlog items addressing quality requirements

in ratio with the total points of finished user stories. The formula is provided below and is discussed

in Appendix IIX.

Comparison of quality requirements

Baseline Pilot

Finished quality
requirements

53 Finished quality
requirements

28

Finished user stories 877 Finished user stories 220,5

QU ratio 6,04 % QU ratio 12,69 %

Table 11. Comparison of quality requirements

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 77

The proportions of quality requirements and user stories during the pilot are depicted in Figure 46.

From the second sprint, the team identified production stories to include in the sprint plan. Notice a

huge difference between the committed and finished user stories for the third sprint. This is due to a

scope change of the project, however the team realized all planned production stories. From the

third sprint, the team also introduced operational sub tasks for user stories to implement the develop

for production increment. Since the workload for sub tasks cannot be estimated in the project

management system, we projected the additional story points for the production stories in the graph

below. In the fourth sprint the team was unable to realize the planned production stories, which can

be explained by the low assigned priorities and absence of the Scrum master.

Figure 46. Quantity of realized quality requirements and user stories

7.4.4 D4. Complex release process

We stated that the required time to go through the release process is determined by slack time

during office hours. The idle time indicates the project is already done and wait till the release can be

deployed at the scheduled release date. Due to several approval moments that are built into the

release process, the team sits idle for a quite long time till the moment the release can be deployed.

How earlier the last approval is obtained, how better the release process can be quantified. This

metric indicates an improvement of 55 % in the idle time of the pilot project, which means that that

the release approval is obtained 11 hours earlier compared to an average project. Therefore,

hypothesis H0 for D4 is rejected. The formula of the metric is provided below and is discussed in

Appendix IIX.

Comparison of idle time (in hours)

Baseline Pilot

Release date - Release date 16 June 2013, 9:00

Date last approval - Date last approval 11 June, 2013, 10:00

Idle time 20 h Idle time 31 h

Table 12. Comparison of idle time

0

10

20

30

40

50

60

70

80

90

100

Sprint 1 Sprint 2 Sprint 3 Sprint 4

Committed production stories

Finished production stories

Committed user stories

Finished user stories

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 78

7.4.5 D5. Moderate communication between projects and operations

The post-release fault rates regarding to quality requirements are compared with those of the pilot

project. For this experiment the number of quality defects are counted within the first five days after

the system is deployed to production. The time limitation is due to the duration of this research, but

does not have to a problem for this metric as production issues are usually captured within two days.

The comparison of quality defects is provided in Table 13. The number of quality defects we

measured within the timespan was zero. Comparing this figure with the baseline tells us this number

is a huge improvement. Based on the pilot data we conclude that hypothesis H0 for D5 is rejected.

The defects/quality requirement (DQR) ratio expresses the proportion of reported quality defects

per quality requirement (QRn). The formula of the metric is provided below and is discussed in

Appendix IIX.

Comparison of quality defects

Baseline Pilot

Quality defects 6 Quality defects 0

Number of quality
requirements

53 Number of quality
requirements

38

DQR ratio 11,32 % DQR ratio 0 %

Table 13. Comparison of quality defects

7.5 Findings

In this section we discuss the findings of the situational method as well the iterative improvement

process. Based on both quantitative and qualitative feedback we are able to discuss the effectiveness

of the situational method on the identified problem areas in a real development project. Finally,

based on the analysis and experiences we are able to draw conclusions and improve the pattern

mapping table.

7.5.1 Method Increment Case Descriptions

In section 5.1.3 we elaborated on the method increment descriptions for the method fragments at

CaseComp. At this moment we are able to reflect on the template provided by Van Stijn et al. (2012).

The template was originally intended to reflect on a process implementation, however it was used as

a tool to prepare the process implementation schedule as well to maintain the method rationale. As

the template was suited for this purpose, we argue to incorporate the proposed paths attribute in

the original template to support the entire SPI effort (i.e. from planning to evaluation). Furthermore,

we suggest to rename unordered increments to implementation requirements. These requirements

are the preconditions of the environment that should be met before any of the proposed increments

can be introduced. Also, we advocate to add acceptance criteria to each increment path to

determine whether an increment step is executed correctly. The acceptance criteria should be

checked by the SPI facilitator.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 79

7.5.2 Iterative Improvement Process

The iterative improvement process (IIP) guided the SPI facilitators in the execution of the case study

pilot. The process supported both the integration and evaluation of method increments. IIP enabled

us to attach the proposed improvements to the available project time slots. During post iteration

workshops (PIW) the SPI facilitator gathered feedback by placing notes on the wall. This activity was

supported by the KJ method and semi-structured interviews. Sessions lasted for approximately 60

minutes and were held with the expanded team (i.e. including staff from operations). In the first

sprint we applied a semi-structured interview technique to obtain feedback on the method. This

sprint the team worked under high pressure, therefore not enough time was available to organize a

workshop. Instead, each key stakeholder (i.e. TAB and FAB) is asked questions to gather experiences

on the process changes in the same way as the PIW.

In all PIWs we counted the numbers of positive and negative experiences as both the number of

improvement actions (Figure 47). Generally the participants had positive experiences with the

implemented process changes. The average of positive experiences is above 9 for each sprint, which

is quite positive for a SPI pilot with a relatively short duration. The negative experiences declined

over the project, however each PIW session was focused on getting feedback on the realized

improvements rather than the overall pilot project. For the second sprint (integrate production

stories) there were relatively more improvement actions recorded. This mainly had to do with the

fact that different version numbers were been allocated to quality requirements in the project

management system. The sync meeting in sprint 4 was the only improvement that did not receive

any negative feedback, as all parties were very satisfied with the obtained results and the purpose of

this pattern.

Figure 47. Quantity of positive and negative experiences, and improvement actions

The regular evaluation meetings were very effective in obtaining qualitative feedback on the method

fragments. The advantage of employing IIP for a pilot project is that the team is already familiar with

its procedures, and enables the team to stick to the process once the pilot has ended. In the original

process, process improvements are continuously determined for the next iteration based on the

negative experiences by the project team (Salo & Abrahamsson, 2007).

7.5.3 Effects on the Problem Areas

In this section we discuss the effects on the problem areas based on the qualitative and quantitative

analysis. Based on the findings we improved the pattern mapping table (Figure 48). Initially, the

0

2

4

6

8

10

12

14

Sprint 1 Sprint 2 Sprint 3 Sprint 4

Positive Experiences

Negative Experiences

Improvement Actions

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 80

misalignment between operations and development processes (D1) was supposed to be tackled by

the patterns of P1, P3, P4, and P5. The cross-functional delivery team fragment has ensured that both

parties agreed on the activities for the upcoming sprints. By involving IT operations into the project,

the focus was on an effective collaboration. According to developers and operations the project

update (or kick-off) meeting was of added value to the project as it enhanced the alignment of the

daily activities. The develop for production (P2) fragment has ensured the release artifacts were

created in an early stage. As the materials for production were updated accordingly, fewer issues

were found in transferring the release to production. Therefore, we established a link between P2

and D1. The design inspection initiated by early feedback by operations (P3) has ensured the system

architecture and IT infrastructure are adequately reviewed by IT operations staff. Since operational

needs are considered, we argue that P3 directly affects D1. The introduction of production stories

into the sprint backlog (P4) has ensured IT operations needs are considered by the project. Also, IT

operators are granted access so they were able to insert their quality requirements and issues into

the backlog. The latter elicited discussions on the new product backlog entries. The sync meeting (P5)

is of direct effect on the alignment, as the meeting aligns the release delivery by development and

release deployment by operations. The lessons learned on the release process have contributed to a

better understanding in each other and improved collaboration between operations and

development personnel in the final project stage.

X

 X+ Positive effect, missing in the initial table

 X- No effect, present in the initial table

Positive effect

Layers P
1

. C
ro

ss
-f

u
n

ct
io

n
al

d
el

iv
er

y
te

am

P
2

. D
ev

el
o

p
 f

o
r

p
ro

d
u

ct
io

n

P
3

. E
ar

ly
 f

ee
d

b
ac

k
b

y

o
p

er
at

io
n

s

P
4

. I
n

te
gr

at
e

p
ro

d
u

ct
io

n

st
o

ri
es

P
5

. S
yn

c
m

ee
ti

n
g

Process D1. Departmental alignment X X+ X X X

Process, tools D2. Lack of standardization X X+

Process D3. Ops are not well represented X X X X

Process, tools D4. Complex release process X- X-

Process, people D5. Moderate communication X X X X

Drivers

Patterns

Figure 48. Improvements to the pattern mapping table

The need for standardized quality guidelines (D2) was supposed to be tackled by P2. The pattern has

ensured the quality of the release process is maintained by providing up-to-date artifacts for the

system release. However, P3 has also contributed to tackle this problem area. This method fragment

proposed a design inspection as part of the development process, which had an impact on the

quality guidelines. The other patterns (P1, P4, P5) did not affected D2, because no new quality

guidelines were prescribed by these patterns. The representation of IT operations in the project (D3)

is increased by the patterns P1, P3, P4, and P5. The resulting method fragments have ensure that IT

operators have contributed to the project results (by means of input for production stories, feedback

on the system design, and discussions and update meetings). By involving IT operations into the

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 81

project, their needs and wishes were balanced for the project. The complex release process (D4) is

not tackled by any of the patterns. We expected that this problem area would be addressed by P1

and P2. The corresponding metrics showed an improvement, however the perceived value by the

project team was that none of the patterns positively affected D4 (i.e. the error prone approval

process remained untouched). Apparently, the method fragments did not prescribed alternative

procedures or guidelines to support the release process. Therefore, the link with P1 and P2 is

removed. One of the improvement actions by the team was to include personnel from change

management (CM) in project meetings for a joined effort to address this issue. Another suggestion

was to build a tool to automate the delivery e-mail messages, which were done manually. The

moderate communication (D5) between development and operations personnel is enhanced by all

patterns except for P2. Frequent communication was essential to perform the method fragments

correctly. A side remark is, from the third sprint development personnel are temporary moved to the

building of IT operations to assist them in the delivery process. The physical availability of staff would

certainly play a role to foster communication. Therefore, the results can be different in a project

when both parties are strictly separated from each other.

Except for D4 (i.e. complex release process), all problem areas encountered improvements to some

extent (either quantitatively or qualitatively). A major challenge in the approach was that key

problem areas cover a wide range of sub problems in underlying processes. The proposed

improvements are pragmatic to solve a particular issue, but other issues in the same area may be

underexposed. Although we have observed improvements by some metrics, we cannot conclude that

these problem areas are completely resolved. However, the perceived value by project team

members was of high value to demonstrate the effect of the method fragments on the experienced

problem areas. We are aware that findings from this study are based on a single case study,

therefore cannot be generalized to all project teams at CaseComp (Yin, 2009). However, we argue

the pilot project was successful in the attempt to change the behavior of development and

operations personnel at CaseComp by introducing DevOps practices. These practices can be seen as

the first effort towards an organization-wide implementation of DevOps.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 82

8. Conclusion

The research showed how process improvements for software development can be introduced using

techniques provided by method engineering. The central research question “How can method

engineering support the incremental implementation of DevOps?” is answered when its

corresponding subquestions are answered. Below we discuss the key findings of this study.

The research was triggered by the case company that wanted to adopt DevOps practices in their

Scrum development method. The rationale for these improvements is obtained using semi-

structured interviews, which resulted in the identification of 8 distinct problem areas and 3

implementation requirements (SQ1). In the search for relevant practices, we found that DevOps

patterns and practices are relatively immature and hard to find. DevOps patterns and practices are

not stored on a single location, which complicates the search process. Based on a thorough analysis

of Internet pages, books, and seminars we developed a list containing 30 DevOps patterns. The list

served as a catalogue to select necessary improvements. We developed a process pattern mapping

approach, of which outcome is a mapping table that ties DevOps patterns to key problem areas

(SQ2). To fit the scope of the research (i.e. extending the Scrum development process) we only

included patterns from DevOps area 4, which integrates operations personnel and feedback into the

project. However, there are only a few process patterns available in DevOps area 4. Patterns on tools

(e.g. deployment automation) and cultural aspects have received considerably more attention by

literature. Each process pattern is codified as a method fragment in order to store them in the

method base. First, the selected process patterns are elaborated using a standardized description

template. Second, based on the description method fragments are constructed for the situational

context of CaseComp. Ultimately, 5 DevOps process patterns were assembled into the Scrum

process, which resulted in the creation of a situational method for CaseComp (SQ3). Based on the

notation by Mullery (1997) we were able to provide a simple selection mechanism for method

increment alternatives in composing an integration scenario (SQ4). We argued that the optimal

scenario is shaped by both organizational requirements and requirements inherent to the method of

choice (i.e. DevOps). Finally, a pilot experiment is conducted which introduced a series of

improvements in a real development project. The experiment itself is assisted by the iterative

improvement process by Salo and Abrahamsson (2007) which introduces process improvements in

an incremental way and obtains feedback on it (SQ5). Researchers (e.g. Rossi et al., 2000) claim it is

important to maintain the rationale behind any method improvement. The iterative improvement

process (IIP) is considered as a useful basis for supporting evolutionary process change. Any driver for

process change is documented and stored accordingly during the IIP, thus we can conclude IIP fulfills

the needs of incremental method engineering. Based on both qualitative and quantitative feedback

we were able to evaluate the effectiveness of the DevOps patterns on the key problem areas.

Ultimately, 4 of the 5 problem areas were positively affected by the proposed increments.

This research has made an explicit contribution to the field of incremental method engineering as

well the emerging field of DevOps. The first pillars are settled to provide researchers and

practitioners with experiences on the implementation of DevOps practices into a development

process. The procedures can be replicated for similar evolutionary SPI initiatives, where the

described solutions need some tailoring for the organizations’ context and the effect of the

improvement effort need to be measured.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 83

9. Future Research

In this thesis we proposed a situational method based on the experienced problem areas at

CaseComp. For them the method is the first attempt towards DevOps. However, we envision a single

and shared process for both development and operations personnel to eliminate the functional silos

from the project. We see several opportunities and issues that can be addressed by other

researchers in this field.

First of all DevOps needs to be further researched and expanded as it does not prescribes a set of

procedures and guidelines that IT organizations can use. What it especially does is defining the

problem it proposes to tackle and describes the fundamental principles. Solutions are scarce at the

moment and depend on project-specific implementations, therefore DevOps practices should be

implemented and empirically validated on a large scale. To support this we developed an initial list

with 30 DevOps patterns to help researchers to investigate the field of DevOps and its areas. Also, we

see an opportunity towards a shared platform for storing and maintaining DevOps patterns. The

method base should cope with the situational factors inherent to DevOps fragments, enabling the IT

organization to construct a customized method for their projects. This may be supported by the use

of the online method engine (OME) by Vlaanderen, Van de Weerd, and Brinkkemper (2011). OME is

an online environment that provides advices based on process assessment. The goal of this approach

is to align the tooling infrastructure with the method improvement by automatically configuring

templates and documents (Vlaanderen et al., 2011).

A misperception by multiple practitioners (e.g. Mikita et al., 2012) is that a successful DevOps

implementation depends on a solid deployment pipeline. DevOps is supported by tools, people and

processes, therefore SPI initiatives should focus on an ideal mix of these. Practitioners commonly

agree to introduce DevOps in the following order: culture, automation, measurement, sharing

(CAMS). Tooling has garnered considerable attention in literature as DevOps practices are often

mixed up or confused with continuous delivery (CD), a technological approach that focuses on

deploying small pieces of working software. DevOps and CD have one goal in common (i.e. deliver

valuable software to the business), however, DevOps amplifies collaboration and communication. In

this study we identified multiple drivers related to the tools layer, but were outside the scope of this

research. The drivers may lead to new studies on both DevOps area 2 and 3.

IT organizations should be aware that DevOps is a movement that does not takes into account the

internal structure and methods of IT operations. In the Netherlands large-size companies widely use

the management model by van Looijen, which makes a clear distinction between the application

management, technical management, and functional management layer. Companies should address

this issue properly when performing a SPI project regarding to DevOps.

In this study the dynamic diagram box notation by Mullery (1997) was useful in composing

integration scenarios. However, the used set of patterns was very limited. Thus, further research

should be done on how large numbers of method increments can be prioritized to determine the

preferred implementation order.

Finally, we advocate a large-scale pilot experiment (i.e. multi-case) in which the method fragments

can be tested in an isolated setting. The case studies of this research may be reproduced and

configured to the need of the organization. Similar case studies may refine the method increments as

described in this thesis.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 84

Acknowledgements

I would like to thank my supervisor Michel Schudel, who guided me at CaseComp and provided me

with valuable feedback. Also, I appreciated the support and feedback from Jan-Hein Bührman, who

acted as a second supervisor during this research. Furthermore, I would like to thank my supervisors

at Utrecht University. Sjaak Brinkkemper and Kevin Vlaanderen supported the research from the

beginning and provided feedback on a regular basis.

I had very interesting discussions with experts from the agile competence center (ACC) at Ordina.

People as Frank Verbruggen, Anko Tijman, and Jan Buurman I would like to thank for providing

insights into DevOps as well giving their feedback on the research method.

I would like to thank the following people for participating in the interviews: Gijs Leussink, Ivo

Woltring, Jan-Kees van Andel, Marcos Peralta, Marnix Bockhove, Peter van der Meer, Rick Zijlker,

Frans Urgert, Gert Brugge, and Sven Petter.

Operatingdev.com enabled us to reuse their DevOps illustration for the cover of the thesis at no cost.

Therefore credits go out to this website.

Last I would thank is guest reviewer Patrick Debois who provided us with valuable feedback and

theories on the topic of DevOps.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 85

References

Agile Manifesto. (2001). Manifesto for Agile Software Development. Retrieved from
http://agilemanifesto.org/

Aguilar-Savén, R. S. (2004). Business process modelling: Review and framework. International Journal
of Production Economics, 90(2), 129–149. doi:10.1016/S0925-5273(03)00102-6

Alexander, C. (1977). A pattern language: towns, buildings, construction (2nd ed.). USA: Oxford
University Press.

Ambler, S. W. (1998). Process patterns: building large-scale systems using object technology.
Cambridge University Press.

Ambler, S. W. (2012). Strategies for Implementing Non-Functional Requirements. Retrieved March
29, 2013, from http://disciplinedagiledelivery.wordpress.com/2012/10/14/strategies-for-
implementing-non-functional-requirements/

Ambler, S. W. (2013). Top 10 Practices for Effective DevOps. Retrieved March 21, 2013, from
http://www.drdobbs.com/architecture-and-design/top-10-practices-for-effective-
devops/240149363

Asadi, M., & Ramsin, R. (2009). Patterns of Situational Method Engineering. In Software Engineering
Research, Management and Applications 2009 (pp. 277–291). Springer.

Astin, A. W. (1993). Assessment for excellence: The philosophy and practice of assessment and
evaluation in higher education. Phoenix: The Oryx Press.

Basili, V. R., Selby, R. W., & Hutchens, D. H. (1986). Experimentation in software engineering. IEEE
Transactions on Software Engineering, 7, 733–743.

Bass, L., Jeffery, R., Wada, H., Weber, I., & Zhu, L. (2013). Eliciting Operations Requirements for
Applications, 5–8.

Beedle, M., Sharon, Y., Schwaber, K., & Sutherland, J. (1999). SCRUM: An extension pattern language
for hyperproductive software development. Pattern Languages of Program Design, 4, 637–651.

Bentley, C. (2012). Prince2: A Practical Handbook. Routledge.

Bergner, K., Rausch, A., Sihling, M., & Vilbig, A. (1998). A Componentware Development Methodology
based on Process Patterns. In Proceedings of the 5th Annual Conference on the Pattern
Languages of Programs (pp. 1–19). Citeseer.

Blijleven, V. (2012). Scrum Development Process from a Method Engineering Perspective. Retrieved
December 11, 2012, from
http://www.cs.uu.nl/wiki/bin/view/MethodEngineering/Scrumdevelopmentprocess20112012

Brereton, P., Kitchenham, B., Budgen, D., & Li, Z. (2008). Using a protocol template for case study
planning. Evaluation and Assessment in Software Engineering (EASE’08), 1–8.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 86

Brinkkemper, S. (1996). Method engineering : engineering of information methods and tools.
Information and software technology, 38(4), 275–280.

Brinkkemper, S., Saeki, M., & Harmsen, A. F. (1998). Assembly Techniques for Method Engineering.
Advanced Information Systems Engineering, 1413, 381–400.

Brinkkemper, S., Saeki, M., & Harmsen, A. F. (1999). Meta-modelling based assembly techniques for
situational method engineering. Information Systems, Elsevier, 24(3), 209–228.

Brinkkemper, S., Van de Weerd, I., Saeki, M., & Versendaal, J. (2008). Process improvement in
requirements management: A method engineering approach. In Proceedings of Requirements
Engineering: Foundation of Software Quality.

Burns, T. J., & Deek, F. P. (2007). A Practitioner Based Method Tailoring Model for Information
Systems Development. Situational Method Engineering: Fundamentals and Experiences, 15.

Cockburn, A., & Highsmith, J. (2001). Agile software development, the people factor. Computer,
34(11), 131–133.

Conradi, R. (1993). Concepts for Evolving Software Processes, 1–21.

Coulin, C., Zowghi, D., & Sahraoui, A. E. K. (2006). A situational method engineering approach to
requirements elicitation workshops in the software development process. Software Process:
Improvement and Practice, 11(5), 451–464.

Debois, P. (2008). Agile Infrastructure and Operations: How Infra-gile are You? Agile 2008
Conference, 202–207. doi:10.1109/Agile.2008.42

Debois, P. (2012). Devops Areas - Codifying devops practices. Retrieved February 12, 2013, from
http://www.jedi.be/blog/2012/05/12/codifying-devops-area-practices/

Denning, P. J. (1997). A new social contract for research. Communications of the ACM, 40(2), 132–
134.

Duvall, P. M. (2010). Continuous Integration: Patterns and Anti-Patterns. Aldon.

Duvall, P. M. (2012). Agile DevOps: The flattening of the software release process. Retrieved from
http://www.ibm.com/developerworks/library/a-devops1/#N100F7

Duvall, P. M., Matyas, S., & Glover, A. (2007). Continuous Integration: improving software quality and
reducing risk. Addison-Wesley Professional.

Dyba, T. (2005). An Empirical Investigation of the Key Factors for Success in Software Process
Improvement, 31(5), 410–424.

Ebert, C., Abrahamsson, P., & Oza, N. (2012). Lean Software Development. IEEE Software.

Edwards, D. (2010). What is DevOps? Retrieved January 09, 2013, from
http://dev2ops.org/2010/02/what-is-devops/

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 87

Edwards, D. (2012). You Can’t Change Culture, But You Can Change Behavior. DevOpsDays Rome
2012. Retrieved April 19, 2013, from http://www.slideshare.net/dev2ops/you-cant-change-
culture-but-you-can-change-behavior-and-behavior-becomes-culture

Edwards, D., & Thompson, L. (2011). Velocity 2011: Production Begins in Development. Velocity
2011. Retrieved March 26, 2013, from http://www.slideshare.net/dev2ops/velocity-2011-
production-begins-in-development

Fagan, M. (2001). Design and code inspections to reduce errors in program development. Pioneers
and Their Contributions to Software Engineering, 301–334.

Fitzgerald, G., & Avison, D. E. (2003). Where now for development methodologies? Communications
of the ACM, 46(1), 78–82.

Florac, W. A., & Carleton, A. D. (1988). Measuring the software process: Statistical process control for
software process improvement. Addison-Wesley Professional.

Florak, W., Park, R., & Carleton, A. D. (1997). Practical software measurement: Measuring for process
management and improvement.

Fowler, M. (2006). Continuous Integration. Retrieved January 04, 2013, from
http://martinfowler.com/articles/continuousIntegration.html

Garlan, D. (2000). Software architecture: a roadmap. In Proceedings of the Conference on the Future
of Software Engineering (pp. 91–101). ACM.

Gnatz, M., Marschall, F., Popp, G., Rausch, A., & Schwerin, W. (2001). Towards a Living Software
Development Process based on Process Patterns. Software Process Technology, 182–202.

Guizzardi, G. (2005). Ontological foundations for structural conceptual models. CTIT, Centre for
Telematics and Information Technology.

Hamment, P. (2011). Make Large Scale Changes Incrementally with Branch By Abstraction. Retrieved
March 15, 2013, from http://continuousdelivery.com/2011/05/make-large-scale-changes-
incrementally-with-branch-by-abstraction/

Harmsen, A. F. (1997). Situational Method Engineering. Utrecht: Moret Ernst & Young.

Harmsen, A. F., Brinkkemper, S., & Oei, H. (1994). Situational Method Engineering for Information
System Project Approaches (pp. 169–194). University of Twente, Department of Computer
Science.

Harmsen, A. F., & Saeki, M. (1996). Comparison of four method engineering languages. IFIP.

Hass, A. M. J. (2003). Configuration management principles and practice. Addison-Wesley
Professional.

Henderson-Sellers, B. (2006). Method engineering: Theory and practice. Information Systems
Technology and its Applications, 13–23.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 88

Henderson-Sellers, B., & Ralyté, J. (2010). Situational method engineering: state-of-the-art review.
Journal of Universal Computer Science, 16(3), 424–478. Retrieved from
http://www.jucs.org/jucs_16_3/situational_method_engineering_state/jucs_16_03_0424_047
8_henderson.pdf

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research.
MIS quarterly, 28(1), 75–105.

Honor, A. (2010). Deployment management design patterns for DevOps. Retrieved March 12, 2013,
from http://dev2ops.org/2010/02/deployment-management-design-patterns-for-devops/

Hossain, E., Babar, M. A., Paik, H., & Verner, J. (2009). Risk identification and mitigation processes for
using Scrum in global software development: A conceptual framework. Software Engineering
Conference, 2009. APSEC’09. Asia-Pacific, 457–464.

Humble, J., & Farley, D. (2010). Continuous delivery: reliable software releases through build, test,
and deployment automation. Addison-Wesley Professional.

Humble, J., Read, C., & North, D. (2006). The Deployment Production Line. Agile 2006 (Agile’06), 113–
118. doi:10.1109/AGILE.2006.53

Hüttermann, M. (2012). DevOps for Developers (pp. 1–184). Apress.

Janzen, D., & Saiedian, H. (2005). Test-driven development concepts, taxonomy, and future direction.
Computer, 38(9), 43–50.

Jawalka, B. (2012). How DevOps supports the paradigm shift of the cloud. Retrieved January 09,
2013, from http://www.techrepublic.com/blog/datacenter/how-devops-supports-the-
paradigm-shift-of-the-cloud/5698?tag=content;siu-container

Jeffries, R. (2001). What is extreme programming. XP Magazine, Nov.

Kazman, R., Abowd, G., Bass, L., & Clements, P. (1996). Scenario-based analysis of software
architecture. IEEE Software, 13(6), 47–55. doi:10.1109/52.542294

Kitchenham, B., Pickard, L., & Pfleeger, S. L. (1995). Case Studies for Method and Tool Evaluation.
Software, IEEE, 12(July), 52–62.

Kornyshova, E., Deneckere, R., & Salinesi, C. (2007). Method Chunks Selection by Multicriteria
Techniques: an Extension of the Assembly-based Approach. Situational Method Engineering.
Retrieved from http://www.springerlink.com/index/U73770553247RM46.pdf

Krane, V., Anderson, M., & Stean, W. (1997). Issues of qualitative research methods and
presentation. In Journal of Sport and Exercise Psychology (pp. 213–218).

Lee, K. A. (2011). DevOps and Release Management. Retrieved March 01, 2013, from
http://buildmeister.com/articles/devops_and_release_management

Luinenburg, L., Jansen, S., Souer, J., & Van de Weerd, I. (2008). Designing Web Content Management
Systems Using the Method Association Approach. In Proceedings of the 4th International
Workshop on Model-Driven Web Engineering (MDWE 2008) (pp. 106–120).

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 89

Macintosh, A. (1993). The need for enriched knowledge representation for enterprise modelling. In
AI (Artificial Intelligence) in Enterprise Modelling, IEE Colloquium on (Digest No. 078).

McFeeley, B. (1996). IDEAL: A User’s Guide for Software Process Improvement.

Mikita, D., Dehondt, G., & Nezlek, G. S. (2012). The Deployment Pipeline. In Proceedings of the
Conference on Information Systems Applied Research ISSN (pp. 1–10). New Orleans.

Miles, M., & Huberman, M. (1994). Qualitative data analysis: An expanded sourcebook.

Mirandolle, D., Van de Weerd, I., & Brinkkemper, S. (2011). Incremental Method Engineering for
Process Improvement – A Case Study. Engineering Methods in the Service-Oriented Context, 4–
18.

Moon, B. (2010). Developers should write code for production. Retrieved March 18, 2013, from
http://brian.moonspot.net/develop-for-production

Mora, C., Menozzi, D., & Merigo, A. (2011). Exploring the Potential Competition in the Salmon
Industry: a Scenario Analysis of Genetically Modified Fish Marketing. In 2011 International
Congress, August 30-September 2, 2011, Zurich, Switzerland. European Association of
Agricultural Economists.

Mullery, G. P. (1997). CORE - A Method for Controlled Requirement Specification. In Proceeding
ICSE ’79 Proceedings of the 4th International Conference on Software Engineering (pp. 126–
135).

Pais, M. (2012a). Is the Enterprise Ready for DevOps? InfoQ. Retrieved January 21, 2013, from
http://www.infoq.com/articles/virtual-panel-entreprise-ready-for-devops

Pais, M. (2012b). Introducing DevOps Culture by Changing Behavior. Retrieved April 19, 2013, from
http://www.infoq.com/news/2012/10/introduce-devops

Pant, R. (2009). Organizing a Digital Technology Department of Medium Size in a Media Company.
Retrieved January 09, 2013, from http://www.rajiv.com/blog/2009/03/17/technology-
department/#footnote_1_377

Paulish, D. J., & Carleton, A. D. (1994). Case Studies of Software Process-Improvement Measurement.
IEEE Software, 27(9), 50–57.

Phifer, B. (2011). Next-Generation Process Integration: CMMI and ITIL Do Devops. Cutter IT Journal,
24(8), 28–33.

Puerta, A., & Eisenstein, J. (1999). Towards a general computational framework for model-based
interface development systems. Knowledge-Based Systems, 12(8), 433–442.

Punter, T. (1996). The MEMA-model: towards a new approach for Method Engineering. Information
and Software Technology, 38(4), 295–305. doi:10.1016/0950-5849(95)01087-4

PuppetLabs. (2013). 2013 State of DevOps Report. IT Revolution Press. Retrieved from
https://puppetlabs.com/solutions/devops/

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 90

Ralyté, J. (1999). Reusing Scenario Based Approaches in Requirement Engineering Methods: CREWS
Method Base. In 10th Int. Workshop on Database and Expert Systems Applications (DEXA’99),
1st Int. REP'99 Workshop. Florence.

Ralyté, J. (2002). Requirements Definition for the Situational Method Engineering (pp. 1–22). Boston:
Kluwer Academic Publishers.

Ralyté, J., Deneckère, R., & Rolland, C. (2003). Towards a Generic Model for Situational Method
Engineering. In Advanced Information Systems Engineering (pp. 1029–1029). Springer.

Ralyté, J., & Rolland, C. (2001). An Approach for Method Reengineering. Conceptual Modeling—ER
2001, 471–484.

Ralyté, J., Rolland, C., & Ayed, M. B. (2005). An approach for evolution-driven method engineering.
Modeling Methods and Methodologies, 80–101.

Rogowski, C. (2011). Introduction to DevOps: Agile Development and Operations Hand in Hand.
Retrieved March 22, 2013, from http://agileelephant.blogspot.nl/2011/09/introduction-to-
devops.html

Rossi, M., Tolvanen, J. P., Ramesh, B., Lyytinen, K., & Kaipala, J. (2000). Method rationale in method
engineering. In System Sciences, 2000. Proceedings of the 33rd Annual Hawaii International
Conference on (Vol. 00, pp. 1–10). IEEE.

Rowe, M., & Marshall, P. (2011). Spanning people, processes, and technologies: The business case for
Collaborative DevOps.

Runeson, P., & Höst, M. (2008a). Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering, 14(2), 131–164. doi:10.1007/s10664-
008-9102-8

Runeson, P., & Höst, M. (2008b). Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering, 14(2), 131–164. doi:10.1007/s10664-
008-9102-8

Saeki, M. (2003). Embedding metrics into information systems development methods: an application
of method engineering technique. In 15th Conference on Advanced Information Systems
Engineering (pp. 374–389).

Salo, O., & Abrahamsson, P. (2007). An Iterative Improvement Process for Agile Software
Development. Software Process: Improvement and Practice, 12(1), 81–100. doi:10.1002/spip

Schwaber, K. (1995). Scrum Development Process. In Proceedings of the Workshop on Business
Object Design and Implementation at the 10th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’95) (pp. 10–19).

ScrumAlliance. (2012). Scrum Alliance - What Is Scrum? Retrieved December 13, 2012, from
http://www.scrumalliance.org/learn_about_scrum

ScrumPLoP. (2012). Scrum patterns. Retrieved February 20, 2013, from
https://sites.google.com/a/scrumplop.org/published-patterns/home

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 91

Seidita, V., Cossentino, M., & Gaglio, S. (2007). Adapting passi to support a goal oriented approach: a
situational method engineering experiment. In Fifth European workshop on Multi-Agent
Systems (EUMAS’07) (pp. 1–15).

Slooten, K. van, & Brinkkemper, S. (1993). A method engineering approach to information systems
development. Information Systems Development Process. Elsevier Science Publishers (A-30),
167–186.

Slooten, K. van, & Hodes, B. (1996). Characterizing IS development projects. Proceedings of the IFIP
TC8, WG8, 1(8.2), 29–44.

Smith, D. M. (2011). Hype Cycle for Cloud Computing, 2011 (pp. 1–74).

Smith, S. (2013). Continuous Delivery != DevOps. Retrieved March 01, 2013, from
http://architects.dzone.com/articles/continuous-delivery-devops

Souer, J., Van de Weerd, I., Versendaal, J., & Brinkkemper, S. (2007). Situational requirements
engineering for the development of content management system-based web applications.
International Journal of Web Engineering and Technology, 3(4), 420–440. Retrieved from
http://inderscience.metapress.com/index/2704W84R2513L062.pdf

Sutherland, J., & Schwaber, K. (2011). The Scrum Guide. The Definitive Guide to Scrum: The Rules of
the Game, (October). Retrieved from http://www.scrum.org/

Swartout, P. (2012). Continuous Delivery and DevOps: A Quickstart guide (p. 154). Packt Publishing.

Takeuchi, H., & Nonaka, I. (1984). The new new product development game. Harvard business
review, 64(1), 137–147.

Tasharofi, S., & Ramsin, R. (2007). Process patterns for agile methodologies. In Situational Method
Engineering: Fundamentals and Experiences (Vol. 244, pp. 222–237). Springer. Retrieved from
http://www.springerlink.com/index/l814257x33660874.pdf

The Standish Group. (2011). The Chaos Manifesto.

Tolvanen, J. P. (1998). Incremental method engineering with modeling tools: theoretical principles
and empirical evidence. University of yv skyl n.

Turnbull, P. D. (1991). Effective Investments in Information Infrastructures. Information and Software
Technology, 33(3), 191– 199.

Välimäki, A., & Kääriäinen, J. (2008). Patterns for Distributed Scrum – A Case Study. Enterprise
Interoperability III, 85–97.

Van de Weerd, I. (2009). Advancing in software product management: An incremental method
engineering approach. SIKS Disseration Series, (2009-34).

Van de Weerd, I., & Brinkkemper, S. (2008). Meta-Modeling for Situational Analysis and Design
Methods. Handbook of research on modern systems analysis and design technologies and
applications, 35.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 92

Van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., & Bijlsma, L. (2006). Towards a
Reference Framework for Software Product Management. 14th IEEE International Requirements
Engineering Conference (RE’06), 319–322. doi:10.1109/RE.2006.66

Van de Weerd, I., Brinkkemper, S., Souer, J., & Versendaal, J. (2006). A Situational Implementation
Method for Web-based Content Management System-applications: Method Engineering and
Validation in Practice. Software Process: Improvement and Practice, 11(5), 521–538.
doi:10.1002/spip

Van de Weerd, I., Brinkkemper, S., & Versendaal, J. (2007). Concepts for incremental method
evolution: empirical exploration and validation in requirements management. In Advanced
Information Systems Engineering (pp. 469–484).

Van der Aalst, W., Ter Hofstede, A., & Weske, M. (2003). Business process management: A survey.
Business Process Management, 1019–1019.

Van Stijn, P., Vlaanderen, K., Brinkkemper, S., & Van de Weerd, I. (2012). Documenting Evolutionary
Process Improvements with Method Increment Case Descriptions. Systems, Software and
Services Process Improvement, 193–204.

Verschuren, P. J. M., & Doorewaard, H. (2007). Het ontwerpen van een onderzoek. Lemma.

VersionOne. (2011). State of Agile Survey 2011: The State of Agile Development (pp. 1–12). Atlanta.

Vlaanderen, K., Valverde, F., & Pastor, O. (2006). Improvement of a web engineering method
applying situational method engineering. ICEIS (3-1), (1), 147–154.

Vlaanderen, Kevin, Van de Weerd, I., & Brinkkemper, S. (2011). The online method engine: from
process assessment to method execution. Engineering Methods in the Service-Oriented Context,
108–122.

Vlaanderen, Kevin, Van Stijn, P., Brinkkemper, S., & Van de Weerd, I. (2012). Growing into Agility:
Process Implementation Paths for Scrum. Product-Focused Software Process Improvement,
116–130.

Walls, M. (2013). Building a DevOps Culture.

Wells, D. (1988). Project Velocity. Retrieved May 14, 2013, from
http://www.extremeprogramming.org/rules/velocity.html

West, D., & Grant, T. (2010). Agile Development: Mainstream Adoption Has Changed Agility (pp. 1–
22).

Willis, J. (2010). What Devops Means to Me. Retrieved January 14, 2013, from
http://www.opscode.com/blog/2010/07/16/what-devops-means-to-me/

Willis, J. (2012). Devops Culture (Part 1). Retrieved January 14, 2013, from
http://itrevolution.com/devops-culture-part-1/

Wistrand, K., & Karlsson, F. (2004). Method Components – Rationale Revealed. In Proceedings of the
International Conference on Advanced Information Systems Engineering (pp. 189–201).

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 93

Yap, J. (2012). Cloud driving DevOps transformation, importance. Retrieved January 09, 2013, from
http://www.zdnet.com/cloud-driving-devops-transformation-importance-7000001783/

Yin, R. K. (2009). Case Study Research Design and Methods Fourth Edition. Sage Publications,
Incorporated.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 94

Appendix I. Definitions

#1 Method Engineering – Method Engineering is defined as “the engineering discipline to design,

construct and adapt methods, techniques and tools for the development of information systems”

(Brinkkemper, 1996).

#2 Method – or Information Systems Development Method (ISDM). According to (Brinkkemper,

1996) a method is defined as “an approach to perform a systems development project, based on a

specific way of thinking, consisting of directions and rules, structured in a systematic way in

development activities with corresponding development products”.

#3 Method Fragment - Method fragments are defined as coherent pieces of IS development

methods (Brinkkemper, 1996).

#4 Situational method – A method that is tuned to the project-specific needs at hand by reusing

so-called method fragments (Harmsen et al., 1994). The steps of Harmsen et al. (1994) are used for

the creation of a situational method.

#5 Situational Method Engineering – Situational Method Engineering is the area of Method

Engineering focusing on situational methods (Harmsen et al., 1994).

#6 Method Increment – A method increment is basically any adaption in order to improve the

overall performance of the method of subject (Van de Weerd et al., 2007; Van de Weerd, 2009) .

#7 Incremental Method Engineering - Incremental Method Engineering focuses on evolving a

method in time towards a higher maturity level by changing small parts of the method (Mirandolle et

al., 2011). It can be considered as a sub type of Situational Method Engineering.

#8 Integration Scenario – We define an integration scenario as the process alternative to

incorporate method increments into a method.

#9 Process-Deliverable Diagram (PDD) – A meta-modeling technique that is based on UML

activity diagrams and UML class diagrams. The activity diagrams represent the process-side that

relates to the deliverable-side of the diagram, which shows the class diagrams (Souer et al., 2007).

#10 Systems Development Life Cycle (SDLC) – or software development process. An approach to

build software applications that focuses on the identification of phases and stages that would

improve the management of systems development and introduce discipline (Fitzgerald & Avison,

2003).

#11 Software Process Management (SPM) – Software Process Management (SPM) is the

discipline aiming at controlling and managing all the resources involved in software development

(Florac & Carleton, 1988).

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 95

#12 Agile Development – The group of system development methods that should be carried out

under agile values and principles (Agile Manifesto, 2001) to answer the challenges of rapid

development and changing requirements. The manifesto states that agile development should focus

on four core values: (1) individuals and interactions over processes and tools, (2) working software

over comprehensive documentation, (3) customer collaboration over contract negotiation, (4)

responding to change over following a plan (Agile Manifesto, 2001).

#13 Scrum – Schwaber (1995) defines Scrum as “a loose set of activities that combines known,

workable tools and techniques with the best that a development team can devise to build systems”.

#14 DevOps – For the research we define DevOps as practices that embed operations knowledge

into the project and foster bidirectional feedback between the development and operations

departments in order to streamline the software delivery process.

#15 Continuous Integration – According to Fowler (2006) Continuous Integration “is a software

development practice where members of a team integrate their work frequently, usually each

person integrates at least daily - leading to multiple integrations per day”.

#16 Continuous Delivery – Continuous Delivery emphasizes on the concept of staged builds, also

called deployment pipelines. The foundation of this approach is Continuous Integration, which was

intended for the development cycle (Humble & Farley, 2010).

#17 Release – A release consists of a set of selected requirements. “Each requirement implies the

addition of a technical or functional feature to the product” (Van de Weerd, Brinkkemper,

Nieuwenhuis, Versendaal, & Bijlsma, 2006).

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 96

Appendix II. Case Study Protocol for the Current Situation

1. Introduction

The goal of this case study is to capture the current situation (or baseline) at CaseComp. Any process

issues, business goals and requirements are elicited with the purpose to find appropriate DevOps

patterns. The case study for the current situation phase of the research project focuses on answering

the first subquestion:

SQ1. What are the main drivers and requirements for an organization to integrate DevOps

into their Scrum development process?

The goal of this case study is twofold. First to identify the main drivers at CaseComp for

implementing DevOps. The findings result in a formal answer on the research question. Second to

elaborate on the development process of the selected case. The resulting baseline is used to identify

development teams which could be included in the DevOps pilot. Note the case study protocol is

highly incremental in nature, so initial findings may result in adaptations of this document.

2. Design

The case study for the current situation consists of a single-case design with a single unit of analysis.

This is also referred to as a holistic design according to the basic types of designs for case studies by

Yin (2009). Holistic design considers the object being investigated as an interconnected whole that is

also part of something larger. The object of study is the software development process of a

development team at CaseComp. The process includes requirements identification, development,

testing and quality control, deployment, and maintenance of the information system. The logical link

between the research question and the case is to elicit process issues or main drivers (i.e. the

rationale for improvements) for the software development process at CaseComp.

The research question can be divided into multiple subquestions. The resulting questions are used as

main topics for which the interview questions are developed. Below we discuss the derived

subquestions by providing a proper explanation for the keywords expressed in italics.

a) What are the internal driving forces related to DevOps?

b) What are the external driving forces related to DevOps?

c) What are the requirements for implementing DevOps?

Mora, Menozzi, and Merigo (2011) define driving forces as “key internal forces (such as knowledge

and competence of management and workforce) and external forces (such as economy, competitors,

technology) that shape the future of an organization”. For the case the internal forces are related to

process issues, people’s knowledge and experiences and the corporate culture. External forces are

the situations or events that occur outside the company and are largely beyond the control of the

organization. Some examples addressed by driving forces might include the following: competition,

customer behavior, industry outlook, demographics, economy, political movements, social

environment, technological changes, and general environmental changes.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 97

Regarding the third subquestion, requirements play an important role in the acceptance of the

process changes proposed by DevOps. The organization may have documented preconditions or

quality requirements which should be met before any improvements could be (widely) introduced.

Other requirements for new (parts of) processes may require management commitment, user

trainings, purchase of tools, or assessment by an external party.

To ensure that other researchers can repeat the steps of this research and the rigor of this research is

guaranteed, we built traceability into the process to show how we came to the answers on the

research question. The DevOps key areas by Debois (2012) are used as themes for developing

relevant interview questions. We developed a matrix by placing the derived subquestions on the

horizontal axis and placing the four DevOps key areas on the vertical axis. By doing so we ensure the

interview questions are highly focused on the central themes and to gather data that is relevant for

answering the subquestions. An example of the matrix is provided in Table 14. As the space in such

table is quite limited, we elaborated the interview questions for each column below Table 14.

For establishing a baseline for the development process, expert interviews are held to craft and

validate the Scrum development process. This iterative and incremental activity ensures the

identified patterns will fit in the situational process at CaseComp.

The four DevOps key areas are as follows:

1. Area 1. Extend delivery to production.

2. Area 2. Extend operation to project.

3. Area 3. Embed project into operations.

4. Area 4. Embed production into project.

 A. Internal driving forces B. External driving forces C. Requirements

Area 1 Interview question 1
Interview question 2

.. ..

Area 2
Area 3
Area 4

Table 14. Mapping table for interview questions (example)

As the interviewees are Dutch, interview questions are therefore elaborated in this language.

2.1 General questions

The following interview questions have the purpose to explore the background of the interviewee to

create an informal atmosphere.

• Wat is uw functie?

• Wat zijn uw taken en verantwoordelijkheden?

• Met welke mensen werkt u (nauw) samen?

• Waar wordt u (of uw afdeling) op beoordeeld?

• Bent u tevreden met uw huidige werkwijze?

• Wat is uw rol in het algehele softwareproductieproces?

• Bent u tevreden met dit proces?

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 98

• Welke zaken gaan er goed en minder goed?

• Bent u bekend met DevOps?

2.2 Internal driving forces

The following interview questions are related to the following subquestion: ‘What are the internal

driving forces related to DevOps?’. As described in the case study protocol, each of the four key areas

of DevOps is addressed by the interview questions.

Area 1. Extend delivery to production.

• Hoe verloopt de applicatieoverdracht van ontwikkeling naar beheer?

• Gaat dit volgens een standaard proces?

• Zijn er verbeterpunten voor dit proces?

• Wanneer worden beheerders in het ontwikkelproces betrokken?

• Gebeurt dit pas zodra het systeem klaar is?

• Heeft de huidige werkwijze nadelige consequenties voor de klant?

• Ziet u ruimte voor verbetering?

• Hoe verloopt de samenwerking en afstemming tussen ontwikkeling en beheer?

• Ziet u ruimte voor verbetering?

• Hoe verloopt de communicatie tussen ontwikkeling en beheer?

• Ziet u ruimte voor verbetering?

• Hoelang duurt het voor de organisatie om een change uit te rollen welke bestaat uit 1 regel

code?

• Wordt dit gedaan op een herhaalbare en betrouwbare manier?

• Wat zijn de vertragende factoren in het proces?

• Welke problemen ervaart u wanneer ontwikkeling en beheer samenwerken om de applicatie uit

te rollen?

• Wat merkt de organisatie als deze problemen niet worden opgelost?

• Kunt u voor elk probleem aangeven hoe deze mogelijk kan worden verholpen?

• Welke andere veranderingen in het proces m.b.t. de afstemming tussen ontwikkeling en beheer

zijn er reeds doorgevoerd?

• Zijn deze veranderingen succesvol doorgevoerd?

• Welke lessen heeft men hier uit geleerd?

Area 2. Extend operation to project.

• Hoe wordt het ontwikkelteam geïnformeerd over belangrijke gebeurtenissen (b.v. fouten en

bugs) op het productiesysteem?

• Ziet u ruimte voor verbetering?

• Welke problemen ervaart u bij het verkrijgen van informatie van beheer?

• Wat merkt de organisatie als deze problemen niet worden opgelost?

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 99

• Kunt u voor elk probleem aangeven hoe deze mogelijk kan worden verholpen?

• Zijn er verder nog verbeterpunten?

• Is het ontwikkelteam op de hoogte van de technische eisen m.b.t. de infrastructuur?

• Hoe kan de afstemming worden verbeterd?

• Is het ontwikkelteam op de hoogte van de voorwaarden/richtlijnen waar releases aan moeten

voldoen?

• Hoe kan de afstemming worden verbeterd?

• Heeft beheer voldoende tijd beschikbaar om taken met ontwikkeling af te stemmen?

• Heeft het ontwikkelteam inzage in de activiteiten en gebeurtenissen die geregistreerd zijn door

beheer?

• Wordt hier (actief) iets mee gedaan?

• Ervaart u problemen of moeilijkheden in het krijgen van medezeggenschap over de

systeemontwikkeling door beheer?

• Wat merkt de organisatie als deze problemen niet worden opgelost?

• Kunt u voor elk probleem aangeven hoe deze mogelijk kan worden verholpen?

• Zijn er verder nog verbeterpunten?

Area 3. Embed project into operations.

• Hoe wordt het beheer geïnformeerd over belangrijke wijzigingen voor de applicatie?

• Ziet u ruimte voor verbetering?

• Welke problemen ervaart u bij het verkrijgen van informatie van ontwikkeling?

• Wat merkt de organisatie als deze problemen niet worden opgelost?

• Kunt u voor elk probleem aangeven hoe deze mogelijk kan worden verholpen?

• Zijn er verder nog verbeterpunten?

• Is beheer op de hoogte van de technische vereisen/veranderingen m.b.t. de inrichting van het

productiesysteem?

• Hoe kan de afstemming worden verbeterd?

• Zijn er richtlijnen/eisen beschikbaar waar releases aan moeten voldoen?

• Heeft het ontwikkelteam voldoende tijd beschikbaar om taken met beheer af te stemmen?

• Heeft beheer inzage in de activiteiten en wijzigingen die geregistreerd zijn door ontwikkeling?

• Wordt hier (actief) iets mee gedaan?

• Ervaart u problemen of moeilijkheden in het krijgen van medezeggenschap over het beheer door

het ontwikkelteam?

• Wat merkt de organisatie als deze problemen niet worden opgelost?

• Kunt u voor elk probleem aangeven hoe deze mogelijk kan worden verholpen?

• Zijn er verder nog verbeterpunten?

Area 4. Embed production into project.

• Krijgt beheer de gelegenheid om project bijeenkomsten bij te wonen?

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 100

• Met welke frequentie?

• Wanneer zijn beheerders betrokken bij de ontwikkeling (b.v. aan de start van het

project)?

• Brengen zij iets bij aan de bijeenkomst?

• Worden zij op tijd betrokken en geïnformeerd over deze bijeenkomsten?

• Vindt u het nodig om onderscheid te houden tussen incidenten (beheer) en systeem wijzigingen

(ontwikkeling)?

• Tot in welke mate moet er onderscheid blijven bestaan?

• Beargumenteer uw mening op basis van uw ervaring in de praktijk.

• Beheer en ontwikkeling gebruiken beide hun eigen methoden, hoe kijkt u hier tegen

aan?

• Beargumenteer uw mening op basis van uw ervaring in de praktijk.

2.3 External driving forces

The following interview questions are related to the following subquestion: ‘What are the external

driving forces related to DevOps?’.

Area 1. Extend delivery to production.

• Beheer en ontwikkeling zijn fysiek van elkaar zijn gescheiden (aparte locatie), ervaart u hier

moeilijkheden mee?

• Hoe staat het management doorgaans tegenover verander initiatieven?

• Heeft de klant baat bij een snelle oplevering van functionaliteiten?

• Wat heeft meer prioriteit en waarom: stabiliteit of functionaliteit?

Area 2. Extend operation to project.

• Staat de technologie het toe om belangrijke informatie over het productiesysteem nauw te

integreren in het project?

• Is de infrastructuur hiervoor toereikend?

• Zijn de gebruikte tools hiervoor geschikt?

• Is de klant tevreden met de huidige manier van werken bij fouten en verstoringen?

Area 3. Embed project into operations.

• Hoe is de cultuur als het gaat om het vervullen van andermans taken of het uit handen geven van

taken?

• Denkt u dat mensen bereid zijn om hun taken uit te breiden?

• Denkt u dat mensen bereid zijn om taken uit handen te geven?

• Denkt u dat mensen kennis willen uitwisselen?

• Zijn er voldoende beheerders beschikbaar om ontwikkelaars te betrekken bij het uitrolproces?

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 101

Area 4. Embed production into project.

• Hoe is de cultuur als het gaat om het vervullen van andermans taken of het uit handen geven van

taken?

• Denkt u dat mensen bereid zijn om hun taken uit te breiden?

• Denkt u dat mensen bereid zijn om taken uit handen te geven?

• Denkt u dat mensen kennis willen uitwisselen?

• Zijn er voldoende ontwikkelaars beschikbaar om beheerders te betrekken in het

ontwikkelproject?

2.4 Requirements

The following interview questions are related to the following subquestion: ‘What are the

requirements for implementing DevOps?’.

Area 1. Extend delivery to production.

• Zijn er kwaliteitseisen waar procesveranderingen aan moeten voldoen?

• Welke randvoorwaarden of richtlijnen moeten in acht worden genomen bij de implementatie

van DevOps practices?

• Zijn er technische eisen waar het proces rekening mee moet houden?

• Wat is de gewenste manier om aanpassingen door te voeren, op basis van uw kennis en

ervaring?

• Wat zijn eventuele aandachtspunten m.b.t. de invoering?

Area 2. Extend operation to project.

• Welke tools dienen te worden afgestemd om feedback van beheer te kunnen verwerken?

• Waar moet de feedback van beheer aan voldoen om deze te kunnen verwerken?

Area 3. Embed project into operations.

• Welke tools dienen te worden afgestemd om feedback van ontwikkeling te kunnen verwerken?

• Waar moet de feedback van ontwikkeling aan voldoen om deze te kunnen verwerken?

Area 4. Embed production into project.

• Welke stappen zijn op basis van uw ervaring en kennis belangrijk voor een succesvolle DevOps

implementatie?

• Kunt u ook aangeven in welke volgorde?

• Beargumenteer uw mening.

3. Case selection

Since all development teams at CaseComp use their own variant of the Scrum method, we merely

focus on the development team’s processes with the highest maturity for identifying issues. This

ensures the focus is on the issues related to DevOps rather than Scrum, as issues or drivers of less

mature teams may already solved or covered by the processes of this team. The elaborated process

and corresponding issues are used as baseline for the desired situation phase of the research.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 102

Suitable interview candidates from the case are selected. To form a coherent view of the current

situation, all relevant roles involved in software development are subjected to an interview. One

representative of each role is invited for an interview: Product owner, Scrum master, Developer,

Tester, Implementation manager, Quality manager, Program manager, Project manager, Technical

Application Manager, and Functional Application Manager.

4. Case Study Procedures and Roles

The case study is performed using a semi-structured interview technique in an informal setting. Using

this approach the researcher is able to ask additional questions related to the answers of the

interviewee. The first part of the interview focuses on the general activities of the user to create an

informal atmosphere. The second part challenges a serious discussion about the components of

DevOps, whether the problems in practice could be tackled by DevOps. In order to avoid bias due to

previously identified problems, the interviewee is first asked to summarize the main problem areas

to stay focused on the experiences of the interviewee. Once these are discussed in detail, the

discussion can be continued on the untreated problems to cross-check previous findings.

An interview session lasts about an hour. During the interview notes are recorded and afterwards

stored in the case study database. Also, the researcher has pre-announced to send any clarifying

questions by e-mail when answers are insufficient or need additional validation in the case mutual

responses of interviewees are contradictory or unclear to interpreted.

The case study is conducted by the lead researcher. For the rigor of the research, the supervisors of

the research assess the case study protocol documents to ensure validity issues are consistently

addressed.

5. Data Collection

In this case study we collect qualitative data regarding the problems and difficulties in the current

development process at CaseComp. Documents and expert interviews are used as main source to

elaborate and validate the Process-Deliverable Diagram.

Interview appointments are timely planned on a flexible basis - based on the presence of the

participant. Since the relevant stakeholders for this research are spread over two physical locations,

the interviews are held at the location of the interviewee so that the person can speak freely. A list

with themes and main questions is consulted to support the semi-structured interview.

The collected data is stored in a case study database. The case study database is stored using a cloud

storage service to ensure both availability and integrity.

6. Analysis

Once the data collection process has been completed, the main drivers and requirements for the

DevOps implementation are summarized by subdividing these into distinct groups. This activity is

performed using the data reduction method by Miles and Huberman (1994) which identifies

important findings based on the interview data.

The steps of the method are summarized as follows:

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 103

1. Data reduction. Qualitative data is reduced and organized by discarding irrelevant data and

assigning codes to relevant data.

2. Data display. In order to draw conclusions, good display of data is essential. Such as tables,

charts, summaries and diagrams.

3. Conclusion. Develop conclusions based on the analysis, by comparing, contrasting, searching

for patterns, triangulation etc.

The resulting codes or categories form the rationale to integrate DevOps into Scrum. The results also

enable us to answer the research question for this case study. We expect the possible outcomes are

related to the cooperation, coordination, communication, processes, methods, culture, and tooling

of the development and operations departments. The purpose of this case study is to find the issues

related to processes (the soft side) rather than technologies (the hard side). The analysis takes place

as the case study research progresses.

7. Plan Validity

According to Yin (2009) there are four types of validity threats that apply to this case study: construct

validity, internal validity, external validity, and reliability. With respect to construct validity, the case

study protocol is developed using the template provided by Brereton, Kitchenham, Budgen, and Li

(2008). The case study protocol is validated using the guidelines for case study design by Runeson

and Höst (2008). The protocol ensures the interview sessions are focused on their primary goals. The

internal validity is threatened by incorrect facts and incorrect results from the different sources of

information. The interview sessions that are held consist of two parts, one to explore and elaborate,

and one to cross-check documentation found in the document management system of CaseComp

and to confirm facts stated in other interviews. With respect to external validity, a threat is that

CaseComp is not representative for the Dutch IT organization. Despite CaseComp facilitates IT

services, financial services are the core businesses of the company. Finally, to defend reliability, the

case study procedures can be replicated for other cases in order to increase the generalizability of

the results.

8. Study Limitations

An important limitation is that the research is limited to one object of study, namely the

development team with a high mature development process. Since all development teams use their

own implementation of the Scrum process, it could be possible that not all drivers and issues are

included for analysis. Therefore, elaborated process improvements in the research address only a

limited set of situational factors that apply to CaseComp. This problem can be tackled by replicating

the case study procedures to other development teams, to elicit issues and drivers which were

initially not identified.

9. Reporting

The case study protocol is iteratively improved once progress is being made. A template is used for

case study planning and data collection procedures. The findings of the case study are reported in

the ‘current situation’ chapter of the thesis. The results (e.g. process-deliverable diagram, issues) are

used as foundation for the next phase of the research.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 104

Appendix III. Alterations to the Activities and Concepts

Concept name (reference method) Concept name (case)

RELEASE PLAN SPRINT PLAN

RELEASE FUNCTIONALITY USER STORY

DELIVERY DATE COMPLETION DATE

PROJECT PLAN PROJECT INITIATION DOCUMENT
PROJECT TEAM (deleted)

ACTIVITY LIST FOR RISK MONITORING (deleted)

(not present) PRODUCTION DATE

EXECUTABLE VERSION BUILD
EXECUTABLE VERSION HISTORY BUILD HISTORY

(not present) RELEASE

MARKETING MATERIAL CUSTOMER DEMO

PRODUCT STANDARD (deleted)
(not present) MAINTENANCE GUIDE

(not present) INSTALLATION GUIDE
Table 15. Changes to the concepts of the reference method

Activity name (reference method) Activity name (case)

Define release plan Define sprint plan
Form project teams (deleted)
Define risk monitoring strategy (deleted)
Review working executable Test working build
Create marketing materials Create customer demo
Assess current domain models Assess and adapt current domain models
Assess current system architecture Assess and adapt current system

architecture
Define product standards (deleted)
(not present) Package release for operations
(not present) Deliver release to operations
(not present) Provide support for PAT
(not present) Provide support for deployment to

production
Table 16. Changes to the activities of the reference method

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 105

Appendix IV. Activity and Concept Tables for the Baseline

Activity Description

Plan project
Create product
backlog

A PRODUCT BACKLOG is created by identifying features, functions,
requirements, enhancements, and fixes that are not addressed by the
current release.

Define functionalities
for releases

The product owner selects the USER STORY(ies) that will be covered by the
RELEASE PLAN for the current sprint.

Define delivery dates
for releases

A COMPLETION DATE is determined. This is usually the date at which the
sprint ends, after 2-6 weeks. Thereafter, the PRODUCTION DATE is defined
at when the RELEASE that contains the current BUILD is put into production.

Define release plan USER STORY(ies) are selected for inclusion in the current sprint. This results
in the creation of a SPRINT PLAN. The SPRINT PLAN contains both a
COMPLETION DATE as a PRODUCTION DATE.

Identify risks The product owner identifies the risks that apply to the project. The RISKs
are saved in a RISK LIST.

Assess risks The identified RISKs are assessed by the product owner which results in the
creation of an ASSESSMENT REPORT.

Analyze risk impact The IMPACT of each RISK is determined by considering the threat level for
the project.

Prioritize risks Based on the ASSESSMENT REPORT and IMPACT of the risk a PRIORITY is
determined and assigned to each risk.

Identify required
development
resources

A RESOURCE PLAN is elaborated by the product owner which describes the
required resources needed to develop the system.

Estimate
development budgets

A BUDGET PLAN is elaborated by the product owner which provides an
estimation of the required budgets for the system development.

Verify management
approval and funding

The product owner is responsible to request approval from management.
For this a PROJECT INITIATION DOCUMENT is used that combines the
SPRINT PLAN, RESOURCE PLAN(s) and BUDGET PLAN(s) into a formal
document.

Design architecture
Assess and adapt
current system
architecture

The team assesses the current SYSTEM ARCHITECTURE to check whether the
architecture is sufficient to support the contents as described in the SPRINT
PLAN. Once needed, adaptations are made to the SYSTEM ARCHITECTURE.

Assess and adapt
current domain
models

The team assesses the current DOMAIN MODEL(s) to check whether the
architecture is sufficient to support the contents as described in the SPRINT
PLAN. Once needed, adaptations are made to the DOMAIN MODEL(s).

Develop release
Review project plan The team reviews the PROJECT INITIATION DOCUMENT so that team

members know what is expected.
Develop backlog
components

Entries of the SPRINT PLAN are developed by the team which results in one
or multiple COMPONENT SOURCE CODE(s).

Wrap developed
backlog components

As soon as all the components are developed, the COMPONENT SOURCE
CODE(s) are wrapped together by the team. This results in a BUILD, an
executable version that realizes the SPRINT PLAN.

Test working build In this activity a series of sub activities are sequentially performed to test
the integrated BUILD. Any erroneous COMPONENT SOURCE CODE(s) are
adjusted. Thereafter, the process can be continued as the BUILD is
approved.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 106

Finalize release
Create release
documentations

The team elaborates on the DOCUMENTATION(s) regarding to the RELEASE.
The materials support a customer in understanding and using the RELEASE.

Create customer
demo

A CUSTOMER DEMO is created by the team to present the features brought
by the new RELEASE. The CUSTOMER DEMO is presented in a customer-
intimate way.

Prepare training
materials

TRAINING MATERIAL(s) are developed by the team which teaches
customers on how to use the RELEASE.

Package release for
operations

The BUILD(s) are wrapped together by the team to provide a coherent
RELEASE. The result is a deployable version of the system.

Deliver to operations The RELEASE is handed over to operations that will take further actions to
put the RELEASE into production.

Provide support
Provide support for
product acceptation
test (PAT)

The team sits standby to provide support for the product acceptation test. If
there are changes needed to pass the test, the team adequately responds to
fix the problems.

Provide support for
deployment to
production

Once problems arise in the production environment after the RELEASE is put
into production, the team immediately provides support and solves
eventual bugs.

Table 17. Activity table for the baseline

Concept Description

PRODUCT BACKLOG A PRODUCT BACKLOG contains product functionality requirements that are
not adequately addressed by the current product release. Backlog items
are bugs, defects, customer requested enhancements, competitive product
functionality, competitive edge functionality, and technology upgrades
(Schwaber, 1995).

USER STORY A USER STORY is a product functionality requirement planned for a future
release. It may concern a bug, a defect, a customer requested
enhancement, a competitive product functionality, a competitive edge
functionality, or a technology upgrade (Schwaber, 1995).

COMPLETION DATE A COMPLETION DATE is the moment when the preliminary deliverable
(BUILD) is finished. It is the date at which a particular sprint ends.

PRODUCTION DATE A PRODUCTION DATE is the moment when the final deliverable (RELEASE)
is deployed to the production environment (Schwaber, 1995).

SPRINT PLAN A SPRINT PLAN describes the functionalities that are planned for the
current sprint. It is based on the following variables: customer
requirements, time pressure, competition, quality, vision, and resource
(Schwaber, 1995).

ASSESSMENT REPORT An ASSESSMENT REPORT describes an assessment of a RISK and
appropriate risk control (Schwaber, 1995).

IMPACT An IMPACT is the degree of negative influence a RISK can exert over the
project (Hossain, Babar, Paik, & Verner, 2009).

PRIORITY A PRIORITY is the perceived level of threat assigned to an identified RISK,
based on its assigned IMPACT and ASSESSMENT REPORT (Schwaber, 1995).

RISK A RISK is a perceived threat to the project, based on internal or external
variables (Hossain et al., 2009).

RISK LIST A RISK LIST contains the identified RISKs relevant for the development of
the system (Schwaber, 1995).

RESOURCE PLAN A RESOURCE PLAN describes the required resources (e.g. time, people,
tools) for the project to realize a SPRINT PLAN (Schwaber, 1995).

BUDGET PLAN A BUDGET PLAN describes the amount of funding required by the team in

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 107

order to realize a SPRINT PLAN (Schwaber, 1995).
PROJECT INITIATION
DOCUMENT

A PROJECT INITIATION DOCUMENT is the management product, the
baseline against which progress and success will be measured (Bentley,
2012).

SYSTEM
ARCHITECTURE

The SYSTEM ARCHITECTURE describes the gross structure of the system’s
architecture. This structure illuminates the top level design decisions,
including things such as how the system is composed of interacting parts,
where are the main pathways of interaction, and what are the key
properties of the parts (Garlan, 2000).

DOMAIN MODEL A DOMAIN MODEL defines the objects that a user can view, access, and
manipulate through a user interface (Puerta & Eisenstein, 1999).

COMPONENT SOURCE
CODE

A COMPONENT SOURCE CODE is a readable format of commands in a
program before it is compiled or assembled into a BUILD, in this case of a
developed component (Schwaber, 1995).

RELEASE A RELEASE is a software version which is ready to make available to the
end users. The RELEASE contains new features, bug fixes and
improvements for the overall performance of the system.

BUILD A BUILD integrates the source code of all the separately developed
components, that can be executed as a computer program (Schwaber,
1995).

BUILD HISTORY A BUILD HISTORY contains the chronological history of events related to a
BUILD. The entries contain a copy of the source code of the BUILD, the
date of when the record was updated, the status of the BUILD and the
corresponding version number (Schwaber, 1995).

DOCUMENTATION DOCUMENTATION describes the RELEASE both textually as visually
(Schwaber, 1995).

INSTALLATION GUIDE The INSTALLATION GUIDE describes how the RELEASE should be installed
on the production machine as well the procedure to perform a rollback.

MAINTENANCE GUIDE The MAINTENANCE GUIDE describes procedures for operations, such as
how the RELEASE is kept fast and which logging mechanism is
implemented.

CUSTOMER DEMO The CUSTOMER DEMO is a presentation with the purpose of informing a
customer about a certain RELEASE.

TRAINING MATERIAL A TRAINING MATERIAL is the material to teach customers and users on
how to use the RELEASE (Schwaber, 1995). Typically it only addresses the
new USER STORY(ies).

Table 18. Concept table for the baseline

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 108

Appendix V. DevOps Patterns

Name Layer Area(s) Source(s)

Cross-functional delivery team
Alternative name: active
stakeholder participation,
becoming a team

Process Area 3,4
(Ambler, 2013; Debois, 2012; Duvall,
2012; Lee, 2011; Rogowski, 2011)

Cross-functional skills
Alternative names: polyskilled
engineers, DevOps culture

People Area 3,4 (Ambler, 2013; Duvall, 2012; Lee, 2011)

Develop for production Process Area 4
(Edwards & Thompson, 2011; Lee,
2011; Moon, 2010)

Automate for release
Alternative name: automated
testing

Tools Area 1 (Ambler, 2013; Lee, 2011)

Consistent tooling Tools Area 1-4 (Lee, 2011)

Deployment pipeline
Alternative names: delivery
pipeline, stages builds, build
pipeline

Tools Area 1
(Duvall, 2012; Humble & Farley, 2010;
Hüttermann, 2012; Lee, 2011)

Composable deployments Process Area 1 (Honor, 2010)

Adaptive deployment Tools Area 1 (Honor, 2010)

Code datasplit Process Area 1 (Honor, 2010)

Packaged artifact Process Area 1 (Honor, 2010)

Apply releases incrementally and
iteratively

Tools Area 1,2 (Hüttermann, 2012; Swartout, 2012)

Branch by abstraction Tools Area 1 (Hamment, 2011; Hüttermann, 2012)

Feature toggles Tools Area 4 (Hüttermann, 2012)

Dark launching
Alternative names: canary
releases, pushed phased releases

Tools Area 1,2 (Hüttermann, 2012; Lee, 2011)

Blue-green deployment Tools Area 1 (Hüttermann, 2012)

Provision environments from
versioned code
Alternative name: scripted
environments

Tools Area 1
(Debois, 2012; Duvall, 2012;
Hüttermann, 2012)

Provide monitoring and log files to
development
Alternative name: application
monitoring

Tools Area 2 (Debois, 2012; Hüttermann, 2012)

Set stability and capacity as
development goals

Process Area 3 (Hüttermann, 2012)

Integrate production stories
Alternative names: eliciting
operations requirements,

Process Area 4
(Bass, Jeffery, Wada, Weber, & Zhu,
2013; Debois, 2012; Hüttermann, 2012)

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 109

integration of person and
alignment of goals

Developers wear pagers People Area 4 (Debois, 2012)

Version everything
Alternative name: integrated
change management

Tools Area 1 (Ambler, 2013; Duvall, 2012)

Gatekeeper Process Area 3 (Hüttermann, 2012)

Check non-functional
requirements

Tools Area 4 (Hüttermann, 2012)

Integrated deployment planning Process Area 3 (Ambler, 2013)

Automated dashboards Tools Area 2 (Ambler, 2013)

Production support Process Area 3 (Ambler, 2013)

Task-based development Tools Area 4 (Hüttermann, 2012)

Early feedback by operations Process Area 4 (Hüttermann, 2012)

Quality scenarios Process Area 4 (Hüttermann, 2012)

Sync meeting Process Area 3,4 (Hüttermann, 2012)

Table 19. DevOps patterns

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 110

Appendix VI. Process Pattern Descriptions

Cross-Functional Delivery Team

Entry Process Pattern Description

Name Cross-functional delivery team
Author(s) Debois (2012); Duvall (2012); Lee (2011); Rogowski (2011)
Version 1.0
Also Known As Active stakeholder participation, becoming a team
Keywords project team, communication, collaboration, delivery, sharing
Intent Development and operations teams have historically been separate groups. By

making operations part of the project, they can share their knowledge with
other team members.

Problem The developers and operators do not physically sit together and are mentally
not on the same line. The operators are involved once the development is done
and the system is ready for releasing. The primary task of operations is
monitoring and incident handling.

Solution “Teams work together in a dedicated fashion to deliver software consistently,
without the time impediments inherent when teams communicate across the
organization” (Duvall, 2012). Operations is part of a (virtual) project team from
the very beginning of the project. A cross-functional delivery team makes every
team member responsible for the software delivery process.

Realized Activity Form delivery team
Initial Context There are no corresponding work products required that allows the application

of this process pattern.
Result Context There are no new work products introduced.
Pros and Cons Pros:

 Improves communication between developers and operators.
 Fosters collaboration and knowledge sharing between developers and

operators.
 Enables faster feedback on the design of the system.
 Makes all team members responsible for the deliverables.

Cons:
 The attitude towards each other should be mended.
 Mutual trust must be achieved.
 Not all people are willing to change their behavior.
 In the beginning more time is required to form a cross-functional team.
 The cultural gap between development and operations impedes this

pattern
Example The team at Rally Software evolved to DevOps because of some basic core

values that are defended by everyone. “Placing people in a position to do work
they are passionate about, embracing change, being respectful, and
collaborating are fundamental things that lead to everything else” (Hüttermann,
2012).
An anti-pattern is development, testing, and operations are not part of the
same team. Some organizations implemented a distinct DevOps team as
opposed to a cross-functional team.

Related Patterns Cross-functional skills
Table 20. Process pattern description: cross-functional delivery team

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 111

Develop For Production

Entry Process Pattern Description

Name Develop for production
Author(s) Lee (2011); Moon (2010); Edwards and Thompson (2011)
Version 1.0
Also Known As -
Keywords development, production, artifacts
Intent The required artifacts that are needed to put the system into production are

developed when the system is ready for releasing. The resulting errors could
have been prevented if the artifacts were developed at an early stage.

Problem The artifacts for operations are made when the release is already done, so there
is no time left to review them. This results in unexpected deployment issues.

Solution “Early creation of operational artifacts as part of the development process (for
example, deployment and update scripts, automated database migration
scripts, monitoring and reporting scripts)” (Lee, 2011).

Realized Activity Develop for production
Initial Context Documentations are made for the current release. There are two type of

documents available, an installation guide and maintenance guide. Both
documents are created after the development phase.

Result Context In the result context, the aforementioned release documents are updated right
after the development of a backlog component. Also, the team spends time on
the creation of the health script and database update script.

Pros and Cons Pros:
 Operational artifacts are kept up to date during the development.
 Timely feedback on operational artifacts from operations.
 Reduced errors during the deployment, so faster mean time to release

(MTTR).
Cons:

 The developer may not willing to spent time on tasks other than
development.

Example Moon (2010) tweaked the local DNS settings to simulate the production server
address of the content delivery network (CDN) in the development
environment. By doing this, the server address does not have to be changed for
the development and staging environments and the code is production-proof.
An anti-pattern is development, testing, and operations use their own scripts.

Related Patterns Early feedback by operations
Table 21. Process pattern description: develop for production

Early Feedback by Operations

Entry Process Pattern Description

Name Operations provides feedback about the design of the application under
development, early and often.

Author(s) Hüttermann (2012)
Version 1.0
Also Known As -
Keywords operations, feedback, system, design, development
Intent Operations give feedback about the feasibility of the system under

development, so problems in the transition from development to operations
are adequately tackled.

Problem Sometimes the infrastructure is not sufficient to support the new system,

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 112

therefore the system cannot directly put into production.
Solution “The goal is to enable the development team to gain fast feedback about

feasibility and to share knowledge across teams early and often” (Hüttermann,
2012).

Realized Activity Assess and adapt current infrastructure, Review system design
Initial Context In the current situation, IT operators review the system once the development

has finished. The IT infrastructure is, however, never assessed before the
system development takes place.

Result Context There are no new concepts introduced, but the existing IT infrastructure is now
part of the process. IT operators attend sprint and demo meetings to provide
feedback on the systems design.

Pros and Cons Pros:
 Less risks in the release process.
 Better alignment between development and operations.
 Reduces errors in the release process.
 Stimulates communication between development and operations.
 Fosters knowledge sharing.

Cons:
 There should be additional procedures and guidelines for the

assessment of the IT infrastructure.
Example No practical example available.
Related Patterns Cross-functional delivery team
Table 22. Process pattern description: early feedback by operations

Integrate Production Stories

Entry Process Pattern Description

Name Integrate Production Stories
Author(s) Hüttermann (2012); Debois (2012); Bass et al. (2013)
Version 1.0
Also Known As Eliciting operations requirements, integration of person and alignment of goals
Keywords production, integration, project, backlog, stories
Intent Production issues or quality requirements are too late addressed. Therefore,

stories should be inserted into the product backlog in an early stage.
Problem The development and operations department are originally siloed

environments, where they have their own work items. This hinders the
cooperation.

Solution From the beginning of the project, all stories related to production (such as
monitoring, security, etc.) are integrated into the product backlog. This
eliminates the discrepancies between development and operations.

Realized Activity Define contents for releases
Initial Context The user stories are derived from the product backlog, and are thereafter

assigned to the sprint plan for a particular sprint.
Result Context The result context includes a new work product for production stories, which

are derived from quality requirements. Alternatively, it is also possible to attach
quality acceptance criteria to existing user stories or apply an hybrid solution.

Pros and Cons Pros:
 Fosters collaboration between development and operations.
 Monitors quality requirements during the project.
 Involves operations in the project.

Cons:

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 113

 More time is needed to discuss and prioritize the production stories.
 Developers are expected to be unhappy with additional stories which

were previously not part of the project.
Example No practical example available.
Related Patterns Develop for production
Table 23. Process pattern description: integrate production stories

Sync Meeting

Entry Process Pattern Description

Name Sync meeting
Author(s) Hüttermann (2012)
Version 1.0
Also Known As -
Keywords sync, meeting, communication, alignment, release
Intent Development and operations should be brought closer together so that they

can discuss the upcoming release in order to prevent any pitfalls when placing
the system into production.

Problem There is no alignment on the transition to production.
Solution For each new release there is held a DevOps sync meeting. During this meeting

developers and operations come together and discuss operational issues that
have occurred during the last release as well as planning for the upcoming
release (Hüttermann, 2012).

Realized Activity Sync meeting
Initial Context Available work products are release documents such as the installation and

maintenance guide.
Result Context There are no new work products introduced. However, it is likely minutes are

recorded and stored on a central location.
Pros and Cons Pros:

 Early discovering of expected issues.
 Learn from early experiences.
 Fosters knowledge sharing.
 Stimulates communication.

Cons:
 Additional time and effort is needed to synchronize both ‘silos’.

Example At Rally Software the collaboration process is facilitated and built into their daily
process (Hüttermann, 2012). “The team discusses new changes, maintenance
and talks about areas that can be improved that are not necessarily
architectural. In any given month they have weekly demos, which are
opportunities for operations and development to get feedback on the work they
are doing” (Hüttermann, 2012).

Related Patterns Cross-functional delivery team
Table 24. Process pattern description: sync meeting

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 114

Appendix VII. Updated Activities and Concepts for the

Situational Method

Activity Description

Form delivery team During this activity the team members form a cross-functional delivery
team is. A workshop is held to formulate clear goals for the team
(developers, testers, technical application manager). This workshop is
facilitated by the Scrum master.

 Define foundations The team determines the SHARED GOALs for the team.
 Define scope The SCOPE as well boundaries and context are defined by the team. It

becomes clear what is not in the scope of the definition of done (DoD).
 Define quick wins The team defines the quick achievable results for the project.
 Define path to solution The team elaborates on the path to come up with the shared goals.
 Define next steps The team rearrange and plan next steps to foster shared goals.
 Define slack time SLACK TIME is defined in order to improve the daily work, team

collaboration, and the definitions of the shared goals.
Create product backlog A PRODUCT BACKLOG is created by identifying features, functions,

requirements, enhancements, and fixes that are not addressed by the
current release. In addition, a QUALITY REQUIREMENTS LIST is made
available for the team.

Define contents for
releases

The product owner selects the STORY(ies) that will be covered by the
RELEASE PLAN for the current sprint. A story can either be a USER
STORY or a PRODUCTION STORY. QUALITY REQUIREMENTs may result
in QUALITY CRITERIA for individual user stories or in new PRODUCTION
STORY(ies).

Assess and adapt current
system architecture

The SYSTEM ARCHITECTURE is assessed by the technical application
manager (TAB) to check whether the system design is correct. If
needed, adaptations are made by business analyst integration (BAI),
architect, and project manager, who are responsible for these design
documents.

 Inspect HLSI The HLSI is inspected by TAB. This document describes the application
landscape and service calls across the systems.

 Inspect PAC The PAC is inspected by TAB. This document describes the general
architectural principles and the standards to be met. Also it provides a
technological model with a detailed description of the systems and
interfaces involved.

 Inspect SOPO The SOPO is inspected by TAB. This document describes the
development and production environment.

 Inspect ISP The ISP is inspected by TAB. This document describes the input and
output of the system interfaces.

 Report findings Findings on the design inspection are reported by person that has
performed the inspection.

 Adapt system
 architecture

Based on the inspection findings, corrective actions are taken by
business analyst integration (BAI), architect, and project manager to
enhance the system architecture.

Assess and adapt current
IT infrastructure

The IT INFRASTRUCTURE is assessed by the technical application
manager to check whether the IT INFRASTRUCTURE is sufficient to
support the realization of the STORY(ies). If needed, adaptations are
made to the IT INFRASTRUCTURE.

Develop for production The team develops the backlog components and afterwards the system

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 115

is assessed by the team whether the QUALITY REQUIREMENTs are not
at risk. Furthermore, operational artifacts and release documentation
are updated.

 Update health script Based on the QUALITY REQUIREMENTs the team updates the health
script to the actual state of the system.

 Update database script The team modifies the database update script so the database schemes
reflect the actual state of the system.

 Update release
 documentation

The team modifies the release documentation, such as the
INSTALLATION GUIDE and MAINTAINANCE GUIDE to reflect the actual
state of the system.

Table 25. Updated activities for the situational method

Concept Description

SHARED GOAL SHARED GOALs are taken into account by all team members during the
project. It is used as foundation for all activities.

SCOPE The SCOPE describes what is in the scope of the definition of done for the
project.

QUICK WIN A result that can be achieved quickly and is appreciated by all.
PATH TO SOLUTION The way in how the team is able to achieve the SHARED GOALs.
STEP STEP describes a single action towards the solution.
SLACK TIME SLACK TIME enables thinking and analyzing the current working approach.
STORY A STORY can either be a USER STORY or PRODUCTION STORY and are

derived from the PRODUCT BACKLOG or QUALITY REQUIREMENTS LIST.
PRODUCTION STORY PRODUCTION STORY(ies) are derived from QUALITY REQUIREMENTs and

are written in the context of the project.
QUALITY
REQUIREMENTS LIST

The QUALITY REQUIREMENTS list contains one or more QUALITY
REQUIREMENTS for the system.

QUALITY
REQUIREMENT

A QUALITY REQUIREMENT describes the non-functional behavior of the
system (e.g. the system should respond fast) and constrains for the system
(e.g. the system is developed on a Unix platform).

QUALITY CRITERIA The QUALITY CRITERIA is derived from one or more QUALITY
REQUIREMENTs and are written in the context of individual USER
STORY(ies). The QUALITY CRITERIA should be met in order to ensure the
QUALITY REQUIREMENTs are properly implemented.

SYSTEM ARCHITECTURE The SYSTEM ARCHITECTURE is the composition of materials that record
design decisions about the system under development.

IT INFRASTRUCTURE The IT INFRASTRUCTURE includes the hardware, operating software,
communications, other equipment and support required to enabled
business applications (Turnbull, 1991). The design requirements for the
information system must fit within the existing IT INFRASTRUCTURE.

HEALTH SCRIPT The HEALTH SCRIPT assesses the system whether the QUALITY
REQUIREMENTs are properly implemented.

DATABASE SCRIPT The DATABASE SCRIPT ensures the database schemes of the production
environment reflect the actual situation of the system under
development.

Table 26. Updated concepts for the situational method

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 116

Appendix IIX. Case Study Protocol for the Pilot Experiment

1. Introduction

The goal of this case study is to set up a pilot experiment for implementing the selected process

improvements at CaseComp and to obtain feedback on the solution for the identified problem areas.

The case study aims to answer the last subquestion of the research:

SQ5. How can the optimal integration scenario be executed in a real development project?

In Chapter 6 we determined the optimal integration scenario for the selected improvements. By

executing this scenario in a real development project, we are able to provide feedback on the

selection approach and elaborated implementation paths. The objectives of this case study are

formulated as follows:

· Obtain feedback on the implemented process improvements.

· Validate the method fragments and situational method.

· Validate the scenario selection.

· Elicit factors that shape the DevOps integration.

The case study protocol is highly incremental in nature, so initial findings may result in adaptations of

this document. During the pilot case study the progress and results are compared with the plan. Any

changes are recorded, which leads to recommendations for changes in procedures.

2. Design

The case study for the pilot experiment consists of a single-case design with multiple units of

analysis, also referred to as an embedded design according to the basic types of designs for case

studies by Yin (2009). Basili, Selby, and Hutchens (1986) defined software engineering experiments in

terms of a two-dimensional classification scheme: single-project studies, multiproject studies,

replicated-project studies, and blocked subject-project studies. This case study is considered as a

multiproject study, which examines objects across a single team and a set of projects (Basili et al.,

1986).

The case study uses a pilot experiment (also referred to as pilot case study). “The pilot case can

assume the role of a "laboratory" in detailing your protocol, allowing you to observe different

phenomena from many different angles or to try different approaches on a trial basis” (Yin, 2009).

This approach is therefore ideally suited for validating the integration scenario as both method

increments by obtaining feedback from the environment. Also, mistakes or validity problems can

easily rectified using a pilot case and thus, is cost-efficient. Instead of setting up a formal laboratory

setting where the pilot does not affect the development of the information system, the included

project teams actually develops working software during the pilot.

For the implementation of the process changes we use the iterative improvement process by Salo

and Abrahamsson (2007). Originally, this process adapts the development process in an iterative way

based on the experiences and context knowledge of software developers. As we have already

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 117

identified the problem areas, we use their approach to attach process improvements to sprints and

validate them in the subsequent iteration. In this manner the method runs in sync with Scrum and

method fragments are stepwise implemented according to the scenario.

To ensure the case study is scientifically sound, we use the guidelines for case study experiments by

Kitchenham et al. (1995) who propose the following guidelines:

1. Define the hypothesis

2. Select the pilot projects

3. Identify the method of comparison

4. Minimize the effort of confounding factors

5. Plan the case study

6. Monitor the case study against the plan

7. Analyze and report the results

3. Case selection

The baseline method from Chapter 4 is used as main criteria for selecting a pilot case or cases.

Possible cases are selected from a pool of available Scrum projects. The processes of the teams

should match the baseline method in order to include them in the final selection, otherwise the

integration scenario does not make sense for these projects. A prerequisite is that the pilot starts at

the same time for all cases so the results can be processed within the time limitations of the

research. The selected teams are timely informed on the start date of the pilot experiment. We aim

to start the pilot in the first sprint of the project so the Scrum development process is executed from

the beginning.

4. Case Study Procedures and Roles

4.1 Define the hypothesis

We start with defining the effect we expect the situational method to have. A hypothesis is defined

for each process driver from Chapter 4 in order to measure the effort on the specific problem area.

These measurements will be used to demonstrate the effect by implementing the proposed

solutions. Hypotheses are linked to each method fragment according to Figure 26 in section 5.1.2. In

the Data collection section of the case study protocol we elaborate on the metrics of choice and

provide the reader with mathematical representations.

Code / category Hypothesis

D1. The processes of the development
and operations departments are not
aligned with each other.

H0. The standard deviation of the project velocity is
equal.
H1. The standard deviation of the project velocity is
decreased.

D2. Lack of standardization for quality
guidelines.

H0. The number of production acceptance testing (PAT)
issues per release is equal.
H1. The number of production acceptance testing (PAT)
issues per release is decreased.

D3. IT Operations is not well represented
in the project.

H0. The ratio of finished backlog items addressing
quality requirements compared to the ratio of finished

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 118

user stories is equal.
H1. The ratio of finished backlog items addressing
quality requirements compared to the ratio of finished
user stories is increased.

D4. Too comprehensive process for
releasing information systems.

H0. The time between the last PAT approval and the
time of release is equal.
H1. The time between the last PAT approval and the
time of release is increased.

D5. Moderate communication between
development and operations.

H0. The ratio of the number of quality defects per
quality requirement is equal.
H1. The ratio of the number of quality defects per
quality requirement is decreased.

Table 27. Hypotheses mapped to the main drivers

4.2 Select the pilot projects

The team of which the current situation is determined in Chapter 4 is already selected for

participation. Since the Scrum implementation differs from project to project, there are no additional

teams that meet the baseline. Due to time limitations of the research we are not able to elaborate on

different baselines for other teams, so we do not know whether they experience the same problems.

Therefore our pilot case study is limited to a single project.

Characteristic Case project

Size of project (person months) 18
End product Extension to an existing

information system
Duration 8 weeks

Iteration length 4 x 2 weeks

Team size 9
Table 28. Characteristics of the case project

4.3 Identify the method of comparison

In order to compare the results of the new method with the existing method we need to choose a

valid basis for assessing the results of the case study. Kitchenham et al. (1995) proposes three ways

to facilitate this comparison: (Kitchenham et al., 1995)

 Select a sister project with which to compare.

 Compare the results of using the new method against a company baseline.

 If the method applies to individual components, apply it at random to some product

components and not to others.

For this case study we chose the second approach in which the results of the new method are

compared against the baseline (i.e. the results from a previous project).

4.4 Minimize the effort of confounding factors

There is one confounding factor for this case study that may affect the project performance. As we

have selected a high mature Scrum team it is likely the team is very enthusiastic in improving the

current method and may adopt changes more quickly than a team that is very skeptical about the

new method. For example, the staff morale can have a large effect on productivity and quality. On

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 119

the other hand we can say, if the performance of the pilot project is negligible it is not due to the lack

of team motivation. As we cannot eliminate this confounding factor we try to minimize the effect by

telling the team in the beginning of the project that we expect from them to be critical. Also, we will

not discuss the measures that will be used as baseline. The pilot facilitator should monitor the

individual efforts during the pilot. Individuals should not waste excessive amounts of energy in these

improvements, as we consider it as a team effort.

4.5 Plan the case study

The pilot experiment is planned over four iterations (Figure 49) in which the improvements from

Table 29 are sequentially implemented. The experiment is supported by the iterative improvement

process (IIP) by Salo and Abrahamsson (2007). At the end of each iteration a post-iteration workshop

(PIW) is conducted to evaluate experiences and measurements from the previous iteration. The KJ

method is used to structure the process for obtaining feedback. The KJ method focuses on the main

question that need to be answered during a particular session (e.g. how can the method being

improved). During the PIW session, the improvements planned for the current iteration are also

implemented and communicated. The session has an estimated duration of 2 hours and is led by a

facilitator, in this case the team’s Scrum master. The facilitator is also responsible for the white areas

of the process, whereas the grey areas are performed by the team. The researcher participates in the

PIW meetings to record any observations. There is planned one improvement for each iteration, with

an exception for a single iteration for which two improvements are planned. The case study is

planned as of 1 May 2013.

Sc
ru

m
 s

o
ft

w
ar

e
d

ev
el

o
p

m
en

t
p

ro
ce

ss

It
er

at
iv

e
im

p
ro

ve
m

en
t

p
ro

ce
ss

Iteration 1:
Agile development activities

(Initial)
preparation

Iteration 2:
Agile development activities

Iteration ... n:
Agile development activities

Experiences
Metrics

Experiences
Metrics

Experiences
Metrics

PIWPiloting Piloting Piloting

Preparation
Follow up and

validation
Experience
collection

Improvement
actions

Storing

PIW PIWPIW

Figure 49. Iterative improvement process (based on Salo and Abrahamsson, 2007)

Iteration 1 Iteration 2 Iteration 3 Iteration 4

1. Cross-functional
delivery team

2. Integrate production
stories

3. Early feedback by
operations

5. Sync meeting

 4. Develop for
production

Table 29. Improvements planned for the Scrum iterations

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 120

5. Data Collection

In this case study we collect both quantitative as qualitative data. The quantitative data relate to the

hypotheses from section 4.1. In the preparation phase we collect the data on all metrics. These

numbers will be used as baseline to compare with. After each iteration the project results are saved

to the case study database. In addition, we obtain qualitative feedback from the team on the

improvements and integration process itself during the post iteration workshops. Based on this

feedback we are able to enhance the situational method and scenario selection process, and thus we

can provide an answer on the research question stated at the beginning of this plan. The collected

data is stored in a case study database. The case study database is stored using a cloud storage

service to ensure both availability and integrity. Below we discuss the metrics for the quantitative

analysis, which are derived from the hypotheses from section 4.1.

Metric for D1

We argue that the alignment of developmental and operational goals (D1) result in a productive

team effort. The equally distributed effort is expressed by the standard deviation of the project

velocity. Project velocity is measured by simply adding up the estimates of the user stories that were

finished during the iteration. It is the key to keeping the project moving at a steady predictable pace

(Wells, 1988). In the past the project velocity was subjected to a relatively high standard deviation,

which was due to slack time (i.e. waiting time) at the end of the process. This slack time is caused by

operational processes that were not in sync with development.

Vi = ∑ of original estimates of all accepted work in period i

Metric for D2

The lack of standardization for quality guidelines (D2) is assessed by the number of production

acceptance testing (PAT) issues found (In) per number of releases (Rn) in order to pass through

quality control. One or more issues found during PAT result in a redelivery of the system. The result is

the issue/release (IR) ratio which indicates fluctuations between the number of issues. The

denominator is mainly intended to make the corrections for the baseline. In the case of the pilot, the

number of releases will be 1.

Metric for D3

The involvement of operations in the project (D3) is measured by the total points of finished backlog

items addressing quality requirements (∑QR) (e.g. production stories, quality criteria) in ratio with

the total points of finished user stories (∑US). We are referring to the finished story points to

maintain the workload in the final ratio. The result is the quality requirement/user story (QU) ratio

which indicates the proportion of quality requirements for the current release increment.

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 121

Metric for D4

In a typical project, the team needs to obtain approval by several parties. Any improvements in the

software release process (D4) can be measured by the slack time or idle time (IT) after the last

approval (At) is obtained. The slack time is due to the pre-set release date (Rt), at which the release

is deployed to production.

Metric for D5

We argue that the communication between development and operations (D5) is of direct effect on

the quality of the system as the operational guidelines should be better monitored, and therefore

affect the number of defects (e.g. bugs, outages) of quality requirements (QRDn) in production. The

defects/quality requirement (DQR) ratio expresses the proportion of reported quality defects per

quality requirement (QRn). According to the Scrum master, we only have to measure the effects in

the first two days after the release is put into production. Most of the quality defects are usually

found in this period.

6. Analysis

The data analysis is twofold. First, we want to determine whether the process changes had a

significant effect on the performance of the project. Since the data on the metrics is unavailable

during the pilot, we compare the measures at the end of the pilot. As the measures provide one

response value to compare with, no analysis technique is chosen. The results may confirm the

method fragments as a suitable whole for solving particular problem areas. Also the findings can help

to improve the pattern mapping table (Figure 26) from Chapter 5.

Second, we gather feedback on the situational method (e.g. learning curve for team members,

suitability for tools) and the integration process. The recorded empirical observations are

investigated by looking for patterns and phenomena that occur during the pilot experiments. The

obtained feedback shapes the answer on the last research question.

7. Plan Validity

According to Yin (2009) there are four types of validity threats that apply to this case study: construct

validity, internal validity, external validity, and reliability. With respect to construct validity, we

establish operational measures for the concepts being studied. The case study protocol is developed

using the template provided by Brereton, Kitchenham, Budgen, and Li (2008). The case study

protocol is then validated using the guidelines for case study design by Runeson and Höst (2008). The

protocol ensures the data collection and analysis procedures are focused on their primary goals. The

Extending the Agile Development Discipline to Deployment

The Need For a Holistic Approach Page 122

internal validity is threatened by results from wrong measures, or measures that are not only related

to a single problem area. The research is originally intended to aid IT organizations in implementing

method enhancements. With respect to external validity, a threat is that CaseComp is not

representative for the Dutch IT organization. Despite CaseComp facilitates IT services, financial

services are the core businesses of the company. Finally, to defend experimental reliability, the case

study procedures can be replicated for other cases in order to increase the generalizability of the

results. We use the guidelines for case study planning by Kitchenham et al. (1995) to ensure the

criteria for research-design quality is adequately addressed. Additionally, the case study protocol is

checked against the checklist for experimental case studies by Kitchenham et al. (1995).

The case study is conducted by the lead researcher. For the rigor of the research, the supervisors of

the research assess the case study protocol documents to ensure validity issues are consistently

addressed.

8. Study Limitations

An important limitation is the research is limited to one object of study, namely the development

team with a high mature development process. Since all development teams use their own

implementation of the Scrum process, it could be possible that not all drivers and issues are included

for analysis. Therefore, elaborated process improvements in the research address only a limited set

of drivers that apply to CaseComp. This problem can be tackled by replicating the case study

procedures to other development teams, to elicit issues and drivers which were initially not

identified. To replicate the integration process, project teams should adapt their process to comply

with the baseline from Chapter 4.

Another important limitation are the measurements that can only be performed afterwards, when

the method fragments are assembled into the process. The metrics use data which is only available

after the development project has ended, or the release is deployed to production. The result is that

a little can be said on the effectiveness of individual method fragments. Also, as the scheduled end

date for the pilot is close to the deadline of the research, so we have a single week to collect and

process the data for metric D5 (i.e. quality defects). This will impact the accuracy of this metric, as

well the corresponding findings.

9. Reporting

The outcome of the case study is reported in Chapter 7 of the thesis. The target audience is the IT

organization in general, as the results of this case study provide feedback on the established

integration scenario as well the elaborated process patterns and the result of these practices in a real

project simulation.

