
Utrecht University

Learning paradigms classified by the
arithmetical complexity of their

learnable language families

by

Yfke Dulek
student no. 3471098

A 7.5 EC thesis submitted in partial fulfillment
of the requirements for the degree of

Bachelor of Science

in the
School of Philosophy and Artificial Intelligence

Faculty of Humanities

Supervisors:
Dr. Jaap van Oosten
Dr. Rosalie Iemhoff

Date:
July 10, 2013

Contents

Introduction 1

1 Recursive functions 3
1.1 Recursive functions: partial and primitive 3
1.2 Indices for Turing machines, functions and sets 6
1.3 Some recursive functions: pairing and coding 7

2 Learning theory 9
2.1 Gold’s model . 9
2.2 Relation to human language acquisition 10
2.3 Variations on Gold’s model 12

3 The arithmetical hierarchy 13
3.1 Definition . 13
3.2 Many-one reduction . 15

4 Classifications 17
4.1 Explanatory learning . 18

4.1.1 Upper bound: exl ∈ Σ4 18
4.1.2 Lower bound: exl is Σ4-hard 20

4.2 Finite learning . 27
4.2.1 Upper bound: finl ∈ Σ3 27
4.2.2 Lower bound: finl is Σ3-hard 28

4.3 Behaviorally correct learning 31
4.3.1 Upper bound: bcl ∈ Σ5 31
4.3.2 Lower bound: bcl is Σ5-hard 32

4.4 Anomalous learning . 38
4.4.1 Upper bound: exl* ∈ Σ5 38
4.4.2 Lower bound: exl* is Σ5-hard 38

5 Conclusion 41

Appendices 44

A Prenex normal forms of formulas 44
A.1 The description of exl is Σ4 45
A.2 The description of finl is Σ3 47
A.3 The description of bcl is Σ5 49
A.4 The description of exl* is Σ5 51

B Notations used 53

Introduction

Machine learning is one of the core subjects in artificial intelligence. Since
the dawn of the computer era, many researchers have tried not only to devise
efficient and effective machine learning algorithms, but also to explore com-
putational boundaries. Can a machine learn anything? Can it eventually
become indistinguishable from a human being in its capabilities? But also:
can the limits of what can be taught to a computer shed light on the limits
of human cognition?

One particular skill that separates humans from other organisms is our
remarkable ability to learn and use languages. A child receives very incom-
plete data about the language it is learning. It is hardly ever explicitly told
what grammatical rules underlie the language, or which sentences are correct
and which are not [8]. It has to learn the language based solely on some pos-
itive examples, and even this data can be very noisy. But somehow this does
not matter: eventually the child is able to produce correct new sentences of
the language, even though it has been presented with a limited amount of
examples of sentences.

In the light of this phenomenon, algorithmic learning theory was de-
veloped by Gold [6] in 1967. Roughly, Gold’s abstract model of language
learning comes down to the following: a machine is supplied with a stream
of positive instances of some (formal) language, one at a time, possibly with
repetition, but in such a way that every grammatical sentence in that lan-
guage will be presented to the machine at some point. Every time it is being
presented with an instance, the machine replies with a guess about the na-
ture of the language. Initially, these guesses will probably be incorrect, but
as the machine is presented with an increasing number of examples, it may
gather enough information about the language to infer its exact contents. If,
from some point on, the machine’s guess is correct and never changes any
more, the machine is said to have identified the language ‘in the limit’ from
this particular stream of positive instances. A machine is said to learn a
language if it can identify it from any possible data stream, regardless of the
order in which those instances are presented. A language family, which is
simply a set of languages, is learnable if there exists a single machine that is
able to learn all languages in that family.

In the past years, some natural variations on the identification criterion
defined by Gold have been developed [4]. For example, one could require from
the machine not only that it converges to a correct guess after some time,
but also that it knows when it has done so. This is a stronger requirement,
and one may expect that some language families that were learnable under
Gold’s criterion may not be under this new criterion. On the other hand,
one could be more lenient and allow the machine to make small mistakes:
as long as the language it settles on is close enough to the language being
presented, the machine’s answer could still be considered correct. As one

1

might expect, the number of learnable language families increases as a result
of such a modification.

In Beros [2], four different identification criteria are compared by clas-
sifying the class of language families learnable under these criteria in the
so-called arithmetical hierarchy: if such a class falls into a higher category
in this hierarchy, Beros claims, this is a sign that those language families are
more complex and therefore the learning process more sophisticated. Thus,
his classifications allow for a way of objectively comparing the strength of
several different learning paradigms.

This work aims to provide an overview of and insight into Gold’s learning
theory and the proofs of Beros’ classifications. Recursion theory and learning
theory are introduced on a level suitable for those unfamiliar with the field.
For a more extensive treatment, the reader is referred to the works of Soare
[13] and Osherson et al. [10]. The proofs of Beros’s recent paper are explained
at a level that is accessible to undergraduate students, thereby providing a
self-sustained account of some of the progress currently made in the field of
learning theory.

Gold’s model as described above will be treated more thoroughly in Sec-
tion 2, and some limitations and variations on this model will be discussed as
well. To this end, several basic concepts of recursion theory will be dealt with
first, in Section 1. Recursive functions are exactly those functions that are
computable by Turing machines [7]. It may sometimes be useful to change
perspective from Turing machines to recursive functions or vice versa in order
to obtain certain results, so these notions will be used interchangeably.

In Section 3, the arithmetical hierarchy will be defined. The key relation
which this hierarchy is built upon is that ofm-reducibility: a relation between
two sets which in effect states that the decision problem for the first set (i.e.
deciding whether a certain element belongs to the set or not) is no harder
than the decision problem for the second. This relation will also be defined
in Section 3, and some basic properties of the arithmetical hierarchy will be
stated.

Section 4, the main body of this work, will be concerned with dissecting
the classifications in Beros [2]. First, the proof of the classification of the class
of families learnable under Gold’s original identification criterion, TxtEx,
will be treated in much detail. Then, for three variations (TxtFin, TxtBC,
and TxtEx*), there will be a stronger focus on the general concepts and
structures, leaving out the justification of several minor details. After having
read the proof of the classification of TxtEx, the reader is trusted to be able
to judge these details to be provable.

Finally, in section 5, the results will be summarized and their significance
and implications will be discussed.

2

1 Recursive functions

The purpose of this section is to provide a compact introduction to the con-
cepts of recursion theory that are relevant to this work. First, the concept of
a recursive function and its connection to Turing machines will be described.
Second, a way of indexing Turing machines, functions and sets is defined.
Third, some important recursive functions related to the coding of tuples as
single numbers are treated.

1.1 Recursive functions: partial and primitive

Recursion theory is concerned with functions on the natural numbers that
are effectively calculable: that is, functions that can be calculated in an
‘algorithmic’ manner. Although recursive functions were originally developed
separately from the notion of Turing machines, the two have been shown to
be equivalent in computing power by Kleene [7]; so recursive functions may
be thought of as functions for which there exists a Turing machine that
calculates exactly that function. In this light, it is useful to mention that
recursive functions need not be total: their domain can be a subset of the
natural numbers – exactly those numbers on which the associated Turing
machine eventually halts and returns an output. If the Turing machine
never halts on a given input, the function does not have a value for that
number. This is why these functions are often spoken of as partial recursive
functions.

In the notation of recursive functions, λ-notation has been adopted in
order to avoid any confusion about which letters denote variables and which
denote fixed values. If a λ is followed by a series of lower case letters,
this indicates that these letters are variables that have yet to receive their
values. For example, λxy.(x + y) is a function of two variables, x and y,
that returns the sum of two input values, while λx.(x+ y) denotes a single-
variable function that adds to its input a fixed value, y. λ-notation is also
useful to describe functions without having to explicitly name them, as in
clause (2) of Definition 1.

The next definition of partial recursive functions is based on Soare [13].

Definition 1. The class of partial recursive functions P is the smallest class
of functions such that:

1. The successor function S = λx.(x+ 1) is in P.

2. The constant functions λx1 · · ·xn.m are in P for all n,m ≥ 0.

3. The projection functions πi = λx1 · · ·xn.xi are in P for all n ≥ 1 and
1 ≤ i ≤ n.

3

4. P is closed under composition: if the functions g1, ..., gm are functions
of n variables, h is a function of m variables, and all are in P, then
so is f = λx1 . . . xn.h(g1(x1, ..., xn), ..., gm(x1, ..., xn)).

5. P is closed under primitive recursion: if g is a function of n − 1
variables and h is a function of n+ 1 variables and both are in P, then
so is f , defined by

f(0, x2, ..., xn) = g(x2, ..., xn)

f(x1 + 1, x2, ..., xn) = h(x1, f(x1, ..., xn), x2, ..., xn)

6. P is closed under unbounded search or minimalization: if g is a
function of n+ 1 variables and g is in P, then so is f , defined by

f(x1, ..., xn) = µy.(g(y, x1, ..., xn) = 0)

(provided that for all x ≤ y, g(x, x1, ..., xn) is defined). Here, µy de-
notes “the least y such that".

For example, the function f(x1, x2) = x1 + x2 is recursive, since it can be
defined with use of the primitive recursion rule, composition rule and the
successor and projection functions:

f(0, x2) = 0 + x2 = x2 = π1(x2)

f(x1 + 1, x2) = x1 + 1 + x2 = S(x1 + x2) = S(π2(x1, f(x1, x2), x2))

Here, the functions g and h as mentioned in clause (5) of Definition 1 are
π1 and S ◦ π2, respectively. S and π2 are composed using clause (4). The
recursiveness of f should not come as a surprise: one can envision the task
of addition as an algorithmic one.

To strengthen the correspondence between partial recursive functions and
Turing machines, let us convince ourselves that partial recursive functions
as described in Definition 1 can indeed all be computed in an algorithmic
way (that is, by a Turing machine). The functions described in the first
three clauses are fairly straightforward to implement as a Turing program:
for example, a Turing machine computing a constant function λx1 · · ·xn.m
simply discards all input and returns m. For the last three clauses, assume
that Turing machines for the functions g, gi and h already exist. To calculate
the function f of clause (4), a Turing machine should copy the inputm times,
run the Turing programs for g1 up to gm on those inputs, store the results
and feed them to a Turing program for h. Provided that all these programs
halt on the inputs they receive, the composed Turing machine for f should
not present any problems either. A similar observation can be made for
clause (5) of the definition: a Turing machine for f can start out by calling
the program for g and then feed the output to a program for h a number of

4

recursive
(=computable)

total

primitive
recursive

Figure 1: A Venn diagram illustrating the relation between recursive, total
and primitive recursive functions. The domain is that of all partial functions:
total functions are just special cases of partial functions.

times until the desired value of x1 has been reached. Again, if the Turing
machines for g and h halt on all inputs that are fed to them during this
computation, this should pose no problems.

However, the case for unbounded search in clause (6) is slightly different.
A Turing machine for f searches for the least y such that the Turing machine
for g returns 0 on the input (y, x1, ..., xn). It is possible that the machine
continues searching forever, never finding an appropriate value for y. It can
never conclude that such a y does not exist, since it might just be a really
large number. So, if no appropriate y exists, the Turing machine does not halt
and the function f is undefined on (x1, ..., xn). This is denoted f(x1, ..., xn) ↑
(if the function were defined, the notation would be f(x1, ..., xn) ↓).

Recursive functions may be partial if somewhere in their definition un-
bounded search occurs. The class of functions that are defined using only
clauses (1)-(5) of Definition 1 is the class of primitive recursive functions.
The addition function λxy.(x + y) is an example of such a primitive re-
cursive function. In fact, a lot of standard functions (e.g. multiplication,
exponentiation) are primitive recursive. Because they cannot employ un-
bounded search, all primitive recursive functions can be guaranteed to be
total. Not all total recursive functions are necessarily primitive, however:
functions defined by unbounded search might coincidentally be total. See
also Figure 1.

Finally, not only functions, but also sets and predicates can be labelled
(primitive) recursive. A set A is (primitive) recursive if its characteris-

5

tic function1 is. An n-place predicate P is (primitive) recursive if the set
{(x1, ..., xn) | P (x1, ..., xn)} is. An important primitive recursive predicate,
Kleene’s T -predicate, will be discussed in Section 1.2.

1.2 Indices for Turing machines, functions and sets

A Turing machine can be described by listing all its characteristics: its states,
tape alphabet, transition rules, et cetera. While such a description can
become tediously long, it is always finite and hence the string that describes
the machine can be coded into a natural number in some computable way
[12]. The notation Me refers to the Turing machine with code (or index) e.

The same index can also refer to a function: φe denotes the recursive
function that Me computes. However, different Turing machines can effec-
tively compute the same function. The codes of those machines are then
both indices for the same function. In fact, the Padding Lemma states that
any recursive function has a countably infinite number of different indices
[13].

Extending the concept of indices even further, We denotes the domain of
the function φe. Any set that has such an index (i.e. is the domain of some
recursive function) is called recurively enumerable (r.e. for short) or, in the
terminology of Turing machines, Turing recognizable. We is the set of those
inputs on which the machine Me halts.

The indexing described above not only provides a straightforward way of
identifying functions, machines and sets, it also gives rise to a key predicate
in recursion theory: the primitive recursive Kleene T-predicate [7]. The
four-place predicate T (m, e, x, y) is true if and only if e is an index for a
Turing machine, and this machine Me, upon receiving the m-tuple x as its
input, performs the (halting) computation y, which is a list of all steps the
machine has performed after receiving the input x. The input tuple and
the computation are not natural numbers themselves, but are coded into
a natural number in such a way that the contents can be obtained from
the codes in a primitive recursive manner. The details of this coding are
explained in the next subsection. From the code y, the function λy.U(y)
primitive recursively recovers the output of the computation.

The Smn-theorem [13] provides a way to computably determine the index
of a function. This theorem states that, given the index e of a recursive func-
tion φe = λx1x2 · · ·xmy1y2 · · · yn.f(~x, ~y) and the values ~a = a1, a2, ..., am, an
index for the function λy1y2 · · · yn.f(~a, ~y) can be found primitive recursively.
In other words, it allows us to find the index for the function φe with cer-
tain inputs fixed or parametrized. For this reason, the Smn-theorem is also
sometimes called the Parameter Theorem.

1The function χA such that χA(x) = 1 if x ∈ A and χA(x) = 0 otherwise

6

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(3,0)

m
↑

n→
0 1 2 3

0

1

2

3

Figure 2: The function j(n,m) = 1
2(m+ n)(m+ n+ 1) + n

1.3 Some recursive functions: pairing and coding

In this subsection, some recursive functions will be treated that will be used
throughout this work. A lot of ‘standard’ functions are recursive. Addi-
tion, cut-off subtraction (a function that returns 0 if the outcome would be
negative), multiplication, division (although rounded down to an integer),
exponentiation, maximum, minimum, and remainder functions are all exam-
ples of recursive functions. As mentioned in the previous subsection, tuples
of numbers can also be coded in such a way that the original tuple can be
recovered primitive recursively. The functions that deal with encoding and
decoding of tuples or sequences are explicated here.

To start, there is the pairing function j. This primitive recursive function
provides the well-known bijection from N×N to N as pictured in Figure 2.
j codes pairs, but its functionality can be extended to tuples of any kind.
The functions ji, that code i-tuples, are constructed from j as follows:

j1(x1) = x1

j2(x1, x2) = j(x1, j
1(x2))

j3(x1, x2, x3) = j(x1, j
2(x2, x3))

...
...

jn(x1, ..., xn) = j(x1, j
n−1(x2, ..., xn))

Note that these functions ji are all bijections. So, every natural number
is a code for a unit, a pair, a triple, et cetera. Every element of every
such a tuple can be recovered by the primitive recursive ‘inverses’ jim (with
0 ≤ m < i), that return the mth element of the i-tuple coded by their input.

7

To decode a natural number, information is needed about the length of
the tuple it is supposed to code, in order to know which inverse function to
call. To bypass this, a new coding function 〈·〉 is constructed. Instead of
coding several different tuples of different lengths, every tuple will have its
own unique code. This coding starts at the empty sequence ε, the only tuple
of length 0. For other tuples, the length n of the tuple is coded along with
the code jn(~x). The information about the length is now stored in the code
itself. Some work has to be done (e.g. using n − 1 instead of n) to ensure
that the function 〈·〉 is a bijection.

〈ε〉 = 0

〈x1, ..., xn〉 = j(n− 1, jn(x1, ..., xn)) + 1

Since the number of arguments for this coding function is not fixed, one
cannot speak of the recursiveness of it. There are however some important
primitive recursive functions that act on codes of tuples:

• Decoding: λxi.(x)i returns the ith element of the sequence coded by
x, provided that that sequence is long enough to have an ith element.
Otherwise, it simply returns 0.

• Length: λx.lh(x) returns the number of elements of the sequence coded
by x.

• Concatenation: λxy.x ? y concatenates the two sequences coded by x
and y and returns the code of that concatenation.

Codes can be used for a variety of purposes. For example, entire computation
logs of Turing machines can be stored into a single (albeit fairly large) num-
ber, because a computation is simply a list (tuple) of all steps the machine
performs. Such a step is itself a list containing information on the state,
tape contents and tape head position of the machine. The coding of such a
computation log is useful for the Kleene T -predicate. In general, coding is
used to compress information into a single number, in order to feed it to a
recursive function or Turing machine.

8

2 Learning theory

The general concept of learning theory was described in the introduction,
but with the tools of recursion theory it can now be outlined in more detail.
Learning theory was first developed by Gold [6] from a linguistic point of
view. It was intended to mimic human language acquisition, but this goal
is obstructed by two factors: firstly, the process of language acquisition is
very complex and simplification is unavoidable for its modelling. Secondly,
research on human language acquisition is still ongoing and a lot of gaps are
still to be filled in. Some of the differences between Gold’s model and human
language acquisition have led to the development of variations on the model.
These difference and the resulting learning models are discussed in Sections
2.2 and 2.3.

2.1 Gold’s model

Intuitively, a language can be described as the set of grammatical sentences
in that language. In order to fit the learning model to recursive functions,
however, languages are taken to be subsets of N. To see why this is a
reasonable abstraction, fix some finite alphabet and consider the set of strings
in this alphabet, including all nonsensical strings. This set can be listed
simply by first listing all strings of length 0, followed by all strings of length
1, et cetera. This creates a bijection between N and the set of all strings in
the alphabet. The language is now the set of those numbers that correspond
to grammatical sentences.

As mentioned before, a learner is simply a Turing machine or, equiva-
lently, a recursive function. At every point in time t, the learner is presented
with an example, a single element of the language L it is learning. Which
elements are presented at which points in time is determined by a total (not
necessarily recursive) function f , the range of which should exactly equal
L. Since a Turing machine does not have any kind of permanent storage
allowing it to recall previous inputs, it will not only receive the current ex-
ample f(t), but the whole list (f(0), f(1), ..., f(t)), coded into a single input
number by the function 〈·〉 from section 1.3. The code 〈f(0), f(1), ..., f(t)〉
contains of the first t+ 1 elements presented by f and is denoted f � (t+ 1).

A function f with range L is called a text for L. It provides the learner
with information about L in such a way that the learner only receives positive
instances of the language it is learning. Moreover, every element of L will be
presented to the learner at some point in time. In principle, no restrictions
are put on f other than that it should be total. However, in some variations
of the standard learning model, one could require texts to be recursive or
have certain other properties. In the classification proofs, we will encounter
such extra demands several times.

9

In response to the information it receives on a point in time t, the learner
returns a hypothesis about the nature of the language L. This hypothesis
is a number e that is interpreted as representing the set We (the domain of
the function with index e). Note that because of this, the learner can only
hypothesize about r.e. languages. Luckily, this is a wide enough range of
languages for the purposes of studying natural language. Natural languages
are generally accepted to fall into the category of mildly context-sensitive
languages [1], and all (mildly) context-sensitive languages are recursively
enumerable [9].

A learner is said to identify the language L from a text f if it converges
toward a single correct hypothesis. From some point on, the learner needs
to always output the same index e and that index should be correct (that is,
We = L). Ideally, a learner is able to identify L regardless of what specific
text it is presented with, as long as that text is a function with range L. If
this is the case, the learner is said to learn L.

Note that for any language L = We, there exists a learner that learns
it: the constant function that always outputs e will have instantly learned
the language. Things only become interesting when whole families (i.e. sets)
of languages are considered: one can wonder whether there exists a single
learner that is capable of learning all the languages in the family (for example,
does, in theory, a single machine exist that can learn all natural languages?).
If such a learner exists, the language family is learnable. A basic observation
can be made about the learnability of language families. If some language
family L is learnable, then any subset of L is learnable as well. In fact, it
is learned by the same learner. However, the converse of this implication is
that if some language family L is not learnable, then no superset of L can
be learnable.

2.2 Relation to human language acquisition

Gold’s model is a very abstracted form of learning. This subsection will
investigate some of the discrepancies between language acquisition in Gold’s
model and human language acquisition. In section 2.3 three variations on
Gold’s model are discussed that deal with some of these differences.

First of all, in learning theory, any family containing a single (r.e.) lan-
guage is learnable by a constant function that always returns the index for
that language. This exposes the fact that in Gold’s model, the learner is
in no way required to exhibit any kind of the ‘intelligent’ behaviour usually
associated with learning, especially that of complex languages. Only when
trying to learn a family containing an infinite amount of languages, some
tactic is required beyond keeping a (finite) list of those elements that make
each language unique. It can be argued that, although only finitely many
natural languages actually exist at one point, a human is capable of learning
practically infinitely many variations on them (for example, replace the word

10

‘table’ in English by ‘vable’, and a language results that could be learnt just
as easily as any other variation of English in use today). So, the fact that
humans seem to employ an intelligent learning strategy may just be due to
the fact that they have to be extremely versatile and able to learn a vast
(nearly infinite) amount of languages.

Next, learning theory assumes that a learner converges toward a perfectly
stable and correct representation of the language it is learning. In reality,
however, no single person has such a perfect representation of his own native
language. Some words may be unknown to him, or some grammatical rules
may not be obeyed. We would still like to say, however, that he has mastered
his own native language. Within the framework of learning theory, this
difference can be bridged only partly. The model TxtEx* discussed in
section 2.3 attempts to do so.

The fact that children settle on an imperfect language may be partly due
to them being presented with noisy and incomplete data about the language
to be learned. If a certain word is not part of the vocabulary of people in
the environment of a child, the child will probably never adopt that word
into its own vocabulary. Conversely, if the child is consistently presented
with a certain ungrammatical construction, it may imitate this in its own
sentences. However, most of the noise in the data children are presented
with is filtered out quite easily. In Gold’s model, the learner is required to
hypothesize languages that are fully consistent with the presented data, so
noise cannot be filtered out.

Furthermore, Gold’s learning criterion is intensional: the learner needs
to settle on a single index for a language that has infinitely many indices.
So it is the grammar it has to settle on, not the set that that grammar gen-
erates. This does not reflect the way in which humans learn. A human may
change the mental representation of a language (e.g. in order to represent it
more efficiently, with less grammatical rules [10]), while the language itself
remains the same. Different individuals may settle on different grammars
while learning the same language. In Section 2.3, an extensional learning
criterion will be considered that focuses on the contents of the language it-
self instead of the underlying structure imposed on it by a Turing machine
or recursive function.

Moreover, Gold focuses entirely on the lexical data the child receives. No
attention is paid to other, non-linguistic factors that may affect the learning
function of a child. There are a host of factors that may play a role, such as
a child’s mood or the amount of sunlight or affection it has received that day
[10]. There is no way of telling which factors are of influence here. Further
research into this would be necessary first.

Finally, the learnability question for a language family is only interesting
if that language family contains infinite languages. This is because the family
of all finite languages is learnable by a machine that always hypothesizes the
set of those numbers it has been presented with. So for Gold’s model to be

11

an interesting (abstract) model of human language acquisition, one would
have to assume that at least some natural languages are infinite. While this
is generally assumed, it has not yet been thoroughly validated [11].

2.3 Variations on Gold’s model

This work will be concerned with four different learning models in total.
These models all adopt the same framework as Gold in terms of the defini-
tions of learner, texts and hypotheses. The only point on which the models
differ is their criterion of success: when can a learner be said to have suc-
cessfully learned a language?

TxtEx or explanatory learning is the name for Gold’s original model.
A learner is required to eventually converge to a single, correct hypothesis.

TxtFin or finite learning requires the learner not only to converge to-
ward a single, correct hypothesis, but also to know at any point whether it
has converged yet or not. A learner should output a special symbol ? to
indicate that it is not yet sure about the nature of the language and is still
awaiting additional information. Once it has received enough examples, it
is to output a ‘real’ hypothesis and the first such hypothesis should imme-
diately be correct. This way, it incorporates some form of self-awareness in
the learning process. While TxtFin-learning is realistic in the sense that
human learners do not immediately start to hypothesize about the language
they are being presented with, it fails to simulate the way a child first adopts
approximations of the actual language before it masters the language itself,
and is never really aware of the exact moment it is ‘done’ learning, if ever.

TxtBC or behaviourally correct learning adopts an extensional criterion
of success. The learner, like in TxtEx-learning, should in the limit settle on
the language it is presented with. However, it is allowed to alternate between
different indices (representations) for that set, while a TxtEx-learner should
stick with a single index or name for the language.

Finally, TxtEx* or anomalous learning reflects the fact that a learner
may not settle on a perfect representation of the language. For two languages
L and L′, the symmetric difference L4L′ between these languages is the set
(L\L′)∪ (L′\L). In TxtEx*-learning, the learner needs to settle on a single
index like in TxtEx-learning, but the language associated with this index
is allowed have a finite symmetric difference with the actual language it is
presented with. However, this insufficiently reflects how humans settle on
imperfect languages. If a person misses one word in its vocabulary, then
immediately, an infinite amount of sentences is no longer at his disposal. In
that case, the symmetric difference of the language it is learning and the
language it settles on is infinite. However, allowing an infinite (or even just
recursive) symmetric difference would allow the learner to simply settle on
the empty set instead of on the language it is presented with.

12

3 The arithmetical hierarchy

In Section 2, the learning models TxtEx, TxtFin, TxtBC and TxtEx*
have been introduced. These four models differ in learning power: some
language families that are learnable in one model may not be in another. In
his paper, Beros tries to “establish a measure of the complexity of the learning
process” [2] of a model by examining the class of all language families that
are learnable in that model. If that class is complex in its structure, this
indicates that the learnable language families are very specific, i.e. deciding
whether or not a given language family is learnable is difficult and cannot
be done on the basis of superficial properties alone. This suggests that the
learning process involved is also more sophisticated, because it has to delve
deep into the structure of the languages it is learning.

In this section, a measure to determine the complexity of these classes
of learnable language families is presented. We make use of the arithmetical
hierarchy : in this hierarchy, sets are classified on the basis of the structure
of their defining formulas. The arithmetical hierarchy is precisely defined in
Section 3.1. In Section 3.2, a general method for determining the location
of a set in the hierarchy is discussed. This method will be used repeatedly
in Section 4.

3.1 Definition

The arithmetical hierarchy consists of an infinite amount of levels, all of one
of three kinds: Σn, Πn or ∆n, for n ∈ N (see Figure 3). In other literature,
these sets are often denoted Σ0

n, Π0
n and ∆0

n in order to stress the distinction
from other systems such as the analytical hierarchy. Since this work is only
concerned with the arithmetical hierarchy, the superscript 0 will be omitted.

First, the sets Σn, Πn and ∆n are defined in Definition 2. Then, the
structure of the hierarchy and some of its properties will be elaborated upon.

Definition 2. The levels Σn and Πn are simultaneously defined by induction
as follows [14]:

• A ∈ Σ0 iff A ∈ Π0 iff A is primitive recursive.

• A ∈ Σn+1 iff A is of the form {x | ∃y(x, y) ∈ B} where B ∈ Πn.

• A ∈ Πn+1 iff A is of the form {x | ∀y(x, y) ∈ B} where B ∈ Σn.

Moreover, ∆n := Σn ∩Πn for all n ∈ N.

In general, to determine the position of a set in the hierarchy, one should
construct its describing formula and convert it to prenex normal form by
moving all quantifiers to the front of the formula. The matrix (the quantifier-
free remainder of the formula) should be primitive recursive. The number of

13

Σ0 = Π0 = ∆0

∆1

Σ1 Π1

∆2

Σ2 Π2

(

) (

()

) (

primitive recursive sets

recursive sets

r.e. sets co-r.e. sets

Figure 3: The arithmetical hierarchy visualized. The class Σ1 contains all
r.e. sets. Π1 consists of the complements of Σ1 sets: these are called co-r.e.
If a set is both r.e. and co-r.e., it is recursive [13].

quantifier alternations, along with whether the first quantifier is existential
or universal, determines the position in the hierarchy.

For example, the set tot of indices e for total recursive functions may
be described by the formula ∀x∃yT (1, e, x, y), which states that for any in-
put x, there exists a (finite) computation y of the Turing machine Me on
x. This formula is already in prenex normal form. It has one quantifier
alternation and starts with a universal quantifier, hence it is in Π2. Note
that immediately follows that the complement of tot is Σ2: indeed, e 6∈
tot if and only if ¬∀x∃yT (1, e, x, y). This describing formula is equivalent
to ∃x∀y¬T (1, e, x, y), which has one quantifier alternation and starts with
an existential one. This observation holds in general: if a set is in Σn, its
complement is in Πn, and vice versa.

Of course, the Π3 formula ∀x∃y∀zT (1, e, x, y) would also have been an
adequate description of tot. The set could even be proven to be in Π267,
but this provides a lot less information than the fact that it is in Π2. So the
challenge is to find the lowest level in the hierarchy to which a set belongs.
One way of doing this is described in Section 3.2.

The Hierarchy Theorem states that all inclusions in the hierarchy are
strict [13]: each level contains elements that are not at any lower level,
ensuring that different levels of the hierarchy do not ‘collapse’ into one.
Moreover, the levels Σn and Πn, while neither is ‘higher’ than the other, are
never equal: they both contain sets that the other does not. See Figure 3.

14

3.2 Many-one reduction

When classifying sets in the arithmetical hierarchy (as will be done with the
classes of learnable language families in Section 4), one needs a way to prove
that the classification found is indeed the ‘best’ classification possible, i.e.
at the lowest possible level in the hierarchy. One way to prove this is by
proving that the given set is at least as complex as all other sets at that
level. The set can then not be at any lower level, because that would mean
that all those other sets would fall into the same lower level. This would
contradict the fact that the inclusions in the hierarchy are strict.

So how would one go about proving that one set is ‘at least as complex’
as another? For this, the concept of many-one reducibility or m-reducibility
is used to reduce the decision problem of one set to that of another. First,
decision problems and m-reducibility are formally defined.

Definition 3. The decision problem for a set A ⊆ N is determining, for an
arbitrary number x ∈ N, whether or not x ∈ A.

Definition 4. Given two sets A and B, A is m-reducible to B, notation
A ≤m B, if there is a total recursive function f such that

x ∈ A⇔ f(x) ∈ B.

Intuitively, reducing a set A to B means that when deciding whether or
not x ∈ A, this question can be transformed by the function f into a question
about the members of B. For example, if one wants to know whether or not
a number n is in the set of all even numbers, one could also ask whether the
number n+ 1 is in the set of all odd numbers. In this example, the function
f(x) = x + 1 provides the reduction from the set of even numbers to the
set of odd numbers. Note, however, that the answer about whether or not
f(x) is in B is itself the final answer and cannot be swapped form positive
to negative or vice versa. For example, the function f(x) = x does not
provide a reduction from the set of even numbers to the set of odd numbers
because in this case the answer to the question “Is n even?” is not the same
as the answer to “Is f(n) odd?”. Even though knowing whether f(n) is odd
provides conclusive information about whether n is even, f is not a reducing
function. It is not even necessarily the case that a set is m-reducible to its
complement at all.

If A ≤m B and B is at some level of the hierarchy, then A is at that
level as well [14]. A may also fall into lower levels of the hierarchy, but it
cannot be more complex than B, meaning that its ‘best’ classification must
be at the level of B or below that. Conversely, if the best classification of
A is known, then the best classification of B cannot be any lower. These
facts are useful for proving that some classification for a set X is the best
or lowest classification possible. From the Hierarchy Theorem, it is known
that at each level of the hierarchy, there is at least one set Y that is not at

15

any lower level of the hierarchy. If Y is m-reduced to X, it follows that X
cannot be at any lower level as well. Often, the nature of this particular set
Y is not known, so a general strategy is to reduce an arbitrary set from that
level to X. Then certainly, Y is reducible to X as well. X is then said to be
(m-)hard at the level of the hierarchy (or Σn-, Πn- or ∆n-hard in order to
emphasize the hierarchy level for which it is hard).

If a set X, in addition to being hard at some hierarchy level, is also
actually at that level (in the way that Definition 2 describes), it is said to be
m-complete at that level. To provide an exact classification of the four sets
Beros treats in his paper, he proves that these sets are complete at a certain
level of the hierarchy.

A set is 1-reducible to another if it is m-reducible and the reducing func-
tion is injective. The notions of 1-hardness and 1-completeness are straight-
forwardly similar to the notions ofm-hardness andm-completeness described
above. An important result used in the proof of Section 4.1.2 is the fact that
a set is m-complete in Σn or Πn if and only if it is 1-complete at that level
[13]. Consequently, for m-complete sets the functions that reduce other sets
at the same level to it can be assumed to be injective.

16

4 Classifications

In this section, the classifications of TxtEx, TxtFin, TxtBC and TxtEx*
will be treated, in that order. The lines of Beros’ proofs in [2] are followed.
For each learning paradigm, the exact position of the class of learnable lan-
guage families in the arithmetical hierarchy is determined. To prove that a
position is exact, one not only needs to prove that the class is at a certain
level in the hierarchy (and thereby providing an upper bound to its com-
plexity), but also to prove that it is not at any simpler level. One way to do
this is to prove that the class is complete in the hierarchy level – any other
set of the same complexity should be able to be reduced to it.

Note that the arithmetical hierarchy is a hierarchy of sets of natural
numbers, so the classes of learnable language families need to be coded into
subsets of N by assigning ‘indices’ to those language families. Such an index
will be the index of the total recursive function g for which the language
family equals {Wg(0),Wg(1),Wg(2), ...}. If such a function g exists, the family
is said to be uniformly recursively enumerable [5]. Not every language family
is uniformly recursively enumerable, however. This notation restricts the
analysis of this section to those language families that are. The class of all
learnable language families can now be regarded as the set of the indices
of those families: a set of natural numbers, eligible for classification in the
arithmetical hierarchy.

The following four subsections will each treat one classification proof.
The proof of the classification of Gold’s learning paradigm is treated first
and in much detail. It has to be ensured, for example, that certain tasks can
be carried out in a finite amount of time by a machine, or that an index for a
constructed set can be found recursively. The techniques used to ensure this
are quite general and can be applied in the other three proofs as well. So,
for the last three subsections, not every step has been worked out in detail
and we focus more on the general concepts.

17

4.1 Explanatory learning

Learning in the limit, explanatory learning, and TxtEx all are terms that
denote the learning paradigm as originally defined by Gold. Though not
at the simplest level of the arithmetical hierarchy, the class exl of (codes
for) language families identifiable by the TxtEx-criterion is a good place to
start. Beros proves that that exl is Σ4-complete, and does so by showing
that Σ4 is both an upper and a lower bound to the complexity of exl.

4.1.1 Upper bound: exl ∈ Σ4

The first thing to do is to provide a description for the set exl in the form
of a Σ4-formula: a formula P (e) that holds if and only if e ∈ exl. Doing
so proves that the most economic classification of exl cannot be any higher
than Σ4 and in this way provides an upper bound to the complexity of exl.

Let L be a uniformly recursively enumerable language family {L1, L2, ...}
with index e, i.e. enumerated by the recursive function φe, as in the intro-
duction of this section. The formula P (e) will not, as one might expect,
directly describe TxtEx-learnability by stating the existence of a Turing
machine that learns any language in L from any text. Instead, it will state
that there must exist a total Turing machine that learns any language in
the family from any recursive text (i.e. a text described by a total recursive
function instead of just a total function). This statement will turn out to be
equivalent to TxtEx-learnability.

The formula P (e) will have the general form

∃k∀i
(

(Mk total) ∧ (Mk learns Li from recursive texts)
)

Let us delve into the details of these two conditions:

1. Mk is a total machine (it halts on every input). This condition is intro-
duced in order to avoid statements such as Mk(a) 6= Mk(b) from being
true just because Mk(a) or Mk(b) is undefined. It can be expressed by
the Π2-formula

∀x∃yT (1, k, x, y)

as seen in Section 3.1.

2. If a recursive function φa is a text for Li – that is, it is a total function
that enumerates all elements of Li – then Mk should learn Li from the
text φa. The condition of totality of φa is analogous to that of Mk in
item 1:

∀x∃yT (1, a, x, y)

The fact that φa enumerates all of Li is equivalent to the statement
that a number x is enumerated by φa if and only if x ∈ Li (= Wφe(i)).

18

This is represented by a Π2 formula (see Appendix A):

∀x
(
∃y∃z

(
T (1, a, y, z) ∧ U(z) = x

)
↔ ∃wT (1, φe(i), x, w)

)
The conclusion of this second condition, Mk learning Li from φa, con-
sists of two parts:

(a) Mk will eventually converge toward a final hypothesis: from some
point on, its hypotheses will all be equal. The following formula
A represents this fact:

∃s∀t
(
t > s→

(
Mk(φa � t) = Mk(φa � s)

))
(b) If, at some point in time n, Mk has converged to its final hypoth-

esis, this hypothesis should also be correct. This is exhibited by
the formula B, defined as

∀n
(
∀m
(
m > n→Mk(φa � m) = Mk(φa � n)

)
→WMk(φa�n) = Li

)

The formula as a whole,

P (e) = ∃k∀i
(

(Mk total)∧
((

(φa total)∧∀a(φa enumerates Li)
)
→ (A∧B)

))
is Σ4, as demonstrated in Appendix A. It remains to be shown that P (e)
holds if and only if e ∈ exl. This will be done by treating the two directions
of the implication separately.

For the first direction, suppose that for some language family L with
index e, e is in exl. By definition of exl, there exists a machine M that
learns any language in L from arbitrary texts. While this machine is not
necessarily total, its existence does ensure the existence of a total machine
N that learns the family coded by e in the following way.

N(〈x0, x1, ..., xn〉) :=


M(〈x0, x1, ..., xa〉) for the largest a ≤ n

such that M halts within
n steps of the computation

0 if such a does not exist

N only needs to simulate finitely many of M ’s computation steps, so it
always halts. To verify that N indeed learns any language thatM can learn,
fix a language Li and a text for that language, and let σ be the smallest
initial segment of that text for which M has entered the convergence state,
i.e. M(σ) is correct and M will stick to its answer. If N is presented with

19

σ, it may not be able to simulate all of M ’s computation steps and might
settle on one of M ’s premature hypotheses, or output 0. However, later on,
as the lengths of the inputs increase, N will be able to simulate the entire
computation. It will then either output M(σ) or some later hypothesis of
M on this text – but these are all equal. So the total machine N , while
probably not as quickly as M , will eventually converge toward the (correct)
hypothesis M(σ) and is therefore able to learn the language Li from any
text for that language, sinceM is too. Then certainly, it is also able to learn
it from a recursive text. The criteria formulated in P (e) are met and the
formula holds for e.

For the other direction, suppose that P (e) holds for some index e. Then
we know from the formula that there exists a total machine that learns the
family from recursive texts, while Gold demands that the Turing machine
recognize the languages from arbitary texts. However, Blum and Blum [3]
showed that if a family of languages can be TxtEx-learned from recursive
texts, then it can also be TxtEx-learned from arbitrary texts by another
machine. The machine that learns from arbitrary texts is not necessarily
total, but this is not a requirement for TxtEx-learning. So the language
family indexed by e is indeed TxtEx-learnable, hence e ∈ exl.

From the above it can be concluded that the formula P (e) accurately
describes the set exl. Hence, exl ∈ Σ4, and Σ4 is an upper bound to the
complexity of exl.

4.1.2 Lower bound: exl is Σ4-hard

In this subsection, a lower bound to the complexity of exl is provided by
showing that deciding exl is at least as hard as deciding any other set in
Σ4: any Σ4-set P is m-reducible to exl. Fix an arbitrary Σ4-set P . The
goal for this subsection is to construct a family He, dependent on e, such
that e ∈ P if and only if He is TxtEx-learnable (i.e., its index, which
should be recursively computed from e, is in exl). If e is not in P , He will
contain a subfamily F that is not TxtEx-learnable, causing He itself to be
unlearnable as well. This family F is fixed (does not depend on e) and is
constructed first.

Construction 1. F , a non-TxtEx-learnable family. The family F
consists of two types of languages, Hn and Ln, defined as follows:

Hn = {n+ x | x ≤ |Wn|}

Ln = {n+ x | x ∈ N}

where |Wn| denotes the cardinality of the set Wn. The languages in F are
numbered, where F2n = Hn and F2n+1 = Ln. From n, the index of Fn

20

can always recursively be found using the Smn-theorem2: F is a uniformly
recursively enumerable language family.

Note that if, for some n, |Wn| = ∞, then Hn = Ln. Otherwise, Hn will
be a finite set (whereas Ln is always infinite).

The fact that F is not TxtEx-learnable will be proven by contradic-
tion. Suppose that some machine M exists that does learn F . From M ,
we will construct another machine N that, for given n, will decide in the
limit whether or not Hn = Ln and thus whether or not Wn is infinite. The
contradiction will lie in the fact that this cannot actually be decided in the
limit.

We start by constructing a (finite) sequence σn, dependent on n, that
‘locks’ M into the hypothesis Ln: on a text for Ln, after having encountered
σn,M will never change its hypothesis again. The existence of such a locking
sequence is proven in Blum and Blum [3]. Here, a method of recursively
computing this sequence for given Ln is presented. The computation will
take up several stages; σn,s will denote the sequence σn as constructed up to
stage s.

Stage 0 Set σn,0 = 〈n〉.

Stage s+1 Search for a sequence τ such that M(σn,s) 6= M(σn,s ? τ). Be-
cause such a search is possibly infinite (a suitable τ may not exist),
only examine those τ with lh(τ) ≤ s and elements in [n, n + s]. If a
suitable τ is found, set σn,s+1 := σn,s ? τ ? 〈n, ..., n + s〉. If not, set
σn,s+1 := σn,s.

If new values of τ continue to be found infinitely often, then the infinite
sequence σn represents a text for Ln (since at every stage, the elements n
through n+s are appended to σn). However, M does not converge toward a
single hypothesis on σn. Infinitely often, a new extension τ of σn,s is found
for which M changes its answer. Since M should learn Ln from any text,
including the text represented by σn, this is impossible. Thus, from some
point, no extension for σn is ever found on which M changes its hypothesis,
and σn remains a finite sequence. Since σn is part of some text for Ln, the
hypothesis M outputs is a correct index for Ln.

If Hn and Ln are unequal (which is the case if Wn is finite), then M
must be able to distinguish between them – so σn cannot be (the first part
of) a text for both Hn and Ln. Conversely, if it is, then Hn = Ln (and Wn

is infinite). So in order to decide whether or not Wn is infinite, it suffices
to know whether or not the content of σn is contained in Hn. We will
now construct a machine N that, in the limit, is able to answer this last

2For example, define the function g(n, x) to be 1 if n ≤ x and undefined otherwise.
If n is odd, the Smn-theorem states that the index for the function λx.g(bn/2c, x) with
domain Lbn/2c can be found primitive recursively from n and the index for g. A similar
function can be defined for the sets Hn.

21

question. On the input 〈n, s〉, N computes σn,s and part of Wn – namely,
those numbers for which the computation of φn on that number is coded by
some y ≤ s (this partial construction of Wn is denoted Wn,s). From this,
N constructs the set Hn,s := {n + x | x ≤ |Wn,s|}. N tests whether σn,s is
contained in Hn,s (output 1) or not (output 0). In infinity, N tests whether
the contents of σn is contained in Hn or not. So, the set inf of those n for
which Wn is infinite can be described by the following formula:

∃s∀s′(s′ > s→ N(〈n, s′〉) = 1)

This formula is Σ2, implying that inf ∈ Σ2. However, this set is known
to be m-complete in Π2 [13]. This is a contradiction3, so it can be concluded
that no machine can learn the entire family F .

Reduction via coinf. Remember that the goal for this hardness proof
is to reduce our arbitrary Σ4-set P to exl. This reduction will be realised
in two parts: the set coinf of indices for coinfinite4 r.e. sets will serve as an
intermediate step.

First, observe that by definition of the arithmetical hierarchy,

P = {e | ∃y((e, y) ∈ Q)}

for some Π3-set Q. Now, from Q, define the set Q′ as follows:

Q′ := {(e, y) | ∃y′ ≤ y((e, y′) ∈ Q)}

Because the existential quantifier is bounded, Q′ is also in Π3. Moreover, it
holds that

e ∈ P ⇒ ∃y((e, y) ∈ Q)⇒ ∃y∀y′ ≥ y((e, y′) ∈ Q′)
e 6∈ P ⇒ ∀y((e, y) 6∈ Q)⇒ ∀y((e, y) 6∈ Q′)

The set Q′, being in Π3, can be reduced to the Π3-complete set coinf [13].
That is, there exists a total recursive function f such that (e, y) ∈ Q′ if and
only if f(e, y) ∈ coinf. From this it follows that

e ∈ P ⇒ ∃y∀y′ ≥ y(f(e, y′) ∈ coinf) (1)
e 6∈ P ⇒ ∀y(f(e, y) ∈ cof) (2)

where cof (consisting of indices for cofinite sets) is the complement of coinf.
The structure that coinf and f have brought to P will be used in the

second part of the reduction: the language family He, dependent on e, is
constructed such that it is learnable if and only if e ∈ P . Specifically, He

3If inf were in Σ2, then all Π2-sets would be too, because they can be m-reduced to
inf. This contradicts the fact that, for all n, Πn\Σn is non-empty.

4A set is called coinfinite if its complement is infinite.

22

Wi = { (0) 1, 2, 3, (4) (5) 6, 7, (8) ...}

Rn,i = { × bn2 c
gn(0)

gn(1)

gn(2)

bn2 c
gn(0)

gn(1)

gn(2)

bn2 c
gn(0)

gn(1)

gn(2)

× × bn2 c
gn(0)

gn(1)

bn2 c
gn(0)

gn(1)

× ...}

Figure 4: The family Rn,i, where Wi = {1, 2, 5, 6, 7, ...}. For example, look
at the interval [1, 3] ⊆Wi: the elements gn(0), gn(1) and gn(2)(= gn(3− 1))
are enumerated into the 1st, 2nd and 3rd columns. In the current example,
Rn,i = {{bn2 c, gn(0), gn(1)}, {bn2 c, gn(0), gn(1), gn(2)}, ...}

will be learnable if the right clause in (1) holds, and it will not be learnable
if the right clause in (2) holds.

Before He is constructed, however, we present the construction of the
families Rn,i for n, i ∈ N. A family Rn,i will contain only finite subsets of
Fn (the nth language in F) if i is an index for a coinfinite set. However,
if i is an index for a cofinite set, Rn,i will contain the language Fn itself,
which may be finite or infinite. Eventually, for some n and i, the families
Rn,i will be used in the construction of the family He. Which families are
used depends on e – the details are treated in Construction 3.

Construction 2. The language families Rn,i. Recall the non-TxtEx-
learnable family F from Construction 1. Since F is uniformly recursively
enumerable, there exists a recursive function g such that λx.g(n, x) (abbre-
viated gn) enumerates the language Fn. The function gn will be used to fill
the languages in Rn,i in a computable way. All elements in those languages
will be elements of Fn, which equals Hbn/2c or Lbn/2c.

A family Rn,i can be visualized as a table, containing several columns
that each represent a single language. If a column is empty, the correspond-
ing language simply does not exist in Rn,i. Eventually, the structure of Rn,i
will reflect the contents of Wi: if x ∈ Wi, a language will be created in the
xth column of Rn,i. It will always contain the number bn2 c (the least element
of Fn). If, for some p, q ∈ N, [p, q] ⊆ Wi, then all columns p, p+ 1, ..., q will
contain the same elements, namely gn(0), gn(1), ..., gn(q − p) (in addition to
bn2 c). For an example, see Figure 4.

If Wi is coinfinite, there will be infinitely many blank columns in Rn,i:
because of these ‘interruptions’, all columns that are filled will only receive
a finite number of elements from the enumeration gn. So, Rn,i will consist
only of finite subsets of Fn.

If, however,Wi is cofinite, it contains an infinite interval [a,∞[for a ∈ N.

23

The first a−1 columns of Rn,i might contain a finite number of finite subsets
of Fn, but all subsequent columns in [a,∞[contain the entire enumeration
gn, and therefore equal the set Fn.

An important detail remains to be treated here. Because Rn,i is a pos-
sibly infinite family of languages and determining whether or not x ∈ Wi

is a nonrecursive task, a Turing machine cannot simply construct the entire
family from the numbers n and i in a finite amount of time. It can only build
it up in stages and thereby approximate the actual family. At each stage s,
instead of examining the entire set Wi, the machine computes Wi,s, the set
consisting of those inputs on which the machineMi halts with a computation
coded by some y ≤ s. Wi,s can be computed in a finite amount of time by
simply going through all y ≤ s. As s increases, more and more elements of
Wi will be found, and the intervals within Wi (and therefore the contents
of the columns) will grow. As s approaches infinity, Wi,s equals Wi and the
construction will equal Rn,i as defined above.

While it is impossible for a Turing machine to finitely construct the entire
family Rn,i, an index for a single (possibly infinite) column can computably
be found in a finite amount of time. The function h, defined as

h(n, i, x, y) '
{

0 if y is in the xth column of Rn,i
↑ otherwise

is computable by a machine that simply performs the stage by stage con-
struction of Rn,i and outputs 0 as soon as it encounters the element y in
the xth column. If it never does, it keeps on searching forever and the value
h(n, i, x, y) is undefined. By the Smn-theorem [13], the index of the function
λy.h(n, i, x, y) can be found primitive recursively in n, i and x. The domain
of this function is precisely the xth column of Rn,i, so this index is also the
index for set in the xth column.

Now that we have seen thatRn,i contains the set Fn if and only if i ∈ cof,
and have established a computable way of determining an index for a single
column of a set Rn,i, it is time to move on to the construction of the family
He, which will be the union of several families Rn,i.

Construction 3. The family He. For the construction of He, remember
that the function f that reduces Q′ to coinf can be assumed to be injec-
tive (see Section 3.2). Therefore, the sequence (f(e, n))n∈N is unbounded
and has an infinite, strictly increasing subsequence (an)n∈N. The values an
can even be computed in a simple way: subsequently compute the values
f(e, 0), f(e, 1), f(e, 2), et cetera, and count how many times a new maxi-
mum value is found. The nth time this happens, it is the value an. For
convenience, we would like the first value of the sequence to be 0, so define
a−1 := 0.

At this point, we diverge slightly from Beros’s version of the proof in
order to cover every possible form of the sequence (an)n∈N. Define the u(x)

24

a−1 = 0

a0 = 3

a1 = 5

a2 = 8

a3 = 10

R0,3

R1,3

R2,3

R3,3

R4,5

R5,5

R6,7

R7,7

R8,10

R9,10

R10,...
...

G0,3

G3,5

G5,7

G7,10

G10,...

He

an ∈ cof
↑

an ∈ coinf
↓

Figure 5: An example sequence (an) = (0, 3, 5, 7, 10, ...). The structure of
He follows by definition from (an). Note that this figure should be read like
a Venn diagram: the Gj,i and Rn,i are not elements of He, but subsets.
Languages that are in Rn,i (i.e. subsets of Fn) are the elements of He. The
meaning of the thick line is explained on page 26.

to be the smallest even number greater than or equal to x, and define l(x) to
be the smallest odd number greater than or equal to x. Using these functions
and the construction of Rn,i, define the family Gx,y with x, y ∈ N as follows:

Gx,y =
⋃

l(x)≤n≤u(y)

Rn,u(y)

Now, it is finally time to define the family He:

He :=
⋃
y∈N
Gay−1,ay

So, He is the union of a big number of families Rn,ay , which are clustered
according to their ay-values. For an example, see Figure 5.

To recursively find an index for He from the number e, the Smn-theorem
is used the same way as for finding the indices for the different Rn,i-columns.
We define a new function h′ as

h′(e, x) '


0 if there exists an Rn,i ⊆ He

for which x is the index of a column
↑ otherwise

25

h′(e, x) can be computed by inspecting all columns of all the sets Rn,i ⊆
He in a similar fashion as in Figure 2: for increasing m, compute the indices
of the first m columns of the first m Rn,i-sets in He, and compare them to
x. If a match is found, output 0. Otherwise, keep searching. Again, by the
Smn-theorem, the index of the function λx.h′(e, x) (the domain of which is
He) can be found primitive recursively in e.

Now that He has been defined and it has been demonstrated how its
index can be found recursively in e, the only thing that remains to be done
is to verify that e ∈ P if and only if this index is in exl.

Verification. In this paragraph, it is verified that e ∈ P if and only if the
constructed family He is TxtEx-learnable.

First, suppose that e is not in P . Then, by clause (2) on page 22, for all
y, f(e, y) ∈ cof. Since (an)n∈N is a subsequence of (f(e, n))n∈N, all values
ay are in cof as well. For every n, He contains a subset of the form Rn,ay
which, as argued, contains the language Fn as an element. Therefore, the
family He contains F as a whole, rendering it non-TxtEx-learnable.

For the other direction, suppose that e is in P . Then, by clause (1) on
page 22, for all but finitely many values of y, f(e, y) ∈ coinf. Examining
the definition of Q′ even closer, one can see that there exists a y0 (namely
the smallest y such that f(e, y) ∈ Q) such that for y < y0, y ∈ cof and for
y ≤ y0, y ∈ coinf. Based on this y0, the family He can be divided into two
seperate parts as in Figure 5. Let us analyse those two parts:

• For ay < y0, all families Rn,ay are finite: they contain a finite amount
of (finite) subsets of Fn, in addition to the set Fn itself. Because the
union of all these families Rn,ay is also finite, it can be TxtEx-learned
by a machine M1 that has a list of every language and the (sets of)
elements that differentiate them from the other languages in the family.
Every language in this union contains a number less than bn2 c.

• For ay ≥ y0, the families Rn,ay are possibly infinite, but the languages
they contain are all finite. Thus, the union of all families Rn,ay used
in the construction with ay ≥ y0 is learnable by a machine M2 that
learns the family of all finite sets (by simply returning an index for the
language containing only and all elements it has seen so far).
No language in this union contains numbers less than bn2 c.

Now, a single Turing machine can identify any language inHe by determining
whether a number less than bn2 c has appeared in the text, and, accordingly,
calling M1 or M2 on the input. Thus, if e ∈ P , He is TxtEx-learnable.

In this section, we have given a computable way to determine the index
of a language family He, dependent on e, which is learnable if and only if
e ∈ P . So this arbitrary Σ4-set P is reducible to exl, the set of indices for
families that are TxtEx-learnable, and exl is Σ4-hard.

26

4.2 Finite learning

In finite learning, also called TxtFin-learning, the learner is required not
only to converge toward a correct hypothesis, but also to be self-monitoring
in the sense that it is able to tell exactly when it has reached a stable state
[10]. Before it has, it will only output the symbol ?. As soon at is enters the
convergence state, it will return a ‘real’ hypothesis, which must immediately
be correct.

The TxtFin-criterion for identifying a language is stricter than TxtEx
and, accordingly, less language families can be learned. The class finl of
TxtFin-identifiable language families (again, coded as a subset of N) is
simpler in structure than exl: the following subsections provide proof that
finl is Σ3-complete.

4.2.1 Upper bound: finl ∈ Σ3

For the upper bound, a Σ3 formula is to be formed that exactly describes
TxtFin-learnability. Again, let L be a uniformly recursively enumerable
language family {L1, L2, ...} enumerated by the function φe. Now e is in
finl if and only if there is a Turing machine Mk such that for all languages
Li ∈ L the following two statements hold:

1. There exists a finite string, σi, that is in some text for Li, on which
Mk returns a real hypothesis (other than ?).

2. On any text for Li, the first real hypothesis that Mk outputs (if it
exists) is correct.

Note that Mk does not necessarily learn L. If Mk is presented with a text
for some Li that does not contain σi, it might keep returning ?. However,
the existence of Mk implies the existence of another Turing machine that
does learn all languages in L. This machine M , on an input τ , constructs
all possible beginnings (maximum length lh(τ)) of texts for the contents of
τ and for any subset of those contents. It then runs Mk on these (parts of)
texts. IfMk outputs a (first) real hypothesis on any of these simulated texts,
this hypothesis must be correct by the second requirement on Mk, so M can
simply copy this hypothesis and be done. If not, M outputs ? and waits
for the next input. If M is presented with a text for Li, it will eventually
receive an input from which it will simulate a text starting with σ, and so
it will eventually come across a real hypothesis of Mk and output that. So,
for every text for Li, M will output a real hypothesis at some point, and it
will be correct.

From the above argument, it follows that if the two statements hold for
someMk and all Li, then L is TxtFin-learnable. The other direction is clear
immediately: if a language is TxtFin-learnable, the two conditions are met.

27

Now it is time to transform the textual statements into logical formulae A
and B:

1. The fact that a string σ is part of a text for Li is equivalent to the
statement that its contents is a subset of Li, so the first requirement
on Mk is expressed by the formula A, defined as

∃σ
(

(content(σ) ⊆ Li) ∧Mk(σ) ↓ ∧(Mk(σ) 6= ?)

)
2. The second requirement states that for strings α, if it is part of a text

for Li and it is the first string of the text for which Mk outputs a real
hypothesis, then that hypothesis is correct, as expressed by the formula
B:

∀α
((

(content(α) ⊆ Li) ∧ ∀τ ≺ α(Mk(τ) = ?)

∧(Mk(α) ↓) ∧ (Mk(α) 6= ?)
)

→ (WMk(α) = Li)

)
The formula describing finl,

∃k∀i(A ∧B),

is Σ3, as verified in Appendix A. Statements like “content(σ) ⊆ Li” will be
formalized even further in that verification.

4.2.2 Lower bound: finl is Σ3-hard

To provide a lower bound to the complexity of finl, Beros shows that finl
is at least as hard as any other problem in Σ3 by reducing an arbitrary Σ3-set
P in Σ3 to it. Combined with the upper bound result, this proves that finl
is Σ3-complete.

Fix an arbitrary Σ3-set P . By definition,

P = {e | ∃x∀y∃zR(e, x, y, z)}

with R some primitive recursive predicate. Now for an index e, a recursive
construction of a family Ge = {G0, G1, G2, ...} will be given such that e ∈ P
if and only if Ge is TxtFin-learnable. The elements of the sets in Ge will be
read as codes for pairs (see Figure 6), and an element 〈a, b〉 with a ≥ 0 is
called an a-label. Eventually, if there exists an x such that ∀y∃zR(e, x, y, z),
every set Gn will have its own unique x-label for that value of x. A learner
can then identify the languages based on those labels.

28

〈−1, 0〉 〈0, 0〉 〈1, 0〉 〈2, 0〉 · · ·
〈−1, 1〉 〈0, 1〉 〈1, 1〉 〈2, 1〉 · · ·
〈−1, 2〉 〈0, 2〉 〈1, 2〉 〈2, 2〉 · · ·

...
...

...
...

. . .

Figure 6: Natural numbers ordered according to the pairs they code. The
leftmost column is used for the creation of anti-labels.

G1 = {〈0, 0〉, 〈0,3〉, 〈5, 2〉}
G2 = {〈0,3〉, 〈2, 7〉}
G3 = {〈0, 2〉, 〈2, 7〉}
G4 = {〈0, 1〉, 〈0,3〉}

⇒

G1 = {〈0, 0〉, 〈0, 3〉, 〈5, 2〉}
G2 = {〈0, 3〉, 〈2, 7〉, 〈 −1 ,0〉}
G3 = {〈0, 2〉, 〈2, 7〉}
G4 = {〈0, 1〉, 〈0, 3〉, 〈 −1 ,0〉}

Figure 7: An example of the anti-labelling of sets with the same x-label. In
this example, the set G1 receives the anti-label 〈−1, 0〉 for the 0-label 〈0, 3〉.
All other sets with that same 0-label (namely G2 and G4) receive the element
〈−1, 0〉. If, later on, other sets are anti-labelled (for example, the set G2 with
respect to the label 〈0, 3〉 or 〈2, 7〉) the next unused anti-label, in this case
〈−1, 1〉, is used.

For any x-label, so-called anti-labels can be formed: an anti-label for
〈x, k〉 is a pair of the form 〈−1, b〉 that is added to all sets Gn with the label
〈x, k〉, except for one set Gn′ . 〈−1, b〉 ‘anti-labels’ Gn′ , because a learner
cannot use 〈−1, b〉 to identify Gn′ : it cannot wait for it ‘not to appear’ in a
text for the language. For an example of anti-labelling, see Figure 7.

Again, the family Ge is constructed in stages. As in Section 4.1.2, the
entire family Ge cannot finitely be constructed, but by the Smn-theorem, its
index can.

To construct Ge from e, systematically go through all triples 〈x, y, z〉.
At each stage, determine whether the current triple satisfies the following
conditions:

Condition 1: R(e, x, y, z) holds.

Condition 2: For all y′ < y, some triple 〈x, y′, z′〉 has been encountered in
a previous stage such that R(e, x, y′, z′). But, for y itself, the current
triple is the first triple 〈x, y, z′〉 such that R(e, x, y, z′).

If these conditions are met, this is a step towards finding suitable z for all y
– this x may be a good candidate for satisfying ∀y∃zR(e, x, y, z). Consider
the following two cases:

Case 1 Both conditions are met. Three actions are carried out in this case:

29

1. If two sets Gm and Gn share the same x-label, synchronize those
sets by storing all elements of Gn into Gm and vice versa. In
effect, both sets now equal Gm ∪Gn.

2. All sets with an x-label receive an anti-label for that label. So,
the sets that were synchronized in the previous item will differ
because of their anti-labels.

3. The first set Gn that does not yet have an x-label receives a new,
unique x-label.

Case 2 One or both of the conditions are not met. For each x-label already
in use, a new set is created by copying the first Gn with that x-label,
and giving the new set an anti-label. Doing so prevents the sets in Ge
from being recognizable by their x-labels.

Ge is the family that results if this construction is carried out into infinity,
thereby examining all triples 〈x, y, z〉. Now, let us verify that it is indeed
learnable if and only if e is in P .

For the first direction, suppose that e ∈ P . This means that, for some x,
∀y∃zR(e, x, y, z). The actions for Case 1 are then carried out infinitely many
times for that x. By action 3, all sets in Ge will eventually receive an x-label.
Even though sets with the same x-label keep being anti-labelled, every such
anti-label is synchronized in some subsequent step of the construction. So, in
infinity, sets with the same x-label become equal and ‘collapse’ into a single
set. All sets in Ge can thus be recognized by their x-labels. Moreover, once
a machine encounters an x-label, it can immediately be sure of its answer,
which is required for TxtFin-learning.

For the other direction, suppose that e 6∈ P . Then for all x, Case 1
will be true only finitely many times. After that, the action of Case 2 will
create infinitely many copies of some of the Gn, that differ only by their anti-
labels. Such a Gn cannot be TxtFin-learned by any machine M , because
for M to be sure it is dealing with Gn, it must wait for all elements that
anti-label Gn’s copies to appear in the text. If some anti-label has not yet
been encountered, it may be dealing with one of Gn’s copies. Since there are
infinitely many of these anti-labels, M cannot give a conclusive answer in a
finite amount of time and be sure of its answer. So M cannot learn Gn, and
hence the entire family Ge is not TxtFin-learnable.

30

4.3 Behaviorally correct learning

In behaviorally correct learning or TxtBC-learning, the learner is required
to, in the limit, settle on the language it is presented with. Unlike in TxtEx-
learning, however, it is allowed to alternate between the different indices for
that language. bcl denotes the class of all language families learnable under
the TxtBC-criterion. In this subsection, the proof of Σ5-completeness of
bcl is described.

4.3.1 Upper bound: bcl ∈ Σ5

bcl is given an upper bound to its complexity by providing it with a Σ5 for-
mula. Like in the classification of exl, this formula will not directly translate
the definition of TxtBC-learning into a logical formula. The following ob-
servation is used: if a language family is TxtBC-learnable from ∆2-texts,
then it is TxtBC-learnable from arbitrary texts [2].

First, the definition and structure of a ∆2-text is given. For a text f ,
define the graph of that text to be the set

{〈x, y〉 | f(x) = y}

If this graph is a ∆2-set, then f is ∆2 as well. As shown in [2], such a text f
can be assumed to have been defined from the uniformly recursive functions5

{f0, f1, f2, ...}:

f(x) := lim
s→∞

fs(x)

Of course, all these limits need to exist for f to become a total function.
Each fs represents a text, and these text converge toward a single, ‘final’
text f . A value fs(x) is called stable if it equals the final f(x).

The fact that f is a ∆2 text for a language Li of a uniformly recursively
enumerable family L = {L0, L1, L2, ...} (with index e) is expressed by the
conjunction A = A1 ∧A2 ∧A3 of the following formulas.

• f needs to be defined for all x, i.e. the limits lims→∞ fs(x) must exist:

A1 := ∀x∃s∀s′ > s
(
fs′(x) = fs(x)

)
• All numbers enumerated by f must be in Li: that is, if some value
fs(x) is stable, that value must be in Li.

A2 := ∀x∀s
(
∀s′ > s

(
fs′(x) = fs(x)

)
→ fs(x) ∈ Li

)
5A set of functions {f0, f1, f2, ...} is uniformly recursive if there exists a recursive func-

tion g such that for all s ∈ N, fs = λx.g(s, x)

31

• All numbers in Li are enumerated by f : that is, they must occur as a
stable value fs(x).

A3 := ∀x
(
x ∈ Li → ∃y∃s

(
fs(y) = x ∧ ∀s′ > s

(
fs′(y) = fs(y)

)))
The formula A describes what it means for a text f to be a ∆2-text for a
language Li. Next, let us explicate the conditions for a machine Mk to learn
a language Li from f . There are two conditions to be met:

1. Mk should converge toward a single language (but not toward a single
index) on f . That is, for some x, Mk should return indices for that
language on all stable inputs of length at least x. This is expressed by
the following formula:

∃n∀s∀n′ > n
(
∀s′ > s

(
fs′ � n

′ = fs � n
′)→ (WMk(fs�n) = WMk(fs�n′))

)
2. The language Mk converges to should be Li: if, on some input fs � n,
Mk returns the same index as it will on all stable inputs of at least
length n, then that index should be an index for Li.

∀n∀s
(
∀n′ > n∀s′ > s

(
(fs′ � n

′ is stable)→WMk(fs′�n
′) = WMk(fs�n)

)
→ (WMk(fs�n) = Li)

)
Here, the statement “fs′ � n′ is stable" can be translated as

∀s′′ > s′(fs′′ � n
′ = fs′ � n

′)

The resulting formula that describes TxtBC-learnability,

∃k∀g, i
(

(g defines a text f for Li)→(
(Mk converges on f) ∧ (if Mk converges onf , it is toward Li)

))
,

is Σ5, as shown in Appendix A. Consequently, bcl is in Σ5.

4.3.2 Lower bound: bcl is Σ5-hard

In order to prove that bcl is Σ5-hard, an arbitrary Σ5-set P should be
reduced to it. This reduction proof consists of three parts: first, as in the
hardness proof of exl, we bring structure to the set P using the fact that
coinf is Π3-complete. Then, a family Fa,b is constructed, the learnability of
which will depend on whether or not b ∈ coinf. Finally, using the families
Fa,b, a family Ge will be constructed from e such that e ∈ P if and only if
Ge is TxtBC-learnable.

32

The structure of P . In this paragraph, the structure of an arbitrary
Σ5-set P will be examined by ‘unwrapping’ it according to its definition in
the arithmetical hierarchy. If P is Σ5, then its complement, P , is Π5 and
therefore of the form

P = {e | ∀x((e, x) ∈ Q)}

for some Q ∈ Σ4. Analogously to Section 4.1.2, define another Σ4-set Q′

from Q:
Q′ := {(e, x) | ∀x′ ≤ x((e, x) ∈ Q)}

Now, it follows that

e ∈ P ⇒ ∃x((e, x) 6∈ Q)

⇒ ∃x∀x′ ≥ x((e, x) 6∈ Q′)
e 6∈ P ⇒ ∀x((e, x) ∈ Q′)

In order to dissect the structure of P even further, observe that Q′, being
Σ4, is of the form

Q′ = {(e, x) | ∃y((e, x, y) ∈ R)}

for some R ∈ Π3. From R, another Π3-set R′ can again be defined:

R′ = {(e, x, y) | (e, x, y) ∈ R ∧ ∀y′ < y((e, x, y) 6∈ R)}

In words, R′ contains, for every e and x, only the smallest y such that
(e, x, y) ∈ R (if such y exists). Furthermore, from the definition of Q′ and
R′ it follows that

(e, x) ∈ Q′ ⇒ ∃!y((e, x, y) ∈ R′)
(e, x) 6∈ Q′ ⇒ ∀y((e, x, y) 6∈ R′)

Finally, because R′ is Π3, it can be m-reduced to the Π3-complete set coinf.
That is, there exists a total recursive function f such that

(e, x, y) ∈ R′ ⇔ f(e, x, y) ∈ coinf

Combining all observations made above, it follows that

e ∈ P ⇒ ∃x∀x′ ≥ x∀y(f(e, x′, y) 6∈ coinf)

e 6∈ P ⇒ ∀x∃!y(f(e, x, y) ∈ coinf)

Moreover, note that in the first case (if e ∈ P), for all x′ < x, either for all
y, f(e, x′, y) 6∈ coinf, or there is exactly one y for which f(e, x′, y) ∈ coinf.
Hence, in total, for each e ∈ P there exist only finitely many pairs (x, y)
such that f(e, x, y) ∈ coinf.

These observations will be used in the third part of this subsection.

33

The construction of the subfamilies Fa,b. The second part of the proof
consists of the construction of language families Fa,b, which will eventually
become subfamilies of Ge. They will have the following properties:

1. If b ∈ coinf, then Fa,b is TxtBC-learnable. However, the machine
Ma does not learn it.

2. The language family that is the union of all families Fa,b with b ∈ cof
is TxtBC-learnable.

Before defining these families, the notion of speculation is introduced.

Definition 5. If a learner, on some input σ, hypothesizes a language that
contains elements that are not listed in σ, the learner speculates on σ. The
elements that are in the hypothesized language but not in σ are called spec-
ulations.

Speculating can be thought of as ‘thinking outside the box’. If a learner
hypothesizes an infinite language, it is necessarily speculating.

Now, let us move on to the construction of a family Fa,b. It will consist
of the languages A, B0, B1, B2, et cetera. Depending on the behaviour of
Ma, there will be either a finite or an infinite amount of languages Bi. All
of these Bi (except for possibly the last) will be labelled with the element
〈0, i〉. Additionally, all languages in Fa,b contain the elements 〈1, 〈0, a〉〉 and
〈1, 〈1, b〉〉 as labels. These labels will make the languages easier to recognize
by a learner. No other elements will be of the form 〈0, n〉 or 〈1, n〉, in order
to avoid confusing the learner.

The construction of Fa,b consists of several stages, during which a pos-
sibly infinite sequence σ is built up that will serve as (the start of) a text
for A. The goal is to design σ in such a way that it is impossible for Ma

to identify A from it. Let σi denote the part of σ constructed up to the ith

stage. At each stage i, an extension σi ? αi for σi is sought on which Ma

speculates. The least speculation of Ma on this extension is called ci. Now,
define D as follows:

D := N \ {cj | j 6∈Wb}

where cj refers to the speculation on σj ?αj . Every extension αi may consist
only of elements of D.

Eventually, all sets in Fa,b will be finite subsets of D (plus labels), except
for at most one of them, which will equal D.

The search for αi is divided into finite steps (at the nth step, the length
and contents of the extensions to be tested are restricted not to exceed n).
If it takes n steps to find a new extension, the first n elements of D are
stored in Bi. If no extension is ever found, and thus infinitely many steps
are carried out, Bi will contain all elements of D.

Once αi is found, several actions are carried out. First, all elements of
D that do not exceed the maximum element of αi are stored in A. Then,

34

σi+1 is updated to σi ?αi ?βi, where βi is a list of all numbers that were just
stored in A. Note that this way, σ eventually contains only and all elements
of A. Finally, the construction of Bi ends: it receives its label 〈0, i〉 and the
construction moves on to the set Bi+1.

The construction of Fa,b will have one of two outcomes: if infinitely often
a new extension αi is found, then an infinite number of languages Bi are
constructed. They will all eventually finish and be labelled. If, at some
point, no new extension αi is ever found, there will only be a finite number
of languages Bi. The last of those will be infinite and equal to D. The set
A, however, will certainly be finite.

Next, we prove that Fa,b has the desired properties stated at the be-
ginning of this paragraph. These two possible outcomes always have to be
considered: either Fa,b contains infinitely many languages, or finitely many.

First, suppose that b ∈ coinf. Then Fa,b should be TxtEx-learnable,
but not by the machine Ma.

Case 1 Suppose Fa,b is infinite. In this case, learning is simple, because all
Bi-sets are labelled. A learner can hypothesize A until it encounters
such a label.

However, Ma fails to learn Fa,b, because it does not identify A from
the infinite sequence σ. Infinitely often, Ma speculates on σ. However,
because Wb is coinfinite, infinitely many of these speculations will not
be part of A. So infinitely often, Ma will hypothesize a language that
does not equal A.

Case 2 Suppose Fa,b is finite. Any finite family can be learned by a machine
that has a list of those (sets of) elements that make each language in
the family unique. Hence, Fa,b is learnable.
This time, Ma fails to learn Fa,b because it cannot identify the infinite
language Bk from any text f that starts with the (finite) sequence σ.
BecauseMa never speculates on any extension of σ, it will, in the limit,
only hypothesize finite languages on f . However, Bk is infinite, so Ma

does not identify Bk from f .

For the second requirement on Fa,b, a single machine N has to be con-
structed that learns all languages in the union of those Fa,b with b ∈ cof. So
this time, we cannot construct two different machines for the two different
cases. N has to be flexible enough to deal with both cases.

N will first wait for the labels 〈1, 〈0, a〉〉 and 〈1, 〈1, b〉〉 to give away which
subfamily it is learning from. Then, it will imitate the construction of the
family Fa,b, one stage at a time. If the text presents a label 〈0, i〉, N will
of course hypothesize the Bi it has constructed so far. Otherwise it will
have to guess whether the text it is presented with is a text for A or for
the (possibly non-existent) last set Bk. N will always view the set Bi it is

35

currently constructing as a candidate for Bk. In order to choose between A
and Bk, N will test whether the elements it has seen so far are all contained
in the part of A it has constructed up to this point. If so, it hypothesizes
A. If not, it hypothesizes A∪Bk\〈0, k〉, where Bk is the language that N at
that moment views as the ‘last’.

Clearly, N is able to recognize which family Fa,b the language it is learn-
ing belongs to. To see why N will succeed in learning the language itself,
again consider the two possible forms of this Fa,b. The universal strategy of
N will work in both cases.

Case 1 Suppose Fa,b is infinite. In this case, all Bi-languages will be cor-
rectly identified by N , because they are all labelled. If N is presented
with A, again consider two possibilities. If A is finite, N will correctly
identify it because, in the limit, it will have constructed all of A and
so the test of whether or not the elements it has been presented with
match the element of A will eventually always come up positive. If A
is infinite, then it will equal the set D. Every Bk\{〈0, k〉} will be a
(finite) subset of D, so A∪Bk\{〈0, k〉} equals A. So in this case, it does
not matter whether N hypothesizes A or A∪Bk\{〈0, k〉}. Even alter-
nating infinitely many times between these two hypotheses is allowed
in TxtBC-learning.

Case 2 Suppose Fa,b is finite. In this case, there will be a ‘last’ set Bk which
will equal D and is not yet labelled (again, all labelled sets Bi are easily
identified). A will be a finite set and thus, in the limit, N will have
constructed all of A. If presented with a text for A, it will eventually
never come across elements that are not in its construction for A. If
N is presented with a text for the infinite set Bk, it will. In that case,
N will output A∪Bk\{〈0, k〉}. Since A is a subset of D and Bk is not
yet labelled, Bk = A ∪ Bk\{〈0, k〉}, so this hypothesis is also correct.
Therefore, N is able to learn all languages in Fa,b.

The construction of the family Ge. Now, the first and second parts of
this proof are used in the construction of Ge, a family that will be TxtBC-
learnable if and only if e ∈ P . Using the function f from the first part of
the proof, define

Ge :=
⋃

x,y∈N
Fx,f(e,x,y)

First, suppose that e ∈ P . As argued, there exist only finitely many
pairs (xi, yi) such that f(e, xi, yi) ∈ coinf. The families Fx,f(e,x,y) are
TxtBC-learnable, say by a machine Mai . The union of all other fami-
lies in Ge are learnable by the machine N constructed earlier. Ge is now
learnable as follows: on an input σ, call N , unless the labels 〈1, 〈0, xi〉〉
and 〈1, 〈1, f(e, xi, yi)〉〉 have been encountered for one of the pairs (xi, yi), in

36

which case the machine Mai is called. Since there are only finitely many of
those pairs, these instructions can be hard wired into the Turing machine.

Next, suppose that e 6∈ P , and suppose that some machineMa learns the
family Ge. Because e is not in P , there exists a y such that f(e, a, y) ∈ coinf.
By definition of the family Fa,f(e,a,y), it cannot be learned by Ma. Since it
is part of the family Ge, the entire family Ge cannot be learned by Ma, a
contradiction. Consequently, Ge is not TxtBC-learnable.

37

4.4 Anomalous learning

In anomalous learning, or TxtEx*-learing, the learner is again required to
settle on a single index. The set this index represents, however, is allowed to
differ slightly from the language that is presented. Specifically, the symmetric
difference between the two sets should be finite.

The class exl* of indices for families learnable under this criterion is the
fourth and final class that Beros positions into the arithmetical hierarchy. It
is, like bcl, exactly in Σ5.

4.4.1 Upper bound: exl* ∈ Σ5

TxtEx* closely resembles TxtEx, so the formula that describes learnability
in this model is very similar. The formula is again of the form

∃k∀i∀a
(

(Mk total) ∧
(

((φa total) ∧ (φa enumerates Li))→ (A ∧B)
))

only now the formula B is slightly different. The formula A still represents
the fact that Mk should eventually converge on φa. The second formula, B,
again represents the fact that at each point in time, if Mk has converged,
its outputs should be correct. Only for this learning criterion, ‘correct’ has
a different meaning: it means that the finite symmetric difference of the
hypothesized language and Li, denoted WMk(φa�n)4Li, is finite.

The indices of all finite sets can be enumerated in a computable manner.
This can be done in stages: at each stage n, list all sets with at most n
elements and no elements greater than n. This way, all sets will be listed,
albeit with repetition. Let h be the recursive function that enumerates these
indices – so {Wh(0),Wh(1), ...} is the set of all finite sets. Now, the formula
B reads as follows:

∃l∀n
(
∀m
(
m > n→Mk(φa � m) = Mk(φa � n)

)
→
(
WMk(φa�n)4Li = Wh(l)

))
The expressionWMk(φa�n)4Li = Wh(l) is Π2, as is shown in Appendix A.

In this Appendix the conversion to the prenex normal form of the describing
formula as a whole is also carried out. The describing formula is Σ5, as
expected.

4.4.2 Lower bound: exl* is Σ5-hard

The Σ5-hardness proof of exl* is very similar to that of bcl in Section 4.3.2.
In fact, the first part (bringing structure to an arbitrary Σ5-set P) and the
third part (construction of Ge from Fa,b) of the proof are exactly equal. So,
we aim to again construct families Fa,b with the following properties:

38

1. If b ∈ coinf, then Fa,b is TxtEx*-learnable. However, the machine
Ma does not learn it.

2. The language family that is the union of all families Fa,b with b ∈ cof
is TxtEx*-learnable.

Given such families, the construction of a family Ge such that e ∈ P if and
only if Ge is TxtEx*-learnable is identical to the construction in Section
4.3.2.

So let us now construct the family Fa,b with the aforementioned men-
tioned properties. Fa,b will resemble the structure of the family in Section
4.3.2. It will consist of the languages A,L0, R0, L1, R1, L2, R2, et cetera,
possibly infinitely many. All these languages will again be labelled to show
which family they belong to. In addition to this, all languages, except for
possibly the last pair Ln and Rn receive their own labels. The rest of the
construction occurs outside of these labels, which are all of the form 〈0, x〉
or 〈1, x〉.

Eventually, each Li will consist mostly of even numbers and each Ri
mostly of odd numbers. Depending on the contents of Wb, the symmetric
difference between the last Ln and Rn, if they exist, is either finite or infinite.
If their symmetric difference is finite, there is no need for a machine to discern
between them in order to be able to learn them under the TxtEx*-criterion.

Again, the construction of Fa,b is carried out in stages. During these
stages, a string σ will be built up that will serve as a text for A from whichMa

fails to identify A. σi will denote this sequence as constructed up to stage i.
At each stage i, an extension σi?αi for σi is sought, but unlike in the hardness
proof of bcl, this extension should be such that Ma(σi ? αi) 6= Ma(σi), i.e.,
Ma changes its hypothesis. Once such an extension has been found, all
numbers less than or equal to the maximum element of αi are stored in A.
Then, σi+1 is set to be σi ? αi ? βi, where βi is a list of all numbers that
were just stored in A. This way, σ will eventually become a text for A.
Finally, the construction of the sets Li and Ri is ended by labelling them,
and the construction of the next pair, Li+1 and Ri+1 is initiated by storing
all elements of σi+1 in both sets.

The search for a suitable αi, like in Section 4.3.2, is a possibly infinite
one and is therefore divided into finite steps. At each step j, the least even
number k is found such that both k and k+ 1 have not yet been used in the
construction of Fa,b. If j ∈ Wb, both k and k + 1 are stored in the sets Li
and Ri. Otherwise, k is stored in Li, while k + 1 is stored in Ri.

The construction of Fa,b will either result in a family with finitely many
languages, or one with infinitely many. In the last case they will all be
labelled. Now, it is time to verify that Fa,b meets the conditions stated on
page 38. We will always distinguish between the possibilities of a finite and
an infinite family.

39

First, suppose that b ∈ coinf. Then Fa,b should be TxtEx*-learnable,
but not by the machine Ma. Two cases are treated separately:

Case 1 Suppose an extension for σi is found infinitely often. Then, all sets
are labelled, so a machine can easily TxtEx*-learn Fa,b.
However, Ma does not learn Fa,b: σ represents a text for A, but is
constructed in such a way that Ma changes its hypothesis infinitely
often. So, Ma does not converge toward a single hypothesis on this
text for A and hence fails to identify A.

Case 2 Suppose for some σi, no new extension is found. Then Fa,b contains
only finitely many languages and is surely learnable by a machine that
has a list of which (finite sets of) elements to identify each of those
languages from.

Again, however, Ma does not learn Fa,b: σ is a locking sequence (see
page 21) forMa and any language that contains all elements of σ. The
last sets Ln and Rn are such languages, and hence Ma is unable to
discern between them. Because b ∈ coinf, the symmetric difference
between Ln and Rn is infinite (there are infinitely many even numbers
in Ln\Rn, and vice versa, infinitely many odd numbers in Rn\Ln). So
Ma fails to identify at least one of them from any text starting with σ.

Next, consider the family that is the union of all Fa,b with b ∈ cof. A
machine N can learn this entire family by first waiting for the labels to reveal
which family Fa,b the language belongs to. Subsequently, the machine waits
for labels to give away the specific sets:

• Labelled finite languages Ln and Rn, which all have a finite symmetric
difference from the empty set.

• Labelled set A, the index of which can be recursively constructed from
a and b.

• If no label is encountered, the language may be one of the unlabelled,
infinite, ‘last’ sets Ln and Rn. Because b ∈ cof, only finitely often
has k or k + 1 been absent from the sets Ln and Rn. Therefore, both
sets are cofinite (except for the numbers of the form 〈0, x〉 and 〈1, x〉
which are used for labelling), so their symmetric difference from the
set N\{〈x, y〉 | x ≤ 1} is finite.

In conclusion, N can simply return the correct (that is, correct in terms of
TxtEx*-learning) indices based on the labels, and default to N\{〈x, y〉 |
x ≤ 1} if no label has (yet) been encountered.

40

5 Conclusion

The aim of this work has been twofold. Firstly, to provide an overview
of Gold’s learning theory and investigate its relation to human language
learning, and secondly, to examine four identification criteria for learning
and the complexity (in terms of the arithmetical hierarchy) of the classes of
languages families learnable under those criteria.

In the analysis of Gold’s model for learning, it became clear that it is a
very idealized form of learning that differs from human language acquisition
in some fundamental ways. In order to adapt the model so that it more
closely resembles human language acquisition, more information about the
way humans learn a language is required. Although the field of linguistics
is constantly progressing, current knowledge is inadequate for the precise
mathematical modelling required in learning theory.

Three variations on Gold’s model were considered: TxtFin-learning,
which is a more limited form of learning, TxtBC-learning, an extensional
form of learning, and TxtEx*-learning, where the learner is allowed to
make small mistakes. Following Beros [2], the following results regarding
the complexity of the learnable language family classes have been found:

• exl, the class of language families learnable under the (original) TxtEx-
criterion, is m-complete in Σ4.

• finl, the class of language families learnable under the TxtFin-criterion,
is m-complete in Σ3.

• bcl, the class of language families learnable under the TxtBC-criterion,
is m-complete in Σ5.

• exl*, the class of language families learnable under the TxtEx*-
criterion, is m-complete in Σ5.

These facts were all proven by providing an upper bound (a describing for-
mula) and a lower bound (reducing an arbitrary Σ3-, Σ4- or Σ5-set) to the
class, thereby establishing the exact location in the arithmetical hierarchy.

While these results support the intuition that more sophisticated forms
of learning fall into a higher category of the arithmetical hierarchy, this intu-
ition is insufficiently grounded in [2]. For example, the class of all (uniformly
recursively enumerable) language families would take a very sophisticated
machine to learn, but is fairly simple in structure: it is simply the set of
all indices for total functions, because each such function describes a lan-
guage family. One could argue that under no reasonable learning criterion,
all language families would be learnable, and that this example is there-
fore irrelevant. However, it demonstrates that the correlation between the
complexity of the learning process and the complexity of the class of learn-
able language families is not as self-evident as Beros suggests. Additional
evidence for this correlation is needed.

41

Suppose this classification is a good measure of complexity for the learn-
ing process. One can then expect the complexity of the class of language
families learnable by humans to be at an even higher level than the relatively
simple classes bcl and exl*, because human language acquisition is subject
to much more subtle criteria than the learning criteria discussed in this work.

The fact that for these simple learning criteria, the question of whether
a certain language family is learnable is already well beyond decidable, does
not bode well for the case of human language acquisition, even if we would
ever be able to adequately model it. It suggests that learning theory may
not have any practical applications in the near future in terms of learning
machines. This, of course, does not mean that it cannot be of any theoretical
interest to the field of artificial intelligence.

42

References

[1] L. Becerra-Bonache and T. Yokomori. Learning mild context-
sensitiveness: Toward understanding children’s language learning. In
Grammatical Inference: Algorithms and Applications, pages 53–64.
Springer, 2004.

[2] A.A. Beros. Learning theory in the arithmetic hierarchy.
arXiv:1302.7069 [math.LO], 2013.

[3] L. Blum and M. Blum. Toward a mathematical theory of inductive
inference. Information and Control, 28(2):125–155, 1975.

[4] J. Case and C. Smith. Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science, 25(2):193–220, 1983.

[5] R.G. Downey and D.R. Hirschfeldt. Algorithmic randomness and com-
plexity. Springer, 2008.

[6] E. M. Gold. Language identification in the limit. Information and
control, 10(5):447–474, 1967.

[7] S.C. Kleene. Introduction to Metamathematics. North Holland Publish-
ing Co., 1952.

[8] G. F. Marcus. Negative evidence in language acquisition. Cognition, 46
(1):53–85, 1993.

[9] J.C. Martin. Introduction to Languages and The Theory of Computa-
tion. McGraw-Hill, fourth edition, 2010.

[10] D. N. Osherson, M. Stob, and S. Weinstein. Systems that learn: an
introduction to learning theory for cognitive and computer scientists.
Learning, Development and Conceptual Change. MIT press, 1986.

[11] G.K. Pullum and B.C. Scholz. Recursion and the infinitude claim. Re-
cursion in human language, (104):113–138, 2010.

[12] M. Sipser. Introduction to the theory of computation. Thomson Course
Technology, second edition, 2006.

[13] Soare. Recursively enumerable sets and degrees: A study of computable
functions and computably generated sets. Perspectives in Mathematical
Logic. Springer-Verlag, 1987.

[14] J. van Oosten. Basic computability theory. 1993, revised 2013.

43

Appendices

A Prenex normal forms of formulas

In this appendix, some fomulas constructed throughout the text will be
treated in more detail. Specifically, they will be converted to prenex normal
form in order to explicitly show which level of the hierarchy they belong to.
In doing so, the following equivalences will be used:

(∀xA) ∧B ≡ ∀x(A ∧B) (1)
(∃xA) ∧B ≡ ∃x(A ∧B) (2)
(∀xA) ∨B ≡ ∀x(A ∨B) (3)
(∃xA) ∨B ≡ ∃x(A ∨B) (4)

(∀xA)→ B ≡ ∃x(A→ B) (5)
(∃xA)→ B ≡ ∀x(A→ B) (6)
A→ ∀xB ≡ ∀x(A→ B) (7)
A→ ∃xB ≡ ∃x(A→ B) (8)
¬∀xA ≡ ∃x¬A (9)
¬∃xA ≡ ∀x¬A (10)

For these equivalences to be used correctly, no unbound variable may become
bound after performing an equivalence operation. For example, equivalence
(1) may only be used if the variable x does not occur freely in B.

Because most of the formulas will be tediously long and their meaning
is not of interest for determining their hierarchy level, a notational system
will be used that allows for shorter formulas. In this system a box (�) will
indicate any recursive predicate. In order to make clear which quantifiers
are moved in which step of the process, the quantifiers will be numbered
before they are moved, and both highlighted and numbered after. Subsequent
quantifiers of the same type will be merged into one. Note that bounded
quantifiers do not have to be taken into account, because for all n, Σn and
Πn are closed under bounded quantification [13].

For example, the formula

∀x(∃y(y < x)→ x 6= 0)

is brought to prenex normal form in the following scheme:

∀(∃1�→ �)

≡ ∀ ∀1 �
≡ ∀�

44

and it follows that this formula is Π1. Note how in the first step, after moving
the ∃1 outside of the brackets, the matrix is � → �. However, since this is
recursive as a whole, it is immediately replaced by a single square.

A.1 The description of exl is Σ4

The full formula for exl is built up from several subformulas that are listed
on pages 18 and 19. They will be converted to prenex normal form one by
one.

∀x∃yT (1, k, x, y) (1)
≡ ∀∃�
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∀x∃yT (1, a, x, y) (2)
≡ ∀∃�
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∀x
(
∃y∃z

(
T (1, a, y, z) ∧ U(z) = x

)
↔ ∃wT (1, φe(i), x, w)

)
(3)

≡ ∀
(

(∃∃�→ ∃�) ∧ (∃�→ ∃∃�)
)

≡ ∀
(

(∃1�→ ∃�) ∧ (∃2�→ ∃�)
)

≡ ∀
(
∀1 (�→ ∃�) ∧ ∀2 (�→ ∃�)

)
≡ ∀ ∀1∀2

(
(�→ ∃3�) ∧ (�→ ∃4�)

)
≡ ∀

(
∃3 � ∧ ∃4 �

)
≡ ∀ ∃3∃4 �
≡ ∀∃�
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∀n
(
∀m
(
m > n→Mk(φa � m) = Mk(φa � n)

)
→WMk(φa�n) = Li

)
(4)

≡ ∀(∀�→ ∀1∃�)

≡ ∀ ∀1 (∀2�→ ∃3�)

≡ ∀ ∃2∃3 �
≡ ∀∃�
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∃s∀t
(
t > s→

(
Mk(φa � t) = Mk(φa � s)

))
(5)

≡ ∃∀�

45

In (4), the statement WMk(φa�n) = Li is replaced with a formula that is
almost identical to (3).
The formula P (e) as a whole is now of the form

∃∀
(
∀1∃� ∧ ∀2

((
∀∃� ∧ ∀∃�

)
→
(
∀∃� ∧ ∃∀�

)))
≡ ∃∀ ∀1∀2

(
∃� ∧

((
∀3∃� ∧ ∀4∃�

)
→
(
∀5∃� ∧ ∃∀�

)))
≡ ∃∀

(
∃� ∧

(
∀3∀4

(
∃� ∧ ∃�

)
→ ∀5

(
∃1� ∧ ∃2∀�

)))
≡ ∃∀

(
∃� ∧ ∀5

(
∀3
(
∃� ∧ ∃�

)
→ ∃1∃2

(
� ∧ ∀�

)))
≡ ∃∀ ∀5

(
∃� ∧ ∃1∃2∃3

((
∃4� ∧ ∃6�

)
→
(
� ∧ ∀�

)))
≡ ∃∀

(
∃1� ∧ ∃2

(
∃4∃6 �→

(
� ∧ ∀�

)))
≡ ∃∀ ∃1∃2

(
� ∧

(
∃�→

(
� ∧ ∀3�

)))
≡ ∃∀∃

(
� ∧

(
∃1�→ ∀3 �

))
≡ ∃∀∃

(
� ∧ ∀1∀3 �

)
≡ ∃∀∃ ∀1∀3 �
≡ ∃∀∃∀�

So, P (e) is indeed Σ4.

46

A.2 The description of finl is Σ3

First, some subformulas are treated in more detail.

content(σ) ⊆ Li (6)
≡ ∀j < lh(σ)∃yT (1, φe(i), (σ)j , y)

≡ ∃�
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Mk(σ) ↓ (7)

≡ ∃yT (1, k, σ, y)

≡ ∃�
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
WMk(α) = Li (8)

≡ ∀x
(
∃yT (1,Mk(α), x, y)↔ ∃zT (1, φe(i), x, z)

)
≡ ∀(∃�↔ ∃�)

Note that the bounded quantifier in (7) can be ignored, because both Σn

and Πn are closed under bounded quantification [13].
Now, the formulas A and B are treated separately:

∃(∃1� ∧ ∃2� ∧�) (A)

≡ ∃ ∃1∃2 �
≡ ∃�
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∀
(
(∃1� ∧� ∧ ∃2� ∧�)→ ∀(∃�↔ ∃�)

)
(B)

≡ ∀
(
∃1∃2 �→ ∀

(
(∃3�→ ∃�) ∧ (∃4�→ ∃�)

))
≡ ∀

(
∃�→ ∀

(
∀3 (�→ ∃�) ∧ ∀4 (�→ ∃�)

))
≡ ∀

(
∃�→ ∀ ∀3∀4

(
(�→ ∃1�) ∧ (�→ ∃2�)

))
≡ ∀

(
∃�→ ∀(∃1 � ∧ ∃2 �)

)
≡ ∀

(
∃�→ ∀3 ∃1∃2 �)

≡ ∀ ∀3
(
∃4�→ ∃�

)
≡ ∀ ∀4

(
�→ ∃1�

)
≡ ∀∃1�
≡ ∀∃�

47

Finally, the formula that describes finl is Σ3:

∃∀(A ∧B)

≡ ∃∀(∃� ∧ ∀1∃�)

≡ ∃∀ ∀1 (∃2� ∧ ∃3�)

≡ ∃∀ ∃2∃3 �
≡ ∃∀∃�

48

A.3 The description of bcl is Σ5

First, let’s treat the statement “x ∈ Li”:

x ∈ Li (9)
≡ ∃y∃z(T (1, φe(i), y, z) ∧ U(z) = x)

≡ ∃�

Now, the separate conjuncts of the formula A = A1 ∧A2 ∧A3 are analysed:

∀x∃s∀s′ > s
(
fs′(x) = fs(x)

)
(A1)

≡ ∀∃∀�
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∀x∀s
(
∀s′ > s

(
fs′(s) = fs(x)

)
→ fs(x) ∈ Li

)
(A2)

≡ ∀
(
∀1�→ ∃2�

)
≡ ∀ ∃1∃2 �
≡ ∀∃�
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∀x
(
x ∈ Li → ∃y∃s

(
fs(y) = x ∧ ∀s′ > s

(
fs′(y) = fs(y)

)))
(A3)

≡ ∀
(
∃1�→ ∃

(
� ∧ ∀2�

))
≡ ∀ ∀1

(
�→ ∃3 ∀2 �

)
≡ ∀ ∃3

(
�→ ∀2�

)
≡ ∀∃ ∀2 �
≡ ∀∃∀�

The formula A as a whole is then of the form

A1 ∧A2 ∧A3 (A)
≡ ∀1∃� ∧ ∀2∃∀� ∧ ∀3∃∀�
≡ ∀1∀2∀3 (∃4� ∧ ∃5∀� ∧ ∃6∀�)

≡ ∀ ∃4∃5∃6 (� ∧ ∀1� ∧ ∀2�)

≡ ∀∃ ∀1∀2 �
≡ ∀∃∀�

49

The other two subformulas of the describing formula are treated next:

∃n∀s∀n′ > n
(
∀s′ > s

(
fs′ � n

′ = fs � n
′)→ (

WMk(fs�n) = WMk(fs�n′)

))
(10)

≡ ∃∀(∀�→ ∀1∃�)

≡ ∃∀ ∀1 (∀2�→ ∃3�)

≡ ∃∀ ∃2∃3 �
≡ ∃∀∃�
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∀n∀s
(
∀n′ > n∀s′ > s

(
∀s′′ > s′(fs′′ � n

′ = fs′ � n
′)→WMk(fs′ �n

′) = WMk(fs�n)

)
→WMk(fs�n) = Li

)
(11)

≡ ∀
(
∀(∀�→ ∀1∃�)→ ∀2∃�

)
≡ ∀ ∀2

(
∀1 (∀3�∃4�)→ ∃�

)
≡ ∀

(
∀1 ∃3∃4 �→ ∃2�

)
≡ ∀ ∃1∃2

(
∃3�→ �

)
≡ ∀∃ ∀3 �
≡ ∀∃∀�

Finally, the resulting formula is of the form

∃∀
(
∀∃∀�→ (∃∀∃� ∧ ∀1∃∀�)

)
≡ ∃∀

(
∀∃∀�→ ∀1 (∃2∀∃� ∧ ∃3∀�)

)
≡ ∃∀ ∀1

(
∀4∃∀�→ ∃2∃3 (∀5∃� ∧ ∀6�)

)
≡ ∃∀ ∃4∃2∃3

(
∃1∀� ∧ ∀5∀6(∃7� ∧�)

)
≡ ∃∀∃ ∀1∀5∀6

(
∀2�→ ∃7 �

)
≡ ∃∀∃∀ ∃2∃7 �
≡ ∃∀∃∀∃�

50

A.4 The description of exl* is Σ5

Some of the subformulas used in the describing formula of exl* were al-
ready treated in Appendix A.1. Only the formula B and the expression
WMk(φa�n)4Li = Wh(l), which is part of B, need to be analysed:

WMk(φa�n)4Li = Wh(l) (12)

≡ ∀x
((
x ∈WMk(φa�n) ↔ x 6∈ Li

)
↔ x ∈Wh(l)

)
≡ ∀x

((
∃yT (1,Mk(φa � n), x, y)↔ ∀z¬T (1, φe(i), x, z)

)
↔ ∃wT (1, h(l), x, w)

)
≡ ∀

((
∃�↔ ∀�

)
↔ ∃�

)
≡ ∀

((
(∃1�→ ∀2�) ∧ (∀3�→ ∃4�)

)
↔ ∃�

)
≡ ∀

((
∀1∀2 � ∧ ∃3∃4 �

)
↔ ∃�

)
≡ ∀

((
(∀� ∧ ∃1�)→ ∃�

)
∧
(
∃�→ (∀2� ∧ ∃�)

))
≡ ∀

((
∃1 (∀3� ∧�)→ ∃�

)
∧
(
∃�→ ∀2 (� ∧ ∃4�)

))
≡ ∀

((
∃1 ∀3 �→ ∃�

)
∧
(
∃5�→ ∀2 ∃4 �

))
≡ ∀

(
∀1
(
∀3�→ ∃6�

)
∧ ∀5∀2

(
�→ ∃4�

))
≡ ∀

(
∀1 ∃3∃6 � ∧ ∀5 ∃4 �

)
≡ ∀ ∀1∀5

(
∃3� ∧ ∃4�

)
≡ ∀ ∃3∃4 �
≡ ∀∃�
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∃l∀n
(
∀m
(
m > n→Mk(φa � m) = Mk(φa � n)

)
→
(
WMk(φa�n)4Li = Wh(l)

))
(B)

≡ ∃∀(∀�→ ∀1∃�)

≡ ∃∀ ∀1 (∀2�→ ∃3�)

≡ ∃∀ ∃2∃3 �
≡ ∃∀∃�

51

The formula describing exl*-learnability is Σ5:

∃∀∃
(
∀∃� ∧

(
(∀1∃� ∧ ∀2∃�)→ (∃3∀� ∧ ∃4∀∃�)

))
≡ ∃∀∃

(
∀∃� ∧

(
∀1∀2 (∃� ∧ ∃�)→ ∃3∃4 (∀� ∧ ∀∃�)

))
≡ ∃∀∃

(
∀∃� ∧ ∃1∃2∃3∃4

(
(∃5� ∧ ∃6�)→ (∀7� ∧ ∀8∃�)

))
≡ ∃∀∃ ∃1∃2∃3∃4

(
∀∃� ∧

(
∃5∃6 �→ ∀7∀8 (� ∧ ∃�)

))
≡ ∃∀∃

(
∀1∃� ∧ ∀5∀6∀7∀8

(
�→ (� ∧ ∃2�)

))
≡ ∃∀∃ ∀1∀5∀6∀7∀8

(
∃� ∧

(
�→ ∃2 �

))
≡ ∃∀∃∀

(
∃1� ∧ ∃2 �

)
≡ ∃∀∃∀ ∃1∃2 �
≡ ∃∀∃∀∃�

52

B Notations used
N {0, 1, 2, 3, ...}
[a, b] interval {a, a+ 1, ..., b}
bxc floor of x
|A| cardinality of A
A complement of A
A ∪B union of A and B
A ∩B intersection of A and B
A\B difference between A and B
A4B symmetric difference between

A and B (p. 12)
A ⊆ B A is a subset of B
A (B A is a strict subset of B
A ≤m B A is m-reducible to B (p. 15)
φe function with index e (p. 6)
Me Turing machine with index e

(p. 6)
We domain of the function φe (p.

6)
g ◦ h composition of g and h
µx.φ the least x such that φ (p. 4)
T (m, e, x, y) Kleene T -predicate (p. 6)
U(y) output function (p. 6)
〈~x〉 code for ~x (p. 8)
(x)i ith element of tuple coded by

x (p. 8)
lh(x) length of tuple coded by x (p.

8)
x ? y concatenation (p. 8)
α ≺ β α is an initial segment of β
f � (t+ 1) 〈f(0), f(1), ..., f(t)〉 (p. 9)
(an)n∈N sequence a0, a1, a2, ...

53

