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Abstract

In this thesis, I explore the extent to which a focus on trans-
formations and symmetry can highlight the conceptual unity
of classical spacetime theories and quantum (gauge) theory, in
particular general relativity (GR) and non-relativistic quantum-
electromagnetism (Q-EM). In the literature, there is a general
belief that because the transformations of spacetime theories act
on external space, they have a different interpretation from the
transformations of gauge theory, which act on internal space.
By focusing both on the role of transformations within these
different theories, and the possibility of interpreting the trans-
formations actively, I show that, despite important differences,
there is more conceptual unity than is often realised. Specifi-
cally, I aim to answer the two following questions.

1) What role do symmetry transformations play in GR and
Q-EM? I show that the equivalence principle and the gauge prin-
ciple play analogous roles in GR and Q-EM respectively. This
leads to an analogue of the equivalence principle in Q-EM, and
the formulation of the notion of an inertial gauge. The claim
that “dynamical forces restore symmetry” is demystified.

2) Is there a fundamental difference between spacetime trans-
formations and gauge transformations? It is commonly accepted
that gauge transformations, unlike spacetime transformations,
cannot be interpreted actively. I show why this is mistaken by
considering the action of gauge transformations on both clas-
sical and quantum systems. In the latter case, I suggest that
the particular nature of quantum systems is responsible for the
differences that there appear to be between active gauge trans-
formations and active spacetime transformations.
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Chapter 1

Situations of symmetry

It is the July of 1952 and, at the conference “Symposium on New Research
Techniques in Physics” in Rio de Janeiro, Eugene Wigner is engaged in a
discussion on the nature of symmetries and conservation laws in physics.1 A
participant, Mr Medina, asks Wigner whether one of the previous questions
he has just answered was related to the “gauge invariance of charge fields
under rotation of the complex field function”. Wigner answers that it was.
At this point, Bohm intervenes

I would just like to ask prof. Wigner if he has any specula-
tive ideas as to whether there is some geometric or mechanical
transformation which corresponds to this symmetry?

Wigner answers as follows

I think none beyond the point which dr. Medina just so
well described [that the total charge operator is proportional
to the infinitesimal rotations of charge space]. I think that we
should admit that we do not have an understanding of the deeper
causes of any dynamic symmetry. There seems to be an analogy
suggested by experimental fact [the nature of this analogy isn’t
clear]. However, an explanation in the same sense as we have an
explanation, for instance, for the hydrogen spectrum, is entirely
absent. We see only connections but not more than that.

In Bohm’s question and Wigner’s answer are the main ingredients of this
thesis. Bohm’s question can be interpreted as an inquiry into the possibility
of active gauge transformations. Wigner’s negative response is representa-
tive of the view, common to this day, that gauge transformations cannot be

1This anecdote is based on the transcript of a conference discussion between Eugene
Wigner, Tiomno, Leite Lopes, Medina and Bohm (who I assume must be David Bohm)
[Wigner, 1992b, p. 107].
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2 CHAPTER 1. SITUATIONS OF SYMMETRY

interpreted actively [Brading and Brown, 2004]. In chapter 5 I will question
the validity of this conclusion. Wigner’s further comment on the “causes
of dynamic symmetry” refers to the mystery surrounding the role of the
so-called gauge principle in apparently allowing the existence of dynami-
cal forces (such as electromagnetism) to be derived from mere symmetry
requirements. The methodological role of symmetry transformations will
be discussed in chapter 4. This exchange is also interesting for historical
reasons. Seven years later, in 1959, Bohm would publish, together with
Aharonov, the seminal paper Significance of Electromagnetic Potentials in
Quantum Theory, in which they predict the Aharonov-Bohm (AB) effect
[Aharonov and Bohm, 1959]. This prediction, later well confirmed by exper-
iment, has significant consequences both for the possibility of active gauge
transformations, and for understanding the role of dynamic symmetries (as
they are called by Wigner). It is thus interesting to note that such issues
had been on Bohm’s mind for quite some time before the publication of the
famous paper with Aharonov. A review of the AB effect will be given in
chapter 4.

The first three chapters will do the groundwork necessary for fully under-
standing the more technically involved final two chapters. Chapter 1 in-
troduces the notion of a transformation in general, and presents some of
the difficulties that arise in attempting to formulate a satisfactory notion of
symmetry in this context. To some extent, these difficulties will be resolved
in chapter 5. Chapter 2 introduces the notion of a gauge transformation,
and places it in the context of Wigner’s canonical philosophy of symmetry.
The influence of Wigner’s views on more recent work in the philosophy of
physics will also be discussed. Chapter 3 is devoted to the exposition and
definition of important mathematical notions. Some of these, for instance
the notion of a coordinate system, will appear in earlier chapters. However,
it will be assumed that, until chapter 3, an intuitive grasp of such concepts
is sufficient.

By the end of the thesis, I hope to have answered to the two following
questions:

1. What role do symmetry transformations play in general relativity and
non-relativistic quantum-electromagnetism?

2. Is there a fundamental difference between spacetime transformations
and gauge transformations?

Ultimately, underlying these two questions is a third one about the unity of
physics. The unification of the four forces (gravitational, electromagnetic,
strong and weak) is one of the main motivations driving today’s theoretical
physics. By showing that, with respect to transformations and symmetry,
a certain amount of unity already exists, I hope to make a very modest
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contribution in this direction. Furthermore, by suggesting where the unity
breaks down, I hope to point towards possible areas of future research.

1.1 The ship, the cage and the lift

The word “symmetry” is omnipresent in modern physics. However, one
should not confuse the word itself with its use in a particular context. As
Brading and Castellani aptly remark, the notion of “symmetry” is so ubiq-
uitous in modern physics that it is impossible to provide a unified general
account of its role in today’s theories [Brading and Catellani, 2003, p.11].
Pierre Curie used a notion of symmetry to study the properties of crystals.
Einstein relied on a notion of symmetry to arrive at his theories of special
and general relativity. Emmy Noether derived a relation between symmetry
and conservation laws. At the LHC, they are exploring the implications of
spontaneous symmetry breaking. Van Fraassen points out that symmetry
principles can play a crucial role in problem solving [van Fraassen, 1989].
Weyl and Wigner were pioneers of the use of symmetry (expressed in the
mathematical language of group theory) in quantum physics. Any research
into the role of symmetry in modern physics must therefore start by deter-
mining precisely in which context the subject is to be studied.

The general notion of symmetry that we will be concerned with is that of
“invariance under a transformation”. Two questions immediately arise: In-
variance of what? (2) Transformed how? In other words, given that we
start with a “something” with certain features, we need to know how this
something is changed (which transformation is performed) and what it is
about this something that does not change (which features are invariant).
The “something” of relevance here is either a given physical situation, or
a mathematical representation thereof. In the first case, the notion of in-
variance refers to the fact that the transformed physical situation is, in a
way to be made precise, indistinguishable from the untransformed situa-
tion. However, if the transformation does actually do something to the
physical situation, then the transformed and untransformed situations must
also differ in some way. As we will see, balancing these two contradictory
requirements is a delicate but crucial aspect of any interpretation of sym-
metry. When a transformation acting on a physical situation satisfies these
requirements, I will call it an “empirical symmetry” [Healey, 2009].

In the second case, when the transformation acts on a mathematical rep-
resentation of a physical situation, the notion of invariance refers to the
fact that the transformed and untransformed situations both satisfy the
equations of the theory. I will call these “theoretical symmetries” [Healey,
2009]. I now turn to a more detailed analysis of these two different kinds of
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symmetry, using Healey’s definitions as starting points.

1.1.1 Empirical symmetries

Healey gives the following definition [Healey, 2009, p. 703]

Empirical symmetry (Healey): A bijective map φ : S → S of a set of
situations onto itself is an empirical symmetry with respect to C-type mea-
surements if and only if no two situations related by φ can be distinguished
by measurements of type C.

A first thing to note about this definition is that it makes the identity an
empirical symmetry. This is a trivial result we would like to exclude. This
can be achieved by adding some additional requirement such as “for all
s ∈ S, φ(s) 6= s”. In other words, we require that φ represent a transfor-
mation which actually changes something about s. We will see later that
this “transformation condition” becomes a major point of discussion in the
literature.

A second problematic feature of this definition is the vague nature of the
“set of situations”, S. Elements s ∈ S are “actual physical situations”,
and this makes them hard to handle [Healey, 2009, p. 702]. Healey speci-
fies that S should include “actual” as well as “possible” situations [Healey,
2009, p. 703]. However, the world is not something that lends itself to being
easily carved up into well defined situations. As an example of the kind of
elements one might expect to find in S, Healey mentions the case of “purely
mechanical phenomena in a Newtonian world” [Healey, 2009, p. 704]. Unfor-
tunately, the precision of this example is achieved at the expense of blurring
the distinction between empirical and theoretical symmetries. Actual phys-
ical situations do not take place in Newtonian worlds, or in any kind of
theoretical world for that matter. They just occur out-there. In fact, I do
not believe that the elements of S can be determined in an unambiguous
way. As we will see later, this is not the case for theoretical symmetries,
where the elements of the set of (mathematical) models of a theory can be
sharply and unambiguously defined.

To address this concern, I suggest abandoning the notion of a “set of sit-
uations”. Instead, I will define “empirical symmetries” on a case by case
basis.

Empirical symmetry: A transformation T that acts on a physical situ-
ation s is an empirical symmetry with respect to C-type measurements, if
and only if T (s) and s cannot be distinguished by measurements of type C
and T obeys the transformation condition T (s) 6= s.
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By removing the dependency on a “set of situations”, this definition im-
plicitly acknowledges that the exact nature of the “physical situation” in
question will depend the particular application of the definition. Further-
more, not all cases to which this definition can be applied will be equally
interesting. For instance, imagine that s is the current state of the solar
system and T (s) is the same as s in all respects except that a star at the
other end of the universe has been displaced by a few nanometers. Clearly,
s and T (s) will be indistinguishable by all measurement apparatuses cur-
rently available. However, this empirical symmetry is not surprising and
does not have any significant ramifications for our scientific understanding
of the world. In a similar vein, one could imagine two situations s and
T (s) which are quite clearly different, but that could be made indistinguish-
able by imposing extreme restrictions on the type of measurements allowed.
The upshot of these considerations is the realization that a certain amount
of discretion is necessary to identify those transformations that are actu-
ally interesting. As the following examples will show, empirical symmetries
worth thinking about surprise our everyday physical intuitions.

Particularly interesting empirical symmetries are ones for which the trans-
formed situations cannot be distinguished by experiments “confined to the
situation” (exactly what this means will be clarified by the upcoming exam-
ples) [Healey, 2009, p. 703]. If an empirical symmetry holds with respect to
experiments of such type, we call it, following Healey, a “strong empirical
symmetry”. I will now give three examples of empirical symmetries. The
first two, Galileo’s ship and Faraday’s cage, are strong empirical symme-
tries. The third, Einstein’s lift, differs from the first two because it is only
an approximate empirical symmetry, and therefore can be detected by very
careful experiments confined to the situation. The full significance of Ein-
stein’s lift will become evident in chapter 4 when we discuss the role of the
equivalence principle in general relativity.

Galileo’s ship

In an often-quoted passage, Galileo describes the following situation [Galileo,
1967, p. 187]

Shut yourself up with some friend in the main cabin below
decks on some large ship, and have with you there some flies,
butterflies, and other small flying animals. Have a large bowl of
water with some fish in it; hang up a bottle that empties drop
by drop into a wide vessel beneath it. With the ship standing
still, observe carefully how the little animals fly with equal speed
to all sides of the cabin. The fish swim indifferently in all direc-
tions; the drops fall into the vessel beneath; and, in throwing
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something to your friend, you need throw it no more strongly in
one direction than another, the distances being equal; jumping
with your feet together, you pass equal spaces in every direction.
When you have observed all these things carefully (though there
is no doubt that when the ship is standing still everything must
happen in this way), have the ship proceed with any speed you
like, so long as the motion is uniform and not fluctuating this
way and that. You will discover not the least change in all the
effects named, nor could you tell from any of them whether the
ship was moving or standing still. In jumping, you will pass on
the floor the same spaces as before, nor will you make larger
jumps towards the stern than toward the prow even though the
ship is moving quite rapidly, despite the fact that during the time
that you are in the air the floor under you will be going in a di-
rection opposite to your jump. In throwing something to your
companion, you will need no more force to get it to him whether
he is in the direction of the bow or the stern, with yourself seated
opposite. The droplets will fall as before into the vessel beneath
without dropping towards the stern, although while the drops
are in the air the ship runs many spans. The fish in their wa-
ter still swim toward the front of their bowl with no more effort
than toward the back, and will go with equal ease to bait placed
anywhere around the edges of the bowl. Finally, the butterflies
and flies will continue their flight indifferently toward every side,
nor will it happen that they are concentrated toward the stern,
as if tired out from keeping up with the course of the ship, from
which they will have been separated during long intervals by
keeping themselves in the air. And if smoke is made by burn-
ing some incense, it will be seen going up in the form of a little
cloud, remaining still and moving no more toward one side than
the other. The cause of all these correspondences of effects is the
fact that the ship’s motion is common to all the things contained
in it, and to the air also.

Although strictly speaking Galileo’s ship is not in inertial motion because it
is in circular motion around the center of the earth, the example is generally
interpreted as illustrating the principle of Galilean relativity. This states
the following:

Principle of Galilean relativity: Two copies of the same system in iner-
tial motion with respect to one another will evolve in empirically indistin-
guishable ways.

As Galileo does in the passage quoted above, one of the best ways to under-
stand how two (different) physical situations can be related by an empirical
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symmetry is to phrase the transformation in terms of an observer constrained
to make measurements on a limited environment. In the case of Galileo’s
ship, we are invited to consider the observations that someone “trapped” in
the cabin below deck could make on the objects in his immediate surround-
ings. The transformation is a symmetry if the observer, by appealing to his
limited experiments, cannot tell if it has taken place.2 We might sum this
up in the slogan form “the observer cannot tell the difference”.

The limits imposed on the measurement capacities of the observer clarify
what Healey referred to as measurements “confined to the situation”. In-
deed, since the transformation does actually change the state of motion of
the ship, if no constraints were imposed, the observer could quite easily tell
if the ship was at rest in the harbour or sailing at a uniform velocity away
from it. All he would have to do is open the window and look at the shore,
or, if he is more sophisticated, determine the speed of the boat with respect
to the shore by means of RADAR pulses.

In terms of our formalism, Galileo’s ship can be summarized in the following
terms. The situations s and T (s) are the mechanical states of various objects
and animals in a cabin below deck of a large ship. The transformation T
changes the ship from one state of uniform motion (with respect to some
reference point) to a different state of uniform motion (with respect to the
same reference point).

Faraday’s cage

Michael Faraday gives another example of a transformation that is a strong
empirical symmetry. He describes building a hollow cube (also referred to
as Faraday’s cage) large enough for him to fit inside, covering it with a
good conducting material and insulating it well from the ground. He then
proceeds to charge the conducting material to such an extent that “sparks
flew from its surface”. He continues as follows [Healey, 2009, p. 699]

I went into this cube and lived in it, but though I used lighted
candles, electrometers, and all other tests of electrical states, I
could not find the least influence on them.

Charging the surface of a hollow conductor results in a uniform increase of
the electric potential A0 = φ inside the conductor, while the magnetic vector

2This appeal to what an observer can measure assumes that the transformation T is
“adiabatic”. This means that it happens slowly and gently enough not to disturb the
elements of the environment in which the observer is situated. If T was not adiabatic,
then disturbances due to the violence of the transformation would break the symmetry,
even though these disturbances are not, strictly speaking, consequences of performing the
transformation T in itself.
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potential A stays unchanged. If the electromagnetic 4-vector potential Aµ
vanished inside the conductor before the transformation, then the E and B
fields given by

B = ∇×A (1.1)

E = −∇φ− ∂A

∂t
(1.2)

will also vanish after the transformation. Thus, charging the surface of the
conductor results only in bringing the inside of the conductor to a higher po-
tential, without inducing any change in electric and magnetic fields. Faraday
could find no difference in the outcomes of the experiments he performed
within the charged hollow conductor, and therefore concluded what one
could call the principle of Faradean relativity. This could be stated (in a
similar form to the Galilean version) as follows:

Principle of Faradean relativity: Two copies of the same system at dif-
ferent uniform electric potentials will evolve in empirically indistinguishable
ways.

As we will see in chapter 4, a uniform change of electric potential in a region
of space does have an effect on the phase of the wavefunction of a quantum
particle in that region. The Aharonov-Bohm effect shows that such a phase
shift can have empirical consequences. However, whether or not this poses
problems for the principle of Faradean relativity is a subtle issue that turns
on the precise definition of a “system” that one adopts. These issues will be
dealt with in chapter 5.

Within the domain of classical physics, the principle can be accepted un-
problematically. Once again, the restrictions on the measurements that the
observer inside Faraday’s cage is allowed to make play an important role.
If the observer is allowed to somehow compare his situation with that of an
observer outside the cage at a lower potential (for instance by measuring the
potential difference between the two with a voltmeter), then he will be able
to tell that he is at a higher potential. ’t Hooft describes this possibility
vividly in terms of the fate of a squirrel who has one foot on an electrified
power line and the other on a grounded conductor [’t Hooft, 1980, p. 97].
However, as long as the squirrel keeps both feet on the power line, it will
suffer no harm.

In terms of our formalism, Faraday’s cage can be summarized as follows.
The situations s and T (s) are the mechanical and electromagnetic states
of some (non-quantum) objects inside a hollow conducting container. The
transformation T charges the surface of the container, thereby raising the
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electric potential inside the container uniformly (no spatial dependence)
from its previous value to some new value.

Einstein’s lift

The third empirical symmetry is that of Einstein’s lift, or in a different form,
Einstein’s freely falling man, both famous as illustrations of the equivalence
principle [Norton, 1985, p. 204]. In the latter case, the claim is that a man
cannot distinguish being in a state of inertial motion, or being in a state of
non-inertial motion in a gravitational field. Einstein writes [Janssen, 2011,
p. 4]

Because for an observer in free-fall from the roof of a house,
there is during the fall, at least in his immediate vicinity, no
gravitational field. Namely, if the observer lets go of any bodies,
they remain, relative to him, in a state of rest or uniform motion,
independent of their special chemical or physical nature. The
observer, therefore, is justified in interpreting his state as being
“at rest”.

It may seem confusing that in this statement, Einstein writes that, in the
vicinity of the falling man, there is “no gravitational field”. Of course, it is
precisely because there is a gravitational field that the man, who is actually
in a state of non-uniform motion with respect to the house, feels as if there
is no gravitational field... The source of this confusion over what exactly
counts as a “gravitational” field will be addressed in detail in chapter 4.
The lift version of the symmetry goes as follows. Consider a person in a
lift with no windows. This person feels a force against her feet. She cannot
know if the lift is sitting on the surface of the earth, and the force is due
to the gravitational field of the earth, or if she is in outer-space, far from
any gravitational influence, and there are rocket boosters attached to the
lift causing her to accelerate.

In these cases, the role of limited measurements once again plays an impor-
tant role. For instance, if the observer is allowed to look out of the lift, she
can see if there are any massive bodies nearby that might be responsible
for the force she feels, and she can also check if there are rocket boosters
attached to the lift. However, in contrast to Galileo’s ship and Faraday’s
cage, in Einstein’s lift it is also possible to tell the transformation has taken
place with experiments confined to the situation, provided these are accurate
enough. If the observer has a large enough lift and good enough instruments,
she might try to detect the presence of tidal forces acting on objects inside
the lift. Thus, if the lift is on the surface of the earth, then two balls dropped
from the top of the lift will be very slightly closer together when they reach
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the bottom. However, if she is in outer space, the distance between the two
balls will stay constant, from the time they are released near the top of the
lift to the time they hit the floor. Thus, the symmetry holds as long as the
observer is not allowed to look for “sources” of the forces she feels, and as
long as she limits her measurements to small enough distances and short
enough times.

I will not try and formulate a principle corresponding to this empirical sym-
metry because that would amount to formulating the equivalence principle,
and the various difficulties involved in achieving this will be covered in chap-
ter 4. The difficulty in formulating such a principle further underlines the
difference between this empirical symmetry and the two others. Never-
theless, the principle can still be summarized using our formalism. s and
T (s) are the states of motion of various different bodies in the elevator. T
involves one of either: (1) introducing a source of gravitation (some stress-
mass-energy density) and allowing the lift to free-fall (2) removing a source
of gravitation and turning on rocket boosters attached to the lift.

In all three cases of empirical symmetry just discussed, there is no problem in
determining that the transformation condition, T (s) 6= s, is satisfied. As was
shown, the observer “in the situation” can always tell if the transformation
has taken place when there are no restrictions placed on the experiments he
is allowed to perform. Furthermore, for an observer “outside the situation”
it is always obvious whether the transformation has taken place. This is
because the transformation only acts on a subsytem of the universe, and
the physical state of the outside observer is not affected by it. It is the
change in relations between the outside observer and the system on which
the transformation acts that enables the transformation condition to always
be satisfied in these cases [Brading and Brown, 2004].

1.1.2 Theoretical symmetries

In the previous section we presented several examples of how physical sit-
uations could be transformed without an observer, contained within the
situations, being able to tell that the transformation had taken place. In
this section, we will consider how transformations act on the mathemat-
ical structures that physicists use to represent the physical world. Since
physics deals mainly in such mathematical structures, the analysis of “the-
oretical symmetries” will be our main concern throughout the rest of this
thesis. Nevertheless, the physical interpretation of the transformations be-
tween such mathematical structures will be of the utmost importance. We
will want to know whether the new mathematical structure obtained after a
particular transformation corresponds to a different description of the same
physical situation, or whether it corresponds to a different physical situation
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altogether. This concern did not arise as such in the discussion of empirical
symmetries. In those cases, it was always clear what the result of the trans-
formation was. When we move away from the intuitive realm of physical
situations into the more abstract realm of their mathematical representa-
tions, we must be aware that not all changes in representation correspond
to changes in the world. One of the main aims of this thesis is to arrive
at an understanding of the significance of transformations that take place
in the mathematical domain. We will say that a transformation between
mathematical structures has direct empirical significance when the struc-
tures that it relates can be interpreted as representing physically different
situations. We will call these active transformations. However, we will also
argue that transformations that correspond simply to a re-description of the
same physical situation also have a central role in physical theories. We will
call these passive transformations.

In the rest of this chapter I will introduce the kind of issues with which
we will be confronted in the rest of this thesis by taking examples from
the simple context of Newtonian mechanics in its original (non-generally
covariant) formulation. Let us start with Healey’s definition of a theoretical
symmetry [Healey, 2009, p. 706]

Theoretical symmetry (Healey): A mapping f : M → M of the set
of models of a theory Φ on to itself is a theoretical symmetry if and only if
the following condition holds: For every model m of Φ that may be used to
represent (a situation s in) a possible world w, f(m) may also be used to
represent (s in) w. Two models related by a theoretical symmetry of Φ are
theoretically equivalent in Φ.

A model of a theory is to be understood as a mathematical situation (to
be distinguished from the physical situations of the previous section) in
which the mathematical objects to which the theory applies obey the laws
(equations of motion) of the theory. Some philosophers like to define the
concept of a theory itself in terms of the set of models that it allows (see for
instance [Ismael and van Frassen, 2003, p. 372]). Whether or not this is a
good move is not relevant to this discussion. The important issue is that a
given theory restricts the set of authorized mathematical situations. Since
these situations are mathematically described, they are sharply defined, and
it is not problematic to talk of the set of models of a theory.

As in the case of empirical symmetries, not all theoretical symmetries are
equally interesting. Ismael and van Frassen devote considerable attention to
finding criteria to identify the interesting transformations between models
of a theory [Ismael and van Frassen, 2003]). However, my focus in this thesis
will be on the significance of specific transformations, and therefore I will
not address the problem of finding a general way to distinguish interesting
theoretical symmetries from uninteresting ones.
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I will now focus on one example of a transformation that takes place in the
mathematical domain, and use it to highlight the kinds of problem we will
be faced with in the upcoming chapters. Take the trajectory of a single
massive particle in an empty universe that obeys Newton’s laws of motion.
This is a model of Newtonian mechanics. Let us represent the trajectory of
the particle by a 3-vector x(t) in a real vector space R3 that is a function of
(Newtonian absolute) time t. If there are no forces acting on the particle,
then the trajectory of the particle is a model of Newtonian mechanics if, for
all t and for each component xi of x

d2xi
dt2

= 0 (1.3)

I can generate another model of the theory by performing the following
transformation

x(t) =

x(t)
y(t)
z(t)

→ f(x(t)) = x′(t) =

x′(t)y′(t)
z′(t)

 =

x(t) + vxt
y(t)
z(t)

 (1.4)

where vx is a constant in time. The transformed trajectory f(x(t)) satisfies
(1.3) for all t, and is therefore also a model of Newtonian mechanics. At
this point, most authors would already accept that f is a symmetry trans-
formation in Newtonian mechanics. For instance, Brading and Brown write
[Brading and Brown, 2004, p. 645]

A symmetry transformation is a transformation of these vari-
ables [the dependent and independent variables] that preserves
the explicit form of the laws.

In this case, the “form of the laws” is given by (1.3) and the transformation of
the variables by (1.4). When the second is plugged into the first, the extra
term vxt is killed by the second order time derivative, and the equation
returns to its original form.

However, according to Healey’s definition, f is only a theoretical symmetry
if f(x(t)) and x(t) may both “be used to represent (s in) w”. This seems
to imply that both f(x(t)) and x(t) must represent the same physical sit-
uation s. In order to determine whether this is the case, it is necessary to
have a physical interpretation of the transformation f , over and above its
mathematical definition.

In fact, there are two ways in which f can be interpreted. The first is as
a change in description of the same physical situation called a coordinate
transformation. After the transformation, we measure distance in the x
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direction with respect to a point which, in the first coordinate system, moves
in the negative x direction at speed vx. Thus, a point with coordinates
x(t) in the first coordinate system will have coordinates x′(t) = x(t) + vxt
in the second (if, at t = 0, x′(t) = x(t)). Because this interpretation is
possible, f(x(t)) and x(t) do both represent the same physical situation s,
and therefore f is a symmetry according to Healey. Since this transformation
is interpreted as a change in description of the same physical situation, it is
a passive transformation.

t

x x’

t

Coordinate transformation

Figure 1.1: Representation of a coordinate transformation in Galilean spacetime, where
the worldlines could represent the front and back of Galileo’s ship. After the transforma-
tion the ship appears to be in motion according to the x′ coordinate.

However, there is another way to interpret the above transformation. f(x(t))
might give the trajectory of some other particle, which moves with speed vx
in the x direction with respect to the particle described by x(t) (similarly, it
might represent setting the original particle into a state of uniform motion).
In this case, f(x(t)) and x(t) do not represent the same physical situation.
However, they do both represent models of Newtonian mechanics, because
the motion of both particles obeys the equation (1.3). Since this transfor-
mation is interpreted as generating a different physical situation, it is an
active transformation.

The above considerations suggest that any transformation f of the depen-
dent and independent variables has a dual interpretation, either as a passive
or as an active transformation. Conditions for the transformation to count
as a symmetry can be given for both. As in the case of empirical symmetries,
I prefer to formulate these conditions in terms of individual transformations,
rather than functions between sets. A mathematical situation is a model of
a theory if the functions that describe it obey the equations of motion of the
theory.

Passive theoretical symmetry: A transformation f from a model m of a
theory Φ to a mathematical situation f(m) , is a passive theoretical symmetry
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t

x

Active transformation

t

x

Figure 1.2: Representation of an active transformation in Galilean spacetime, where the
worldlines could represent the front and back of Galileo’s ship. Before the transformation
the ship is at rest according to the x coordinate, whereas afterwards it is in motion
according to this same coordinate.

if f(m) is a model of Φ and m and f(m) are different representations of the
same physical situation.

Active theoretical symmetry: A transformation f from a model m of a
theory Φ to a mathematical situation f(m), is an active theoretical symmetry
if f(m) is a model of Φ and m and f(m) are representations of different
physical situations.

To make contact with our earlier discussion of empirical symmetries, we
might say that if x(t) represents the position of Galileo’s boat in the har-
bour, then f(x(t)) represents the boat sailing away from the harbour at a
uniform velocity vx. In this case, we say that the active theoretical symmetry
corresponds to an empirical symmetry.

In the example given above, Healey and Brading and Brown agreed that f
was a symmetry of Newtonian mechanics. Furthermore, both the active and
the passive interpretations of f produced symmetries. However, if we look
very carefully at the way Healey defines the notion of symmetry, we see that
some transformations will satisfy his definition without satisfying Brading
and Brown’s. Consider a different transformation, f ′ which takes the form

x(t) =

x(t)
y(t)
z(t)

→ f ′(x(t)) = x′′(t) =

x′′(t)y′′(t)
z′′(t)

 =

x(t) + vx(t)t
y(t)
z(t)

 (1.5)

where vx(t) is now a function of time. Plugging f ′(x) into (1.3) for the x
component gives
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d2

dt2
(x+ vx(t)t) =

d2x

dt2
+

d2

dt2
(vx(t)t) =

d2x

dt2
+

d2vx(t)

dt2
t+ 2

dvx
dt

(1.6)

Because vx(t) is now a function of time, the extra terms remain and the
equation does not reduce to the form (1.3). Thus, according to Brading and
Brown’s definition, f ′ is not a symmetry transformation. However, we still
have the possibility of interpreting f ′ as a passive transformation, in other
words, as a “strange” description of the same physical situation. In this
case the coordinate system we are using is in a varying state of motion with
respect to the original coordinate system. Healey’s definition of symmetry
makes no reference to the form of the equations that must be used to judge
whether a certain mathematical situation is a model of a certain theory.
Thus, we are free to use a different equation of motion to judge whether
f ′(x) is a model of Φ. Since we have interpreted f ′ passively, we can view
the steps of the calculation (1.6) as a derivation of the laws of motion that a
mathematical situation must obey to be a model of Φ from that particular
coordinate system. Thus, we conclude that, according to Healey’s definition,
f ′(x) is a theoretical symmetry.

On the other hand, if we take an active interpretation of f ′, then we do not
have the possibility of changing the form of the equations of motion. This is
because f ′ represents the motion of a different particle, as described in the
same coordinate system in which the laws hold in their original form (1.3).
In this case, the steps of the calculation (1.6), when multiplied by the mass
of the particle, represent a derivation of the forces that would need to be
applied to the particle to make it follow the trajectory given by f ′(x). Since
a force is necessary to make the particle follow this trajectory, it cannot be
a model of Newtonian mechanics with no forces acting on the particle.

The example just discussed brought to light two important considerations
involved in deciding whether a given theoretical transformation should be
considered a symmetry of a theory. The first is that the form of the equations
of motion which are used to judge whether a given mathematical situation is
a model of a theory must be carefully specified in any definition of symmetry.
The second is that the interpretation of a theoretical transformation as active
or passive can affect whether the transformation is a symmetry or not. In
chapter 5, we will discuss this issue at length. We will show that in some
theories passive and active transformations are logically equivalent, but that
this equivalence breaks down in other theories.



16 CHAPTER 1. SITUATIONS OF SYMMETRY



Chapter 2

Gauge transformations: the
received view

In the first chapter, I introduced the distinction between empirical and the-
oretical symmetries, as well as that between active and passive transforma-
tions. I presented some preliminary criteria for a transformation to count as
a symmetry, and highlighted some difficulties that any attempt to define the
notion of symmetry must address. I illustrated the analysis with examples
from Newtonian mechanics.

In this chapter, I will present Wigner’s philosophy of symmetry, which is
the canonical interpretation of symmetry in modern physics. I will also in-
troduce the notions of gauge transformations, and gauge symmetry (also
referred to as gauge invariance). We will see what place Wigner gives these
transformations within his analysis of symmetry. Because Wigner’s views
have been so influential, later contributions to the literature are best appre-
ciated in their light. At the end of this chapter, I will mention some ways
in which the current literature on symmetry builds on Wigner’s work.

2.1 Wigner’s classification of symmetries

In 1984, in the opening paragraph of The Meaning of Symmetry, Wigner
states [Wigner, 1992a]:

We are fundamentally discussing a question of language: what
we now call symmetry. But questions of language are not unim-
portant. After all, we want to communicate with each other. In
physics, the word symmetry has been used, in my opinion, in
three different senses. I will try to describe them and tell you

17
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why I do not like the idea of gauge invariance being a symmetry
principle.

In the meantime, questions about “the meaning of symmetry” have devel-
oped into a foundational concern that is quite alot more than just “a question
of language”. The empirical success of physical theories that rely explicitly
on symmetry principles (from special relativity to gauge theories, via gen-
eral relativity) have made it imperative to fully understand the nature of
symmetry in general, and of gauge symmetry in particular. Moreover, un-
derstanding the relation of gauge transformations to spacetime transforma-
tions is crucial if we are to make progress towards unifying our fundamental
physical theories. Before discussing Wigner’s philosophy of symmetry in
more detail, I introduce the notions of a gauge transformation and gauge
symmetry.

2.1.1 A brief introduction to gauge transformations and gauge
invariance

Gauge transformations take place in the mathematical domain (as defined in
chapter 1), and can be expressed, in accordance with Brading and Brown’s
definition, in terms of transformations of the dependent and independent
variables of a theory describing electromagnetic processes. The precise def-
inition of a gauge transformation depends on whether it acts on a classical
or a quantum system.

In a non-relativistic formulation of classical electromagnetism, gauge trans-
formations act jointly on the electric scalar potential φ and the magnetic
vector potential A as

{
φ→ φ′ = φ− ∂χ(x,t)

∂t

A→ A′ = A +∇χ(x, t)
(2.1)

with χ(x, t) a smooth scalar function of space and time. If χ(x, t) is a con-
stant, the transformation is usually called global, otherwise it is called local.
However, this way of making the global/local distinction in notoriously prob-
lematic, and we will question it in chapter 5. In a relativistic formulation,
gauge transformations can be expressed in terms of the electromagnetic 4-
potential Aµ = (φ,A)

Aµ → A′µ = Aµ − ∂µχ(x, t) (2.2)

Gauge symmetry (or invariance) refers to the fact that the electric and
magnetic fields E and B are invariant under a gauge transformation of the
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potentials. In a non-relativistic setting, this can be shown by looking at how
the E and B fields transform under gauge transformations.

B = ∇×A (2.3)

becomes

B′ = ∇× (A +∇χ(x, t)) = ∇×A +∇×∇χ(x, t)) = ∇×A = B (2.4)

because the curl of a gradient vanishes. For the electric field,

E = −∇φ− ∂A

∂t
(2.5)

becomes

E′ = −∇(φ− ∂χ(x, t)

∂t
)− ∂

∂t
(A +∇χ(x, t)) = −∇φ− ∂A

∂t
= E (2.6)

because partial derivatives commute. In relativistic notation, the invariance
can be shown more straightforwardly in terms of the electromagnetic field
tensor

Fµν = ∂µAν − ∂νAµ (2.7)

which transforms as

F ′µν = ∂µ(Aν − ∂νχ(x, t))− ∂ν(Aµ − ∂µχ(x, t)) = ∂µAν − ∂νAµ = Fµν

(2.8)

In classical electromagnetism, all physically relevant quantities are taken to
be functions of the E and B fields. Gauge transformations do not therefore
result in any physical change. This suggests that they can be interpreted
passively, as changes in the description of electromagnetic situations. In
chapter 5 we will discuss at length whether they can also be interpreted
actively.

When acting on a quantum system, described by a wavefunction ψ(x, t),
possibly in the presence of an electromagnetic field, gauge transformations
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are joint transformations of the electromagnetic potential and the wavefunc-
tion, given by [Wigner, 1970, p. 23].


ψ(x, t)→ ψ′(x, t) = eiqχ(x,t)ψ(x, t)

φ→ φ′ = φ− ∂χ(x,t)
∂t

A→ A′ = A +∇χ(x, t)

(2.9)

This transformation also results in no change in the physical state of the
quantum system. However, this is slightly more difficult to show than in the
classical case, and details are given in chapter 4. In the context of a classical
complex scalar field θ(x), or a Dirac field Ψ(x) (where the dependence is now
on a spacetime position represented by a 4-vector x), gauge transformations
are respectively

{
θ(x)→ θ′(x) = eiqχ(x)θ(x)

Aµ → A′µ = Aµ − ∂µχ(x, t)
(2.10)

and


Ψ(x)→ Ψ′(x) = eiqχ(x)Ψ(x)

Ψ̄(x)→ Ψ̄′(x) = e−iqχ(x)Ψ̄

Aµ → A′µ = Aµ − ∂µχ(x, t)

(2.11)

These transformations leave the Lagrangians of their respective theories in-
variant, and therefore also do not change the physical states of the fields
they act on (more details in chapter 4).

In our future discussions of gauge transformations and gauge symmetry, it
should be clear from the context which sense of gauge transformation we are
referring to. Otherwise, we mean the general fact that such transformations
can be made whatever variant of an electromagnetic situation one chooses.

2.1.2 Wigner’s philosophy of symmetry

In the passage quoted at the start of this chapter, Wigner claims to distin-
guish three different senses of the word symmetry. These are (1) symme-
tries of objects; (2) symmetries of the laws of nature; (3) gauge symmetries.
However, he believes that this third sense is inappropriate, and that gauge
symmetries have a different status from the other two. Later in the The
meaning of symmetry, Yang suggests to Wigner that the reason for this dif-
ference is the impossibility of constructing two experiments which are gauge
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transforms of one another [Wigner, 1992a, p. 365]. Ultimately, it seems
that both Yang and Wigner believe that gauge transformations can only
be interpreted passively as changes in the description of a physical system.
Wigner sums this up by claiming that gauge invariance “does not express
anything physical”. Yang agrees, and adds that gauge invariance should be
seen as a new kind of symmetry, namely one that “tells us how interactions
are formed”, or in slogan form “symmetry dictates interactions”.

This short exchange between Wigner and Yang highlights three issues still
addressed today in the foundations of gauge theory. These are: (1) do
gauge transformations have a dual interpretation in terms of active and
passive versions? (2) what is the relation between gauge transformations
and spacetime transformations? (3) how does gauge symmetry play a role
in specifying the mathematical form of an interacting theory? The third
question is a reference to the “gauge principle”, which will be discussed
in chapter 4. The first two questions will be the subject of chapter 5. In
the rest of this section I will present Wigner’s philosophy of symmetry, and
clarify why he sets the notion of “gauge symmetry” apart from the others.

For Wigner, the world is complicated but the scientist, ideally, would like
to find some order in this chaos. This can be achieved, first by separating
out initial conditions from laws of nature, and secondly by recognizing that
the laws of nature satisfy certain invariances [Wigner, 1970, p. 3]. The first
step, while to some extent arbitrary, allows the scientist to focus on only
a limited subset of the properties of the situation under study, and thus
makes noticing correlations between these properties a tractable problem.
The regularities in these correlations are the laws of nature. However, these
regularities could never be formulated if the correlations observed by the
scientist changed from day to day. Furthermore, the results of a scientist
working here would have no relation to those of one working there if the
laws of nature changed from place to place. Therefore, the fact that the
laws of nature obey certain invariances is crucial for the possibility of their
discovery.

Our knowledge of the world can therefore be seen to progress up a hierar-
chy, from the chaotic events that surround us, through the laws of nature
according to which we order them, to the invariance principles which make
the discovery of the laws of nature possible. In Wigner’s philosophy, the
invariances satisfied by the laws of nature thus arguably play the role of
Kantian “transcendental principles” [Brading and Castellani, 2003, p. 1361]
and [Mainzer, 1988]. More precisely, Wigner believes that there are four
invariance (or symmetry) principles that the laws of physics obey: (1) posi-
tion invariance; (2) time invariance; (3) rotation invariance and (4) uniform
motion invariance. The first three he claims are fairly evident, but the dis-
covery of the importance of the fourth he attributes to Einstein (although, as
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we have seen, Galileo also recognized this invariance) [Wigner, 1991, p. 197].
To say that the laws of nature “obey” these principles means that if a sys-
tem is submitted to the relevant transformation (its position is changed, it
is observed at a different point in time, it is rotated around some axis of
space or it is set into a state of uniform motion), then it will continue to
evolve according to the same laws as it did before the transformation. This
insensitivity of the evolution of the system to the action of certain transfor-
mations is what Wigner means when he says that the invariance principles
“express something physical”. In this context, “physical” for Wigner means
that something is actually done to the system to change it in some way.
However, because he believes that gauge transformations cannot be inter-
preted as actually doing something to the system, he does not think that
they can play the same role with respect to the laws of nature as the four
other transformations just mentioned.

This distinction between the invariances that “express something physical”
and those that do not is formalized by Wigner as the distinction between
geometric and dynamical transformations. He also refers to this distinc-
tion as that between the “old” and the “new” invariance principles. The
new principles represent an extension of the concept of symmetry into “an
area where its roots are much less close to direct experience and observa-
tion than in the classical area of spacetime symmetry” [Wigner, 1970, p.15].
Although Wigner does not see it this way, we should take this comment
as a warning. We should be careful not to be misled by the fact that we
are simply less familiar with the notion of gauge transformations from our
everyday experience. If we were different creatures, with sense organs sensi-
tive to subtle electromagnetic interference effects, then the notion of gauge
transformations might be much more familiar to us.

Geometric invariance principles

The geometric invariance principles are those formed by the transformations
of the Poincaré group, also known as the inhomogeneous Lorentz group.
These are translations in space and time, rotations and Lorentz boosts.
This last transformation corresponds to the setting of a system into a state
of uniform motion, and in this respect it does not differ essentially from the
invariance principle already expressed by Galileo. For Wigner, Einstein’s
important contribution was to re-express the notion of Galilean relativity
and make it compatible with the development of electromagnetic theory. He
stresses that these geometric principles, as well as structuring the laws of
nature, also can be formulated “in terms of the events themselves” 1[Wigner,

1This statement can be given a precise mathematical formulation as a point transfor-
mation, see chapter 5.
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1970, p.17].

The notion of geometric invariance can be given the following (semi)formal
treatment. Consider a system in a state φ. Now apply a transformation
Pα to it, with Pα a member of the Poincaré group, such that the new state
after the transformation is φα = Pαφ. φ and φα represent two physically
different states. For instance, Pα might change the position of the system,
or set it into a state of uniform motion. In a time t, the evolution of the
system is given by the transformation Tt, with T representing some arbitrary
dynamical law. In a time t, φ evolves into the state Ttφ, and the state φα
evolves into the state Ttφα. The fact that Pα is an invariance principle can
be captured by the statement that PαTtφ = Ttφα = TtPαφ, in other words
that the transformation and the dynamical evolution commute

[Pα, T ] = 0 (2.12)

The significance of the commutation relation obeyed by Pα and T can be
further elucidated by the following example, illustrated in figure 2.1. Imagine
that Pα represents a change in position of the system, x → x′, and that
the dynamical evolution T is not invariant under such a transformation.
In this case, T is written T (x) (to indicate it has a position dependence)
and PαTt(x)φ 6= Tt(x)Pαφ because after performing the transformation, the
system will be in a new position x′ and, in general, T (x) 6= T (x′) when
x 6= x′.

Dynamical invariance principles

A dynamical principle of invariance is one that “tells us how interactions
are formed”, as Yang put it. Gauge invariance, understood as the joint
transformation of a matter field and a potential is an example thereof (details
in chapter 4). Interestingly, Wigner believes that the general covariance
of general relativity should also be considered as a dynamic principle of
invariance [Wigner, 1970, p. 23]. He justifies this claim with a reference to
Utiyama’s work. Utiyama was one of the first to attempt (and partially
succeed) to derive the equations of general relativity, for instance the form
of the covariant derivative, by demanding the invariance of an arbitrary
set of fields under “generalized Lorentz transformations” [Utiyama, 1956].
These are obtained by replacing the six parameters of the usual Lorentz
group (three parameters for spatial rotations and three for boosts) with
arbitrary functions of space and time. The usual Lorentz transformations,
as well as those of the Poincaré group, are often referred to as “global”
transformations. As in the case of gauge transformations, this is because
they depend on a finite number of parameters rather than functions of space
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T

System at time t0

System at position x0

System at time t1

System at position x1

T’

Spatial translation

Spatial translation

Figure 2.1: Example of the non-commutation of the evolution and transformation op-
erators. Here P is a spatial translation. Because T depends on position, the result of
evolving and then transforming (a rectangle) is different from the result of transforming
and then evolving (a circle).

and time. When these parameters are changed into arbitrary functions of
space and time, as in the case of the “generalized Lorentz transformations”
employed by Utiyama, the transformations become “local”.

The crucial point about dynamical principles of invariance is that they are
based around passive transformations, ones that only change the descrip-
tions of physical systems. For this reason, they cannot be used in the same
way as the geometric invariances to infer something about the stability of the
laws of nature across change. For such physical knowledge to be inferred
from an invariance principle, the system must be physically transformed,
something a passive transformation does not do.

As we showed in section 2.1.1, when the electromagnetic potential Aµ that
describes a certain electromagnetic situation undergoes a gauge transforma-
tion of the type (2.2), the physical situation described by the new potential
A′µ is identical to that before the transformation. Thus the very same physi-
cal situation (understood as the same configuration of electric and magnetic
fields E and B), can be represented by two different electromagnetic po-
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tentials, Aµ and A′µ. For this reason, Wigner compares Aµ to a “ghost”,
and the gauge transformations to “changes in the coordinates of that ghost”
[Wigner, 1970, p. 22]. Given that ghosts, for Wigner, are invisible and pow-
erless to affect the world they glide through, it seems that Aµ should be an
equally impotent creature. However, it plays a crucial role in the dynami-
cal invariance principle that determines the form of the equations describing
the interaction of a quantum particle (or field) with an electromagnetic field.
Troubled by this, Wigner admits to having tried to formulate these equa-
tions (in particular the Dirac equation) without reference to Aµ but was
unsuccessful [Wigner, 1992a, p. 365]. Others have also tried to achieve this,
but so far no one has succeeded [Zee, 2010]. Wigner admits that it is a “se-
rious matter” that a “ghost” such as the electromagnetic potential should
play such an important role in the equations of the electromagnetic interac-
tion. This tension lies at the heart of modern attempts to interpret gauge
symmetry.

Summary of Wigner’s views

Wigner’s philosophy presents a fragmented view of symmetry in modern
physics. The Poincaré transformations acquire a special status as geometri-
cal symmetries. This status derives from the possibility of interpreting them
actively as changing the physical state of a system. Sharply distinguished
from them are the dynamical symmetries, which include general coordinate
transformations and gauge transformations. These have only a passive in-
terpretation, and therefore cannot have the same physical significance as the
geometric symmetries. Nevertheless, Wigner does believe that both general
coordinate transformations and gauge transformations play similar roles in
their respective theories by determining the form of the interaction equa-
tions. In the latter case, he expresses discomfort about the important role of
the electromagnetic potential Aµ, which he compares to a “ghost”. He does
not show similar misgivings about the Christoffel symbols, which we will
argue are the analogue of Aµ in GR. Note that all the transformations that
Wigner discusses can be understood as occurring in the mathematical do-
main, in other words, they are transformations which act on mathematical
structures.

2.1.3 After Wigner

The modern literature on symmetry still respects many of the basic tenets
of Wigner’s analysis. The sharp division between the status of the Poincaré
transformations and the others, as well as the reason therefor, is echoed by
Brown and Brading [Brading and Brown, 2004, p. 663]
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Global spacetime symmetries [those corresponding to the Poincaré
transformations] have a special status, both theoretically and
practically: theoretically they have an active interpretation in
the sense that a symmetry transformation applied to a subsys-
tem of the universe yields an empirically distinct scenario; and,
furthermore, instances of these active transformations are imple-
mentable in practice through the use of effectively isolated sub-
systems. Neither global internal symmetries [global gauge trans-
formations], nor local symmetries of either variety [general co-
ordinate transformations and local gauge transformations], have
even a theoretical active interpretation of this kind.

Wigner was also not the only one to take seriously Utiyama’s attempts
to formalize the analogy between general coordinate transformations and
gauge transformations. An entire research program in theoretical physics has
devoted itself to formulating general relativity as a gauge theory constructed
in terms of the local transformations of a particular gauge group. Kibble
and Sciama rapidly followed in Utiyama’s footsteps [Kibble, 1961], [Sciama,
1964]. Later contributors to this tradition are, among others, Trautman,
Ivanenko, Sardanashvily and more recently, Gronwald and Hehl [Trautman,
1980], [Ivanenko and Sardanashvily, 1983], [Gronwald and Hehl, 1996].

Wigner’s worry about the “ghostly” Aµ gauge field playing an important
role in the physics has been formalized by Redhead in terms of the relation
between the “surplus mathematical structure” of a theory and its physical
content. There have been several efforts to solve the problem by giving
formulations of gauge theories that do not exhibit the gauge freedom of
the electromagnetic potential. For instance, some advocate a formulation
of electromagnetism based on holonomies (line integrals around loops in
spacetime), which are gauge invariant quantities [Healey, 2007], [Belot, 1998,
p. 543]. Similarly, DeWitt has argued for a formulation of quantum theory
that does not rely on the electromagnetic potential [DeWitt, 1962].

Although there seem to be no explicit rejections of Wigner’s philosophy
in the literature, some recent developments, especially among philosophers
of physics, signal the appearance of new attitudes. While the “symmetry
dictates interaction” paradigm remains strong in the physics community (see
Weinberg and ’t Hooft), dissident voices are dominant among philosophers,
who are keen to downplay its physical significance [Brown, 1999], [Martin,
2002], [Redhead, 2003]. As for the relation between gauge symmetries and
spacetime ones, Martin has claimed that “in assessing the physical content of
gauge symmetry principles, any analogy with the ‘conceptual foundations’
of GR (or of spacetime theories generally) is perhaps more trouble than
it is worth” [Martin, 2003, p. 57]. This is perhaps the clearest break yet
with Wigner’s legacy. It may well have its origins in Earman’s attempts to
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promote an analysis of “gauge” in GR, and in other theories, by means of
the constrained Hamiltonian formalism [Earman, 2002]. In this framework,
the notion of “gauge” takes on a different significance from the geometrical
one which I will defend in this thesis.

In the last sections of this chapter I will review two recent contributions to
the philosophy of gauge theory which have clear roots in Wigner. The first
is Redhead’s notion of surplus structure, and the second is Kosso’s notion of
“observing a symmetry”, further elaborated by Brown and Brading [Kosso,
2000], [Brading and Brown, 2004]. I will also relate our considerations in
chapter 1 to Wigner’s views.

The concept of surplus structure

Wigner’s discomfort about the role of the electromagnetic potential is cap-
tured by Martin’s identification of a tension between “the redundancy of
gauge and the profundity of gauge” [Martin, 2003, p. 52]. Redhead’s analy-
sis of this tension in terms of the concept of “surplus structure” formalizes
the issue [Redhead, 2003], [Redhead, 2001], [Redhead, 1975]. It takes place
in the context of the approach to the philosophy of science that focuses on
representation and appeals to the mathematical tools of model theory. The
starting point is the “empirical-historical fact that theories in physics can be
represented as mathematical structures” [Redhead, 1975, p. 87]. The notion
of representation is formalized according to the model theoretic concepts
of structures, embeddings and isomorphisms. The physical world is repre-
sented as a structure P which is then embedded in a larger mathematical
structure M ′ which is itself a representation of a certain theory applicable
to the domain of P . This embedding is defined by means of an isomorphism
between P and a substructure M of M ′ [Redhead, 2003, p. 126].2 M ′ is
larger than M (it contains elements and relations that are not included in
M) and the relative complement of M in M ′ is what Redhead calls “surplus
structure” [Redhead, 2003, p. 128] .

The key feature of surplus structure is that is has no “physical correlate”,
in other words it does not correspond to anything in the world, as repre-
sented by P . Redhead admits that as science progresses, what was once
considered surplus structure can be found to actually have a physical in-
terpretation. He mentions molecules in the time of Ostwald and Mach and
energy in nineteen-century physics as examples [Redhead, 1975, p. 88],[Red-

2Note that one of the big problems with this approach is forming the set P in the first
place, because this involves carving up the world in a certain way. This carving up of the
world risks appearing hopelessly arbitrary and threatens to undermine any philosophical
insight the “representation” approach to the philosophy of science promises to offer. For
more details see van Fraassen’s book Scientific Representation.
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head, 2003, p. 129]. However, this does not always have to be the case. He
claims that the S-matrix theory of elementary particles never intended to
associate anything physical with the surplus structure. Questions of histori-
cal evolution aside, the most remarkable feature of surplus structure is that
it can still be useful for making inferences about elements in P , even if it
seems to have no direct correspondence to anything in P . As an example,
Redhead mentions the use of complex currents in alternating current theory.
Clearly, a current in the world cannot be complex valued, but by represent-
ing it in this way, calculations can be made which were not possible or not
so easy otherwise. Complex numbers can also be used in classical mechanics
to represent oscillations. Once again, the position of a particle cannot be
complex valued, but calculations can be simplified by using the exponential
notation for complex numbers, and the solutions thus obtained can then be
converted back into sensible results (for instance by taking the real part).

The notion of surplus structure should not be confused with that of “theo-
retical terms” or “unobservable entities”, although the two may have some
areas of overlap. One major difference is that surplus structure is meant also
to accommodate strictly mathematical methods and objects which would
not fit neatly into an account in terms of theoretical terms. Complex valued
currents are not “unobservable”, even in principle, yet they still play a role
in deriving empirically relevant predictions. It is this role that the concept
of “surplus structure” is meant to account for.

Redhead suggests that gauge transformations should be understood as “au-
tomorphisms of M ′ that reduce to the identity on M” [Redhead, 2003,
p. 129]. This means that a gauge transformation does something to the
surplus structure but not to the rest. In this context, Wigner’s ghost takes
the form of the surplus structure, and the mystery becomes why properties
of this surplus structure should have consequences for the substructure M
and therefore for P . Unfortunately, the precise way in which the proper-
ties of the surplus structure affect M is left vague, and Redhead is forced
into making statements of the kind “physical structure being controlled by
requirements imposed on surplus mathematical structure” [Redhead, 2003,
p. 131]. Elucidating the precise nature of this “control” thus becomes a
primary concern of someone who subscribes to Redhead’s analysis.

Another approach to surplus structure is to consider it as a kind of “fat”
that should be trimmed away from the theory proper, leaving only the
substructure M ′ which has well defined physical correlates. In the case
of gauge transformations as surplus structure, such a view leads to formu-
lating a theory only in terms of so-called “gauge invariants”. These are the
quantities that remain unchanged under gauge transformations. However,
repeated failure to eliminate the electromagnetic potential from quantum-
electrodynamics suggests that such an approach is not actually feasible.
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This deepens the mystery: not only is the surplus structure useful, but it
seems to be essential as well. Martin and Redhead both acknowledge that
such considerations seem to point towards a quasi-Platonic interpretation of
the role of mathematics in physics [Martin, 2003, p. 52]. Wigner has also
expressed his amazement at the success of mathematical methods in physics
[Wigner, 1960].

Physical significance of gauge transformations

As stated at the end of section 2.1.2, Wigner believes that gauge transfor-
mations relate descriptions of the same physical system, and therefore that
no physical operation on a system can implement a gauge transformation.
This has the immediate consequence that gauge symmetry, the invariance
of a system under a gauge transformation, can also not “express anything
physical”. On the other hand, we have also seen that Yang believes that
gauge symmetry can be used to infer the form of the electromagnetic in-
teraction. Surely, this should count as “expressing something physical”?
A closer look at Wigner’s philosophy of symmetry reveals that when he
talks of physical significance, he has something very specific in mind. For
Wigner, symmetries (or invariances) express something physical when they
allow conclusions to be drawn about the laws of nature themselves. In this
case, they warrant the claim that the laws of nature are the same at all
times t, at all positions x, in all rotated states θ and in all states of uniform
motion v. In the formalism of section 2.1.2, they state that the dynamical
evolution operator T does not depend on the variables (t, x, θ, v).

One might be tempted to respond that gauge invariance entails that T also
does not depend on a variable that would represent the gauge. But Wigner
would not accept this line of reasoning. He would argue that it is trivial
that T does not depend on the gauge, because changing the gauge does not
change the system “in-itself”, but merely its description. And if the system
is not changed (if it is not physically interacted with), then it should be
obvious that its evolution will remain unchanged!

Our considerations in chapter 1 show that this reasoning, no matter how ev-
ident it may seem, is not entirely satisfactory. Changing the way a system
is described may also require a new way of describing its evolution (as we
saw for the trajectory of a particle in Newtonian mechanics if described in
a non-inertial coordinate system). However, this new evolution would only
be apparently different from the old one, in the sense that the evolution
of the system “in-itself” would not be changed. In this case, it seems that
Wigner assumes that the evolution operator T is somehow “objective” in the
sense that it describes the evolution of the system “in-itself”. In contrast,
doing something physical to a system, for instance changing its position,
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could feasibly have consequences for how it evolves “in-itself”. For these
reasons, Wigner believes that invariance under a physical change is an im-
portant property of the laws of nature, whereas invariance under a change
of description should not be.

One might take issue in this analysis with the use of the concepts of “sys-
tem in-itself” and “evolution in-itself”. Despite the obvious Kantian con-
notations of these expressions, I believe that they are quite harmless. The
“in-itself” is simply meant to capture the idea that physical systems in the
world go about their usual business whether or not someone is describing
them. By description, I mean something like the action of a painter, who
paints a landscape without interfering with it. The notion of description is
thus entirely distinct from the notion of measurement.

Wigner’s concerns about the physical significance of symmetries can be ex-
plicated using Kosso’s notion of “observing a symmetry” [Kosso, 2000, p. 82].
If a symmetry can be observed (in Kosso’s sense), then Wigner would agree
that it “expresses something physical”. The two conditions for a symmetry
to be observed are (as neatly summarized by Brading and Brown [Brading
and Brown, 2004, p. 646]:

Transformation condition: the transformation of a subsystem of the
universe with respect to a reference system must yield an empirically dis-
tinguishable scenario.

Symmetry condition: the internal evolution of the untransformed and
transformed subsystems must be empirically indistinguishable.

These conditions should be familiar from chapter 1, although they are for-
mulated here in a way that relies essentially on the notion of subsystem.
Brading and Brown add this notion to Kosso’s account in order to make
explicit the fact that it must be possible to determine that a transformation
has taken place. If a given transformation is a symmetry of a system, then
by definition performing this transformation does not change the evolution
of the system. However, if we are to consider the transformation as having
changed the system in some way, then something about the system must be
different after the transformation. Applying transformations to subsystems
of the universe allows for changes in the relations between these subsys-
tems and the untransformed parts of the universe to act as witnesses for the
transformation.

For the case of Wigner’s geometric transformations, it is easy to see that
they all pass these two conditions, and thus qualify as observable symme-
tries. The cases of translations in space and time and rotations are straight-
forward. A Galileo ship type situation can serve to demonstrate symmetry
under changes in the uniform motion of a system. On the other hand, the
extension of this analysis to the dynamical symmetries is more problematic.
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As far as Wigner is concerned, the dynamical symmetries would fail the
transformation condition by definition: spacetime coordinate transforma-
tions and gauge transformations (the two common examples of dynamical
transformations that Wigner gives) relate descriptions of a physical system,
so it is obvious that performing such transformations doesn’t yield an em-
pirically distinguishable situation.

Conclusions

At the end of chapter 1, we saw that spactime transformations can have
a dual interpretation in terms of active and passive versions. However,
according to Wigner, this is not the case for gauge transformations. We
might ask where this difference originates. Is it due to a fundamental fact
about the nature of gauge transformations or is it simply the artifact of
Wigner’s particular interpretational approach? We also saw that Wigner
thought that general coordinate transformations and gauge transformations
played similar methodological roles in GR and Q-EM respectively. The
methodological role of passive transformations will be the subject of chapter
4. My conclusions will support Wigner’s views. However, in chapter 5 I will
argue that gauge transformations can be interpreted actively, and this will
break with Wigner’s legacy.
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Chapter 3

Mathematical notions

In the first two chapters I discussed the status and role of transformations
and symmetries in physics while relying to a large extent on the reader’s
background knowledge and physical intuition. In the next three chapters, I
will address the same issues, but set them in a well defined mathematical
setting. Apart from our treatment of non-relativistic quantum mechanics,
the tools will be primarily geometrical.1

As I explained in chapter 1, transformations in physical theories are defined
in the mathematical domain. This means that they act on, and between,
mathematical structures. Since a mathematical structure is a representa-
tion of a physical situation, an interpretation of the structure is needed to
understand what exactly it represents. Different structures may represent
different systems, but they may also represent the same system in different
ways. As Fonda and Ghirardi observe, a good theory should do more than
just give a mathematical description of certain physical situations [Fonda
and Ghirardi, 1970, p. 11]:

The theory of a physical system, in fact, is fully defined only
if it also contains the specification of the connection existing
between the descriptions of all possible states of the system when
viewed by different observers.

In other words, the theory must also have something to say about how
different representations of the same system (perhaps corresponding to the
descriptions of different observers) relate to each other. In this section,
I introduce some of the technical machinery needed to achieve this in the
context of spacetime theories, non-relativistic quantum mechanics and gauge

1Perhaps some would argue that the mathematics of Hilbert spaces is geometry. How-
ever, since there are no notions of points, or curves in Hilbert space, I do not consider this
setting geometrical in the sense of differential geometry.

33
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theory.

3.1 Spacetime notions

In this thesis, I will mostly operate within a “coordinate-based” approach to
spacetime theories. Since one of my major concerns is elucidating how the
freedom that exists in describing a system can be exploited in formulating
physical theories about the world, it makes sense to take an approach in
which this freedom is clearly present.2

3.1.1 Manifolds

Manifolds are the setting of spacetime theories. I provide the necessary def-
initions before discussing their interpretation. The definition of a manifold
requires those of a topological space, a homeomorphism and a neighbour-
hood.

Definition 1. [Dieks, 2011, p. 108] A topological space is a pair {X , T }
where X is a set and T is a family of subsets of X such that

1. for any collection of members of T their union is in T ;

2. for any finite collection of members of T their intersection is in T ;

3. X and ∅ are in T .

Definition 2. [Isham, 1999, p. 51] A homeomorphism is map f : {X , T } →
{Y, T ′} between topological spaces such that

1. f is a bijection

2. f and its inverse f−1 are continuous

The neighbourhood of a point can be understood intuitively as a set con-
taining the point and points around it in a way that certain considerations
of convergence are respected (more details in [Isham, 1999, p. 25]). This
allows us to define a manifold.

Definition 3. [Torretti, 1983, p. 257] An n-dimensional manifold M is a
topological space {X , T } such that every point of X has a neighbourhood
homeomorphic with Rn.

2When discussion the fibre bundle formulation, the tools will become those of
coordinate-free differential geometry. However, we will see that, despite this, a certain
freedom in the description of a “gauge system” creeps back in.
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The manifold M is often interpreted as the “arena” in which our physical
world unfolds (Minkowski poetically called the 4-dimensional manifold in
which he set special relativity “the world” [Torretti, 1983, p. 20]). Each
point in the manifold (each element of the set X ), represents an event.
Geroch defines an event as “an idealized occurrence in the physical world
having extension in neither space nor time”, such as “the explosion of a
firecracker” or the “snapping of one’s fingers” [Geroch, 1978, p. 3]. However,
as Geroch himself notes, such a definition seems to entail that something
must happen at a point of a manifold for it to “exist”. But this is too
restrictive for the needs of physics. In this way, Torretti suggests that we
should consider points of the manifold as “possible events”, and the manifold
itself as the “collection of all punctual instantaneous locations available for
them” [Torretti, 1983, p. 22]. This allows us to use the concept of a manifold
to represent a universe that is mostly empty, without the mathematical
structure collapsing onto only those points where something happens. As
we will see later, the famous “hole argument” raises additional problems for
the interpretation of the points of a manifold.

In order to be able to do physics, in other words to formulate laws relating
the events represented in the manifold, a way of identifying, or naming, the
events is needed. This is the role of coordinate systems.

3.1.2 Coordinate systems and coordinate transformations

In differential geometry, coordinate systems are often referred to as coordi-
nate charts. From now on, in order to harmonize with practices in physics, I
will use the term coordinate system rather than coordinate chart. Roughly, a
coordinate system associates sets of n real numbers (called the coordinates)
to points of the n-dimensional manifold. Due to the geometrical properties
of the manifold, it may not be possible for one coordinate system to asso-
ciate coordinates to each point. In this case, the manifold much be covered
by coordinate “patches”. This is the case for the points on the surface of
a sphere for example, for which two coordinate systems are needed. 3 It
is possible for these patches to overlap, in fact, there are many different
ways of assigning coordinates to the points of a manifold. Transformations
between these different ways of assigning coordinates are called “coordinate
transformations”. Now for the formal definitions:

Definition 4. [Isham, 1999, p. 61] An n-dimensional coordinate system on
a manifold M is a pair (U, φ) where U is an open subset of M (called the
domain of the coordinate system) and φ : U → Rn is a homeomorphism of
U into an open subset of the Euclidean space Rn. If U =M, then the coor-

3This is related to the problem of not being able to comb a “hairy” sphere.



36 CHAPTER 3. MATHEMATICAL NOTIONS

dinate system is said to be globally defined; otherwise it is locally defined.

Definition 5. [Isham, 1999, p. 63] A point p in an open subset U ofM has
coordinates (φ0(p), φ1(p), . . . , φn−1(p)) ∈ Rn with respect to the coordinate
system (U, φ). The coordinate functions φµ : U → R, µ = 0, 1, . . . , n −
1, are often written as xµ, and the coordinates of a particular point p as
(x0(p), x1(p), . . . , xn−1(p)).

In what follows, I will often refer to a coordinate system simply by means
of its coordinate functions. Thus, rather than writing “in the coordinate
system (U, φ)”, I will write “in the coordinate system xµ”. For coordinate
systems (U1, φ1) and (U2, φ2) which overlap, U1 ∩ U2 6= ∅, one can define a
coordinate transformation from the coordinates of a point p ∈ U1 ∩U2 with
respect to (U1, φ1) to those with respect to (U2, φ2).

Definition 6. [Isham, 1999, p. 61] Let (U1, φ1) and (U2, φ2) be a pair of
n-dimensional coordinate systems with U1 ∩ U2 6= ∅. Then the coordinate
transformation between the two coordinate systems is the map φ2◦φ−1

1 from
the open subset φ1(U1 ∩ U2) ⊂ Rn into the open subset φ2(U1 ∩ U2) ⊂ Rn.
Thus a coordinate transformation φ2 ◦ φ−1

1 is map from a subset of Rn to a
subset of Rn.

Manifold

curve (worldline)

xμ

x’μ

Figure 3.1: Illustration showing how the same section of a curve in the manifold is
coordinatized in different ways by different coordinate systems xµ and x′µ.

3.1.3 Reference frames

The previous definitions establish the notion of a coordinate systems as
a piece of mathematical machinery. However, physicists are interested in
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making measurements in the real world, and therefore some bridge is neces-
sary from the distance measurements and clock readings in the laboratory
to the n-tuples of real numbers assigned by coordinate systems to events.
Up to now, we have considered manifolds of arbitrary dimension, but from
now on we will mainly be concerned with 4-dimensional manifolds. This
is no surprise, given that our spacetime descriptions usually take the form
of a position measurement (involving three numbers) and a clock reading
(involving one number).

A reference frame is the general name given to a collection of physical ob-
jects capable of making measurements (in spacetime theories, usually dis-
tance and time measurements). In special relativity for example, a reference
frame consists of a set of rigid rods and clocks synchronized using Ein-
stein’s light beam procedure. When an event occurs, a 4-tuple of numbers
(X0, X1, X2, X3) can be assigned to it by using the reference frame in the
following way: X0 indicates the reading of the clock at the location at which
the event occurs, and X1, X2, X3 count the number of rods in each of the
three spatial dimensions that separate the location of the event from the
origin of the reference frame. In this way, a reference frame, just as a coor-
dinate system, can be used to assign 4-tuples of real numbers to spacetime
events.

Despite the obvious similarities, there are important differences between ref-
erence frames and coordinate systems. The main source of the differences is
that reference frames, being physical objects, are subject to all sorts of re-
strictions, whereas coordinate systems, being mathematical objects, are far
more flexible (they are subject only to smoothness and invertibility require-
ments). This means that there are coordinate systems that assign 4-tuples of
numbers that would not correspond to the measurements of any imaginable
reference frame. In order to make the relationship between the two concepts
clearer, it is useful to give a general idealization of a reference frame. The
most common is to use a congruence of time-like worldlines (the time-like
requirement comes from the fact that the constituents of the frame are phys-
ical objects, and therefore cannot move faster than light). This is a set F of
time-like curves such that each point of the manifold lies on the range of one
and only one curve of the set [Norton, 1993, p. 837],[Torretti, 1983, p. 28].
In general, we also require that the frame F be rigid, which means that the
distance between any pair of curves in F stays constant throughout their
history. In this way, each curve in F is taken to represent the worldline of a
tiny piece of the physical reference frame.4

We can now give the precise relationship between a reference frame and a

4The fact that a reference frame can be idealized in such a way assumes that physical
objects can be represented as systems of point particles in motion. This is a common
assumption of spacetime theories.
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coordinate system. Consider a physicist using a frame F to make measure-
ments. Each curve in F will serve to fix the notion of “same point in time”.
This means that, in the 4-tuples of numbers assigned to each point along a
curve in F , the three spatial values X1, X2, X3 will stay constant, and only
the time value X0 will change. We say that a coordinate system (U, φ) is
adapted to the frame F , if, for any two points p and p′ along a curve W
in F , φ1(p) = φ1(p′), φ2(p) = φ2(p′), φ3(p) = φ3(p′), and φ0 is a monoton-
ically increasing function up the curve that assigns times compatible with
the Einstein synchronization procedure. In words, a reference frame and
coordinate system adapted to it would assign the same state of motion to a
particle represented by an arbitrary worldline in the manifold.

In the flat Minkowski spacetime of special relativity, inertial coordinate sys-
tems are equivalent to inertial reference frames. For this reason, it is easy
to forget the differences between the two concepts. However, once one con-
siders non-inertial coordinate systems (such as a rotating one for example),
it becomes impossible to imagine a physical system that would assign 4-
tuples of numbers in the same way as the coordinate system. As Norton
remarks in the context of Einstein’s struggles with the rotating disk, “he
[Einstein] found the need to introduce coordinate times which could not be
read directly from clock measurements” (Norton [1993], p.836). This prob-
lem becomes even more acute in the non-euclidean spacetime geometries of
general relativity.5 In GR, it becomes advantage to define reference frames
by specifying, for each point of the manifold, one timelike and three or-
thonormal spacelike vectors. This is known as a frame field, or also as the
vierbein formalism and it is useful in extracting physical predictions from
general relativity.

3.2 Quantum notions

I will now present the mathematical tools needed to account for the relations
between the descriptions of different observers in non-relativistic quantum
mechanics.

In quantum mechanics, because all physical information that can be gained
by making a measurement on a system is given by the transition probability

p(φ, ψ) =
|〈φ|ψ〉|2

〈φ|φ〉〈ψ|ψ〉
(3.1)

and that p(φ, ψ) is invariant under either or both of the transformations

5In fact, the rotating coordinate system is a well studied case that showed the need for
non-euclidean geometries even in the flat Minkowski spacetime of special relativity.
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|φ〉 → a|φ〉
|ψ〉 → b|ψ〉

where a and b are arbitrary complex numbers, one generally accepts that
the set of all a|φ〉 (all b|ψ〉) represent the same physical state. This set is
called a ray, written {Φ} ({Ψ}). The set of all unit vectors belonging to a
given ray is called a unit ray [Fonda and Ghirardi, 1970, p. 5].

In spacetime theories, the most fundamental layer of reality is the manifold
and the worldlines of particles therein. The next layer is the “coordinate
view” (a description of the worldlines in terms of n-tuples of real numbers)
that is assigned by a specific coordinate system. Coordinate transformations
are then maps between n-tuples and they do not affect the worldline in the
manifold. In the quantum mechanical formalism on the other hand, one
could argue that there is nothing analogous to the manifold of the spacetime
theories. Instead, the most fundamental possible description of a system is
as the state vector of a Hilbert space. This state vector should not be
interpreted as an abstract representation of the system in the absence of an
observer (as one might consider the worldlines in the manifold) but instead
as implicitly assuming a certain reference frame. A change of reference
frame (corresponding to a coordinate transformation in a spacetime theory)
is represented in quantum theory as a vector mapping (a mapping of the
Hilbert space onto itself) which does change the state vector assigned to a
particular system.

This correspondence between spacetime theories and quantum mechanics
is sometimes made more confusing than necessary. For example, Auyang
claims that “a basis of H is analogous to a coordinate system in Cartesian
geometry” [Auyang, 1995, p. 19]. However, I will show that such a view is
problematic and that is does not agree with the account given by Fonda and
Ghirardi. First of all, I will explain why this view seems reasonable.

Definition 7. A complete orthonormal basis of an n-dimensional Hilbert
space H is a set of n unit vectors {|αi〉} such that any vector |φ〉 ∈H can
be written as a linear combination of the basis vectors, |φ〉 =

∑n
i ci|αi〉 with

ci complex numbers.

A Hilbert space H has an uncountable infinity of different bases. Further-
more, because a change of basis {|αi〉} → {|βj〉} does not affect the state
vector |φ〉, but only its “description” in terms of basis vectors, it is tempting
to see the state vector as analogous to a worldline, and a basis as analogous
to a coordinate system. However, such an analogy does not capture how the
theory actually functions to describe physical systems. Anticipating what
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will be formalized below, consider two observers O and Ō, that describe the
same quantum mechanical system S. O will describe S by a certain state
vector |φ〉, and Ō by a state vector |ψ〉. If O and Ō are using reference
frames that are translated with respect to each other for example, then in
general (in the Schrödinger picture), |φ〉 6= |ψ〉. This shows that the anal-
ogy suggested by Auyang does not capture the way that transformations
between the descriptions of different observers are represented in quantum
mechanics. Two observers O and Ō are not related by a change of basis,
and the state vector is not analogous to the worldlines of a system. Instead,
each observer uses her own Hilbert space to describe a system, and thus
each observer can choose to decompose the state vector she assigns to the
system S in any number of different bases. In quantum mechanics, a change
of reference frame thus corresponds to a vector mapping. I will now present
a more formalized version of this story.

The problem at hand is how quantum mechanics deals with the fact that
one system can be described by different observers. For now I will consider
only two observers, O and Ō. I assume that a reference frame can be asso-
ciated to both observers. In the context of quantum mechanics, a reference
frame simply means some set of instruments that can perform measure-
ments on the system. Furthermore, I will assume that the reference frames
are “macroscopic”, meaning that they do not fall under the laws of quantum
mechanics themselves. The implicit distinction thus introduced between the
microscopic and the macroscopic world will not bother us at this stage. The
reference frames associated with two different observers may be related in
any number of ways, but here I will mostly assume that the transformations
between the different reference frames are elements of the Poincaré group.
This means that I consider translations in space and time, rotations in space
and states of uniform motion. I will work within the Schrödinger picture
and thus consider that the evolution of a system takes place in the state
vector, and not in the operators. I will follow the approach of Fonda and
Ghirardi [Fonda and Ghirardi, 1970, chapter 1].

Two observers O and Ō, that differ in the way suggested above, describe the
same quantum mechanical system S at a time t, by assigning to it a ray in
Hilbert space. O assigns the ray {ΨO(t)} and Ō the ray {ΨŌ(t)}. It is then
assumed that a one-to-one mapping T exists between the physically possible
rays of O and those of Ō, such that {ΨŌ(t)} = T {ΨO(t)}. The existence of
such a mapping relies on the fact that the observations of O can in fact be
translated into those of Ō. This is similar to the requirement in the space-
time case that the domains of two coordinate systems be overlapping for
there to be a possible coordinate transformation between them. The states
|φO〉 ∈ {ΦO(t)}, |ψO〉 ∈ {ΨO(t)} and |φŌ〉 ∈ {ΦŌ(t)}, |ψŌ〉 ∈ {ΨŌ(t)} as-
signed by O and Ō respectively to the system S are such that
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|〈φŌ(t)|ψŌ(t)〉|2 = |〈φO(t)|ψO(t)〉|2 (3.2)

This says that O and Ō must agree on the probability that after a measure-
ment on the system in the state |ψO(t)〉 for O and |ψŌ(t)〉 for Ō, the system
will be found in the state |φO〉 for O and |φŌ〉 for Ō. If this were not the
case, but one still maintained that T was a translation from the “language”
of O to the “language” of Ō, then one would be forced to the very odd
conclusion that the evolution of the system “in-itself” somehow depended
on the way one chose to describe it. In other words, it would amount to
the conclusion that changing the description of the system (which involves
no interaction with the system) has consequences for the evolution of the
system. This is ruled out a priori, and therefore we conclude that both O
and Ō must agree on probabilities related in this way by the mapping T .

We now wish to define a vector mapping between states of the Hilbert space,
rather than rays. O and Ō describe S using the Hilbert space H . A vector
mapping T from H into itself is compatible with T if for every |ψ〉 ∈ {Ψ}
then T |ψ〉 ∈ T {Ψ}. This means that T maps elements of the ray {Ψ}
into elements of the ray T {Ψ}. Using this vector mapping T , (3.2) can be
restated

|〈TφO(t)|TψO(t)〉|2 = |〈φO(t)|ψO(t)〉|2 (3.3)

I now state a famous theorem by Wigner which characterises this vector
mapping T .

Theorem 1. [Fonda and Ghirardi, 1970, p. 14] A surjective map T : H →
H that satisfies |〈TφO(t)|TψO(t)〉| = |〈φO(t)|ψO(t)〉| for all |φ〉, |ψ〉 ∈ H
has the form T |φ〉 = aU |φ〉, where a is an arbitrary complex number of
modulus 1 and U is a linear or anti-linear unitary operator.

Since T satisfies (3.3) (the modulus of the inner product is always positive),
it satisfies the conditions of Wigner’s theorem, and therefore it must have
the form of a linear or anti-linear unitary operator U .

These considerations can be summarized as follows. Consider two observers
O and Ō that describe a quantum system S by ascribing to it states of a
Hilbert space H . If the transformation from the reference frame of O to
that of Ō is an element of the Poincaré group, then the descriptions of O
can be converted into the descriptions of Ō by the use of a linear or anti-
linear (dependent on the relation between O and Ō) unitary operator U
(determined up to a phase factor). Thus, if O assigns to S the state |ψ〉,
then Ō will assign it the state U |ψ〉.
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Finally, a remark on the transformation properties of the operators used
by O and Ō to make measurements on S. Imagine that the operator q̂
represents the distance of the system from the center of the reference frame
of O. In the reference frame of Ō, this operator is written q̂′ = Uq̂U †, where
† is the Hermitian conjugate. However, the operator q̂′ will still give the
distance of S from the center of the reference frame of O, because q̂′U |φ〉 =
Uq̂U †U |φ〉 = Uq̂|φ〉 = qU |φ〉. If Ō wants to measure the distance of S from
the center of her own reference frame, then she must also use the operator
q̂, and not q̂′. Thus, when transforming from the reference frame of O to
Ō, the state vectors change, but the operators remain the same [Fonda and
Ghirardi, 1970, p. 21].

3.3 Gauge notions

Finally, I turn to gauge theory. In this section, I will not explicitly discuss
how the notion of different “gauge observers” is handled within this theory.
This will be reserved for chapter 5. Instead, I will introduce the basic
geometrical notions that are necessary before such a discussion can be held.

A distinctive feature of spacetime theories is that they can be formulated
in terms of geometrical objects on a manifold. In order to facilitate the
comparison of spacetime theories with gauge theories, it is advantageous to
have a similar way of formulating the latter. However, because the “gauge
degrees of freedom” are in so-called internal spaces, the mathematical setting
of typical spacetime theories is not sufficient and more sophisticated tools are
needed. The language of fibre bundles allows the internal degrees of freedom
to be geometrized in a similar way to the external ones of spacetime theories,
thereby facilitating the comparison.

The basic idea of a fibre bundle can be motivated in the following way.
Consider some object with internal degrees of freedom, which means that
some property φ of the object takes, at each point of spacetime, a value
in some separate geometrical space I.6 Thus, specifying the value of this
property requires a map φ : M → I, with φ(x) giving the value of the
property at the point x of M [Isham, 1999, p. 199]. This is illustrated in
figure 3.2.

However, a major (methodological) lesson of general relativity is that the
objects described by a theory should not have properties that are compara-

6A spinor field would be an example of such an object. Later we will see that the
phase of the electron can also be handled in this way. In order to incorporate electromag-
netism, we will see that the phase of the wavefunction is actually determined via another
geometrical space that encodes the interaction of the electron with the electromagnetic
field.
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Figure 3.2: An example of a property φ that takes values in a clock-like space at each
point along the curve.

ble “at a distance”. In his early (unsuccessful) unification of gravitation and
electromagnetism, Herman Weyl took this idea very seriously, and proposed
that, as in GR the directions of vectors at distantly separated spacetime
points cannot be compared as if they were at the same point, so the lengths
of vectors at distantly separated spacetime points should also not be com-
parable [O’Rafeartaigh, 1997]. In the context of the present discussion, this
means that the property φ takes values in different spaces for each spacetime
point, thus φ(x) : M → Ix. This entails that, if x 6= x′, then φ(x) ∈ Ix,
φ(x′) ∈ Ix′ and, in order to compare φ(x) and φ(x′) some “comparing func-
tion” from Ix into Ix′ is necessary. This comparing function is called a
connection.

In fact, these ideas have a very direct application in the more familiar con-
text of spatial geometry. Consider the surface of a sphere, which is a two
dimensional manifold S. The tangent vectors to points in S each take val-
ues in separate tangent spaces TxS. Each TxS is a two dimensional vector
space. However, if I take a vector ~v ∈ TxS and another vector ~v′ ∈ Tx′S
then I cannot compare the directions that ~v and ~v′ point in. In other words,
I cannot say if these two vectors are parallel or not. In order to do this, I
need to define the notion of parallel transport, which means I need to specify
some function f : TxS → Tx′S which defines the notion of parallel. Thus, ~v
is parallel to ~v′ if f(~v) = ~v′. In fact, f should be an isomorphism between
TxS and Tx′S, and it is then called an affine connection [Dieks, 2011, p 117].
In general, one can define an infinitesimal connection, which specifies how
a vector is parallel transported from one point to all the other points in-
finitesimally close to it. Comparing two distantly separated vectors then
requires transporting the vector from the starting point to the end point



44 CHAPTER 3. MATHEMATICAL NOTIONS

in infinitesimal steps. Curiously, this entails that “parallelism” becomes a
path dependent relation.

The geometry of the sphere can also be used to introduce the notion of
a bundle. Consider “gluing” the space S and all the tangent spaces TxS
together into one “big” space, TS. TS is called a tangent bundle. A vector
field over S can be defined by picking out one vector from each of the tangent
spaces TxS.7 The result of such a process is called a cross-section of the
tangent bundle, another notion that will be useful to us in the context of
gauge theories [Isham, 1999, p. 201].

The tangent spaces considered in the case of the sphere were just one par-
ticular example of a possible space than can be “attached” to each point of
a base manifold. Furthermore, tangent spaces in this sense are not usually
referred to as internal spaces. For the internal spaces of gauge theory, we
will want to attach other kinds of spaces, denoted Fx, to the base spacetime
manifold M. The spaces that we attach are called fibres, and we will re-
quire that they depend in some smooth differentiable way on position in the
spacetime manifold. Formally, this translates into the requirement that the
collection E of all the fibres Fx, E =

⋃
x∈M Fx is itself a topological space

(ibid, p.202). We can now give the general definition of a bundle.

Definition 8. [Isham, 1999, p. 202] A bundle is a triple (E, π,M), where
E and M are topological spaces, and π : E →M is a continuous map.

E is called the bundle or total space, M is the base space and π is the
projection. The fibres (the spaces that are attached to each point in the
base space), are given by the inverse image π−1({x}) = {y|π(y) = x}. Note
that π−1 is not a function, because it sends a point to a set of points. The
projection is the crucial tool in relating the fibres to their associated base
space points.

The bundles with which we will be concerned in this thesis will all share the
property that their fibres are homeomorphic (in fact diffeomorphic because
the fibres will be manifolds) to a common space F . F is then called the fibre
of the bundle, and the bundle itself becomes a fibre bundle. An impression
of a fibre bundle is given in figure 3.3 A fibre bundle is called trivial if
it is isomorphic to the product bundle (M× F,pr1,M) where for a point
(x, f) ∈M×F , pr1(x, f) = x [Isham, 1999, p. 204]. Intuitively, a bundle is
trivial when there are no “twists” in the way the fibres are attached to the
base space. For instance, gluing the interval [−1, 1] to each point of a circle
S1 gives the trivial bundle (S1 × [−1, 1], pr1, S

1), depicted in figure 3.4.

A famous example of a non-trivial bundle is the Möbius strip. At first sight,

7However, there is no way to do this smoothly over the whole sphere. This is the
problem of combing the hairy sphere.
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Base space

Fibres 

p

Point p in the base space

Figure 3.3: An impression of a fibre bundle (all the fibres are copies of each other), with
only a few fibres shown explicitly.

S1

(s, 1)

(s, -1)

(s’, 0)

Figure 3.4: A representation of the trivial product bundle (S1 × [−1, 1], pr1, S
1).
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Figure 3.5: An impression of the cross-section of a fibre bundle. The grey surface cuts
each fibre once and thus picks out a unique element of each fibre.

the Möbius strip might seem like it can be represented by the product bundle
(S1× [−1, 1],pr1, S

1). The base space of the Möbius strip is indeed a circle,
but the fibres must be attached in a more complicated way in order capture
the way that it twists.

As we did earlier, it is possible to define the cross-section of a fibre bundle,
by picking out one element of the fibre for each point in the manifold. This
is illustrated in figure 3.5.8

Definition 9. [Isham, 1999, p. 207] A cross-section of the bundle (E, π,M)
is a map σ :M→ E such that the image σ(x) of each point x ∈ M lies in
the fibre π−1({x}) above x. More precisely, π ◦ σ = idM, where idM is the
identity on M, idM(x) = x.

In gauge theory, the main types of fibre bundles utilized are principal fibre
bundles. A principal fibre bundle (also called principal bundle) is a fibre
bundle with a Lie group G as fibre. Lie groups are differentiable manifolds,
so the idea of attaching a Lie group to each point of spacetime falls neatly
in line with the ideas presented above. E is called a right-G space, if an
element g ∈ G acts on a point p ∈ E to give another point p′ ∈ E as pg = p′.
The orbit of G at a point p ∈ E is the set of points in E that can be reached
by acting on p with G. In the case of a principal fibre bundle, the fibre above
x = π(p) is thus the orbit of G at p. If p is in the fibre above x = π(p), and
p′′ is in the fibre above x′′ = π(p′′), and x 6= x′′, then there is no g ∈ G such
that p′′ = pg. E/G is called the orbit space of the G-action on E [Isham,
1999, p. 221]. It is possible to define a function ρ such that if two points
p1, p2 ∈ E are in the orbit of G at p, then ρ(p1) = ρ(p2) = ρ(p) is a point of
E/G. Using these notions, the formal definition of a principal bundle can

8I will argue in chapter 5 that the cross-sections of certain fibre bundles, namely prin-
cipal fibre bundles, are analogous to coordinate systems, in that they introduce a certain
“point of view” of the bundle.
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be given.

Definition 10. [Isham, 1999, p.221] A bundle (E, π,M) is a principal bun-
dle if E is a right G-space and it is isomorphic to (E, ρ,E/G) where ρ is the
usual projection map, and G acts freely on E, which means that each orbit
is homeomorphic to G. This entails that G is the fibre of the bundle. G is
called the structure group of the bundle.

I will now state a theorem that will be essential to all of our future uses of
fibre bundles in gauge theory.

Theorem 2. [Isham, 1999, p. 230] A principal G-bundle (E, π,M) is trivial
(i.e. isomorphic to (M×G, pr1,M)) if and only if it possesses a continuous
cross-section.

A better feeling for this theorem can be acquired by thinking back to the
Möbius strip. In that case, it is not possible to define a continuous cross-
section because a function from S1 to [−1, 1] does not return to its starting
point after one period of the base space. Instead, it only returns to its
starting point after two periods. For this reason, the cross-section of the
Möbius strip is called anti-periodic.

Before presenting the final few definitions that we will need to use fibre
bundles in our analysis of gauge theory, let me take stock of what we have
achieved thus far. We started by imagining that there exists some physical
object which has a property φ that takes values in some geometric space F .
We accepted that the values of this property at distantly separated points
should not be comparable (without defining some additional structure to
enable a comparison). This forced us to stick a copy of the space F (called
the fibre of the bundle) to each point x of spacetime. The copy of F at
a point x we called the fibre above x. This process of attaching copies of
F to points in the spacetime manifold M led us to define the notion of a
fibre bundle, (E, π,M). When the fibre is a Lie group G, then we have a
principal fibre bundle.

Just as in the case of the vectors in the distantly separated vector spaces
tangent to the surface of a sphere, we would like to have a way of comparing
the property φ of the object when it changes its position in the base mani-
fold (when it moves around in spacetime). In other words, we need a way of
comparing points in the fibres above two distantly separated points x and x′

of the base manifold M. As we did in the case of the sphere, we will define
a connection that allows such a comparison to be achieved by specifying
the “parallel transport” of the object in infinitesimal steps from x to x′.
A connection in a fibre bundle is a mathematical object that points from a
point p in the fibre above x to points in the fibres above all the neighbouring
points of x, thereby specifying which points in these neighbouring fibres are



48 CHAPTER 3. MATHEMATICAL NOTIONS

“the same as” (or “parallel to”) p. Bernstein and Phillips suggest pictur-
ing a connection as a little “slope” attached to each point of a fibre that
shows you how to go across to the next fibre (Bernstein and Phillips [1981],
p.18). Following the slope corresponds to moving the object in spacetime
while preserving the value of the property φ, and not following the slope
corresponds to the property φ changing as the object moves in spacetime.

Providing a mathematically rigorous definition of a connection would take
us too far afield, and therefore we will settle for trying to motivate the con-
cept loosely. Consider the vector space TpE at a point p of the total space
E. Vectors in this tangent space will point from p to neighbouring points.
All the vectors which point from p to other points in the same fibre as p
form a subspace VpE of TpE called the vertical subspace. A connection is
defined as follows.

Definition 11. [Isham, 1999, p. 254] A connection in a principal bundle
(E, π,M) with structure group G is a smooth assignment to each point
p ∈ E of a horizontal subspace HpE of TpE such that:

1. Any vector in TpE can be decomposed uniquely into a sum of horizon-
tal and vertical components.

2. HpE is constant along the fibre to which p belongs (it is compatible
with the right action of G on p).

In other words, a connection specifies which vectors point from a point in
one fibre to a point in a neighbouring fibre without also moving up and down
in that fibre. As a mathematical object, a connection can be represented as
a Lie-algebra valued one-form ω. ωp acts on vectors in TpE. Given a vector
τ ∈ TpE, if ωp(τ) = 0, then τ ∈ HpT which means that τ points from p to
“the same” point in the neighbouring fibre of p.

The connection can be used to define the important notion of a horizontal
lift. Roughly, a horizontal lift is a curve that moves through points in the
fibres without moving up and down in the fibres. In other words, if τ is the
tangent to the horizontal lift at a point p, then ωpτ = 0.

Definition 12. [Isham, 1999, p. 263] Let α be a smooth curve that maps
a closed interval [a, b] ⊂ R into M. A horizontal lift of α is a curve α↑ :
[a, b] → E which is horizontal (ω([α↑]) = 0) and such that π(α↑(t)) = α(t)
for all t ∈ [a, b].

It is possible to use the horizontal lift to define parallel transport. Given an
arbitrary curve α : [a, b] →M in the base space M, the parallel transport
of a point p in the fibre above α(a) to the fibre above α(b) is given by the
point p′ ∈ π−1(α(b)) reached by the horizontal lift of α which also passes
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α

Figure 3.6: The arbitrary lift of a curve α in the base space into the total space. The
connection will determine whether this curve is a horizontal lift or not.

through p (this is uniquely defined). The formal definition follows.

Definition 13. [Isham, 1999, p. 267] Let α : [a, b] →M be a curve in M.
The parallel translation along α is the map τ : π−1({α(a)})→ π−1({α(b)})
(from the fibre above α(a) to the fibre above α(b)) obtained by associating
with each point p in the fibre above α(a) the point α↑(b) in the fibre above
α(b) where α↑ is the unique horizontal lift of α(t) that passes through p at
t = a.

The final concept that we need to define is that of curvature. In the case of
the sphere, curvature is evident in the fact that, when a vector is parallel
transported round a closed curve (a loop), it does not return to its original
direction. Curvature at a point is defined by measuring the angular deviation
between a vector and its parallel transport around an infinitesimal loop. In
the case of fibre bundles, the notion of curvature can be defined in a similar
way. Consider the horizontal lift α↑ of a closed curve α : [a, b] →M (thus
α(a) = α(b)). This can be used to define a map of the fibre above α(a)
onto itself given by p → τ(p), where τ is the parallel translation along α
(see previous definition). In this case, because τ maps the fibre onto itself,
an element of the structure group G can be associated with each loop. The
element of G associated with an arbitrary loop α starting and ending at
α(0) is called the holonomy of α. If you consider all possible loops in the
base space M starting and ending at α(0) you obtain a map from the loop
space ofM into G, giving a subgroup of G called the holonomy group of the
bundle at α(0) [Isham, 1999, p. 267]. The non-closure of the horizontal lift
of a curve in the base space is illustrated in figure 3.7.

The curvature at a point of the bundle can therefore be defined in terms of
the holonomies of infinitesimal loops starting and ending at the point. Math-
ematically, the curvature is a Lie-algebra valued two-form, which means that
it maps a pair of vectors to an element of the Lie algebra. A final valuable
feature of the holonomies of loops inM is that they provide information on
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the global topological properties of M (for instance, whether M is simply
connected or not, etc...). This will be important in our future discussions of
the Aharonov-Bohm experiment.

α

x0

Figure 3.7: A non trivial holonomy. The horizontal lift of the closed curve α in the base
space does not close (failure of closure is indicated above the point x0).

In chapter 5, these mathematical tools will be put to use to understand how
transformations are defined and interpreted in the theory of a non-relativistic
quantum particle interacting with an electromagnetic field.



Chapter 4

The role of passive
transformations

In this chapter, I hope to provide an answer to the following question posed
by Paul Teller [Teller, 2000, p. 479]:

In what way, or to what extent, does the present approach
to electromagnetism [the electromagnetic potential as a connec-
tion defining parallel transport] present electromagnetism itself
as a geometrical phenomenon in something like the way that
gravitation is presented as a geometrical phenomenon in general
relativity?

In the next chapter, I will show how the electromagnetic potential can be
represented in terms of a connection on a principal fibre bundle. However,
before fully exploiting the fibre bundle machinery, I will give a full presen-
tation of the “symmetry dictates interaction” role of gauge symmetry, also
known as the “gauge principle”. I will compare this inference from sym-
metry to interaction with the role of coordinate transformations and the
equivalence principle in GR. I will define an analogue of the inertial coor-
dinate system in gauge theory, called the inertial gauge. I will show that
electromagnetism determines the local inertial gauge in the same way that
gravitation determines the local inertial coordinate system.

4.1 Introduction: The geometrical programme

With the advent of general relativity, Einstein is often credited with having
founded what Cao refers to as the “geometrical programme” [Cao, 1990,
p. 117]. This programme prescribes a certain methodology for physical
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research into the fundamental forces of nature. In the broadest possible
terms, it aims to describe the forces of nature in terms of the geometrical
properties, like curvature or topology, of some geometrical space, which are
encoded by geometrical objects defined on the space, like metrics and affine
connections. In the case of GR, a field equation relates the geometrical
objects, defined on spacetime, to the sources of the “force”, which are mass-
stress-energy.1 As a result, the geometry of spacetime becomes a dynamical
part of the physics, rather than a backdrop against which events unfold.

After the success of general relativity, it was natural to ask whether a similar
geometrization of the other force known at the time, electromagnetism, was
possible. Attempts in this direction led to Weyl’s ill-fated first gauge theory,
Kaluza-Klein theories, and occupied Einstein for the rest of his life with work
on so-called unified field theories. Although most of these early trials were
unsuccessful, they sowed the seeds from which the undeniably successful
gauge theories would grow. Today, these theories describe three of the four
fundamental forces: the strong force, the weak force and the electromagnetic
force [Weinberg, 1977, p. 32]. However, the status of gravity as a gauge
theory in the same sense as that of the other three forces is controversial,
and the debate is ongoing. Part of the problem is the extent to which the
geometrization of the other three forces can be said to be achieved “in the
same way” as that of gravitation.

It is a widely held view that the universality of gravitation is crucial to the
possibility of giving it a geometrical formulation. “Universality” here refers
to the fact that all particles follow geodesics of spacetime regardless of their
constitution (mass, charge etc...). In this vein, Brown and Pooley stress that
“mass is not a coupling constant” because “it does not indicate the strength
of the particle’s coupling to the connection” [Brown and Pooley, 2006, p. 72].
As is well known, if released in a vacuum in gravitational field, a large rock
and a small feather will fall with the same acceleration. In contrast, the
charge of a particle is a coupling constant to the electromagnetic field. Two
particles of equal mass but of different charge will behave differently in
identical electromagnetic and gravitational fields.

In the face of this disanalogy between mass and charge, any claim to the
“geometrization” electromagnetism would appear thin. The issue obviously
turns on the view of “geometry” that one adopts. Traditionally and roughly
speaking, geometry is the mathematical study of the properties of phys-
ical space familiar from everyday experience. With the developments of
Minkowski, geometry was extended to include time, and thus arose the con-
cept of spacetime. All physical bodies live and move in spacetime, and
because all these bodies are affected in the same way by gravitation, it is

1I place the word “force” in scare quotes because, once the geometrical programme has
been adopted, talk of forces in the Newtonian sense becomes obsolete.
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possible to encode the effects of gravitation in the very structure of space-
time itself.2 However, the argument goes, not all bodies are affected in the
same way by electromagnetism, and therefore electromagnetism cannot be
built into the structure of spacetime. This suggests that electromagnetism
cannot be geometrized if one limits oneself to spacetime geometry. However,
if the notion of geometry can be extended to include yet more features, it is
conceivable that electromagnetism could be represented geometrically with
the help of these additions. This is precisely how the geometrization of
electromagnetism is achieved in the fibre bundle formalism.

Such reasoning raises two questions: 1) If a so-called geometric formulation
of electromagnetism is not based on the geometry of spacetime, to what ex-
tent can it really be considered as geometrized “in the same way” as gravita-
tion? 2) When does a piece of mathematics deserve to be called geometry or
not? And is this important? I will answer these questions in turn. When it
is claimed that electromagnetism is geometrized “in the same way” as grav-
ity, this must not be interpreted as a claim that electromagnetism can also
be incorporated into the structure of spacetime itself. As Trautman points
out, the unification sought by advocates of “connections on fibre bundles”
is “considerably different from Einstein’s own attempts”, precisely because
Einstein limited his geometrical tools to modifications of Riemannian ge-
ometry [Trautman, 1980, p. 288]. Kaluza-Klein theories were similarly con-
servative, seeking their unifications in higher-dimensional spacetime rather
than in more exotic spaces. In this respect, the geometry of fibre bundles is
clearly different from that of GR. On the other hand, as was shown in the
previous chapter, the same geometrical concepts of connections, curvature,
parallel transport, covariant derivative etc. . . are employed in the mathemat-
ics of fibre bundles. This answers the questions posed above, and justifies
calling fibre bundles geometrical structures. It is because these same con-
cepts can be used to represent electromagnetism (albeit in new geometrical
spaces rather spacetime) that it can be claimed that electromagnetism (and
the other forces) can be geometrized “in the same way” as gravity. Fur-
thermore, the mathematics of fibre bundles does lend itself to a pictorial
representation (as we introduced in chapter 3 and will develop further in
chapter 5) with a distinct geometrical flavour.

Unfortunately, just as some worries about the similarities between the ge-
ometrical formulations of GR and the other gauge theories are dispelled,
others appear. As one looks closer at the precise mathematical structures
that are used to represent the various forces, it becomes clear that there are
substantial technical differences which prevent one from comfortably being
able to claim that GR is a gauge theory like the others. One way to sum

2I gloss over any phenomena that might not fit neatly into a spacetime picture, such
as the consequences of quantum entanglement for instance.
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up these technical differences is to point to the fact that the gauge theories
of the electromagnetic, strong and weak forces are all Yang-Mills theories,
whereas GR is not. As Earman explains, a defining feature of Yang-Mills
theories is the closure of the Lie algebra of the constraints in the constrained
Hamiltonian formalism. In this formalism, the Lie algebra of the constraints
of GR is not closed [Earman, 2002, p. 217].

Alternatively, one might try to give an explicit fibre bundle formulation of
GR. For Trautman, a gauge theory is “any physical theory of a dynamical
variable which, at the classical level, may be identified with a connection
on a principal bundle” [Trautman, 1980, p. 306]. Thus, if it were possible
to reformulate GR in this way, its status as a gauge theory like the others
would be further supported. However, this strategy also runs into technical
difficulties, and Trautman admits that even when given a fibre bundle for-
mulation, “gravitation is different from other gauge theories”. As the source
of these differences, he points to the “soldering of the bundle of linear frames
LM to the base manifold M” [Trautman, 1980, p. 299]. “Soldering” is a
technical term of gauge theory which can be explicated as follows. As ex-
plained in chapter 3, a fibre bundle consists of a base space M with some
other space called a fibre attached to each point of M . In the theories of
the electromagnetic, strong and weak forces, the fibre is an internal space
that is unrelated to spacetime. However, in the fibre bundle formulation of
GR, the geometry of the fibres encodes the geometry of the base space itself
[Lyre, 2000, p 6]. This “intimate relation” between the base space and the
fibres in the case of GR differentiates it from the other gauge theories.

Apart from the technicalities, there are also more conceptual disagreements
about the gauge nature of gravity. These often focus on the identification
of the “gauge group” of GR. The gauge theories of the strong, weak and
electromagnetic forces are explicitly constructed around the groups SU(3),
SU(2) and U(1), corresponding respectively to the three forces. However, in
the case of gravity the situation is somewhat confused. As Redhead notes
[Redhead, 2003, p. 134]

So, there is considerable confusion between the Lorentz group
and the Poincaré group as the appropriate Yang-Mills gauge
group for GR and its generalizations, but it is also often claimed
that general coordinate transformations (the subject of general
covariance) provide the gauge group of GR!

General coordinate transformations, so called “passive transformations”, are
often considered to have an active equivalent, namely diffeomorphisms. Mo-
tivated by the hole argument and the general covariance of GR, Earman and
Norton urge that general coordinate transformations (and their associated
diffeomorphisms) represent the “gauge freedom” of GR. Norton urges us to
recognize the “central importance of general covariance as a gauge freedom
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of general relativity” [Norton, 2003, p. 110]. Earman even goes so far as to
dismiss the fibre bundle approach as “glitzy”, and advocates the constrained
Hamiltonian formalism as the “non-question begging and systematic way to
identify gauge freedom” [Earman, 2002, p. 212]. As if the waters were not
murky enough, Weinstein argues that it is “clearly misguided” to “think of
the diffeomorphism group as a gauge group” [Weinstein, 1999, p. 8].

I believe that much of the confusion is down to an equivocation over the
notions of “gauge group” and “gauge freedom”. Very different accounts of
gauge develop depending on where the emphasis is placed. The notion of
a “gauge group” is generally used in the context of a unified methodology
for geometrizing fundamental forces. On the other hand, “gauge freedom”
is employed in the context of discussions about redundancies in physical
theories. These two facets feed off each other, but the debates in which they
feature ultimately have different motivations. The methodological aspect of
gauge is primarily driven by a desire for unification and conceptual harmony
between the different fundamental physical theories. On the other hand,
the debate about redundancy is focused on the notions of “physicality” and
“reality”, and is connected to Redhead’s concept of surplus structure. In this
context, the main concern is with identifying the parts of physical theories
that have correlates in the world, and it is believed that redundant elements
of a theory are not well suited for this role. In this thesis, my focus is on the
methodological and unifying aspects of gauge. Moreover, by highlighting the
importance of gauge in those contexts, I wish to discourage the tendency to
interpret the gauge elements of a theory as redundancies that can best be
done without.

In the first part of this chapter, my objective will be to support the claim
that gravitation and electromagnetism can be geometrized in the same way
by comparing the two principles, the equivalence principle and the gauge
principle, around which the geometrization is based. I will give an inter-
pretation of the equivalence principle which makes its relation to the gauge
principle evident. I will note that the objections raised against the logi-
cal roles of the two principles in their respective theories are very similar.
My conclusion will be that both principles are responsible for providing the
possibility of giving a geometrical account of the forces of nature.

In the second part, I will present a consequence of my interpretation of the
equivalence principle for the thorny issue of the equivalence of coordinate
systems in GR, and clarify the role of the Einstein field equations (EFE’s)
within this account. The main lines of reasoning are inspired by a proposal
from Dieks for reinterpreting the sense in which GR can be said to extend
the relativity principle of special relativity [Dieks, 2006]. By appealing to
the Aharonov-Bohm effect, I will then argue that a very similar story can
be told in quantum-electromagnetism (Q-EM). I show how the equivalence
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principle has a precise analogue in Q-EM, and make a suggestion for the form
of the field equations. We will see that these field equations are in fact the
holonomies of the principal fibre bundle that represents the electromagnetic
field. I will note an important geometrical difference between GR and Q-
EM: in GR, it is the curvature of spacetime that encodes the presence of a
gravitational source whereas in Q-EM it is the topology that encodes the
presence of a phase-shifting source.

4.2 Part I: From symmetry principles to geometry

The equivalence principle is a notoriously slippery ingredient of GR. It has
many different formulations, and opinions on its importance within the the-
ory cover the entire range from fundamental to dispensable. For instance,
in Weinberg’s textbook Gravitation and Cosmology, the principle occupies
pride of place. However, others are less accommodating. Synge claims that
he never understood the principle, (Norton [1985], p.243) and is scathing
about its role within the final theory (Synge [1960], p.xi):

The Principle of Equivalence performed the essential office
of midwife at the birth of general relativity, but, as Einstein re-
marked, the infant would never have got beyond its long-clothes
had it not been for Minkowski’s concept. I suggest that the mid-
wife be now buried with appropriate honours and the facts of
absolute spacetime faced.

In what follows, I will present the equivalence principle as a way of inter-
preting the mathematical formalism that is indispensable for incorporating
gravity into the geometrical structure of spacetime. In fact, it seems that
Einstein himself may have had a similar understanding of the principle.

4.2.1 Formulating the equivalence principle

Most people’s first encounter with the equivalence principle is probably in a
science class demonstration that, in a vacuum tube, a feather and a rock fall
at the same rate. In this context, the principle is taken to state the equality
of inertial and gravitational mass. In a general relativity class, the principle
is often given in its infinitesimal form (Weinberg [1972], p.68)

At every spacetime point in an arbitrary gravitational field it
is possible to choose a “locally inertial coordinate system” such
that, within a sufficiently small region of the point in question,
the laws of nature take the same form as in unaccelerated Carte-
sian coordinate systems in the absence of gravitation.
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In popular science books, the principle is often associated with Einstein’s
lift thought experiment (as presented in chapter 1). In agreement with Ein-
stein’s 1916 introduction to the theory, a crucial feature of all formulations
of the equivalence principle is that they point to the indistinguishability of
the physical consequences of being at rest in a gravitational field, or in a
state of “really” accelerated motion (Einstein [1997], p.150). Precisely be-
cause of the impossibility of (locally) distinguishing such physical effects,
the one can be used to cancel the other. In other words, an observer free-
falling in a gravitational field can be considered to be “at rest”. In this way,
Norton believes that, for Einstein, “the basic assertion of the principle of
equivalence is that “one may treat K’ [the accelerated observer] as at rest”
(Norton [1985], p.206).

The possibility of treating accelerated observers as at rest can also be un-
derstood mathematically. Representing the laws of physics in non-inertial
(accelerated) coordinate systems requires the appearance of new terms in
the equations of motion. These new terms are often referred to as “inertial”
or “fictitious” forces. Thus, the inertial equations of motion

d2xλ

dt2
= 0 (4.1)

become

d2xλ

dt2
+ Γλµν

dxµ

dt

dxν

dt
= 0 (4.2)

in a non-inertial coordinate system. The Γλµν are the Christoffel symbols,
which, in the case of a rotating coordinate system for example, represent
the centripetal and Coriolis forces. In this mathematical setting, Einstein’s
suggestion becomes to interpret the non-vanishing Christoffel symbols in a
particular coordinate system as a gravitational field, and thereby to restore
the possibility of considering that coordinate system as inertial. As Janssen
puts it (Janssen [2011], p.2)

Two observers in non-uniform motion with respect to one
another can both claim to be at rest as long as they agree to
disagree about whether or not there is a gravitational field.

Moreover, Einstein was able to show that, in Minkowski spacetime, the
equations of motion for a uniformly accelerated observer could always be
written in a form that closely resembled the equation for a particle mov-
ing under the influence of a Newtonian gravitational field (Norton [1985],
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p.217).3 This further convinced him that the Christoffel symbols appear-
ing in the equations of motion for non-inertial coordinate systems could be
seen as closely related to gravitational effects. In his 1916 introduction to
the general theory of relativity, he goes so far as to claim (Einstein [1997],
p.150)

It will be seen from these reflexions that in pursuing the gen-
eral theory of relativity we shall be led to a theory of gravitation,
since we are able to “produce” a gravitational field merely by
changing the system of coordinates.

The problem with this approach is that it runs the risk of confusing coor-
dinate effects with physical effects. If we believe that gravitational fields
must have sources, then it is very unsatisfactory to have a theory which
allows gravitational fields to be produced by changing coordinates, because
a change of coordinates clearly cannot bring a source into existence. This is
the essence of Synge’s rejection of the equivalence principle (Norton [1985],
p.243)

Does it [the equivalence principle] mean that the effects of
a gravitational field are indistinguishable from the effects of an
observer’s acceleration? If so, it is false. In Einstein’s theory,
either there is a gravitational field or there is none according as
the Riemann tensor does or does not vanish.

The view that it is the curvature of spacetime as encoded by the non-
vanishing of the Riemann curvature tensor that signals the presence or
absence of gravitational effects is the currently accepted interpretation of
general relativity. Precisely because of its tensorial properties, the Riemann
curvature tensor cannot be made to appear or vanish by a coordinate trans-
formation, and therefore qualifies as a more “objective” characterization of
the presence (or absence) of gravitation.

Apart from their coordinate dependence, there is another unconvincing fea-
ture of the Christoffel symbols in Minkowski spacetime that prevents their
interpretation as representing gravitational effects. Consider once again the
case of a uniformly accelerating observer. In this case, the Christoffel sym-
bols would represent a uniform gravitational field, in the sense that all the
particles in the vicinity of the observer would be accelerated in parallel
(there would be no tidal forces). However, apart from the rather unphysical
case of a infinite plate with a uniform mass density, gravitational fields are
always non-uniform because they are caused by finitely extended sources.
Christoffel symbols with such a property cannot be created purely from a
coordinate transformation.

3More specifically, Einstein was able to derive an equation that looked like acceleration
= - gradiant of scalar field
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Nevertheless, a uniform gravitational field can perhaps favourably be inter-
preted as an approximation to a real gravitational field. For instance, one
that would work well for computing the trajectories of projectiles traveling
only short distances near the surface of the earth. As Norton points out,
such effects, which can be produced by the equivalence principle, “yield a
special case of the gravitational field, whose properties are then generalized
in a natural way to arrive at a general theory of gravitation” (Norton [1985],
p.229).

I believe this remark is crucial to understanding the role that the princi-
ple plays in the logical structure of general relativity. It emphasizes how
the Christoffel symbols, as generated by coordinate transformations, can be
interpreted as encoding effects very similar to those of gravitation. The nat-
ural extension of this realization is to ask what properties the Christoffel
symbols would have to have to actually represent real gravitational fields
with sources. The answer, that Einstein arrived at with much difficulty, is
that they must represent a curved (non-euclidean) spacetime. Of course,
Christoffel symbols with this property cannot be created by pure coordinate
transformations. However, by adding extra equations to the theory which
they must obey, they can acquire this property. In fact, the extra equations
are the Einstein field equations, and they determine the metric, which in
turn determines the Christoffel symbols by the equation

Γµσρ =
1

2
gνµ(

∂gρν
∂xσ

+
∂gσν
∂xρ

− ∂gρσ
∂xν

) (4.3)

In Einstein’s final theory, the Christoffel symbols thus play a dual role: they
encode both the “inertial forces” present in a non-inertial coordinate system
and the effects of gravitation. This has led some, such as Janssen, to suggest
that in GR there appears a new unified “inertio-gravitational” field, which
splits differently into inertial and gravitational components depending on the
coordinate system (Janssen [2011], p.3). In this respect, this field is similar
to the electromagnetic field in special-relativity, whose split into electric
and magnetic components depends on the choice of a particular inertial
coordinate system.

I believe that the above considerations can even partially elucidate the mys-
tery of the role of “surplus structure” (as formulated by Redhead). In
Minkowski spacetime, the Christoffel symbols appear as a form of surplus
structure, only serving to compensate for the choice of a non-inertial coor-
dinate system. However, once their presence in this context is discovered, it
becomes possible to ask what extra properties they could have, and whether
such additional features could be exploited to represent physical features
of the world. In a sense, the methodology here is first to introduce some
“slack” into the theory, and then to “take it up” by exploiting it in new cre-
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ative ways. We will see in the next section that the gauge principle works
in a very similar manner.

4.2.2 Formulating the gauge principle

I will first present a standard formulation of the gauge principle in the
context of non-relativistic quantum-electromagnetism and then a relativistic
version for the Dirac field. Afterwards I will explain how it can be seen to
work analogously to the equivalence principle as formulated in the previous
section. The version of the non-relativistic gauge principle presented here
follows closely that of Aitchison and Hey [Aitchison and Hey, 1989, p. 51].

Consider an electron “moving freely” (in the absence of a potential) de-
scribed by the Schrödinger equation (I use natural units, ~ = c = 1)

−1

2m
∇2ψ(x, t) = i

∂ψ(x, t)

∂t
(4.4)

This equation is invariant under the “global” transformation

ψ(x, t)→ ψ′(x, t) = eiqχψ(x, t) (4.5)

where q and χ are constants.4 The transformation is called “global” because
χ is not a function of space and time. By “invariant”, we mean that if the
new value of the wavefunction ψ′(x, t) is plugged into equation (4.4), all the
“extra pieces” will cancel out, and the equation returns to its standard form
(4.4).

Now comes the “magic” of the gauge principle. Consider the transformation
properties of the Schrödinger equation under the “local” transformation

ψ(x, t)→ ψ′(x, t) = eiqχ(x,t)ψ(x, t) (4.6)

where χ(x, t) is now a function of space and time, and thus feels the action
of both derivative operators ∇2 and ∂

∂t . The Schrödinger equation is no
longer invariant under this transformation because extra pieces which do
not cancel appear from the action of the derivative operators on χ(x, t). In
order to make (4.4) invariant under the local transformation (4.6), we can
introduce two new fields into the equation with the correct transformation
properties. These fields are a vector field A and a scalar field φ with the
transformation properties

4The significance of q will become apparent later.
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A→ A′ = A +∇χ(x, t) (4.7)

φ→ φ′ = φ− ∂χ(x, t)

∂t
(4.8)

After the introduction of these two fields, the Schrödinger equation becomes

−1

2m
(∇− iqA)2ψ′(x, t) + qφψ′(x, t) = i

∂ψ′(x, t)
∂t

(4.9)

which is in fact the equation for a particle of charge q interacting with an
electromagnetic field, called a gauge field, represented by the vector potential
Aµ = (φ,A). Note that the transformation properties of the A and φ
fields are precisely the gauge transformations of the electromagnetic vector
potential. In this way, it seems that the form of the interacting theory can
be derived by demanding that the Schrödinger equation be invariant under
the local transformation (4.6). This is an example of what Wigner called
a “dynamical symmetry”, and the process which Yang termed “symmetry
dictates interaction” (see chapter 2). The interacting theories of the strong
and weak forces are obtained in a similar way, by demanding the invariance
of a particular Lagrangian under a particular local transformation.5

Because the Schrödinger equation is non-relativistic, the necessary changes
that must be imposed on it to make it invariant under the local transfor-
mation (4.6) can seem somewhat cumbersome. However, when a theory can
be given a Lagrangian formulation, the gauge principle can be applied in a
smoother fashion. For instance, consider the Dirac Lagrangian for a spinor
field Ψ of mass m

LDirac = Ψ̄(iγµ∂µ −m)Ψ (4.10)

This equation is not invariant under the local transformation

Ψ(x, t)→ Ψ′(x, t) = eiqχ(x,t)Ψ(x, t) (4.11)

Ψ̄(x, t)→ Ψ̄′(x, t) = e−iqχ(x,t)Ψ̄(x, t) (4.12)

In order to make it invariant, it is possible to replace the ordinary partial
derivative with a covariant derivative

5In the case of the strong and weak force, the relevant transformations are elements
of a non-Abelian group, which means they do not commute. This has consequences for
the mathematical form of the symmetry restoring gauge field that must subsequently be
introduced.



62 CHAPTER 4. THE ROLE OF PASSIVE TRANSFORMATIONS

∂µ → Dµ = ∂µ + iqAµ (4.13)

Giving the new Lagrangian

LDiracint = Ψ̄(iγµ(∂µ + iqAµ)−m)Ψ (4.14)

which represents the theory of a massive charged Dirac field interacting
with an electromagnetic field (in fact some terms are missing, as we will see
shortly). It it also sometimes written as

LDiracint = Ψ̄(iγµ∂µ −m)Ψ− qAµΨ̄γµΨ (4.15)

to make the new interaction (coupling) term explicit. The form of this
term is known as “minimal coupling”. The role of the covariant derivative
will be further discussed in the context of the fibre bundle formulation of
non-relativistic quantum-electromagnetism.

Criticism of the gauge principle in the literature is abundant. A first prob-
lematic aspect is the inclusion of the charge q in the initial global trans-
formation (4.5). It is this move which forces the further appearance of q
in the interacting Schrödinger equation (4.9). The fact that such a charge
is included “from the beginning”, suggests that the gauge principle doesn’t
produce the interacting equation out of nothing, but instead seems to al-
ready know where it is going. Aitchison and Hey argue that by combining
the absolute conservation of charge with the claim that only particles of
equal charge can exhibit quantum mechanical interference effects one can
justify the inclusion a coupling constant in the transformations (4.5) and
(4.6) [Aitchison and Hey, 1989, p. 55]. However, they admit that it is diffi-
cult to justify why q should represent charge and not some other quantum
number. The artificial inclusion of the coupling constant q is certainly prob-
lematic, but the main criticisms of the gauge principle usually focus on other
issues.

In the literature, there are four main objections to interpreting the gauge
principle as generating an interacting theory from a non-interacting one: (1)
the demand for invariance under “local” transformations is not justified (2)
the form of the interacting Lagrangian is not determined uniquely (3) the
theory obtained from the gauge principle actually contains no interactions
(4) the gauge field doesn’t satisfy the action-reaction principle. I will address
each of these concerns in turn.

Brown puts the first objection in the form of the question “why should we be
interested in a gauge-covariant version of (4.10) in the first place?” and draws
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an analogy to the requirement of general covariance in GR [Brown, 1999,
p. 7]. In the next chapter, I will further defend the analogy between gauge
transformations and coordinate transformations, and therefore I believe that
a similar analysis of the invariance requirement can (and should) be given in
both cases. However, as is well known, it remains highly problematic what
the correct analysis should be.

Perhaps a better approach to the question is to ask why the notion of a
covariant derivative, in other words, a means of comparing the phase of
the wavefunction at distantly separated points, should be introduced. This
sense of locality is precisely what Weyl considered to be one of the most
important features of general relativity, and therefore he was one of the
first to suggest it should be extended to quantum theory. Still, this sense
of locality remains difficult to justify. Ultimately, I believe that requiring
an explicit rule for parallel transport is an essential technique in exploiting
geometrical properties to represent features of the world. We will see this
argument returning later in this section.

The second objection targets the inability of the requirement of gauge-
invariance to uniquely specify the form of the interacting Lagrangian (4.15).
As Martin explains, there are many other terms that could be added to
the Dirac equation to make it invariant under gauge transformations. It is
sometimes argued that the minimal coupling of (4.15) can be justified by
claiming it is the “simplest, renormalizable, Lorentz and gauge invariant La-
grangian yielding second order equations of motion for the coupled system”
[Martin, 2002, p. 228]. However, by appealing to the geometrical interpre-
tation of the covariant derivative, I believe that a more appealing answer is
at hand. Consider first the case of GR. When we demand a version of the
equation of motion for a massive particle (equation (4.1)) that is valid in all
coordinate systems, we unproblematically arrive at the standard geodesic
equation (4.2). Of course, we could write down any number of other gen-
erally covariant expressions, but they would not be relevant to describing
the free-fall of a massive particle. Geometrically, we are interested in an
equation for the vanishing of the covariant derivative. As we will see later,
exactly the same line of reasoning can be performed for a quantum particle.
More precisely, we will describe the “phase-motion” of a quantum particle in
terms of the vanishing of the covariant derivative of a specific mathematical
quantity. The form of the interaction is then determined by the general way
in which one defines covariant derivatives.

The third and fourth objections are the most interesting because they relate
directly to our earlier discussion of the principle of equivalence. The third
objection claims that the form of the Aµ field required by the gauge principle
does not correspond to a physically different situation from that described by
the non-interacting Schrödinger equation. From this, it infers that the gauge
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principle is not sufficient to generate a truly dynamic interacting theory of
a quantum system with an electromagnetic field. In order to appreciate the
force of this objection, we must show that a joint gauge transformation of
the wavefunction and the electromagnetic potential as in (2.9) results in no
physical change to the system. In the classical case, it was sufficient to show
that a gauge transformation left the electric and magnetic fields unchanged.
However, in the quantum case, we must also show that the transformation
does not affect the state of the quantum particle. As we will see when we
discuss the Aharonov-Bohm effect later in this chapter, transformations of
the phase of the wavefunction will have empirical consequences, manifested
as changes in the interference pattern, if they affect the integrability of the
wavefunction. The wavefunction is said to be integrable if the phase shift
it undergoes between two space(time) points is independent of the path
traveled between the points. It was shown by Dirac that integrable phase
factors correspond to harmless redefinitions of the momentum operator p̂
[Aitchison and Hey, 1989, p. 57]. We will have more to say about the effects
of phase shifts on the integrability of the wavefunction when we discuss
active gauge transformations in chapter 5.

In order to show that a joint gauge transformation of the wavefunction
and the electromagnetic potential has no physical consequences, we must
show that it leaves the electric and magnetic fields unchanged and that it
does not affect the integrability of the wavefunction. Given a force free
quantum particle that obeys (4.4), the best that the gauge principle can
do is require the introduction of a potential of the form Aµ = (φ,A) =
(− ∂

∂tχ(x, t),∇χ(x, t)). First we must show that the electric and magnetic
fields

B = ∇×A (4.16)

E = −∇φ− ∂

∂t
A (4.17)

are not affected by a vector potential of this kind. The results are

B = ∇×∇χ(x, t) = 0 (4.18)

E = −∇(− ∂

∂t
χ(x, t))− ∂

∂t
∇χ(x, t) = 0 (4.19)

Furthermore, solving the Schrödinger equation for a potential of this form
gives [Aitchison and Hey, 1989, p. 57]

ψ = eiq
∫ x
−∞∇χ(x,t)·dlψ(χ = 0) (4.20)
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where dl is an infinitesimal vector tangent to the path from −∞ to x along
which the integral takes place and ψ(χ = 0) is the solution to the force-free
Schrödinger equation. Because the integrand is of the form A = ∇χ(x, t),
the phase of the wavefunction at an arbitrary point x is indeed integrable.
The interference pattern will therefore be left unchanged by a gauge trans-
formation of the form (2.9). The physical situation described by (4.9) with
Aµ = (− ∂

∂tχ(x, t),∇χ(x, t)) is therefore physically indistinguishable from
the physical situation described by the force-free Schrödinger equation (4.4).

The above arguments show that demanding the invariance of the Schrödinger
equation under local gauge transformations of the form (4.6) does require
the introduction of a new mathematical structure into the theory, namely
the Aµ field, but that this structure does not correspond to any new physical
effects. Instead it simply seems to compensate for unusual choices of phase
convention. The flavour of this objection is very similar to that of Synge’s
against Einstein’s version of the equivalence principle. When taking non-
inertial coordinate systems into consideration, Einstein was led to introduce
the Christoffel symbols into the equations of motion for force-free particles.
However, these Christoffel symbols simply encode the presence of fictitious
forces resulting from the choice of a non-inertial coordinate system. As
Synge pointed out, the presence of a real physical force, one with a source,
is an observer independent matter, and therefore cannot be affected by the
choice of a coordinate system. The same must hold in Q-EM. A change
of coordinate system cannot bring a force into existence, and neither can a
change of phase convention. In the case of GR, we argued that Einstein’s
great achievement was to realize that the Christoffel symbols could be made
to represent gravitational effects if they obeyed additional requirements,
ones not dictated purely by general covariance.

In the case of Q-EM, two conditions conspire to obscure the analogy of the
gauge principle with the role of the equivalence principle in GR. The first is
a contingent fact about the way in which both theories were discovered. The
second is related to the nature of our experience as human beings. When
Einstein was working toward the general theory of relativity, he did not
know what the final theory would look like. Therefore, when he started to
consider non-inertial coordinate systems, he did not immediately recognize
the fact that the Christoffel symbols could also be used to encode proper
gravitational effects (in Synge’s sense). It was only after much work that he
realized that the Christoffel symbols could describe such effects if they gave
rise to a spacetime geometry with non-zero curvature. In the case of Q-EM
however, the situation is precisely reversed. It was already known what
the final theory looked like before the case of “general” phase conventions,
instantiated by the transformations (4.6), were considered. Once it was
realized that the introduction of a field that looked (formally) exactly like Aµ
restored invariance under local gauge transformations, there was no problem
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in seeing this field as a special case of the electromagnetic potential. The
difference can be summed up as follows. Einstein saw the ability to represent
gravitational effects as a special extension of the already known role of the
Christoffel symbols in accounting for non-inertial coordinate systems. On
the other hand, physicists saw the “impotent” Aµ = (− ∂

∂tχ(x, t),∇χ(x, t))
field introduced by the gauge principle as a certain restricted version of the
already known electromagnetic potential.

The second condition is the very different nature of the fictitious forces that
appear in non-inertial coordinate systems, and those that appear in “non-
inertial” phase conventions.6 As human beings, there are ways to acquire
an intuitive understanding of what a fictitious force is in the context of a
non-inertial coordinate system. For instance, it is very difficult to keep one’s
balance when standing on a rotating platform because our senses are not
accustomed to adjusting to the fact that the surroundings are not moving
inertially. On a larger scale, we can observe phenomena that seem to violate
Newton’s laws of motion if we use the earth as an inertial reference frame.
For instance, Buys Ballot’s laws about wind directions cannot be understood
without introducing the Coriolis force that is caused by the earth’s rotation.

On the other hand, the notion of “phase” is one that is much further from
everyday experience. Moreover, the first unified theory of electromagnetism,
Maxwell theory, was already gauge invariant in the sense that the Aµ field
(not expressed by Maxwell in this form) possessed “gauge-freedom”. The
notion of a non-inertial gauge convention was therefore not an issue. It was
not before quantum mechanics, and the theory of quantum particles inter-
acting with electromagnetic fields, that it was realized that the Aµ field has
a role to play with respect to the phase. But even then, the impossibility of
measuring the phase of a particle at a point (only phase differences can be
measured in interference effects) makes the notion of a choice of phase con-
vention seem artificial, or superfluous to the purposes of observation. This
probably also accounts for why there is never any discussion of “fictitious
phase effects”. By this I mean phase-related behaviour of quantum particles
that does not seem to follow the standard equations.

From these considerations I conclude that, abstracting from their role in
the context of discovery and their different relations to our everyday ex-
perience, the equivalence principle and the gauge principle can be seen to
play similar roles in the logical structure of both GR and gauge theory
respectively. Both allow a certain mathematical structure, the Christoffel
symbols Γλµν and the (electromagnetic) potential Aµ, to be introduced into
their respective theories, whose properties can then be generalized and ex-
tended to represent physical features of the world. In other words, both

6I put “non-inertial” in scare quotes because I have not yet properly developed an
extension of the notion of inertia to phase. However, this will be done later.
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principles make possible, in a similar way, the geometrization of gravitation
and quantum-electromagnetism. I believe that this is the best answer that
can be given to the mystery identified by Teller: “How can an apparently
substantive conclusion follow from a fact about conventions?” [Teller, 2000,
p. 469].

The final objection to the gauge principle is that it does not generate a
field which satisfies the “action/reaction principle”. In other words, Brown
explains that the Aµ field would satisfy this principle when the “the matter
field acts back on the connection [the Aµ field]” [Brown, 1999, p. 8]. He
would like to see “the introduction of an analogue of Einstein’s field equa-
tions, which would determine inter alia the effect of the Dirac particle on the
gauge potential Aµ”. In fact, in the case of a Dirac particle, the analogue of
the Einstein field equations that Brown has in mind are the Maxwell equa-
tions for the electric and magnetic fields with the electric current density
jµ proportional to the current Ψ̄γµΨ. This form of the Maxwell equations
can be obtained by varying, with respect to Aµ, the Dirac Lagrangian (4.15)
with the Maxwell Lagrangian added

LDiracint + LMaxwell = Ψ̄(iγµ(∂µ + iqAµ)−m)Ψ− 1

4
FµνF

µν (4.21)

where Fµν = ∂µAν − ∂νAµ. In a mathematical form, Brown’s objection,
echoed by Martin, is that the gauge principle does not require the addition
of LMaxwell = −1

4FµνF
µν to the initial Dirac Lagrangian. This term, which

“gives physical life to the field” is “ultimately put in by hand” [Martin, 2002,
p. 229].

This objection raises interesting questions about the general form in which
a theory should be expressed. General relativity was not born formulated
in terms of a Lagrangian. Instead, one can understand the theory as a col-
lection of equations and rules for using these equations to describe physical
phenomena. In this way, we know that particles will move according to
the geodesic equation, and that the terms which appear in this equation,
such as the Christoffel symbols, are in turn given by other equations, such
as (4.3), which in turn contain terms, such as the metric, which are deter-
mined by yet more equations, the Einstein field equations. Under such an
interpretation, it would be unreasonable to expect the equivalence princi-
ple to somehow also generate the EFE’s. Instead, the equivalence principle
introduces terms into the theory whose roles can then be extended by the
deliberate addition of new equations to the theory.

This reasoning can be applied quid pro quo to the gauge principle. Thus,
we use the gauge principle to introduce Aµ into the equations of motion of
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our theory (such as the Schrödinger equation), and we then extend the role
of this mathematical object by subjecting it to additional field equations,
such as the Maxwell equations (for the electromagnetic potential). Given
this notion of the form of a theory, the Lagrangian context seems like the
wrong environment in which to judge the role of the principle.

As an aside, a closer look at the Lagrangian formulations of GR and quantum-
electrodynamics (a fully quantized version of quantum electromagnetism)
highlights important differences between the two theories. In a Lagrangian
formulation of GR, the EFE’s are obtained by varying the Einstein-Hilbert
action [Misner et al., 1973, p. 486]

LE−H =
−1

2κ

∫
R
√
−gd4x (4.22)

where g = det(gµν) is the determinant of the metric tensor, R is the Ricci
scalar and κ = 8πGc, where G is Newton’s gravitational constant and c
is the speed of light. In quantum electrodynamics, one can start from the
Maxwell Lagrangian and, given that Fµν = ∂µAν−∂νAµ derive a propagator
for the Aµ field. This is a crucial step towards giving a quantized theory
of electromagnetism using the path integral approach. However, in GR the
situation is more complicated. In general, the propagation of gravitational
waves is studied in a linearized version of GR [Misner et al., 1973, p. 493]. It
is well known that this approach does not succeed in allowing a quantization
of the gravitational field. It has been suggested that difficulties in quantiz-
ing GR are related to its dependence on both a metric and a connection,
whereas other gauge theories only rely on a connection. This has lead some
to believe that attempts to quantize the gravitational field should focus on
the Christoffel symbols, rather than on the metric [Anandan, 1993].

The final remark on the fourth objection is that it does not completely
capture the role that an analogue to the Einstein field equations should
play in Q-EM. As I will argue in the next section, there are additional field
equations for Aµ that can be added to the theory and which are not derivable
from the additional term LMaxwell. These additional equations, called the
“holonomy equations”, are motivated by the Aharonov-Bohm effect and are
necessary to determine the values of Aµ that are relevant to its interaction
with the phase of a quantum particle. Furthermore, I will argue that these
holonomy equations are in a sense a better analogue to the Einstein field
equations than Maxwell’s equations. This furthers my conviction that the
gauge principle should not be judged on its ability to precisely generate
“complete” interaction Lagrangians.
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4.3 Part II: Field equations and inertiality

One of the conclusions that can be drawn from the interpretation of the
equivalence principle that I suggested in the previous section is that in gen-
eral relativity, Einstein achieves a unification of the inertio-gravitational
field. Mathematically, this means that both gravitational effects (linked to
sources) and inertial effects (caused by the choice of a non-inertial coordinate
system) are represented in the theory by the same mathematical object, the
Christoffel symbols Γλµν . Since this object is not a tensor, its transformation
properties [Weinberg, 1972, p. 100].

Γ′λµν =
∂x′λ

∂xρ
∂xτ

∂x′µ
∂xσ

∂x′ν
Γρτσ +

∂x′λ

∂xρ
∂2xρ

∂x′µ∂x′ν
(4.23)

suggest that it is always possible to find a local coordinate system ξαX (defined
at a spacetime point X), such that the Christoffel symbols vanish, and the
equations of motion for a test particle become those of a force free particle,
as given by equation (4.1), repeated here

d2ξαX
dτ2

= 0 (4.24)

where τ is the proper time of the particle. Because the equations of motion
take this form in it, the coordinate system ξαX is often referred to as a local
inertial coordinate system.7 The Christoffel symbols are determined by a
solution to the Einstein field equations (via the metric), whose “input” is the
stress-energy tensor Tµν , which can be considered a contingent feature of the
universe, analogous to a boundary condition. Since the Christoffel symbols
determine the local inertial coordinate systems, Dieks argues that in GR,
the property of being an inertial coordinate system is demoted from a de
jure (law-like) feature to a de facto (contingent) one [Dieks, 2006, p. 15]. In
other words, whether an arbitrary coordinate system at arbitrary spacetime
point X, xµX , is an inertial one cannot be determined a priori, in other words
before having solved the EFE’s.

The difference between the contingent and a priori inertiality of coordinate
systems is best understood through a comparison with special relativity.
Consider you are given a certain coordinate system xµ on a Minkowski space-
time, and are asked to determine whether it is inertial or not. Using the

7Given the relationship between the metric and the Christoffel symbols, the local iner-
tial coordinate system is one for which the first derivatives of the metric vanish. It is also
interesting to note that this line of reasoning suggests how the “infinitesimal” principle
of equivalence, never adhered to by Einstein, can nevertheless be seen as an outgrowth of
his unification of the inertio-gravitational field.
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Minkowsi metric, you could trace out an inertial worldline in the spacetime
manifold and then look at how points along this worldline are coordinatized
by xµ. If the coordinates obey the inertial equation of motion (4.1), the xµ

is an inertial coordinate system. Now try repeating the same test in general
relativity, before having solved the EFE’s. One stumbles at the first hurdle:
without a metric, it is impossible to trace out an inertial worldline in the
spacetime manifold. Since in GR there are no “absolute objects” (in Ander-
son’s sense) which can be appealed to before a solution of the EFE’s is at
hand, given an arbitrary curve in the manifold, there is nothing to distin-
guish a coordinatization of this curve by one or another coordinate system.
One concludes that all coordinate systems must be equivalent.

From these considerations, I conclude that the Einstein field equations can
be interpreted as defining a field (the metric), which breaks the symmetry
of the infinitely many different possible coordinatizations of the spacetime
manifold. Before solving the EFE’s all the coordinate systems were equiva-
lent, but afterwards, they can be distinguished by the values that they assign
the Christoffel symbols. In the next section, I will propose a set of equations
that play an exactly analogous role with respect to choices of gauge. In this
way, we will be able to rigorously define the notion of an “inertial gauge”.

4.3.1 Force-free motion in quantum-electromagnetism

In the previous section we argued that local inertial coordinate systems
should be defined as those in which the laws of motion take a particularly
simple form, namely when the Christoffel symbols vanish. Our analogy
between the Christoffel symbols and the electromagnetic vector potential
Aµ suggests that an inertial gauge should be defined by being the one in
which the laws of motion take a particularly simple form, namely when the
electromagnetic potential vanishes. The problem is finding the appropriate
equation which must take this particularly simple form. In other words,
what is the “something” whose laws of motion can be made particularly
simple by choosing a particular choice of gauge?

The first obvious place to look is at the motion of massive charged particle,
one that is affected by the presence of electromagnetic E and B fields. These
fields contribute an additional force term, called the Lorentz force, to the
equations of motions of a particle of charge q, moving with 3-velocity v,
which is given by

F = q(E + v ×B) (4.25)

In relativistic notation, this equation can be written in terms of the Minkowski
force Kα [Griffiths, 1999, p. 540]
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Kα =
dpα

dτ
= qUβF

αβ (4.26)

with pα the 4-momentum of the particle, τ its proper time, Uβ its 4-velocity
and Fαβ the electromagnetic tensor. Thus, in the absence of gravitation and
in an inertial coordinate system, the equations of motion for this particle
can be written as

m
d2xα

dτ2
= qUβF

αβ (4.27)

where m is the mass of the particle. Following the analogy with the equiv-
alence principle, we might now try to define the “inertial gauge” as the one
for which these equations return to their inertial form, in other words for
which the right-hand side vanishes. Unfortunately, this is impossible, be-
cause Fαβ is gauge-invariant, and therefore no gauge transformation can
make the right-hand side vanish. I conclude that another kind of “motion”,
described by different equations, is needed to make possible the definition
of an inertial gauge.

As we have already seen, another context in which the Aµ field plays a role
is the Schrödinger equation. The gauge argument demonstrated that the
introduction of a mathematical object, that we identified as a special zero-
field version of the electromagnetic potential, was necessary to compensate
for arbitrary phase conventions. Thus, it seems that in the absence of elec-
tromagnetic sources, we can define the inertial gauge as the one in which
the Schrödinger equation takes its “standard” form (4.4) (repeated here)

−1

2m
∇2ψ(x, t) = i

∂ψ(x, t)

∂t
(4.28)

In a non-inertial gauge, where the phase of the wavefunction differs per point
according to ψ′ = eiqχ(x,t)ψ, the Schrödinger equation takes the form (4.9)
(repeated here)

−1

2m
(∇− iqA)2ψ′(x, t) + qφψ′(x, t) = i

∂ψ′(x, t)
∂t

(4.29)

where Aµ = ((− ∂
∂tχ(x, t),∇χ(x, t)) for some χ(x, t). This entails that it

is possible to find a joint gauge transformation of the matter fields and
electromagnetic potential which returns (4.29) to (4.28).

At this point, we are in a situation analogous to special relativity. We have
defined the notion of an inertial gauge, but it seems to be determined by
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an absolute “phase-background”. In other words, χ(x, t) = constant, plays
the role of an absolute object in this theory. In any quantum mechanical
situation we can imagine in which there are no electric and magnetic fields,
the inertial gauges are ones for which the wavefunction can be written as
eiqχ(x,t)ψ(x, t), with χ(x, t) a constant. In order to remove this absolute
object from the theory, it is necessary to make the gauge in which the
equations take their simplest form the subject of a field equation, which must
have only contingent features of the particular quantum mechanical situation
under study as inputs. It was already suggested by Brown that the Maxwell
equations could play this role. However, we have argued that the context
in which the E and B fields become relevant is not conducive to defining
the notion of inertiality for gauge. Instead, we need a quantum mechanical
context in which the Aµ field is determined by contingent features of the
situation.

The Aharonov-Bohm (AB) effect provides us with just such a context, in
which the Aµ field plays an important role in determining the equations of
motion for the phase of a quantum particle. The AB effect shows how the
role of electromagnetic vector potential can be extended from correcting for
non-standard phase conventions to encoding physical effects of electromag-
netic sources on the phase of a quantum particle. This duality of the role of
the vector potential in Q-EM (accounting for both non-inertial phase con-
ventions and encoding the presence of physical electromagnetic influences)
is exactly analogous to the dual role of the Christoffel symbols in GR.

4.3.2 The Aharonov-Bohm effect

In chapter 1 we cited a question, posed by Bohm in 1952, about the pos-
sibility of “a geometric or mechanical transformation” corresponding to a
gauge transformation. His 1959 prediction, together with Aharonov, of what
is now called the Aharonov-Bohm effect, can be seen as an answer to this
question [Aharonov and Bohm, 1959]. The Aharonov-Bohm effect shows
that electric charges and magnetic fluxes can be used to alter the phase of
the wavefunction of a quantum particle, and thereby affect the interference
pattern that such a particle can give rise to, for instance in a double slit
setup. Most surprising of all, the “interaction” between the electromagnetic
flux and the phase can take place even if the flux is shielded from the parti-
cle, in other words the wavefunction vanishes in the region where the flux is.
This shows that knowledge of the electric and magnetic fields at each point
where the wavefunction does not vanish is not sufficient to predict the state
of a quantum mechanical system. In addition to the electric and magnetic
fields, attention must be paid to global properties of the space in which the
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system evolves, encoded in the electromagnetic vector potential.8 The in-
tegrability of the wavefunction, as determined by the vector potential, will
have empirical consequences.

The Aharonov-Bohm effect comes in two variants: the electric effect and
the magnetic effect [Peshkin and Tonomura, 1989]. Aharonov and Bohm’s
original paper first presents the electric version and then claims that “rela-
tivistic considerations” point towards a similar magnetic one [Aharonov and
Bohm, 1959, p. 486]. However the magnetic effect can be more rigorously
derived by appealing to the the condition that the wavefunction be singled
valued. AB also present this derivation, and it is the one that is found most
generally in the literature [Aharonov and Bohm, 1959, p. 486], [Peshkin and
Tonomura, 1989]. I will start by the presenting the electric effect, before
moving on to the magnetic one.

The electric AB effect

AB start by considering a charged quantum particle inside a Faraday cage (as
discussed in chapter 1) described, in the absence of any charges on the cage,
by the wavefunction Ψ0(x, t) [Aharonov and Bohm, 1959, p. 485]. By adding
charge to the surface of the cage, the potential inside the cage is altered
uniformly without causing electric or magnetic fields to appear there. If the
potential in the cage is varied over a time period [t0, t], then the phase of the
quantum particle will be shifted by an amount (in natural units) e−iqS , with
S =

∫ t
t0
φ(t′)dt′. After performing this operation, the particle is desribed

by the wavefunction e−iqSΨ0(x, t). Note that this potential induced phase
factor is achieved without resorting to any non-zero electric or magnetic
fields in the region where the particle is located (the region in which the
wavefunction of the particle doesn’t vanish).

AB then consider taking a single coherent electron beam, splitting it into two
beams, and passing each one through its own Faraday cage. This setup is
illustrated in figure 4.2. The two beams will suffer a phase shift of e−iqS1 and
e−iqS2 respectively, with S1 =

∫ t
t0
φ1(t′)dt′ and S2 =

∫ t
t0
φ2(t′)dt′. When the

two beams are recombined and allowed to interfere, the interference pattern
will depend on the difference between the phase shifts undergone by the two
beams, S1−S2. AB conclude that there is a “physical effect of the potentials”
because the interference pattern has been changed while the wavefunction
has only traversed regions in which the E and B fields vanished, but the

8One does not have to choose to encode the global properties in the vector potential.
Any other method, for instance an appeal to the holonomies of the space, is also suitable.
In what follows, I will not endorse any particular stance on the controversial issue of the
“reality” of the vector potential. I will simply use it as a convenient tool for formulating
certain predictions of Q-EM.
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Figure 4.1: This figure shows the effect of charging a Faraday cage on the phase of a
wavefunction contained inside the cage. The phase is represented by a clock-like figure.
By charging the cage, and thus changing the potential inside the cage from V0 to Vt, the
phase of the wavefunction is rotated.

potentials did not.9 They also note that this effect is “essentially quantum
mechanical” [Aharonov and Bohm, 1959, p. 486]. This view is shared by
Peshkin, who remarks that the “AB effect is deeply involved with the most
primitive and general features of quantum theory” [Peshkin and Tonomura,
1989, p. 4].10

The magnetic AB effect

I will now derive the magnetic AB effect. As before, we take the zero-field
solution to the Schrödinger equation to be Ψ0(x, t). In the presence of a
magnetic field, this solution becomes e−qSΨ0(x, t) with S =

∫ x
A(x′) · dx′,

where x denotes the end point of integration [Peshkin and Tonomura, 1989,

9In chapter 5, we will argue that this is one way of implementing an active gauge
transformation.

10I stress this point in order to put Wallace and Timpson’s unorthodox interpretation
of the AB effect into perspective. They claim that the AB effect is a “classical exam-
ple of non-separability”, where “classical” is to be understood as opposed to “quantum”
[Wallace and Timpson, 2010, p. 714]. Their argument relies on the claim that such an
effect is derivable in the context of the classical field theory of a complex field [Wallace,
2009]. Furthermore, they argue that such an effect would be testable experimentally if the
classical limit of a complex scalar field were accessible to observation. However, I would
object to where Wallace and Timpson draw the classical/quantum divide. One might
want to argue that any considerations of a complex matter field already belong to the
domain of quantum theory, even before this matter field is “quantized”, in the sense that
it is represented by an operator on Hilbert space.
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Figure 4.2: This figure depicts the electric AB effect. An electron beam passes through
a double slit. Both the top beam and the bottom beam go through Faraday cage devices
which are used to induce different phase-shifts in the wavefunctions of each beam. When
the two beams recombine and interfere, the different phase-shifts will result in a shifted
interference pattern when compared with that obtained in a normal double slit experiment.

p. 6].11 Consider placing a thin solenoid between the slits through which a
magnetic flux passes and calculating the value of the wavefunction at the
point x on the screen where the interference pattern is measured. The setup
is shown in figure 4.3.

If the integral is taken from the electron source to x along path 1, the
solution for the wavefunction at x is Ψ1(x, t) = e−qS1Ψ0(x, t) with S1 =∫

path1 A(x′) · dx′. If the integral is taken along path 2, the solution for the

wavefunction at x is Ψ2(x, t) = e−qS2Ψ0(x, t) with S2 =
∫

path2 A(x′) · dx′. I
will now show how the presence of the AB solenoid poses a problem for the
requirement that the wavefunction be single-valued at x. Consider the loop
integral around the coil, starting and ending at the source, traversing first
path 1 and then path 2 in reverse.

11Technically, the start point of integration is −∞ as in (4.20). However, since we
will be considering loop integrals, the integration from −∞ to the starting point can be
discarded.
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Figure 4.3: This figure shows the setup for the magnetic AB effect.

∫ x

Source
A(x′) · dx′ −

∫ x

Source
A(x′) · dx′

=

∫ x

Source
A(x′) · dx′ +

∫ Source

x
A(x′) · dx′

=

∮
A(x′) · dx′

=

∫
(∇×A) · dS =

∫
B · dS = Φ

where the final line is obtained by applying Stokes’ theorem, and Φ is the
magnetic flux through the solenoid. If the magnetic flux does not vanish nei-
ther will the loop integral around the coil, and therefore we conclude that
the value of the wavefunction at x appears to depend on the path taken
between the source and the screen. The AB coil has therefore affected the
integrability of the wavefunction. In order to maintain the single valuedness
of the wavefunction, we conclude that the path dependent wavefunctions Ψ1

and Ψ2 will interfere with each other at point x, giving the final wavefunc-
tion Ψ = Ψ1 + Ψ2 [Aharonov and Bohm, 1959, p. 486]. Due to the phase
shift between Ψ1 and Ψ2, the interference pattern observed at the screen
will differ from that obtained in the normal double slit setup (with no AB
solenoid). This completes the derivation of the magnetic AB effect. Ex-
perimental verification of the Aharonov-Bohm effect has been achieved, by,
among others, Chambers (in 1960) and Tonomura et al (in 1986) (Chambers
[1960], Tonomura et al. [1986]).
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4.3.3 Field equations and the inertial gauge

I will now suggest “field-equations” for the electromagnetic potential which
can be used to define the notion of an inertial gauge. The Aharonov-Bohm
effect shows that a magnetic flux Φ can act as a source of the electromagnetic
potential, in the context of the “phase-motion” of a quantum particle. The
field equation that links source to potential is

∮
A · dx = Φ (4.30)

This implies that A can no longer be written in the “impotent” form A =
∇χ(x, t). If it could, then the loop integral would have to vanish

∮
A · dx =

∮
∇χ(x, t) · dx =

∫
∇×∇χ(x, t) · dS = 0 (4.31)

Since A cannot be written as the gradient of some smooth function of space
and time, it is impossible to find a global gauge transformation (a gauge
transformation defined on the whole of spacetime), such that the electro-
magnetic potential vanishes everywhere, and the Schrödinger equation takes
its ordinary form (4.4). This non-integrability of the gauge field is an im-
portant and well-studied feature of gauge theories [Wu and Yang, 1975]. In
such cases, the vector potential can only be transformed away locally, at a
point x, by selecting a gauge in which, at x, the Schrödinger equation takes
its ordinary form (4.4). If (4.30) does not vanish, then a choice of gauge
that was inertial when it did vanish, may no longer be inertial afterwards.
The notion of an “absolute” inertial gauge, or a background against which
inertiality can be defined, has thus been eliminated from the theory. Iner-
tiality is now a property of a gauge contingent on a solution to the holonomy
equations.

In the fibre bundle formulation of quantum-electromagnetism, such integrals
over closed loops are called “holonomies”, and can be taken to represent
global topological properties of the base space (see chapter 3). This has led
to a topological interpretation of the A-B effect. The electromagnetic influ-
ence of the AB coil on the phase of a quantum particle is geometrized by
encoding it in the topology of the base space. This is a different geometriza-
tion from the case of GR, where gravitational influences are encoded in the
curvature of spacetime. Nounou argues that an appeal to topology can help
explain how the AB solenoid can have a non-local effect on the quantum
particle [Nounoun, 2003, p. 194]. While I do not doubt the mathematical
efficacy of exploiting the topological properties of the base space to en-
code electromagnetic influences, I disagree with Nounou’s claim that such a
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move has more explanatory strength than other approaches to the AB effect.
While the non-local influence of the AB solenoid may be puzzling, an appeal
to the topological properties of space is no less so. Nounou suggests that an
intuitive grasp of the effect of the solenoid on the topology can be obtained
by realising that, due to the solenoid “a very big chunk of space, 10 000 000
000 bigger than the electron itself cannot be accessed by it” [Nounoun, 2003,
p. 191]. However, as Nounou herself notes, the fact that there is a region of
space that is not accessible to the electron is not relevant to the occurrence
of the AB effect. It is the fact that a magnetic flux is present in this region.
The inaccessibility of a large part of space to the electron is therefore not
relevant to developing an intuitive grasp of the effect of the solenoid on the
topology.



Chapter 5

A classification of
transformations

In this final chapter I present a classification of the transformations that can
be performed in three different theoretical contexts: a) classical spacetime
theories (Newtonian mechanics in Galilean spacetime, special relativity in
Minkowski spacetime and general relativity), b) non-relativistic quantum
mechanics and c) gauge theories (as applied to both classical and quantum
systems). For each transformation, I will identify whether it is an active or
a passive transformation. In the case of active symmetry transformations, I
will discuss how the transformation in question passes the “transformation
condition” (introduced in chapter 1) [Brading and Brown, 2004, p. 646].
For the passive transformations I will introduce a distinction between weak
and strong symmetries. This distinction will be relevant to understanding
when passive symmetry transformations imply corresponding active sym-
metries and when this implication fails. In the case of classical spacetime
theories and quantum mechanics, the classification that I propose follows
orthodox views. However, in the case of the gauge theories, some ideas will
go against the currently accepted interpretation, and I will address exist-
ing objections.1 Finally I will reflect on the empirical significance of active
transformations. I will conclude that the slightly different analysis that is
necessary to make sense of active gauge transformations on quantum sys-
tems is due to fundamental differences between such systems and classical
systems.

1An as yet unpublished pre-print by Wallace and Greaves presents ideas that are closer
to mine than can be found elsewhere [Wallace and Greaves, 2011]. However, I disagree
with some of their conclusions, as will be explained.
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5.1 Tools of classification

Before beginning the classification of transformations proper, I introduce
the tools that I will use for this classification.

5.1.1 Active and passive transformations

The definitions of active and passive transformations were given at the end
of chapter 1. The crux of the distinction is that a passive transformation
relates two different representations of the same physical situation whereas
an active transformation relates two representations of different physical
situations. In order to assess whether a given transformation is active or
passive, it is therefore necessary to relate the representations connected by
the transformations to actual physical situations. Before discussing in more
depth how my use of the terms “active” and “passive” relates to their stan-
dard use in the literature, I clarify the notions of a “physical situation” and
a “physical difference”.

Physical situations and physical differences

By “physical situation” I mean a situation in the world. In other words,
I mean the events that happen “out-there”. By mathematical situation,
I mean a representation of a physical situation. A physical situation is
therefore a piece of “reality”, whereas a mathematical situation is a piece
of mathematics. The distinction between empirical and theoretical symme-
tries introduced in chapter 1 was intended to highlight the distance that
exists between transformations that act on physical situations, and trans-
formations that act on mathematical situations. Theories in physics that
adequately represent the physical situations for which they are intended
should be finely tuned enough that any change in the physical situation
is captured by a change in the mathematical situation given by the theory.
However, the converse is not necessarily true. It may be that a change in the
mathematical situation does not correspondence to any change in the physi-
cal situation. We called such changes passive transformations. In Redhead’s
terms, a theory that gives rise to mathematical situations that are related
by passive transformations has “surplus structure”. However, a change in
the mathematical situation can also correspond to a change in the physical
situation it represents. Such a change is called an active transformation.

In distinguishing between active and passive transformations, clear criteria
must be given for when the differences between mathematical situations cor-
respond to differences between the physical situations they represent. For
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Brown and Brading, the relevant criteria is “empirical significance” [Brading
and Brown, 2004, p. 646]. A transformation between mathematical situa-
tions has empirical significance if there is an empirical difference between the
physical situations that they represent. By “empirical difference”, I believe
they intend a difference in the outcome of some imaginable experiment.

Grounding the notion of physical difference in imaginable measurement out-
comes is perhaps not entirely satisfactory. Consider the case of the velocity
of the universe in Newtonian mechanics. The value of this velocity is one that
distinguishes mathematical situations allowed by the theory. It is generally
accepted however that it does not distinguish physical situations, princi-
pally because the value of this velocity would not affect the outcomes of any
imaginable experiments. In order to make this line of reasoning complete,
a solid argument is necessary for why the velocity of the universe should
not affect any measurement outcomes. I am unaware of any such definitive
argument.

Another situation in which such a situation arises is the hole argument in
general relativity. However, in this case Einstein’s point coincidence argu-
ment provides a premise from which it follows that no imaginable experiment
will be able to distinguish between two diffeomorphically related models
〈M, gab, Tab〉 and 〈M, d∗gab, d∗Tab〉. The point coincidence argument states
[Einstein, 1997, p. 153]

All our spacetime verifications invariably amount to a deter-
mination of spacetime coincidences. If, for example, events con-
sisted merely in the motion of material points, then ultimately
nothing would be observable but the meetings of two or more of
these points. Moreover, the results of our measurings are nothing
but verifications of such meetings of the material points of our
measuring instruments with other material points, coincidences
between the hands of a clock and points on the clock dial, and
observed point-events happening at the same place at the same
time.

Since the coincidences of events are the same in both models 〈M, gab, Tab〉
and 〈M, d∗gab, d∗Tab〉, it follows that no measurement will be able to dis-
tinguish them. Such a conclusion obviously stands and falls with the point
coincidence argument, but at least there is a direct line of reasoning from
possible measurement outcomes to the empirical significance of transforma-
tions between mathematical situations.

To summarize: a physical difference between mathematical situations is a
difference in the outcomes of measurements that could be performed on the
physical situations represented by the mathematical situations.
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Active and passive transformations in the literature

In the literature, the terms “active transformation” and “passive transfor-
mation” are often used in the way I suggest [Brading and Brown, 2004],
[Brading and Castellani, 2003, p. 1343]. However, the terms are also often
used, even by the same authors, in a slightly different way. Although this
different usage overlaps considerably with mine, some fundamental differ-
ences may cause much confusion if not isolated and clarified at this point.
In GR, coordinate transformations are often referred to as passive, whereas
differentiable maps of the manifold onto itself (point transformations or dif-
feomorphisms) are often referred to as “active”. However, this terminology
does not imply that point transformations always relate different physical
situations. As Stachel notes [Stachel, 1993, p. 133]

A point transformation, as an active transformation, is of
potential physical significance since, as we will see, under cer-
tain circumstances it can be used to turn one physical model in
another.

When used in this way, “active transformations” only potentially relate dif-
ferent physical situations. As we just mentioned, the physical indistinguisha-
bility of 〈M, gab, Tab〉 and 〈M, d∗gab, d∗Tab〉 leads to the pitfalls of the hole
argument if it is maintained that these two mathematical situations are dif-
ferent in some physically significant sense. These pitfalls are avoided by
accepting that such diffeomorphically related models represent the same
physical situation. Brading and Brown quote Anandan’s claim that this
“solution to the hole argument abolishes the distinction between active and
passive transformations” [Brown and Brading, 2002, p. 28]. Of course, what
Anandan means here is that the difference between mathematically active
and passive transformations is abolished, not the difference between active
and passive transformations as I have defined them. In fact, I will argue
later that, even accepting this solution to the hole argument, “mathemati-
cally active transformations”, in other words point transformations, can still
relate physically different situations under certain conditions.

In summary, in the literature, the concepts “active transformation” and
“point transformation” are often used synonymously. I believe that these
two terms should be kept apart, and that the term ‘active transformation’
should be reserved for describing a transformation that makes a physical dif-
ference, or, in Brown and Brading’s terminology, has empirical significance.
In this way, whether a point transformation is an active transformation is
not something that follows analytically from their definitions, it is something
which must be shown.
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5.1.2 Global and local transformations

When discussing transformations and symmetries, another common but con-
fusing distinction is that between local and global transformations. In gen-
eral, transformations are defined in terms of a function on (a region of)
spacetime. If this function is a constant, so that it can be treated as a pa-
rameter, then the transformation is usually called global. On the other hand,
if the function is not constant, then the transformation is usually called lo-
cal. These definitions imply that global transformations are a special case
of the local ones. However, this is a very confusing situation because it is
often claimed that global transformations are symmetries of a theory but
that local transformations are not. If global transformations are a subclass
of the local ones, then the previous statement is a contradiction. For the
purposes of my classification, I adopt a more intuitive notion of the distinc-
tion between global and local. I will not take the function in terms of which
the transformation is defined as determining whether the transformation is
local or global. Instead, I will look at the effect of the transformation on
the system in question. If the transformation affects all parts of the sys-
tem uniformly, I will call the transformation global. If it affects some parts
of the system differently from others, I will call it local. The significance
of this different approach to the local/global distinction will be especially
important in the case of gauge transformations.

A second difficulty relating to the global/local distinction will arise in our
discussion of active transformations. In what follows I will want to consider
both global and local active transformations. However, it might initially
seem like active global symmetry transformations are impossible because
they cannot relate physically different situations.2 A global active transfor-
mation will affect everything in the universe in the same way. Furthermore,
since it is a symmetry, the transformed and untransformed situations will
be indistinguishable. Giving the universe a uniform velocity in Newtonian
spacetime was an example of such a transformation. We concluded that
such a transformation did not lead to a physically different situation and
therefore that it was not an active transformation. It seems that such a line
of reasoning should apply to any global active symmetry transformation.

The only way to salvage the notion of an active global symmetry trans-
formation is to define it in terms of “isolated subsystems” of the universe
[Brading and Brown, 2004, p. 646]. A global transformation means that the
same transformation is performed across the whole subsystem, while the rest
of the universe is left unchanged. Strictly speaking, such a transformation is

2There is no problem for global transformations that are not symmetries because the
very fact that they are not symmetries can be used to differentiate the transformed and
untransformed situations.
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local (it does not affect all parts of the universe in the same way). However,
it is important to accept that if one is going to make any sense of active
global symmetries, one must accept to treat isolated subsytems essentially
as their own self-contained universes. Transformations acting on the sub-
system are then classified as global or local with respect to that subsystem
and not the universe as a whole.

5.1.3 Weak and strong symmetries

In chapter 1, I introduced some of the difficulties involved in identifying
when a particular transformation qualified as a symmetry. I showed that
different plausible definitions of the concept of symmetry did not result
in the same end classifications. In order to capture these ambiguities, I
will define two different ways in which a passive transformation can be a
symmetry, which I term weak symmetry and strong symmetry. While it will
be difficult to give sharp criteria to distinguish these two notions, I believe
that something like this distinction plays a crucial role in determining when
passive transformations imply active equivalents and when they do not. I
will now try to motivate the distinction, and I hope that its usefulness will
become clearer when I apply it in context.

In this chapter, we are concerned with transformations that act on models
of a theory. As defined in chapter 1, a model of a theory is a mathemati-
cal situation, consisting of variables and functions of these variables, which
obeys the laws (equations) of the theory. Broadly speaking, a transforma-
tion acting on this model is a symmetry if the mathematical situation that
it generates also obeys the equations of the theory, and therefore is also a
model of the theory. This agrees with the definition of symmetry endorsed
by Brown and Brading [Brading and Brown, 2004, p. 645]. However, we also
saw in chapter 1 that this definition still allows room for maneuver because
it is reliant on exactly how the equations of the theory in question are for-
mulated. In other words, the syntax used to write the equations of a theory
can play a role in determining which transformations are symmetries and
which are not [Norton, 2003]. As is well known, this issue is at the heart
of debates about the significance of general covariance in general relativity.
A clever formulation of the laws will make them flexible enough to allow a
larger number of transformations to count as symmetries than a less clever
formulation.

The notion of a ‘clever formulation of the laws’ is best substantiated by com-
paring neo-Newtonian mechanics (Newtonian mechanics without a notion of
absolute rest) to general relativity.3 In force free neo-Newtonian mechanics,

3The comparison could just as well have been between special relativity and general
relativity. Thus everything I say about neo-Newtonian mechanics in the rest of this section
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the equation that determines whether a mathematical situation is a model
of the theory is

d2x(t)

dt2
= 0 (5.1)

with the vector x(t) denoting the spatial coordinates of a particle and t
absolute Newtonian time.4 Its equivalent in general relativity is the geodesic
equation

d2xλ

ds2
+ Γλµν

dxµ

ds

dxν

ds
= 0 (5.2)

where the four-vector xλ denotes the spacetime coordinates of the particle
and s is a parameter along the worldline of the particle. In neo-Newtonian
mechanics, a coordinate transformation results in a transformation of the
spatial coordinates of the particle from x(t) to some new spatial coordinates
x′(t). This transformation is a symmetry if x′(t) obeys (5.1). In the case
of GR, a coordinate transformation results in a transformation from the
coordinates xλ to new coordinates x′λ. However, in order to judge whether
this transformation is a symmetry, one does not test x′λ in (5.2). Strictly
speaking, one first transforms (5.2) by adjusting the Christoffel symbols
Γλµν to the new coordinate system and then one plugs in the new coordinate
values. (5.1) is invariant under coordinate transformations because the exact
same equation is used to judge whether any given situation is a model of
neo-Newtonian mechanics. On the other hand, it is an illusion in a sense that
(5.2) is invariant under coordinate transformations because the components
of the Christoffel symbols have to be adapted to the particular coordinate
system that is being used before the equation can be applied.

This difference between the invariance of the equations of neo-Newtonian
mechanics and the invariance of the laws of GR has been pointed to nu-
merous times in the literature [Norton, 1993, p. 833]. However, it is not
straightforward to formulate the difference in a totally unambiguous man-
ner. One possibility is to consider the sense in which different coordinate
systems can be considered equivalent in a particular theory. In the case of
neo-Newtonian mechanics, consider the trajectory of a particle described by
the coordinates x(t). In a different coordinate system, the same trajectory

could be applied to special relativity, adjusting the equations to account for the fact
that coordinates transform according to Lorentz transformations, rather than Galilean
transformations.

4When we say a mathematical situation is a model of a theory, the mathematical
situation represents the history of a system, not the instantaneous state of the system.
Equation (5.1) is then taken to hold throughout the history of the system [Brading and
Castellani, 2003, p. 1344].
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will be described by the coordinates x′(t). If both x(t) and x′(t) satisfy (5.1),
then they are both models of neo-Newtonian mechanics. Furthermore, one
could call x(t) and x′(t) equivalent descriptions because there is nothing in
the equation (5.1) to distinguish them. On the other hand, if the motion of
a particle in GR is described by two coordinates systems xλ and x′λ, then
there is a possibility that they can be distinguished, even if they both obey
the generally covariant equation (5.2). If a transformation of the Christoffel
symbols is needed when changing between these coordinate systems, then
the values of the components of the Christoffel symbols can be used to dif-
ferentiate the two coordinate systems and they cannot be called equivalent.
As Dieks puts it, “the numerical values of the coefficients Γλµν that occur in
the ‘generally valid form’ of the equation of motion [. . . ] are quantities that
encode the acceleration of the frame [coordinate system] that is used” [Dieks,
2006, p. 12]. In a non-generally covariant formulation of neo-Newtonian me-
chanics, as is used here, symmetry transformations always relate equivalent
coordinate systems. On the other hand, in GR, symmetry transformations
sometimes relate inequivalent coordinate systems. I call symmetry transfor-
mations that relate equivalent coordinate systems strong symmetries, and
those that relate inequivalent coordinate systems weak symmetries.

5.2 The classification

I now apply the tools developed above to classify the possible transforma-
tions of classical spacetime theories, quantum theory and gauge theory.

5.2.1 Classical spacetime theories

In chapter 1, we saw that the transformation

x(t) =

x(t)
y(t)
z(t)

→ x′(t) =

x′(t)y′(t)
z′(t)

 =

x(t) + vxt
y(t)
z(t)

 (5.3)

had a dual interpretation in terms of passive and active versions. This du-
ality can be captured geometrically, when the theory is formulated on a 4-
dimensional manifold, in terms of the distinction between coordinate trans-
formations and point transformations. Coordinate transformations were de-
fined in section 3.1.2. For two coordinate systems (U1, φ1) and (U2, φ2), a
coordinate transformation is the mapping of R4 onto itself given by φ2 ◦φ−1

1 .
There are many different kinds of coordinate transformation. For instance,
it is possible to change from Cartesian coordinates to polar coordinates.
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While such a transformation may greatly simplify calculations, it has no
particular consequences and will not interest us further. It is also possi-
ble to change the properties of a coordinate system, for instance its state
of motion, or the position of its origin. These kinds of transformation can
have important consequences. A point transformation is a mapping of the
manifoldM onto itself. I will only be interested in differentiable point trans-
formations, therefore in what follows I will assume the expressions “point
transformation” and “diffeomorphism” to be synonymous. Torretti notes
that for each coordinate transformation φ2 ◦ φ−1

1 , there is a corresponding
point transformation given by φ−1

2 ◦ φ1 [Torretti, 1983, p. 25 and p. 31].

In the context of a spacetime theory, we assume that the state of a (classical)
system is given by a configuration of non-intersecting time-like curves in the
manifold, where each curve is the worldline of a part of the system. All
coordinate transformations are clearly passive transformations, because they
only affect how the worldlines of a system are described in terms of 4-tuples
of real numbers and involve no physical interaction with the system. On the
other hand, a point transformation will change the worldlines of the system
in the manifold, and is therefore a candidate for an active transformation.
Whether a point transformation is an active transformation will depend
on whether it can be shown to map one physical situation onto a different
physical situation.

Neo-Newtonian mechanics

I will now classify the coordinate transformations and point transformations
of neo-Newtonian mechanics. It is helpful to distinguish between the coordi-
nate transformations corresponding to elements of the proper orthochronous
Galilei group and the rest.5 As we know from Wigner’s philosophy of symme-
try, the transformations corresponding to the elements of the Galilei group
are symmetries of neo-Newtonian mechanics. These are time translations,
spatial translations, rotations and boosts. By boost we mean that we trans-
form from one coordinate system to another in a state of uniform motion
with respect to the first (the passive version of (5.3)). Coordinate transfor-
mations which do not correspond to elements of the Galilei group are not
symmetries. For instance, (5.1) is not valid under a transformation to a
rotating coordinate system. In that case, additional terms accounting for
the fictitious Coriolis and centripetal forces are needed to describe the mo-
tion of a system. The transformations corresponding to the elements of the

5I will often refer to the proper orthochronous Galilei group simply as the Galilei
group. The time reversal and parity transformations will have no part to play in what
follows. Although to some extent the Galilei group and the Poincaré group contain the
same transformations, namely spatial translations, time translations, rotations and boosts,
differences in the way these are defined mean that both groups have different invariants.
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Galilei group are global because each point of the coordinate system suffers
the same transformation (all the points are shifted by the same amount in
the case of a spatial translation for example).

Consider now the point transformation φ−1
2 ◦ φ1 corresponding to the coor-

dinate transformation φ2 ◦φ−1
1 . I will show that this represents a physically

different situation by applying the point transformation to an isolated sub-
system. Let a system S be represented by a configuration of time-like world-
lines in a region U of the manifold. In another region U ′ of the manifold,
we define an environment system E, consisting of one time-like worldline.
After applying the point transformation in the region U (and the identity
transformation on the region U ′), we can study the new relations between
the environment and the transformed system S′. For instance, we can find
the distance from E to a point of S′ at a certain time t. After the point
transformation, this distance will be different than it was before. This cor-
responds to a physical consequence of the point transformation, and thus
we can conclude that the point transformation is an active transformation.
Any point transformation that differs from the identity in the region U will
result in a change in the relations between S and E. As we saw at the
beginning of this chapter, the coordinate transformations corresponding to
the elements of the Galilei group are strong symmetries, because they re-
late equivalent coordinate systems. This can be seen from the fact that it
is not possible to use (5.1) to distinguish between two coordinate systems
related by such a transformation. Let φ1 and φ2 be two such coordinate
systems. It can be shown that if a worldline W is a model of neo-Newtonian
mechanics, then φ−1

2 ◦φ1(W ) is also a model [Torretti, 1983, p. 65]. In other
words, the passive coordinate symmetry transformation implies the active
point symmetry transformation.

Proof (passive symmetry implies active symmetry): Take a physical
system S, represented by a configuration of timelike worldlines, determined
by laws L and initial conditions C(S). A point transformation τ = φ−1

2 ◦φ1

takes S into τS, and C(S) into C(τS). If φ1 and φ2 are related by a
transformation corresponding to an element of the Galilei group, then the
laws L will be the same in both coordinate systems. Note that φ2(τS) =
φ2(φ−1

2 ◦φ1S) = φ1(S). This means that the coordinates of the system S in
φ1 are exactly the same 4-tuples of real numbers as the coordinates of the
system τS in φ2. But since the same laws L apply in φ1 and φ2 and S obeys
the laws, then τS will also obey the laws.

Note that the implication can also be proven in the other direction, making
the passive and active versions of the symmetry logically equivalent. Torretti
notes that Einstein also appreciated this logical equivalence of active and
passive symmetries [Torretti, 1983, p. 65].

Proof (active symmetry implies passive symmetry): Take two phys-
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ical systems S and S′, represented by a configuration of timelike worldlines,
such that S′ = τS, and τ is a symmetry of neo-Newtonian mechanics. This
means that both S and S′ are models of neo-Newtonian mechanics. Choose
a coordinate system φ1 such that the coordinates of φ1(S) obey the laws
L of neo-Newtonian mechanics. Now choose a second coordinate system φ2

such that φ2(S′) = φ1(S). Since S and S′ are both models of neo-Newtonian
mechanics, and φ2(S′) = φ1(S), the laws L must be the same in both coor-
dinate systems. φ1 and φ2 are thus equivalent coordinate systems.

The point transformations corresponding to the elements of the Galilei group
can be made empirically significant by applying them to an isolated subsys-
tem of the universe. In this way, the above arguments show that all such
point transformations are active symmetry transformations. Consider the
point transformation that takes the worldlines of a system S into the world-
lines of a system S′ such that, in the inertial coordinate system φ1, the
system S′ is in a state of uniform motion with respect to the untransformed
system S. This is an active symmetry transformation that corresponds to
the empirical symmetry of Galileo’s ship, as described in chapter 1.

We mentioned earlier that the passive transformation from an inertial co-
ordinate system to a rotating coordinate system was not a symmetry of
neo-Newtonian mechanics as it is formulated here. The active point trans-
formation corresponding to this transformation is also not a symmetry of
force-free neo-Newtonian mechanics because the transformed situation does
not obey the laws of the theory. However, it is possible to give a gener-
ally covariant formulation of neo-Newtonian mechanics in which the passive
transformation to a rotating coordinate system becomes a symmetry. How-
ever, such a formulation would have to introduce elements into the equations
which could be used to distinguish between inertial coordinate systems and
rotating ones. In this case, the passive coordinate transformation from an
inertial to a rotating coordinate system would be a weak symmetry and
would not imply that the corresponding active point transformation be-
came a symmetry. This analysis reveals why one should be cautious when
claiming that generally covariant techniques extend the symmetry groups
of a theory. In fact, a general covariant formulation can be said to extend
the passive symmetries of a theory (in a sense), but it does not extend the
active ones.

The following table presents the results of the classification for neo-Newtonian
mechanics, as formulated in a non-generally covariant fashion.
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Active/Passive Global/Local Symmetry

Coordinate transformations (Galilei group) Passive Global Yes (strong)

Coordinate transformations (other) Passive Both No

Point transformations (Galilei group) Active Global Yes

Point transformations (other) Active Both No

Special Relativity

The classification of transformations in special relativity is identical to that
of neo-Newtonian mechanics, only the details of the mathematical transfor-
mations change to take account of the structure of Minkowski spacetime,
which differs from that of neo-Newtonian spacetime. The following Lorentz
transformation (in natural units) is the special relativistic analogue of (5.3),
and it also has a dual interpretation in terms of active and passive versions.

xλ =


t
x
y
z

→ x′λ =


t′

x′

y′

z′

 =


γ −γv 0 0
−γv γ 0 0

0 0 1 0
0 0 0 1



t
x
y
z

 (5.4)

with γ = 1√
1−v2 the usual Lorentz factor. The worldline W of a massive

particle is a model of the theory if it is timelike and its length L given by

L =

∫
W

ds (5.5)

with the interval ds2 = ηµνdxµdxν , is extremal. This is the case if

δL = δ

∫
W
ds = 0 (5.6)

As in the case of neo-Newtonian spacetime, it is not possible to use these
equations to differentiate between two inertial coordinate systems. Let W be
the worldline of a massive particle, and φ1 and φ2 be two inertial coordinate
systems. Exactly the same equations will be used in both coordinate systems
to judge whether W is a model of SR. More specifically, both coordinate
systems will make use of the Minkowski metric ηµν to calculate distances.
This means that in SR, all inertial coordinate systems are equivalent, and
therefore that transformations between them are strong symmetries. All
coordinate transformations corresponding to elements of the Poincaré group
are strong symmetries of SR, and they imply equivalent active symmetry
transformations (which take the form of point transformations) [Torretti,
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1983, p. 65]. The classification table for special relativity looks exactly
the same as that for neo-Newtonian mechanics, with the Galilei group now
replaced by the Poincaré group.6

Before moving on to general relativity, I will make a small remark about
the equivalence of active and passive symmetry transformations that holds
in neo-Newtonian mechanics and special relativity. The logical equivalence
of active and passive transformations suggests that one cannot consider the
one or the other as being more or less revelatory about the structure of our
world. This seems to be in tension with Wigner’s philosophy of symmetry
as presented in chapter 2. We saw that Wigner believed that invariance
of the laws of nature under a change of description (a passive symmetry)
was a trivial matter, and therefore that only invariance after physical ac-
tion on a system (an active transformation) could be of interest. In other
writings, Wigner has recognized the significance of Einstein’s use of sym-
metry principles in physics [Wigner, 1991]. However, a close look at the
Relativity Principle of Einstein’s 1905 paper shows that it is formulated in
terms of passive transformations, precisely the kind which Wigner dismisses
as trivial. The Relativity principle of 1905 states [Einstein, 1923, p. 4]

The laws by which states of physical systems undergo change
are not affected, whether these changes of state be referred to one
or the other of two systems of coordinates in uniform translatory
motion.

The apparent incoherence of Wigner’s views can be resolved by pointing out
an equivocation over what is meant by “laws of nature”. Torretti explains
[Torretti, 1983, p. 54]

The “laws” mentioned by the RP [Relativity Principle] are
not the real relations between classes of events that a philoso-
pher would call by that name, but rather the relations between
coordinate functions, and functions of such functions, by which
the physicist seeks to express the former. If the RP spoke about
real relations of events it would be trivial: obviously, such rela-
tions cannot be affected by the choice men make of a coordinate

6Given that the transition from neo-Newtonian mechanics to special relativity was sup-
posedly revolutionary, it may initially seem odd that my classification of symmetries does
not bring out any significant difference between them. However, as far as symmetries are
concerned, special relativity does not add anything to neo-Newtonian mechanics, as the
famous Relativity Principle was in fact already well known since Galileo. The revolu-
tionary new concepts of space and time that emerge from SR come from combining the
Relativity Principle with the Light Principle. This has very significant consequences for
how one transforms from one coordinate system to another, which is reflected in the shift
from the Galilei group to the Poincaré group. However, it does not affect which of these
transformations are symmetries, and it does not affect which active transformations are
symmetries.
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system for describing them.

One must sharply distinguish between “laws of nature” understood as ab-
stract, observer independent facts about how systems evolve, and “laws of
physics” understood as equations written down on paper by physicists. The
latter are not observer independent facts, because they must relate measur-
able features of systems, and measurements require observers and reference
frames. In dismissing the significance of passive transformations, it seems
that Wigner had the laws of nature in mind, rather than the laws of physics.
In section 2.1.3, we described this position of Wigner’s by saying that he
often thought of the evolution of a system as an “evolution in-itself”, and
not as one written out in terms of some (mathematical) representation by
an observer.

General Relativity

The dynamical nature of spacetime in GR makes it impossible to give a
generally valid classification of its transformations. As in the case of SR,
in force-free GR allowed worldlines of a massive particle are time-like and
extremal.7 They must therefore also obey (5.6). However the interval is now
given by ds2 = gµνdxµdxν where the metric gµν is a solution to the Einstein
field equations (EFE’s).

The general covariant formalism that is used implies that all coordinate
transformations are at least weak symmetries. However, the coordinate
transformations that are also strong symmetries will depend on the par-
ticular solution of the Einstein field equations at hand. For example, the
Minkowski metric is a vacuum solution to the EFE’s, and, as we have seen,
admits the transformations of the Poincaré group as strong symmetries.
However, it is also possible to imagine very uneven metrics which have no
strong symmetries. In this case, every coordinate system can be identified
by the values of the Christoffel symbols that it takes.

As already mentioned at the beginning of this chapter, learning the lesson
taught by the hole argument implies that not all point transformations in
GR can be considered as active transformations. However, the transforma-
tions considered in the hole argument are more than just point transforma-
tions because they also involve “dragging-along” the tensors defined on the
manifold. Consider the structure 〈M, gab, Tab〉, with M a four-dimensional
differentiable manifold, and gab and Tab geometric objects representing the
metric and the stress-energy tensor respectively. This structure is a model of
GR in the sense that gab and Tab satisfy the EFE’s. Consider also the point

7The term ‘force-free’ is not meant to exclude curved-spacetimes, but only those addi-
tional forces that might come from electromagnetic or other (non-gravitational) effects.
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transformation (diffeomorphism) d : M → M. This point transformation
can be used to define the dragged-along metric and stress-energy tensors
d∗gab and d∗Tab. It can be shown that the structure 〈M, d∗gab, d∗Tab〉 is also
a model of GR [Norton, 1993, p. 824]. Furthermore, no experiments can be
performed to distinguish 〈M, gab, Tab〉 from 〈M, d∗gab, d∗Tab〉. However, as
Norton stresses, these two structures are “mathematically independent”, in
the sense that an event that happens at a certain point of the manifold in
the first model is mapped by d onto a different point of the manifold in the
second model. The hole argument can be used to show that if one interprets
the initial structure and its transform as representing physically different sit-
uations, then general relativity becomes an indeterministic theory. Restor-
ing determinism is achieved at the expense of interpreting 〈M, gab, Tab〉 and
〈M, d∗gab, d∗Tab〉 as representing the same physical situation. Accepting this
solution to hole argument, I classify point transformations accompanied by
drag-alongs of the tensor fields as passive symmetries of the Einstein field
equations. I suspend judgment about whether they should be considered
strong or weak symmetries. In fact, Earman and Norton have suggested
that point transformations that drag along the tensor fields on the manifold
can be defined in neo-Newtonian mechanics and special relativity as well,
provided that these theories are reformulated in a certain way [Earman and
Norton, 1987]. In these cases, an analogue to the hole argument is also
possible. My analysis suggests that in all these cases, the point transforma-
tions that also drag-along the tensor fields should be considered as passive
transformations of the relevant field equations.8

There have been attempts to rescue the deterministic character of GR
while maintaining that 〈M, gab, Tab〉 and 〈M, d∗gab, d∗Tab〉 represent differ-
ent physical situations. However, such a move is not necessary to preserve
the claim that point transformations can, under certain conditions, be in-
terpreted as active transformations in GR. A crucial feature of the hole
argument is that the point transformation is also used to transform the
metric and the stress-energy tensors. If one considers point transformations
that act within a solution to the EFE’s (without dragging-along the metric
and the stress-energy tensor), then they can be used to generate physically
different situations just as they can in Galilean and Minkowski spacetimes.
Within a solution of the EFE’s a local point transformation or a global point
transformation that acts on an isolated subsystem will change the relations
that hold between the particles evolving in the spacetime. These changes
will be empirically detectable. From these considerations, I conclude that
point transformations associated with dragged-along tensor fields are pas-

8In such reformulated versions of neo-Newtonian mechanics and special relativity, not
all point transformations are therefore active transformations. The extent to which it is
reasonable to formulate field-equations for neo-Newtonian mechanics and special-relativity
has been questioned by Stachel [Stachel, 1993]. This is another discussion however.
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sive transformations, while within solution point transformations are active
transformations.

It is not uncommon to read that in general relativity, the introduction of
gravity is responsible for “restoring” symmetries that were not present in
neo-Newtonian mechanics or special relativity. For instance, ’t Hooft claims
that “local symmetry can be restored only by adding a new field to the the-
ory; in general relativity the field is of course that of gravitation” [’t Hooft,
1980, p. 103]. Similarly, Kosso claims that “we can add to the physics a claim
about a specific force that restores the invariance” [Kosso, 2000, p. 90]. If
one does not distinguish clearly between active and passive transformations,
and if one is unaware that the Christoffel symbols play an important dual
role in GR (as explained in chapter 4), then these statements can appear
very confusing. As we have explained, by employing a generally covariant
formalism, GR does (in a weak sense) extend the symmetries of previous
spacetime theories which are not formulated in a generally covariant way.
A result of this shift to the generally covariant formulation is the appear-
ance of the Christoffel symbols in the equations of motion. These Christoffel
symbols are also used in GR to represent the gravitational field. However,
one should be careful to separate their role as implementing general covari-
ance from their role in representing the gravitational field. In other words,
GR is not a theory of gravitation because it is generally covariant.9 As
generally covariant formulations of neo-Newtonian mechanics and special
relativity show, it is possible to extend the passive symmetries of a theory
without creating a new theory that represents a dynamical force of nature
(like gravitation). Furthermore, when it is claimed that gravity “restores”
local symmetry, the relevant restoration applies only to passive transforma-
tions. While general covariance ensures that all coordinate transformations
are symmetries in a weak sense, it certainly does not entail that all point
transformations are symmetries. The fact that GR is a theory of gravitation
also has no generalizable consequences for the class of point transformations
that are symmetries. In GR, the active symmetry transformations depend
on the particular metric at hand, and in general there will be no active sym-
metry transformations. The following table summarizes the results of this
section.

9I am tempted to add the converse, namely that GR is not generally covariant because
it is a theory of gravitation. However, this statement may be incorrect and depends on
whether or not it is possible to formulate a non-generally covariant theory which makes
the same predictions as GR. Newtonian mechanics is a non-generally covariant theory of
gravitation, but it famously does not make the same predictions as GR.
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Active/Passive Global/Local Symmetry

Coordinate transformations
(all)

Passive Both
Weak: Yes;
Strong: depends
on gµν

Point transformations (with
dragged-along tensor fields)

Passive Both Yes (of EFE’s)

Point transformations
(within-solution)

Active Both Depends on gµν

5.2.2 Quantum mechanics

As we showed in chapter 3, transformations in quantum mechanics take
the form of maps between Hilbert spaces, or maps of Hilbert spaces onto
themselves. Each observer has an associated Hilbert space. Two different
observers O and Ō will each describe the state of a system S by vectors in
the identical Hilbert spaces H1 and H2 respectively. A translation from the
description of O to the description of Ō is a passive transformation, and is
represented by a map T : H1 → H2. Since H1 and H2 are copies of the
same Hilbert space, the passive transformation from the description of O
to the description of Ō is often just represented as a map from H1 onto
itself and can therefore be represented by an operator on the space. An
active transformation changes the state of a system as described by a single
observer O. It is therefore also represented by a map of the Hilbert space
onto itself.

In spacetime theories, the structure of spacetime itself determines which
passive transformations are strong symmetries, and therefore which active
transformations are symmetries. In addition to these, there are also weak
passive symmetries which depend on the precise formulation of the theory
that is adopted. In GR, the structure of spacetime is determined by the
EFE’s. In special relativity, the structure of spacetime is determined by
the Relativity Principle and the Light Principle. Similarly, it is possible to
impose certain restrictions on the quantum mechanical formalism such that
it respects the symmetries that we believe to hold in the world. Remark-
ably, imposing such restrictions allows successful predictions to be derived
from the quantum formalism, for instance about atomic structure, selection
rules for electron transitions and conservation laws. Wigner is famous for
his work in this domain [Gross, 1995]. Non-relativistic quantum mechanics
takes place on flat spacetime, and therefore the restrictions that are imposed
on the formalism ensure that transformations representing elements of the
Poincaré group are symmetries. These restrictions make the observations of
appropriately related observers equivalent and can therefore be classified as
strong symmetries. Consistent with our analysis, these restrictions can be
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formulated equivalently as active or passive versions. There is no agreement
on how to formulate a generally covariant version of quantum mechanics,
and therefore the notion of a weak symmetry does not apply here.

I will now give an example of the restrictions that can be imposed on the
quantum formalism to make it exhibit certain symmetries. I will start with
the passive case. Consider that O and Ō are two observers related by a
transformation corresponding to an element of the Poincaré group. They
both describe the evolution of a system S using the Schrödinger equation.
Thus, for O the evolution of the system will be

i~
d

dt
|φO〉 = Ĥ(t)|φO〉 (5.7)

and for Ō it will be

i~
d

dt
|φŌ〉 = ˆ̄H(t)|φŌ〉 (5.8)

In order to respect the fact that the transformation from O to Ō is a sym-

metry, we impose the restriction that ˆ̄H = Ĥ [Fonda and Ghirardi, 1970,
p. 30]. This implies that the time-evolution operators for both observers

must be equal ˆ̄T (t, t0) = T̂ (t, t0).

A similar example can be given in the case of an active transformation.
Consider an observer O describing a system S and an observer Ō describing
a system S̄, where Ō is related to S̄ in the same way that O is related to
S. Being related “in the same way” means that “the expectation values of
the operators of the considered irreducible set coincide for O and Ō respec-
tively” [Fonda and Ghirardi, 1970, p. 36]. This means that when O makes a
measurement on S at t0, the probability that she finds a certain outcome is
the same as when Ō makes the same measurement (represented by the same
operator, see section 3.2) on S̄ at her time t0. S and S′ are exact copies of
each other (for instance they may be prepared using the same apparatus),
and therefore can be treated as the same system in two different states.

In the time interval [t, t0], S evolves and O can experimentally determine
transitions probabilities for the system, given by

Pfi(t, t0) = |〈φf |T̂ (t, t0)|φi〉|2 (5.9)

Similarly, Ō can determine the transition probabilities for S̄, which are given
by
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P̄fi(t, t0) = |〈φf | ˆ̄T (t, t0)|φi〉|2 (5.10)

If S and S̄ are related by a transformation corresponding to an element of
the Poincaré group, then one can impose the restriction that Pfi(t, t0) =

P̄fi(t, t0). This entails that T̂ (t, t0) is equal to ˆ̄T (t, t0) up to a phase factor,
which can be eliminated by further considerations [Fonda and Ghirardi,
1970, p. 40].

Due to the way that transformations are defined in quantum mechanics, the
issue of the transformation condition does not arise. Active transformations
are explicitly stated to relate different physical systems. The following table
summarizes the results of this section.

Active/Passive Global/Local Symmetry

Maps of H onto itself corre-
sponding to elements of the
Poincaré group

Active Global Yes

Maps of H1 onto H2 corre-
sponding to elements of the
Poincaré group (with H1 and
H2 copies of H )

Passive Global Yes (strong)

5.2.3 Gauge theories

As we saw in chapter 2, Wigner believed that gauge transformations could
only be interpreted passively, and that they were thus very different from
the spacetime transformations of the Poincaré group. This view is still dom-
inant in the literature today, as can be seen in [Brading and Brown, 2004]
and [Healey, 2009]. Wallace and Greaves have recently suggested a different
view, which will agree with my analysis in this section in many respects,
although some differences will remain [Wallace and Greaves, 2011]. In what
follows I will classify the symmetries of gauge theory first in the context
of their action on classical systems and then in the context of their action
on quantum systems. I will show that active gauge transformations are
possible. Where appropriate, I will show how the transformations can be
represented geometrically in the fibre bundle formalism. This will be helpful
in distinguishing the active and passive interpretations of gauge transforma-
tions, just as the distinction between coordinate transformations and point
transformations was helpful in the context of spacetime theories.



98 CHAPTER 5. A CLASSIFICATION OF TRANSFORMATIONS

Gauge transformations on classical systems

In classical electromagnetism, a gauge transformation is a transformation of
the electric and magnetic potentials that takes the form

{
φ→ φ′ = φ− ∂χ(x,t)

∂t

A→ A′ = A +∇χ(x, t)
(5.11)

where χ(x, t) is a smooth function of space and time. As shown in chapter 2,
this transformation is a symmetry because the electric and magnetic fields
derived from the transformed potentials are the same as those derived from
the untransformed potentials. We know that it can be interpreted passively,
but in order to make a clear analogy with the spacetime case, it would
be advantageous to have some interpretation of the transformation as the
change of something like a coordinate system. The fibre bundle formulation
of classical electromagnetism allows us to do this.

A fibre bundle formulation of classical electromagnetism Using
the mathematical notions introduced in section 3.3, electromagnetism can
be given a geometrical formulation. Classical Maxwell theory can be repre-
sented by the geometry of a principal fibre bundle (E, π,M) with structure
group U(1) [Nakahara, 2003, p. 399]. U(1) is an Abelian, one-dimensional
Lie group, which means that it is a one-dimensional manifold and that the
elements of the group commute. The base space M is then taken to rep-
resent space, or spacetime. If M is topologically equivalent to R3 or R4,
then the bundle is trivial, and by theorem (2) it has a global continuous
cross-section. The connection on the fibre bundle ω is the mathematical
object that encodes the presence or absence of electromagnetic effects, in
other words, the states of the E and B fields.

The connection ω can be related mathematically to the electromagnetic
potential Aµ. In general, this can only be done locally in a open subset U
of M. However, because in this case the bundle is trivial, it is possible to
define a global relation between ω and Aµ. In order to achieve this, it is
necessary first to define a cross-section σ : M → E of the bundle. This
process corresponds to arbitrarily choosing a particular point in the fibre
above each point of the base space. Once a section has been chosen, it is
possible to define the vector potential as (Isham [1999], p.259)

iAµ(x) = (σ∗w)x(∂µ) (5.12)

The operation σ∗ is the pull-back, and the ∂µ represents the local vector field.
Although this equation contains some undefined notions, it is important
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to us because it shows that the electromagnetic potential can be encoded
geometrically in terms of a connection on a principal fibre bundle. Relevant
to our search for an analogue of the coordinate system is the fact that the
geometric structure of the principal bundle doesn’t uniquely determine the
electromagnetic potential. In order to extract a precise value for Aµ from
the connection ω one must make a choice of section σ. If a different section
σ′ had been chosen, this would have produced a different electromagnetic
potential A′µ. It can be shown that under a change of section, A′µ and
Aµ are related by a transformation which reduces to the standard gauge
transformation [Isham, 1999, p. 259]

A′µ = Aµ + ∂µχ(x) (5.13)

where χ(x) is some smooth function of space or space and time depending
on the nature of the base space. The E and B fields can then be calculated
in the usual way with Aµ. The worldlines of particles in spacetime are
determined by Lorentz’s force law.

The fibre bundle structure of the electromagnetic field suggests that passive
gauge transformations should be interpreted as changes in the section of the
principal bundle. This is similar to the way that passive transformations
in spacetime theories are changes in the coordinatization of the manifold.
Two characteristic features of coordinate systems are their necessity and
their arbitrariness. They are necessary in order to have a description of the
events unfolding in the manifold that can be related to the measurements
of a physical observer. On the other hand, they are arbitrary because there
are many different possible coordinatizations of the manifold. These two
characteristics are also features of sections on the principal bundle. A sec-
tion is necessary in order to obtain a value for the electromagnetic potential
that can be used by an observer making measurements. On the other hand,
many different choices of this section are possible. The analogy between
cross-sections and coordinate systems can also be given a mathematical jus-
tification. If a spacetime theory is formulated as a GL(m,R)-bundle B(M)
of frames on an m-dimensional manifold M, then a local choice of section
on U ⊂ M given by σ : U → B(M) corresponds to the choice of a local
coordinate system (U, φ) on M [Isham, 1999, p. 261].

The analogy between coordinate systems and sections of the principal bundle
is not unanimously accepted. Leeds, who defends a view similar to ours in
the context of Q-EM, thinks nevertheless that the analogy cannot apply in
classical EM. He writes [Leeds, 1999, p. 607]

Now, I am not about to claim that we should think of the
vector potential in classical electrodynamics as a single quantity
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which the different gauges allow us to coordinatize in different
ways.

His main argument is that “there is no quantity of which the various vector
potentials are different coordinatizations” [Leeds, 1999, p. 610]. This is a
strange claim, given that Leeds claims to take the “fibre bundle formulation
of electrodynamics literally”, and that we have just shown that in such a
formulation, it is possible to interpret gauge-transformation related vector
potentials as different “coordinatizations” of the connection ω. However, it
seems that Leeds does not fully appreciate that a fibre bundle formulation
of classical electrodynamics is possible. Instead, he mistakenly believes that
it can only be given in the case of gauge transformations acting on quantum
systems. Healey notes that the fibre bundle formulation that Leeds considers
is “a little different from the usual fibre bundle formulation of classical elec-
tromagnetism” since he appeals to a “bundle of phases” which can indeed
only be applied in the presence of quantum systems [Healey, 2007, p. 99].
I therefore conclude that Leeds has not fully appreciated the power of the
fibre formulation to provide an analogy between changes of section on the
principal bundle and coordinate transformations.

Another more potent objection is provided by Healey, who writes [Healey,
2007, p. 17]

It is tempting to conclude that the effects of electromag-
netism [. . . ] are represented by a unique, invariant connection
on the principal fibre bundle, and that a gauge transformation
corresponds merely to a change from one “coordinatization” of
this connection to another. Indeed this way of reading the fi-
bre bundle formulation of electromagnetism motivates a common
strategy for interpreting this and other gauge theories whose ad-
equacy will be a major concern of this book.

However, Healey notes that gauge transformations can also be implemented
by vertical bundle automorphisms, which are the gauge theory equivalent
of the point transformations of spacetime theories. In order to discuss the
significance of this claim, I first define the notions of a principal automor-
phism and a vertical automorphism.

Definition 14. [Healey, 2007, p. 239] A principal automorphism of a prin-
cipal fibre bundle (E, π,M) is a smooth map h : E → E (from the total
space onto itself) satisfying h(pg) = h(p)g for all p ∈ E and g ∈ G. This
means that the image of a point in the orbit of p, is mapped onto a point
in the orbit of the image of p, or that h is “G-equivariant” [Isham, 1999,
p. 225].

A vertical automorphism is a principal automorphism satisfying an extra
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condition.

Definition 15. [Healey, 2007, p. 239] A vertical automorphism is a prin-
cipal automorphism satisfying π(h(p)) = π(p). In other words, a vertical
automorphism maps the fibres back onto themselves without moving them
around in the base space.

Under a vertical automorphism h, the connection can also be transformed
according to ω → h∗(ω) = ω′ , where h∗ is the pull-back operation and,
in general, ω 6= ω′. Furthermore, given a section σ on the principal fi-
bre bundle, the electromagnetic potentials derivable from ω and ω′ are
iAµ(x) = (σ∗w)x(∂µ) and iA′µ(x) = (σ∗w′)x(∂µ), with Aµ and A′µ related
by the standard gauge transformation (5.13) [Isham, 1999, p. 260]. Thus,
a vertical bundle automorphism causes a transformation in the connection
ω → ω′, but this transformation does not have physical significance because,
in a given section, the electromagnetic potentials generated by ω and ω′ are
gauge transforms of each other, and therefore represent the same E and B
fields.10

The important conclusion Healey draws from considering vertical automor-
phisms is that the same electromagnetic situation (the same configuration
of E and B fields) can be given by two different connections ω and ω′ in
the principal fibre bundle. He concludes that the connection cannot be
the “real” representative of electromagnetic properties, and therefore that
we should not take too seriously the idea that different sections are sim-
ply different coordinatizations of the same “real electromagnetic situation”
[Healey, 2007, p. 102].

Ironically, Healey’s objection can be turned against him by showing that it
actually strengthens the analogy with general relativity, rather than weak-
ening it. A principal (vertical) automorphism h : E → E in gauge theory
is a very similiar mathematical operation to a diffeomorphism d :M→M
in general relativity. In both cases, the mapping can be used to transform
the geometric objects (connections in gauge theory, vector or tensor fields
in GR) defined in the spaces in which they act. Thus the transformed
(pulled-back) connection h∗ω is analogous to the dragged-along metric and
stress-energy tensors d∗gab and d∗Tab [Isham, 1999, p.258]. In GR, the hole
argument leads us to identify diffeomorphically related models, and it seems
we should come to the same conclusion in gauge theory. I conclude that
the diffeomorphism invariance of GR and the vertical automorphism invari-
ance of the fibre bundle formulation of EM are analogous and thus that the
analogy between sections and coordinate systems is strengthened.

10I think that Healey doesn’t have to restrict himself to vertical automorphisms, he
could also consider just principal automorphisms [Isham, 1999, p. 259].
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Finally, a more general argument against the analogy between sections and
coordinate systems might be that it relies on a fibre bundle formulation of
classical electromagnetism and that, in the absence of quantum motivations
such as the Aharonov-Bohm effect, this is simply mathematical overkill. A
defender of such a view might point to the adequacy of the E and B as
an ontology of classical electromagnetism, and therefore that a formulation
that gives such an important role to the surplus structure Aµ is unneces-
sary. Such an objection is probably fueled by strong intuitions about what
physical theories should look like, as well as a desire for minimal mathemat-
ical apparatus. Faced with the impossibility of conclusively refuting such
intuitions, I can only remark that the search for alternative representations
of our physical theories is a fruitful pursuit because it is likely to lead to
new discoveries. Furthermore, it should be seen as very satisfactory that
an old theory such as electromagnetism can be a given a reformulation us-
ing the same mathematical tools as the newer theories, to which they are
indispensable.

Active gauge transformations The fibre bundle formalism has allowed
us to clarify how gauge transformations can be interpreted as passive trans-
formations that are analogous to the coordinate transformations of space-
time theories. I will now show that gauge transformations can also have
active interpretations. Consider the gauge transformation given by the func-
tion χ(x, t) = −kt, with k a constant [Healey, 2009, p. 700]

{
φ→ φ′ = φ+ k

A→ A′ = A
(5.14)

This corresponds to raising the electric potential uniformly by a constant,
while leaving the magnetic potential unchanged. As Healey remarks, this
transformation is technically a local gauge transformation because the func-
tion χ(x, t) is not a constant. However, its effect on the physics is to raise
the electric potential uniformly at each point of space(time). Given our
earlier recommendation to define the local/global distinction in terms of the
effects of the transformation on the physics rather than in terms of the func-
tion defining the transformation, I conclude that this transformation would
be better classified as global. Something similar is suggested by Wallace
and Greaves [Wallace and Greaves, 2011, p. 20]. From our discussion of the
Aharonov-Bohm effect in chapter 4, we know that the potential everywhere
inside a Faraday cage (a hollow conductor) can be raised uniformly by charg-
ing the surface of the cage. It would seem therefore that the gauge transfor-
mation (5.14) can be implemented actively in a Faraday cage setup. When
this transformation is interpreted passively, it is a symmetry because the
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E and B fields remain unchanged. Nothing in the definition of these fields
allows the untransformed and transformed potentials to be distinguished.
We can therefore classify this transformation (and in fact all passive gauge
transformations acting on classical systems) as strong symmetries. This
suggests that the corresponding active transformation of Faraday’s cage is
also a symmetry, as indeed it is. This entails that an observer inside Fara-
day’s cage cannot know whether the cage is charged or uncharged by making
measurements confined to the interior of the cage. This corresponds to the
principle of Faradean relativity discussed in chapter 1.

Healey objects to the conclusion that the Faraday cage setup can be used to
implement an active gauge transformation on the grounds that, considering
only classical systems, there is no physical way to distinguish the interiors
of the charged and uncharged cages [Healey, 2009, p. 711]

It is natural to describe the state of Faraday’s cube when
charged by saying that it has been raised to an electric potential
with respect to the ground. But this is not something that we
observe - all we observe are differences in electric field outside
the cube when charged and uncharged.

He picturesquely dismisses the claim that the interior of the charged cage
can be considered as physically different from the interior of the uncharged
cage with the following claim [Healey, 2009, p. 711].

To suppose that one can change the electromagnetic con-
dition inside Faraday’s cube by charging its exterior is just as
mistaken as to think that one can move a car from New York to
Los Angeles merely by selling it.

In our terminology, Healey is claiming that the transformation implemented
by the Faraday cage does not pass the transformation condition. This should
be contrasted with the situation inside the cabin of Galileo’s ship which is
changed in the case of a uniform velocity boost. Healey tries to support this
conclusion by a technical argument. He asks us to consider a situation in
special relativity in which there are two Galileo ships in uniform motion with
respect to each other. He claims that there is no coordinate system in which
both ships are at rest. This is obvious as there is a physical difference
in the states of the two ships that must show up in any description of
the situation.11 However, Healey claims that things are very different in

11Note that in a generally covariant formulation of SR the situation is slightly more
subtle. If the ships are far enough apart, it is possible to perform a local coordinate
transformation such that the 3-tuples of real numbers used to describe the spatial positions
of both ships are constant. However, this would not mean that the ships are at rest with
respect to each other because the metric would change as a function of time. This would
ensure that when the distance between the ships was calculated, it would still be found
to increase.
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electromagnetism. Consider two Faraday cages a distance apart from each
other. One cage is charged and the other isn’t. In an appendix, Healey
claims to show that there is a choice of gauge such that the interiors of both
Faraday cages are at the same electric and magnetic potentials [Healey,
2009, p. 718]. He concludes that there is no physical difference between the
interiors of the two cages.

There are several strong reasons to be suspicious of Healey’s conclusion.
The upshot of his technical argument is that he has gauged away a potential
difference between the interior of the charged cage and the interior of the
uncharged cage. But this should be impossible, because potential differences
have physical consequences that can be measured using voltmeters. I believe
that the transformation Healey has derived in his appendix is not a gauge
transformation because it is discontinuous at the surfaces of the Faraday
cages. However, a gauge transformation must be a smooth function of space
and time. Wallace and Greaves also call attention to this fact, although
they do not relate their considerations to Healey’s argument [Wallace and
Greaves, 2011, p. 19]. I believe that Healey’s arguments should be resisted,
and that the Faraday cage setup can be considered to implement a global
active gauge transformation.

I also believe that Faraday’s cage is an electromagnetic analogue of Galileo’s
ship. In both cases, the physical state of an isolated subsytem of the universe
is transformed uniformly with respect to the environment, and in both cases
this transformation is a symmetry. I also classify both transformations as
global. Wallace and Greaves agree that Faraday’s cage implements an active
gauge transformation, however, they disagree that it is analogous to Galileo’s
ship [Wallace and Greaves, 2011, p. 20]. This is because they advocate a
classification of symmetries in which they pay particular attention to the
way in which the boundary conditions of the isolated subsystem are affected
by the transformation. The transformation in the case of Galileo’s ship
preserves the boundary conditions around the cabin of the ship. However,
in the case of Faraday’s cage, the additional charge added to the cage to
implement the transformation entails that the boundary conditions are not
conserved. Following their classification of symmetries, Wallace and Greaves
find that Faraday’s cage is in fact analogous to Einstein’s lift, as described
in chapter 1 [Wallace and Greaves, 2011, p. 20].

Given the classification scheme that they endorse, Wallace and Greaves’ con-
clusion is correct. However, I believe that this classification scheme can be
criticized on conceptual grounds. I do not think that Einstein’s lift should
be considered as a symmetry in the same way as the ship or the cage. This
is because Einstein’s lift is only an approximate symmetry, whereas the ship
and the cage are exact symmetries. The lift is only an exact symmetry in
the case of a uniform gravitational field, and in this case there is something
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trivial about the symmetry (all particles are given an acceleration in the
same direction which is then canceled by the appropriate choice of a coor-
dinate system).12 As I argued in chapter 4, I believe that the real value of
Einstein’s lift thought experiment is as a stepping stone towards the real-
ization that the Christoffel symbols could be used to encode the existence
of a gravitational field. However, I do not believe that Einstein’s lift should
be taken to implement an active symmetry transformation in the same way
as Galileo’s ship or Faraday’s cage. Instead, I believe the emphasis should
be placed on the fact that in both the latter cases, the physical state of
an isolated subsystem of the universe is uniformly transformed with respect
to the environment. In both cases, this transformation does not affect the
internal evolution of the subsystem. This is the significant way in which
Galileo’s ship and Faraday’s cage are analogous.

Faraday’s cage shows how a particular gauge transformation can be inter-
preted actively. The question now arises whether all gauge transformations
could be given active interpretations. Whether an arbitrary gauge transfor-
mation can be interpreted actively depends on the possibility of defining an
electromagnetic situation (a configuration of charges, currents, magnets etc.)
such that the electric and magnetic potentials are transformed in the appro-
priate way. Since all passive gauge transformations are strong symmetries,
we would expect any active gauge transformation to also be a symmetry.
However, apart from Faraday’s cage, I am aware of no other way to actively
implement a gauge transformation in the classical context.13 The results of
this section are summarized in the following table.

Active/Passive Global/Local Symmetry

Change of section on the prin-
cipal bundle (transformation
of the electric and magnetic
potentials according to (5.11))

Passive Both Yes (strong)

Vertical bundle automor-
phism (with pulled-back
connection)

Passive Both Yes

Faraday cage Active Global Yes

12The equality of inertial and gravitational mass is clearly a non-trivial consequence of
the lift thought experiment. However, this is also a very different kind of conclusion than
is drawn from Galileo’s ship or Faraday’s cage.

13In a way that will shortly be made precise, I believe that the insertion of a phase
shifter (or an AB coil) can be seen to implement an active gauge transformation on a
quantum system. In the quantum context, these are not symmetries because local gauge
transformation are demoted to weak symmetries in Q-EM. However, it is interesting to
note that in the classical context, the insertion of an AB coil is a symmetry, because it
does not change the values of the electric and magnetic fields outside the coil.
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Gauge transformations on quantum systems

In the presence of a quantum system represented by a wavefunction Ψ(x, t),
we saw in chapter 2 that a gauge transformation takes the following form


ψ(x, t)→ ψ′(x, t) = eiqχ(x,t)ψ(x, t)

φ→ φ′ = φ− ∂χ(x,t)
∂t

A→ A′ = A +∇χ(x, t)

(5.15)

In the presence of the quantum system it becomes more delicate to deter-
mine when a transformation is a symmetry and how an active transforma-
tion can pass the transformation condition. In addition to the equations
for the E and B fields, the passive gauge transformations must also leave
the Schrödinger equation unchanged. In the active case, there must be no
physical consequences of the transformation. As the Aharonov-Bohm ef-
fect showed, a transformation that leaves the E and B fields unchanged in
the region where the wavefunction is non-vanishing can still have physical
consequences if it affects the integrability of the wavefunction. Furthermore,
because the physical effects of transformations on quantum systems manifest
themselves as changes in interference patterns, it becomes more difficult to
define active transformations as acting on isolated subsystems. The holistic
or non-separable character of quantum systems poses new problems for the
classification of transformations.

The non-interacting Schrödinger equation (in natural units)

−1

2m
∇2ψ(x, t) = i

∂ψ(x, t)

∂t
(5.16)

is invariant under gauge transformations when χ(x, t) is a constant. In the
literature, this is called a global transformation, because the phase of the
wavefunction is shifted by the same amount at each point of spacetime. This
can be interpreted passively as a change in the convention used to define the
zero point of phase. The fact that the phase of the wavefunction at a point
is unmeasurable (only phase differences can be measured) is often given as
a reason for this freedom in defining the ‘zero phase’. (5.16) is not invariant
under gauge transformations when χ(x, t) is not a constant. Instead, one
needs to change the Schrödinger into its ‘interacting’ form

−1

2m
(∇− iqA)2ψ(x, t) + qφψ(x, t) = i

∂ψ(x, t)

∂t
(5.17)

(5.17) is invariant under arbitrary gauge transformations when the electric
and magnetic potentials are transformed along with the wavefunction ac-
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cording to (5.15). This situation should be compared to the way in which
the geodesic equation of GR is “invariant” under general coordinate trans-
formations when the Christoffel symbols are transformed along with the
coordinates. In this way, the values of the electric and magnetic potentials
allow us to distinguish between certain choices of gauge, which can there-
fore not be considered equivalent. This entails that in the case of gauge
transformations acting on quantum systems, a distinction between strong
passive gauge transformations and weak passive gauge transformations be-
comes necessary. Thus, only transformations of the form χ(x, t) = constant
are strong symmetries.14 All the other gauge transformations are weak sym-
metries. Consistent with this analysis, we will see that only the strong sym-
metries imply active symmetries. The active transformations corresponding
to the weak symmetries are not symmetries.

Before moving on to an analysis of active gauge transformations, I show how
passive gauge transformations acting on quantum systems can be given a
geometrical interpretation in terms of fibre bundles. I will show that the
analogy between a section of the principal bundle and a coordinate system
of a spacetime theory remains valid in this new context.

A fibre bundle formulation of quantum-electromagnetism The the-
ory of a quantum particle interacting with a classical electromagnetic field
can be given a fibre bundle formulation in terms of a vector bundle as-
sociated with the principal bundle. The principal bundle represents the
electromagnetic field and a section of the vector bundle (a vector field) rep-
resents the phase of the quantum particle at each point of the base space
(space or spacetime). The particular way in the which the two bundles are
associated encodes the action of the electromagnetic field on the quantum
particle. We will see that the connection on the principal bundle defines
the covariant derivative of the section of the associated bundle. In this way,
the equation for the vanishing of the covariant derivative of the section of
the associated bundle determines how the electromagnetic situation affects
the phase of the wavefunction. As will become clear, it is very important
to clearly distinguish the notion of a section of the principal bundle and a
section of the associated bundle. As explained in the previous section, a
section of the principal bundle is analogous to a coordinate system. On the
other hand, the section of the associated bundle determines the phase of the
wavefunction, and is therefore physically significant.

An associated fibre bundle (EF , πF ,M) is a vector fibre bundle if the fibre
F is some vector space. In the case of a quantum particle, F is a copy of
the complex vector space C. The crucial fact in relating the fibre bundle

14If we take the time-independent Schrödinger equation, then the possibility arises of
considering χ(x, t) = kt with k a constant as a strong symmetry
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representing the electromagnetic field to the one representing the quantum
particle is that the structure group G of the principal fibre bundle can act
(via some representation) as a group of transformations on F . In the present
case, G is the group U(1), and thus acts from the left on C by performing a
rotation of elements z ∈ C. Both bundles have the same base space M.

Definition 16. [Isham, 1999, p. 233] Let ξ = (E, π,M) be a principal G-
bundle, and let F be a left G-space. Define EF = E ×G F where (p, v)g :=
(pg, g−1v), and define a map πF : EF → M by πF ([p, v]) = π(p). Then
ξ[F ] = (EF , πF ,M) is a fibre bundle overM with fibre F that is said to be
associated with the principal bundle ξ via the action of the group G on F .

An important feature of this definition is the nature of the space EF =
E ×G F . Points of this space are equivalence classes [p, v], with p ∈ E
and v ∈ F . Two points (p1, v1) and (p2, v2) are in the same equivalence
class (they are the same point of EF ) if there is some g ∈ G such that
(p1, v1)g = (p1g, g

−1v1) = (p2, v2).

The phase of a non-relativistic charged quantum particle in an electromag-
netic field is represented by a cross-section s : M → EF with s(x) = [p, v]
[Healey, 2007, p. 15]. If the principal bundle is trivial, a global cross-section
s exists. A change of section s of the associated bundle can result in a change
in the physical state of the quantum system manifesting itself as a change in
the interference pattern. We will see that the effect of a phase shifter can be
represented in this way. The following theorem about sections of the associ-
ated bundle can help to give a better understanding of their significance by
providing an alternative way of thinking about them [Trautman, 1985, p. 74].

Theorem 3. [Isham, 1999, p. 246] If (EF , πF ,M) is an associated fibre
bundle, then its cross-sections are in bijective correspondence with maps
φ : E → F that satisfy φ(pg) = g−1φ(p) for all p ∈ E and g ∈ G. The
cross-section sφ corresponding to such a map φ is given by sφ(x) = [p, φ(p)]
where p is a point in π−1({x}).

Figure 5.1 explains how the combination of a section of the principal bundle
and a section of the associated bundle allows a definite phase for the system
to be assigned for every spacetime point at which the system is present. In
this figure, the result of the above theorem is used to facilitate the represen-
tation of the section of the associated bundle. The main idea is that given
a section s of the associated bundle, a section σ of the principal bundle
picks out a unique pair sσ(x) = (p, v) = (σ(x), v) from the equivalence class
s(x) = [p, v]. Thus, fixing both s and σ defines a map sσ : M → E × F ,
with sσ(x) = (σ(x), φs(σ(x))).

Given a section s of the associated bundle, a change of gauge σ → σ′

of the principal bundle results in the transformation sσ(x) → sσ′(x) =



5.2. THE CLASSIFICATION 109

EF

[p,v]

Members of the equivalence class [p,v] 

[p, v’]

x

Understanding associated bundles

E × F
(p, v)

1)  A point (p,v) of E × F 

(p,v) P is a point in the principal bundle (E, π, M), and v 
is a vector in the vector space F, represented here 
as a direction on a disc.

2)  Points of EF

x

(p,v)

x

(p1,v1)

x x

(p2,v2)
(p4,v4)

[p’, v’’]

Members of the equivalence class [p,v’] 

x

(p,v’)

x
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x x

(p2,v’2)
(p4,v’4)

Members of the equivalence class [p’,v’’] 

x’

(p’,v’’)

x’

(p’1,v’’1)

x’(p’2,v’’2)

(p’4,v’’4)

Each point of EF is an equivalence class of points of E × F, of which some members are 
shown for three di�erent points of EF .  Two points, (p, v) and (p1, v1), of E × F are in 
the same equivalence class (are the same point [p, v] of EF) if there is some element 
g of the structure group G such that (p, v)g = (pg, g-1v) = (p1, v1).  

3) Section s of the associated bundle 

EF

[p,v]

[p’,’ v’’]
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x’ x’’
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s(x)
s(x’)
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x

p
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p3
p4

Φs(p)

Φs(p1)

Φs(p3)

Φs(p4)
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p’3
p’4
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Φs(p’3)

Φs(p’4)

Two equivalent ways of thinking about a section of an associated bundle.   On the left a section of the associated bundle is represented 
as a map s from the base space M to EF.  On the right it is represented as a map Φs from the principal bundle space E to the vector space 
F.  

4) A section σ of the principal bundle and a 
section s of the associated bundle 

x

p
Φs(p)

x’’
p’’ Φs(p’’)

σ(x)

x’

σ(x’)

Φs(p’) p’

σ(x’’)

Combining a section σ of the principal bundle with a 
section s of the associated bundle allows one to assign a 
point (p,v) of  E × F to each point of the base space.

Figure 5.1: A guide to understanding associated bundles.
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(σ′(x), φs(σ
′(x))). Note that σ′(x) = σ(x)g, for some g ∈ G and there-

fore that sσ′(x) = (σ(x)g, φs(σ(x)g)) = (σ(x)g, g−1φs(σ(x))) = s(x), using
the properties of φs. This shows that a change of section on the princi-
pal bundle preserves the equivalence classes defined by the section s on the
associated bundle. Since φs(σ

′(x)) = φs(σ(x)g)) = g−1φs(σ(x)), a change
of section σ → σ′ results in a gauge transformation of the wavefunction
Ψ(x) → Ψ′(x) = e−iθΨ(x), with e−iθ the representation of the structure
group G that acts on the vector space F and θ determined by the particular
group element g. Remember that a change of section σ → σ′ also results
in a gauge transformation of the vector potential Aµ. Thus, in the case of
an associated bundle, a change of section on the principal bundle results in
a joint transformation of the vector potential and the wavefunction, corre-
sponding to (5.15). This ensures that the interpretation of a section σ on the
principal bundle as analogous to a coordinate system in spacetime theories
remains valid in the case of associated bundles.

Active gauge transformations acting on quantum systems Thus
far, the interpretation of gauge transformations in the context of quantum
systems is not significantly different from their interpretation in the context
of classical systems. However, difficulties arise when trying to understand
how active gauge transformations act on quantum systems. In Brown and
Brading’s analysis of active gauge transformations, the crux of matter seems
to be whether the transformation

ψ(x, t)→ ψ′(x, t) = eiqχ(x,t)ψ(x, t) (5.18)

can also be interpreted actively. By considering the effects of this transfor-
mation on an electron in a double slit setup, they come to two significant
conclusions.

(1) If χ(x, t) is a constant, then the transformation is a symmetry, which
means that it results in no change in the measurable features of the quantum
system (no change in the interference pattern). Moreover, they add that the
addition of a global phase to the wavefunction [Brading and Brown, 2004,
p. 658]

is of no empirical significance: physically Ψ and Ψ′ represent
exactly the same quantum mechanical system, indistinguishable
in every way. This means that a global gauge transformation
cannot be used to create an empirically distinguishable scenario.

Furthermore, they reject the possibility of applying such a global transfor-
mation to a subsystem of the universe. In order for the transformation (5.18)
to have measurable effects (for it to alter an interference pattern), it must be
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applied to a subpart of the system itself. This is due to the particular nature
of quantum systems which prohibits different systems (which are in separate
quantum states) from giving rise to interference patterns. However, given
that the wavefunction Ψ could represent one electron, Brading and Brown
reject the idea that a part of the wavefunction could be considered as a legit-
imate subsystem. They conclude that the transformation (5.18) can never
pass the transformation condition, and therefore that it can never have an
active interpretation.

(2) They consider whether an active transformation implemented by the
insertion of a phase shifter into one of the beams of the double slit experiment
can be represented by the transformation (5.18), with χ(x, t) not a constant
over the whole of spacetime, although it may be constant in a region of
spacetime. The insertion of a phase shifter results in a “relative phase
transformation” given by [Brading and Brown, 2004, p. 653]

ψ(x, t)→ ψ′(x, t) =
1√
2

(ψ1e
iqχ + ψ2) (5.19)

where ψ1 is the beam that travels through the top slit and ψ2 the beam
that travels through the bottom slit. However, they note that a local gauge
transformation of the form (5.18) can never result in a relative change in
phase between the two beams, and will thus never change the interference
pattern. They conclude that the insertion of a phase shifter cannot be
represented by a transformation of this form, and therefore that (5.18) has
no active interpretation. They give the following summary of their argument
[Brading and Brown, 2004, p. 653]

The change in the interference pattern is due to the change
in the relative phase of ψ1 with respect to ψ2 at each point along
the screen. A local gauge transformation, such as (5.18) will
not achieve this. Local gauge freedom is the freedom to vary to
overall phase of the wavefunction from point to point, but it is
not the freedom to vary the phase of ψ1 with respect to ψ2 at a
single space-time point.

From a purely technical point of view, there is nothing wrong with these
conclusions of Brown and Brading’s. However, I believe that they do not
entirely do justice to the intuitive notions of what an active gauge trans-
formation is. By very slightly adjusting the criteria for a transformation to
count as an active gauge transformation, I will show that both objections of
Brown and Brading’s can be answered. Ultimately, I believe that the need
for these adjustments is due to the particular nature of quantum systems.

I start with the first conclusion, which states that global gauge transfor-
mations can never pass the transformation condition. We have seen from
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our discussion of the electric Aharonov-Bohm experiment in chapter 4 that
the wavefunction of a quantum particle confined to a Faraday cage under-
goes a uniform phase transformation in the region of the cage when charge
is added to the cage and the potential inside the cage increases uniformly.
In the electric AB effect, the phase of a part of the wavefunction is trans-
formed in this way. The subsequent change in the interference pattern is
the empirical consequence of this transformation. This is evidence that a
charged Faraday cage affects the phase of the wavefunction. Now consider
placing the whole double slit apparatus inside a charged Faraday cage and
performing the experiment. The outcome should be unchanged from when
the experiment is performed in an uncharged cage. Can we not use the evi-
dence from the electric AB effect to conclude that the double slit apparatus
inside the charged Faraday cage must have undergone a global phase trans-
formation, and therefore has passed the transformation condition? And can
we not conclude that this constitutes empirical significance of global phase
symmetry? Brading and Brown could point to the following passage in their
paper [Brading and Brown, 2004, p. 658]

But it is not the means by which the alleged transformation
is carried out that guarantees that we have a physical transfor-
mation - it is the empirically distinct scenario.

In this way, Brading and Brown would ask for proof that when the entire
double slit experiment apparatus is placed in the charged Faraday cage,
the wavefunction has actually undergone a phase shift. Unfortunately, due
to the nature of quantum systems, it is impossible to take a part of this
wavefunction, transfer it outside of the cage and make it interfere with an-
other wavefunction which was not inside the cage. The wavefunction inside
the cage can only interfere with itself, and this is what prevents the global
phase transformation performed on it from passing the transformation con-
dition. Due to the nature of quantum systems, there are no relations between
the system inside the cage and systems outside that can be used to testify
that the transformation has taken place. However, we wonder in this case
whether Brading and Brown are not being too rigid in their interpretation
of the transformation condition. The electric AB effect provides solid em-
pirical evidence that the phase of a wavefunction is affected by the charge
on a Faraday cage. It seems unreasonable to ignore this evidence in other
comparable experimental situations.

I now turn to the second conclusion. As Wallace and Greaves point out, the
crux of the argument is whether an active gauge transformation must nec-
essarily be formulated as a function “from spacetime to the gauge group”
[Wallace and Greaves, 2011, p. 23]. By restricting active gauge transfor-
mations to taking the form (5.18) over the whole of spacetime, Brown and
Brading implicitly assume that this must be so. Instead, I agree with Wal-
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lace and Greaves that an active gauge transformation need only take the
form (5.18) in a region of spacetime. As we will shortly show, when such
a transformation takes place, its effects propagate through spacetime, with
the consequence that the initial and final states of the system cannot be
related by a transformation of the form (5.18). Once again, this is a con-
sequence of the nature of quantum systems. As Wallace and Greaves note
[Wallace and Greaves, 2011, p. 23]

[. . . ] what is given, when we are given the pre- and post-
transformed states of the universe, is not a function from space-
time to the gauge group, but merely the effect of whatever trans-
formation is being performed on the particular pre-transformation
(universe) state.

The fibre bundle formulation is particularly helpful in illustrating how a
phase transformation in a region of spacetime will have effects that propagate
out and ultimately change the interference pattern.

A local phase transformation in the fibre bundle formalism In our
presentation of the fibre bundle formulation of quantum-electromagnetism,
we showed that the phase of the wavefunction was represented by a section s
of the associated bundle. However, we did not explain how s is determined by
the electromagnetic situation encoded in the connection ω on the principal
bundle. This is achieved by defining a notion of parallel transport for s
which depends on ω. We then demand that s be chosen in such a way that
it is parallel transported along all curves in the base space. In chapter 3,
we showed that the connection ω could be used to define the horizontal lift
of a curve in the base space. The horizontal lift is an intrinsic property of a
curve in the principal bundle, which means it does not depend on a choice
of section σ on the principal bundle. This makes it a suitable notion for
defining the parallel transport of the section s. A section s is said to parallel
transport the phase along a curve in the base space if it is constant along the
horizontal lift of this curve [Nakahara, 2003, p. 391]. This is formalized as
follows. Consider a curve α(t) : [a, b]→M in the base space. The horizontal
lift of this curve defined by the connection ω is the curve α↑(t) : [a, b]→ E.
Since a section s can be represented as a map φs : E → F , we say that s
parallel transports the phase if φs(α

↑(t)) is constant for t ∈ [a, b]. Combining
this notion of parallel transport with a section σ of the principal bundle, it
is possible to assign a phase to each point of the curve α(t), as is shown in
5.2.

A local phase transformation in a region of space(time) can be represented
by transformation of the section s → s′ in this region. Let us say that a
phase shifter in a region U of the base space causes a deviation from parallel
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Figure 5.2: A figure showing how the phase (given by the section s on the associated bun-
dle) is parallel transported along the horizontal lift, represented by the dotted line. Note
that the dotted line closes here, and thus that the principal bundle has trivial holonomies.

3) With phase shifter

x0

x1

x2
x3

S

x4

x5
x6

σ(x0)

α1

α2

Φs(σ(x0))

Deviation from parallel transport
Return to parallel transport (deviation propagates towards screen)

The electron in double slit setup in the presence of a phase shifter is represented in the above �gure.  The introduction of the 
phase shifter has a similar e�ect to the A-B coil.  Once again, a global section of the associated bundle in no longer possible.  When 
the phase is transported along α1, it su�ers a deviation between x2 and x3 which then propgates towards the screen.  This means 
that Φs(p) must be di�erent from Φs(σ(x0)).  However, when the phase transported along α2 , there is no deviation from parallel 
transport.  Since there is no A-B coil, the holonomies are still zero, which means that the horizontal lift (the dotted line) closes.  This 
implies that when the phase is transported along α2 , Φs(p) is equal to Φs(σ(x0)).  This contradicts the result obtained by transport-
ing the phase along α1 .  This shows that a global section of the associated bundle is not possible, and therefore that the base 
space must be patched with overlapping sections.  

p

U

Figure 5.3: A figure showing how a phase shift in the region U , represented by the
gray square, is propagated forward towards the screen. The dotted line represents the
horizontal lift of the curve in the base space. Note how the value of the phase at the point
x4 on the screen has become path dependent. In fact, the effect of the phase shifter is to
make the phase non-integrable, as was discussed in the case of the AB effect in chapter
4. In order to ensure that the wavefunction stays single-valued, the phases of the two
different paths must interfere and a change in the interference pattern results.

transport in this region. Consider how the phase of the wavefunction evolves
along a curve that passes through the region U . Let α(t) enter the region
at t = t1 and exit the region at t = t2. At the entrance to the region, the
phase is given by φs(α

↑(t1)). After passing though the region, the phase is
given by φs′(α

↑(t2)). Since the phase is not parallel transported through this
region, φs(α

↑(t1)) 6= φs′(α
↑(t2)). However, from t2 to b, the phase is once

again parallel transported, which means that, when it gets to the screen, the
phase must be the same as when it exited the region of the phase shifter,
in other words φs′(α

↑(b)) = φs′(α
↑(t2)). This shows that the effect of the

phase shifter is propagated forward toward the screen. This is illustrated in
5.3.

The effect of the phase shifter is to make the phase of the wavefunction
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path-dependent. Along curves that travel from the source to the screen
through the region U , the phase will be shifted. However, along curves
with the same end-points that do not travel through U the phase will not
be shifted. In order to avoid concluding that the wavefunction must be
multiply-valued, one concludes, as in the case of the AB effect, that the
phases of these different paths must interfere. In the region U , the change
in the phase can be represented by the transformation ψ(x, t)→ ψ′(x, t) =
e−iqχ(x,t)ψ(x, t), with χ(x, t) essentially uniform across U , dropping rapidly
but smoothly to zero on the boundaries of U . As we have shown, the effect
of this transformation will propagate towards the screen and will result in
a relative phase shift between beams that travel through the region of the
phase shifter and those that don’t. From this we conclude that local active
gauge transformations are possible, and will have empirical consequences.
They are therefore not symmetries.

The classification of gauge transformations acting on a quantum system are
given in the following table.

Active/Passive Global/Local Symmetry

Global phase shift as conse-
quence of change of section σ
on the principal bundle

Passive Global Yes (strong)

Other phase shifts as result of
change of section on the prin-
cipal bundle

Passive Local Yes (weak)

Phase shift caused by Faraday
cage

Active Global Yes

Local phase shift caused by
change of section on the asso-
ciated bundle

Active Local No

5.3 Conclusion: On classical and quantum sys-
tems

In this chapter I have proposed a classification of transformations that ap-
plies in three different theoretical contexts: classical spacetime theories,
quantum mechanics and gauge theory. I have shown that in all three con-
texts transformations have a dual interpretation in terms of active and pas-
sive versions. Where possible, I have illustrated this duality with the help
of a geometrical formulation of the theory. I conclude, against Wigner and
Brown and Brading, that the global spacetime symmetries of the Poincaré
group are not unique in having active interpretations.
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Nevertheless, I concede that the arguments of Brown and Brading, even
though they do not lead ultimately to the correct conclusions, highlight
some important differences in the nature of classical and quantum systems.
I believe that it is because of these differences that it has proven more dif-
ficult to identify how gauge transformations on the latter can be active.
Firstly, the fact that quantum systems will only exhibit interference effects
with themselves prevents active global transformations on them from having
empirical consequences in their relations with the environment. This is not
the case for classical systems. Secondly, the way in which local transforma-
tions of the wavefunction in situations such as the double slit experiment
can propagate out to affect later states of the system means that the pre-
and post-transformed states of the system cannot necessarily be related by a
smooth function on spacetime. Once again, this is not the case for classical
systems. However, we should not let these differences distract us from the
fact that, in both cases of global and local gauge transformations, one can
make sense of the notion of an active gauge transformation if one is willing
to adapt one’s criteria very slightly from the case of transformations acting
on classical systems. Rather than taking these adjustments as a sign that
active gauge transformations are fundamentally different from active space-
time transformations, we should take them to show that classical systems
are fundamentally different from quantum systems.



Chapter 6

Conclusion

In chapter 1, I promised that this thesis would address two questions. I will
now summarize the answers to these questions that the arguments in this
thesis support.

What role do symmetry transformations play in GR and Q-EM?

In chapter 2 we saw that, in Wigner’s philosophy of symmetry, active symme-
try transformations act as principles that make possible the discovery of the
laws of nature. By ensuring that certain features of the world will not affect
the outcomes of measurements, these active symmetries allow scientists to
isolate the relevant variables that will feature in these laws. In chapter 5, we
showed that the logical equivalence of active and strong passive symmetry
transformations implied that the latter could also share this significance.
In chapter 4, we argued that weak passive transformations could play an
important methodological role in enabling the construction of a geometric
theory of a dynamical physical force. In both GR and Q-EM, we showed
that by requiring the invariance of the equations of motion under weak pas-
sive transformations, certain mathematical objects could be introduced into
the theory, namely the Christoffel symbols and the electromagnetic poten-
tial respectively. The properties of these mathematical objects could then
be extended by submitting them to additional field equations. As a result
these objects were able to encode the presence of dynamical forces, namely
gravitation and electromagnetism. This line of reasoning, valid equally in
GR and Q-EM, illuminated the initially mysterious possibility that the exis-
tence of a dynamical force could be deduced from a symmetry requirement.
By arguing that the symmetry requirement is a stepping stone towards a
certain mathematical representation of the dynamical force in question, the
mystery disappears.

Is there a fundamental difference between spacetime transformations and
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gauge transformations?

For Wigner, the fundamental difference between spacetime transformations
and gauge transformations was the possibility of interpreting the former,
but not the latter, actively. This view is shared, among others, by Brown
and Brading and Healey. In chapter 5, I showed that active gauge transfor-
mations are possible if one is prepared to adjust the criteria by which one
judges when an active gauge transformation has been performed. In the case
of gauge transformations acting on quantum systems, I suggested that the
difficulties that arise in understanding the possibility of active gauge trans-
formations have their origins in the particular nature of quantum systems.

The answers to these two questions suggest that, with respect to the in-
terpretation and the role of symmetry transformations in GR and Q-EM,
a certain amount of unity between the two theories already exists. This is
an encouraging sign that a focus on symmetry can bring us closer to the
desired unification. By highlighting areas where the unity breaks down, this
thesis also points towards an important obstacle to unification, namely the
fundamental difference between classical and quantum systems.
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