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Abstract

This thesis provides a thorough introduction to BCFW recursion. These recursion
relations were first introduced by Britto, Cachazo and Feng for tree-amplitudes of
gluons in Yang-Mills theory. After discussing the recursion for gluons we have a
look at extensions of the BCFW methods. In particular, we discuss how BCFW
can be used for quantum field theories other than Yang-Mills theory. Since the
discovery seven years ago, there have already been numerous different applications
of BCFW recursion. Some of these applications will be discussed. We conclude
with an overview of the various applications and developments.
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1 | Introduction

This thesis deals with a specific recursion relation. So we may start by wondering
what exactly is a recursion. In one sentence, a recursion enables you to find an
object from previous calculations. This may seem a bit abstract so let us give an
example. Consider a sequence of natural numbers. Label the numbers using an
index n such that Fn denotes the n-th number. Now assume that you are given
the following equation Fn = Fn−1+Fn−2 in combination with F0 = 0 and F1 = 1.
We are then able to calculate every number. In fact, we can calculate the n-th
number if we know numbers n− 1 and n− 2 in the sequence. In other words, we
can recursively calculate the next number in the sequined. By doing so we obtain
the famous Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,· · · . We keep
in mind that the power of recursive relations lies in the ease with which one can
compute certain object from the knowledge of previously calculated objects.
We will discuss such a recursion relation with applications in physics. In doing
so we will see how to obtain physical quantities in a recursive way. This leads to
much more efficient calculations as we can recycle our previous computations. We
will see that it enables us to compute objects that were previously much harder to
calculate. The purpose of this thesis is to introduce Britto-Cachazo-Feng-Witten
recursion, or BCFW recursion in short. Let us take a little time to sketch the
setting in which this recursion was found.
The Large Hadron Collider is a huge experimental project under the supervision
of the European Organization of Nuclear Research, CERN. It is used to accelerate
particles to very high energies that are subsequently brought to collide with each
other. When these particles collide they interact with each other in various ways
resulting in the creation of other particles. The LHC may find new interactions
that we did not know of before. It may even produce unknown particles. All
these collision events are being measured and a lot of data is recorded. To get
an idea of the amount of data, it is believed that the Large Hadron Collider can
produce 15 million gigabytes of data each year. We would like to understand all
this experimental data. For that reason we need to perform many calculations
based on theoretical models. Not only is there a huge amount of experimental
data, the experiments are also becoming more and more precise. This means that
we should also be able to make high precision computations for comparison. As an
example, consider figure 1.1. It displays an event measured at the Large Hadron
Collider. The reactions shown is a possible candidate for Higgs production. The
Higgs particle was, until recently, never observed, though it was, roughly speak-
ing, theoretically predicted 40 years ago. Higgs plays an important role in our
understanding of the universe as it is responsible for providing all other particles
with mass. The experimental data can be used to construct the probability of

1



1 Introduction

Figure 1.1: The figure above depicts experimental data from the Large Hadron
Collider at CERN taken in 2012. The event shown is a possible candidate for
Higgs production. The Higgs particle is produced in the center of the collider. It
then decays into two muons and two electrons, the muon tracks are colored red
while the electron tracks are green.

such an event occurring. From a theoretical perspective we calculate the scatter-
ing amplitude to compare it to this probability. These amplitudes are calculated
perturbatively and the computations are often tedious. Especially when we want
to calculate them with a high accuracy. In addition, we need to do such calcula-
tions for every event possible. Britto-Cachazo-Feng-Witte recursion was developed
in this context. The purpose was to find more efficient methods for calculating
scattering amplitudes. The term recursion indicates that it allows us to, as was
mentioned before, recycle our calculations, which is exactly one of the reasons
why the calculations become more efficient. The recursion was first found for glu-
ons. Gluons are the particles responsible for the strong interaction. The current
theoretical framework of the strong nuclear force is quantum chromodynamics or
QCD.
This thesis is outlined in the following way, in chapter two we discuss the necessary
preliminaries needed to understand the original BCFW recursion. Since it was
originally introduced for gluons we will discuss some useful methods and notations
in the context of QCD. The main goal will be to describe the recursion in this
original setting. This is the subject of chapter three. In chapter four we discuss
some extensions of the recursion. Throughout the thesis we will have a look at
examples and applications. It must be said that BCFW recursion has a very wide
range of applications. To make this apparent chapter five discusses how BCFW
may be used in anti-de Sitter space. Anti-de Sitter space is a curved space which
may be known from the general theory of relativity. This application shows that
BCFW is interesting both from a practical as from a theoretical point of view. We
conclude in chapter six with a summary and an outlook of the applications and
results.
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2 | Preliminaries

The recursion relations originally proposed by Britto, Cachazo, Feng and Witten
[1, 2] apply to pure gluon amplitudes in Yang-Mills theory. Calculations involving
Feynman diagrams with non-abelian gauge fields become very complicated, even
at tree-level. This made for a natural interest in new and more efficiënt ways to
calculate scattering amplitudes. The BCFW recursion relations were found in this
context. They make many computations considerably less involved. In order to
understand these recursion relations in their original form we need to discuss how
to deal with amplitudes in pure Yang-Mills theory. For that reason we will start
with a short summary of non-abelian gauge theory. We then discuss the colour
decomposition of amplitudes and the spinor helicity formalism. These two lie at
the basis of the compact formulation of amplitudes in pure Yang-Mills theory.

In this thesis the convention η = diag(1,−1,−1,−1) will be used for the Minkowski
metric. If, for some reason, there is the need to use a different convention then
this will be explicitly made clear.

2.1 Pure Yang-Mills

Yang-Mills theory is a relativistic quantum field theory. Relativistic means that
it must be invariant under Lorentz transformations. Next to the Lorentz group
we also consider the special unitary group, SU(N). This group is a non-abelian
Lie group of dimension N2 − 1, where the parameter N denotes the number of
colours. Yang-Mills theory is invariant under gauge transformation of the group
SU(N), i.e. it is invariant under local SU(N) transformations. Local means that
the transformation parameters can be spacetime dependent. When we speak of
gauge invariance in this context we will always mean invariance under local SU(N)
transformations. It is important to note that many of the concepts that will be
introduced in this chapter are specific to SU(N) and do not necessarily hold for a
more general gauge group. Obviously N = 3 can be chosen such that the theory
coincides with Quantum Chromodynamics. However, it will prove useful to discuss
the theory for arbitrary N .1

Imagine that we start with a theory invariant under global transformations2 and
we want invariance under local transformations. Following the standard proce-

1For example the group structure of the theory becomes much more transparent when dis-
cussing SU(N) instead of SU(3).

2This can be achieved by using the most general Lagrangian that is both Lorentz and SU(N)
invariant. Such a Lagrangian is constructed using Lorentz scalars that in addition are invariant
under group transformations.
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2 Preliminaries

dure we include gauge fields by replacing the ordinary derivatives with covariant
derivatives. We then include the most general gauge field Lagrangian in order to
make the gauge fields dynamical. The theory which is produced in this way is a
gauge theory of SU(N).
We denote the fields in the original theory as matter fields ψ = ψ(x). The matter
fields come in N different colours which we arrange in an N -component vector.
We will assume that this vector transforms in the fundamental representation of
the group SU(N). This fundamental representation consists of unitary N × N
matrices with unit determinant.

ψ → Uψ,

U † · U = 1,

detU = 1.

(2.1)

Now we consider local transformation, i.e. U → U(x). The key observation is to
note that only terms involving a derivative will cause problems. We can resolve
this, as mentioned before, by replacing the ordinary derivative with a covariant
derivative. The covariant derivative of ψ is defined to transform as ψ does. In this
way we guarantee the new Lagrangian to be invariant under local transformations.
We thus have the following

ψ → U(x)ψ,

∂µψ → U(x)∂µψ + (∂µU(x))ψ,

Dµψ → U(x)Dµψ.

(2.2)

Let us now introduce the gauge fields Wµ =Wµ(x). Define Dµ = ∂µ− gWµ where
g is a coupling constant. From (2.2) we easily deduce how the gauge fields should
transform

Wµ → UWµU
−1 + g−1 (∂µU)U−1. (2.3)

Now let’s have a closer look at the Lie group SU(N). Consider UR, an element
of SU(N) in some representation R. We can write UR = exp(gξatRa ) where ξ

a =
ξa(x) are group parameters and ta are the generators of the Lie group in the
representation R.3 The SU(N) generators are traceless, antihermitean N × N
matrices. They form a representation of the associated Lie Algebra, su(N), closed
under [ta, tb] = fabctc.

4 The fabc are called structure constants.
Recall that the covariant derivative generates a covariant translation5, i.e. the
gauge fields take values in the Lie-Algebra. For that reason they are called Lie-
Algebra valued. We can write Wµ = W a

µ ta such that, infinitesimally, (2.3) is
equivalent to

W a
µ → W a

µ − gξc(x)W b
µfbca + ∂µξ

a(x). (2.4)

If we ignore the inhomogeneous term ∂µξ
a(x) in (2.4) then the gauge fields seem

to transform in the adjoint representation. The generators in the adjoint repre-
sentation are defined by (tadja )bc = fabc.

3This can always be done for a compact, connected Lie group. Mathematically the exponential
map is surjective if the Lie group is compact and connected.

4We will use a summation convention in which we always sum over repeated indices. For
example fabctc actually means

∑
c fabctc.

5The combined action of a spacetime translation and an SU(N) transformation is called a
covariant translation.

4



2.2 Colour decomposition

To construct the gauge field Lagrangian one introduces the field strength, Gµν =
Gµν(x)

Gµν = −g−1[Dµ, Dν ] = ∂µWν − ∂νWµ − g[Wµ,Wν ], (2.5)

which is again Lie-Algebra valued, Gµν = Ga
µνta, such that we can write

Ga
µν = ∂µW

a
ν − ∂νW

a
µ − gfbcaW

b
µW

c
ν . (2.6)

Using (2.3) one easily obtains the transformation for the field strength

Gµν → U(x)GµνU(x)−1, (2.7)

which clearly shows that the field strength transforms in the adjoint representation.
A Lagrangian for the gauge fields now takes the following form

LG =
1

2
tr (GµνGµν) =

1

2
tr(tatb)G

a
µνG

b
ρση

µρηνσ, (2.8)

which is gauge invariant due to (2.7). With the conventions for the generators of
SU(N) introduced above we have tr(tatb) = − 1

2δab and the gauge field Lagrangian
becomes

LG = −1

4

(

Ga
µν

)2
= −1

4

(

∂µW
a
ν − ∂νW

a
µ

)2
+ Lint

G ,

Lint
G = gfabcW

a,µW b,ν∂µW
c
ν − 1

4
g2fabefcdeW

a,µW b,νW c
µW

d
ν .

(2.9)

The gauge fields in QCD correspond to spin-1 particles called gluons. Though we
do not restrict ourselves to N = 3 we will still call the particles associated with
the gauge fields W gluons. The Lagrangian for pure Yang-Mills theory (2.9) is
then all we need to describe pure gluon scattering at tree-level. At this point one
introduces a gauge fixing term to reduce the superficial degrees of freedom in the
gluon fields W a

µ , e.g.

Lg.f. = −1

2
ξ−1

(

∂µW a
µ

)2
= −1

2
ξ−1∂µW a

µ∂
νW a

ν . (2.10)

After we have fixed the gauge degrees of freedom we may derive the Feynman
rules using the method introduced by Faddeev and Popov. More details can be
found in many textbooks on quantum field theory, for example see [3]. Since we
will be interested in gluon amplitudes at tree level we will ignore the presence of
ghost fields. They do not contribute at tree level. The Feynman rules for pure
Yang-Mills theory can be found in table 2.1. To reduce the number of calculations
needed to construct amplitudes from these Feynman rules a colour decomposition
is used. This decomposition is discussed in the following paragraph.

2.2 Colour decomposition

It is well known that the construction of amplitudes using standard Feynman
rules, e.g. table 2.1, becomes rather cumbersome. This is mostly due to the
self-interactions of the gauge fields. As a consequence of gauge invariance one

5



2 Preliminaries

k

a, µ b, ν =
1

i(2π)4
1

k2

(

ηµν − (1− ξ)
kµkν
k2

)

δab

k2

k1
k3

a2, µ2

a1, µ1

a3, µ3

=

i(2π)4δ(4) (k1 + k2 + k3) (−ig) fa1a2a3
[

ηµ1µ2(k1 − k2)µ3 + ηµ2µ3(k2 − k3)µ1

+ ηµ3µ1(k3 − k1)µ2

]

a2, µ2

a1, µ1

a3, µ3

a4, µ4

=

i(2π)4δ(4) (k1 + k2 + k3 + k4)
(

−g2
)

[

fa1a2dfa3a4d (ηµ1µ3ηµ2µ4 − ηµ1µ4ηµ2µ3)

+ fa1a3dfa2a4d (ηµ1µ2ηµ3µ4 − ηµ1µ4ηµ2µ3)

+ fa1a4dfa2a3d (ηµ1µ2ηµ3µ4 − ηµ1µ3ηµ2µ4)
]

k

ǫµ(k)Mν = ǫ∗µ(k)η
µνMν

k

ǫµ(k)Mν = ǫµ(k)η
µνMν

Table 2.1: Feynman rules for pure Yang-Mills theory. As always there is an integral
∫

d4k for each internal momentum k. Note that we have used conventions in which
there are no symmetry factors at tree-level. In the remaining pages I will always
extract a factor i(2π)4× overall momentum conserving delta function from any
amplitude.

has to deal with superficial degrees of freedom which do not contribute to the
physical amplitude. These unphysical degrees of freedom give rise to terms that
are not gauge invariant. Due to the local SU(N) symmetry these terms cancel
out at the end of the calculations. The difficult part is keeping track of these
terms at intermediate steps. One way to simplify calculations is to note that the
original amplitude can be decomposed into a class of smaller amplitudes which are
separately gauge invariant. At tree-level, we may do so by stripping off the colour
structure or group structure of the diagrams. This can not be done in general but it
is possible for SU(N) or U(N). The construction is known as colour decomposition
[4, 5, 6]. We will consider the decomposition of gluon tree-amplitudes.6 From the
Feynman rules in table 2.1 we see that the structure constants fabc arise in the
vertices. We will rewrite this using the SU(N) generators before removing the
colour structure from the amplitudes. For that reason let us have a look at the
su(N) algebra.

6One can also construct colour decompositions for other amplitudes, for example amplitudes
involving n gluons and 2 fermions or 1-loop generalizations [7] of these amplitudes.
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2.2 Colour decomposition

2.2.1 Colour algebra

We will primarily follow the review by Dixon [8]. Some other reviews can be found
in [9, 10]. Let us start by having a look at the colour algebra, su(N). The algebra
has a basis consisting of the generators ta of SU(N). These were introduced in
the previous section and they satisfy

tr(ta) = 0,

t†a = −ta,
[ta, tb] = fabctc,

tr(tatb) = −1

2
δab.

(2.11)

When discussing the colour decomposition a different choice of generators, Ta, is
employed. These are normalized such that tr(TaTb) = δab. Clearly Ta = i

√
2ta

such that these new generators satisfy

tr(Ta) = 0,

T †
a = Ta,

[Ta, Tb] = i
√
2fabcTc,

tr(TaTb) = δab.

(2.12)

The decomposition that we will consider makes use of the colour generators instead
of the structure constants. For this reason we need to eliminate the structure
constants in our amplitudes in favour of the SU(N) generators, Ta. Using (2.12)
we find

fabc = − i√
2
tr ([Ta, Tb]Tc) . (2.13)

We will also need a way to rewrite products of colour generators. This can be
done using the following identity

(Ta)i
i′(Ta)j

j′ = δi
j′δj

i′ − 1

N
δi

i′δj
j′ , (2.14)

where a sum over a is implied. This is the completeness relation of the generators
Ta. It expresses the fact that any traceless hermitean N×N matrix can be written
as a linear combination of the generators Ta. Notice that the part involving −1/N
in (2.14) expresses the fact that the generators are traceless.
There is an interesting generalization which can be used here. We started from
SU(N) but we could just as well have started from the group U(N). Since
U(N) ≃ SU(N) × U(1) this amounts to adding a U(1) generator. The corre-
sponding gauge field is often called the photon.7 The group U(1), consisting of
phase transformations, is abelian and its generator is easily seen to be proportional
to the identity matrix. The correct normalization is

(

TaU(1)

)

i
i′ =

1√
N
δi

i′ . (2.15)

7It is called the photon but it need not describe the physical photon known from QED since we
have made no connection to QED. It is, however, possible to make this connection by adjusting
the coupling strength, but we will not do this.

7



2 Preliminaries

Since this generator clearly commutes with all other previously described SU(N)
generators we have

fabcU(1)
= 0, (2.16)

which simply expresses the fact that the photon does not couple to gluons. To
describe the U(N) group we can use our previous generators Ta and the U(1) gen-
erator TaU(1)

. We will denote this new set of generators by T̃a. The completeness
relation for this new set is slightly different

(T̃a)i
i′(T̃a)j

j′ = δi
j′δj

i′ . (2.17)

We will not be needing this directly but the introduction of the U(1) generator will
prove useful later. In the remainder we will always work with the group SU(N)
and generators Ta unless specified otherwise.
If tree amplitudes involving only gluons are considered then the part proportional
to 1/N in (2.14) does not contribute. In other words (2.14) can effectively be
replaced by (2.17) when considering pure gluon tree-amplitudes. In order to see
this consider the contracted product of two structure constants, as would arise in
a tree-level amplitude with at least four external gluons

fa1a2dfa3a4d =− i√
2
tr (Ta1Ta2Td − Ta2Ta1Td)

×− i√
2
tr (Ta3Ta4Td − Ta4Ta3Td) ,

(2.18)

we can use (2.14) to rewrite this as

fa1a2dfa3a4d =

(−i√
2

)2
[

trTa1Ta2Ta3Ta4 − trTa1Ta2Ta4Ta3

− trTa2Ta1Ta3Ta4 + trTa2Ta1Ta4Ta3

− 1

N

(

trTa1Ta2 trTa3Ta4 − trTa1Ta2 trTa4Ta3

− trTa2Ta1 trTa3Ta4 + trTa2Ta1 trTa4Ta3

)

]

.

(2.19)

Now notice that all the terms proportional to 1/N cancel out and we are left with

fa1a2dfa3a4d =

(−i√
2

)2

tr
(

Ta1Ta2Ta3Ta4 − Ta1Ta2Ta4Ta3

− Ta2Ta1Ta3Ta4 + Ta2Ta1Ta4Ta3

)

=

(−i√
2

)2

tr
(

Ta1 [Ta2 , [Ta3 , Ta4 ]]
)

.

(2.20)

This result generalizes to

fa1a2x1fx1a3x2 · · · fxn−3an−1an

=

(−i√
2

)n−2

tr
(

Ta1 [Ta2 , [Ta3 , · · · , [Tan−1, Tan
] · · · ]]

)

,
(2.21)
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2.2 Colour decomposition

which can be proven by induction. There is a more physical interpretation of
(2.21). The part proportional to 1/N in (2.14) describes the U(1) generator.
Hence, if one starts with a tree amplitude involving solely gluons, these terms will
correspond to gluons coupling to photons. We do, however, know that there is no
such coupling, (2.16).8 Thus the fact that the terms proportional to 1/N cancel
in pure gluon tree-amplitudes simply follows from the absence of a gluon-photon
coupling.
With this remark we are ready to describe the colour decomposition of gluon
tree-amplitudes.

2.2.2 Decomposing tree-level amplitudes

We would like to get rid of the colour structure of each amplitude. Since amplitudes
are build up out of propagators and vertices we will first discuss how to do this
for these vertices: see table 2.1. First consider the three gluon vertex, V 3(1, 2, 3),
where 1 (respectively 2 and 3) correspond to a1 and µ1 (resp. a2, µ2 and a3, µ3).
Use (2.13) and take the i(2π)4× overall momentum conserving delta function out
to obtain the following expression

V 3(1, 2, 3) = (−ig)
(−i√

2

)

tr (Ta1Ta2Ta3 − Ta2Ta1Ta3)

[

ηµ1µ2(k1 − k2)µ3 + ηµ2µ3(k2 − k3)µ1 + ηµ3µ1(k3 − k1)µ2

]

(2.22)

An important point is that we can rewrite the two terms and that, due to the
overall vertex having bosonic symmetry, the minus sign in the trace cancels against
another minus sign when rewriting the second term. The result can then be written
as

V 3(1, 2, 3) = (−ig)
(−i√

2

)

tr(Ta1Ta2Ta3)

(

ηµ1µ2(k1 − k2)µ3 + ηµ2µ3(k2 − k3)µ1 + ηµ3µ1(k3 − k1)µ2

)

+(−ig)
(−i√

2

)

tr(Ta2Ta1Ta3)

(

ηµ2µ1(k2 − k1)µ3 + ηµ1µ3(k1 − k3)µ2 + ηµ3µ2(k3 − k2)µ1

)

(2.23)

We see that two terms contribute and that the colour structure reduces to single
traces rather than products of traces. When we say that an expression’s colour
structure reduces to single traces we will always mean that it can be written as
a sum over terms in which the colour structure is exactly one trace of SU(N)
generators. It is interesting to notice that both terms have the exact same form
and that they seem to correspond to the non-cyclic permutations of the set {1, 2, 3}.
Similarly, we want a different expression for the four gluon vertex, V 4(1, 2, 3, 4).
This vertex depends upon the contraction of two structure constants. Using (2.20)

8Any pure gluon tree-amplitude can contain only gluons, an internal fermion, for example,
necessarily leads to a loop.
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2 Preliminaries

or, equivalently, (2.13) and (2.14) we obtain

V 4(1, 2, 3, 4) = (−g2)
(−i√

2

)2

×
[

tr
(

T1234 − T1243 − T2134 + T2143
)(

ηµ1µ3ηµ2µ4 − ηµ1µ4ηµ2µ3

)

+ tr
(

T1324 − T1342 − T3124 + T3142
)(

ηµ1µ2ηµ3µ4 − ηµ1µ4ηµ2µ3

)

+ tr
(

T1423 − T4123 − T1432 + T4132
)(

ηµ1µ2ηµ3µ4 − ηµ1µ3ηµ2µ4

)

]

,

(2.24)

where we used the notation Tab···d = TaTb · · ·Td and left out the i(2π)4× delta
function. Collecting all terms with identical trace structure we are again able to
rewrite each term in the same form as we did for the cubic vertex. This is possible
because of the bosonic symmetry of the vertex. By doing so we find the following
expression

V 4(1, 2, 3, 4) = g2 trT1234

(

ηµ1µ3ηµ2µ4 −
1

2
(ηµ1µ4ηµ2µ3 + ηµ1µ2ηµ3µ4)

)

+ g2 trT1243

(

ηµ1µ4ηµ2µ3 −
1

2
(ηµ1µ3ηµ2µ4 + ηµ1µ2ηµ3µ4)

)

+ g2 trT1342

(

ηµ1µ4ηµ2µ3 −
1

2
(ηµ1µ3ηµ2µ4 + ηµ1µ2ηµ3µ4)

)

+ g2 trT1432

(

ηµ1µ3ηµ2µ4 −
1

2
(ηµ1µ4ηµ2µ3 + ηµ1µ2ηµ3µ4)

)

+ g2 trT1324

(

ηµ1µ2ηµ3µ4 −
1

2
(ηµ1µ4ηµ2µ3 + ηµ1µ3ηµ2µ4)

)

+ g2 trT1423

(

ηµ1µ2ηµ3µ4 −
1

2
(ηµ1µ4ηµ2µ3 + ηµ1µ3ηµ2µ4)

)

.

(2.25)

As before we see that the colour structure of the vertex breaks up into a sum of
single traces and the kinematic part in each term has the same form. Notice that
the terms can be interpreted as the non-cyclic permutations of the set {1, 2, 3, 4}.
Looking at (2.23) and (2.25) we see how the colour factor has been reduced to
a single trace. If we label the external gluons using their colour index, we can
interpret the two (resp. six) terms in the cubic (resp. quartic) vertex as arising
from the non-cyclic permutations of the three (resp. four) gluons around the
vertex. This makes sense as the kinematic structure of each term has the same
form. It also enables us to strip off the colour structure. We do this by defining
new vertices. We extract the single trace and the coupling constant. We may then
define

V 3
p (1, 2, 3) =− 1√

2

[

ηµ1µ2(k1 − k2)µ3

+ ηµ2µ3(k2 − k3)µ1 + ηµ3µ1(k3 − k1)µ2

]

,

(2.26)

V 4
p (1, 2, 3, 4) = ηµ1µ3ηµ2µ4 −

1

2
(ηµ1µ4ηµ2µ3 + ηµ1µ2ηµ3µ4) . (2.27)

Clearly V 3
p and V 4

p depend on the arrangement of the gluons, e.g. V 3
p (1, 2, 3) 6=

V 3
p (1, 3, 2). They are, by construction, independent of the colour structure of the

original vertex. From (2.23, 2.25) we see that they make up for only a part of

10



2.2 Colour decomposition

the original Feynman vertex. Therefore (2.26, 2.27) will be called partial vertices.
Now the original vertices are given by summing over all non-cyclic permutations
of the gluons after including the trace and coupling constant.

V 3(1, 2, 3) = g
∑

σ∈S3/Z3

[

tr(Taσ(1)
Taσ(2)

Taσ(3)
)V 3

p (σ(1), σ(2), σ(3))

]

,

V 4(1, 2, 3, 4) = g2
∑

σ∈S4/Z4

[

tr
(

Taσ(1)
Taσ(2)

Taσ(3)
Taσ(4)

)

V 4
p (σ(1), σ(2), σ(3), σ(4))

]

.

(2.28)

Here we introduce the notation Sn for the group of all permutations and Zn the
group of all cyclic permutations of the set {1, · · · , n} such that Sn/Zn becomes
the group of all non-cyclic permutations. The expression (2.28) shows what is
meant by stripping off the colour structure. We decompose the original vertices
into partial vertices by extracting the trace of colour generators.
If we calculate a tree-level amplitude then all different Feynman diagrams that
contribute at tree-level have to be considered. The colour structure in each vertex
has the form of a single trace of colour generators. We would like to get rid of
this part and define diagrams that are independent of the colour. For that reason
we introduce a new type of diagrams called partial diagrams. Partial diagrams
are different from Feynman diagrams. Feynman diagrams are build up out of the
vertices and propagators depicted in table 2.1. Let us introduce partial diagrams
as diagrams built up out of combinations of the partial vertices. The propagator
connecting different partial vertices is the gluon propagator in table 2.1 without
the colour-space Kronecker delta. The partial vertices depend on the arrangement
of the gluons. As this needs to be reflected in the partial diagrams we will label
the gluons counterclockwise.9 To make the distinction with Feynman diagrams we
will give the endpoints of a partial amplitude a black dot. This may be interpreted
as if the gluons are pinned down at a specific location, reflecting the dependence
of the expression on the arrangement of the gluons. Now define the following
diagrammatic representation

b

a

c

= V 3
p (a, b, c), (2.29)

b

a

c

d

= V 4
p (a, b, c, d). (2.30)

9This is the convention that will be used for all diagrams later on. Obviously we could also
have chosen to label them clockwise and the final results should remain unchanged.
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The expression corresponding to V 3
p can be found in (2.26) and V 4

p can be found in
(2.27). As noted the diagrammatic representations of V 3

p and V 4
p , which we called

partial diagrams, are quite different from the Feynman diagrams used to denote
V 3 and V 4 in table 2.1. Consider, for example, V 3

p and V 3. When interchanging
two gluons the Feynman vertex has bosonic symmetry. This is not the case for the
partial vertex, as V 3

p depends on the gluon arrangement. We need to know the
gluon positions in V 3

p to multiply the corresponding expression (2.26) with a trace
of colour generators. The arrangement of the colour generator inside this trace
reflects the arrangement of the gluons around the vertex as can be seen in (2.28).
When we sum over all non-cyclic permuations of the external gluon arrangement
around the partial diagram we obtain the cubic Feynman vertex. In this way the
first equation in (2.28) is equivalent to

2

1

3

= g tr (T1T2T3)

2

1

3

+g tr (T1T3T2)

3

1

2

. (2.31)

The diagram on the left hand side is a Feynman diagram while the diagrams on the
right hand side are partial diagrams. The same story holds for the quartic partial
vertex, V 4

p . From (2.31) it should also be clear that one needs two partial diagrams
to construct the original cubic Feynman vertex. In the same way one needs six
partial diagrams for the quartic Feynman vertex, corresponding to the six non-
cyclic permutations of the four external gluons. Diagrammatically we represent
this as follows

2

1

3

4

= g2
∑

σ∈S4/Z4

tr
(

Taσ(1)
Taσ(2)

Taσ(3)
Taσ(4)

)

σ(2)

σ(1)

σ(3)

σ(4)

. (2.32)

Now we have extensively described how to strip off the colour structure from the
Feynman vertices. We did this by introducing partial vertices and by introducing a
new diagrammatic representation. The partial vertices are then represented using
partial diagrams, see (2.29, 2.30). We also saw how we needed multiple partial
diagrams to make up a Feynman diagram. It turns out that many of these concepts
generalize to any tree-level gluon amplitude. To see how this works in general we
will first have a look at the four-point Green’s function, M4, at tree-level.

Decomposing the four-point Green’s function

Consider the four-point Green’s function, M4, with arbitrary helicity configura-
tion. We need to consider all Feynman diagrams with four external lines. At
tree-level four different diagrams contribute, depicted in figure 2.1. Let us denote
the different Feynman diagrams in figure 2.1 from left to right with I1, I2, I3
and I4. Define ǫ(ki, λi)

µi to be the polarization vector corresponding to gluon
i ∈ {1, 2, 3, 4}. We will use the Feynman rules from table 2.1 in the ξ = 1 gauge.
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2

1

3

4

2

1

3

4

4

1

2

3

3

1

2

4

Figure 2.1: The four Feynman diagrams contributing to M4 at tree-level.

We want to decompose each diagram by extracting the colour structure. The first
diagram in figure 2.1, I1, is nothing more than the quartic Feynman vertex con-
tracted with the corresponding polarization vectors. We already rewrote this in
the previous section such that I1 is given by

I1 = g2

[

trT1234

(

ηµ1µ3ηµ2µ4 −
1

2
(ηµ1µ4ηµ2µ3 + ηµ1µ2ηµ3µ4)

)

+ trT1243

(

ηµ1µ4ηµ2µ3 −
1

2
(ηµ1µ3ηµ2µ4 + ηµ1µ2ηµ3µ4)

)

+ trT1342

(

ηµ1µ4ηµ2µ3 −
1

2
(ηµ1µ3ηµ2µ4 + ηµ1µ2ηµ3µ4)

)

+ trT1432

(

ηµ1µ3ηµ2µ4 −
1

2
(ηµ1µ4ηµ2µ3 + ηµ1µ2ηµ3µ4)

)

+ trT1324

(

ηµ1µ2ηµ3µ4 −
1

2
(ηµ1µ4ηµ2µ3 + ηµ1µ3ηµ2µ4)

)

+ trT1423

(

ηµ1µ2ηµ3µ4 −
1

2
(ηµ1µ4ηµ2µ3 + ηµ1µ3ηµ2µ4)

)

]

× ǫ(k1, λ1)
µ1ǫ(k2, λ2)

µ2ǫ(k3, λ3)
µ3ǫ(k4, λ4)

µ4 .

(2.33)

Where we used the notation Ta···b = Ta · · ·Tb introduced in the previous section.
The colour structure has already been reduced to single traces. We may use
the partial diagram (2.30) to represent the six terms contributing to I1. The
diagrammatic representation is then identical to (2.32).

Let us continue and consider the second diagram in figure 2.1, I2. Using the
Feynman rules we find

I2 =(−ig)2 fa1a2xfya3a4

ηαβδxy
(k1 + k2)2

×
[

ηµ1µ2(k1 − k2)α + ηµ2α(2k2 + k1)µ1 + ηαµ1(−2k1 − k2)µ2

]

×
[

ηβµ3(−2k3 − k4)µ4 + ηµ3µ4(k3 − k4)β + ηµ4β(2k4 + k3)µ3

]

× ǫ(k1, λ1)
µ1ǫ(k2, λ2)

µ2ǫ(k3, λ3)
µ3ǫ(k4, λ4)

µ4 .

(2.34)

To rewrite the colour part of this Feynman diagram we may use (2.20). Rename
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aj → j to find

I2 =− g2
(−i√

2

)2

tr (T1234 − T1243 − T2134 + T2143)
ηαβ

(k1 + k2)2

×
[

ηµ1µ2(k1 − k2)α + ηµ2α(2k2 + k1)µ1 + ηαµ1(−2k1 − k2)µ2

]

×
[

ηβµ3(−2k3 − k4)µ4 + ηµ3µ4(k3 − k4)β + ηµ4β(2k4 + k3)µ3

]

× ǫ(k1, λ1)
µ1ǫ(k2, λ2)

µ2ǫ(k3, λ3)
µ3ǫ(k4, λ4)

µ4 .

(2.35)

Now, because of the bosonic symmetry of the Feynman diagram we can rewrite
the kinematic part in each term with a minus sign in the trace to cancel this minus
sign. By doing so we find

I2 =g2ǫ(k1, λ1)
µ1ǫ(k2, λ2)

µ2ǫ(k3, λ3)
µ3ǫ(k4, λ4)

µ4

{

tr (T1T2T3T4)
ηαβ

(k1 + k2)2

× −1√
2

[

ηµ1µ2(k1 − k2)α + ηµ2α(2k2 + k1)µ1 + ηαµ1(−2k1 − k2)µ2

]

× −1√
2

[

ηβµ3(−2k3 − k4)µ4 + ηµ3µ4(k3 − k4)β + ηµ4β(2k4 + k3)µ3

]

+ tr (T1T2T4T3)
ηαβ

(k1 + k2)2

× −1√
2

[

ηµ1µ2(k1 − k2)α + ηµ2α(2k2 + k1)µ1 + ηαµ1(−2k1 − k2)µ2

]

× −1√
2

[

ηµ3β(2k3 + k4)µ4 + ηµ4µ3(k4 − k3)β + ηβµ4(−2k4 − k3)µ3

]

+ tr (T2T1T3T4)
ηαβ

(k1 + k2)2

× −1√
2

[

ηµ2µ1(k2 − k1)α + ηαµ2(−2k2 − k1)µ1 + ηµ1α(2k1 + k2)µ2

]

× −1√
2

[

ηβµ3(−2k3 − k4)µ4 + ηµ3µ4(k3 − k4)β + ηµ4β(2k4 + k3)µ3

]

+ tr (T2T1T4T3)
ηαβ

(k1 + k2)2

× −1√
2

[

ηµ2µ1(k2 − k1)α + ηαµ2(−2k2 − k1)µ1 + ηµ1α(2k1 + k2)µ2

]

× −1√
2

[

ηµ3β(2k3 + k4)µ4 + ηµ4µ3(k4 − k3)β + ηβµ4(−2k4 − k3)µ3

]

}

.

(2.36)

Let us have a closer look at this expression. Consider the first term

g2ǫ(k1, λ1)
µ1ǫ(k2, λ2)

µ2ǫ(k3, λ3)
µ3ǫ(k4, λ4)

µ4 tr (T1T2T3T4)
ηαβ

(k1 + k2)2

× −1√
2

[

ηµ1µ2(k1 − k2)α + ηµ2α(2k2 + k1)µ1 + ηαµ1(−2k1 − k2)µ2

]

× −1√
2

[

ηβµ3(−2k3 − k4)µ4 + ηµ3µ4(k3 − k4)β + ηµ4β(2k4 + k3)µ3

]

.

(2.37)
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2.2 Colour decomposition

The colour structure is a single trace of SU(N) generators. The kinematic struc-
ture is the product of two partial vertices (2.26) with a gluon-propagator without
the colour-space Kronecker delta. We may use the partial diagrams (2.29) to
represent the kinematic part of this term

g2 tr (T1T2T3T4)

2

1

3

4

. (2.38)

This can be done for each term in I2 such that we have

2

1

3

4

= g2 tr (T1234)

2

1

3

4

+ g2 tr (T1243)

2

1

4

3

+ g2 tr (T2134)

1

2

3

4

+ g2 tr (T2143)

1

2

4

3

.

(2.39)

We see that there are four partial diagrams needed to construct the original Feyn-
man diagram, I2. Notice as well that the positions of the gluons around the partial
diagrams in (2.39) are reflected in the arrangement of the colour generators inside
each trace.
We can do the same for the remaing diagrams I3 and I4 in figure 2.1. The result
for I3 is

4

1

2

3

= g2 tr (T1423)

4

1

2

3

+ g2 tr (T1432)

4

1

3

2

+ g2 tr (T4123)

1

4

2

3

+ g2 tr (T4132)

1

4

3

2

,

(2.40)

and I4 gives

3

1

2

4

= g2 tr (T1324)

3

1

2

4

+ g2 tr (T1342)

3

1

4

2

+ g2 tr (T3124)

1

3

2

4

+ g2 tr (T3142)

1

3

4

2

.

(2.41)
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Now the four-point gluon tree-amplitude, M4, is given by the sum of I1 up to I4.
Since we can decompose each Feynman diagram using traces of colour generators
and partial diagrams we may collect all terms with identical trace structure. We
call the sum of all terms with the same trace of generators a partial amplitude A4.
To denote to which trace they contribute we will write A4(a, b, c, d) for the partial
diagrams associated with the trace tr (TaTbTcTd). Because the trace is invariant
under cyclic permutations there is a sum over all non-cyclic permutations of the
colour generators. We may write

M4 = g2
∑

σ∈S4/Z4

tr
(

Taσ(1)
Taσ(2)

Taσ(3)
Taσ(4)

)

A4(σ(1), σ(2), σ(3), σ(4)). (2.42)

Let us introduce some more diagrammatic language. We use a blob to denote all
different Feynman diagrams such that10

2

1

3

4

= M4. (2.43)

Obviously M4 depends on the helicity configuration of the external gluons. When
this becomes important we will make this explicit by writing M4(1

λ1 , · · · ) when
gluon 1 has helicity λ1. For the moment we will ignore this.
In the same way we will use a blob to denote the sum of all partial diagrams that
make up a partial amplitude

b

a

c

d

= A4(a, b, c, d). (2.44)

With this diagrammatic notation (2.42) becomes

2

1

3

4

= g2
∑

σ∈S4/Z4

tr
(

Tσ(1)Tσ(2)Tσ(3)Tσ(4)
)

σ(2)

σ(1)

σ(3)

σ(4)

. (2.45)

Let us now have a look at the partial diagram contributing to A4(1, 2, 3, 4). Using
the representations (2.32), (2.39), (2.40) and (2.41) of I1, I2, I3 and I4 we can
collect all partial diagrams that are multiplied by tr (T1234). The sum of these
partial diagrams gives the partial amplitude A4(1, 2, 3, 4)

2

1

3

4

=

2

1

3

4

+

2

1

3

4

+

2

1

3

4

. (2.46)

10We will only consider tree-level diagrams.
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We see that every partial diagrams contributing to A4(1, 2, 3, 4) has the external
gluons positioned counterclockwise 1, 2, 3 and 4. We will denote this property by
saying that the gluon positioning is fixed in a partial amplitude. It is also instruc-
tive to see that the partial diagrams contributing to one specific partial amplitude
have the same form as the Feynman diagrams. They are, however, only part of the
Feynman diagram, as can be seen from (2.32, 2.39, 2.40, 2.41). In addition we note
that for each partial amplitude there is one Feynman diagram in figure 2.1 which
does not contribute. This means that only three out of the four Feynman diagrams
decompose into a partial diagram which contributes to a specific partial amplitude.
Consider A4(1, 2, 3, 4), for example. The first, second and third Feynman diagram
in figure 2.1 include a partial diagram that contributes to A4(1, 2, 3, 4). This is
most easily seen by considering the decompositions (2.32, 2.39, 2.40). On the other
hand, there is no partial diagram with the correct arrangement of the external glu-
ons in the decomposition of the last Feynman diagram in figure 2.1. Hence this
Feynman diagram does not contribute to A4(1, 2, 3, 4), as can be seen from (2.41).

We remember that a partial diagram is only part of the full Feynman diagram.
This was already the case for the partial vertices, which form only part of the full
Feynman vertex. In addition, not every Feynman diagram need to contribute to
a specific partial amplitude. This is a consequence of the fixed gluon position in a
partial amplitude.

The example above shows us how we can bring the group structure of each gluon
tree-diagram to single traces of SU(N) generators. We then saw how we could de-
compose the Feynman amplitude into a sum over partial amplitudes (2.42, 2.45).
These partial amplitudes may be calculated by evaluating all contributing partial
diagrams. Partial diagrams have the same form as Feynman diagrams with the
additional requirement that the gluon positioning around the diagrams is fixed.
We may evaluate a partial diagram by using the partial vertices (2.26) and (2.27).
Using these observations we may note that it is possible to directly calculate the
partial amplitudes, instead of the Feynman amplitude. The set of rules neces-
sary to construct these partial amplitudes are collected in table 2.3. They are
called colour-ordered Feynman rules because they are used to construct partial
diagrams which have a fixed gluon position such that they can be thought of
as having a specific colour-arrangement. The decomposition (2.45) is called the
colour-decomposition. Let us now briefly discuss how this works for a general
gluon tree-amplitude.

General tree-amplitudes

The decomposition (2.42, 2.45) may straightforwardly be generalized to any gluon
tree-amplitude [4, 5, 6]. Let us consider a tree-amplitude with n external gluons,
Mn.

Using (2.13, 2.14) we can decompose each diagram into terms where the colour
structure enters as a single trace of SU(N) generators. Imagine starting with
an external gluon and the first vertex to which it connects. Using (2.13, 2.14)
we can associate a colour generator with each line attached to this vertex. From
(2.28) we see that this leads to a sum over the non-cyclic permutations of the
gluons attached to this vertex while the expression for the vertex in each term
changes to (2.26) or (2.27). Now we continue by following the other lines attached
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to this vertex. If this leads to an external gluon we are done. When, on the
other hand, the line corresponds to an internal propagator we have to continue
to the next vertex which can again be written as a sum of partial vertices. The
gluon propagator is diagonal in colour space such that a notion of colour flow
exists. This leads to the combined diagram, consisting of the gluons and vertices
considered so far, decomposing into terms with a single trace as colour factor. In
addition, the expression in each term follows from the partial vertices. The sum
runs over all non-cyclic permutations of the gluons that still have an associated
colour generator. This procedure can be continued until we are left with only
external gluons. The resulting decomposition can then be written as a sum over all
non-cyclic permutations of the external gluons, labelled according to their colour
index. Each term will consist of a single trace that reflects the arrangement of the
external gluons and an expression called the partial amplitude, An, which encodes
the kinematic information. This decomposition is called the colour decomposition
and, including the coupling constant, it allows us to write

Mn = gn−2
∑

σ∈Sn/Zn

tr
(

Tσ(1) · · ·Tσ(n)
)

An(σ(1), · · · , σ(n)). (2.47)

Obviously the maximal number of vertices is n − 2. Since the quartic vertex has
an associated coupling g2 we always obtain a factor gn−2 for each diagram with n
external gluons.

The computations of gluon tree amplitudes in pure Yang-Mills theory have now
been reduced to computing partial amplitudes. From this point on we will focus on
calculating these partial amplitudes. They are easier to calculate because one has
to consider less terms for a partial amplitude compared to the Feynman amplitude.
This can be seen from table 2.2. Therefore partial amplitudes are favoured over
the Feynman amplitude. We must keep in mind that if we know all (n−1)! partial
amplitudes in (2.47) then we can calculate the full Feynman amplitude. Let us
have a closer look at these partial amplitudes.

2.2.3 Partial amplitudes

From the construction of (2.47) it is clear that the partial amplitudes are inde-
pendent of the group structure. They depend on the arrangement of the external
gluons, i.e. An(1, 2, · · · , n) 6= An(2, 1, · · · , n). Let us summarize how we may
calculate these objects.

Consider An(a, b, · · · , c). First draw all contributing partial diagrams. These may
be found in the same way as Feynman diagrams with the only difference being that
the external gluons a, b, · · · , c are positioned counterclockwise around the diagram.
Now use the colour-ordered Feynman rules in table 2.3 to evaluate each partial
diagram. The sum then gives the desired partial amplitude.

It may be less obvious that it is not possible to find for example A4(1, 2, 3, 4) di-
rectly from A4(1, 2, 4, 3). The reason is that the partial amplitudes also depend
on the specific momentum and helicity of each external gluon. It is the helicity
dependence that will make A4(1, 2, 3, 4) quite different from A4(1, 2, 4, 3). Obvi-
ously the partial amplitudes are Lorentz invariant. We also want them to be gauge
invariant. Let us have a closer look at this.
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2.2 Colour decomposition

# diagrams
# particles partial amplitude full amplitude

4 3 4
5 10 25
6 36 220
7 133 2485
8 501 34300
9 1991 559405
10 7335 10525900

Table 2.2: The number of diagrams that contribute to the partial amplitude and
to the full amplitude [11]. The left column denotes the number of external gluons.
The column in the middle contains the number of partial diagrams contributing
to one partial amplitude. The right column contains the number of Feynman
diagrams contributing to the Feynman amplitude. Notice that the relation between
partial diagrams and Feynman diagrams is not clear. This can already be seen
from the fact that we need two respectively six partial vertices to construct the
cubic respectively quartic Feynman vertex.

Gauge invariance and gauge independence

In order to discuss the gauge invariance and gauge independence of the partial
amplitudes we must first discuss what this means for the Feynman amplitude.
Consider a Feynman amplitude M. Choose one gluon with momentum k and
write M(k) for the Feynman amplitude M with all particles on-shell but for the
chosen gluon. Furthermore, let ǫ(k) denote the polarization vector of this gluon.
We can write

M(k) = M(k)µǫ(k)µ. (2.48)

If we perform a gauge transformation then the polarization vector may change
according to ǫ(k)µ → ǫ(k)µ + αkµ, where α is a constant. Gauge invariance then
implies that

Mµkµ = 0. (2.49)

Hence, (2.49) is the statement that M is gauge invariant. It is important that all
particle are on-shell except for the gluon with momentum k.
On the other hand, due to the local SU(N) symmetry, physical quantities can not
depend on the gauge parameter ξ in (2.10). This is the statement that physical
quantities are gauge independent. Imagine calculating an amplitude M in an
arbitrary gauge, i.e. by leaving ξ unspecified. The resulting amplitude will be
written asM(ξ). If all external particles are on-shell then this Feynman amplitude
is a physical quantity. Hence it needs to be independent of ξ. Gauge independence
of an amplitude thus means that

d

dξ
M(ξ) = 0, on-shell. (2.50)

In order to discuss the gauge invariance and independence of a partial amplitude
we will first have a look at a schematic decomposition of a tree-level amplitude. We
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k

µ ν =
1

i(2π)4
1

k2

(

ηµν − (1− ξ)
kµkν
k2

)

k2

k1
k3

µ2

µ1

µ3

=

i(2π)4δ(4) (k1 + k2 + k3)

(

− 1√
2

)

[

ηµ1µ2(k1 − k2)µ3 + ηµ2µ3(k2 − k3)µ1

+ ηµ3µ1(k3 − k1)µ2

]

µ2

µ1

µ3

µ4

=

i(2π)4δ(4) (k1 + k2 + k3 + k4)
[

ηµ1µ3ηµ2µ4 −
1

2
(ηµ1µ4ηµ2µ3 + ηµ1µ2ηµ3µ4)

]

k

ǫµ(k)Mν = ǫ∗µ(k)η
µνMν

k

ǫµ(k)Mν = ǫµ(k)η
µνMν

Table 2.3: Colour-ordered Feynman rules for pure Yang-Mills theory. We will
always use the Lorentz-Feynman gauge, ξ = 1.

schematically write a tree-level amplitude, M, as M = XiAi. Here the Xi denote
the basis of the decomposition while the Ai are the coefficients. If the basis Xi is
orthogonal, i.e. XiXj = δij , then we may use this to project the coefficient Aj out
of M. By doing so we have Aj = MXj . If now MXj is gauge invariant then the
coefficient Aj is guaranteed to be gauge invariant. The same statement holds for
gauge independence. We would like to do the same with the colour decomposition
(2.47). Unfortunately this decomposition is only orthogonal to leading order in
1/N2.

Let us make the statement above more rigorous. First notice that in the colour
decomposition, (2.47), the {Xi} are equal to {tr(Ta1 · · ·Tan

)}. The indices a1 up
to an are the colours of the external gluons in the tree-amplitude. The coefficients
Ai are in this case different partial amplitudes. We think of {tr(Ta1 · · ·Tan

)} as a
basis in the colour space where the gluon tree-amplitude lives. Now the equivalent
of XiXj will be the product of two single traces tr(Ta1 · · ·Tan

) tr(Tb1 · · ·Tbn)∗. The
complex conjugation of the second term merely reverses the order of the colour
generators as they are hermitean. To find a completeness or orthogonality re-
lation11 we need to sum over all different colours of the external gluons. The
only difference between the two single traces can be the position of the gener-
ator inside the trace, i.e. the bi are a permutation of the ai. If we now have

11Similar to XiXj = δij .
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2.2 Colour decomposition

∑

a tr(Ta1 · · ·Tan
) tr(Tb1 · · ·Tbn)∗ = δ{a},{b} then we may use a projection as we

did in our schematic decomposition above. The δ{a},{b} only equals 1 if the permu-
tation bi of ai is cyclic. This is all we need since the trace is invariant under cyclic
permutations. The projected partial amplitude is then guaranteed to be gauge
invariant and gauge independent because M is. Such an orthogonality relation
does exist, though it is only orthogonal to leading order in 1/N2 [10]
∑

a

tr(Ta1 · · ·Tan
) tr(Tb1 · · ·Tbn)∗ = Nn−2(N2 − 1)

[

δ{a},{b} +O(N−2)
]

,

∃σ ∈ Sn : bi = aσ(i),

δ{a},{b} = 1 ⇐⇒ σ ∈ Zn.

(2.51)

Now it is not immediately clear that this guarantees the partial amplitudes to
be gauge invariant because it is not a full orthogonality relation. But remember
that the partial amplitudes are independent of the colour structure, so they are
independent ofN . Since gauge invariance should hold to each order in 1/N we may
use this fact to see that the partial amplitudes are indeed gauge invariant.12 Hence,
(2.51) is sufficiënt to guarantee the gauge invariance of the partial amplitudes.
Note that the same statement holds for gauge independence.
Let us now see whether we can prove (2.51). Introduce the following notation

trTa · · ·Tb = (a · · · b), (2.52)

such that (2.51) becomes

In =
∑

a

(a1 · · ·an)(b1 · · · bn)∗ =
∑

a

(a1 · · ·an)(bn · · · b1), (2.53)

where the last equality follows from the generators being hermitean, (2.12). Now
there is an integer i such that σ(i) = n. Using the cyclic property of the trace and
denoting the remaining b’s by aj1 , · · · , ajn−1 we can write

In =
∑

a

(a1 · · · an)(anajn−1 · · · aj1)

=
∑

a1,··· ,an−1

(a1 · · ·an−1ajn−1 · · ·aj1)−
1

N
(a1 · · · an−1)(ajn−1 · · ·aj1).

(2.54)

We used (2.14) in the second line. The second term is no longer of leading order
so let us focus on the first term. There are two possible situations, corresponding
to ajn−1 = an−1 or ajn−1 6= an−1

(a1 · · · an−1ajn−1 · · · aj1) = (Λ1an−1an−1Λ2),

(a1 · · · an−1ajn−1 · · · aj1) = (Λ3an−1Λ4an−1),
(2.55)

which give

∑

(Λ1an−1an−1Λ2) =
∑

a1,··· ,an−2

(Λ1Λ2)
N2 − 1

N
,

∑

(Λ3an−1Λ4an−1) =
∑

a1,··· ,an−2

(Λ3)(Λ4)−
1

N
(Λ3Λ4).

(2.56)

12Gauge invariance should hold to each order in 1/N because terms of order 1/Na can not
cancel against terms of order 1/Nb when a 6= b.
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This shows that the leading behaviour is obtained when σ ∈ Zn, i.e. for δ{a}{b} =
1, which allows us to write

In =
∑

a1,··· ,an−2

(a1 · · · an−2an−2 · · · a1)Nδ{a}{b} +O(N−1In−1). (2.57)

Using (2.12) repeatedly we obtain

In =
∑

a1

(a1a1)N
n−2δ{a}{b} +O(N−1In−1)

= (N2 − 1)Nn−2δ{a}{b} +O(N−1In−1)

(2.58)

From this we also see that O(N−1In−1) = (N2 − 1)Nn−2O(N−2) such that the
final result reads

In = (N2 − 1)Nn−2
[

δ{a}{b} +O(N−2)
]

. (2.59)

This is exactly what we needed to show and we can conclude that the partial
amplitudes are gauge invariant.
At first there may seem to be a lot of partial amplitudes that one has to calculate.
According to (2.47) there are (n − 1)! partial amplitudes with n external gluons.
Fortunately there are several identities that relate different partial amplitudes to
each other. As a consequence it is not necessary to calculate all (n− 1)! different
partial amplitudes.

Relations between partial amplitudes

Consider (2.47). Both the original n-gluon tree amplitude and the trace are in-
variant under a cyclic rearrangement of the gluons. It then follows that the partial
amplitudes must also obey this symmetry

An(1, · · · , n) = An(σ(1), · · · , σ(n)) , σ ∈ Zn. (2.60)

This shows that there are (n− 1)! different partial amplitudes. From the colour-
ordered Feynman rules in table (2.3) one can deduce that the partial amplitudes
obey a reflection identity

An(1, · · · , n− 1, n) = (−1)nAn(n, n− 1, · · · , 1). (2.61)

It is not necessary to calculate all (n − 1)! partial amplitudes. Several identities
exist which give relations between different partial amplitudes. We noted above
that the colour decomposition was actually valid for the gauge group U(N) con-
sisting of SU(N) and U(1). The photon, however, does not couple to gluons such
that the amplitude Mn in (2.47) should vanish if one of the n gauge fields is taken
to be the photon. This observation leads to a useful identity. Let the first particle
be a photon and collect all terms with the same trace structure in (2.47). The
traces can be thought of as an orthogonal decomposition in colour space, (2.51),
such that each term with the same trace structure should vanish independently.13

This leads to a so called U(1)-decoupling equation

An(1, · · · , n)+ · · ·+An(2, · · · , i−1, 1, i, · · · , n)+ · · ·+A(2, · · · , 1, n) = 0. (2.62)

13Clearly this is only true to leading order in 1/N .
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The identity (2.62) is sometimes called a dual Ward identity because it can rigor-
ously be derived from string theory (known as the dual theory).
Since the partial amplitudes depend on the helicities of the external gluons it
is useful to consider parity transformations. In doing so, we obtain the same
amplitude with all helicities reversed. An explicit expression will be given in
(2.93).
These symmetries and relations reduce the number of independent partial ampli-
tudes. There are in fact much more identities (see for example [8, 9]) such that
the number of independent partial amplitudes An can be reduced to (n − 3)! or
less [9]. Having introduced the concept of colour decomposition we will now have
a look at the spinor helicity formalism. This formalism is a convenient way to
express amplitudes.

2.3 Spinor helicity formalism

Amplitudes in Yang Mills theory take a compact and appealing form in the spinor
helicity formalism such that calculations become more transparent. In essence one
uses spinors with a definite helicity to describe massless fermions and massless
vector bosons. The formalism is closely related to the idea of reducing any repre-
sentation of the Lorentz group to the irreducible representations (12 , 0) and (0, 12 ).
We will follow [8] and use Dirac spinors, i.e. the (12 , 0) ⊕ (0, 12 ) representation,
instead of two-component spinors. Some original papers, where the formalism was
first introduced, can be found in [12, 13, 14].
We will use spinors to describe the momenta and polarization vectors of gluons.
It is important to remember that all particles involved are massless. Though it
may be possible to describe massive particles using spinors well we will not do so
here and the following analysis only works in the massless case.

2.3.1 Helicity spinors

We need a way to define which spinor u is associated with a specific momentum
k. This will be done using the massless Dirac equation. In this way the spinor
u(k) associated with the momentum k satisfies /ku(k) = 0. Let us therefore first
recall some basic spinor usage in the context of four component Dirac spinors. Let
u(k) and v(k) respectively denote the positive and negative energy solutions to
the massless Dirac equation

/ku(k) = 0 = /kv(k), (2.63)

where the slash notation stands for a contraction with the gamma matrices: /k =
γµkµ. The gamma matrices obey the Clifford Algebra [γµ, γν ] = 2ηµν , and for an
explicit realization we note that the Weyl representation is useful when dealing
with massless particles

(γµ)Weyl =

(

0 σµ

σµ 0

)

, σµ = (1, σi), σµ = (1,−σi), (2.64)

where the σi are the standard Pauli matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (2.65)
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At this point we also introduce γ5 = iγ0γ1γ2γ3 such that

(γ5)Weyl =

(

−1 0
0 1

)

. (2.66)

For massless particles it is interesting to consider helicity eigenstates. We will
denote14 these by uλ = u± and vλ = v±. Recall that helicity eigenstates coincide
with chiral spinors, i.e. eigenspinors of γ5. For positive energy solutions the
helicity is the same as 1/2 times the γ5 eigenvalue. The situation is different for
negative energy solution where the helicity is −1/2 times the γ5 eigenvalue. Using
the projection operators P± we decompose spinors into eigenstates of γ5

P± =
1

2
(1 ± γ5), u± = P±u, v± = P∓v. (2.67)

Sometimes it is useful to have an explicit expression for these solutions to the
massless Dirac equation (2.63). In the Weyl representation we can write uT (k) =
(λT−(k), λ

T
+(k)), where λ denotes a two-component spinor. In this way we find

uT+(k) = (0, 0, λT+(k)) and u
T
−(k) = (λT−(k), 0, 0). Now let us search for an explicit

expression for u+(k) = u+

/ku+ =

(

0 kµσ
µ

kµσ
µ 0

)

(

( 0
0 )

λ+

)

= kµσ
µλ+ = 0. (2.68)

Write λT+ = (a, b) then we need

(

k0 − k3 −k1 + ik2

−k1 − ik2 k0 + k3

)(

a
b

)

= 0. (2.69)

Now define

k± = k0 ± k3, e±iφk =
k1 ± ik2√
k+k−

, (2.70)

where the second definition is clearly a phase factor since k+k− = (k0)2 − (k3)2 =
(k1)2 + (k2)2. With this notation we find

k−a−
√
k+k−e−iφkb = 0 , a =

√

k+

k−
e−iφkb. (2.71)

Now, as is standard, we use the following normalization

u†+u+ = λ†+λ+ = 2k0 ⇒ |b|2 = k−, (2.72)

this defines the solution u+ up to an overall phase factor eiθ which we choose to
be eiφk

u+ =









0
0√

k+e−i(φk−θ)
√
k−eiθ









=









0
0√
k+√

k−eiφk









. (2.73)

14Since these objects are spinors, representing spin-1/2 particles, the helicity can be +1/2 or
−1/2. In both cases we will omit the factor of 1/2.
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Since v−(k) = P+v(k) we can choose the same expression for v−. This can also be
done for u−(k) and v+(k) such that, in the Weyl representation, we can use the
following expressions [8]

u+(k) = v−(k) =









0
0√
k+√

k−eiφk









, u−(k) = v+(k) =









√
k−e−iφk

−
√
k+

0
0









,

k± = k0 ± k3, e±iφk =
k1 ± ik2√
k+k−

.

(2.74)

These spinors are normalized according to

uλ(k)
†uλ′(k) = 2k0δλ,λ′ = 2E(k)δλ,λ′ ,

vλ(k)
†vλ′(k) = 2k0δλ,λ′ = 2E(k)δλ,λ′ .

(2.75)

Notice that the spinors u+ and u− actually live in distinct representation of the
Lorentz group 15, which is the reason why one introduces different notations for
these objects

|i〉 = |ki〉 = u+(ki) = v−(ki), |i] = |ki] = u−(ki) = v+(ki),

〈i| = 〈ki| = u−(ki) = v+(ki), [i| = [ki| = u+(ki) = v−(ki).
(2.76)

The objects |i〉 and 〈i| are often called spinors while |i] and [i| are called anti-
spinors. The notation 〈i| kµ |j] is often used to denote 〈i| /k |j]. Since the expression
without a γµ vanishes, there is no chance of confusion.
A direct calculation using (2.74) shows that

iγ2u± = u∗∓ or iγ2 |i〉 = |i]∗ , iγ2 |i] = |i〉∗ . (2.77)

With these notations introduced let us now have a look at some properties [8]. We
can define a Lorentz invariant inner product which is anti-symmetric

〈i|j〉 = u−(ki)
†γ0u+(kj) = (u−(ki)

†γ0u+(kj))
T

= u+(kj)
T γ0u∗−(ki) = u−(kj)

†(iγ2)†γ0iγ2u+(ki)

= −u−(kj)†γ2γ0γ2u+(ki) = −u−(kj)†γ0u+(ki)
= −〈j|i〉 ,

(2.78)

and the same holds for anti-spinors, [i|j] = −[j|i]. We note that this inner product
is nothing more than the familiar spinor product of two Dirac spinors.16 We thus
have the following inner products, which corresponds to the familiar product of
Dirac spinors upon using (2.76)

〈i|j〉 = −〈j|i〉 , [i|j] = − [j|i] , 〈i|j] = 0 = [i|j〉 , (2.79)

15If one uses two-component spinors, one might define |i〉 = λa belonging to the (0, 1

2
) rep-

resentation while |i] = λȧ belongs to the ( 1
2
, 0) representation. In our case both objects are

described using four component Dirac spinors.
16If one uses two-component spinors the usual inner product between two-component spinors

coincides with the one we use after identifying the two and four component spinors as was done
in footnote 15.
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where the last equations follows from P+P− = 0. Recalling the use of spin sums
when dealing with massive particles, the same idea applies to the helicity spinors.
Provided the spinors are normalized according to (2.75), a direct calculation using
(2.74) shows

∑

λ

uλ(k)⊗ uλ(k) = |k〉 [k|+ |k] 〈k| = /k,

∑

λ

vλ(k)⊗ vλ(k) = |k] 〈k|+ |k〉 [k| = /k.
(2.80)

from which we obtain the following identities

|k〉 [k| = P+/k, |k] 〈k| = P−/k. (2.81)

In calculations one often needs an expression for terms like (ki+kj)
2 = sij . Using

(2.81) we find

〈i|j〉 [j|i] = 〈i|P+ /kj |i] = trP− /kiP+ /kj = trP− /ki /kj = 2ki · kj = sij . (2.82)

The helicity spinors only have two independent complex components, i.e. they can
be described using two-component spinors. One can then think of them as living
in a two-dimensional vector space. As a consequence, three helicity spinors need
always be linearly dependent. This is expressed in the Schouten identity

|i〉 〈j|k〉+ |j〉 〈k|i〉+ |k〉 〈i|j〉 = 0, (2.83)

the same equation holds if we replace |·〉 and 〈·| with |·] and [·| in (2.83). There are
numerous identities involving spinors and spinor products. Consider for example
[i| γµ |j〉. Using (2.77) we find

[i| γµ |j〉 = u†+(ki)γ
0γµu+(kj)

= (u†+(ki)γ
0γµu+(kj))

T

= (uT−(ki)(iγ
2)†γ0γµiγ2u∗−(kj))

T

= u†−(kj)(−γ2γ0γµγ2)Tu−(ki)
= u†−(kj)γ

0γµu−(ki)

= 〈j| γµ |i] .

(2.84)

Since γ2γµγ2 = γ0(γµ)T γ0 we can write (−γ2γ0γµγ2)T = (γ0γ0(γµ)Tγ0)T = γ0γµ

which gives the fifth equality. The resulting identity is known as charge conjugation
of current

[i| γµ |j〉 = 〈j| γµ |i] . (2.85)

Other relations include the Gordon identity

[i|γµ|i〉 = 〈i|γµ|i] = 2kµi , (2.86)

and Fierz rearrangement17

[i|γµ|j〉 [k|γµ|l〉 = 2 [i|k] 〈l|j〉 . (2.87)

17This is not a Fierz rearrangement for four-component spinors. Remember that the helic-
ity spinors have only two independent components. For that reason this is actually a Fierz
rearrangement similar to the one for two-component spinors.
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The Gordon identity easily follows from (2.81)

[i|γµ|i〉 = trP−/kiγ
µ =

1

2
ki,ν tr γ

νγµ = 2kµi . (2.88)

To prove the Fierz rearrangement we consider the left hand side of (2.87). From
(2.83) we can write |j〉〈ik〉 = |i〉〈jk〉 + |k〉〈ij〉 and a similar expression for |l〉 by
replacing j ↔ l. Combine these identities to find that there are only two non-zero
terms

[i|γµ|j〉 [k|γµ|l〉 =
[i|γµ|i〉 〈jk〉 [k|γµ|k〉 〈il〉+ [i|γµ|k〉 〈ij〉 [k|γµ|i〉 〈lk〉

〈ik〉 〈ik〉

=
4ki · kk 〈jk〉 〈il〉+ [i|γµP+/kkγµ|i〉 〈ij〉 〈lk〉

〈ik〉 〈ik〉

=
4ki · kk 〈jk〉 〈il〉+ tr (P+/kiγ

µP+/kkγµ) 〈ij〉 〈lk〉
〈ik〉 〈ik〉

=
4ki · kk 〈jk〉 〈il〉 − 4ki · kk 〈ij〉 〈lk〉

〈ik〉 〈ik〉

=
−4ki · kk 〈lj〉

〈ik〉
= 2 [i|k] 〈l|j〉 .

(2.89)

which is exactly the identity we wanted to prove. Fierz rearrangement also enables
us to write

γµ[i|γµ|j〉 = |i]〈j|+ |j〉[i|. (2.90)

To see this first choose two arbitrary reference spinors u(a) and u(b) such that

u(a)P−γµ[i|γµ|j〉u(b) = [a|γµ|b〉[i|γµ|j〉 = [a|i]〈j|b〉,
u(a)P+γµ[i|γµ|j〉u(b) = 〈a|γµ|b][i|γµ|j〉 = 〈a|j〉[i|b]. (2.91)

Since u(a) and u(b) are arbitrary we can write

γµ[i|γµ|j〉 = P+γµ[i|γµ|j〉+ P−γµ[i|γµ|j〉 = |i]〈j|+ |j〉[i|. (2.92)

A parity transformation reverses the helicity of a particle. This means that, up
to a phase factor, a positive helicity spinor turns into a negative helicity spinor.
Introduce the notation aλ for gluon a with outgoing momentum kµa and outgoing18

helicity λ, such that A(1λ, · · · ) = A(1λ, · · · )µ1ǫµ1(λ). We can then perform a parity
transformation to obtain the partial amplitude with all helicities reversed. This
gives the following identity

An(1
λ1 , · · · , nλn) = (−1)n

[

An(1
−λ1 , · · · , n−λn)

]

〈·〉↔[·]
. (2.93)

The reason why (2.93) is true will become clear after some examples in section
2.4.
The goal was to describe massless vector bosons using helicity spinors. We thus
define the helicity spinors associated with, for example, a gluon, using the massless
Dirac equation (2.63). The original gluon momentum can be found from (2.86)
such that this actually constitutes an isomorphism between two different repre-
sentations of the Lorentz group.

18Since the helicity depends on whether the particle is incoming or outgoing we will label the
amplitudes with the helicity of an outgoing particle.
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2.3.2 Polarization vectors

We still need a way to describe polarization vectors using helicity spinors. For that
reason recall that the object u(q)γµu(k) transforms as a Lorentz vector. Following
the conventions in table 2.1 we need ǫ+µ (k) to describe an outgoing spin-1 particle
of positive helicity. On the other hand we also need kµǫµ(k) = 0. For that reason
we note that |k] describes a state with outgoing +1/2 helicity and /k|k] = 0 such
that we must have

ǫ+µ (k) = A〈q|γµ|k],
ǫ−µ (k) = A∗[q|γµ|k〉.

(2.94)

We already made use of the fact that we want the polarization vectors of definite
helicity to satisfy (ǫ+µ )

∗ = ǫ−µ . Since 〈k|γµ|k] ∼ kµ, choosing q = k does not
give the desired polarization vector and we are enforced to include a lightlike
reference momentum q 6= k. Now A can be fixed using a suitable normalization,
the convention is

(ǫλ)∗ · ǫλ′

= −δλ,λ′ . (2.95)

Hence we must have

−1 = ǫ+(k) · ǫ−(k) = |A|2〈q|γµ|k][q|γµ|k〉 = |A|22〈qk〉[qk], (2.96)

which is only possible if the reference momentum satisfies k · q 6= 0. Notice that
[qk]∗ = −〈qk〉 such that we can choose A = (

√
2〈qk〉)−1. Clearly this choice leads

to the correct helicity. The most easy way to see this is to note that the |k〉 in the
denominator of ǫ+µ doubles the helicity of |k] in the numerator while the helicity
corresponding to our reference momentum drops out. The final expression now
becomes

ǫ+µ (k, q) =
〈q| γµ |k]√
2 〈q|k〉

, ǫ−µ (k, q) = − [q| γµ |k〉√
2 [q|k]

. (2.97)

We have thus found polarization vectors ǫ± describing outgoing vector bosons of
helicity ±1. In these expressions k is the vector boson’s momentum and q is an
auxiliary, lightlike, momentum satisfying k · q 6= 0.

We can work out a short example to further motivate (2.97). Consider a spin-
1 particle moving along the z-axis with momentum kµ = (1, 0, 0, 1) and choose
qµ = (1, 0, 0,−1) as reference momentum. Using the massless Dirac equation we
find the associated spinors

|k〉 = u+(k) =









0
0√
2
0









, |k] = u−(k) =









0

−
√
2

0
0









,

|q〉 = u+(q) =









0
0
0√
2









, |q] = u−(q) =









√
2
0
0
0









.

(2.98)
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2.3 Spinor helicity formalism

A short calculation shows that 〈q|k〉 = 2 and

〈q| γµ |k] =
(

0, 0,
√
2, 0
)

(

0 σµ
σµ 0

)









0

−
√
2

0
0









= (0, 2,−2i, 0) .

(2.99)

We thus find the polarization vector (2.97) to be

ǫ+µ (k, q) =
1√
2
(0, 1,−i, 0) , (2.100)

which does indeed correspond to an outgoing spin-1 particle of positive helicity.
Let us now examine the dependence of (2.97) on its reference momentum q. If we
choose a different reference momentum then the polarization vector changes by an
amount

ǫ−µ (k, q1)− ǫ−µ (k, q2) = − [q1γ
µk〉 [q2k]− [q2γ

µk〉 [q1k]√
2[q1k][q2k]

=

√
2[q1q2]

[q1k][q2k]
kµ.

(2.101)

Due to the Ward identity, this difference vanishes when contracted with an on-shell
gluon amplitude. A similar result holds for ǫ+ such that the reference momentum
corresponds to the gauge degrees of freedom residing in the polarization vectors.
The polarization vectors (2.97) satisfies k · ǫ± = 0 and (ǫ+)∗ = ǫ− by construction.
If they are normalized via (2.95) then they obey the following completeness relation

∑

λ

ǫλµ(k, q)
(

ǫλν (k, q)
)∗

= −ηµν +
kµqν + kνqµ

k · q , (2.102)

which is straightforward to derive using some identities from section 2.3 and stan-
dard trace identities of the gamma matrices.

∑

λ

ǫλµ(k, q)
(

ǫλν (k, q)
)∗

=
〈qγµk]〈kγνq] + 〈qγνk]〈kγµq]

2〈qk〉[kq]

=
〈q (γµP−/kγν + γνP−/kγµ) q]

2〈qk〉[kq]

=
tr
(

P−/qγµ/kγν + P−/qγν/kγµ
)

4k · q

=
tr
(

P−/qγµ
)

2kν − tr
(

P−/qγµγν/k
)

4k · q

+
tr
(

P−/qγν
)

2kµ − tr
(

P−/qγνγµ/k
)

4k · q

=
qµkν + qνkµ

k · q − ηµν .

(2.103)

The polarization vectors (2.97) have some interesting properties. When calcu-
lating gauge invariant quantities (e.g. partial amplitudes) one can choose an
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2 Preliminaries

appropriate reference momentum qi for each gluon (with momentum ki). Let
ǫ±i (q) = ǫ±(ki, qi = q). We then have ǫ±i (q) · q = 0 and

ǫ+i (q) · ǫ+j (q) =
〈qγµi]〈qγµj]
2〈qi〉〈qj〉 ∼ 〈qq〉 = 0. (2.104)

Obviously the same equation holds for ǫ−. Continuing in this fashion we also see
that

ǫ+i (kj) · ǫ−j (q) =
−〈jγµi][qγµj〉

2〈ji〉[qj] ∼ 〈jj〉 = 0, (2.105)

and using (2.90) we see that

/ǫ
+
i (kj) |j〉 ∼ 〈jj〉 = 0. (2.106)

In summary the following identities hold

ǫ±i (q) · q = 0,

ǫ±i (q) · ǫ±j (q) = 0,

ǫ±i (kj) · ǫ∓j (q) = 0,

/ǫ
+
i (kj) |j〉 = 0 = /ǫ

−
i (kj) |j] ,

[j| /ǫ−i (kj) = 0 = 〈j| /ǫ+i (kj).

(2.107)

This shows that a convenient choice of qi may simplify the calculations significantly.
Hereby the spinor helicity formalism is concluded. In the next section we will have
a look at some examples to see how partial amplitudes are calculated in practice.

2.4 Colour-ordered-helicity spinor calculations

We conclude this section by having a look at some examples of partial amplitudes.
By now it should be clear that the partial amplitudes depend on the positioning of
the gluons around the diagram, on their momenta and on their helicities. For that
reason we will use the notation An(1

λ1 , · · · , nλn) to denote the partial amplitude
with n external, outgoing gluons positioned counterclockwise around the diagram.
Gluon i has momentum ki and helicity λi.
First consider the partial amplitudes An(1

±, · · · , n±), where all gluons have the
same helicity. There can be at most n− 2 momenta in the expression for An since
they follow from the three gluon vertex. We always have n polarization vectors
such that, by Lorentz invariance, each term will have a factor ǫ±i (qi) ·ǫ±j (qj). Now,
from the identities given in (2.107), we see that if we take all reference momenta qi
equal to say q then ǫ±i (q) · ǫ±j (q) = 0 for all i and j. Note that we can not choose q
equal to one of the external momenta because this will lead to at least one singular
polarization vector. Yet an appropriate choice for q always exists. We conclude
that

An(1
±, · · · , n±) = 0. (2.108)

Now consider the case when one external gluon has a different helicity. From the
cyclic symmetry there is no loss of generality in taking this gluon to be the first so
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2.4 Colour-ordered-helicity spinor calculations

we have the amplitude An(1
∓, 2±, · · · , n±) in mind. This amplitude vanishes as

well because we can make the following choice of reference momenta: q1 = kn, q2 =
· · · = qn = k1. This leads to ǫ∓1 (kn) · ǫ±i6=1(k1) = 0 and ǫ±i (k1) · ǫ±j (k1) = 0 for
i, j 6= 1. By the same reason as before this class of amplitudes vanishes and we
obtain

An(1
∓, 2±, · · · , n±) = 0, n > 3. (2.109)

The reason why n should be greater than 3 follows from the fact that the choice of
reference momenta given above can only be made if n > 3. For n = 3, momentum
conservation implies that ki · kj = 0 and the polarization vectors become singular
if we choose their reference momenta to be one of the external momenta.

We already found a great number of partial amplitudes that vanish so let us have
a look at a non vanishing amplitude

A3(1
−, 2−, 3+) =

2−

1−

3+

. (2.110)

This is nothing else than the three gluon vertex contracted with three polarization
vectors. As noted before we can’t choose the reference momenta to be one of the
external gluon momenta. The best we can do is choose them equal to the same
momentum q. This choice will make ǫ±1 · ǫ±2 = 0. We will not need an explicit
expression for q because it will drop out at the end. Using the colour-ordered
Feynman rules given in table 2.3 we find

A3(1
−, 2−, 3+) =

−1√
2

[

ηµ1µ2(k1 − k2)µ3 + ηµ2µ3(k2 − k3)µ1 + ηµ3µ1(k3 − k1)µ2

]

× ǫ−(k1, q)
µ1ǫ−(k2, q)

µ2ǫ+(k3, q)
µ3

=
−2√
2

(

ǫ−2 · ǫ+3 k2 · ǫ−1 − ǫ−1 · ǫ+3 k1 · ǫ−2
)

.

(2.111)

Now using (2.97), (2.80) and the Fierz rearrangement we obtain

A3(1
−, 2−, 3+) =

−2√
2

[ [qγµ2〉 〈qγµ3] [q/k21〉√
2 [q2]

√
2 〈q3〉

√
2 [q1]

− [qγµ1〉 〈qγµ3] [q/k12〉√
2 [q1]

√
2 〈q3〉

√
2 [q2]

]

= 〈12〉2 [q3]

〈q3〉

( 〈q2〉
[q1] 〈12〉 +

〈q1〉
[q2] 〈12〉

)

.

(2.112)

It requires a little bit of work to get q out of the expression. Use

[q1] 〈12〉 = [qk12〉 = − [q(k2 + k3)2〉 = − [q3] 〈32〉 , (2.113)

31



2 Preliminaries

and a similar identity for [q2] 〈12〉 to remove [q3]. The remaining expression be-
comes independent of q after using the Schouten identity and we are left with

A3(1
−, 2−, 3+) =

〈12〉3
〈23〉 〈31〉 =

〈12〉4
〈12〉 〈23〉 〈31〉 . (2.114)

Notice that the amplitude vanishes for physical gluons, i.e. gluons with real mo-
menta. This is most easily seen from momentum conservation. Since k1+k2+k3 =
0 we have ki · kj = 0 for i, j = 1, 2, 3, or, using helicity spinors, [ij] 〈ij〉 = 0. If
the momenta are real one easily shows that [ij]

∗
= 〈ji〉, such that both the spinor

and the anti-spinor product must vanish. However, later we will be needing this
amplitude for complex gluon momenta. In that case the vanishing of the spinor
product does not imply that the anti-spinor product vanishes and vice versa, such
that the amplitude (2.114) need not vanish.
Now consider A4(1

−, 2−, 3+, 4+)

2−

1−

3+

4+

=

2−

1−

3+

4+

+

2−

1−

3+

4+

+

2−

1−

3+

4+

. (2.115)

This time we can use the gluon momenta as reference momenta for the polarization
vectors. Let q1 = q2 = k4 and q2 = q4 = k1 such that only ǫ−2 · ǫ+3 6= 0. Using the
colour-ordered Feynman rules it is readily found that only the s12 = (k1 + k2)

2

channel will contribute and proceeding in exactly the same way as above one easily
obtains

A4(1
−, 2−, 3+, 4+) =

−2

s12
ǫ−2 · ǫ+3 k2 · ǫ−1 k3 · ǫ+4

=− [43] 〈12〉 [42] 〈21〉 〈13〉 [34]
〈12〉 [21] [42] 〈13〉 [41] 〈14〉 .

(2.116)

Using momentum conservation one has [43] 〈34〉 = [12] 〈21〉 and it also follows that
〈34〉 [41] = −〈3(k1 + k2 + k3)1] = −〈32〉 [21] such that the result can be written
as

A4(1
−, 2−, 3+, 4+) =− [43] 〈21〉 [34]

[21] [41] 〈14〉

=
([12] 〈21〉)2 〈21〉
〈34〉2 [21] [41] 〈14〉

=− ([12] 〈21〉)2 〈21〉
〈34〉 [21] 〈32〉 [21] 〈14〉

=
〈12〉3

〈34〉 〈23〉 〈41〉 .

(2.117)

The final result takes a very appealing and compact form

A4(1
−, 2−, 3+, 4+) =

〈12〉4
〈12〉 〈23〉 〈34〉 〈41〉 . (2.118)
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2.4 Colour-ordered-helicity spinor calculations

There are no other four gluon partial amplitudes. All other partial amplitudes
follow from the symmetries described above. If one allows for more or less negative
helicity gluons the amplitude will vanish as described above. The only amplitude
which can not be obtained using parity, cyclic symmetry or the reflection identity
is A4(1

−, 2+, 3−, 4+). It is easily found using the U(1)-decoupling equation (2.62)

A4(1
−, 2+, 3−, 4+) +A4(2

+, 1−, 3−, 4+) +A4(2
+, 3−, 1−, 4+) = 0. (2.119)

This leads to

A4(1
−, 2+, 3−, 4+) = −A4(1

−, 3−, 4+, 2+)−A4(3
−, 1−, 4+, 2+)

=
−〈13〉4

〈13〉 〈34〉 〈42〉 〈21〉 +
−〈13〉4

〈31〉 〈14〉 〈42〉 〈23〉

=
〈13〉4

〈12〉 〈23〉 〈34〉 〈41〉

( 〈23〉 〈41〉
〈42〉 〈13〉 +

〈12〉 〈34〉
〈31〉 〈42〉

)

,

(2.120)

and as the term between brackets equals 1 due to the Schouten identity,

A4(1
−, 2+, 3−, 4+) =

〈13〉4
〈12〉 〈23〉 〈34〉 〈41〉 . (2.121)

These amplitudes all look very compact and there is a high degree of symmetry
in the final result. It turns out that a large class of amplitudes all share this fea-
ture. They are called maximally helicity violating amplitudes or MHV amplitudes.
The name implies that for n external gluons, n − 2 have the same helicity. The
amplitudes are given by the Parke-Taylor formula

AMHV
n (1+, · · · , x−, · · · , y−, · · · , n+) =

〈xy〉4
〈12〉 · · · 〈n− 1n〉 〈n1〉 . (2.122)

They were conjectured by Parke and Taylor [15] and proven correct by Berends
and Giele using their own recursion relations [16]. In the next chapter we will have
a look at a different proof using BCFW recursion relations based on arguments
originally given in [1].
Now that we understand the colour decomposition and know how to use the spinor
helicity formalism, we are ready to discuss BCFW recursion in its original setting.
We will then use the recursion relation to calculate more involved amplitudes and
use it to prove the Parke-Taylor formula.
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3 | BCFW recursion for

gluons

In this chapter we will have a look at BCFW recursion. Historically, the recursion
was found by considering IR equations.1 This was done by Britto, Cachazo and
Feng in [1]. Soon after the discovery of these recursion relations they were given
an appealing interpretation in [2] by Britto, Cachazo, Feng and Witten. We will
first derive the recursion relation in the spirit of [2]. In the second part of this
chapter we will take a look at some calculations in order to see the recursion in
action.

3.1 Derivation

The main object of study will be a tree-level gluon partial amplitude which we will
denote A. We will follow the arguments originally given by Britto, Cachazo, Feng
and Witten in [2] to derive the so-called BCFW recursion relation in combination
with additional arguments given by Arkani-Hamed and Kaplan in [17].

To derive the BCFW recursion relation we will study properties of A in the com-
plex plane. We will do so by analytically continuing two external gluon momenta
to complex values. It is not unusual to study amplitudes in the complex plane.
Consider, for example, the propagator of an unstable particle. Close to the propa-
gator pole this will have the form C

k2+iEΓ where C is a constant, k the propagator
momentum, E the particle’s energy and Γ the decay width. Though the propaga-
tor pole is complex we are still able to use field theory analysis. In fact, we must
stress that the usual field theory methods remain valid for complex momenta. To
see this note that a tree-amplitude is a rational function of momenta and polariza-
tion vectors. If we now consider complex momenta then tree-amplitudes become
meromorphic functions. This means that they are analytic but for some isolated
poles. These poles can only arise as propagator poles at tree-level. This can be
seen directly from the Feynman rules for any local quantum field theory. Let us
now discuss the analytic continuation of two external momenta to the complex
plane.

1Infrared or IR equations are relations found by studying the low energy (infrared) behaviour
of loop diagrams.
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3 BCFW recursion for gluons

3.1.1 The deformation

The BCFW recursion can be derived by using a momentum shift or deformation.
We choose two external momenta and make them complex. All other momenta
will remain unchanged. In doing so we will introduce a complex variable z which
continuously deforms the two external momenta. For that reason let i and j denote
two different external gluons with momenta ki and kj . These will be our reference
gluons. For general purposes BCFW depends on the following shift

ki → ki(z) = k̂i = ki + zq, kj → kj(z) = k̂j = kj − zq,

ki · q = 0 = kj · q, q2 = 0, z ∈ C,
(3.1)

and all other momenta remain unshifted. It is important to notice that not only
z ∈ C but also the momentum q satisfying (3.1) is, in general, complex. In order to
see this consider the following example. Let kµi = (1, 1, 0, 0) and kµj = (1,−1, 0, 0).
It then follows that qµ = (0, 0, a, b) in order to satisfy ki · q = 0 = kj · q. Now since
q2 = 0 we have a2 = −b2 which can only be satisfied when at least one of the two
components is complex. An explicit realization might look like qµ = (0, 0, 1, i).
The shift (3.1) is chosen in such a way that momentum conservation holds and
both momenta are on-shell, for any z. The resulting partial amplitude becomes
a complex function A(z). Notice that the external gluons in the amplitude A(z)
are on-shell. Ignoring the fact that two external momenta are complex it could
be interpreted as a physical amplitude. We already noted that the only possible
singularities at tree-level arise from propagator poles. In other words the analytic
structure of Feynman rules ensures the function A(z) to be meromorphic.
Now we will consider a specific shift that is often used in the literature. Using
the spinor helicity formalism we have 2kµi = [i|γµ|i〉 and 2kµj = [j|γµ|j〉. With
this notation we can deform the helicity spinors associated with ki and kj . The
following deformation is often employed

|i〉 → |̂i〉 = |i〉, |i] → |̂i] = |i] + z|j],
|j] → |ĵ] = |j], |j〉 → |ĵ〉 = |j〉 − z|i〉,
z ∈ C.

(3.2)

This is equivalent to (3.1) if one chooses 2qµ = [j|γµ|i〉. The shift (3.2) is often
called the [i|j〉-deformation. Clearly the polarization vectors change under this de-
formation. Let p denote the arbitrary reference momentum in (2.97) and combine
this with (3.2) to find

ǫ+i (p) → ǫ̂+i (p) =
〈p|γµ|i] + z〈p|γµ|j]√

2〈pi〉
,

ǫ−i (p) → ǫ̂−i (p) =
−[p|γµ|i〉√

2([pi] + z[pj])
,

ǫ+j (p) → ǫ̂+j (p) =
〈p|γµ|j]√

2(〈pj〉 − z〈pi〉)
,

ǫ−j (p) → ǫ̂−j (p) =
−[p|γµ|j〉+ z[p|γµ|i〉√

2[pj]
.

(3.3)

Finally we notice that under (3.2) it is often useful to choose the reference momenta
of the polarization vectors pi = kj and pj = ki. The shifted polarization vectors
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are then given by

ǫ̂+i (j) =
〈j|γµ|i] + z〈j|γµ|j]√

2〈ji〉
=

2(q∗ + zkj)√
2〈ji〉

,

ǫ̂−i (j) =
−[j|γµ|i〉√

2[ji]
=

−2q√
2[ji]

,

ǫ̂+j (i) =
〈i|γµ|j]√
2〈ij〉

=
2q√
2〈ij〉

,

ǫ̂−j (i) =
−[i|γµ|j〉+ z[i|γµ|i〉√

2[ij]
=

−2(q∗ − zki)√
2[ij]

.

(3.4)

We will need these polarization vectors later to analyze the behaviour of A(z) in
the complex plane. This concludes our discussion of the [ij〉-deformation. The
next step in deriving recursive relations is to consider a contour integration of the
meromorphic function A(z).

3.1.2 The contour integral

As promised we will study the behaviour of A(z) in the complex plane. The goal
will be to evaluate the following integration in the complex plane

B =
1

2πi

∮

C

dz
A(z)

z
, (3.5)

where the contour C is defined to be

C = lim
R→∞

CR, CR = {z ∈ C|z = Reiθ, 0 ≤ θ < 2π}. (3.6)

Using Cauchy’s residue theorem, the evaluation of B is equivalent to calculating
poles and residues of A(z)/z.

B =
∑

poles
zα

Res

(

A(z)

z
, zα

)

. (3.7)

Clearly z = 0 is a pole with residue A(0) = A. Other poles come from A(z) and
for tree-amplitudes they can only arise as propagator poles. We thus immediately
obtain

B = A+
∑

poles
zα 6=0

Res

(

A(z)

z
, zα

)

. (3.8)

Now provided A(z) → 0 if |z| → ∞ the contour integral (3.5) vanishes. This van-
ishing condition will be discussed in the following section. If B = 0 we can write
down an expression for A provided that we know the poles and corresponding
residues of A(z). It has already been noted that, at tree-level, such a pole nec-
essarily comes from an internal propagator. Due to the colour decomposition the
propagator momentum can only be a sum of momenta of neighbouring external
gluons.2 Hence, it takes the following form: kab(z) = ka(z)+ka+1(z)+ · · ·+kb(z),

2This should be obvious from the fixed gluon arrangement in a partial amplitude.
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where a, b ∈ {1, · · · , n}. Here we define the set {ab} to be {a, a+1, · · · , b} mod n.3

We will also use the following notation: k̂ab = kab(z), kab = kab(0). Now we need
to know all poles in z. Other kinematic singularities are not important for this
analysis. A pole arises when k̂2ab = 0, i.e. when the sum of external gluon mo-

menta goes on-shell. If both i, j ∈ {ab} then k̂ab is independent of z and there is
no pole. In the same way no pole can arise if both i, j /∈ {ab}. So let’s assume4

that i ∈ {ab} such that k̂ab = kab + zq. The propagator then develops a pole

k̂2ab = 0 ⇐⇒ z = zab = − k2ab
2q · kab

. (3.9)

To find the residue of A(z) at zab we need to know how A(z) behaves when z → zab,

i.e. when k̂ab → 0. Fortunately this behavior is well understood from so-called
factorization properties. Consider a gluon partial amplitude. Only diagrams with
an internal propagator 1/pab contribute in the limit pab → 0.5 In other words, the
partial amplitude factorizes into two sub-amplitudes. The propagator connecting
the two sub-amplitudes has momentum pab. It is important to notice that both
sub-amplitudes are on-shell in the limit pab → 0. We thus have the following
factorization

A(1, · · · , n) ∼
∑

λ

AL(a, · · · , b,−pλab)
1

p2ab
AR(p

−λ
ab , b+ 1, · · · , a− 1),

pab → 0.

(3.10)

The sum over helicities follows from (2.102) and the fact that both AL and AR

are on-shell. Diagrammatically the factorization property is given by

2

1 n

∼
∑

λ
pab

λ −λ

b

a

b + 1

a − 1

, pab → 0. (3.11)

For a more detailed discussion about factorization properties see, for example,
[8, 9] and references within. Using (3.10) we can easily find the residue at the pole
zab

Res

(

A(z)

z
, zab

)

= −
∑

λ

A(a, · · · , b,−k̂λab)
∣

∣

zab

1

k2ab
A(k̂−λ

ab , b+1, · · · , a− 1)
∣

∣

zab
.

(3.12)

The evaluation symbol indicates that one should use momenta k̂i = ki(zab), k̂j =

kj(zab) and k̂ab = kab(zab). The residue is given by two sub-amplitudes evaluated
at a specific value of the complex variable z. These two sub-amplitudes are then
multiplied by a propagator. Notice that the propagator momentum is not the

3The notation mod n is used to denote modulo n, i.e. the element a + 1 in the set {ab}
actually stands for (a+ 1)/n.

4There is no loss of generality in assuming that i ∈ {ab} since one can replace kab with
−kb+1,a−1 using momentum conservation.

5Strictly speaking these types of diagrams formally diverge while others remain finite.
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î

ĵ

Figure 3.1: Interpretation of the background field method. At tree-level there
is a unique line connecting particles i and j, coloured red in the diagram above.
After an [ij〉-deformation we may consider the limit |z| → ∞. In this limit an
infinite amount of momentum flows through the red line. We interpret this as
hard scattering (the red line) through a soft background.

momentum used in the two sub-amplitudes. Rather it is the real instead of the
complex momentum, i.e. kab = kab(z = 0). This is quite different from (3.10). It
should not surprise us that this is different, since these residues will later enable
us to compute the partial amplitude recursively which would not be possible solely
based on the factorization property (3.10). From (3.8) this leads to the following
expression

A = B +
∑

{ab}∈O

∑

λ

A(a, · · · , b,−k̂λab)
∣

∣

zab

1

k2ab
A(k̂−λ

ab , b+ 1, · · · , a− 1)
∣

∣

zab
,

O = {{ab} | i ∈ {ab} ∧ j /∈ {ab}} .
(3.13)

If B = 0 the famous BCFW recursion relation is found. Assume that the left-
hand side of (3.25) involves n external gluons. It then follows that each sub-
amplitudes on the right-hand side of (3.25) can contain only n−1 external gluons.
This is exactly what we expect from a recursion relation. If we know all partial
amplitudes with n− 1 or less external gluons then we can calculate every partial
amplitude with n external gluons. This means that we can construct every partial
amplitude starting from the three-gluon amplitudes (2.114). We thus find an on-
shell recursion when B = 0. For that reason let us examine the vanishing condition
before discussing (3.13).

3.1.3 The vanishing condition

There are many ways to study the behaviour of A(z) for |z| → ∞. In the previous
section we already anticipated that A(z) → 0 for large |z|. This is actually a
strange result since individual Feynman diagrams tend to blow up for infinite
momenta. It turns out that this does not hold when the momenta are taken to
infinity in a certain complex direction, as is done by using the deformation (3.1,
3.2). One could examine the dependence of A(z) on z using partial diagrams.
This, however, often leads to the wrong conclusion. A particularly instructive
way of obtaining the scaling behaviour is to use the background field method as
was done by Arkani-Hamed and Kaplan in [17]. Let us now follow the arguments
originally given by Arkani-Hamed and Kaplan.
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3 BCFW recursion for gluons

In the limit where |z| → ∞ one has k̂i → ∞ and −k̂j → ∞.6 Now at tree-level
there is a single line connecting particles i and j. The amplitude A(z) can then be

interpreted as that of a hard particle with incoming momentum k̂i and outgoing
momentum −k̂j scattering through a soft background. See figure 3.1. We are only
interested in the scaling of A(z) when |z| goes to infinity. For that reason it suffices
to consider quadratic fluctuations, the hard particle, in a soft background. We will
do so by expanding the gauge fields into hard fields and background fields. The
part of the Lagrangian quadratic in the hard fields can then be used to analyze
the scaling behaviour. Let W denote the original gauge fields and call the hard
fields a and the background fields A. We then expand W = A + a. Note that
we have two gauge transformations: one for the background fields and one for the
fluctuations. We can choose the fields a to transform in the adjoint representation
such that the field strength looks like

Gµν = Dµaν −Dνaµ − [aµ, aν ] + Fµν ,

Dµaν = ∂µaν − [Aµ, aν ],

Fµν = Fµν(A).

(3.14)

Obviously by Fµν(A) we mean the field strength of the background gauge field A.
We omit any coupling constants since they are of no importance in understanding
the scaling behaviour. Using this field strength we can write down the part of the
lagrangian quadratic in the fluctuations

La2 ∼ − tr (Dµaν −Dνaµ)
2
+ c tr[aµ, aν ]F

µν , (3.15)

where c is some constant that is not important at this point. We can then fix the
gauge for a by adding a term proportional to (Dµa

µ)2

La2 ∼ − trDµaaD
µabη

ab + c tr[aa, ab]F
ab, (3.16)

The first term of this Lagrangian has a so-called enhanced symmetry: a Lorentz
transformation acting only on the hard fields. From (3.16) the scaling behaviour
can be deduced. Notice that the first term leads to the propagator for the hard field
which scales as 1/z. The first term is the only term responsible for a z-dependent
vertex, since only the hard field momentum is z-dependent. The vertex from the
first term scales as (c1z+c0)η

ab while the second term gives a z-independent vertex
Aab which must be antisymmetric since F ab is. Combining these observations we
note that the amplitude A(z) = ǫaiMabǫ

b
j has the following form

Mab = (c1z + c0 + c−1z
−1 + · · · )ηab +Aab +Babz

−1 + · · · , (3.17)

where the dots represent terms of order z−2. Note that Bab need not be an-
tisymmetric. We will use this result to understand how A(z) behaves for the
[ij〉-deformation given in (3.2). Now choose the polarization vectors (3.4)

ǫ̂−i (j) ∼ q, ǫ̂+i (j) ∼ q∗ + zkj,

ǫ̂+j (i) ∼ q, ǫ̂−j (i) ∼ q∗ − zki.
(3.18)

6There is a subtlety when taking this limit. The momenta are complex. Therefore they
approach infinity in some complex direction. This direction is, similar to a momentum cut-off,
ambiguous for gauge fields. Schematically, the momentum of a gauge field arises after Fourier
transforming partial derivatives, ∂µ → ikµ. But the partial derivative of a gauge field is not
gauge invariant. Only the covariant derivative, Dµ, is. For that reason the limit k → ∞ is
ambiguous. This will, however, play no role in the subsequent analysis and we will ignore this
subtlety from here on.
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3.1 Derivation

An interesting point to note here is that this can be done in any dimension D ≥ 4
[17], causing the derivation to go through in any dimension D ≥ 4. It is useful to
consider the Ward identity

k̂aiMabǫ
b
j = 0 ⇒ qaMabǫ

b
j = −1

z
kaiMabǫ

b
j . (3.19)

In this way we can change the polarization vector ǫ−i → −z−1ki. Now let us have a
look at the scaling behaviour of A(z) under the [ij〉-deformation. It will obviously
depend on the helicities of particle i and j. We will denote these by (hi, hj).
First consider the case (−+)

A(z)−+ = ǫ−,a
i Mabǫ

+,b
j

= −z−1kai
[

(c1z + c0 + c−1z
−1 + · · · )ηab +Aab +Babz

−1 + · · ·
]

qb

= −z−1kai Aabq
b +O(z−2) → 1

z
,

(3.20)

where we have used ki · q = 0.
The case (−−) gives the following result

A(z)−− = ǫ−,a
i Mabǫ

−,b
j

= −z−1kai
[

(c1z + · · · )ηab +Aab +Babz
−1 + · · ·

]

(q∗ − zki)
b

= −z−1kai Aab(q
∗ − zki)

b − z−1kai Babz
−1(q∗ − zki)

b + · · ·

= −z−1kai Aab(q
b)∗ + z−1kai Babk

b
i +O(z−2) → 1

z
.

(3.21)

Note that the antisymmetry of Aab ensures that there is no z0 term while the
absence of a term linear in z follows from q∗ · ki = 0 and k2i = 0 or equivalently
from the enhanced symmetry.
The (++) case is similar if we use the Ward identity for k̂j

A(z)++ = ǫ+,a
i Mabǫ

+,b
j

= (q∗ + zkj)
a
[

(c1z + · · · )ηab +Aab +Babz
−1 + · · ·

]

z−1kbj

= (qa)∗Aabz
−1kbj + zkajBabz

−1z−1kbj +O(z−2) → 1

z
.

(3.22)

The last helicity configuration, (+−), gives

A(z)+− = ǫ+,a
i Mabǫ

−,b
j

= (q∗ + zkj)
a
[

(c1z + · · · )ηab +Aab +Babz
−1 + · · ·

]

(q∗ − zki)
b

= −c1kj · kiz3 +O(z2) → z3.

(3.23)

Clearly the [ij〉-deformation can not be used when (hi, hj) = (+,−). For that rea-
son the [ij〉-deformation in combination with (hi, hj) = (+,−) is called a bad defor-
mation. This is, however, no problem, since we can simply use a [ji〉-deformation
in which case the partial amplitude does vanish at infinity. The results above prove
that for any choice of reference gluons we can use a deformation of the type (3.2)
so that B = 0 in (3.13).
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3 BCFW recursion for gluons

We must mention that some partial amplitudes have even better scaling behaviour
than stated above. There still is a gauge degree of freedom in the background field
A which we can use to impose the so-called q-lightcone gauge: q · A = 0. This
will make the z-dependent vertex in (3.16) vanish such that even better scaling
behaviour can be obtained. We, however, need to be careful. From (2.4) it is
readily seen that the q-lightcone gauge is singular when the momentum of the
background field, k, is orthogonal to q. This only happens in diagrams where the
two hard gluons are adjacent. We can thus conclude that better scaling behaviour
can be obtained when the reference gluons are non-adjacent, e.g. A(z)−+ → 1/z2

if the reference gluons are non-adjacent [17].

3.1.4 BCFW recursion relation

To conclude this section we will combine the results above needed for the BCFW
recursion relation. Consider calculating an amplitude, A, using BCFW recursion.
First two reference gluons i and j have to be chosen such that their helicities are
(hi, hj) = (−,+), (+,+) or (−,−). This can always be done by interchanging i
with j in the case (+,−). One then applies the [ij〉-deformation

|i〉 → |̂i〉 = |i〉, |i] → |̂i] = |i] + z|j],
|j] → |ĵ] = |j], |j〉 → |ĵ〉 = |j〉 − z|i〉,

(3.24)

i.e. a momentum shift (3.1) with 2qµ = [j|γµ|i〉. This makes the amplitude into a
meromorphic function A(z). Section 3.1.3 shows that A(z) → 0 if |z| → ∞ such
that we get the following recursion relation (3.13)

A =
∑

{ab}∈O

∑

λ

A(a, · · · , b,−k̂λab)
∣

∣

zab

1

k2ab
A(k̂−λ

ab , b+ 1, · · · , a− 1)
∣

∣

zab
,

O = {{ab} | i ∈ {ab} ∧ j /∈ {ab}} ,

zab = − k2ab
2q · kab

= − k2ab
[j|kab|i〉

.

(3.25)

We conclude that BCFW recursion allows us to calculate a partial amplitude re-
cursively, using on-shell amplitudes of fewer particles. This is quite remarkable and
very different from the construction using Feynman rules. The two sub-amplitudes
in (3.25) are on-shell, precisely at the value z = zab. We thus need to evaluate such
amplitudes at complex momenta. These are then multiplied by the corresponding
propagator evaluated at z = 0. After summing all contribution in (3.25) we obtain
the partial amplitude A. Hence, there is no longer the need to start evaluating
every partial diagram off-shell. Instead we can calculate A by using only on-shell
expressions. It must be stressed that this leads to a big increase in efficiency.
Using BCFW recursion we are, at no point in the calculations, confronted with
un-physical, off-shell expressions. We only need to evaluate physical expressions
for complex momenta. There is no known counterpart in field theory allowing
for such easy calculations. The relatively easy derivation using two complex mo-
menta is contrasted with the large increase in efficiency. For that reason, BCFW
recursion does not only have practical but also theoretical applications. It can
help us improve our knowledge of quantum field theory and might even lead to a
reformulation of this theory.
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3.2 The recursion in practice

Diagrammatically the BCFW recursion relation takes the following form

i

1

j

n

=
∑

{ab}

∑

λ

λ −λ

kab

b

î

a

b + 1

ĵ

a − 1

zab zab . (3.26)

We no longer use a blob to denote the two on-shell sub-amplitudes. Rather, we
use a circle with the inscription zab to make clear that we need to evaluate the
sub-amplitudes at a specific value of z. The types of diagrams on the right-hand
side of (3.26) will be called BCFW diagrams. The circle will, from now on, denote
the fact that the sub-amplitudes are on-shell. This contrasts with the factorization
property (3.11) where we used a blob since those sub-amplitudes are only on-shell
when the connecting propagator’s momentum goes on-shell. Note that there must
be at least two external gluons in each sub-amplitude.
In the next section we will explain how to use BCFW recursion in practical cal-
culations. We will explicitly calculate some amplitudes using BCFW to see the
recursion in action.

3.2 The recursion in practice

In this section we will see how (3.25) is used to calculate partial amplitudes. Con-
sider a gluon partial amplitude at tree-level. We will always use an [ij〉-deformation
such that we obtain (3.25). To evaluate the BCFW recursion, (3.25), we will make
use of BCFW diagrams (3.26). Draw all contributing BCFW diagrams. This can
be done by writing out the sum in (3.26). Keep in mind that there must be at
least two external gluons for each sub-amplitude. To avoid double counting it is
useful to always write gluon î in the left sub-amplitude and gluon ĵ in the right
sub-amplitude. We may then evaluate each BCFW diagram separately and at
the end sum all contributions to obtain the partial amplitude. The expression
corresponding to a BCFW diagram can be found by first calculating the pole, zab,
from (3.25). This will often be done using helicity spinors (see section 2.3 for a
review). We can then use on-shell expressions for the left- and right sub-amplitude
evaluated at the complex momenta. We always use zab for the value of the com-
plex momenta. The two sub-amplitudes are then multiplied by the corresponding
undeformed propagator.
The complex momenta depend on the complex vector q as can be seen from (3.1).7

Hence, the right-hand side of (3.25) depends on q, yet the left-hand side is obviously
q-independent. For that reason q will always drop out of the right-hand side of
(3.25). This consistency of the BCFW recursion has other consequences.

Note that, at some point, we need to use k̂ab. Since most amplitudes will be
calculated using helicity spinors this means that we need to deal with |k̂ab〉 and

|k̂ab]. It is often hard and never instructive to obtain an explicit expressions for

these helicity spinors. Imagine calculating 〈X |k̂ab〉. Instead of evaluating this
directly it will be much more useful to choose a suitable spinor associated with an

7If we use an [ij〉-deformation then 2qµ = [j|γµ|i〉.
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3 BCFW recursion for gluons

external gluon momentum and calculate 〈X |k̂ab〉[k̂ab|Y ] = 〈X |k̂ab|Y ]. We will see
how the internal consistency of the BCFW recursion ensures that we can evaluate
these objects instead of using |k̂ab〉 or |k̂ab] directly. From (3.25) we also see that

we need a way of dealing with | − k̂ab〉 and | − k̂ab]. Let us have a look at this
for some unspecified momentum, p. From (2.80) or (2.86) we can deduce how the
spinors | − p〉 and | − p] are related to |p〉 and |p]. One possibility is to choose
| − p〉 = |p〉 and | − p] = −|p]. Obviously the resulting expression for the partial
amplitude does not depend on this. Before calculating some examples we will first
take a look at certain sub-amplitudes which always vanish.

3.2.1 Vanishing sub-amplitudes

Obviously the number of terms contributing to the right hand side of (3.25) in-
creases when the number of external gluons increases. It would, for that reason,
be useful to know in advance if some of these diagrams vanish. Therefore we will
have a look at what kind of sub-amplitudes vanish under the [ij〉-deformation. We
use the term sub-amplitude for the left or right part of the diagram on the right
hand side of (3.26).

In (2.108) we obviously see that any sub-amplitude involving only gluons of the
same helicity must vanish. This is due to the sub-amplitudes being on-shell in the
recursion. In the case of more than three gluons we can use (2.109) to show that
any sub-amplitude with at most one gluon of the opposite helicity vanishes. It
turns out that the [ij〉-deformation ensures the vanishing of two more classes of
sub-amplitudes.

Consider a sub-amplitude involving three gluons and one of them must8 be gluon
î. We can then show that the sub-amplitude vanishes in any of the (++−) helicity
cases

Si(+ +−) =
p̂

î

l = i± 1

· · ·z = 0. (3.27)

The expression for this amplitude can be found by applying a parity transformation
to (2.114). For example, when the helicity configuration in Si(+ + −) equals
A3(̂i

+, l+, p̂−) we have

A3 (̂i
+, l+, p̂−) = − [̂il]3

[lp̂][p̂̂i]
. (3.28)

First notice that p̂ = −k̂i − kl. The pole, z, corresponding to the BCFW diagram
(3.27) an be found using (3.25)

z = − k2il
[j|kil|i〉

= − [li]〈il〉
[jl]〈li〉 =

[li]

[jl]
. (3.29)

8It is crucial that this gluon is shifted as |̂i] = |i]+z|j], |̂i〉 = |i〉 as part of an [ij〉-deformation.
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Where we used 〈ii〉 = 0. In this way |̂i] = |i] + |j] [li][jl] for diagram (3.27). Using

this information one readily deduces that

[l̂i] = [li] + [lj]
[li]

[jl]
= 0. (3.30)

Now we want to evaluate [lp̂] and [̂ip̂]. As noted before it is not instructive to do
this directly. Instead we introduce an arbitrary reference spinor |a〉 that is not a
multiple of |p̂〉. We may then compute

[lp̂] =
[lp̂]〈p̂a〉
〈p̂a〉 =

[l(−kl − k̂i)a〉
〈p̂a〉 =

[l̂i]〈̂ia〉
〈p̂a〉 = 0,

[̂ip̂] =
[̂ip̂]〈p̂a〉
〈p̂a〉 =

[̂i(−kl − k̂i)a〉
〈p̂a〉 =

[̂il]〈la〉
〈p̂a〉 = 0.

(3.31)

This is not sufficiënt to prove the vanishing of Si(++−) since both the numerator
and denominator in the expression for this amplitude vanish. It does, however,
vanish. Consider momentum conservation

p̂µ + k̂µi + kµl = 0. (3.32)

Contract the vector indices with γµ and act from the left with P− to obtain

|p̂]〈p̂|+ |̂i]〈̂i|+ |l]〈l| = 0. (3.33)

Now choose a reference spinor |a〉 that is not a multiple of |p̂〉, |̂i〉 or |l〉. One
obtains

|p̂]〈p̂a〉+ |̂i]〈̂ia〉+ |l]〈la〉 = 0, (3.34)

such that, after rescaling our original anti-spinors using |a〉, we find

|p̂] + |̂i] + |l] = 0 ⇒ [̂ip̂] = [l̂i] = [p̂l]. (3.35)

Now this implies that Si(+ +−) vanishes. Indeed, using (3.27) we see

Si(+ +−) ∼ [̂ip̂] = [l̂i] = [p̂l] = 0. (3.36)

By the same means one readily verifies that a sub-amplitude involving three gluons
of which one must9 be gluon ĵ vanishes in any of the (−−+) helicity cases

Sj(−−+) =
p̂

ĵ

l = j ± 1

· · ·z = 0. (3.37)

This concludes our discussion of vanishing sub-amplitudes and we are finally ready
to have a look at some examples. We will use the BCFW recursion to calculate
some partial amplitudes. In doing so we will, without further notice, omit any
contribution that vanishes due to (3.27, 3.37) or other reasons discussed in this
section.

9This time it is crucial that the gluon is shifted as |ĵ〉 = |j〉 − z|i〉, |ĵ] = |j] as part of an
[ij〉-deformation.
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3.2.2 The basic building blocks

We can derive the expression for any amplitude using BCFW recursion and the
following three-gluon amplitudes (2.114)

A3(1
−, 2−, 3+) =

〈12〉3
〈23〉 〈31〉 ,

A3(1
+, 2+, 3−) = − [12]

3

[23] [31]
.

(3.38)

Hence these three-gluon amplitudes are the basic building blocks for our purposes.
One might wonder how every amplitude can be obtained from only the three gluon
amplitude while there clearly exists a four-gluon vertex (2.3). For that reason let
us start with the most easy example imaginable and calculate A4(1

−, 2−, 3+, 4+)
using BCFW recursion. From (2.115) we know that the quartic vertex contributes
to this partial amplitude. Using a [12〉-deformation we easily obtain

A4(1
−, 2−, 3+, 4+) =

λ −λ

k41

1̂−

4+

2̂−

3+

z41z41 . (3.39)

Only the BCFW diagram with λ = − can contribute due to the vanishing sub-

amplitudes discussed above. Note also that z41 = [14]
[42] . Using the three gluon

amplitudes (3.38) we calculate

A4(1
−, 2−, 3+, 4+) =

[

A3(4
+, 1̂−,−k̂−41)

1

k241
A3(k̂

+
41, 2̂

−, 3+)

]

z41

=

(

〈1̂k̂23〉3
〈k̂234〉〈41̂〉

)

1

s23

(

−[3k̂41]
3

[k̂412̂][2̂3]

)

=
−〈1̂k̂23〉3[k̂233]3

〈4k̂23〉[k̂232̂][2̂3]〈41̂〉s23
.

(3.40)

We used momentum conservation to replace k̂41 with −k̂23. A small calculation
reveals

〈1̂k̂23〉[k̂233] = 〈1(2̂ + 3)3] = 〈12〉[23],
〈4k̂23〉[k̂232̂] = 〈43〉[32].

(3.41)

Notice that it was not necessary to find an explicit expression for the helicity
spinors associated with k̂23. We could always rewrite the expression in the form
〈X |k̂23|Y ]. As noted before, this will always be possible. Using (3.41) we now find

A4(1
−, 2−, 3+, 4+) =

−〈12〉3[23]3
〈43〉[32][23]〈41〉〈32〉[23]

=
〈12〉4

〈12〉〈23〉〈34〉〈41〉 .
(3.42)
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This is indeed the expression we found in (2.118) and we only had to use the three
gluon amplitudes to find the correct result. We thus see that we can obtain any
amplitude starting from the three gluon amplitude by using the BCFW recursion
relation, if necessary more than once. Now we know how the recursion works let’s
have a look at a nice application.

3.2.3 Parke-Taylor formula

We can use BCFW to give a short proof of the Parke-Taylor formula (2.122) for
MHV amplitudes [15]. As was noted before the following arguments were originally
given in [1]. We will focus on the mostly plus MHV amplitudes.

We already calculated (2.122) in the cases n = 3 and n = 4, so let us proceed by
induction and assume that the Parke-Taylor formula holds for all N < n. Because
only two gluons have negative helicity we can always arrange the amplitude in the
following way: An(1

−, · · · , k−, · · · , n+), where all the dots have positive helicity.
Now we apply BCFW recursion using a [1n〉-deformation. From the vanishing
sub-amplitudes it is easily seen that only one BCFW diagram will contribute in
the recursion (3.25)

An(1
−, 2+, · · · , k−, · · · , n+) =

+ −

n− 2,+

k,−

1̂,−

n− 1,+

n̂,+

z̃ z̃ . (3.43)

Note that for this diagram z̃ = z1,n−2 = 〈n−1|n〉
〈n−1|1〉 . We know the expression for

the right sub-amplitude and we can use our induction hypothesis for the left sub-
amplitude. The recursion becomes

An(1
−, 2+, · · · , k−, · · · , n+) =

〈1̂k〉4
〈1̂2〉 · · · 〈n− 2|k̂n−1,n〉〈k̂n−1,n1〉

× 1

〈n|n− 1〉[n− 1|n]
−[n− 1|n̂]3

[n̂k̂1,n−2][k̂1,n−2|n− 1]

=
〈1k〉4

〈12〉 · · · 〈n− 2|k̂n−1,n〉〈k̂n−1,n1〉

× 1

〈n|n− 1〉[n− 1|n]
−[n− 1|n]3

[nk̂n−1,n][k̂n−1,n|n− 1]
.

(3.44)

After using

〈n− 2|k̂n−1,n〉[nk̂n−1,n] = −〈n− 2|n− 1〉[n− 1|n],
〈k̂n−1,n1〉[k̂n−1,n|n− 1] = −〈1n〉[n|n− 1],

(3.45)
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Figure 3.2: The diagrams contributing to the BCFW recursion of
A6(1

−, 2−, 3−, 4+, 5+, 6+) using a [16〉-deformation.

we find the following expression

An(1
−, 2+, · · · , k−, · · · , n+)

=
−〈1k〉4[n− 1|n]3

〈12〉 · · · 〈n− 3|n− 2〉〈n− 2|n− 1〉[n− 1|n]〈1n〉[n|n− 1]

× 1

〈n|n− 1〉[n− 1|n]

=
〈1k〉4

〈12〉 · · · 〈n− 3|n− 2〉〈n− 2|n− 1〉〈n− 1|n〉〈n1〉 ,

(3.46)

which proves the Parke-Taylor formula to be correct.

Obviously there are many more helicity configurations besides the MHV ones. We
will have a look at next-to-MHV amplitudes. Before BCFW recursion, calculat-
ing such amplitudes was often tedious and the resulting expressions took rather
complicated forms. Some compact forms were discovered by considering suitable
limits of more gluon amplitudes. The recursion by BCFW gives these compact
forms directly. We will now calculate some of these more involved amplitudes.

3.2.4 Next-to-MHV

Consider a six-gluon next-to-MHV amplitudes. These amplitudes have three pos-
itive helicity gluons and three negative helicity gluons. Hence the term next-
to-MHV. We will start by calculating A6(1

−, 2−, 3−, 4+, 5+, 6+) using a [16〉-
deformation.

A6(−−−+++)

From the recursion (3.25) we find that the BCFW diagrams in figure 3.2 contribute.
Upon inspection the diagram in the middle vanishes for either λ = ±. The reader
may verify that a different choice of helicity for the internal gluon in the left and
right diagrams of figure 3.2 would vanish. We thus need to consider two diagrams.
We will denote the left diagram of figure 3.2 by (1̂234|56̂), while the right diagram
is called (1̂2|3456̂).
We start with the left diagram where z14 = 〈56〉

〈51〉 . Using (3.38) and an MHV
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amplitude we find

(1̂234|56̂) = [4k̂5,6]
3

[1̂2][23][34][k̂5,61̂]

1

s56

[56̂]3

[6̂k̂1,4][k̂1,45]

=
[4k̂5,6]

3〈k̂5,61〉3
[1̂2][23][34][k̂5,61̂]〈k̂5,61〉

1

s56

[56]3

[6k̂5,6]〈k̂5,61〉[k̂5,65]〈k̂5,61〉
.

(3.47)

As before we need to do some short calculations

[4k̂56]〈k̂5,61〉 = [4(5 + 6̂)1〉 = [4(5 + 6)1〉,
[6k̂5,6]〈k̂5,61〉 = [65]〈51〉,
[k̂5,65]〈k̂5,61〉 = −[56̂]〈6̂1〉 = −[56]〈61〉,

(3.48)

and

〈k̂5,61〉[k̂5,61̂] = −[1̂(5 + 6̂)1〉 = −[16]〈61〉 − [15]〈51〉 − [65]〈51〉 〈56〉〈51〉
= −k25,1.

(3.49)

Combining these results we see that

(1̂234|56̂) = [4(5 + 6)1〉3
[1̂2][23][34]k25,1

1

s56

[56]3

[65]〈51〉[56]〈61〉

=
[4(5 + 6)1〉3

k25,1
〈5(1+6)2]

〈51〉 [23][34]〈56〉〈51〉〈61〉

=
[4(5 + 6)1〉3

k25,1〈5(1 + 6)2][23][34]〈56〉〈61〉

(3.50)

and using momentum conservation

(1̂234|56̂) = [4(2 + 3)1〉3
k22,4〈5(3 + 4)2][23][34]〈56〉〈61〉. (3.51)

Now we need (1̂2|3456̂). In this case we have z12 = [21]
[62] . Proceeding the same way

as before we find

(1̂2|3456̂) = 〈12〉3
〈2p̂1,2〉〈p̂1,21〉

1

s12

〈p̂123〉3
〈34〉〈45〉〈56̂〉〈6̂p̂1,2〉

=
〈12〉3[6p̂1,2]3〈p̂123〉3

[6p̂1,2]〈2p̂1,2〉[6p̂1,2]〈p̂1,21〉s12〈34〉〈45〉〈56̂〉[6p̂1,2]〈6̂p̂1,2〉
.

(3.52)

Now observe

[6p̂1,2]〈p̂123〉 = [6(1 + 2)3〉,
[6p̂1,2]〈2p̂1,2〉 = −[61]〈12〉,
[6p̂1,2]〈p̂1,21〉 = [62]〈21〉,

〈56̂〉 = 〈5(1 + 6)2]

[62]

(3.53)

49



3 BCFW recursion for gluons

− +

1̂−

6+

5+

4−

2̂+

3−

z41 z41
− +

1̂−

6+

5+

2̂+

3−

4−

z51 z51
− +

1̂−

6+

2̂+

3−

4−

5+

z61 z61

Figure 3.3: The diagrams contributing to the BCFW recursion of
A6(1

−, 2+, 3−, 4−, 5+, 6+) using a [12〉-deformation.

and

[6p̂1,2]〈6̂p̂1,2〉 = −[6(1 + 2)6̂〉 = −[61]〈16〉 − [62]〈26〉+ [62]〈21〉 [21]
[62]

= −k26,2.
(3.54)

Combining these calculations we get

(1̂2|3456̂) = 〈12〉3[6(1 + 2)3〉3

[61]〈12〉[62]〈21〉s12〈34〉〈45〉 〈5(1+6)2]
[62] k26,2

=
−[6(1 + 2)3〉3

[61][21]〈34〉〈45〉〈5(1 + 6)2]k26,2
,

(3.55)

or using momentum conservation

(1̂2|3456̂) = [6(4 + 5)3〉3
[16][21]〈34〉〈45〉〈5(3+ 4)2]k23,5

. (3.56)

We thus find the following amplitude using BCFW recursion

A6(1
−, 2−, 3−, 4+, 5+, 6+)

=
1

〈5(3 + 4)2]

(

[6(4 + 5)3〉3
[16][21]〈34〉〈45〉k23,5

+
[4(2 + 3)1〉3

k22,4[23][34]〈56〉〈61〉

)

.
(3.57)

This result was obtained in [1] using BCFW recursion. The same result was pre-
viously found in [18] by examining the collinear limit of a seven-gluon amplitude.
The compact form (3.57) had never been calculated directly prior to the discovery
of BCFW recursion. Notice that we only had to calculate two terms while there
are 36 partial diagrams that contribute to the partial amplitude (see Table 2.2).
Compared to the calculation done above evaluating all 36 partial diagrams would
have been a horrendous task.

A6(−+−−++)

Now consider a slightly different amplitude: A6(1
−, 2+, 3−, 4−, 5+, 6+). Using a

[12〉-deformation we see that three BCFW diagrams contribute. They are given in
figure 3.3. The reader may again verify that a different choice of helicity for the
internal gluon would make any diagram in figure 3.3 vanish. From left to right in
figure 3.3 we have (4561̂|2̂3), (561̂|2̂34) and (61̂|2̂345).
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The contribution from the left diagram gives

(4561̂|2̂3) = −[56]4

[45][56][61̂][1̂k̂2,3][k̂2,34]

1

k22,3

[k̂2,32]
3

[23][3k̂2,3]
. (3.58)

After using z41 = 〈32〉
〈31〉 and

〈1k̂2,3〉[k̂2,32] = 〈13〉[32],
〈1k̂2,3〉[1̂k̂2,3] = k21,3,

〈1k̂2,3〉[k̂2,34] = 〈1(2 + 3)4],

〈1k̂2,3〉[3k̂2,3] = −〈12〉[23],

[61̂] = − [6(1 + 2)3〉
〈31〉 ,

(3.59)

we obtain the following expression

(4561̂|2̂3) = [56]3〈13〉4
[45]〈23〉〈12〉k21,3[5(1 + 2)3〉〈1(2 + 3)4]

. (3.60)

Now consider the middle diagram in figure 3.3

(561̂|2̂34) = 〈1k̂2,4〉4
〈1k̂2,4〉〈k̂2,45〉〈56〉〈61〉

1

k22,4

[k̂2,42]
4

[k̂2,42][23][34][4k̂2,4]
. (3.61)

Upon using

〈1k̂2,4〉[k̂2,42] = 〈1(3 + 4)2],

〈1k̂2,4〉[4k̂2,4] = −〈1(2 + 3)4],

〈k̂2,45〉[k̂2,42] = −〈5(1 + 6)2],

(3.62)

we find the following result

(561̂|2̂34) = 〈1(3 + 4)2]4

〈56〉〈61〉[23][34]k22,4〈1(2 + 3)4]〈5(1 + 6)2]
. (3.63)

The last contributions are easily seen to equal

(61̂|2̂345) = 〈1k̂6,1〉3
〈k̂6,16〉〈61〉

1

k26,1

〈34〉3
〈k̂6,12̂〉〈2̂3〉〈45〉〈5k̂6,1〉

. (3.64)

One now straightforwardly computes

〈1k̂6,1〉[k̂6,12] = 〈16〉[62],
〈k̂6,16〉[k̂6,12] = −〈61〉[12],
〈k̂6,12̂〉[k̂6,12] = −k26,2,
〈5k̂6,1〉[k̂6,12] = 〈5(1 + 6)2],

〈2̂3〉 = −〈3(1 + 2)6]

[26]

(3.65)
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and we end up with

(61̂|2̂345) = 〈34〉3[26]4
[12][61]〈45〉k26,2〈3(1 + 2)6]〈5(1 + 6)2]

. (3.66)

Putting these three results together we find the following amplitude

A6(1
−, 2+, 3−, 4−, 5+, 6+) =

〈34〉3[26]4
[12][61]〈45〉k26,2〈3(1 + 2)6]〈5(1 + 6)2]

+
〈1(3 + 4)2]4

〈56〉〈61〉[23][34]k22,4〈1(2 + 3)4]〈5(1 + 6)2]

+
[56]3〈13〉4

[45]〈23〉〈12〉k21,3[5(1 + 2)3〉〈1(2 + 3)4]
.

(3.67)

This result agrees with the one given in [1]. Notice that we needed to evaluate
three terms, which is considerably less then the 36 partial diagrams contributing
to this amplitude.

A6(+−+−+−)

There is only one different six-gluon next-to-MHV amplitude: A6(+−+−+−).10

For completeness we will give the formula computed using BCFW recursion in [1]
where they used gluons 2 and 3 for reference

A6(1
+, 2−, 3+, 4−, 5+, 6−) =

[13]4〈46〉4
[12][23]〈45〉〈56〉k21,3〈6(1 + 2)3]〈4(2 + 3)1]

+
〈26〉4[35]4

〈61〉〈12〉[34][45]k23,5〈6(4 + 5)3]〈2(3 + 4)5]

+
[15]4〈24〉4

〈23〉〈34〉[56][61]k22,4〈4(2 + 3)1]〈2(3 + 4)5]
.

(3.68)

These examples show how gluon partial amplitudes at tree-level can be computed
using BCFW recursion. It should be obvious that this is more efficient than the
Feynman rules. We no longer need to evaluate off-shell expression which occur
in the Feynman rules. Instead we only need to use on-shell partial amplitudes of
fewer gluons. Having seen how BCFW was originally introduced we will now have
a look at how the recursion generalizes to other field theories.

10Obviously we mean modulo parity transformations or any other symmetry of the partial
amplitudes.

52



4 | Extending BCFW

In this chapter we will see that BCFW recursion has a much wider range of ap-
plications than only gluon amplitudes. We will start by extending the derivation
of section 3.1 to include other field theories. We will see that there are other the-
ories which exhibit a recursion of the BCFW-type. Next to extending the gluonic
BCFW recursion we will have a look at possible extensions of the BCFW method.
During this chapter we will often use scalar field theory as an example to further
illustrate these extensions.

4.1 The BCFW methods

Consider a general local quantum field theory.1 We will, formally, assume that
perturbation theory using Feynman diagrams exists. The discussion in this chapter
will again be limited to tree-level. To see how BCFW can be generalized we must
retrace the derivation in section 3.1. The methods used in the derivation will be
called the BCFW methods. By using these BCFW methods we will come across
a problem that inhibits us from writing down an on-shell recursion for a general
theory. We will first restrict the discussion to theories of massless particles, later
we will drop this restriction.

4.1.1 The boundary contribution

Let Mn be a tree-amplitude involving n external, massless particles with momenta
ki. As before, we will analytically continue two external momenta to complex
values. This analytic continuation will depend on a continuous deformation pa-
rameter z. By doing so we obtain the deformed amplitude Mn(z). The properties
of Mn(z) in the complex plane will then allow us to discuss the possibility of
a BCFW-type recursion. It must again be stressed that field theory analysis in
general does not differentiate between real and complex momenta. We will first
consider a series expansions of Mn(z). This will allow us to conclude that a recur-
sion relation of the BCFW-type exists when there is no constant term in the series
expansions of the deformed amplitude. This constant term is referred to as the
boundary contribution. Notice that there can be no boundary term when Mn(z)
vanishes for large |z|. The last is a sufficient though not a necessary condition for
the existence of a BCFW-type recursion.

1Local means that the theory can be described using a Lagrangian density which only depends
on a single spacetime point, i.e. L = L(x).
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We will consider the original BCFW deformation (3.1), which is sometimes referred
to as a two-line deformation.2 In this section there is no need to discuss the
deformation using helicity spinors. We choose two external particles labelled i and
j. The associated momenta ki and kj will then become complex while all other
momenta remain unchanged. The resulting deformation is called an (i, j)-shift. It
has the following form

ki → ki(z) = k̂i = ki + zq, kj → kj(z) = k̂j = kj − zq,

ki · q = 0 = kj · q, q2 = 0, z ∈ C,
(4.1)

where q is in general a complex momentum chosen in such a way that k̂i and k̂j
remain on-shell and that momentum conservation is satisfied. The deformation
(4.1) makes Mn into a function of the complex variable z: Mn(z). The shifted
amplitude can be thought of as a continuous family of amplitudes. Recall that
Mn(z) is a physical amplitude for each z, though with complex momenta. It
is physical in the sense that all external momenta are on-shell and momentum
conservation is satisfied.
Let us now discuss the behaviour of Mn(z) in the complex plane. Instead of using
a contour integral we will immediately write down an expression for the amplitude
as a function of z. Similar to gluon partial amplitudes, the poles and residues of
Mn(z) will give rise to a recursive relation. For that reason we will first have a look
at these poles. Recall that, at tree-level, Mn is a rational function of momenta and
polarization vectors. As a consequence Mn(z) is a meromorphic function which
means that it can only have propagator poles. The propagator momentum must
be the sum of external momenta. If this sum includes k̂i or k̂j (but not both)
then the propagator is z-dependent. In all other case it is independent of z. Using
momentum conservation we assume that k̂i occurs in the propagator momentum.

Let us write I ∈ P(i,j)
n for some subset of {1, · · · , î, · · · , î, · · · , n} that includes

î but not ĵ. The only z-dependent propagators then have momentum
∑

a∈I k̂a.

Let us write k̂I for this sum. The pole associated with the propagator 1

k̂2
I

will be

called zI and it is given by

k̂2I = (kI + zq)2 = 0 ⇐⇒ zI = − k2I
2q · kI

. (4.2)

Due to the analytic properties of amplitudes we can write down an expression
for Mn(z), as a series expansion in z. This will obviously include a sum over
all propagator poles. Notice that all these poles are simple. In addition there
may be a polynomial part in the expansion.3 For well-defined field theories, this
polynomial in z should have a finite degree, say ν. This allows us to write

Mn(z) =
∑

I∈P
(i,j)
n

aI
z − zI

+ B +

ν
∑

l=1

blz
l. (4.3)

In section 3.1 we analyzed the residues of the poles of Mn(z). These residues
were calculated using a factorization property. This property readily generalizes

2In this terminology an n-line shift is a deformation in which the momenta of n external lines
are changed. In other words, n particles are being deformed.

3Recall that the undeformed amplitude is a rational function of momenta and polarization
vectors. Consequently Mn(z) may have some polynomial part in its expansion.
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to other quantum field theories. In particular, close to the pole zI the propagator
momentum k̂2I approaches zero. In this way the amplitude factorizes into two on-
shell sub-amplitudes. If we assume that the propagators in the theory do not mix
different spin fields then each propagator can be written as a numerical factor, a
projection operator (in the case of nonzero spin) and a denominator involving the
momentum. We propose to normalize them such that the residue for each mode
is always 1. Note, as well, that the projection operator leads to a sum over all
possible helicity configurations for the internal particle.4 The projection operator
only allows these (physical) helicities to contribute when both sub-amplitudes are
on-shell. Schematically we have

Mn(z) ∼
∑

M(I,−k̂I)(z)
1

k̂2I
M(k̂I , Ic)(z), k̂2I → 0. (4.4)

We used the notation M(I,−k̂I)(z) to denote the z-dependent sub-amplitude in-

volving the particles in the set I and a particle with momentum −k̂I that becomes
on-shell when k̂2I → 0. Also, the set Ic denotes the complement of I in {1, · · · , n},
i.e. Ic = {1, · · · , n}\I. It is important to note the sum in (4.4). In general there
can be more particles present such that the sum runs over all possible particles
for the propagator connecting the two sub-amplitudes. In case of particles with
nonzero spin we must also sum over all possible helicity configurations of the in-
ternal particle. Using this factorization property we readily compute the residue
of the pole zI and find

aI =
∑

M(I,−k̂I)(zI)
1

2q · kI
M(k̂I , Ic)(zI) =

∑ML(zI)MR(zI)

2q · kI
. (4.5)

The form of the residue is very similar to the one we found for gluons. This allows
us to write

Mn(z) =
∑

I∈P
(i,j)
n

∑ML(zI)MR(zI)

k̂2I
+ B +

ν
∑

l=1

blz
l. (4.6)

Remember that the original amplitude can be found by evaluating the above ex-
pression at z = 0 such that

Mn =
∑

I∈P
(i,j)
n

∑ML(zI)MR(zI)

k2I
+ B, (4.7)

where ML(zI) = M(I,−k̂I)(zI) and MR(zI) = M(k̂I , Ic)(zI). This looks very
similar to (3.25), the gluonic BCFW recursion relation, if B = 0. We find two
sub-amplitudes, multiplied by a connecting propagator, which are on-shell and
evaluated at complex momenta: k̂a = ka(zI), ∀a. The connecting propagator
is not evaluated at this complex value. Rather, it is the real propagator, i.e.
evaluated at z = 0.
This generalizes the derivation from section 3.1. We only obtain a BCFW-type
recursion when B vanishes. This is the constant term that we called the boundary
contribution.5 Since B spoils the recursion, a good understanding of B is needed

4We saw this explicitly in the case of gluons, see (3.10).
5The name is a result of its interpretation as the value of the contour integration used in

section 3.1.
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in order to use (4.7) for practical calculations. We conclude that a field theory
exhibits a BCFW-type recursion when the boundary contribution, B in (4.3),
vanishes. A sufficient, though not necessary, condition for the vanishing of B is
the requirement that Mn(z) → 0 when |z| → 0. This can be seen from (4.3).

There are many ways to investigate the presence of a boundary contribution. A
very suiting method is the background field method [17] which we discussed in
section 3.1.3 for gluon tree-amplitudes. Let us briefly mention some examples for
which the boundary contribution vanishes.

Zero boundary contribution

We saw in the previous chapter that gluon tree-amplitudes satisfy a BCFW recur-
sion similar to (4.7) with B = 0. This is also possible if we allow for some fermions
[19]. The fermions need not be massless. In other words, BCFW recursion can be
used to calculate amplitudes involving massive fermions coupled to gluons. Hence,
Yang-Mills theory is the first example that allows for a BCFW recursion. It has
also been proven to hold for general relativity in a Minkowski background. See for
example [20, 21, 22]. Many more examples exist. It is interesting to notice that
extensions to supersymmetric field theories have also been considered. It has, for
example, been shown that N = 4 super-Yang-Mills theory andN = 8 supergravity
[23] satisfy a BCFW-type recursion relation.

Nonzero boundary contribution

We saw that a straightforward application of the BCFW methods to other field
theories gave rise to a partial recursion. The recursion was only partial due to
the presence of a nonzero boundary term. From the previous chapter we know
that an [ij〉-deformation for gluons with helicity (hi, hj) = (+,−) results in a
scaling behaviour of the partial amplitude as z3, see (3.23). Hence, a gluon partial
amplitude under a bad deformation can exhibit a nonzero boundary term. Other
examples include scalar field theories and fermions coupled to scalars using Yukawa
couplings. The boundary terms for these kinds of theories were studied in [24].
Notice that scalar quantum electrodynamics and scalar quantum chromodynamics
are examples of theories with scalar-fermion Yukawa couplings.

The boundary term is not always well understood. Think of a gluon partial ampli-
tude at tree-level and use a bad deformation. The deformed amplitude will scale
as z3 and there can be a boundary contribution. There is, however, no way of
analyzing this boundary behaviour using Feynman or partial diagrams. It may
well be possible for some partial diagrams to contain terms of different order in
z. In consequence, we can not directly give an expression for the boundary term
in (4.3). In a later section we will have a look at the boundary contribution for
scalar field theory. In this case te boundary term can be analyzed using Feynman
diagrams. It is important to understand that this is not possible in general.

We extended the ideas of chapter 3 to include other field theories of massless
particles. But BCFW can also be applied to theories of massive particles. Let us
have a closer look at these massive particles in the context of BCFW recursion.
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4.1.2 Massive particles

Provided the shift (4.1) exists when the momenta are no longer lightlike, we can
extend the above analysis to theories involving massive particles. There is, how-
ever, an obvious difference. The propagator in (4.7) connecting the so-called left
and right sub-amplitudes gets a mass term if the internal particle is massive. Thus,
when the internal particle connecting the two sub-amplitudes is massive, we re-
place k2I → k2I − m2 in the propagator. In the same way the associated pole is
shifted by an amount proportional to the square of the mass of the particle in
question

zI = −k
2
I −m2

2q · kI
. (4.8)

With these remarks we see that extending BCFW to include massive particles
can be done if the BCFW deformation can be generalized for arbitrary external
momenta. This was first done by Badger, Glover, Khoze and Svrcek in [25].
Let us investigate the BCFW deformation, (4.1), for arbitrary momenta. An
explicit expression when both particles are massless has been given in section
3.1.1 so consider particles i and j for which i is massless and j is massive. Since i
is massless we can write 2kµi = [i|γµ|i〉 and our shift will be along the null-vector
2qµ = [a|γµ|b〉. Because the null-vector q is complex it involves two independent
helicity spinors, |a] and |b〉. There are two solutions for q which satisfy ki · q = 0.
We can choose either |a] = |i] or |b〉 = |i〉. The condition kj · q = 0 now reads

[i|/kj |b〉 = 0 or [a|/kj |i〉 = 0 (4.9)

Now notice that P+/kj |i] = /kjP−|i] = −/kj |i] such that /kj |i] is proportional to
a spinor of positive helicity. We can now solve the condition above by choosing
|b〉 = /kj |i] or |a] = /kj |i〉. This leads to two solutions for q in case that i is massless
and j is massive

qµ =
1

2
[i|γµ/kj |i] or qµ =

1

2
〈i|/kjγµ|i〉. (4.10)

When both i and j are massive we can no longer write down an expression for q in
a manifestly Lorentz invariant way. Yet it can be solved. To see this consider the
rest frame of particle i such that kµi = (m, 0, 0, 0) and kµj is further unspecified. It
follows that q satisfies

q0 = 0 , q1k1j + q2k2j + q3k3j = 0, (4.11)

which can obviously be solved when q is complex. We conclude that the BCFW
deformation can be used for massive particles, although the case where both par-
ticles are massive may not be convenient for practical calculations.

4.2 Massless scalar field theories

To get a better understanding of the boundary term we consider massless scalars
as was done in [24]. For illustrative purposes we will consider a massless scalars
field theory with a cubic interaction, g

3!φ
3, and a scalar field theory with a quartic

interaction, λ
4!φ

4. The perturbation theory is very transparent in both cases, such
that we can obtain the boundary term based on Feynman diagrams. The Feynman
rules relevant for this section are summarized in table 4.1.
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4 Extending BCFW

=
1

(2π)4
i

k2 −m2

= i(2π)4δ(4)(k1 + k2 + k3)(−g)

= i(2π)4δ(4)(k1 + k2 + k3 + k4)(−λ)

Table 4.1: Feynman rules for scalar field theory. We assume that all momenta
are incoming. The cubic vertex comes from an interaction term − g

3!φ
3 while the

quartic vertex is associated with an interaction − λ
4!φ

4. As always there is an
integral

∫

d4k for each internal momentum k. Note that we have used conventions
in which there are no symmetry factors at tree-level. For each amplitude we will
always extract a factor (2π)4× overall momentum conserving delta function. We
will often consider massless scalars, such that m = 0.

4.2.1 Cubic interactions

We consider the following Lagrangian

L =
1

2
∂µφ∂

µφ− g

3!
φ3. (4.12)

As we only consider a cubic interaction the four-point vertex in table 4.1 does not
contribute. In addition, our particles are massless such that we takem = 0 in table
4.1. To analyze the boundary term we use the expression (4.3). Let us have a look
at a tree-amplitude, M, involving gluons with cubic interactions. Imagine deform-
ing two external momenta according to (4.1). We will choose a (1, 2)-deformation
and write the resulting amplitude M(1̂, 2̂, · · · , n) = M(z). Using (4.3) we see
that B is given by the constant term in M(z). There is no momentum dependence
in the single vertex of the theory. Hence the only non-trivial z-dependence can
arise from propagators. There is always a Feynman diagram where the two shifted
particles interact with each other through the first vertex. As a consequence all
propagator momenta in this Feynman diagram depend on k̂1+ k̂2. But this sum is
independent of z. Indeed k̂1+ k̂2 = k1+k2 such that the z-dependence disappears.
This class of diagrams thus leads to a constant term in (4.3). All other diagrams
have at least one propagator connecting particles 1 and 2. As a consequence,
they necessarily fall off as 1/z for large |z|. If we define B(1̂, 2̂, · · · , n) to be the
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4.2 Massless scalar field theories

boundary contribution of M(1̂, 2̂, · · · , n) we may conclude

B(1̂, 2̂, · · · , n) =

1̂ 2̂

3 n

. (4.13)

The sub-amplitude in (4.13) is off-shell because k1 + k2 is not lightlike. Let us see
whether this is indeed the correct boundary term. Consider four external scalar
particles, M(1, 2, 3, 4), which we will simply denote as M4. The analysis using
Feynman rules leads to

M4 = −ig2
(

1

(k1 + k2)2
+

1

(k1 + k4)2
+

1

(k1 + k3)2

)

= −ig2
(

1

s
+

1

t
+

1

u

)

.

(4.14)

Here we used the Mandelstam variables s = (k1 + k2)
2, t = (k1 + k4)

2 and u =
(k1 + k3)

2. Let us now use a BCFW deformation. Shift the following momenta:
k1 → k1 + zq and k2 → k2 − zq, where q is defined as in (4.1). With this choice of
deformation the s-channel in (4.14) will scale as z0. The other two channels scale

as z−1. Denote the shifted amplitude by M(1,2)
4 (z). We find

M(1,2)
4 (z) = −ig2

(

1

(k1 + k2)2
+

1

(k1 + zq + k4)2
+

1

(k1 + zq + k3)2

)

= −ig2
(

1

s
+

1

u+ 2zq · k4
+

1

t+ 2zq · k3

)

.

(4.15)

Comparing to (4.6) we find

B(1̂, 2̂, 3, 4) = −ig2 1
s
, (4.16)

which agrees with (4.13). This concludes our discussion of the boundary term
for massless scalars with cubic interactions. To motivate the correctness of (4.7)
consider the case when the external scalars have a fixed arrangement. Fixed ar-
rangement has the same meaning as for gluon partial amplitudes. Since this re-
sembles the idea of partial amplitudes in pure Yang-Mills theory we will denote
such amplitudes by A(1, · · · , n) and again call them partial amplitudes. The fixed
arrangement means that in A(1, · · · , n) only the diagrams6 in which the exter-
nal scalars are arranged 1, · · · , n counterclockwise around the diagram contribute.
Notice that this is an artificial definition and the partial amplitudes are different
from the full Feynman amplitude. We need to sum all contributions in order to
get physical results.7 By choosing this, artificial, fixed arrangement less diagrams
contribute and the calculations are more transparent.

6In these diagrams the external lines are not supposed to cross each other.
7This summation is subtle. To obtain the correct Feynman amplitude one has to assign

symmetry factors to the partial diagrams. These symmetry factors are of no importance in the
following discussing and we suppress them.
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4 Extending BCFW

Let us take a look at A(1, 2, · · · , 5). To calculate this partial amplitude we will
use a (1, 2)-deformation. The expression (4.7) then becomes

A =
∑

{ab}∈O

A(a, · · · , b,−k̂ab)
∣

∣

zab

i

k2ab
A(k̂ab, b+ 1, · · · , a− 1)

∣

∣

zab
+ B,

O = {{ab} | 1 ∈ {ab} ∧ 2 /∈ {ab}} ,

zab = − k2ab
2q · kab

,

(4.17)

where we use the notation from chapter 3, i.e. {ab} = {a, a + 1, · · · , b} mod n.
Notice that B is still given by (4.13) if we interchange labels 1̂ and 2̂ and that
there is no helicity sum. We find

A(1, · · · , 5) = B(1̂, 2̂, · · · , 5) + A(5, 1̂,−k̂51)A(2̂, 3, 4, k̂51)
−i(k1 + k5)2

∣

∣

z51

+
A(4, 5, 1̂,−k̂41)iA(2̂, 3, k̂41)

−i(k1 + k4 + k5)2

∣

∣

z41
,

(4.18)

where z51 = − k2
51

2q·k5
and z41 =

k2
23

2q·k3
. Using (4.13) we see

B(1̂, 2̂, · · · , 5) = −ig3
k212

(

1

k245
+

1

k234

)

. (4.19)

Having established the boundary term we find

A(1, · · · , 5) = −ig3
k212

(

1

k245
+

1

k234

)

+
−ig

(

−ig2

k2
23−2z51q·k3

+ −ig2

k2
34

)

−ik251

+
−ig

(

−ig2

k2
45

+ −ig2

k2
51+2z41q·k5

)

−ik223
= −ig3

(

1

k212k
2
45

+
1

k212k
2
34

+
1

k223k
2
45

+
1

k251k
2
34

)

− ig3
1

k251k
2
23

(

1

1 + x
+

1

1 + x−1

)

= −ig3
(

1

k212k
2
45

+
1

k212k
2
34

+
1

k223k
2
45

+
1

k251k
2
34

+
1

k251k
2
23

)

,

(4.20)

where we defined x =
k2
23q·k5

k2
15q·k3

. As expected the result is identical to the one based

on partial diagrams. Clearly we can obtain the partial amplitude A(1, · · · , 5) using
a different deformation such that there is no boundary contribution, for example,
by shifting the momenta of particles 1 and 4. In that case the boundary term van-
ishes because particles 1 and 4 are non-adjacent. However, the Feynman amplitude
does not feature this fixed arrangement of the external particles. As a consequence,
we are, at some point, confronted with non-zero boundary contributions. Let us
continue and briefly discuss scalar field theory with quartic interactions.
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4.3 Extended deformations

4.2.2 Quartic interactions

This time we consider massless scalar fields with a quartic interaction term. The
Lagrangian reads

L =
1

2
∂µφ∂

µφ− λ

4!
φ4. (4.21)

With this Lagrangian, the cubic vertex in table 4.1 does not contribute and, again,
we set m = 0. Consider a tree-level amplitude M involving these scalars which
interact through a quartic vertex. Under the BCFW deformation (4.1) we obtain
a boundary term for the shifted amplitude M(z). Qualitatively there is no dif-
ference in deriving the boundary contribution for scalars with quartic interactions
compared to the theory with cubic interactions. As before we imagine performing
a shift, choosing particles 1 and 2. We analyze the boundary term using Feynman
diagrams. There is, again, no momentum dependence in the vertex such that all
z-dependence resides in the propagators. Feynman diagrams with at least one
propagator connecting particles 1 and 2 scale as z−1 for large |z|. As a conse-
quence, we expect the boundary term to equal the diagrams in which particles 1
and 2 interact with each other in the first vertex. This was also the case for scalars
with cubic interaction. Indeed, if there is no propagator connecting particles 1 and
2 then all propagators in the diagram are z-independent. These diagrams are then
constant as a function of z. Define B(1̂, 2̂, · · · , n) to be the boundary term asso-
ciated with M(z) after a (1, 2)-deformation. From (4.3) and the discussion above
we conclude

B(1̂, 2̂, · · · , n) =
∑

I∪J={3,··· ,n}

1̂ 2̂

I J

. (4.22)

Notice that each term on the right hand side of the equation above involves two
off-shell amplitudes. Therefore (4.22) is less appealing to work with compared
to the recursion for gluons. There are, however, BCFW-type recursion relations
available for scalars. We will see that such recursion relations can be found by
choosing a different momentum deformation.

4.3 Extended deformations

We saw that applying the BCFW methods to a general field theory results in a
partial recursion. This was indicated by the presence of a nonzero boundary term.
In a next step we could try to extend the methods of BCFW to get rid of the
boundary contribution. One idea is to alter the BCFW deformation (4.1).
The original BCFW deformation analytically continues two external momenta to
complex values. But we need not be restricted to choose only two momenta.
In fact, we can deform any number of external momenta. In such a way one
obtains multi-line shifts. As before, we introduce a single complex variable z.
In theory we can shift the momenta of as many particles as desired with the sole
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4 Extending BCFW

restriction that for every z the deformed momenta remain on-shell and momentum
conservation is satisfied. These restrictions will enable us to interpret the shifted
amplitude as being on-shell for each z. In practice a three-particle shift is often
employed, as it is the most simple extension of the original deformation. The
complexity of the recursion relations will usually increase as the number of shifted
lines increases. This does not mean that other deformations are not useful. All-
line deformations, for example, have been studied in [26]. Though we will only
consider linear deformations, non-linear shifts have been considered as well. Recall
that the deformation (4.1) only makes sense when there are four or more spacetime
dimensions. It turns out that there exists an analogue to (4.1) in three dimensions
if we allow for non-linear deformations [27]. Instead of discussing all different
deformations we will take a closer look at the use of a three-line shift.

4.3.1 Three-line deformation

Up to now, we have only consider two-line deformations. A three-line shift was
first used in [28]. It will enable us to write a BCFW recursion for scalars. Next
to computational applications it is also of theoretical interest. For example, the
three-line deformation has been used to give a proof of the CSW construction [29].8

Let us now discuss the deformation. We choose three external particles, labelled
i, j and n, and deform their momenta. All other momenta remain unchanged. A
straightforward extension of (4.1) might look like

kµi (z) = kµi − z(qµ + lµ), kµj (z) = kµj + zqµ, kµn(z) = kµn + zlµ,

ka(z)
2 = k2a a = i, j or n, z ∈ C.

(4.23)

This three-line shift will be called an (i, j, n) deformation. Obviously (4.23) already
ensures that momentum conservation holds. The second line in the equation above
expresses that we want particles i, j, and n to remain on-shell. For that reason
we are forced to use lightlike vectors q and l. In addition, we need to constraint
the vectors q and l in order to satisfy

q · ki = 0, q · kj = 0, l · ki = 0, l · kn = 0. (4.24)

This will make q and l complex, as was the case for a two-line deformation. The
reader may now verify that ka(z)

2 = k2a for a = i, j or n. In the spinor helicity
formalism one can easily check that the following shift satisfies these conditions

|̂i〉 = |i〉, |̂i] = |i] + z (|j] + |n]) ,
|ĵ] = |j], |ĵ〉 = |j〉 − z|i〉,
|n̂] = |n], |n̂〉 = |n〉 − z|j〉.

(4.25)

We can now combine the three-line deformation with the analysis from section 4.1.
This results in an expression similar to (4.7). We will see that, for certain field
theories, this deformation leads to a zero boundary term. In that case we obtain a
BCFW-type recursion. To see how this works we will have a second look at scalar
field theory.

8Cachazo-Svrcek-Witten construction is a different approach to calculating gluon amplitudes.
It replaces the Feynman rules by so-called CSW rules where they use MHV amplitudes as vertices.
Details can be found in [30].
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4.3 Extended deformations

4.3.2 Scalars revisited

Let us, again, start by considering massless scalars with cubic interactions. We will
see how the three-line deformation results in a full recursion relation. Afterwards,
a model to implement the same idea for quartic interactions will be considered.

Cubic interaction

Consider (4.12), i.e. the Feynman rules in table 4.1 with λ = 0 and m = 0.
Let M denote a generic tree-amplitude in this theory. Recall that the boundary
contribution is absent if the shifted amplitude M(z) vanishes as z−1 for large |z|
(see (4.3)). Let us analyze this for a three-line deformation.
Perform an (i, j, l)-deformation, (4.23), such that M → M(z). There is only a
single, cubic vertex to consider. Hence, for more than three external particles,
there is always at least one internal line connecting the three deformed particles.
As a consequence, at least one propagator is always z-dependent. Since the vertex
involves only a coupling constant we find that the amplitude scales as z−1 for large
|z|. We conclude that there is no boundary term so that an on-shell recursion
relation must exist. Let us derive this recursion. Because the amplitude scales as
z−1, (4.3) changes to

M(z) =
∑

poles
zα

aα
z − zα

. (4.26)

Again, we need to analyze the poles and corresponding residues. Remember that
the poles can only result from propagators at tree-level. Let us use the same
notation as in section 4.1. A propagator can only have a pole in z when the
internal momentum k̂I =

∑

a∈I k̂a has a nontrivial z-dependence. This is the case
when i, j and l are not simultaneously elements of the set I but at least one of
them is. Using momentum conservation we can assume that i ∈ I. We further

restrict I to not include both j and l. These sets will be denoted by I ∈ P(i,j,l)
n .

We conclude that, only when the propagator momentum k̂I is on-shell, we obtain
a pole in z. Its value follows from

k̂2I = kI(zI)
2 = 0. (4.27)

The residues corresponding to these poles can be analyzed in the same way as we
did before. The obtained recursion then looks like

M(1, · · · ,m) =
∑

I∈P
(i,j,l)
m

M(I,−k̂I)(zI)
i

k2I
M(k̂I , Ic)(zI). (4.28)

Recall that the presence of a boundary term spoiled the recursion when employing
a two-line shift. This boundary term is now absent and we find a BCFW-type
recursion. Also notice that we need to sum over all sets (I) which include i but
separate the particles i, j and l. By comparison, a two-line deformation would
result in a smaller summation.9

Let us consider an example to verify (4.28). Consider M4. We will calculate
this amplitude using a (1, 2, 3)-deformation. From (4.28) we find the following

9In this comparison we ignore the possibility of a boundary term.
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expression

M4 =
M(1̂, 2̂,−k̂1,2)M(k̂1,2, 3̂, 4)

−ik21,2
∣

∣

z1
+

M(1̂, 3̂,−k̂1,3)M(k̂1,3, 2̂, 4)

−ik21,3
∣

∣

z2

+
M(1̂, 4,−k̂1,4)M(k̂1,4, 2̂, 3̂)

−ik21,4
∣

∣

z3
.

(4.29)

Where z1, z2 and z3 are defined by k1,2(z1)
2 = 0, k1,3(z2)

2 = 0 and k1,4(z3)
2 = 0.

The example at hand does not require an explicit expression for the poles. The
result reads

M4 = −ig2
(

1

k21,2
+

1

k21,3
+

1

k21,4

)

= −ig2
(

1

s
+

1

u
+

1

t

)

, (4.30)

We find the usual s-, t- and u-channels. This is identical to the expression resulting
from the Feynman rules, see (4.14). Let us continue and consider another example.
As in section 4.2 we will consider the partial amplitude A(1, · · · , 5). The recursion
(4.28) needs a small modification. The partial amplitude has a fixed arrangement
of the external particles. This must be reflected in the recursion relation. For
that reason we need only sum over those sets that feature the correct external
arrangement of the scalars. Using a (1, 2, 4)-shift we obtain

A(1, · · · , 5) = A(1̂, 2̂, 3, k̂45)A(−k̂45, 4̂, 5)
−ik245

∣

∣

z13
+
A(1̂, 2̂,−k̂12)A(k̂12, 3, 4̂, 5)

−ik212
∣

∣

z12

+
A(5, 1̂, 2̂, k̂34)A(−k̂34, 3, 4̂)

−ik234
∣

∣

z52
+
A(5, 1̂,−k̂15)A(k̂15, 2̂, 3, 4̂)

−ik251
∣

∣

z51

+
A(4̂, 5, 1̂,−k̂23)A(−k̂23, 2̂, 3)

−ik223
∣

∣

z41
.

(4.31)

The zab are defined by requiring kab(zab)
2 = 0. Notice the subtle difference in

notation. When dealing with Feynman amplitudes we have k1,5 = k1 + k5, for

partial amplitudes we use k15 =
∑5

i=1 ki. The reader may now verify that (4.31)
agrees with (4.20).
This illustrates how a three-line shift may be used to find recursion relations of
BCFW-type. It should be noted that a three-line deformation does not guarantee
a full recursion for every theory. The reader may, for example, check that a three-
line deformation is insufficient to guarantee B = 0 for φ4-theory. It turns out that
there is another method to find a full recursion for massless scalars with quartic
interactions. We will briefly discuss this method because it also allows for an
example of a recursion involving massive particles.

Quartic interaction

We will derive a BCFW recursion for the theory described by (4.21). Following [31]
we can introduce a massive auxiliary field χ and consider only cubic interactions.
This auxiliary field will later enable us to recover λφ4-theory in the large mass
limit. In this limit we assume that χ is a classical, i.e. non-fluctuating, field. With
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this in mind we can write down a BCFW-type recursion involving the auxiliary
field and only cubic interactions. Subsequently we can consider the large mass
limit to find a BCFW-type recursion for massless scalar field theory with quartic
interactions. Note that we need a recursion relations for amplitudes in which the
auxiliary field only enters as an internal particle. These recursion relations can
then be used for λφ4-theory in the correct limit. For that reason we need the
auxiliary field χ to be dynamical, i.e. we need a kinetic term for χ. We start by
consider the following Lagrangian

L =
1

2
∂µφ∂

µφ+
1

2
∂µχ∂

µχ− 1

2
m2χ2 − g

2!
χφ2. (4.32)

The corresponding Feynman rules can be derived using table 4.1. Note that the
Lagrangian (4.32) has only cubic interactions such that we can use a three-line
shift to find a recursion relation. First consider the auxiliary field χ. Its equation
of motion is given by

∂2χ = −m2χ− g

2
φ2. (4.33)

If we assume that the auxiliary field is a classical, i.e. non-fluctuating, field we
can use its equation of motion to substitute χ = − g

2m2φ
2 in the Lagrangian. This

is the so-called large mass limit, where we take m and g to infinity while keeping

the ratio g2

2(2m)2 = − λ
4! fixed. Call the resulting Lagrangian in this limit Lm,g≫.

It reads

Lm,g≫ =
1

2
∂µφ∂

µφ+
g2

(m2)2
φ4 =

1

2
∂µφ∂

µφ− λ

4!
φ4. (4.34)

This is by construction massless λφ4 theory (4.21). As was briefly discussed in
[31] we can use (4.32) together with a three-line deformation to obtain recursion
relations. Subsequently we may consider the large mass limit to recover λφ4 theory.
Let us take a look at how this works. Use M̃ to denote amplitudes following from
(4.32) and let M denote an amplitude following from (4.21). Since we are only
interested in the large mass limit we need only consider amplitudes in which all
external particles are described by the field φ. The three-line shift for a scalar
field theory with cubic interaction was already discussed in the previous section.
The resulting recursion takes the same form as in (4.28). The only difference
for the theory (4.32) comes from the internal propagator connecting the two sub-
amplitudes in (4.28). We need to sum over all possible internal particles. By doing
so we obtain two different terms; one in which the internal particle is massless
and described by the field φ, the other term involves a massive internal particle
described by χ. Using a (1, 2, 3)-shift, the resulting recursion is given by

M̃(1, · · · , n) =
∑

I∈P
(1,2,3)
m

[

M̃(I,−k̂φI)
i

k2I
M̃(k̂φI , Ic)

∣

∣

∣

zφ

I

+ M̃(I,−k̂χI )
i

k2I −m2
M̃(k̂χI , Ic)

∣

∣

∣

zχ

I

]

.

(4.35)

We used a superscript on the internal momentum to denote whether the associated
particle is massive or massless. As before the sets I include 1̂ but not both 2̂ and
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3̂. It is important to notice that the poles zχI and zφI are different as they come

from different propagators. If the internal particle is massless we need zφI which is

defined by k̂I(z
φ
I )

2 = 0. When the internal particle is massive we need zχI which

follows from k̂I(z
χ
I )

2 −m2 = 0.
In the large mass limit the above recursion should apply to (4.21), i.e. massless
φ4 theory. If we had started from (4.21) and employed a (1, 2, 3)-shift then the
recursion would look like

M(1, · · · , n) =
∑

I∈P
(1,2,3)
m

M(I,−k̂I)(zI)
i

k2I
M(Ic, k̂I)(zI) + B(1,2,3)

n . (4.36)

In the large mass limit (4.35) should reduce to (4.36). Comparing both recursions
we see that the first term in (4.35) equals the first term of (4.36). Hence, in the
large mass limit, the second term in the cubic theory should equal the boundary
term in the quartic theory

B(1,2,3)
n =

∑

I∈P
(1,2,3)
m

M̃(I,−k̂χI )
i

k2I −m2
M̃(k̂χI , Ic)

∣

∣

∣

zχ

I

,

m, g → ∞,
g2

2(2m)2
= − λ

4!
.

(4.37)

We will show this following the arguments given in [24].
First notice that the boundary contribution in (4.36) can easily be analyzed using
Feynman diagrams. The derivation is similar to the one discussed in section 4.2
and the result is

B(1,2,3)
n =

1̂

2̂

3̂

4

n

. (4.38)

Now let us analyze the large mass limit of the second term in (4.35). It involves
amplitudes of one external χ-field and any number of external φ-fields. For that
reason we need to know how an amplitude with p external φ-fields and one external
χ-field behaves. Define V as the number of vertices, cubic in this case, and let Iφ
respectively Iχ denote the number of internal φ- respectively χ-propagators. It is
not hard to see that we need an even number of external φ-fields. An odd number
of external φ-fields necessarily leads to an additional external χ-field, which is, by
assumption, not present. We thus need p to be even. The same analysis shows
that the number of internal φ- and χ-fields are equal such that Iχ = Iφ. Notice,
also, that V − 1 is exactly the number of internal propagators. This allows us to
write

2Iφ = 2Iχ = Iφ + Iχ = V − 1 = p− 2 (4.39)

We need to analyze the right-hand side of (4.37) in the large mass limit. First
notice that zχI is defined to solve kI(z

χ
I )

2 −m2 = 0. Hence it behaves as zχI ∼ m2

in the large mass limit. Next, we consider how the propagators scale in the large
mass limit. A χ-propagator obviously scales as m2 in this limit. The behavior of
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2̂

1̂

3̂

n4

3̂

1̂

2̂
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3̂

2̂

1̂

n4

Figure 4.1: The surviving diagrams from the right-hand side of (4.37) in the large
mass limit. The full line denotes a φ-field while the dashed line corresponds to
a χ-field. Notice that the diagrams are not given as the product of two on-shell
sub-amplitudes.

an internal φ-propagator is less obvious. It depends on the propagator momentum.
If the propagator momentum does not depend on zχI it goes to a constant. On
the other hand, if the internal momentum is z-dependent then the propagator
evaluated at zχI goes as zχI , i.e. as m

2 in the large mass limit.

With these remarks in mind we can consider how a sub-amplitude on the right-
hand side of (4.37) behaves in the large mass limit. Define M̃(pφ, kχI ) to be such
an amplitude involving p external φ-fields and one external χ-field corresponding
to the connecting propagator in (4.37). Let α denote the number of zχI -dependent
internal φ-propagators, we obtain

M̃(pφ, kχI ) ∼
gV

(m2)Iχ(m2)α
∼ gp−1(m2)

p

2−1+α ∼ λ
p−1
2 m1−2α, (4.40)

where we used (g/m)2 ∼ λ. We are now ready to consider the large mass limit of
the right-hand side of (4.37). It involves two copies of M̃(pφ, kχI ). For that reason
we will use the subscripts L and R. Let pL respectively pR denote the number of
external φ-fields in M̃L respectively M̃R. These should add up to give the total
number of external φ-fields involved, i.e. pL + pR = n. In the same way αL resp.
αR denote the number of zχI -dependent φ-propagators in M̃L resp. M̃R. Using
(4.40) twice we find

M̃(pL, αL)M̃(pR = n− pL, αR)

−i(k2 −m2)
∼ λ

pL−1

2 m1−2αLλ
pR−1

2 m1−2αR

m2

∼ λ
n−1

2 (m2)−(αL+αR).

(4.41)

From this we conclude that the only surviving diagrams in the large mass limit
must satisfy αR = αL = 0. This means that non of the internal φ-propagators can
depend on zχI . These are exactly the diagrams where particles 1, 2 and 3 interact
with each other via an internal χ before interacting with the other particles. They
are depicted in figure 4.1. Let us calculate these diagrams in the large mass
limit. Notice that we did not bother to write them in the form of two on-shell
sub-amplitudes. Use M̃o and Mo to denote off-shell amplitudes. Notice that
M̃o → Mo in the large mass limit. Employ the Feynman rules corresponding to
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(4.32) and consider the large mass limit to find

g2

k̂21,2 −m2

1

k21,2,3
M̃o(k1,2,3, 4, · · · , n) +

g2

k̂21,3 −m2

1

k21,2,3
M̃o(k1,2,3, 4, · · · , n)

+
g2

k̂22,3 −m2

1

k21,2,3
M̃o(k1,2,3, 4, · · · , n)

∼ 3g2

−m2

1

k21,2,3
Mo(k1,2,3, 4, · · · , n)

∼ λ

k21,2,3
Mo(k1,2,3, 4, · · · , n).

(4.42)

This is exactly the boundary contribution (4.38) and we conclude that (4.36)

and (4.35) give the same results in the large mass limit with g2

2(2m)2 = − λ
4! fixed.

Hence we have established a BCFW-type recursion for massless scalars with quartic
interactions.
It should be clear that multi-line deformations are a powerful tool in finding re-
cursion relations. There is, however, no known deformation that will work for any
theory. As mentioned before, the recursion also becomes less efficient when the
number of deformed particles increases. This is so because one needs to sum over
all sets that include one fixed deformed particle and any number of other particles,
except for those sets that include all the deformed particles. Before concluding
this chapter we will consider a different interpretation of the boundary term.

4.4 A different point of view

We will briefly discuss a different implementation of the boundary term in (4.7).
Consider a tree-amplitude after a two-line deformation, M(z). If B = 0 in (4.3),
then knowledge of the poles and corresponding residues leads to an on-shell recur-
sion. When B 6= 0 knowledge of the poles and residues is insufficient to write down
a recursion relation. But there are still other properties that we can study in the
complex plane. We might have a look at roots, i.e. zeroes, ofM(z). This approach
was followed in [32]. It turns out that we can find a BCFW-type recursion, even
when B 6= 0. We do, however, need to know all roots of M(z). This is an interest-
ing approach but it is far from easy to say something about the roots of a deformed
amplitude. Even for known amplitudes there is no general analysis to find roots
besides brute force calculations. As a consequence the so-obtained recursion is not
very suited for practical calculations. Yet it is interesting to consider, even if only
for theoretical purposes.
We will describe how this new recursion comes about following [33]. In this paper
a different, more straightforward approach was used to obtain the results from
[32]. We already know that the tree-amplitude M(z) has simple propagator poles
and the following series expansion holds

M(z) =
∑

j

ML(zj)MR(zj)

kj(z)2
+ B +

ν
∑

l=1

blz
l. (4.43)

We simplified the notation a bit by choosing j to denote the summation over all
poles. We could try to analyze the boundary contribution by integrating over
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4.4 A different point of view

different contours, e.g. contours that only include a number of roots and no poles.
This was carried out by [32]. Following [33] we may also analyze the expression
by rewriting it until we end up with a single denominator

M(z) = d
Πr(z − wr)

mr

Πjkj(z)2
. (4.44)

Here d is some proportionality constant and wr is a root of M(z) with multiplicity
mr. We may define N0 as the number of zeros and Np as the number of poles
such that we need

∑

rmr = N0 = Np + ν. Now we split the number of roots
into two groups x and y. Let nx respectively ny denote the number of roots in x
respectively y. In this way we have nx+ny = N0. This decomposition is arbitrary
but that need not concern us at this point. We now choose a particular splitting
of the roots that satisfies nx < Np. We can write

M(z) = d
Πr∈x(z − wr)

mr

Πjkj(z)2
Πa∈y(z − wa)

ma . (4.45)

First consider

Πr∈x(z − wr)
mr

Πjkj(z)2
. (4.46)

The degree of the numerator in the expression above is by construction less than
the degree of the denominator. As a consequence we can decompose this again
into poles. Including the constant d one has

d
Πr∈x(z − wr)

mr

Πjkj(z)2
=
∑

j

dj
kj(z)2

. (4.47)

The dj are z-independent because the denominators degree is higher than the
numerators degree. They satisfy

dΠr∈x(z − wr)
mr =

∑

j

dkΠl 6=jkl(z)
2. (4.48)

Having established this, the original expression becomes

M(z) =
∑

j

dj
kj(z)2

Πr∈y(z − wr)
mr , (4.49)

and we can find the dj using contour integration. Choose a contour γj that encloses
the pole zj arising from kj(zj)

2 = 0. Now shrink the contour γj untill all other
poles are no longer enclosed. One obtains:

1

2πi

∮

γj

dzM(z) =
∑

l

dl
2πi

∮

γj

dz
Πr∈y(z − wr)

mr

pl(z)2
. (4.50)

Using Cauchy’s residue theorem we find

1

2πi

∮

γj

dzM(z) =
∑

l

dlδl,j
Πr∈y(zj − wr)

mr

2kj · q
=
djΠr∈y(zj − wr)

mr

2kj · q
, (4.51)
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where q denotes the direction of the momentum shift. On the other hand we know

the residue of M(z) at zj from the factorization property to be
ML(zj)MR(zj)

2kj ·q
.

Taking these results into account we find

dj =
ML(zj)MR(zj)

Πr∈y(zj − wr)mr
, (4.52)

which gives the following expression

M(z) =
∑

j

ML(zj)MR(zj)

kj(z)2
Πr∈y

(

z − wr

zj − wr

)mr

. (4.53)

Recall that the actual amplitude is given by M = M(0) which is

M =
∑

j

ML(zj)MR(zj)

k2j
Πr∈y

(

wr

wr − zj

)mr

. (4.54)

This is an on-shell recursion similar to the BCFW recursion. It holds for any
local quantum field theory. The recursion multiplies two on-shell sub-amplitudes
with a propagator and some weight factor depending on the roots of M(z). The
on-shell sub-amplitudes are evaluated at complex momenta while the connecting
propagator is real. This is identical to the gluonic BCFW recursion. The additional
weight factor replaces the boundary term in (4.7). We see that calculating the
boundary term is equivalent to knowing the roots ofM(z). On theoretical grounds
this might shed new light on developing an alternative description of quantum
field theory. The recursion does, however, require knowledge of the roots of the
deformed amplitude. As a consequence, practical calculations using (4.54) are
rather difficult. In [32, 33] a set of consistency conditions for the roots were
derived. This can be achieved by considering various known limits, e.g. collinear
limits, of amplitudes. However this strategy does not guarantee to find roots and
many difficulties remain.
We applied the BCFW methods to other field theories and discussed in detail how
the recursion fails for scalars. Then we had a look at some extensions which allowed
a full recursion for scalar field theory. We concluded with a different interpretation
of the boundary term. In the following chapter we will have a look at yet another
application of BCFW recursion. Until now we have been studying field theory in
flat spacetime. In the next chapter we will see that BCFW recursion can also have
applications in curved spacetime.
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spacetime

It is hard to make general statements about quantum field theory in curved space-
time. For one, because it is not always clear how to extend flat-space field theory
methods to curved backgrounds. The analysis used in the previous chapter need
not apply in curved space but we expect it will. We saw how the BCFW methods
depend on very general properties of quantum field theories. Many of these prop-
erties need not change when we consider a curved background. We will see this
explicitly by considering scalar field theory in anti-de Sitter space and derive a re-
cursion of the BCFW-type. This has applications in the context of the AdS/CFT
correspondence, as was discussed in [34, 35]. We will first introduce anti-de Sitter
space. Then we briefly explain how perturbation theory can be applied before
discussing the recursion.

5.1 Anti-de Sitter spacetime

We will have a look at (d+1)-dimensional anti-de Sitter space (AdSd+1) which, for
our purpose, is a space of Lorentzian signature1 with constant negative curvature.
It is also a solution to the Einstein equation in the general theory of relativity.
Let us briefly discuss this curved space. It may be obtained as an imbedding in a
(d+ 2)-dimensional space with line element

(dsd+2)
2
= −

(

dx0
)2

+

d
∑

i=1

(

dxi
)2 −

(

dxd+1
)2
. (5.1)

In the space (5.1), AdSd+1 corresponds to the hypersurface satisfying the following
equation

(

x0
)2 −

d
∑

i=1

(

xi
)2

+
(

xd+1
)2

= R2. (5.2)

We shall, from now on, take R = 1. We will use the universal covering space of
AdSd+1 in a particular coordinate system. To understand this we first need to
discuss two different coordinate systems.

1In the discussion of field theory in AdS we will use the mostly plus Lorentzian signature
instead of the convention used in the previous chapters. This mostly plus signature is often used
in the context of curved spacetime.
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5 Recursion in curved spacetime

5.1.1 Global coordinates

We may introduce coordinates on the hypersurface (5.2)

x0 = coshχ cos τ,

xi = Ωi sinhχ, 1 ≤ i ≤ d,
∑

i

Ω2
i = 1,

xd+1 = coshχ sin τ,

(5.3)

where χ ≥ 0 and 0 ≤ τ ≤ 2π. The Ωi are a parametrization of a (d−1)-dimensional
unit sphere. It is straightforward to check that this is a parametrization of (5.2).
In fact they cover the whole space and are therefore called global coordinates.
Using (5.1) we can find the line element in global coordinates of AdSd+1

ds2AdS = − cosh2 χdτ2 + dχ2 + sinh2 χdΩ2. (5.4)

Here we define dΩ2 =
∑

dΩ2
i , which corresponds to the metric of a (d − 1)-

dimensional unit sphere. It should be clear that AdSd+1 is unphysical in the sense
that it is not causal. This is indicated by the presence of closed timelike curves.
To see this it suffices to note that τ is timelike and periodic. We restore causality
by redefining τ such that it takes values −∞ ≤ τ ≤ ∞. The space obtained in this
way is the universal covering space of AdS. We will, from this point on, denote this
space by AdS again. There is another coordinate system for the covering space of
AdSd+1 which is convenient for describing field theory. They are called Poincaré
coordinates and only cover half of AdS. This half is then called the Poincaré patch.
Let us have a look at these coordinates.

5.1.2 Poincaré coordinates

We may introduce Poincaré coordinates (u, t, y1, · · · , yd−1) on the hypersurface
(5.2) in the following way

x0 =
1

2u

(

1 + u2(1 + y2 − t2)
)

,

xi = uyi, 1 ≤ i ≤ d− 1,

xd =
1

2u

(

1− u2(1− y2 + t2)
)

,

xd+1 = ut.

(5.5)

Here, we used the notation y2 =
∑d−1

i=0 (y
i)2. The coordinate u satisfies 0 ≤ u and

all other coordinates take values in R. The line element in this Poincaré patch
then becomes

ds2P =
du2

u2
+ u2

(

−dt2 + dy2
)

. (5.6)

Now introduce z = 1/u and rename yi → xi to obtain

ds2P =
1

z2
(

dz2 − dt2 + dx2
)

. (5.7)
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This is the space that we will use for describing scalar field theory in AdS. The
Poincaré coordinates satisfy 0 ≤ z ≤ ∞ and −∞ ≤ xi, t ≤ ∞. Let us first
discuss some notations. Define x0 = t and introduce Zµ = xµ for 0 ≤ µ ≤ d − 1.
Furthermore we take Zd = z. Now define the metric g in the usual way: ds2P =
gµνdZ

µdZν . This metric is then given by

gµν =
1

z2
ηµν , 0 ≤ µ, ν ≤ d. (5.8)

We thus have one timelike coordinate x0 and d spacelike coordinates x1, · · · , xd−1,
z. Depending on the sign of x0 we reach a future or past horizon when z → ∞.
On the other hand, there is a boundary at z = 0. This boundary is conformally
related to Minkowski space and described by the coordinates xµ, 0 ≤ µ ≤ d− 1 in
the Poincaré patch. We will find it useful to make a distinction between the full
AdS space and its boundary. For that reason the whole space will often be called
the bulk.2 Let us now discuss scalar field theory in this Poincaré patch. Though
it does not cover the complete anti-de Sitter space it will make the discussion in
the remainder of this chapter more transparent. Be aware that it is possible to
define many of the concepts from the rest of this chapter in global coordinates.

5.2 Scalar field theory in AdS

We will, once more, consider a scalar field theory. This time the background space
is not Minkwoski, rather, we will use the Poincaré patch of AdS. Because we work
in a curved space we need to introduce a connection. Consequently we need to use
covariant derivatives, ∇µ, instead of partial derivatives. These can then be used
to construct covariant objects, i.e. tensors. However, we need not worry about
this when discussing scalar fields. By definition ∇µφ = ∂µφ and there is no need
to use covariant derivatives. Let us have a look at a free, massless scalar field. We
will not discuss the effects of a coupling between the scalar field and curvature
scalar (often called Ricci scalar). The action is then given by

S =

∫

dZ
√

|g|
(

−1

2
gµν∂µφ∂νφ

)

, (5.9)

where g is the determinant of the metric such that
√

|g| = z−(d+1). We also use
the notation dZ for dZ0 ∧ · · · ∧ dZd. The equation of motion readily follows

�φ =
1
√

|g|
∂µ
√

|g|gµν∂νφ = 0. (5.10)

This is the wave equation in a curved background. Let us first take a look at
solutions to (5.10). Because the boundary is conformally related to Minkowski
space it is convenient to use a Fourier transform for the coordinates x0, · · · , xd−1.
Let x = (x0, · · · , xd−1) such that φ(Z) = φ(z, x). Introduce variables k0, · · · , kd−1

conjugate to x0, · · · , xd−1 and Fourier transform

φ(z, x) =

∫

ddkeik·xa(k)φ(z, k). (5.11)

2This terminology is used in the AdS/CFT correspondence.
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We defined k · x = ηijk
ixj , where i and j run from 0 to d − 1. The conjugate

variables will be called momenta. Using the equation of motion we find

0 =
[

∂zz
−(d+1)z2∂z − z−(d+1)z2ηijk

ikj
]

φ(z, k)

=
[

z−(d+1)z2∂2z + (1 − d)z−d∂z − z−(d+1)z2k2
]

φ(z, k).
(5.12)

Now define |k| =
√

|k2|, v = d
2 and write the solution as follows φ(z, k) = zvf(|k|z).

The equation of motion now reads

z1−v|k|2f ′′(|k|z)+ z−v|k|f ′(|k|z)−k2z1−vf(|k|z)− v2z−v−1f(|k|z) = 0, (5.13)

where f ′(x) = df(x)
dx and f ′′(x) = d2f(x)

dx2 . We obtain two different equations de-
pending on whether k is timelike or spacelike. When it is timelike k2 < 0 and
|k|2 = −k2. On the other hand, when k is spacelike we have |k|2 = k2. Let
us write k2 = ±|k|2 such that the upper (lower) sign corresponds to a spacelike
(timelike) momentum k. The equation of motion obtains a familiar form

(z|k|)2f ′′(|k|z) + z|k|f ′(|k|z)− (v2 ± (|k|z)2)f(|k|z) = 0. (5.14)

For timelike k we obtain the Bessel differential equation with index v, while for
spacelike k it takes the form of the modified Bessel equation with index v.
First assume k to be timelike. There are two linearly independent solutions to
the Bessel equation with index v. They are given by the Bessel function of the
first and of the second kind with index v. The Bessel function of the first kind is
denoted Jv and Yv is the Bessel function of the second kind. Notice the subscript v
which indicates the dependence on the parameter in the differential equation. We
conclude that we have the following independent solutions: φ1(z, k) = zvJv(|k|z)
and φ2(z, k) = zvYv(|k|z). There is no sum over v, it is simply the index of the
Bessel equation and equal to d

2 .
Let us continue and consider k to be spacelike. The modified Bessel equation has
two linearly independent solutions. They are called the modified Bessel functions
of the first and of the second kind. The first modified Bessel function is usually
denoted by Iv while Kv is the modified Bessel function of the second kind. Again
we mention the subscript v to indicate the index of the modified Bessel equation.
Let us write φ3 and φ4 for the two solutions such that φ3(z, k) = zvIv(|k|z) and
φ4(z, k) = zvKv(|k|z).
We would like these solutions to be regular in the interior of AdS, i.e. when z → ∞.
For that reason let us have a look at the asymptotic forms of the (modified) Bessel
functions

Ja(x) ∼
√

2

xπ
cos
(

x− aπ

2
− π

2

)

, Ia(x) ∼
ex√
x
+O(x−1),

Ya(x) ∼
√

2

xπ
sin

(

x− aπ

2
− π

2

)

, Ka(x) ∼
e−x

√
x

+O(x−1),

x→ ∞.

(5.15)

We see that Iv grows exponentially, as a consequence we need to discard φ3. Still
three solutions remain. We will, however, not be needing all three solutions. To
see this we take a look at the momentum dependence. Assume that we start
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5.2 Scalar field theory in AdS

with a spacelike momentum and consider φ4. If we try to analytically continue φ4
to timelike momenta we obtain zvKv(i|k|z) ∼ zvHv(|k|z), where Hv is a Hankel
function of the first kind. This Hankel function is a specific linear combination of
the Bessel functions of the first and second kind. Using this analytic continuation
we see that it suffices to consider only the solutions corresponding to either space-
like or timelike momenta. We choose to use the solutions for timelike momenta,
the other solutions are then found by analytic continuation in the momentum.
Instead of φ2 we will use the Hankel function of the first kind. The reason being
that the analytic continuation to spacelike momenta gives φ4, which is regular in
the interior of AdS. We also mention that only φ1 is normalizable.3 The difference
between normalizable and non-normalizable modes will be discussed shortly. Let
us now forget all other solutions and write

φn(z, k) = zvJv(|k|z), φnn(z, k) = zvHv(|k|z), (5.16)

where we used an n or nn to denote that it is a normalizable or non-normalizable
solution. Strictly speaking (5.16) only holds for timelike k and we perform an
analytic continuation to describe spacelike k.
We will set up a perturbation theory for interacting scalar fields in AdS. In doing
so, we assume that there is a given boundary value of the fields. That means
that we are dealing with Dirichlet boundary conditions. As is familiar from field
theory in flat space, we use propagators to calculate certain objects in perturbation
theory. Besides generalizing the familiar Feynman propagator we will also be
needing a propagator that relates a field to its boundary value. Let us discuss
these propagators in detail.

5.2.1 Propagators

For later use we are interested in two different propagators. For obvious reasons
we need a generalization of the Feynman propagator in flat space. This is a specific
choice of Green’s function which will be called the bulk to bulk propagator. We
will also be interested in finding a way to extend some given boundary value of φ
to a solution defined on the entire AdS space. This will be done using the bulk to
boundary propagator.
Let us start with the bulk to boundary propagator. Call this K. If we have the
value of our solution at the boundary, φ(0, x) = φ0(x), we would like to extend
it to a solution in AdS. This means that we would like to solve (5.10) subject to
Dirichlet boundary conditions

�φ =
1
√

|g|
∂µ
√

|g|gµν∂νφ = 0,

φ(0, x) = φ0(x).

(5.17)

The reader familiar with partial differential equations may remember that this can
be done using the kernel of the wave equation with Dirichlet boundary conditions.
In fact the bulk to boundary propagator is exactly this kernel. Instead of using
the mathematical framework available we will adopt a more physical point of view

3Normalizable with respect to the Klein-Gordon inner product. This means that φ1 can be
used to built a Hilbert space as is required for a consistent quantization. We will not discuss this
here.
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5 Recursion in curved spacetime

in deriving this kernel. For a more rigorous derivation the reader might want to
consult [36]. To solve (5.17) we write our solution in the following form

φ(z, x) =

∫

∂AdS

dyK(z, x; y)φ0(y). (5.18)

Here the integration is over the entire boundary z = 0. Since φ should solve the
wave equation we need K to be a solution. On the other hand, when z approaches
0 we need K to become a delta-function in order to satisfy the boundary condition

lim
z→0

K(z, x; y) = δ(d)(x− y). (5.19)

Obviously K is a function of x − y and we may introduce a Fourier transform,
similar to what we did before

K(z, x; y) =

∫

ddkeik·(x−y)K(z, k). (5.20)

By doing so (5.19) reduces to

lim
z→0

K(z, k) = 1, (5.21)

after introducing φ0(k) as the Fourier transform of φ0(x) the solution becomes4

φ(z, x) =

∫

ddkeikxK(z, k)φ0(k). (5.22)

As mentioned before, we need K to solve the equation of motion. By doing so we
can select a solution of the form (5.16) for K(z, k). This solution should reduce to
a constant at the boundary such that (5.21) can be satisfied by choosing a proper
normalization. For that reason, consider the asymptotic forms of the (modified)
Bessel functions in (5.16) when z → 0

Ja ∼ xa + · · · , Ha ∼ x−a + · · · , x→ 0. (5.23)

This clearly shows that only φnn is constant at the boundary z = 0. We conclude
that K ∼ φnn ∼ zvHv. Assume that we have normalized K properly and absorb
the normalization constant in the definition of

∫

∂AdS
in (5.18). We will neglect

writing this constant since it is of no importance in the remainder of this chapter.
The bulk to boundary propagator is then given by

K(z, x; y) =

∫

ddkeik(x−y)zvHv(|k|z). (5.24)

Notice that the normalizable solution φn vanishes at the boundary due to (5.23).
As a consequence the bulk to boundary propagator is ill defined. Indeed we can
always add some normalizable modes, φn, such that the value at the boundary
is unchanged while the solution takes a different value inside AdS. More details
concerning this subtlety can be found in [36]. Using (5.18) we can extend given
boundary data φ(0, x) =

∫

ddkeikxφ0(k) to a solution in AdS

φ(z, x) =

∫

ddkeikxzvHv(|k|z)φ0(k). (5.25)

4We suppress any possible factors of (2π)d since the final result needs to be normalized.
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5.2 Scalar field theory in AdS

Having established this we consider the concept of a Green’s function, as is familiar
from quantum field theory in flat space. We need a solution to the following
equation

�G(z, x; z′, x′) =
δd(x− x′)δ(z − z′)

√

|g|
. (5.26)

Performing a Fourier transform: G(z, x; z′, x′) =
∫

ddkeik(x−x′)G(z, z′, k), the so-
lution takes the following form

G(z, x; z′, x′) = −
∫

ddk

(2π)d
dppeik(x−x′) z

vJv(pz)Jv(pz
′)(z′)v

k2 + p2 − iǫ
, (5.27)

where the iǫ-prescription specifies that we are dealing with a generalization of the
familiar Feynman propagator. Note that p is a continuous variable conjugate to
z. The reader may verify that (5.27) solves (5.26) with the use of the following
identity

∫ ∞

0

dppJv(pz)Jv(pz
′) =

δ(z − z′)

z
. (5.28)

This identity expresses the orthogonality of the Bessel functions of the first kind.
Having introduced these two propagators we are ready to consider perturbation
theory in AdS.

5.2.2 Perturbation theory

To discuss BCFW for scalar field theory in AdS we need to discuss the analogue of
the tree-amplitudes in flat space. For that reason we will briefly motivate pertur-
bation theory in AdS. Approximating the path integral by the action corresponds
to restricting the discussion to tree-level. As a consequence, we need only consider
the action. We will consider a cubic interaction term, but the analysis can also be
applied to scalars with quartic interactions. We also assume that boundary data
is given, i.e. we are given the values of the fields at z = 0. Consider the following
action

S =

∫

dZ
√

|g|
(

−1

2
∂µφg

µν∂νφ− g

3!
φ3
)

. (5.29)

The equation of motion is given by

�φ− g

2
φ2 = 0, (5.30)

where � = 1√
|g|
∂µ
√

|g|gµν∂ν . We will be interested in perturbatively solving the

action. For that reason we first solve the equation of motion perturbatively. We
are given the boundary value φ(0, x) = φ0(x). This boundary value is given the
same interpretation as that of a source in flat space.5 We already know that we
can use the bulk to boundary propagator (5.24) to find a solution to the free wave
equation, i.e. (5.30) with g = 0

φf (z, x) =

∫

∂AdS

dyK(z, x; y)φ0(y). (5.31)

5The interpretation of the boundary value as a source is used in the AdS/CFT correspondence.
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5 Recursion in curved spacetime

Using the bulk to bulk propagator (5.27) we may implicitly solve the equation of
motion6

φ(z, x) = φf (z, x) +

∫

dZ ′
√

|g(Z ′)|G(Z;Z ′)(
g

2
φ(Z ′)2). (5.32)

This equation can perturbatively be solved using iteration

φ(z, x) =φf (z, x) +
g

2

∫

dZ ′
√

|g(Z ′)|G(Z;Z ′)

×
[

φf (Z
′) +

∫

dZ”
√

|g(Z”)|G(Z ′;Z”)
g

2
(φf (Z”) + · · · )2

]2

.

(5.33)

Now we can insert this solution into the action to obtain a perturbative expansion.
This is similar to the perturbative expansion of tree-level Feynman diagrams. Let
us have a look at one such term.7 The following term is fourth order in φf

S ∋ g2
∫

dZ
√

|g|
∫

dZ ′
√

|g′|φf (Z)φf (Z)φf (Z ′)φf (Z
′)G(Z,Z ′). (5.34)

Using (5.31) we obtain

S ∋
∫

∂AdS

ddy1d
dy2d

dy3d
dy4

∫

dZdZ ′

(zz′)d+1
φ0(y1)φ0(y2)φ0(y3)φ0(y4)

× g2
[

K(z, x; y1)K(z, x; y2)G(Z,Z
′)K(z′, x′; y3)K(z′, x′; y4)

]

.

(5.35)

We interpret this expression as an interaction between sources on the boundary,
φ0. As the name already suggested K describes the propagation from the bulk to
the boundary and G describes the propagation inside the bulk. We will associate
an amplitude, T (y1, y2, y3, y4), with (5.35) after stripping of the sources and the
integration over the boundary. Besides the term shown in (5.35) there are two
other terms contributing to T (y1, y2, y3, y4). In fact, T (y1, y2, y3, y4) includes all
possible terms in the perturbative expansion of the action that are connected and
have four sources. This is identical to the use of Feynman amplitudes. Now let us
have a look at these tree-amplitudes in Fourier space. We define

T (y1, · · · , y4) =
∫

ddk1 · · · ddk4eik1·y1 · · · eik4·y4T (k1, · · · , k4)

(2π)dδd(k1 + · · ·+ k4).

(5.36)

Using (5.24) and (5.27) we can rewrite the term in (5.35)

T (k1, · · · , k4) ∋
∫

dzdz′

(zz′)d+1
zvHv(|k1|z)zvHv(|k2|z)

×
∫

dp(−p)z
vJv(pz)Jv(pz

′)(z′)v

(k1 + k2)2 + p2 − iǫ
(z′)vHv(|k3|z′)(z′)vHv(|k4|z′).

(5.37)

We can draw a Feynman-like diagram for these expressions. Use a circle to denote
the boundary and draw lines from the circle to its interior to denote bulk to

6Notice that, according to (5.23), this does not change the boundary behaviour.
7We only care for so-called connected parts, which has the same meaning as it has in flat

space.
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5.2 Scalar field theory in AdS
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Figure 5.1: The three Witten diagrams contributing to T (k1, k2, k3, k4) at tree-
level.

boundary propagators. Lines inside the circle are then associated with bulk to bulk
propagators. These diagrams have the same form as the Feynman diagrams in flat
space with the extra feature that we contract each line to the boundary denoted
by a circle surrounding the entire drawing. These diagrams are called Witten
diagrams. Examples are given in figure 5.1, where all diagrams contributing to
T (k1, · · · , k4) are shown.
Having established this there is one point left to discuss in. We used a specific
form of the bulk to boundary propagator but in fact we can add any number
of normalizable solution (5.16). It turns out that one needs these normalizable
solutions for a consistent quantization of the theory. So imagine starting with a
solution to the wave equation of the form

φf (z, x) =

∫

ddkeikx [zvHv(|k|z)φ0(k) + zvJv(|k|z)φ1(k)] , (5.38)

where φ1 is again interpreted as a source. We then have to include these terms
in our perturbation theory. In defining such amplitudes we strip off the bound-
ary values, φ0 and φ1. It should be obvious that normalizable modes get a factor
zvJv(|k|z) instead of the bulk to boundary propagator, zvHv(|k|z). These normal-
izable modes will be denoted by k in T . We also need to distinguish normalizable
from non-normalizable modes in a Witten diagram. For that reason we use a
dashed line for normalizable solutions. Notice that these can only occur from the
circle to its interior. Let us further illustrate this idea with an example. Con-
sider the Witten diagram in figure 5.2. This involves a normalizable mode. The
corresponding expression is

T (k1, · · · , k4) ∋
∫

dzdz′

(zz′)d+1
zvJv(|k1|z)zvHv(|k2|z)

×
∫

dp(−p)z
vJv(pz)Jv(pz

′)(z′)v

(k1 + k2)2 + p2 − iǫ
(z′)vHv(|k3|z′)(z′)vHv(|k4|z′).

(5.39)

The resulting amplitudes, T , involving normalizable and non-normalizable modes
are often called transition amplitudes. Let us discuss how to compute such an
amplitude.
Start by drawing all contributing Witten diagrams. For scalar field theory, they
can be found in the same way in which one finds all Feynman diagrams. Secondly,
we write the corresponding expression for each Witten diagram. The procedure
is similar to the one used for Feynman diagrams. The vertex is identical to the
vertex in flat space. The propagators for internal lines are given by the bulk
to bulk propagator. For external lines we either associate the bulk to boundary
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k2

k1

k3

k4

Figure 5.2: An example of a Witten diagram involving a normalizable mode. This
particular example is one of three contributions to T (k1, k2, k3, k4).

propagator when it is non-normalizable or, when the external line follows from a
normalizable mode we give it a factor zvJv(|k|z). Obviously, one ensures momen-
tum conservation at each line and integrates over internal momenta. As a last
step we need to integrate over the z-coordinate for each interaction point with
the associated factor 1/

√

|g|. An overall momentum conserving delta function is
understood. At this point we neglect any possible numerical factors since they are
of no importance for the discussion in the remainder of this chapter.

In flat space we discussed on-shell amplitudes. A gluon is on-shell when its momen-
tum satisfies k2 = 0. A gluon partial amplitude in flat space is then on-shell when
all external gluons are on-shell. In AdS an amplitude is on-shell when all external
lines are contracted to the boundary. This is reflected in the Witten diagrams by
having all external lines end in a large circle. We make sure that an amplitude
in AdS is on-shell by assigning the correct Bessel function to each external line.
Remember that the momentum assigned to each external line should correspond
with the momentum in the argument of the corresponding Bessel function (see
(5.16)).

Now that we have an idea of the amplitudes in perturbation theory we will have
a look at whether we can use the BCFW method in a curved background.

5.3 BCFW in AdS

We would like to find an on-shell recursion relation to calculate the amplitudes, T .
It turns out that we can derive such a recursion in the same spirit as section 4.1. We
will choose two external momenta and shift them into the complex plane. All other
momenta remain undeformed. Then we study how the amplitude T behaves in the
complex plane. This will, once more, enable us to write an expansion involving
simple poles and a constant term. In flat space the recursive part followed from
the residues and poles of the expansion. We were able to calculate the residues
using a factorization property. The same procedure will be used for scalar fields in
AdS resulting in an expression for T similar to (4.7). Recall that, in the previous
section, we had to deal with both normalizable and non-normalizable modes. To
make the analysis more transparent we will start by assuming that all normalizable
modes are switched off. We will later see that the result easily generalizes to include
normalizable modes.

Consider the amplitude T (1, · · · , n). We want to perform a shift as we did in
(4.1). Because the use of z as deformation variable may lead to confusion with
the z-coordinate in AdS we will use w. Choose two particles i and j from the set
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5.3 BCFW in AdS

{1, · · · , n} and deform their momenta. All other momenta remain unchanged

ki → ki(w) = k̂i = ki + wq, kj → kj(w) = k̂j = kj − wq,

ki · q = 0 = kj · q, q2 = 0, w ∈ C.
(5.40)

To analyze how T (1, · · · , î, · · · , ĵ, · · · , n) = T (w) behaves as a function of w we
note that there is no momentum dependence in the vertices. But in AdS the am-
plitude depends on Bessel functions which enter both in the external and internal
lines. The Bessel functions in the internal lines do not depend on the external mo-
menta. As a consequence we need only consider the Bessel functions arising from
the external lines. These follow from the bulk to boundary propagator (5.24) and
they only depend on the norm of the associated external momentum. Since the
BCFW deformation has been chosen in such a way that the norm of the external
momenta remains unchanged it does not affect the Bessel functions.

Using these observations we notice that the only non-trivial w-dependence arises
from the denominator in the bulk to bulk propagator (5.27). This is similar to field
theory in flat space. Indeed, the only possible poles seem to arise as propagator
poles. Consider a generic Witten diagram contributing to T (w). At tree-level there
is a single line connecting the two deformed particles î and ĵ. If there is no bulk
to bulk propagator connecting î and ĵ then the diagram becomes w-independent
(see figure 5.3). These Witten diagrams are constant as a function of w. Any
other Witten diagram not belonging to the class of diagrams depicted in figure 5.3
must have at least one internal propagator connecting î and ĵ. As a consequence
they fall off as w−1 for large |w|. These diagrams will thus develop a w-pole. We
conclude that the Witten diagrams contributing to T either behave as a constant
or fall off as w−1 for large |w|. We will use these observations to construct a series
expansion for T .

Notice that the denominator in the bulk to bulk propagator (5.27) depends on
an integration variable p. As a consequence the w-pole will also depend on this
integration variable. To make this clear we will extract the associated integration
in the series expansion and write

T (1, · · · , î, · · · , ĵ, · · · , n) =
∫

dp(−p)
∑

Poles
wα

aα(p)

w − wα(p)
+ B. (5.41)

The constant term is equal to the diagrams in figure 5.3. This is very similar to
the situation for scalars with cubic interactions in flat space, see (4.13). Let us
now take a closer look at these poles.

We already know that the poles necessarily come from the denominator of the
bulk to bulk propagator. At tree-level the propagator momentum can only be
a sum of external momenta. Write this sum as k̂I =

∑

i∈I k̂i where I is any

subset of {1, · · · , î, · · · , ĵ, · · · , n}. If both k̂i and k̂j appear in the sum k̂I then
the propagator is w-independent. Notice that by momentum conservation this
is equivalent to the situation where neither î nor ĵ appear in the set I. The
situation is similar to the one in flat space and using momentum conservation we
may assume that only when î ∈ I and ĵ is not we find a non-trivial w-dependence
in the bulk to bulk propagator. Let us denote these sets that separate î and ĵ and

include î by P(i,j)
n , as we did before. Using the denominator of the bulk to bulk
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5 Recursion in curved spacetime

î ĵ

1 n

Figure 5.3: The constant term, B, in the expansion (5.41, 5.43) resulting from an
(i, j)-deformation. All external lines are non-normalizable. When normalizable
modes are involved the diagram shown above may involve any number of dashed
external lines corresponding to the normalizable modes.

propagator (5.27) we can find the pole corresponding to I ∈ P(i,j)
n

k̂2I + p2 = k2I + 2wIq · kI + p2 = 0 → wI(p) = −k
2
I + p2

2q · kI
. (5.42)

This allows us to write

T (1, · · · , î, · · · , ĵ, · · · , n) =
∑

I∈P
(i,j)
n

∫

dp(−p) aI(p)

w − wI(p)
+ B. (5.43)

From this point on we will call aI(p) the residue of the amplitude, T (w), at the
pole wI(p). It remains to calculate these residues, aI , in (5.43). For that reason
we will first consider an example and have a look at the residue of T (1, 2, 3, 4)
corresponding to w1,4 after a (1, 2)-deformation.
There are three Witten diagrams contributing to T (1, 2, 3, 4) and they can be found
in figure 5.1. Let us start by having a look at the full amplitude. The expression
corresponding to the first diagram in figure 5.1 is given by

I1,4 = g2
∫

dzdz′

(zz′)d+1
zvHv(|k1|z)zvHv(|k4|z)

×
∫

dp(−p)z
vJv(pz)Jv(pz

′)(z′)v

(k1 + k4)2 + p2
(z′)vHv(|k3|z′)(z′)vHv(|k2|z′),

(5.44)

the second diagram gives

I1,2 = g2
∫

dzdz′

(zz′)d+1
zvHv(|k1|z)zvHv(|k2|z)

×
∫

dp(−p)z
vJv(pz)Jv(pz

′)(z′)v

(k1 + k2)2 + p2
(z′)vHv(|k3|z′)(z′)vHv(|k4|z′),

(5.45)

and the last diagram is

I1,3 = g2
∫

dzdz′

(zz′)d+1
zvHv(|k1|z)zvHv(|k3|z)

×
∫

dp(−p)z
vJv(pz)Jv(pz

′)(z′)v

(k1 + k3)2 + p2
(z′)vHv(|k2|z′)(z′)vHv(|k4|z′).

(5.46)
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The amplitude, T (1, 2, 3, 4), is then given by the sum of the above three terms

T (1, 2, 3, 4) = I1,4 + I1,2 + I1,3. (5.47)

Now perform a (1, 2)-deformation. The middle diagram in figure 5.1 is constant,
as a function of w, such that B = I1,2. Notice that this is in agreement with figure
5.3. From (5.43) we see that there should be two poles, w1,4 and w1,3. These
arise in the terms I1,4 and I1,3. Let us see whether we can calculate the residue

corresponding to w1,4. In the limit w → w1,4 we have k̂21,4 + p2 → 0 and only I1,4
survives. Hence we find

T (1̂, 2̂, 3, 4)
w→w1,4−−−−−→ g2

∫

dzdz′

(zz′)d+1
zvHv(|k̂1|z)zvHv(|k4|z)

×
∫

dp(−p) z
vJv(pz)Jv(pz

′)(z′)v

k21,4 + p2 + 2wq · k1,4
× (z′)vHv(|k3|z′)(z′)vHv(|k̂2|z′).

(5.48)

Since w14 = −(k21,4 + p2)/2q · k1,4 we may write

T (1̂, 2̂, 3, 4)
w→w1,4−−−−−→

∫

dp(−p) 1

2q · k1,4
1

w − w1,4

× g

∫

dz

zd+1
zvHv(|k̂1|z)zvHv(|k4|z)zvJv(pz)

× g

∫

dz′

(z′)d+1
(z′)vJv(pz

′)(z′)vHv(|k3|z′)(z′)vHv(|k̂2|z′).

(5.49)

The two last terms look like two amplitudes involving a normalizable mode. Let
us analyze the first of these two terms. In order for it to be an on-shell amplitude
we need momentum conservation and the external line has to be contracted to the
boundary. This means that the p in zvJv(pz) has to satisfy p = |k̂1 + k4|. But

notice that this need only be satisfied in the limit k̂21,4 + p2 → 0, which is clearly

the case and p = |k̂1+k4| as is desired. We thus see that in the limit w → w1,4 the
last two terms become T (1̂, 4,−1̂− 4) and T (2̂, 3,−2̂− 3) evaluated at w = w1,4.
This actually gives the residue a1,4 in the expansion (5.43) for T (1, 2, 3, 4)

a1,4 =

[

T
(

1̂, 4,−(1̂ + 4)
) 1

2q · k1,4
T
(

2̂, 3,−(2̂ + 3)
)

]

w1,4(p)

. (5.50)

The deformed momenta are evaluated at w1,4(p). Notice that the residue in-
volves normalizable modes even though the original amplitude involves only non-
normalizable modes. This example shows how the residues in (5.43) can be com-
puted.

Let us generalizes the example above. Consider again T (1, · · · , n) and perform
an (i, j)-deformation such that the poles are given by (5.42). The above analysis
shows how the amplitude factorizes into two on-shel sub-amplitudes. Consider the
limit w → wI(p) such that k̂2I + p2 → 0. Only the Witten diagram in which a
bulk to bulk propagator separates the particle in the set I from all the remaining
particles can contribute in this limit. The Bessel functions appearing in the bulk
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5 Recursion in curved spacetime

to bulk propagator contribute to both sub-amplitudes. They become normalizable
modes in this limit as we saw in our previous example. We may write

T (1, · · · , î, · · · , ĵ, · · · , n) w→wI−−−−→
∫

dp(−p)T (I,−k̂I)T (I
c, k̂I)

k̂2I + p2

∣

∣

∣

∣

∣

wI(p)

. (5.51)

From this factorization we can compute the residue aI(p)

aI(p) =
T (I,−k̂I)T (Ic, k̂I)

2q · kI

∣

∣

∣

∣

∣

wI(p)

. (5.52)

This can be used in (5.43)

T (1, · · · , î, · · · , ĵ, · · · , n) =
∑

I∈P
(i,j)
n

∫

dp(−p)T (I,−k̂I)T (I
c, k̂I)

k̂2I + p2
+ B. (5.53)

The final result is found by evaluating the expression above at w = 0

T (1, · · · , n) =
∑

I∈P
(i,j)
n

∫

dp(−p)T (I,−k̂I)T (I
c, k̂I)

k2I + p2
+ B. (5.54)

This extends the analysis from section 4.1 to scalar fields in anti-de Sitter space.
Compared to (4.7), we see that both expressions are very similar. The only differ-
ence comes from the bulk to bulk propagator, which involves an integration that
is not present in (4.7).
We started with an amplitude involving only non-normalizable modes but the
above analysis does not change when any number of these modes are replaced
by normalizable ones. The only difference is that some of the Hankel functions
(Hv) need to be replaced by Bessel functions (Jv). We may conclude that (5.54)
remains valid when normalizable modes are involved. In fact, normalizable modes
arise naturally in the derivation of (5.54). This can be seen as an indication of the
fact that we need to consider normalizable modes to construct a consistent theory.
Notice that (5.54) is only a partial recursion due to the presence of B. In flat space
we were able to find a BCFW-type recursion for scalars. This was done using a
three-line deformation. Let us briefly discuss this possibility in AdS.

5.3.1 Three-line deformation

From section 4.3 we know that, for scalars, a three-line deformation can be used
to get rid of the constant term in (4.7). From the analysis carried out above it
should be obvious that this generalizes to AdS. Let us consider a three-line shift.
Choose three particles i, j and n. All other momenta will remain undeformed. We
perform the following shift

kµi (w) = kµi − w(qµ + lµ), kµj (w) = kµj + wqµ, kµn(w) = kµn + wlµ,

q2 = 0, ki · q = 0 = kj · q, ki · l = 0 = kn · l.
(5.55)

Under this deformation, any Witten diagram will contain at least one bulk to
bulk propagator connecting the three deformed particles. As a consequence the
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5.3 BCFW in AdS

constant term in (5.54) disappears. Similar to the analysis in section 4.3 we can
find a recursion relation for scalars in AdS of the BCFW-type. The result reads

T (1, · · · ,m) =
∑

I∈P
(i,j,n)
m

∫

dp(−p)T (I,−k̂I)T (I
c, k̂I)

k2I + p2
. (5.56)

The sets in P(i,j,n)
m where already defined in the previous chapter. They always

include î and they must separate î, ĵ and n̂, meaning that the sets can not contain
both ĵ and n̂. We thus obtain a BCFW-type recursion for scalars with cubic
interactions in anti-de Sitter space. Each term in (5.56) can be calculated by
evaluating two on-shell sub-amplitudes of fewer particles at complex momenta.
These sub-amplitudes are then multiplied by part of the bulk to bulk propagator
evaluated at w = 0. In addition, we need to integrate over a variable that arises
in the bulk to bulk propagator. The desired amplitude is then found by summing
over all contributing terms in (5.56) .
This concludes our discussion of BCFW in anti-de Sitter space. We showed how
one may obtain an on-shell recursion relation in order to calculate amplitudes
of scalars in AdS. As was shown in [34, 35], BCFW recursion relations exist for
Yang-Mills theory in AdS and for gravity.
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6 | Overview and outlook

In this thesis we started with the necessary preliminaries to discuss BCFW recur-
sion for gluon tree-amplitudes in Yang-Mills theory. These gluon recursion rela-
tions were then studied in chapter three. We saw how BCFW recursion enables us
to compute a tree-amplitude from on-shell sub-amplitudes of fewer particles. This
is a much more efficient method compared to the evaluation of amplitudes using
Feynman rules. Feynman rules require calculating every sub-amplitude starting
from off-shell expressions. Only at the end of the computation may we take all
external particles on-shell to obtain the physical amplitude.

BCFW can be seen as an effective procedure for calculating amplitudes. It cir-
cumvents the discussion of unphysical terms and uses only on-shell expressions.
In addition it allows to evaluate amplitudes in a recursive manner. BCFW has
lead to an improved understanding of on-shell methods to construct scattering
amplitudes. These methods contribute to the theoretical evaluation of scattering
processes used to compare to experimental data coming from the Large Hadron
Collider. The calculation of four Jet processes1 [37] and Z-boson production [38]
are examples. This shows that BCFW recursion has interesting practical appli-
cations. We saw how analyzing scattering amplitudes in the complex plane gave
rise to BCFW recursion. The recursion can be obtained by analytically continuing
two external momenta to complex values and subsequently considering the poles
and residues.

In chapter four we extended this analysis to include other quantum field theories.
We saw how a full recursion can be obtained if the boundary contribution vanishes.
This happens, for example, if the relevant amplitudes vanish when two external
momenta are taken to infinity in a specific complex direction. However, this need
not hold for any quantum field theory. We saw this explicitly for scalar field
theory. For that reason we discussed some extensions of the BCFW method.
These enabled us to write down a full recursion of the BCFW-type for scalars.
The analysis in chapter four should give an indication of the theoretical value of
the BCFW method. It improves our knowledge of the structure of quantum field
theory. In chapter five we discussed how BCFW may be applied to scalar field
theory in anti-de Sitter space. The thus obtained recursion has applications in the
AdS/CFT correspondence. It should give a clear indication of the wide range of
applications of BCFW recursion.

There are many other things worth discussing. For example, throughout this
thesis we restricted the discussion to tree-level amplitudes. It turns out that

1Jets are strongly interacting bundles of hadrons and other particles. They result as a by-
product in many-particle reactions.
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BCFWmethods can also be applied to loop calculations. In addition, the recursion
can also be generalized to supersymmetric field theories. It may also be used to
obtain theoretical results, sometimes called bonus relations. These can be used to
prove certain statements about quantum field theory. There have been many new
insights in Twistor and Grassmannian geometry that are closely related to BCFW.
Next to application in the AdS/CFT correspondence there have also been studies
of BCFW-type recursion in string theory. At a more theoretical level, BCFW
has lead to a revival of the S-matrix program. The S-matrix program hoped to
reformulate quantum field theory by calculating scattering amplitudes and making
predictions solely based on the most basic assumptions such as causality, unitarity
and analyticity. Originally, it was found too hard for actual practical use. The
discovery of BCFW recursion changed this. It hands us a practical way to calculate
amplitudes without making any reference to a local Lagrangian. We direct the
reader to the review by Feng and Luo [9] for more information and references to
the relevant articles.
As for the future, we expect to see a continuing study of BCFW methods and
related subjects. There is, for example, still a search for improved precision calcu-
lations of scattering amplitudes. It may be possible to find even further extensions
of the BCFW methods. The possible reformulation of quantum field theory will
also continue to play a role in future research. We can still improve our under-
standing of roots of amplitudes. They may help us find new recursion relations,
as we saw at the end of chapter four, and improve our knowledge of quantum field
theory.
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