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Abstract

One of the many things the Anti-de-Sitter/Conformal Field Theory

(AdS/CFT) correspondence tells us is that there is a correspondence

between black holes and condensed matter systems with a finite tem-

perature. The aim of this thesis was to find the metric of a rotating

Lifshitz black hole in 2 + 1 dimensions. When this metric is known we

can use it to gain more information about or solve problems in strongly

coupled condensed matter systems at a critical point. To get at this,

we first reviewed metrics of Schwarzschild and Reissner-Nordström

black holes and black branes in 3 + 1 dimensions. Then we calculated

the metric of a rotating black disk in Anti-de-Sitter spacetime. After

that we looked at a non-rotating Lifshitz black hole and a BTZ black

hole in 2+1 dimensions. Finally, we combined the knowledge of these

to try to calculate the metric of the rotating Lifshitz black hole.
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1 Introduction

This thesis is about black holes. Especially about theoretical black holes.

We are not looking at the real physical objects we could find in the universe.

In theoretical physics there is something called AdS/CFT: Anti-de-Sitter/

Conformal Field Theory correspondence, see e.g. [1][2]. This interesting

theory tells us there is a correspondence between string theory on one side

and gauge theory and condensed matter physics on the other side. General

relativity is embedded in string theory and black holes are in turn part of

general relativity. Through AdS/CFT correspondence, black holes are dual

to condensed matter systems with finite temperature. There is a mathe-

matical duality between these theories; the theory of gravity and the gauge

theory of fields without gravity. We shall not go into the details about how

this duality works mathematically. However, the AdS/CFT correspondence

is a good motivator for the study of the black holes in Anti-de-Sitter and

Lifshitz spacetimes.

1.1 AdS/CFT correspondence

At one side of the correspondence we have the theory of gravity, this is in

Anti-de-Sitter spacetime, with for example five spacetime dimensions. In this

space there are black holes. On the conformal boundary of this space we find

the conformal field theory. This boundary is Minkowski spacetime. On it

the dimension is one lower then in the bulk. This is where the condensed

matter physics is located.

One of the ideas of the AdS/CFT correspondence is that if you know how

things are working at one side of the correspondence you can translate this

knowledge to information at the other side and vice versa.

There are problems in condensed matter physics we cannot solve with
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1.2 Black holes and black branes

perturbative methods, this happens when the coupling is strong. However

we can translate such a problem to a problem in a specific type of black

hole. If we do this correctly, it might be possible to solve the problem in the

black hole, because there we have a weak coupling. Next we can translate

the solution back to the condensed matter system, and we have a solution.

1.2 Black holes and black branes

Besides black holes there is also something called black branes. Just like a

black hole, a black brane has the property that if you get close enough, if

you pass the horizon, there will be a point of no return. And for both, the

mass, charge and angular momentum totally define the black brane or hole.

But the form of the two things differs, the boundary of a black brane is an

infinite plane instead of a sphere. In the metric, the spherical part will be

replaced by a planar part.

We can use the AdS/CFT correspondence to connect black holes or black

branes with condensed matter systems with a finite temperature. The dif-

ference between the holes and branes lies in the size of the condensed matter

systems. Holes will correspond with a conformal field theory on the sphere,

while branes correspond to unbounded systems on the plane.

1.3 Temperature

When we want to solve problems with the AdS/CFT correspondence we

need to identify a specific general relativity system with a condensed matter

system. If we then give the condensed matter system a temperature, we have

a black hole in the general relativity system dual to it. We want to know the

temperatures of various black holes, because then it is easier to identify the
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1.4 Aim: finding the metric of a rotating Lifshitz black hole

systems with each other.

Initially, part of the goal of my thesis was to find the temperature of a

rotating Lifshitz black hole. This black hole was not found, so it was not

possible to calculate a temperature. Nevertheless calculating temperatures

of other black holes and black branes was an interesting thing to do. A way

to do these calculations is written down in the next chapter.

1.4 Aim: finding the metric of a rotating Lifshitz black

hole

The goal of this thesis was to find the metric that defines a rotating Lifshitz

black hole in 2 + 1 dimensions. If the metric is known we are able to calcu-

late other things concerning the black hole, such as temperature, mass and

angular momentum. Metrics of some rotating black holes are known and the

metric of a static, non-rotating Lifshitz black hole is found in [3] and more

general in [4]. But a rotating Lifshitz black hole was a new challenge.

Lifshitz scaling is an anisotropic scaling for time and space. They are

scaling in this way:

t→ λzt, ~x→ λ~x.

Normally we have the same scale for time and space, which is the case when

z = 1. Then we have relativistic invariance. But if z is not 1 we get non-

relativistic theories, still allowing particle production. In special cases the

particle number and conformal transformations are conserved and this is

corresponding with condensed matter systems. Now we are looking for a

gravity dual of this, so our metric should also have a Lifshitz scaling:

ds2 =
l2

r2
dr2 − r2z

l2z
dt2 +

r2

l2
d~x2

d−1. (1.1)
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1.4 Aim: finding the metric of a rotating Lifshitz black hole

So Lifshitz scaling is an interesting scaling for AdS/CFT and characteristic

for condensed matter systems. We want to combine this with rotation. Ro-

tating black holes correspond with rotating condensed matter systems. We

could for example have a strongly coupled Bose-Einstein condensate. If we

rotate this with a certain angular momentum, there will arise vortices in

the condensate. This leads to interesting properties we want to learn more

about, like at which critical angular momenta these vortices appear. And we

could maybe use this black hole to gain such information.

Most of the condensed matter systems will be in two or three space di-

mensions. Therefore it would be logical to study the black holes in four or

five spacetime dimensions. Solving the Einstein tensor and related tensors is

in general something quite difficult. That is why we will look in this thesis at

Lifshitz black holes in 2+1 dimensions. It would be better to do the calcula-

tions for 3+1 or even arbitrary dimensions, but that will make it much more

complicated. After finding a metric in 2+1 dimensions this calculations could

be redone in one dimension more, however that will not be done in this thesis.

The initial goal was to find the rotating Lifshitz black hole, and its tempe-

rature. That’s why we shall start with calculations of temperature in chapter

two. After this, in chapter three, we calculate known metrics of black branes.

We will attempt to find the metric of a rotating black brane, this will be de-

scribed in chapter four. Until this point everything will be in four, that is

3 + 1, dimensions. Subsequently, when we look at the Lifshitz black hole, we

switch to 2 + 1 dimensions, so one dimension lower, for simplicity. We shall

start with redoing calculations to find the metric of the Lifshitz black hole

and the BTZ rotating black hole. The result of this will be shown in sections

5.1 and 5.2, after which we attempt to construct a rotating Lifshitz black

hole in section 5.3. We did not succeed in finding such a solution, rather we
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1.4 Aim: finding the metric of a rotating Lifshitz black hole

proved that under a certain assumption there cannot exist a solution. In the

conclusion and outlook we comment on how to relax the assumptions.

Through this thesis the subscripts will correspond with the spacetime

directions in the following way:

Black holes:

0 ∼ t ∼ time; 1 ∼ r ∼ radius;

2 ∼ θ ∼ the first angle; 3 ∼ φ ∼ the second angle,

with the spherical part of the metric:

dΩ2 = dθ2 + sin2θdφ2.

Black branes:

0 ∼ t ∼ time; 1 ∼ r ∼ radius;

2 ∼ x ∼ the first planar coordinate; 3 ∼ y ∼ the second planar coordinate.
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2 Temperature of a black hole

Black holes and branes emit Hawking radiation and this process produces a

(Hawking) temperature. For different types of black holes we can calculate

the temperature. It will depend only on mass, charge, the cosmological con-

stant and angular momentum. Temperatures can be calculated with several

methods. A common one is using energy, entropy and the surface gravity,

like is written down in [5]. Here we will use an other method. The case of

the Schwarzschild black hole in Minkowski spacetime is also written in [6].

First we will see how this method works in this specific case, then we will

generalize the method and finally use it for many types of black holes and

black branes. Hereafter we will write Schwarzschild Minkowski black hole,

meaning Schwarzschild black hole in Minkowski spacetime, et cetera.

2.1 Schwarzschild Minkowski black hole

We start with the Schwarzschild Minkowski black hole, the easiest case. The

metric is

ds2 = −A(r)dt2 +
1

A(r)
dr2 + r2dΩ2, (2.1)

where A(r) = 1− 2M
r

and M is the mass of the black hole. With these coor-

dinates we see that we have singularities. One singularity is at r = 0 and the

other occurs when A(r) = 0 and so r = 2M , this is the horizon of the black

hole. The first singularity is a real one, we cannot remove it with coordi-

nate transformations. But for the second singularity this is possible, after a

transformation, the metric singularity will become a coordinate singularity.

To find the temperature we need to do this.

Further we look only at the dr and dt parts of the metric, because the

singularity does not influence the spherical part.

In the Schwarzschild case we use Kruskal-Szekeres coordinates, see e.g.
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2.1 Schwarzschild Minkowski black hole

[7]. But in general we use the null-geodesics to find the appropriate trans-

formation:

A(r)dt2 =
1

A(r)
dr2, (2.2)

dt2 =
1

A(r)2
dr2. (2.3)

Taking the square root and integrating both sides we get∫
dt = ±

∫
1

A(r)
dr ≡ ±r∗. (2.4)

With this r∗ we define new coordinates:

v = t+ r∗; u = t− r∗,

then

r∗ =
v − u

2
.

Subsequently, we find the derivatives:

du

dt
=
dv

dt
= 1,

du

dr
= −dv

dr
= − 1

A(r)
= − 1

1− 2M
r

.

In the Schwarzschild case we find for r∗:

r∗ = r + 2M log(−2M + r). (2.5)

We can take the exponent of this expression:

exp
( r∗

2M

)
= exp

( r

2M

)
(−2M + r). (2.6)

We see it is possible to express A(r) in terms of r∗ and thus in terms of v

and u:

A(r) = exp
( r∗

2M

)1

r
exp

( −r
2M

)
. (2.7)
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2.1 Schwarzschild Minkowski black hole

Now we will write down the metric, without the spherical part. We will

do this in the new coordinates and use

dt2 =

(
1

2

( dt
du
du+

dt

dv
dv
))2

=
1

4

(( dt
du

)2

du2 +
( dt
dv

)2

dv2 + 2
dt

du

dt

dv
dudv

)
;

dr2 =
1

4

((dr
du

)2

du2 +
(dr
dv

)2

dv2 + 2
dr

du

dr

dv
dudv

)
.

First we had the metric:

ds2 = −A(r)dt2 +
1

A(r)
dr2, (2.8)

which transforms into

ds2 = −A(r)
1

4
(dv2 + du2 + dudv) +

1

A(r)

1

4
(A(r))2(dv2 + du2 − dudv)

= −A(r)dudv. (2.9)

Combining this with equation (2.7) we get

ds2 = exp
(v − u

4M

)1

r
exp

( −r
2M

)
dudv. (2.10)

We look again at the singularities; r = 0 is of course still a singularity, but

r = 2M gives a exp (−1), there is no problem here. And also the exp (v−u
4M

)

gives no singularities. Now we have a metric with only the zero singularity

and coordinate singularities, we can calculate the temperature of the corre-

sponding black hole.

First we need to do one more coordinate transformation:

U = − exp
(−u

4M

)
; V = exp

( v

4M

)
.
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2.2 General calculations of temperature

Then equation (2.10) becomes

ds2 =
(4M)2

r
exp

( −r
2M

)
dUdV. (2.11)

If we go to Euclidean time t = it̃, we get the following expression:

−V
U

= exp
(v + u

4M

)
= exp

( t

2M

)
= exp

( it̃

2M

)
= cos

( t̃

2M

)
+ i sin

( t̃

2M

)
.

Next we can split U and V in a time dependent and time independent part:

V = ρ exp
( it̃

4M

)
; U = −ρ exp

(−it̃
4M

)
,

with

ρ2 = V U = − exp
(v − u

4M

)
.

We see that ρ does not depend on time, since v − u = 2r∗. U and V are

time dependent in the exponent. In this new metric time translations are

rotations, and they need to be periodic, so 2π = t̃
4M

and t̃ = 8πM . Then the

Unruh effect[8] gives a temperature of

T =
1

t̃
=

1

8πM
.

2.2 General calculations of temperature

We have calculated the temperature for one specific example, but we can use

this method for all black holes. We can leave out most of the steps. Starting

again with the metric, defined by

ds2 = −A(r)dt2 +
1

A(r)
dr2 + r2dΩ2, (2.12)

we find new coordinates u and v with r∗ and the null-geodesic:

r∗ ≡
∫

1

A(r)
dr, (2.13)

13 of 62



2.2 General calculations of temperature

and

v = t+ r∗; u = t− r∗.

Now we have reached the most difficult part; we need to find a way to

write A(r) with an exponent r∗, so that we only have singularities at r = 0

or infinity. Say

ds2 = exp
( v − u
D(r,M,Q,Λ)

)
B(r,M,Q,Λ)dudv, (2.14)

with B and D functions of all variables, but with no singularities at the

original horizon. Here M is the mass and Q the charge of the black hole, Λ

is the cosmological constant, defined by Rµν = Λgµν .

In all the types of black holes we need to reach this stage. If we have

reached this, we only have to follow one procedure. This goes completely

analogous to the calculation for the Schwarzschild Minkowski black hole in

the previous section. First the coordinate transformation to U and V needs

to be done. Then there will be a time dependent and a time independent

part. The time dependent part ought to be periodic again and that part will

be totally defined by the D(r,M,Q,Λ). And then the final temperature will

be

T =
1

2πD(r,M,Q,Λ)
.

Using this method we can calculate the temperature of many different

black holes and black branes. The results are listed in the table below and

part of the calculations, the ones marked with a *, can be found in more

detail in the following section.
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2.3 More examples

Type Black Hole(BH) or Black Brane(BB) Temperature

Schwarzschild Minkowski BH
1

8πM

Schwarzschild AdS BH
1− r2

+Λ

4πr+

Reissner-Nordström Minkowski BH* r+ −M
2π(2Mr+ −Q2)

Reissner-Nordström AdS BH −
Q2

r+
− r+ + Λr3

+

4πr2
+

Schwarzschild AdS BB*
3

4πr+

Reissner-Nordström Minkowski BB
M

2πr2
+

Reissner-Nordström AdS BB* 2r3
+Λ + 3M

6πr2
+

Table of temperatures, where r+ is the horizon, M the mass, Λ

the cosmological constant and Q the charge.

2.3 More examples

2.3.1 Reissner-Nordström Minkowski black hole

We will see some more examples of the temperature calculations, starting

with the Reissner-Nordström Minkowski black hole. We use the general

method. In this case we have the following A(r) in the metric:
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2.3 More examples

A(r) = 1− 2M

r
+
Q2

r2
. (2.15)

It is easy to calculate that the horizons are at

r± = M ±
√
M2 −Q2. (2.16)

We use the null-geodesic to find r∗:

r∗ =

∫
1

A(r)
dr = r+M log(r2−2Mr+Q2)+

−Q2 + 2M2√
Q2 −M2

arctan
( −M + r√

Q2 −M2

)
.

(2.17)

This can be written as

r∗ = r +M log
(

(r − r−)(r − r+)
)

+
−Q2 + 2M2

i(r+ −M)
arctan

( −M + r

i(r+ −M)

)
= r +M log

(
(r − r−)(r − r+)

)
+
−Q2 + 2M2

i(r+ −M)

i

2
log
(1− r−M

r+−M

1 + r−M
r+−M

)
= r +M log

(
(r − r−)(r − r+)

)
+
−Q2 + 2M2

(r+ −M)

1

2
log
(r+ − r
r − r−

)
. (2.18)

From the general method we now know that we can rewrite the metric:

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dudv =

1

r2
(r − r+)(r − r−)dudv. (2.19)

Taking the exponent of r∗, we get

exp
(v − u

2M

)
= exp

( r∗
M

)

= exp
( r
M

)
(r − r+)(r − r−)

(r+ − r
r − r−

)M− Q2

2M
r+−M

= − exp
( r
M

)
(r+ − r)

r+−
Q2

2M
r+−M (r − r−)

r+−2M+
Q2

2M
r+−M . (2.20)
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2.3 More examples

We can now again rewrite the metric:

ds2 = − 1

r2
exp

( r∗
M

r+ −M
r+ − Q2

2M

)
exp

(
− r

M

r+ −M
r+ − Q2

2M

)
(r − r−)

r+−2M+
Q2

2M

r+−
Q2

2M dudv

= − 1

r2
exp

((v − u)(r+ −M)

2Mr+ −Q2

)
exp

(
− r

M

r+ −M
r+ − Q2

2M

)
(r − r−)

r+−2M+
Q2

2M

r+−
Q2

2M dudv.

(2.21)

We wanted to remove the singularity at the r+ horizon. In this new

coordinates we are only left with the r− singularity and further there are

no metric singularities other than zero and infinity. Our D(r,M,Q,Λ) from

equation (2.14) is now 2Mr+−Q2

r+−M .

Then the temperature of a Reissner-Nordström Minkowski black hole is

T =
1

2πD(r,M,Q,Λ)
=

r+ −M
2π(2Mr+ −Q2)

.

2.3.2 Schwarzschild Anti-de-Sitter black brane

Let us look now at the Schwarzschild Anti-de-Sitter black brane. The metric

of a brane is a bit different, because we have spatial slices at constant r,

instead of spheres. In this case we have the following metric, see e.g. [2]:

ds2 = − l
2

r2
A(r)dt2 +

l2

r2A(r)
dr2 + dx2 + dy2, (2.22)

with

A(r) = 1− r3

r3
+

. (2.23)

In this metric we have l2 = −Λ
3
.
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2.3 More examples

The calculation of the temperature works in nearly the same way as in

the black hole case, because we don’t need to look at the last two coordinates

in the metric. At r = r+ we find a singularity and this is the outer horizon

of this black brane. By finding the null-geodesic we get

l2

r2
A(r)dt2 =

l2

r2A(r)
dr2. (2.24)

Thus we have exactly the same equation for r∗ as in the black holes:

t = ±
∫

1

A(r)
dr = ±r∗, (2.25)

which gives

r∗ =
r+

6

(
− 2
√

3 arctan
(2r + r+√

3r+

)
+ 2 log(r − r+)− log(r2 + rr+ + r2

+)

)

=
r+

6

(
− i
√

3 log
(√3r+ − i2r − ir+√

3r+ + i2r + ir+

)
+ 2 log(r − r+)− log(r2 + rr+ + r2

+)

)
.

(2.26)

We again take the exponent:

exp
(3r∗

r+

)
=
(√3r+ − i2r − ir+√

3r+ + i2r + ir+

)−i√3
2

(r − r+)(r2 + rr+ + r2
+)
−1
2 . (2.27)

Then we rewrite A(r):

A(r) = 1− r3

r3
+

= (r3
+ − r3)

1

r3
+

=
1

r3
+

(r+ − r)(r2 + rr+ + r2
+). (2.28)

Now we can use equation (2.27) to write

A(r) =
1

r3
+

exp
(3r∗

r+

)
(r2 + rr+ + r2

+)
3
2

(√3r+ − i2r − ir+√
3r+ + i2r + ir+

) i√3
2
. (2.29)
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2.3 More examples

If we fill in r = r+ we get

A(r) =
1

r3
+

exp
(3r∗

r+

)
(3r2

+)
3
2

((
√

3− 3i)r+

(
√

3 + 3i)r+

) i√3
2

=
1

r3
+

exp
(3r∗

r+

)
(3r2

+)
3
2

(√3− 3i√
3 + 3i

) i√3
2
. (2.30)

We see that r = r+ doesn’t give a singularity anymore; there are no metric

singularities left. And our metric can be written in this way:

ds2 = − L2

r2r3
+

(r+ − r)(r2 + rr+ + r2
+)dudv

=
1

r3
+

exp
(3(u− v)

2r+

)
(3r2

+)
3
2

(√3− 3i√
3 + 3i

) i√3
2
dudv. (2.31)

Comparing this to equation (2.14) we see

D(r,M,Q,Λ) =
2r+

3
.

And the temperature of a Schwarzschild Anti-de-Sitter black brane is

T =
1

2πD(r,M,Q,Λ)
=

3

4πr+

.

2.3.3 Reissner-Nordström Anti-de-Sitter black brane

The next example is a black brane with a charge and an Anti-de-Sitter cur-

vature. The metric is slightly different from the one before:

ds2 = −A(r)dt2 +
1

A(r)
dr2 + r2(dx2 + dy2), (2.32)

with

A(r) =
−2M

r
+
Q2

r2
− Λr2

3
. (2.33)
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2.3 More examples

Again we can use the null-geodesic, and find a r∗:

r∗ =

∫
1

A(r)
dr =

3

2

log(r − r+)r2
+

3M + 2Λr3
+

, (2.34)

where r+ is defined by

−2Mr+ +Q2 − 1

3
Λr4

+ = 0.

Like before, we take the exponent of equation (2.34):

exp
(
r∗

2(3M + 2Λr3
+)

3r2
+

)
= r − r+. (2.35)

Now we can rewrite A(r) as

A(r) =
1

r2

(
− 2Mr +Q2 − 1

3
Λr4 − (−2Mr+ +Q2 − 1

3
Λr4

+)
)

=
1

r2

(
− 2M(r − r+)− 1

3
Λ(r4 − r4

+)
)

=
(r − r+)

r2

(
− 2M − 1

3
Λ(r + r+)(r2 + r2

+)
)
. (2.36)

When we substitute r− r+ with our result from equation (2.35) in this A(r),

we get

A(r) = exp
(
r∗

2(3M + 2Λr3
+)

3r2
+

) 1

r2

(
− 2M − 1

3
Λ(r + r+)(r2 + r2

+)
)
. (2.37)

Now we reached something of the from of equation (2.14). In this case

we have

D(r,M,Q,Λ) =
3r2

+

(3M + 2Λr3
+)
.

Therefore the temperature of a Reissner-Norström Anti-de-Sitter black brane

is

T =
1

2πD(r,M,Q,Λ)
=

(3M + 2Λr3
+)

6πr2
+

.
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3 Calculation of black brane metrics

The metric of a black hole is, together with the potential, totally describing

the black hole. So if these are known we can calculate everything about the

black hole. Compare this with the section above; we have been calculating

temperatures with the metrics as starting point. A lot of metrics from dif-

ferent black holes and branes can be found in the literature. However some

of those can be written in various ways. Some ways are handy to calculate

for example temperature and others are less practical. For the calculation of

temperatures in the way it was done in the previous section, some metrics

from the literature were written in a non-practical form. We had to write

them in an other way to make it possible to calculate the temperature with

this metric. Here are two examples of different forms for the Schwarzschild

Anti-de-Sitter black brane metric:

A(r) = 1− r3

r3
+

and A(r) =
−2M

r
+
Q2

r2
.

The second way of writing is practical to calculate temperatures, with the first

one it is also possible for this example, but for the Reissner-Nordström Anti-

de-Sitter black brane it will be very difficult to calculate the temperature.

This is one reason why we will calculate metrics, we will do this in such a

way that the solutions will be in a practical form. It is also a good exercise to

first calculate easy, known metrics, before starting a long difficult calculation

with an answer you are unable to check.
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3.1 Calculation of the Schwarzschild Minkowski black brane metric

3.1 Calculation of the Schwarzschild Minkowski black

brane metric

To calculate the Schwarzschild black brane metric in Minkowski spacetime,

we assume the general form:

ds2 = −A(r)dt2 +
1

A(r)
dr2 + r2(dx2 + dy2). (3.1)

We can calculate the Ricci tensor and scalar. The components of the

Ricci tensor are

R00 = A
(Ä

2
+
Ȧ

r

)
, (3.2)

R11 =
−1

A

(Ä
2

+
Ȧ

r

)
, (3.3)

R22 = R33 = −(A+ rȦ). (3.4)

This gives the Ricci scalar:

R = −
(
Ä+

4Ȧ

r
+

2A

r2

)
. (3.5)

The stress energy tensor and Λ, the cosmological constant are set to zero

for this black brane, so

Rµν −
1

2
gµνR = Tµν = 0.

Substituting the Ricci scalar and tensor gives the following Einstein equa-

tions:

R00 −
1

2
g00R = A

(Ä
2

+
Ȧ

r

)
− 1

2
A
(
Ä+

4Ȧ

r
+

2A

r2

)
= −A

(Ȧ
r

+
A

r2

)
= 0, (3.6)
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3.1 Calculation of the Schwarzschild Minkowski black brane metric

R11 −
1

2
g11R = − 1

A

(Ä
2

+
Ȧ

r

)
− −1

2A

(
Ä+

4Ȧ

r
+

2A

r2

)
=

1

A

(Ȧ
r

+
A

r2

)
= 0, (3.7)

R22 −
1

2
g22R = −(A+ rȦ)− −r

2

2

(
Ä+

4Ȧ

r
+

2A

r2

)
= r2

(Ä
2

+
Ȧ

r

)
= 0. (3.8)

From the first two differential equations we get

A = −rȦ,

and solving this

A = ± b
r
.

Next we can write down the derivatives:

Ȧ = ∓ b

r2

and

Ä = ±2b

r3
.

It is easy to see this is consistent with equation (3.8).

Thus we found the metric of a Schwarzschild black brane in Minkowski

space:

ds2 = − b
r
dt2 +

r

b
dr2 + r2(dx2 + dy2). (3.9)

If we now look at the singularities and horizons, we see r = 0 is the only

singularity. This is an example of a naked singularity, there is no horizon.

Therefore we can say that the Schwarzschild Minkowski black brane can’t

exist.
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3.2 Calculation of the Reissner-Nordström Minkowski black brane metric

3.2 Calculation of the Reissner-Nordström Minkowski

black brane metric

Subsequently we can do the same calculations for the Reissner-Nordström

metric. We add a charge to the black brane, this does not change equation

(3.1). The Ricci tensor and scalar will stay the same. But now the stress

energy tensor is not zero:

Tκλ =
1

µ0

(Fκαg
αβFλβ −

1

4
gκλF

δγFδγ), (3.10)

with

Fµν = ∂µAν − ∂νAµ. (3.11)

There should be translation symmetry in the brane in the x and y directions,

because the brane is infinitely large. This symmetry also appears in the

potential, so Aµ does no depend on x and y. The black brane is also static

in time, thus Aµ can not depend on t and is only dependent on the radius, r.

This tells us that ∂νAµ is only non-zero if ν = r = 1. Further does Aµ only

have an A0 component, because we don’t have a magnetic field. So the only

non-zero Fµν are F01 and F10. We say µ0 = 1 for simplicity. Furthermore is

the metric diagonal, so gµν = 1
gµν

.

With this information we can calculate the components of the stress en-

ergy tensor:

T00 = F01g
11F01 −

2

4
g00F

01F01

=
1

2
F01g

11F01

=
1

2
A(r)F 2

01, (3.12)
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3.2 Calculation of the Reissner-Nordström Minkowski black brane metric

T11 = F10g
00F10 −

2

4
g11F

01F01

=
1

2
F01g

00F01

= − 1

2A(r)
F 2

01, (3.13)

T22 = T33 = −1

2
g22F

01F01

=
1

2
g22F

2
01

=
r2

2
F 2

01. (3.14)

Combining equation (3.6) and equation (3.12) we get

− 1

2
F 2

01 =
Ȧ

r
+
A

r2
. (3.15)

Equations (3.7) and (3.13) give the same equation and equations (3.8) and

(3.14) give
1

2
F 2

01 =
Ä

2
+
Ȧ

r
. (3.16)

Addition of these last two equations, (3.15) and (3.16), gives a differential

equation:

− 1

2
F 2

01 +
1

2
F 2

01 =
Ä

2
+
Ȧ

r
+
Ȧ

r
+
A

r2
,

0 =
Ä

2
+

2Ȧ

r
+
A

r2
. (3.17)

Now we make an ansatz and try the solution:

A(r) = a+
b

r
+

c

r2
,
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3.2 Calculation of the Reissner-Nordström Minkowski black brane metric

where a, b and c are arbitrary constants. The derivatives will be

Ȧ(r) = − b

r2
− 2c

r3
,

Ä(r) = +
2b

r3
+

6c

r4
.

Substituting this, equation (3.17) becomes

Ä

2
+

2Ȧ

r
+
A

r2
=

a

r2
= 0. (3.18)

So we have a = 0 and

A(r) =
b

r
+

c

r2
.

If we insert this in equation (3.15) or (3.16) we find

F01 =

√
2c

r2
= ∂1A0

and

A0 = −
√

2c

r
+ constant.

We used the Einstein equations to find this metric, but next to the Ein-

stein equations there are Maxwell equations. We will see that these are also

satisfied. We start with the ν = 0 equation:

Dµ(F µν) = 0,

Dµ(F µ0) = 0,

Dµ(F µ0) = ∂µF
µ0 + ΓµµσF

σ0 + Γ0
µσF

µσ

= ∂µF
µ0 + ΓµµσF

σ0

= ∂1F
10 + (Γ0

01 + Γ1
11 + Γ2

21)F 10

= ∂1F
10 +

( A′(r)
2A(r)

+
−A′(r)
2A(r)

+
2

r

)
F 10

= ∂1(g11g00F10) +
2

r
g11g00F10

= −∂1F10 −
2

r
F10. (3.19)
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3.3 Calculation of the Schwarzschild and Reissner-Nordström
Anti-de-Sitter black brane metrics

Here we can substitute the F01 we found:

∂1

√
2c

r2
+

2

r

√
2c

r2
= −2

√
2c

r3
+

2
√

2c

r3
= 0. (3.20)

Thus the first Maxwell equation is satisfied. For ν = 1 and ν = 2 it is

easy to see the equations are also satisfied. So we have a solution for the

Reissner-Nordström black brane.

3.3 Calculation of the Schwarzschild and Reissner-Nordström

Anti-de-Sitter black brane metrics

Now we have calculated the Schwarzschild and Reissner-Nordström metrics

in Minkowski spacetime, it is not so difficult to do the same in de Anti-de-

Sitter spacetime. To do this we have to add the factor gµνΛ to the Einstein

equations. First we do this for the Schwarzschild case. Inserting the compo-

nents of the Ricci tensor and scalar from equation (3.5) till (3.8), we get

R00 −
1

2
g00R + g00Λ = −A

(Ȧ
r

+
A

r2
+ Λ

)
= 0, (3.21)

R11 −
1

2
g11R + g11Λ =

−1

A

(Ȧ
r

+
A

r2
+ Λ

)
= 0, (3.22)

R22 −
1

2
g22R + g22Λ = r2

(Ä
2

+
Ȧ

r
+ Λ

)
= 0. (3.23)

Now we try a similar solution for A(r) as before:

A(r) = a+
b

r
+

c

r2
+ dr + er2,

with the derivatives:

Ȧ(r) = − b

r2
− 2c

r3
+ d+ 2er,

Ä(r) = +
2b

r3
+

6c

r4
+ 2e.
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3.3 Calculation of the Schwarzschild and Reissner-Nordström
Anti-de-Sitter black brane metrics

Substituting this, equation (3.21) leads to

Ȧ

r
+
A

r2
+ Λ =

a

r2
− c

r4
+

2d

r
+ 3e+ Λ = 0. (3.24)

If we look at the powers of r we see a = 0, c = 0, d = 0 and 3e = −Λ. Thus

e = −Λ
3

and

A(r) =
b

r
− Λr2

3
.

This A(r) is also consistent with (3.22) and (3.23).

Let us look at Reissner-Nordström black brane now. Combining the equa-

tions on page 22 with the stress energy tensor on page 24 and the addition

of the cosmological constant, we get these equations:

R00 −
1

2
g00R + g00Λ = −A

(Ȧ
r

+
A

r2
+ Λ

)
=

1

2
A(r)F 2

01. (3.25)

R11 −
1

2
g11R + g11Λ =

−1

A

(Ȧ
r

+
A

r2
+ Λ

)
= − 1

2A(r)
F 2

01. (3.26)

R22 −
1

2
g22R + g22Λ = r2

(Ä
2

+
Ȧ

r
+ Λ

)
=

r2

2
F 2

01. (3.27)

We combine equations (3.25) and (3.27) to get

Ä

2
+

2Ȧ

r
+
A

r2
+ 2Λ = 0. (3.28)
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3.3 Calculation of the Schwarzschild and Reissner-Nordström
Anti-de-Sitter black brane metrics

Substituting the same ansatz for A(r), as in the Schwarzschild case in this

equation, we find
a

r2
+

3d

r
+ 6e+ 2Λ = 0. (3.29)

So we have a = 0, d = 0 and again e = −Λ
3

and

A(r) =
b

r
+

c

r2
− Λr2

3
.

This A(r) is a solution for all the equations. If we insert this in equation

(3.25) we find again

F01 =

√
2c

r2
= ∂1A0

and

A0 = −
√

2c

r
+ constant.

This is what we expect because adding Λ shouldn’t change the electrical field.

The Maxwell equations are also not influenced by Λ, therefore they will still

be satisfied.

We relate b to −2M , the mass, and c to Q2, the charge. Then we see

A0 = −
√

2Q
r

, like we expect it to be, from electrodynamics. The black brane

metrics we finally get are very similar to the black hole metrics:

The Schwarzschild Minkowski black brane:

ds2 = −−2M

r
dt2 +

−r
2M

dr2 + r2(dx2 + dy2).

The Reissner-Nordström Minkowski black brane:

ds2 = −
(−2M

r
+
Q2

r2

)
dt2 +

1
−2M
r

+ Q2

r2

dr2 + r2(dx2 + dy2).

The Schwarzschild Anti-de-Sitter black brane:

ds2 = −
(−2M

r
− Λr2

3

)
dt2 +

1
−2M
r
− Λr2

3

dr2 + r2(dx2 + dy2).
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3.3 Calculation of the Schwarzschild and Reissner-Nordström
Anti-de-Sitter black brane metrics

The Reissner-Nordström Anti-de-Sitter black brane:

ds2 = −
(−2M

r
+
Q2

r2
− Λr2

3

)
dt2 +

1
−2M
r

+ Q2

r2
− Λr2

3

dr2 + r2(dx2 + dy2).
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4 Rotating black brane

In 1915 Schwarzschild came with his black hole solution, only a few months

after Albert Einsteins work on general relativity was published. More types

of black holes where found a bit later. But the metric for a rotating black

hole was not so easy to find. In 1963 Kerr finally came with the metric of a

rotating black hole[9].

However for the correspondence with the condensed matter it is useful to

look at rotating black branes. Therefore we will try to find the metric of a

rotating black brane in Anti-de-Sitter spacetime. We use the Kerr solution

as our starting point and a method to go from a black hole to a black brane

used before in [10].

4.1 Metric of rotating black brane

We start with the Kerr metric for a rotating black hole in Anti-de-Sitter

spacetime in 3 + 1 dimensions. We are looking for a black brane without

charge, that is why we are not using the Kerr-Newman solution. The Kerr

metric can be written as

ds2 =
−∆r + a2 sin2 θ∆θ

ρ2
dt2 +

ρ2

∆r

dr2 +
ρ2

∆θ

dθ2 +

−∆ra
2 sin4 θ + (r2 + a2)2 sin2 θ∆θ

ρ2Σ2
dφ2 +

2a∆r sin2 θ − 2a(r2 + a2) sin2 θ∆θ

ρ2Σ
dφdt, (4.1)

with

ρ2 = r2 + a2 cos2 θ, (4.2)

∆r = (r2 + a2)
(

1− r2Λ

3

)
− 2mr, (4.3)

∆θ = 1 +
a2Λ

3
cos2 θ, (4.4)
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4.1 Metric of rotating black brane

Σ = 1 +
a2Λ

3
. (4.5)

We want to transform a black hole into a black brane. To do this we

enlarge the black hole with the use of a parameter η, which goes to infinity.

We can compare this with the earth, the earth seems locally flat, because it

is really large for us. But if the earth would be much smaller, we would be

able to see the curvature of the earth. Therefore a black hole will look like

a black brane, if we make it larger, and would really become a brane if we

take the limit to infinity.

We have these transformation rules:

r → rη; t→ tη−1; θ → θ; φ→ φ.

Then for the mass, m we have m → mη3 because we go to a mass density.

For angular momentum we have J = mca ∼ mvr, therefore is the rotation

parameter a proportional to r, thus scales also as a→ aη.

If we transform equations (4.2) till (4.5) in this way, we get

ρ2 = η2(r2 + a2 cos2 θ), (4.6)

∆r = η2(r2 + a2) + η4
(

(r2 + a2)
r2Λ

3
− 2mr

)
, (4.7)

∆θ = 1 +
η2a2Λ

3
cos2 θ, (4.8)

Σ = 1 +
η2a2Λ

3
. (4.9)

Furthermore we have

dr2 → η2dr2, (4.10)

dt2 → η−2dt2. (4.11)
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4.1 Metric of rotating black brane

If we combine this in the whole metric and take the limit of η to infinity,

we get the same metric as for the Kerr black hole:

ds2 =
−∆r + a2 sin2 θ∆θ

ρ2
dt2 +

ρ2

∆r

dr2 +
ρ2

∆θ

dθ2 +

−∆ra
2 sin4 θ + (r2 + a2)2 sin2 θ∆θ

ρ2Σ2
dφ2 +

2a∆r sin2 θ − 2a(r2 + a2) sin2 θ∆θ

ρ2Σ
dφdt. (4.12)

But it has slightly different parameters:

ρ2 = r2 + a2 cos2 θ, (4.13)

∆r = −(r2 + a2)
r2Λ

3
− 2mr, (4.14)

∆θ =
a2Λ

3
cos2 θ, (4.15)

Σ =
a2Λ

3
. (4.16)

This metric is a solution of the Einstein equations. However it still has

two angles instead of one angle and one ”radius”. To solve this we do another

transformation:

sin2 θ = x2, (4.17)

cos2 θ = 1− x2, (4.18)

and following from this we have

dθ2 =
1

1− x2
dx2. (4.19)
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4.1 Metric of rotating black brane

Then we get the metric:

ds2 =
−∆r + a2x2∆θ

ρ2
dt2 +

ρ2

∆r

dr2 +
ρ2

∆θ(1− x2)
dx2 +

−∆ra
2x4 + (r2 + a2)2x2∆θ

ρ2Σ2
dφ2 +

2ax2

ρ2Σ
(∆r − (r2 + a2)∆θ)dφdt,

(4.20)

with

ρ2 = r2 + a2(1− x2), (4.21)

∆r = −(r2 + a2)
r2Λ

3
− 2mr, (4.22)

∆θ =
a2Λ

3
(1− x2), (4.23)

Σ =
a2Λ

3
. (4.24)

We should now have the metric of a rotating black brane. But the x

coordinate only goes from 0 to 1, since it is coming from the sin(θ):

sin2 θ = x2

in equation (4.18). We can rescale this radius, but we can never reach infinity.

Therefore I think we are dealing with a black disk instead of a black brane.

It is probably impossible to find the metric of real rotating black branes.

A black brane is namely an infinitely large plate and when this is rotating

around a fixed point we have small circles made by points close to the ro-

tating axis, which have low velocities. But if we look at points at larger and

larger distances from the axis, the velocity also becomes larger and larger

and eventually it will transcend the speed of light. And that is of course

unphysical.

Therefore we conclude that it seems not possible to have a rotating black

brane in Anti-de-Sitter spacetime. A black disk seems possible, with the

metric described in equation (4.20).
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4.2 Black cylinders

4.2 Black cylinders

In the literature there are some articles about rotating black branes in Anti-

de-Sitter space, for example [11][12]. So there was already some work done,

and it seemed nice to work further with that. However we have seen that it

seems not possible to have a rotating black brane. Thus the question rose

what these articles were about.

It turned out these articles were writing about black branes with a cylin-

drical or toroidal horizon. So topologically those are black branes with two

opposite sides identified with each other and respectively two times two op-

posite sides identified with each other. The problem we had with the rotating

black brane is solved in this way because all parts of the boundary move with

the same speed. The cylinder is rotating around the axis being inside it.

Adapting the metric in [11] to our situation we get this metric:

ds2 = − A(r)
(√

1 +
a2

l2
dt− adφ

)2

+
r2

l4

(
adt−

√
1 +

a2

l2
l2dφ

)2

+
1

A(r)
dr2 + r2dx2. (4.25)

Here is a the rotation parameter and A(r) is defined in the following way:

A(r) = − m

rd−2
+

q2

r2d−4
+
r2

l2
. (4.26)

We are looking for a black brane in 3+1 dimensions, without charge, and

l2 is defined by Λ = − 3
l2

, so in our case we have

A(r) = −m
r
− Λr2

3
. (4.27)

Writing the metric we found for the rotating black disk in equation (4.20)

in a similar way we get

ds2 =
∆r

ρ2
(−dt− ax2

Σ
dφ)2 +

x2∆θ

ρ2
(adt− r2 + a2

Σ
dφ)2

+
ρ2

∆r

dr2 +
ρ2

∆θ(1− x2)
dx2. (4.28)
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4.2 Black cylinders

At some points these two metrics are similar, but there are also differ-

ences, and they are describing slightly different systems. It is important to

be careful with the literature on black branes and to check whether it is

describing the thing you are looking for or something else.

36 of 62



5 Rotating Lifshitz black hole

We are studying black holes because they can help us understand condensed

matter physics through the AdS/CFT correspondence. For this purpose it

is really interesting to look at Lifshitz black holes, this is done in [3] and [4].

We will first redo their calculation for static black holes, with d = 2+1. Then

we will look at a rotating Bañados Teitelboim Zanelli (BTZ) black hole[13]

in three dimensional Anti-de-Sitter space, so with z = 1. These two types of

black holes might be combined in a rotating Lifshitz black hole.

5.1 Non-rotating Lifshitz black hole

In d = 2 + 1 dimensions, we can have only one dilaton field φ, we also have

a Frt. The metric will be of the form:

ds2 = −r
2zb(r)

l2z
dt2 +

l2

r2b(r)
dr2 + r2dθ2. (5.1)

We have Einstein, Maxwell and dilaton equations which should hold for Lif-

shitz black holes. They are following from the action:

S = − 1

16πG3

∫
d3x
√
−g(R− 2Λ− 1

2
(∂φ)2 − 1

4
eλφF 2), (5.2)

which gives

Rµν −
2Λ

d− 1
gµν =

1

2
∂µφ∂νφ+

1

2
eλφ(FµσF

σ
ν −

1

2
F 2gµν), (5.3)

Dµ(eλφF µν) = 0, (5.4)

�φ− 1

4
λeλφF 2 = 0. (5.5)

In the situation without rotation we know from [4]

A0 6= 0, A1 = 0 and A2 = 0.
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5.1 Non-rotating Lifshitz black hole

This Aµ does only depend on the radius, so

Fµν = 0 ∀ µν 6= 01 or 10.

5.1.1 Maxwell equations

We will start with the Maxwell equations, (5.4). If one chooses ν = 1, both

sides of the equation turn out to be zero in every case. When we choose

ν = 0 we get the following equation:

Dµ(eλφF µ0) = ∂µ(eλφF µ0) + Γµµσ(eλφF σ0) + Γ0
µσ(eλφF µσ)

= ∂µ(eλφF µ0) + Γµµσ(eλφF σ0)

= ∂1(eλφF 10) + (Γ0
01 + Γ1

11 + Γ2
21)(eλφF 10)

= (λ∂1φ+ Γ0
01 + Γ1

11 + Γ2
21)(eλφF 10) + eλφ∂1F

10 = 0.

(5.6)

With the metric we can calculate the Christoffel symbols and the Ricci

tensor and scalar. We can use Mathematica to calculate them, these are the

Christoffel symbols:

Γ0
10 =

z

r
+
b′(r)

2b(r)
, (5.7)

Γ1
00 = − r

1+2z

2l2+2z
b(r)(2zb(r) + rb′(r)), (5.8)

Γ1
11 = −1

r
− b′(r)

2b(r)
, (5.9)

Γ1
22 = −r

3b(r)

l2
, (5.10)

Γ2
21 =

1

r
. (5.11)
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Then equation (5.6) becomes:

0 = (λ∂1φ+
z

r
)g00g11F10 + ∂1(g00g11F10)

= −r
2−2z

l2−2z

(
(λ∂1φ+

z

r
)F10 + ∂1F10

)
− (2− 2z)

r1−2z

l2−2z
F10

= −r
1−2z

l2−2z

((
rλ∂1φ+ z + (2− 2z)

)
F10 + r∂1F10

)
. (5.12)

Next we simplify this equation and we try a F01 of the form αe−λφ(r)rd. In

this, α and λ are constants, φ is a function of r and d is unknown and

depending on z:

0 = (rλ∂1φ+ 2− z)F01 + r ∂1F01

= (rλ∂1φ+ 2− z)α e−λφrd − λ∂1φ αe
−λφrd+1 + αde−λφrd

= (2− z + d) α e−λφrd. (5.13)

We see the choice for F01 was a good one, if we take d = z− 2 it satisfies the

equation. So this equation has told us that F01 = αe−λφrz−2.

Next we can look at the same equation, equation (5.4), where we now

choose ν = 2:

Dµ(eλφF µ2) = ∂µ(eσφF µ2) + Γµµσ(eλφF σ2) + Γ2
µσ(eλφF µσ)

= ∂µ(eλφF µ2) + Γµµσ(eλφF σ2). (5.14)

The terms F µ2 are always zero, because F01 is the only nonzero component

and in the metric we have only components on the diagonal. Thus this

equation tells us that zero is zero, and we don’t get new information.

5.1.2 Einstein equations

We will proceed with the Einstein equations. We use Mathematica to calcu-

late the Einstein tensor Gµν , this is the left hand side of equation (5.3). The
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right hand side we will calculate here:

Gµν =
1

2
∂µφ∂νφ+

1

2
eλφ(FµσF

σ
ν −

1

2
F 2gµν)

=
1

2
∂µφ∂νφ+

1

2
eλφ(Fµσg

σρFνρ −
1

2
FσρF

σρgµν)

=
1

2
∂µφ∂νφ+

1

2
eλφ(Fµσg

σρFνρ −
2

2
F01F

01gµν)

=
1

2
∂µφ∂νφ+

1

2
eλφ(Fµσg

σρFνρ − F01F01g
00g11gµν). (5.15)

We specify µν, the only nonzero components are G00, G11 and G22:

G00 =
1

2
∂0φ∂0φ+

1

2
eλφ(F0σg

σρF0ρ − F01F01g
00g11g00)

=
1

2
eλφ(F01g

11F01 − F01F01g
00g11g00)

=
1

2
eλφF01F01g

11(1− g00g00)

= 0. (5.16)

G11 =
1

2
∂1φ∂1φ+

1

2
eλφ(F1σg

σρF1ρ − F01F01g
00g11g11)

=
1

2
∂1φ∂1φ+

1

2
eλφ(F10g

00F10 − F01F01g
00g11g11)

=
1

2
∂1φ∂1φ+

1

2
eλφF01F01g

00(1− g11g11)

=
1

2
∂1φ∂1φ. (5.17)

40 of 62



5.1 Non-rotating Lifshitz black hole

G22 =
1

2
∂2φ∂2φ+

1

2
eλφ(F2σg

σρF2ρ − F01F01g
00g11g22)

= −1

2
eλφF01F01g

00g11g22

=
1

2
eλφF01F01

r4−2z

l2−2z

=
1

2
e−λφα2r2z−4 r

4−2z

l2−2z

=
1

2
e−λφ

α2

l2−2z
. (5.18)

After calculating all these right hand sides, we can use this in the following

equations. We start with G 0
0 −G 1

1 :

G00g
00 −G11g

11 = −r
2b

2l2
∂1φ∂1φ. (5.19)

Using Mathematica we calculated the left hand side:

G00g
00 −G11g

11 =
(1− z)b

l2
. (5.20)

If we take both sides together, we get a differential equation from which we

can solve φ:

(1− z)b

l2
= −r

2b

2l2
∂1φ∂1φ,

2(z − 1)

r2
= ∂1φ∂1φ,√

2(z − 1)

r
= ∂1φ, (5.21)

and

φ(r) = log (µr
√

2(z−1)). (5.22)

With this φ we can solve the other Einstein equations to find b(r), λ, µ

and α. We start with the equation for G22, the left hand side follows from
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the Mathematica calculation, and the full equation will become

−r2

l2

(
(b(r)− z)(1 + z) + rb′(r)

)
=

1

2
e−λφ

α2

l2−2z
,

(z − b(r))(1 + z) + rb′(r) =
1

2
e−λφ

α2r−2

l−2z
,

(z − b(r))(1 + z) + rb′(r) =
α2

2l−2z
µ−λr−2−λ

√
2(z−1). (5.23)

This differential equation gives us the following b(r):

b(r) = z +
1− z2

z − 1− λ
√

2(z − 1)
r−2−λ

√
2(z−1) + c1r

−1−z. (5.24)

Now we can look at the G11 equation:

1

2r2b

(
2z(1 + z)− 2b(1 + z2)− r(2 + 3z)b′(r)− r2b′′(r)

)
=

1

2
∂1φ∂1φ,

2z(1 + z)− 2b(1 + z2)− r(2 + 3z)b′(r)− r2b′′(r) = 2r2b
z − 1

r2
,

2z(1 + z)− 2b(1 + z2)− r(2 + 3z)b′(r)− r2b′′(r) = 2b(z − 1),

2z(1 + z)− 2b(z + z2)− r(2 + 3z)b′(r)− r2b′′(r) = 0. (5.25)

This differential equation will give us again an equation for b(r):

b(r) = 1 + c1r
−z−1 + c2r

−2z. (5.26)

If we compare these two equations for b(r), we can deduce from the second

equation that the constant term needs to be 1. In the first equation this is

z, so we can conclude the term r−2−λ
√

2(z−1) should be constant. So we find

λ = −
√

2
z−1

. Then equation (5.24) becomes

b(r) = z +
1− z2

z − 1 + 2
r0 + c1r

−1−z = 1 + c1r
−1−z. (5.27)
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5.1.3 Dilaton equation

We also need to check this expression for b(r) with the dilaton equation (5.5):

�φ − 1

4
λeλφF 2 = 0,

�φ =
1

4
λeλφF 2. (5.28)

We will first look at the left hand side of this equation:

�φ =
1√
−g

∂µ(
√
−g gµν∂νφ)

=
1√
−g

∂1(
√
−g g11∂1φ), (5.29)

where
√
−g =

√
− det(g) =

√
r2zl2−2z = rzl1−z. (5.30)

When we use this and the expression found for φ, we get for the left hand

side

�φ = r−z∂1(rzg11∂1φ)

= r−z∂1(rz+2 b(r)

l2
∂1φ)

= r−z
(

(z + 2)rz+1 b(r)

l2
∂1φ+ rz+2∂1b(r)

l2
∂1φ+ rz+2 b(r)

l2
∂1∂1φ

)
=

r2

l2

((
(z + 2)

b(r)

r
+ ∂1b(r)

)
∂1φ+ b(r)∂1∂1φ

)
=

r2

l2

((
(z + 2)

b(r)

r
+ b′(r)

)
φ′(r) + b(r)φ′′(r)

)

=
r2

l2

((
(z + 2)

b(r)

r
+ b′(r)

)√2(z − 1)

r
− b(r)

√
2(z − 1)

r2

)

=
r2

l2

((
(z + 1)

b(r)

r
+ b′(r)

)√2(z − 1)

r

)
. (5.31)
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We proceed with the right hand side, we already calculated Fµν , so we get

1

4
λeλφF 2 =

2

4
λeλφF01F01g

00g11

=
−α2

2
λe−λφr2z−4 r

2−2z

l2−2z

=
−α2

2
λe−λφ

r−2

l2−2z

=
−α2

2
λµ−λ

r−2−λ
√

2(z−1)

l2−2z
. (5.32)

Adding the left- and right hand sides gives

r2

l2

((
(z + 1)

b(r)

r
+ b′(r)

)√2(z − 1)

r

)
=
−α2

2
λµ−λ

r−2−λ
√

2(z−1)

l2−2z
,

2r2
√

2(z − 1)
(

(z + 1)b(r) + rb′(r)
)

= −α2λµ−λr−λ
√

2(z−1)l2z.

(5.33)

Solving this differential equation we get

b(r) = c1r
−1−z − α2λµ−λr−2−λ

√
2(z−1)l2z

2
√

2(z − 1)(z − 1− λ
√

2(z − 1))
. (5.34)

In the previous section we had to choose λ = −
√

2
(z−1)

. When we substitute

that in this equation for b(r), we get

b(r) = c1r
−1−z +

α2
√

2
(z−1)

µ−λr0l2z

2
√

2(z − 1)(z + 1)

= c1r
−1−z +

α2µ−λl2z

2(z − 1)(z + 1)
. (5.35)

The constant term should be 1 to let this b(r) agree with the one we found

before. In this way we find an expression for α:

α2µ−λl2z = 2(z2 − 1).
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Now we have one b(r) solving all the equations. We can relate the con-

stant c1 with the mass of the black hole, we rename it with −m. Then we

write down the metric of the non-rotating Lifshitz black brane in d = 2 + 1

dimensions and the other defining expressions:

ds2 = −r
2zb(r)

l2z
dt2 +

l2

r2b(r)
dr2 + r2dθ2 with (5.36)

b(r) = 1−mr−1−z, (5.37)

F01 = αe−λφrz−2 with (5.38)

φ = log (µr
√

2(z−1)), (5.39)

α =
√

2(z2 − 1)µλl−2z and (5.40)

λ = −

√
2

(z − 1)
. (5.41)

This solution is in agreement with [4].

5.2 Rotating BTZ black hole

Now we go to the Bañados Teitelboim Zanelli black hole with rotation in

Anti-de-Sitter spacetime; z = 1. The general metric for this black hole is[13]:

ds2 =
l2

r2b(r)
dr2 − r2

(b(r)
l2
− a(r)2

)
dt2 + r2dθ2 + 2a(r)r2dθdt

=
l2

r2b(r)
dr2 − r2b(r)

l2
dt2 + r2

(
dθ + a(r)dt

)2

. (5.42)

There is no dilaton field and no Fµν . So the only equation left from the three

equations we get from the action, is the Einstein equation (5.3) in this form:

Gµν = Rµν −
2Λ

d− 1
gµν = 0. (5.43)
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We calculate this with Mathematica. If we now take the combination

a(r)G22 −G20,

this will give zero:

a(r)G22 −G20 =
r3b(r)

l2
(3a′(r) + ra′′(r)) = 0. (5.44)

We get the following differential equation:

3a′(r) + ra′′(r) = 0,

and solving it gives

a(r) = A− B

2r2
.

With a similar method we can find b(r). We take the combination

G11 +
l2

b(r)r4
G22,

G11 +
l2

b(r)r4
G22 =

1

2r2b(r)
(8− 8b− 7rb′(r)− r2b′′(r)) = 0. (5.45)

Thus we get

8− 8b− 7rb′(r)− r2b′′(r) = 0,

and solving this differential equation we find

b(r) = 1 + c1r
−2 + c2r

−4.

We need to check this with two other linear independent Einstein equa-

tions. Let’s look at the G00 equation first. We substitute the a(r) and b(r)

in this equation with the ones above, after which we get

G00 =
1

4r6

(
(B2l2 − 4c2)

(
l2(B − 2Ar2)2 + 4(r4 + r2c1 + c2)

))
= 0. (5.46)
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Therefore we have B2l2 − 4c2 = 0 or

0 = l2(B − 2Ar2)2 + 4(r4 + r2c1 + c2),

−l2
(
A− B

2r2

)2

= 1 + c1r
−2 + c2r

−4,

−l2A2 +
l2AB

r2
− l2 B

2

4r4
= 1 + c1r

−2 + c2r
−4. (5.47)

To solve this equation we need 1 = −l2A2, but this is impossible, since

squares are positive. Thus if we choose c2 = l2B2

4
, these a(r) and b(r) also

solve the third equation.

At last we have to check a fourth equation, we substitute a(r) in G11.

Mathematica then gives

b(r) = 1 + c1r
−2 +

l2B2

4
r−4 + 2c3 log(r)r−2.

Here we see the second constant c2 is indeed l2B2

4
. And if we choose the third

constant zero, we see all four equations agree. Then we get the metric:

a(r) = A− B

2r2
, (5.48)

b(r) = 1 + c1r
−2 +

l2B2

4
r−4 and (5.49)

ds2 =
(c1

l2
+
r2

l2
+
B2

4r2

)−1

dr2 −
(c1

l2
+
r2

l2
+
B2

4r2

)
dt2

+ r2

(
dθ +

(
A− B

2r2

)
dt

)2

. (5.50)

Now we can redefine c1
l2
→ −m and θ + At → θ. Then the last equation

becomes

ds2 =
dr2

b(r)
− b(r)dt2 + r2(dθ − B

2r2
dt)2, with (5.51)

b(r) = −m+
r2

l2
+
B2

4r2
. (5.52)
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This is exactly the well known BTZ solution, as described in [14], where B is

the angular momentum, mostly written as J and m is the mass of the black

hole.

5.3 Towards a rotating Lifshitz black hole

Now we have redone these two cases we proceed with calculating the metric

of the rotating Lifshitz black hole. We try a metric derived from the non-

rotating Lifshitz black hole, as described in [4], the rotation parameter is

a(r):

ds2 =
l2

r2b(r)
dr2 − r2z

(b(r)
l2z
− a(r)2

)
dt2 + r2dθ2 + 2a(r)rz+1dθdt. (5.53)

The powers of r can be determined by looking at what happens to the powers

of η, they should cancel each other when we do a Lifshitz scaling. We have

the rules from Lifshitz scaling:

r → rη−1; t→ tηz.

So the first term is correct if l2

b
does no scale. The r2z in the second term

scales then with η−2z and this is exactly cancelled by the dt2 term. So we see

also a(r) is scale invariant. The third term tells us θ scales inverse to r so

with η. Now it is possible to find the power of r in the last term. We have η

from the dθ and ηz from the dt so we need η−1−z to make the complete third

term scale invariant, that is why r has the power z + 1.

We have the same equations for Lifshitz black holes as we have seen in

section 5.1. These equations are not assuming anything for the rotation, so

they should also hold when there is rotation:

Rµν −
2Λ

d− 1
gµν =

1

2
∂µφ∂νφ+

1

2
eλφ(FµσF

σ
ν −

1

2
F 2gµν), (5.54)
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Dµ(eλφF µν) = 0, (5.55)

�φ− 1

4
λeλφF 2 = 0. (5.56)

In the situation without rotation we know

A0 6= 0, A1 = 0 and A2 = 0,

and

Fµν = 0 ∀ µν 6= 01 or 10.

For the rotating Lifshitz black hole we will assume the same for Aµ, but we

see in the metric g20 6= 0, so

F 21 = g20g11F01.

Therefore the equations will change.

5.3.1 Maxwell equations

We will start again with the Maxwell equations, equation (5.55). If one

chooses ν = 1, both sides of the equation still turn out to be zero in every

case. When we choose ν = 0, the equation will also stay the same as in the

case without rotation. The Christoffel symbols have changed, but when we

add them, it turns out the terms with a(r) cancel each other so this will give

the same solution as before, in equations (5.6), (5.12) and (5.13):

Dµ(eλφF µ0) = (λ∂1φ+ Γ0
01 + Γ1

11 + Γ2
21)(eλφF 10) + eλφ∂1F

10

=
(
λ∂1φ+

z

r

)
(eλφF 10) + eλφ∂1F

10 = 0. (5.57)

Thus this equation tells us F01 = αe−λφrz−2.
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Now we can look at the same equation, equation (5.55), where we choose

ν = 2. This equation gave us no new information in the case without rotation,

but that will change now:

Dµ(eλφF µ2) = ∂µ(eσφF µ2) + Γµµσ(eλφF σ2) + Γ2
µσ(eλφF µσ)

= ∂µ(eλφF µ2) + Γµµσ(eλφF σ2)

= ∂1(eλφF 12) + (Γ0
01 + Γ1

11 + Γ2
21)(eλφF 12)

= (λ∂1φ+ Γ0
01 + Γ1

11 + Γ2
21)(eλφF 12) + eλφ∂1F

12 = 0.

(5.58)

This is nearly the same as the equation before, but now the term g20 will

come in and with it the rotation:

0 =
(
λ∂1φ+

z

r

)
g20g11F10 + ∂1(g20g11F10)

=
r1−za(r)

l2−2z

((
λ∂1φ+

z

r
+
ȧ(r)

a(r)

)
F10 + ∂1F10

)
+ (1− z)

r−za(r)

l2−2z
F10

=
r−za(r)

l2−2z

((
rλ∂1φ+ z +

rȧ(r)

a(r)
+ (1− z)

)
F10 + r∂1F10

)
=

r−za(r)

l2−2z

((
rλ∂1φ+ 1 +

rȧ(r)

a(r)

)
F10 + r∂1F10

)
. (5.59)

We now use the F01 found in the previous equation, to calculate a(r):

0 =
(
rλ∂1φ+ 1 +

rȧ(r)

a(r)

)
αe−λφrz−2 + r∂1αe

−λφrz−2

=
(
rλ∂1φ+ 1 +

rȧ(r)

a(r)

)
αe−λφrz−2 + r

(
− λ∂1φ+ (z − 2)r−1

)
αe−λφrz−2

=
(
rλ∂1φ+ 1 +

rȧ(r)

a(r)
− rλ∂1φ+ (z − 2)

)
αe−λφrz−2

=
(
z − 1 +

rȧ(r)

a(r)

)
αe−λφrz−2. (5.60)
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Solving this equation, we get

a(r)(1− z) = rȧ(r)

and

a(r) = cr1−z, (5.61)

with c a constant. The Maxwell equations thus gave us expressions for Fµν

and a(r).

5.3.2 Einstein equations

Let us continue with the Einstein equations. The left hand side of the equa-

tion (5.54) doesn’t change and we will calculate the right hand side here.

The general expression will stay the same, compared with equation (5.15):

Gµν =
1

2
∂µφ∂νφ+

1

2
eλφ(Fµσg

σρFνρ − F01F01g
00g11gµν). (5.62)

We will specify µν again, now we have for the nonzero components not

only G00, G11 and G22, but also G20:

G00 =
1

2
∂0φ∂0φ+

1

2
eλφ(F0σg

σρF0ρ − F01F01g
00g11g00)

=
1

2
eλφ(F01g

11F01 − F01F01g
00g11g00)

=
1

2
eλφF01F01g

11(1− g00g00)

=
1

2
eλφF01F01

r2b

l2

(
1− (1− a2l2z

b
)
)

=
1

2
eλφF01F01

r2a2

l2−2z

=
1

2
eλφ(αe−λφrz−2)2 r

2a2

l2−2z

=
1

2
e−λφα2 r

2z−2a2

l2−2z
. (5.63)
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G11 and G22 do not change, compare with equation (5.17) and (5.18):

G11 =
1

2
∂1φ∂1φ. (5.64)

G22 =
1

2
e−λφ

α2

l2−2z
. (5.65)

G20 =
1

2
∂2φ∂0φ+

1

2
eλφ(F2σg

σρF0ρ − F01F01g
00g11g20)

= −1

2
eλφF01F01g

00g11g20

=
1

2
eλφF01F01

r3−za

l2−2z

=
1

2
e−λφα2r2z−4 r

3−za

l2−2z

=
1

2
e−λφα2 r

z−1a

l2−2z
. (5.66)

Now that we have calculated the new right hand sides, we can use this in

the following equations. We will start again with G 0
0 −G 1

1 , but this equation

has an extra term for the rotating black hole:

G00g
00 +G20g

20 −G11g
11 =

1

2
e−λφα2

(r2z−2a2

l2−2z

−l2zr−2z

b
+
rz−1a

l2−2z

l2zr−1−za

b

)
−1

2
∂1φ∂1φ

r2b

l2

=
1

2
e−λφα2

(−r−2a2

b l2−4z
+

r−2a2

b l2−4z

)
− 1

2
∂1φ∂1φ

r2b

l2

= −r
2b

2l2
∂1φ∂1φ. (5.67)

Using Mathematica we can calculate the left hand side, where we need to

put in the a(r) found in the previous subsection, in equation (5.61):

G00g
00 +G20g

20 −G11g
11 =

(1− z)b

l2
. (5.68)
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5.3 Towards a rotating Lifshitz black hole

Then we see that we get exactly the same equation as in the non-rotating

black hole, we solved this equation for φ:

φ(r) = log (µr
√

2(z−1)). (5.69)

With this φ we can again solve the other Einstein equations to find b(r),

λ, µ and α. The equations for G11 and G22 didn’t change, both the left and

right hand side. Therefore we can redo the steps on page 42. So we get

λ = −
√

2
z−1

and equation (5.27):

b(r) = 1 + c1r
−1−z. (5.70)

Unlike the non-rotating case we have four independent equations. We

take the G20 component and substitute a(r), b(r) and λ, then we get

α2

2
l2z−2µ−λrz−1−λ

√
2(z−1)cr1−z =

c

l2
r2(z2 − 1),

cα2

2l2
l2zµ−λr2 =

c

l2
r2(z2 − 1),

α2l2zµ−λ = 2(z2 − 1). (5.71)

Till now we didn’t define α, but at this moment we can conclude

α2l2zµ−λ = 2(z2 − 1).

This α is the same as in the non-rotating Lifshitz black hole. We check one

more equation to see whether this choice is working. The G00 equation gives,

after substitution, exactly the same equation as G20. So we have a consistent

solution.

5.3.3 Dilaton equation

There is one more equation we need to check: the dilaton equation (5.56):

�φ− 1

4
λeλφF 2 = 0.
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5.4 What does this solution tell us?

But we already know φ and F 2 don’t change. Furthermore the determinant

of the metric stays the same, thus this equation is still satisfied. Now we can

write down the complete solution:

ds2 =
l2

r2b(r)
dr2 − r2z

(b(r)
l2z
− a(r)2

)
dt2 + r2dθ2 + 2a(r)rz+1dθdt

(5.72)

with

b(r) = 1−mr−1−z and (5.73)

a(r) = c1r
1−z, (5.74)

F01 = αe−λφrz−2 with (5.75)

φ = log (µr
√

2(z−1)), (5.76)

α =
√

2(z2 − 1)µλl−2z and (5.77)

λ = −

√
2

(z − 1)
. (5.78)

5.4 What does this solution tell us?

We found a solution satisfying all the equations. The solution is exactly the

same as the non-rotating Lifshitz black hole solution, the only difference is

that there is a rotating part a(r). So it is a Lifshitz black hole solution, but

what does this solution tell us? We can write the metric in a slightly different

way:

ds2 =
l2

r2b(r)
dr2 − r2zb(r)

l2z
dt2 + r2(dθ + a(r)rz−1dt)2. (5.79)

Then we substitute the a(r) we found and get

ds2 =
l2

r2b(r)
dr2 − r2zb(r)

l2z
dt2 + r2(dθ + cdt)2. (5.80)
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5.4 What does this solution tell us?

Now we can do a coordinate transformation:

θ̃ = θ + ct,

and then find

dθ̃ = dθ + cdt.

After this our metric becomes

ds2 =
l2

r2b(r)
dr2 − r2zb(r)

l2z
dt2 + r2dθ̃2. (5.81)

At this point we see that we get back to exactly the non-rotating Lifshitz

black hole, by using an easy coordinate transformation. This coordinate

transformation is telling something about the frame of the observer. The

observer is rotating around the black hole. So the solution we found is the

solution of a non-rotating Lifshitz black hole in the frame of a rotating ob-

server instead of a rotating Lifshitz black hole in the frame of a non-rotating

observer.

If we choose z = 1, we should find the BTZ solution again. But that is

not the case, instead we get

ds2 =
l2

r2b(r)
dr2 − r2

(b(r)
l2
− a(r)2

)
dt2 + r2dθ2 + 2a(r)r2dθdt,

(5.82)

with

b(r) = 1−mr−2 and (5.83)

a(r) = c. (5.84)

And substituting a(r) we have

ds2 =
l2

r2b(r)
dr2 − r2b(r)

l2
dt2 + r2(dθ + cdt)2. (5.85)
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5.4 What does this solution tell us?

This is the same situation as in the case z 6= 1, so we are in the frame of a

rotating observer.

To find the real BTZ solution we need to change our approach. While cal-

culating the metric of the rotating Lifshitz black hole, we found a(r) by using

the Maxwell equations. But in the z = 1, BTZ case the Maxwell equations

are only giving us 0 = 0, so we get no information from these equations. We

need to find a(r) in another way. We use the Einstein equations, solving them

in a similar way as in section (5.2). We start without assuming anything for z.

We take a similar combination as in equation (5.44), the combination

a(r)G22 − r1−zG20

will become zero:

a(r)G22 − r1−zG20 =
r2b(r)

l2

(
2(z − 1)a(r) + r

(
(2 + z)a′(r) + ra′′(r)

))
= 0.

(5.86)

So we get

2(z − 1)a(r) + r(2 + z)a′(r) + r2a′′(r) = 0

and solving this, gives us

a(r) = A1−z +Br−2.

We see z = 1 gives a(r) = A+Br−2 this is in accordance with the BTZ metric.

With the other Einstein equations we can find b(r), we first take G11 and
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5.4 What does this solution tell us?

substitute a(r):

G11 =
1

2
∂1φ∂1φ

=
B2l2z(z − 3)2

2r6b(r)

1

2r2b(r)

(
− 2z(1 + 2)− 2(1 + z2)b

−(2 + 3z)rb′(r)− r2b′′(r)
)

= 0. (5.87)

Solving this differential equation, we find

b(r) = 1 + c1r
−2z + c2r

−1−z +
B2l2z(z − 3)

2r4(z − 2)
. (5.88)

We need to check this with an other linear independent Einstein equa-

tions. We look at the G22 equation:

G22 =
1

2
e−λφ

α2

l2−2z

=
B2l2z−2(z − 3)2

r2
+
l2

r2

(
(1 + z)(z − b(r))− rb′(r)

)
. (5.89)

This gives again a differential equation, we can solve this and get

b(r) = 1 + c1r
−2z + c2r

−1−z +
−B2l2z(z − 3)

2r4
. (5.90)

The equation for G20 gives the same b(r). The G00 equation was not directly

solvable, by hand or by Mathematica, but if we substitute the first b(r), we

find

0 =
(Ar3 +Brz)2

2l2r8(z − 2)
(z − 1)

(
−B2l2z(z − 3)2 + 2r4(z − 2)(z + 1)

)
. (5.91)

This equation holds if z = 1. Now we solved all equations, but if we look

at the functions found, we see that we have two different functions for b(r).

These two functions only coincide if z = 1. Thus in the case z = 1, we found

a solution. But for z 6= 1 we found a contradiction. Therefore it is impossible
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5.4 What does this solution tell us?

to make a rotating Lifshitz black hole with z 6= 1 and our assumption.

The solution for z = 1 is

a(r) = A+Br−2, (5.92)

b(r) = 1 + c1r
−2 + c2r

−2 +
−B2l2(−2)

2r4

= 1 + c1r
−2 +

B2l2

r4
. (5.93)

And this is indeed exactly the BTZ solution.

So for z = 1 we found the BTZ solution and for z 6= 1 we also found a

solution, but this is not solution we were looking for. Instead, it is a non-

rotating Lifshitz black hole in the frame of a rotating observer. Where did

this go wrong? This is the only solution for z 6= 1 and with the assumptions

we made in the beginning. So to find an other solution, the solution for the

rotating black hole, we have to start with a new assumption. This was our

assumption:

At 6= 0, Ar = 0, Aθ = 0

and for further research it is a good option to relax this assumption to:

At 6= 0, Ar = 0, Aθ 6= 0,

where we can assume Aµ does only depend on r.
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6 Conclusion and further research

During this thesis many different calculations concerning black holes and

black branes passed by. A part of these calculations was done before, but it

was a good exercise to redo them. We found the temperatures of different

black holes and branes, they are written down in the table in section 2.2. In

the third chapter we found the metrics of different black branes in Minkowski

and Anti-de-Sitter spacetimes, these results can be found on page 29.

Starting from the Kerr metric we calculated the metric of a rotating

Schwarzschild black disk in Anti-de-Sitter spacetime. It turned out to seem

impossible to have a rotating black brane, because the speed of points far

away from the center of the brane will transcend the speed of light. If the

black brane is deformed into a cylinder or torus it is possible to let it rotate,

this metrics can be found in [11] and [12].

The aim of this thesis was to find the metric of a rotating Lifshitz black

hole in three dimensions. This black hole is a combination of the non-rotating

Lifshitz black hole[4] and the AdS BTZ black hole[13]. Both metrics were

calculated. Then we used similar methods to calculate the metric of the

rotating Lifshitz black hole. The conclusion of this calculation was that the

assumptions were to strong to find the rotating Lifshitz black hole, instead

we found a non-rotating black hole in the frame of a rotating observer.

With a new assumption it is probably possible to find a real rotating

Lifshitz black hole. For further research it would be really interesting to

solve the equations we get, when we are relaxing the assumption. If we could

then find the metric of this rotating black hole, we can combine this with

AdS/CFT correspondence. For that use it would also be interesting to cal-
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culate the temperature.

Furthermore the calculations on the Lifshitz black hole were all done in

three spacetime dimensions. It would be good to redo the calculations in

four or even an arbitrary number of dimensions.
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