
Faculteit Bètawetenschappen

On the Reduction Theorem for the Jacobian

Conjecture

Bachelor Thesis

M.L. van Bokhoven

Mathematics

Supervisors:

Dr. Marta Pieropan
Mathematical Institute

June 2021



CONTENTS i

Contents

1 Introduction 1

2 Conjecture 2

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Proof for degree equal to one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3 Strong Real Jacobian Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Reduction Theorem 4

3.1 Bass, Connell, and Wright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Reduction to degree 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.2 Making J(F) unipotent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.3 Homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Modified Reduction Theorem 16
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1 INTRODUCTION 1

1 Introduction

The Jacobian Conjecture is a conjecture formulated in 1939 by Ott-Heinrich Keller. It states that if a

polynomial mapping has a Jacobian matrix whose determinant is a non-zero constant, the mapping has a

polynomial inverse. This conjecture has been proven for mappings of degree equal to 1 and degree equal to

2. The proof for degree equal to 1 will be shown in the next section, the proof for degree equal to 2 can

be found in [1]. The conjecture for degree higher than 2 is notoriously difficult to prove, and many have

published proofs which turned out to be faulty. There are not many reasons to assume the conjecture to be

true, and if it is false, it has a counterexample with integer coefficients and Jacobian determinant equal to 1

[2].

In this thesis we will explore the reduction theorem proposed by Hyman Bass, Edwin Connell, and David

Wright in 1982 [3]. This theorem states that we can reduce any polynomial mapping of degree higher than

3 to a mapping of the form F = Id + N , where N is a cubic homogeneous map. This would mean that, to

prove the conjecture, it is sufficient to show it is true for maps of the form F = Id + N , where N is cubic

homogeneous.

After that we will look into a paper by Engelbert Hubbers [4], in which he uses the paper by Bass, Connell

and Wright to reduce an example function to a cubic homogeneous map, using a modified version of their

technique, and then to a cubic linear, or Drużkowski map.

We compare those techniques to find out the difference and pros and cons of using them.
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2 Conjecture

2.1 Notation

In this thesis we consider polynomial maps, F : Cn → Cn, where F = (F1, . . . , Fn), with each Fi ∈
C[X1, . . . , Xn]. For the sake of clarity, we will use the notation X = (X1, . . . , Xn) in the rest of this paper.

Let us denote the Jacobian matrix of F by JF , where,

JF ∈Mn×n(C[X]), (JF )ij =
δ

δxj
Fi.

Conjecture 2.1.1. The Jacobian Conjecture

Let F : Cn → Cn be a polynomial map. Then, if det JF ∈ C∗, F is invertible, with polynomial inverse.

Below the proof for degree equal to one is shown.

2.2 Proof for degree equal to one

Proof. Let F : Cn → Cn, be a polynomial mapping of degree equal to 1. This implies that for F =

(F1, . . . , Fn), Fi =
∑n
j=1 aijXj + ci for aij , ci ∈ C, i, j ∈ {1, 2, . . . , n}. The Jacobian matrix J(F ) is then

equal to;

J(F ) =


a11 . . . a1n
...

...

an1 . . . ann.


Suppose now that J(F ) ∈ C∗, then J(F ) is invertible, with inverse,

b11 . . . b1n
...

...

bn1 . . . bnn.

 ∈Mn×n(C),

thus
∑n
k=1 aikbkj = δij , the Kronecker delta. We now define

G : Cn → Cn, G = (G1, . . . , Gn),

where Gi =
∑n
j=1 bijXj + gi, with bij as in the matrix above, and gi = −

∑n
j=1 bjkck, i ∈ {1, 2, . . . , n}. When

we now compose F and G, we end up with;

F ◦G = (F1 ◦G, . . . , Fn ◦G),

Fi ◦G =

n∑
j=1

aij(

n∑
k=1

bjkXk + gj) + ci

=

n∑
k=1

 n∑
j=1

aijbjk

Xk +

n∑
j=1

aijgj + ci

=

n∑
k=1

δikXk −
n∑
k=1

δikck + ci

= Xi − ci + ci = Xi.

Thus F is invertible, and its inverse is equal to G.
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2.3 Strong Real Jacobian Conjecture

The conjecture also has a real variant, called the Strong Real Jacobian Conjecture.

Conjecture 2.3.1. Strong Real Jacobian Conjecture

Let F : Rn → Rn be a polynomial map, and det JF (X) 6= 0 for all X ∈ Rn, then F is injective.

This conjecture implies the Jacobian conjecture. This is done by considering polynomial maps F : Cn → Cn

as maps F̃ : R2n → R2n by splitting the real and imaginary part.

In 1994, Sergey Pinchuk [4] came up with a counterexample in dimension 2. In response to that, Engelbert

Hubbers [5] modified the technique used by Bass, Connell and Wright to reduce this example to a cubic

homogeneous map, after which he pairs this to a Drużkowski map, which is a polynomial map of the form,

F (x) = (x1 + (a11x1 + · · ·+ a1nxn)3, . . . , xn + (an1x1 + · · ·+ annxn)3),

where the matrix JF − I is nilpotent. The exact meaning of ’pairing’ in this case is further explained in

section 3.3.1.
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3 Reduction Theorem

3.1 Bass, Connell, and Wright

Notation

Let k be a commutative ring, for each integer n > 0 we write;

n = {1, . . . , n}, and X = (X1, . . . , Xn),

with the Xi being indeterminates. For the polynomial algebra over k we write,

k[n] = k[X] = k[X1, . . . , Xn].

We then define,

MAn(k) = (k[n])n = {F = (F1, . . . , Fn)|Fi ∈ k[n], i ∈ n}.

On this MAn(k), we consider two structures.

1. Monoid We define composition as,

F ◦G = (F1(G), . . . , Fn(G)),

where the identity map, Id : X 7→ X, is the neutral element.

2. Graded k-algebra We give MAn(k) the cartesian product ring structure, with grading

MAn(k)(d) = (k
[n]
d )n,

this comes from grading k[n] by modules k
[n]
d of forms in X of degree d ≥ 0. For F ∈MAn(k), we write

F =
∑
d≥0

F(d), where F(d) = (F(d),1, . . . , F(d),n) is the d − th homogeneous component of F . Note that

F(0) = F (0). We call the largest d for which F(d) 6= 0 the degree of F , denoted deg(F ).

We now consider the Jacobian matrix of a function F ,

J : MAn(k)→Mn×n(k[n]),

J(F ) =


D1F1 . . . DnF1

...
...

D1Fn . . . DnFn

 ,where DiFj =
∂Fj
∂Xi

,

and note that it satisfies J(G(F )) = J(G)(F ) · J(F ).

We see that J(F )(0) = J(F(1))(0), the Jacobian matrix of the linear endomorphism F(1) at zero.

We now put

I0(k) = {F ∈MAn(k)|F (0) = 0}

=
⊕
d≥1

MAn(k)(d).

We note that for F ∈ I0(k), and G ∈ MAn(k), FG(X) = (F1(X)G1(X), . . . , Fn(X)Gn(X)), and thus

FG(0) = (F1(0)G1(0), . . . , Fn(0)Gn(0)) = 0G(0) = 0, and in the same way, GF (0) = 0. Thus, for any
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F ∈ I0(k), and G ∈MAn(k), GF,FG ∈ I0(k), meaning that I0(k) is an ideal of MAn(k).

We can define,

J0 : I0(k)→Mn×n(k),

J0(F ) = J(F )(0).

This is a monoid homomorphism with respect to composition, with kernel,

I1(k) = {F ∈MAn(k)|F (0) = 0, and J(F )(0) = Id}

= {F ∈MAn(k)|F ≡ X mod I0(k)2}.

We can now define for any d ≥ 0

Id(k) = {F |F ≡ X mod I0(k)d+1}.

This is then the kernel of the natural homomorphism,

End0k−alg(k
[n])→ Endk−alg(k

[n]/(X)d+1),

where End0k−alg(k
[n]) is the collection of k-algebra endomorphisms that stabilizes the ideal (X). Explicitly

End0k−alg(k
[n]) = {F ∈ Endk−alg(k[n])|F (X) = X,∀X ∈ (X)}.

Proposition 3.1.1.

Let F ∈MAn(k), then

F = (X + F (0)) ◦ F+,

where F+ =
∑
d≥1

F(d). If F(1) is invertible, then,

F = (X + F (0)) ◦ F(1) ◦ F ′, (3.1)

with F ′ ∈ I1(k). More specifically, F is invertible if and only if F ′ is invertible.

Proof. The first statement is quite straightforward,

(X + F (0)) ◦ F+ = X ◦ F+ + F (0) ◦ F+ = F+ + F (0) = F, (since F (0) = F(0))

Then for F ′ ∈ MAn(k), F(1) ◦ F ′ =
∑
d≥0

F(1) ◦ F ′(d). For this to be equal to F+, we need F ′(0) = 0, F ′(1) = Id,

and F ′(d) = (F(1))
−1 ◦F(d), for d ≥ 2. For this to hold, F(1) must be invertible, and F ′ must be an element of

I1(k).

Remark 3.1.2. Since F is a composite of functions, it follows that its inverse is a composite of inverses.

Meaning that F is invertible if and only if F ′ is invertible, and we may restrict, for the Jacobian Conjecture,

to elements F ∈ I1(k).

Definition 3.1.3. We call a function elementary if for some j, Fi(X) = Xi for i 6= j, and Fj(X) − Xj is

independent of Xj .

Example. An example of an elementary function is, F (X) = (X1, X2, . . . , Xj−1, a1X1 + ... + aj−1Xj−1 +

Xj + aj+1Xj+1 + ...+ anXn, Xj+1, . . . , Xn), with ai ∈ R, i ∈ {1, . . . , n}, for an arbitrary j ∈ {1, . . . , n}.
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The inverse of an elementary function is of the form (F−1)i = 2Xi − Fi. We can check this per component,

for any i 6= j, Fi(X) = Xi = F−1i (X), composing these will indeed result in the identity function. Now for

i = j, working out, with F defined as in our example elementary function, F ◦ F ′ gives

F (F ′(X)) = (X1, . . . , Xj−1, a1X1 + ...+ aj−1Xj−1 + aj+1Xj+1 + ...+ anXn + 2Xj − a1X1 + ...+ aj−1Xj−1 +

Xj + aj+1Xj+1 + ...+ anXn, Xj+1, . . . , Xn) = (X1, . . . , Xn).

Composing F ′ ◦ F will give is the same result.

From this we can conclude that all elementary functions are automorphisms. We call the group generated

by elementary automorphisms EAn(k), and put

EAdn(k) = EAn(k) ∩ Id(k), for d ≥ 0.

We then define F [m] = (F1, . . . , Fn, Xn+1, . . . , Xn+m), and note that

J(F [m]) =

(
J(F ) 0

0 Idm

)
,

and that F is invertible if and only if F [m] is.

Theorem 3.1.4. Reduction Theorem

Let k be a commutative ring, and let F ∈ I1(k) have an invertible Jacobian J(F ). There then exists an

integer m ≥ 0, elements G,H ∈ EA0
n+m(k), and F̃ (T ) ∈ MAn+m(k[T ]), where T is an indeterminate, with

the following properties.

a. For T=1, F̃ (1) = G ◦ F [m] ◦H. So if F̃ is invertible, then so is F .

b. The k[T]-algebra endomorphism φF̃ of k[T ][n+m] defined by F̃ can be viewed as a k-algebra endomor-

phism of k[X1, . . . , Xn+m, T ] = k[r], with r=n+m+1. This defines an element L ∈ MAr(k), which is

invertible if and only if F̃ is invertible. We then have L = Xr + N , with Xr = (X1, . . . , Xr), and N

being cubic homogeneous, and linear in each variable, except quadratic in T, and J(N) is nilpotent

Corollary 3.1.5.

Suppose that for all n and all F ∈ MAn(k) of the form F = X +N , with N cubic homogeneous, and J(N)

nilpotent, that F is invertible. Then, for all n, and all F ∈MAn(k) with J(F) invertible, F is invertible.

This theorem implies that it suffices to prove the statement of the Jacobian Conjecture for maps of the form

F = X + N , where N is cubic homogeneous, and J(N) is nilpotent. We are going to go through the proof

given in [3] using an example. This proof is given in three steps,

• Step 1, Reduction to degree 3,

• Step 2, Making J(F) unipotent,

• Step 3, Homogenization.
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3.2 Proof

3.2.1 Reduction to degree 3

For our example, let k be Q, n = 3, and

F ∈MAn(k),

F = (F1, F2, F3), with

F1 = X5
1 +X1,

F2 = X5
2 +X2,

F3 = X5
3 +X3. (3.2)

This way, deg(F ) = 5.

Proposition 3.2.1.

Let F ∈MAn(k). There is an integer m ≥ 0 and elements G,H ∈ EA1
n+m(k), such that F ′ = G ◦ F [m] ◦H

has degree at most 3. By allowing H to be taken from EA0
n+m(k) we can further arrange F ′ to be linear in

each variable.

Let M be a monomial of degree d = deg(F ) occurring in F, with coefficient a ∈ k. We can then write

aM = PQ, with P and Q both of degree smaller than, or equal to, d− 2. Bass, Connell and Wright present

us the following elements of EA1
n+2(k),

G = (X1 −Xn+1Xn+2, X2, . . . , Xn, Xn+1, Xn+2),

H = (X1, . . . , Xn, Xn+1 + P,Xn+2 +Q).

Then F ′ = G ◦ F [2] ◦H is given by,

F ′ = (F ′1, F2, . . . , Fn, Xn+1 + P,Xn+2 +Q),

where

F ′1 = F1 − (Xn+1 + P )(Xn+2 +Q)

= (F1 − aM)−Xn+1Q−Xn+2P −Xn+1Xn+2.

In our example M is either X5
1 , X5

2 or X5
3 , all three have coefficient 1, in this example we choose X5

1 . We

write X5
1 = M = PQ = X3

1X
2
1 , with P = X3

1 , Q = X2
1 . Our G and H are then equal to,

G = (X1 −X4X5, X2, X3, X4, X5)

H = (X1, X2, X3, X4 +X3
1 , X5 +X2

1 ).

Then F ′ = G ◦ F [2] ◦H is given by,

F ′ = (F ′1, F2, F3, X4 +X3
1 , X5 +X2

1 ),

where

F ′1 = F1 − (X4 +X3
1 )(X5 +X2

1 )

= X1 −X4X5 −X4X
2
1 −X5X

3
1 .
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We note that now deg(F ′1) = 4, so we have successfully reduced the degree of F1 to 4. We now choose for

M the remaining monomial of degree 4 in F ′1, so M = X5X
3
1 , and M = P ′Q′ = X5X1X

2
1 , with P = X5X1,

Q = X2
1 . Now,

G′ =(X1 −X6X7, X2, . . . , X7)

H ′ =(X1, X2, X3, X4, X5, X6 + P ′, X7 +Q′)

=(X1, X2, X3, X4, X5, X6 +X5X1, X7 +X2
1 ).

Putting this in F ′′ = G′ ◦ F ′[2] ◦H ′ gets us,

F ′′ = (X1 −X4X5 −X4X
2
1 −X6X7 −X6X

2
1 −X7X5X1,

X5
2 +X2, X

5
3 +X3,

X4 +X3
1 , X5 +X2

1 ,

X6 +X5X1, X7 +X2
1 ).

We can now repeat this whole process for both X5
2 and X5

3 , choosing G in the same ways as above, but in

the second component for the monomial in the second component of F , and third for the monomial in the

third component of F . We also choose H in the same way as above. We will then end up with,

Ḟ = (X1 −X4X5 −X4X
2
1 −X6X7 −X6X

2
1 −X7X5X1,

X2 −X8X9 −X8X
2
2 −X10X11 −X10X

2
2 −X11X9X1,

X3 −X12X13 −X13X
2
3 −X14X15 −X14X

2
3 −X15X13X3,

X4 +X3
1 , X5 +X2

1 ,

X6 +X5X1, X7 +X2
1 ,

X8 +X3
2 , X9 +X2

2 ,

X10 +X9X2, X11 +X2
2 ,

X12 +X3
3 , X13 +X2

3 ,

X14 +X13X3, X15 +X2
3 ).

This is now a polynomial of degree 3, so we have successfully reduced our example from a polynomial F in

MA3(k) of degree 5, to a function F” in MA3+12(k) of degree 3.

To now show we can further reduce this to be linear in each variable, we may assume that we already reduced

our function to degree ≤ 3. Let ej(M) denote the power of Xj in M. For f ∈ k[n], we write M ∈ f if M

occurs in f with a nonzero coefficient, and put,

e(f) =
∑
M∈f

n∑
j=1

max(ej(M)− 1, 0)2.
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For example in our reduced function Ḟ ,

e(Ḟ1) = e(X1 −X4X5 −X4X
2
1 −X6X7 −X6X

2
1 −X7X5X1)

=
∑
M∈f

n∑
j=1

max(ej(M)− 1, 0)2

= (1− 1)2 + (1− 1)2 + (1− 1)2 + (1− 1)2 + (2− 1)2 + (1− 1)2

+ (1− 1)2 + (1− 1)2 + (2− 1)2 + (1− 1)2 + (1− 1)2 + (1− 1)2

= 12 + 12

= 2.

We note that e(F ) is equal to zero if and only if f is linear in each variable. Now put e(F ) = e(F1)+· · ·+e(Fn),

and we use induction on e(F ) to make e(F ) = 0. In our reduced example e(Ḟ ) = 24. We then choose one

of the monomials divisible by X2
j for some j ∈ {1, . . . , n}, let us choose M = −X4X

2
1 , and define M = PQ,

where both P and Q should be divisible by the Xj chosen. We define P = X4X1, and Q = −X1. Using the

same way to define Ġ, Ḣ as above, we now define F̃ = Ġ ◦ Ḟ [2] ◦ Ḣ. Working this out gets us,

Ġ = (X1 −X16X17, X2, . . . , X17)

Ḣ = (X1, . . . , X15, X16 + P,X17 +Q)

= (X1, . . . , X15, X16 +X4X1, X17 −X1).

We notice that our Ġ is still an element of EA1
11(k), but the Jacobian matrix of Ḣ at zero is,

JH(0) =



1 0 . . . 0

0
. . .

...
...

0 0

−1 0 . . . 0 1


.

Which is clearly not the identity matrix, and thus Ḣ ∈ EA0
11(k) Then

F̃ = Ġ ◦ Ḟ [2] ◦ Ḣ

= (F̃1, Ḟ2, . . . , Ḟ15”, X16 +X4X1, X17 −X1),

where

F̃1 = Ḟ1 − (X16 +X1X4)(X17 −X1)

= X1 −X4X5 −X6X7 −X6X
2
1 −X7X5X1 −X16X17 −X17X1X4 +X16X1.

We have now reduced e(Ḟ1) = 2 to e(F̃ ) = 1. If we keep doing this for any monomial divisible by Xj for

some j, we will end up with e(F̂1) = 0. We can repeat this for the other components too. Resulting, for our
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example Ḟ , in the elements below.

Ĝ = (X1 −X16X17 −X18X19, X2 −X20X21 −X22X23, X3 −X24X25 −X26X27,

X4 −X28X29 −X30X31, X5 −X32X33, X6, X7 −X34X35,

X8 −X36X37 −X38X39, X9 −X40X41, X10, X11 −X42X43,

X12 −X44X45 −X46X47, X13 −X48X49, X14, X15 −X50X51,

X16, . . . , X51),

Ĥ = (X1, . . . , X15,

X16 +X4X1, X17 −X1, X18 +X6X1, X19 −X1,

X20 +X8X2, X21 −X2, X22 +X10X2, X23 −X2,

X24 +X12X3, X25 −X3, X26 +X14X3, X27 −X3,

X28 +X2
1 , X29 +X1, X30 +X29X1, X31 −X1,

X32 +X1, X33 +X1, X34 +X1, X35 +X1,

X36 +X2
2 , X37 +X2, X38 +X37X2, X39 −X2,

X40 +X2, X41 +X2, X42 +X2, X43 +X2,

X44 +X2
3 , X45 +X3, X46 +X45X3, X47 −X3,

X48 +X3, X49 +X3, X50 +X3, X51 +X3).
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Filling this in in our formula, F̂ = Ĝ ◦ Ḟ [36] ◦ Ĥ, gives us,

F̂ = (F̂1, . . . , F̂51)

= (X1 −X4X5 −X6X7 −X7X5X1 −X16X17

−X17X1X4 +X16X1 −X18X19 −X6X1X19 +X18X1,

X2 −X8X9 −X10X11 −X11X9X2 −X20X21

−X21X2X8 +X20X2 −X22X23 −X10X2X23 +X22X2,

X3 −X12X13 −X14X15 −X15X13X3 −X24X25

−X25X3X12 +X24X3 −X26X27 −X14X3X27 +X26X3,

X4 −X28X29 −X28X1 −X30X31 −X31X29X1 +X30X1,

X5 −X32X33 −X1(X32 +X33), X6 +X5X1, X7 −X34X35 −X1(X34 +X35),

X8 −X36X37 −X36X2 −X38X39 −X39X37X2 +X38X2,

X9 −X40X41 −X2(X40 +X41), X10 +X9X2, X11 −X42X43 −X2(X42 +X43),

X12 −X44X45 −X44X3 −X46X47 −X47X45X3 +X46X3,

X13 −X48X49 −X3(X48 +X49), X14 +X13X3, X15 −X50X51 −X3(X50 +X51),

X16 +X4X1, X17 −X1, X18 +X6X1, X19 −X1,

X20 +X8X2, X21 −X2, X22 +X10X2, X23 −X2,

X24 +X12X3, X25 −X3, X26 +X14X3, X27 −X3,

X28 +X2
1 , X29 +X1, X30 +X29X1, X31 −X1,

X32 +X1, X33 +X1, X34 +X1, X35 +X1,

X36 +X2
2 , X37 +X2, X38 +X37X2, X39 −X2,

X40 +X2, X41 +X2, X42 +X2, X43 +X2,

X44 +X2
3 , X45 +X3, X46 +X45X3, X47 −X3,

X48 +X3, X49 +X3, X50 +X3, X51 +X3).

While this is indeed of a much higher dimension than the original function we started with, however it is

linear in each variable, and of degree 3.
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3.2.2 Making J(F) unipotent

Proposition 3.2.2.

Let F ∈ I1(k), and let F ′ = G ◦F ◦H as in Proposition 3.2.1. Then F ′ = F ′(1) +F ′(2) +F ′(3), and F ′ is linear

in each variable.

More specifically F ′(1) = G(1) ◦ F(1) ◦H(1) = H(1) ∈ EA0
n(k).

The first part is clear, since this comes straight from the definition in the referenced proposition. The second

part is explained using our example F̂ .

Let F be Ḟ . We note that Ĝ(1) = (X1, . . . , X51), since for all i, Gi is of the form Gi = Xi − PQ − P ′Q′,
for some monomials P,Q, P ′, Q′. Then F̂(1) = F

[36]
(1) ◦ Ĥ(1). Because F ∈ I1(k), JF (0) = Id, and because

JF (0) = J(F(1))(0), it follows that F
[36]
(1) = (X1, . . . , X51), and thus F̂(1) = Ĥ(1). In our example then,

F̂(1) = Ĥ(1) = (X1, . . . , X15,

X16, X17 −X1, X18, X19 −X1,

X20, X21 −X2, X22, X23 −X2,

X24, X25 −X3, X26, X27 −X3,

X28, X29 +X1, X30, X31 −X1,

X32 +X1, X33 +X1, X34 +X1, X35 +X1,

X36, X37 +X2, X38, X39 −X2,

X40 +X2, X41 +X2, X42 +X2, X43 +X2,

X44, X45 +X3, X46, X47 −X3,

X48 +X3, X49 +X3, X50 +X3, X51 +X3).

We now consider

F” = (F̂(1))
−1 ◦ F̂ = X + (F̂(1))

−1(F̂(2)) + (F̂(1))
−1(F̂(3)),

an element of I1(k). Note that F” is still linear in each variable, which is not necessarily true for F̂ ◦ F̂−1(1) ,

and deg(F”) ≤ 3. Replacing F by F”, we reduced successfully to a situation where deg(F ) ≤ 3, and F is

linear in each variable. Then, in our example,

F(2) = (F ′(1))
−1 ◦ (F ′(2)) = (−X4X5 −X6X7 −X16X17 −X18X19,

−X8X9 −X10X11 −X20X21 −X22X23,

−X12X13 −X14X15 −X24X25 −X26X27,

−X28X29 −X30X31,−X32X33 +X2
1 , X5X1, X34X35 +X2

1 ,

−X36X37 −X38X39,−X40X41 +X2
2 , X9X2, X42X43 +X2

2 ,

−X44X45 −X46X47,−X48X49 +X2
3 , X13X3, X50X51 +X2

3 ,

X4X1, 0, X6X1, 0, X8X2, 0, X10X2, 0, X12X3, 0, X14X3, 0,

X2
1 , 0, X29X1 −X2

1 , 0, 0, 0, 0, 0,

X2
2 , 0, X37X2 −X2

2 , 0, 0, 0, 0, 0,

X2
3 , 0, X45X2 −X2

2 , 0, 0, 0, 0, 0), (3.3)
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and

F(3) = (F ′(1))
−1 ◦ (F ′(3)) = (−X7X5X1 −X17X1X4 −X2

1X4 −X6X1X19 −X6X
2
1 ,

−X11X9X2 −X21X2X8 −X2
2X8 −X10X2X23 −X10X

2
2 ,

−X15X11X3 −X25X3X12 −X2
3X12 −X14X3X27 −X14X

2
3 ,

−X31X29X1 +X31X
2
1 −X29X

2
1 +X3

1 , 0, 0, 0,

−X39X37X1 +X39X
2
2 −X37X

2
2 +X3

2 , 0, 0, 0,

−X47X45X3 +X47X
2
3 −X45X

2
3 +X3

1 , 0, . . . , 0). (3.4)

Let now T be an indeterminate. We define,

S(T ) = X + TF(2) + T 2F(3) ∈ I1(k[T ]).

Then,

J(S(T )) = Id+ TJ(F(2)) + T 2J(F(3)) = J(F )(TX).

This means that J(S(T )) is invertible if J(F ) is. We now consider k[2n], and denote the variables by

(X,Y ) = (X1, . . . , Xn, Y1, . . . , Yn). We now consider the elements,

G(T ) = (X + TY, Y )

H(T ) = (X,Y − TF(3))

}
∈ EA0

2n(k[T ]),

and put S′(T ) = G(T ) ◦ S(T )[n] ◦H(T ). We note that this is equal to

S′(T ) =(S(T ) + T (Y − TF(3)), Y − TF(3))

=(X + TY + TF(2), Y − TF(3))

=(X,Y ) + TN,

where N = (Y + F(2),−F(3)). We now have J(S′(T )) = Id + TJ(N) ∈ GL2n(k[2n][T ]), where J(N) looks

like,

J(N) =

(
J(F(2)) Id

−J(F(3)) 0

)
.

We also note that J(S′(T )) is invertible if J(S(T )) is. We now want to show that this matrix J(N) is nilpotent.

For that we are going to use the following lemma, applied to the ring A[T ], where A = M2n×2n(k[2n]), graded

by powers of T , and the element a = J(N)T ∈ A1.

Lemma 3.2.3. Let A = A0

⊕
A1

⊕
. . . be a graded ring, and let a ∈ Ad for some d ≥ 1. Then 1 − a is

invertible if and only if a is nilpotent.

Proof. First, let us assume that a is nilpotent, then there exists an m ≥ 1 such that am = 0. Then

1 = 1− (a)m

= (1− a)(1 + a+ a2 + · · ·+ am−1),

meaning that (1− a) is invertible, and it’s inverse is equal to
∑m−1
i=0 ai.

Assume now that (1 − a) is invertible, then there must exist a b ∈ A, such that (1 − a)b = 1. Since A is
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graded, we can write b = b(0) + b(1) + . . . , and consider ((1 − a)b)(n) = b(n) − ab(n−d), for n ≥ d,for n < d,

((1−a)b)(n) = b(n). We note that, for (1−a)b = 1 to hold, b(n)−ab(n−d) should be equal to 1 for n = 0, and

equal to 0 for n 6= 0. Then, for 0 < i < d, b(i) = 0, and b(d) − ab0 = b(d) − a = 0, thus b(d) = a. We suspect

that b(kd) = ak, and b(kd+i) = 0 for k, i ∈ N, 0 < i < d. We will show this using induction. The first step is

already shown above, so let us assume this is true for some k.

Then b((k+1)d)−ab(kd) = b((k+1)d)−ak+1 = 0, so b((k+1)d) = ak+1, and b((k+1)d+i)−ab(kd+i) = b((k+1)d+i)−0 =

0, so b((k+1)d+i) = 0. This means that b = b(0) + b(1) + · · · = 1 + a+ a2 + . . . , since it is not possible to have

infinite nonzero coordinates, there must be some m such that am = 0, meaning that a is nilpotent.

If we now set T = 1, we obtain,

F ′ = S′(1) = G(1) ◦ S(1)[n] ◦H(1)

= G(1) ◦ F [n] ◦H(1)

= (X,Y ) +N.

Where G(1), H(1) ∈ EA0
2n(k), and N = (F(2) +Y,−F(3)), with F(2) and F(3) defined explicitly in 3.3 and 3.4

respectively. Replacing F by F ′ means that we have now reduced to the case, F = X +N , where N is cubic

and linear in each variable, and J(N) is nilpotent, making J(F ) = Id+ J(N) unipotent.

3.2.3 Homogenization

Now to make N a cubic homogeneous map. We consider,

F̃ = X + Ñ(T ), where Ñ(T ) = T 2N(1) + TN(2) + N(3). Then for T = 1, F̃ (1) = F . Identifying k[n+1] =

k[X1, . . . , Xn, T ] gets us the k-endomorphism defined by F̃ ,

L = (F̃1, . . . , F̃n, T ) = (F̃ , T ) = (X,T ) + (Ñ , 0),

with Jacobian,

J(L) = Id+

(
JX(Ñ) 2TN(1) +N(2)

0 0

)
,

where

JX(Ñ) =


∂Ñ1

∂X1
. . . ∂Ñ1

∂Xn

...
...

δÑn

δX1
. . . δÑn

δXn
.


We note that J(L) is unipotent if and only if JX(Ñ) is nilpotent. This is quickly seen by computing powers

of J(L)− Id,

(J(L)− Id)m =

(
JX(Ñ)m JX(Ñ)m−1(2TN(1) +N(2))

0 0

)
.

Seeing as now Ñ is cubic homogeneous in (X,T ), linear in each of the Xi, and quadratic in T , this leaves us

to show JX(Ñ) is nilpotent to establish all claims of the theorem.

Let A = A0

⊕
A1

⊕
. . . be a graded ring, if we grade A[T ] by,

A[T ]d = T dA0

⊕
T d−1A1

⊕
· · ·
⊕

Ad,
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and put T = 1 we get the linear isomorphism,

A[T ]d → A(d) = A0

⊕
A1

⊕
· · ·
⊕

Ad.

Inverting this gives us the map A(d) 3 a0 + a1 + · · · + ad = a 7→ a(d) = T da0 + T d−1a1 + · · · + ad ∈ A[T ]d.

For b ∈ A(e), we put c(T ) = a(d)(T )b(e)(T ) ∈ A[T ]d+e.

If we now put T = 1, we get, with the linear isomorphism above, c(1) = a(d)(1)b(e)(1) 7→ ab ∈ A(d+e), thus

a(d)b(e) = (ab)(d+e). And consequently (a(d))N = (aN )(Nd) for N ≥ 1. From this it follows that a is nilpotent

if and only if a(d) is nilpotent.

If we now take A to be the ring Mn×n(k[n]) = Mn×n(k)[n], which we grade by degree of X, and let a =

J(N) = J(N(1)) + J(N(2)) + J(N(3)) ∈ A(2). We note that a(2) = T 2J(N(1)) +TJ(N(2)) + J(N(1)) = JX(N).

Since we have previously proven that J(N) is nilpotent, we must conclude that JX(N) is nilpotent, and thus

J(L) is unipotent.

With this we have concluded the proof for Theorem 3.1.4.
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4 Modified Reduction Theorem

In [5], Hubbers transforms an example function, which is given in [4], from dimension 2 to a Drużkowski map

in dimension 1999. This reduction is a lot like the reduction we did above. The difference is mainly that

his algorithm takes polynomials as input, wheras the theorem by Bass, Connell and Wright takes monomials

as input. This means that Hubbers’ way is not necessarily quicker, but it results in a function of dimension

less or equal to that of Bass, Connell and Wright. After reducing, Hubbers further reduces the resulting

map, which is of the form F = X +N , with N being cubic homogeneous, to a map which is cubic linear (or

Drużkowski).

Definition 4.0.1. A polynomial mapping, F : Cn → Cn is called cubic linear if there exists an n×n matrix

A such that,

F (X) = X − (AX)∗3,

for all X ∈ Cn To compare techniques, we again use some examples.

As in [3], we start with finding suitable functions G,H ∈ EA1
n+m(k), such that F ′ = G ◦F [m] ◦H is of lower

degree than F . The structure of these maps is much like G and H as we defined above.

Assume we are reducing a polynomial mapping F : Cn → Cn. Let then R be a polynomial in Fi, of degree

4 or higher, and R = ciPQ, whre ci is a constant, ant P,Q have degree at least 2. Now we have three

possibilities, for each possibility, we also give an example.

1. There exist k and l such that both Xk + P and Xl + Q are components of F , then we don’t have to

add new variables to reduce component i. Our G and H are then of the form;

G = (X1, . . . , Xi−1, Xi − ciXkXl, Xi+1, . . . , Xn),

H = Id.

For an example, we consider the function

F :C3 → C3

F = (−X4
2 +X2

2X
2
1 +X1,

X2 +X2
2 ,

X3 +X2
1 −X2

2 ).

We choose our R to be R = −X4
2 +X2

2X
2
1 , and note that we can write,

R = −X4
2 +X2

2X
2
1

= X2
2 (X2

1 −X2
2 ).

And thus,

P = X2
2 , Q = X2

1 −X2
2 .

We note that, X2 +X2
2 , and X3 +X2

1 −X2
2 are components of F , and thus we can define G and H as

follows;

G = (X1 −X2X3, X2, X3),

H = (X1, X2, X3).
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Our reduced function F ′ = G ◦ F ◦H would then be;

F ′ = (X1 −X2X3 −X2X
2
1 +X3

2 −X2
2X3,

X2 +X2
2 ,

X3 +X2
1 −X2

2 ).

We note that the degree of our new function is now three, and we are done reducing. It still maps from

C3 to C3. If we were to reduce this same function using the technique described by Bass, Connell and

Wright, we would have ended up with a function mapping from C7 to C7.

2. There exists k such that Xk+P is a component of F , but there is no l such that Xl+Q is a component

of F (without loss of generality we can swap P and Q if necessary). Our G and H are then of the form;

G = (X1, . . . , Xi−1, Xi − ciXkXn+1, Xi+1, . . . , Xn),

H = (X1, . . . , Xn, Xn+1).

For an example, we consider the function

F :C3 → C3,

F = (−X4
2 +X2

2X
2
1 +X1,

X2 +X3
2 ,

X3 +X2
1 −X2

2 ).

We choose our R to be R = −X4
2 +X2

2X
2
1 , and note that we can write,

R = −X4
2 +X2

2X
2
1

= X2
2 (X2

1 −X2
2 ).

And thus,

P = X2
2 , Q = X2

1 −X2
2 .

We note that now only, X3 +X2
1 −X2

2 is a component of F , and thus we can define G and H as follows;

G = (X1 −X4X3, X2, X3)

H = (X1, X2, X3, X4 +X2
2 ).

Our reduced function F ′ = G ◦ F ◦H would then be;

F ′ = (X1 −X4X3 −X4X
2
1 +X4X

2
2 −X2

2X3,

X2 +X3
2 ,

X3 +X2
1 −X2

2 ,

X4 +X2
2 ).

We note that the degree of our new function is now three, and we are done reducing. It is now a

function mapping C4 to C4. If we were to reduce this same function using the technique described by

Bass, Connell and Wright, we would have ended up with a function mapping from C7 to C7.
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3. The last option is most like the technique described by Bass, Connell and Wright, with the only

difference being that it takes polynomials instead of monomials. In this option, there exist no k and l

such that Xk + P or Xl +Q are components of F. Our G and H are then of the form;

G = (X1, . . . , Xi−1, Xi − ciXn+1Xn+2, Xi+1, . . . , Xn),

H = (X1, . . . , Xn, Xn+1, Xn+2).

For an example, we consider the function

F :C3 → C3

F = (−X4
2 +X2

2X
2
1 +X1,

X2 +X3
2 ,

X3 −X2
2 ).

We note that no matter what way we choose our R, we cannot define P or Q such that X2 + P,X2 +

Q,X3 + P or X3 +Q are components of F. We choose our R to be R = −X4
2 +X2

2X
2
1 , and note that

we can write,

R = −X4
2 +X2

2X
2
1

= X2
2 (X2

1 −X2
2 ).

And thus,

P = X2
2 , Q = X2

1 −X2
2 .

We can now define G and H as follows;

G = (X1 −X4X5, X2, X3)

H = (X1, X2, X3, X4 +X2
2 , X5 +X2

1 −X2
2 ).

Our reduced function F ′ = G ◦ F ◦H would then be;

F ′ = (X1 −X4X5 −X4X
2
1 +X4X

2
2 −X2

2X5,

X2 +X3
2 ,

X3 +X2
1 −X2

2 ,

X4 +X2
2 ,

X5 +X2
1 −X2

2 ).

We note that the degree of our new function is now three, and we are done reducing. It is now a

function mapping from C5 to C5. If we were to reduce this same function using the technique described

by Bass, Connell and Wright, we would have ended up with a function mapping from C7 to C7.

It is quite clear that what is done above resembles a lot the technique described by Bass, Connell and Wright.

Hubbers himself does not claim this algorithm to be faster than the original in general, but says that it does

work well with the example he reduces. We can note for ourselves that his technique is also a bit faster for

the specific examples we have chosen. Were we to reduce the function we used as an example before, (3.2),

we would end up with the same function we did then. This because that specific example falls into the third

possibility lined out above.

From this point on, Hubbers uses the same techniques described by Bass, Connell and Wright to transform

his example map into a cubic homogeneous map, that point is what he calls ’halfway’.
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4.0.1 Transformation to Drużkowski maps

In this section we will explain how Hubbers transformed his cubic homogenous map into a Drużkowski map.

However we will not explicitly compute this for our example. This simply because it would take multiple

days of computer time, and a proficiency in Maple that we lack.

The algorithm that Hubbers uses was proposed by Gorni and Zampieri in [6], it shows a way to transform

a cubic homogeneous expression into a cubic linear expression, which is invertible if and only if the other is.

Thus further narrowing down what we have to do to prove the Jacobian Conjecture.

The reduction itself consists of five steps, which are briefly described below.

Step 1

We start by finding a cubic linear mapping that is ’paired’ to the cubic homogeneous mapping we want to

reduce.

Definition 4.0.2. Let f : Cn → Cn be a cubic homogeneous mapping, and F : CN → CN , F (X) :=

X − (AX)∗3, be a cubic linear mapping, with N > n. We call f and F paired through matrices B and C, of

dimension n×N and N × n resectively, if ker(A) = ker(B), and the following diagrams commute;

thus BC = Id, and f(x) = BF (Cx) for all x ∈ Cn.

When two such maps are paired, they share a number of properties, all of those are outlined with examples

in [6], with the most important one for now being that one is invertible if and only if the other one is.

In step 1 of his algorithm, Hubbers finds matrices B0 and D0, such that F = X − B0(D0X)∗3. To do this,

he writes the monomials in F as a sum of cubic powers of linear forms of X, then D0 consists of the linear

forms, and B0 consists of the coefficients of the linear forms. Extending B0 and D0 to be of full rank adding

columns to B0, and an identity matrix to D0, G = X −B(DX)∗3 was obtained.

Step 2

The next step was to find a right inverse, C, of B. Since all computations were done using Maple, this was

a time-intensive, but relatively easy feat.

Step 3

The third step is finding the kernel of B, putting those as the columns in a matrix we will call M .

Step 4

The next step consists of finding a matrix E, such that CE−1 = M .
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Step 5

The last step would be to compute A := KE, where the columns of K are the kernel of D.

Results

We can now see that the matrices A,B and C meet the requirements for the resulting map G = X − (AX)∗3

to be paired to the original map F , because of the way it is constructed. In [5] this results in a map

C1999 → C1999, after beginning with a map of dimension 2. The matrices are also not easily printed, since

the smallest one is 203× 1999 entries. However, the resulting matrices are, to quote Hubbers, pretty sparse,

with the densest being A, in which 14% of entries are not equal to zero.
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5 Conclusion

In this paper we have talked a bit about the Jacobian Conjecture, it’s history, and showed the proof for when

the degree of a polynomial mapping is equal to one. We then explained the Reduction Theorem by Bass,

Connell and Wright, and showed it in action using an example of low dimension. Then we went through the

paper by Hubbers, and compared what he did to the technique described by Bass, Connell and Wright.

This did not differ too much from what they did, mostly it results in a mapping of lower dimension, and has

the potential to be a bit quicker for some mappings (not necessarily for all). Lastly we explained a bit of

continue from there to make a cubic homogeneous mapping into a Drużkowski or cubic linear map.

In conclusion, Hubbers adjusted algorithm might be a bit faster, if it is clear for the polynomials in a

polynomial mapping how one can factor them. Checking this by hand might take a bit more time than just

adding a couple of variables, but the final result might be of significant lower dimension. In Hubbers paper,

with his algorithm, he ended up with a cubic homogeneous map of dimension 201, where with the original

algorithm he would have ended up with a cubic homogeneous map of dimension 715, after which he would

still need to add a lot more variables to get to a cubic linear mapping.
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