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1 Introduction

Many applications of robots need a certain level of navigation and interaction in or with a world.
If, for example, a robot wants to help a human with accomplishing a certain task, it must be
able to interact with the human and navigate to the same spot as the human. If the location
of the human is known, navigating towards him or her is not such a big deal. But what if the
human is walking to a certain goal and the robot wants to end up at the same spot? The robot
can follow the human, although it is not necessary to take the same route. When mirroring
the human’s route the robot is perceived as less intelligent and likable compared to navigating
to the correct spot himself, as found by Bruna (2011). Therefore, it is preferred to infer the
human’s goal and set it as the robot’s goal.

As Bekkering, Wohlschläger & Gattis (2000) stated, the goal of a goal-based action is often more
important than the route or way used to achieve the goal. Imitating behavior, here reaching the
same location as the human, involves the decomposing of motor patterns into their constituent
components, which are later reconstructed into an action pattern - the goal of the human’s
route. The observation of the human’s movements is decomposed and translated to a certain
goal or action. The goal, the end location of the robot, is more important than the way he got
there.

The human mirror system plays an important role in observing the actions of others. Mirror
neurons, originally discovered in the premoter cortex of monkeys, discharge both when perform-
ing a certain action and when observing others perform that same action. These neurons have
also been discovered in humans (Cattaneo & Rizzolatti, 2009). Bekkering et al. (2009) recap
how we integrate observed actions with existing actions in our own personal motor repertoire,
using the mirror system. In this way we can understand the actions of others and we are able
to detect errors in ongoing behavior.

The detection of errors enables us to engage in corrective and adaptive behaviors. Our action
system is flexible enough to not only imitate actions, but also to perform goal-directed behavioral
adjustments depending on the context of the interaction. Our ability to detect and correct errors
may enable us to interact efficiently in joint actions.

Moreover, Van Schie, Mars, Coles & Bekkering (2004) found that the activation of the mirror
neurons reflects what the observer would have done and not the representation of the action
from the observing perspective. Iacoboni et al. (2005) found that the activity of mirror neurons
is altered by the intention of the observed actions. Therefore the intentions are important during
action observations. Inferring the goal of an action has the advantage of allowing the observing
party to achieve the same goal, without using the same means. (Erlhagen et al., 2005).

This information is used to infer a goal from action observations. Often a Bayesian network is
used for such purposes. Bayesian statistics offer a very easy and flexible framework for model-
ing decisions with uncertainty. Essential is Bayes’ rule, which turns likelihoods into posterior
probability distributions. This is modulated by the prior probability distribution (prior beliefs).
The main assumption fis that the human brain rather makes decisions and inferences based on
posterior probability distributions than based on likelihoods. It can then make statistically op-
timal decisions. Therefore, the brain must have knowledge about likelihoods and prior beliefs.
Often prior probability distributions are assumed to be Gaussian.

Another more philosophical view, is Levi’s (Nordmann, 1988) view of human decision making.
He says that the available body of knowledge determines which events or hypotheses are serious
options and which we will rule out immediately. We treat our knowledge as infallible, until the
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contrary is proven. If new observations introduce any inconsistencies in our body of knowledge,
we must reconsider what we considered infallibly true. After weighing the new information
against the risk of error, we may modify or reaffirm our old belief.

The above is consistent with Bekkering et al. (2009), for they both consider us capable of
noticing errors and revising our decisions if necessary. This results in better and more efficient
interaction.

1.1 Relevance for AI

Within the field of Artificial Intelligence decision making is a relevant field and finds appli-
cations in different domains. For example Artificial Neural Networks, Intelligent Agents and
probabilistic reasoning models are used to assist decision making (Philips-Wren & Jain, 2006).
Robots are often looked at as Intelligent Agents, for they observe the world through sensors and
act autonomously. The following model will use Bayes, which is a probabilistic reasoning model
and generally can be extended to a neural network, or a neural field as Cuijpers & Erlhagen
(2008) showed.

As mentioned before, robots are perceived as more intelligent when they infer a goal instead
of purely mirroring movements. Error detection is an important human feature for efficient
interaction in joint actions. Therefore it is expected that robots will perform more efficient in
joint action if they are able to detect and correct their errors. They might also be perceived as
more intelligent, which is the essential goal of artificial intelligence.

1.2 Problem description

Suppose there is a situation in which a robot wants to interact with a human, who is moving
around. It wants to end up at the same location as the human. He wants to infer the human’s
goal, based on observations. For this purpose he will use Bayes and the likelihoods of the
possible locations. After inferring the correct goal he will find his route towards the location.
to do so he must avoid obstacles and this can be accomplished in many different ways, which
will not be discussed in detail.

As mentioned before the robot will, as humans do, consider his choice infallibly true, until
evidence comes along which proves otherwise. Steinhauser & Yeung (2010) found that the de-
tection of errors, through continuously observing the world, is crucial for optimal performance in
humans. Besides detecting errors, compensating errors is vital for effective goal-based behavior.
They considered error detection to be a decision process where observations in the world were
evaluated against an internal criterion to decide whether an error had occurred or not. They
described 2 fundamental stages of error detection:

• Accumulating observations (input)

• Reaching a decision (output)

They found different processes in the human brain responsible for these different stages. There-
fore, it is likely that such a process must be implemented in the robot. Besides the decision
process, the human mirror system plays an important role. The robot will reason about the
human as if it is reasoning about himself, mirroring the human’s actions. The mirroring of
the actions will not be exact, but the robot will use different means to accomplish the same
goals.
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The aim of the model described in this thesis is to improve the robot’s behavior in the situ-
ation described before, by implementing the possibility to detect error and correct his errors.
Questionable is when the robot has made a wrong choice and when an error should be cor-
rected.

First a description of the model will be given as well as some implementation details. The
hypotheses formulated in the model description will be tested and the results will be described.
Finally, the results will be discussed and a conclusion will be formulated.
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Figure 1: The world with targets and obstacles

2 Model

The described problem is illustrated by means of an inference task, where the location of another
robot has to be deduced by a robot. The model is largely based on the model described in
Cuijpers et al. (2006), with the addition of navigation and error detection. The model is
simplified concerning the actions. The actions are degraded to simple locations (targets). No
extra information about the targets is known, therefore no intentions can be assigned to a target.
This simplifies the original model to a certain extent.

The original model described a cooperation task between two agents. They had to perform a
construction task. A model had to be built from a collection of elementary components, like
nuts, bolts, slats, etc. The agents knew what to do with the components and how to do that.
They had to infer the goal of the other agent and perform some complementary action to help
the building agent.

In our model knowledge is needed about the world and possible targets to infer anything about
the other robot. The world consists of obstacles and two robots, as seen in Figure 1. One robot
(referred to as Robot) navigates to a certain goal A, while avoiding obstacles and other robots.
The other robot (referred to as Actor) has the task of inferring Robot’s goal and navigating
towards it.

Robot and Actor are in essence identical, which implies that they can reason about any action
as if they have performed it themselves. This corresponds to the human mirror system as
mentioned in the introduction. The robots have two sensors and are able to detect obstacles
and each other. The robot’s sensors both have a view direction of 30◦ in front of them, which
makes a total view angle of 60◦, with a small blind spot where the sensor fields meet. The range
of the sensors is 20 on a world of 140 x 140 - about 14% of the world. This information is used
to avoid collisions.

Those collisions are avoided by calculating a repelling value if an obstacle of any type is detected.
The heading of the robots is defined by the repelling values of obstacles and robots and the
attracting value of the target. The robot will always want to move towards the target, but the
route is highly dependent on the obstacles.

Additionally, Actor has knowledge about the possible targets in the world and is aware of
Robot’s location at any time.
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2.1 Likelihoods

As in Cuijpers et al. (2006) the likelihood of each target is calculated using observation ot,
which considers the locations of Actor ( ~xe) and the Robot (~xc) at time t. The observation is
the distance between a possible target and Actor, defined by:

ot = |~xc(t)− ~xe(t)| (1)

The likelihood that target tn is the goal of Robot is defined as:

p(ot|tn) =
1√

2πσ2
exp− o2t

2σ2
(2)

where σ denotes the uncertainty. Equation (1) and (2) are defined as in Cuijpers et al.
(2006).

Then Bayes’ rule is applied. This is the first stage of the decision process, according to Stein-
hauser & Yeung (2010). Observations are accumulated into evidence.

2.2 Making a decision

After calculating the likelihoods for each target, the second stage of the decision process is
reached: a decision must be made at some point. Just like humans, not all targets are considered.
The nonsensical targets are disregarded. Relevant targets are the targets with the highest and
the second highest probability.

The best target t can be defined as:

tbest = arg max
t
p(ot|tn) (3)

A decision must not be made too soon and not too late, to maximize the reward of reaching
the correct target. The decision can be made if the likelihood of p(ot|tbest) exceeds some prede-
termined level. Also, the likelihood ratio tbest/tsecondbest must exceed the predetermined value
α (Cuijpers et al., 2006) . A decision can be reached if:

p(ot|tbest) > αp(ot|tsecondbest) (4)

2.3 Detection of errors

However, knowledge and choices are not infallible and knowledge can change. The observations
of the world change constantly and therewith the likelihoods. As described in the introduction,
error detection is a process like decision making where observations are constantly evaluated to
check whether they exceed a certain internal criterion (Steinhauser & Yeung, 2010).

What if Actor picked the wrong target? He can change his choice, but at a certain cost. If his
pick is changed too soon, it might be a false negative. The target could have been the goal,
but the likelihood might have dropped under the influence of one or more obstacles. We must
prevent the changing of goal, when no good reason is present. Awareness of the influences of
obstacles is important. Taking that into account, it is easy to see that Actor shouldn’t switch
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rapidly but consider his options thoroughly. This must all be expressed in our definition of the
internal criterion, a value like α before.

The essence of making a new decision is the same as for the first decision. However, the value
of α will probably need to be another value, or even be defined differently. One possibility is to
make α dependent on the cost of switching target:

α = switchCost ∗ threshold (5)

Four different hypothesis were created concerning the definition of α, based on the general idea
of Eq. (5).

switchCost threshold α

static5 1 5 5

static1 1
threshold 5 1

dynamic5 dt
dmax

5 5dt
dmax

dynamic10 dt
dmax

10 10dt
dmax

The first hypothesis makes use of the same value for the threshold as α during the process of
making the first decision. This is the baseline or normal hypothesis, as used for any decision
in this model. Whereas hypothesis static1 reduces Eq. (4) to a mere comparison, thus Actor
may change his pick at any time, given a better likelihood. This hypothesis is a minimum value
and is the lowest possible threshold. Both can be called static values for they do not depend
on anything in the world or anything that changes over time.

However, the latter two are dynamic in the sense that they depend on distances in the world. dt
describes the distance between the two targets under consideration and dmax is the maximum
possible distance. Hypothesis dynamic5 uses the same threshold as the first decision process,
whereas hypothesis dynamic10 uses the value 10 as a threshold to preserve the characteristics
of the switchCost function. The α value should never drop under 1, otherwise Actor will only
choose if the secondbest target is better than the best target, which is not possible by definition
of the best and secondbest targets. Therefore, if the α value drops under 1, it is rounded to
1.

The internal criterion against which the observations are tested must be based on something.
Just a threshold, as static5, is probably not sufficient for good performance. If the threshold
is too low, the robot will choose too often and his path will not be the best or shortest path
towards the goal. So we need a threshold that is not too low and neither too high.

The assumption is that it is easier to choose between two targets if they lie further apart. The
likelihoods will differ more and the threshold can be higher to prevent error. If the targets are
closer it is harder to make a choice, so the threshold must be lower to make a choice. For close
targets the threshold must be low, but if the threshold is always low a lot of unnecessary errors
will be detected. So a dynamically changing threshold should prevent unnecessary errors and
ensure that the threshold is low enough if the targets are close.

The dynamic10 is fully based on the distances in the world and is not influenced by the threshold
value. The dynamic5 uses the same threshold as during the first decision. Dynamic5 has a
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low adaptive value, while dynamic10 will produce higher values. Questionable is what the
difference will be. Expected is that dynamic10 will perform better, because it doesn’t change
the observation or evidence.

2.4 Implementation details

The model is implemented using 38 locations, which are used as random instantiations of the
robots’ and targets’ locations. First, as Bekkering, Wohlschläger & Gattis (2000) explained,
the motor patterns are decomposed into their constituent components. Which is modeled as
the observation of the location of Robot. Then, the components must be reconstructed to an
action. Therefore, the likelihood is calculated and Bayes’ rule is applied. When a decision is
made, the chosen target is the new action or goal. The heading and velocity of Actor is updated
and new observations are made. The decision is re-evaluated with each step and if an error is
detected the target will be changed.
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3 Results

3.1 First result set

The described implementation was run 1000 times for each proposed hypothesis with 2 random
targets. Below we will compare the success of the hypotheses, the alpha values are described
and the time they spent on reaching the goal. Besides that, the time they need to decide to
revise their decision is shown, the number of switches and the deviation from the straight path
are described. To analyze the results we will use Anova measures.

3.1.1 Success

An important measure is the success of the hypotheses. It is a global rate of the performance
of Actor. This is calculated as the total number of runs that were successful, divided by the
total number of runs. Actor is successful if he reaches the same goal as Robot. Figure 2 shows
the percentage of successful runs. As expected, the static5 hypotheses performed worse than
all the others. The other three hypotheses performed equally good.

Figure 2: Measure of successfulness

3.1.2 Time

The total time needed to reach a goal can also be seen as a rate of performance. The quicker the
robot is the better. Making and correcting errors will probably cost time and time is valuable.
One unit of time is one check of the likelihoods for errors and an adjustment of the heading and
velocity.

Figure 3 shows the time spent by all hypotheses. There a no significant differences: F (3, 3996) =
0.82, p = 0.48.
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Figure 3: Average time spent to reach goal

3.1.3 Alpha

The α values for both static hypotheses are clear and constant. However, the dynamic hypothe-
ses output different values for each run. Figure 4 shows the mean and standard deviation for
all α values. The mean of the α values for the Dynamic5 hypothesis is 1.62, with a standard
deviation of 0.58. Whereas the mean of the values for dynamic10 lies at 3.16, with a standard
deviation of 1.38. The switchCost values for dynamic5 lie closer around 1.5. The α values of
dynamic5 are closer to static1 and dynamic10 is closer to static5.

Figure 4: The average alpha values
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3.1.4 Switches

In Figure 5 the number of switches made during a run can be seen. The values are expressed
in a percentage of the total number of runs. If zero switches were made, the first decision was
correct. About fifty to sixty percent of the decisions are made correctly the first time. The
static5 hypotheses (Mean = 1.40, Standard deviation = 0.54) changes the decision less frequently
than the other hypotheses. Significant results are found: F (3, 3996) = 12.25, p < 0.0001. The
differences between the static5 hypotheses and the static1 (M = 1.54, SD = 0.61), dynamic5
(M = 1.52, SD = 0.57) and dynamic10 (M = 1.48, SD = 0.58) are significant, with respectively
p < 0.0001, p < 0.0001 and p = 0.0011. Between the dynamic5 and dynamic10 hypotheses no
significant difference is found. Neither is there a significant difference between the number of
switches made by static1 and dynamic5.

Figure 5: Number of switches made. Zero means no switches were made

Figure 6: Average number of switches made
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3.1.5 Decision time

Figure 7 shows the time needed to make a decision, or to correct an error. The time for the
first decision is not significantly different for any hypothesis (F (3, 3996) = 0.34, p = 0.80), since
they all use the same mechanism to make the first decision. For the second decision there is a
significicant difference: F (3, 1768) = 9.14, p < 0.001. The static1 hypothesis (M = 36.71, SD
= 19.31)significantly makes the quickest new decision (second decision), as expected from its α
value, compared to static5 (M = 42.49, SD = 15.45), dynamic5 (M = 40.79, SD = 18.81) and
dynamic10 (M = 41.91, SD = 18.85), with respectively p < 0.0001, p < 0.0001 and p < 0.0001.
The other hypotheses have no significant differences. For the third decision, no significant
differences can be observed: F (3, 146) = 0.46, p = 0.52. Noticeable is the difference in the time
needed for spotting the first error and the second error. Spotting the second error is done much
quicker.

Figure 7: Time it took to make a decision

3.1.6 Path

Another measure is the maximum deviation from the best possible path. The best possible
path starts at the initial location of Actor and goes in a straight line to Robot’s goal. Obstacles
are not taken into account. The maximum deviation is the distance to the point furthest away
from the path.

Figure 8 describes the maximum deviation in general (all) and divided per number of switches. If
no switches were made, the deviation is about equal for all hypotheses. No significant difference
can be found: F (3, 2182) = 023, p = 0.88. In general (all) there is no significant difference
between dynamic5 (M = 27.02, SD = 19.59),dynamic10 (M = 25.26, SD = 18.85), static1(M =
25.69, SD = 0.60) and static5(M = 25.43, SD = 0.62) is found, F (3, 3900) = 1.67, p = 0.17.

If one or more errors are detected, the deviation from the path is significantly different: F (3, 1693) =
2.65, p < 0.0472. For the static5 hypothesis (M = 38.38, SD = 18.47) the deviation is signifi-
cantly larger than dynamic10 (M = 34.86, SD = 19.10) and static1 (M = 35.10, SD = 19.07),
with both p = 0.01. However, the difference with dynamic5 is not significant. The static5
hypothesis probably takes a slightly longer route when switching.
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Figure 8: Deviation from path, per number of switches

3.2 Second run

Another run of 1000 was performed, with 5 random targets for each run. More possible targets
will probably result in more errors detected and more errors made by the robot. The more
choices, the harder it gets to decide. With these results we can show that the results are
not dependent on the number of targets and that the hypotheses do not work better or worse
depending on the targets.

3.2.1 Success

The success rate of static5 drops dramatically to 70%, whereas the other stay around 99 %.
With more options the static5 hypothesis is outperformed by all other hypotheses.

3.2.2 Time

Figure 9 shows the time spent by the different hypotheses. In time there was a significant
difference is noticeable: F (3, 3996) = 3.23, p = 0.0214. Dynamic10 (M = 1398.0 SD = 581.6)
takes more time than dynamic5 (M = 1342.7, SD = 567.65), static1(M=1325.3, SD = 555.4)
and static5(M = 1336.4, SD = 575.4).
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Figure 9: Average time spent to reach goal

3.2.3 Alpha

The α values stay the same, as shown in Figure 10. For dynamic10 the mean is 3.16 and the
standard deviation is 0.07 and for dynamic5 M = 1.63, SD = 0.03.

Figure 10: The α values
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3.2.4 Switches

For the switches in Figure 11 and 12 a significant difference is apparent:F (3, 3996) = 59.52, p <
0.0001. The static5 hypothesis (M = 1.76, SD = 0.78) makes significantly less switches than
static1(M =2.25, SD = 1.07), dynamic5 (M = 2.24, SD = 1.09) and dynamic10 (M = 2.27, SD
= 1.07), with p < 0.0001. Just like the other result set.

Figure 11: Number of switches made. Zero means no switches were made

Figure 12: Average number of switches made

3.2.5 Decision time

Figure 13 shows the decision times. There is no significant difference for the first decisions
made: F (3, 3996) = 2.14, p = 0.09. For the second decision a significant difference is noticeable,
F (3, 2717) = 34.26, p < 0.0001. The dynamic10 (M = 31.1, SD = 17.45) hypothesis makes
quicker decisions than static5 (M = 36.94, SD = 15.37), but is slower than dynamic5 (M =
27.43, SD = 16.01) and static1 (M = 28.05, SD = 16.84). For the third decision there are
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significant differences: F (3, 1275) = 4.11, p = 0.006. The static5 (M = 26.90. SD = 9.92)
takes longer than static1 (M = 23.27, SD = 13.46), dynamic5 (M = 24.45, SD = 12.79) and
dynamic10 (M = 24.73, SD = 12.11).

Figure 13: Time it took to make a decision

3.2.6 Path

In general the deviation from the path has significant differences: F (3, 3900) = 2.62, p = 0.049.
The deviation from the path of static1 (M=30, SD = 19.40) is smaller than static5(M = 32.02,
SD = 20.84) and dynamic10 (M = 32.45, SD = 19.85). However, there is no significant dif-
ference between the static1 and dynamic5 hypotheses. If no errors are detected there are no
differences:F (3, 1244) = 0.08, p = 0.97. If at least one error is apparent no differences are
significant: F (3, 2500) = 1.02, p = 0.38.

Figure 14: Deviation from path, per number of switches
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4 Discussion

It was expected that static5 would perform the worst and that static1 would make the most
switches. For dynamic5 and dynamic10 it was expected that they would perform better than
both static hypotheses.

4.1 Static5

From the rate of success, which is about 90%, the conclusion can be drawn that static5 is not
such a good hypothesis for the α value. The static5 hypothesis has the biggest deviation from
the optimal path to the goal. This can be explained by the fact that about 10% of the runs do
not reach the foreseen goal. This enlarges the deviation, because the path the robot chose has
another goal. The number of switches made by static5 is the lowest, which could explain the
inferior overall performance. If the robot is too ignorant to its errors, they will not be corrected
and he will fail.

We can conclude that the α value of static5 is too high. The robot switches too little and he
ends up in the wrong spot too often. Therefore, we will not consider static5 in the rest of the
discussion.

4.2 Dynamic10

The overall performance of the dynamic10 hypothesis is good, if we take the success rate of
almost 100% into account. however, not much differences with dynamic5 and static1 can be de-
termined. The number of switches that dynamic10 makes is smaller than the static1 hypothesis.
The success rate for static1 and dynamic10 are equal. One could say that dynamic10 performs
slightly better than static1. However, there is no difference noticeable between dynamic10 and
dynamic5. The maximum deviation from the path is smaller for dynamic10 than for dynamic5.
Dynamic10 is on one result better than static1 and on one better than dynamic5. However,
these are no convincing results. For the second result set the difference is that dynamic10
takes more time to reach the goal. He also takes more time to reach its decisions. This makes
dynamic10 worse than dynamic5 and static1.

We can conclude that the α values of dynamic10 are successful on few targets, but performs
worse when more targets are added.

4.3 Dynamic5

Dynamic5 is as good in its overall performance as dynamic10. However, on the deviation from
the path this hypothesis performs worse. For all other results no significant differences could
be found. For the second result set no other results are found.

We can conclude that dynamic5 is neither worse nor better than static1.

4.4 Static1

Static1 has the same success rates as both dynamic hypotheses. The hypothesis makes its
decisions quicker than the others, but does not perform any worse. Although the others consider
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their decision more thoroughly, it makes no difference. Apparently is the time need to make a
decision not of big influence on the total time needed to reach the goal. It was expected that
static1 would make more switches, but no significant difference is apparent. For the second
result set the static1 has a smaller deviation from the path than the other hypotheses. This is
a surprising result because static1 does not make less switches. The deviation is apparently not
fully dependent on the number of switches or the time at which the decision is made. On what
is the deviation then also dependent? This question remains unanswered.

4.5 General observations

The α values fluctuate more for the dynamic10 hypothesis. This is a better reflection of the
distance of the world, because multiplying the switchCost by 10 does not change the character
of the values. However, the results show that it makes no difference compared with the other
hypotheses.

The time a robot needs to detect the first error takes more time than the second error (third
decision made). We can only speculate about the reasons for that. Most probably the first error
spotted was not an error, because an obstacle was in the way. Robot was on his way to another
target, because it had to avoid an obstacle. Actor thinks the he guessed wrong, but then Robot
changes his route again because he has passed the obstacle. Actor changes his choice again.
Since Robot is now closer to his goal, the likelihood will be higher for a target and drop for the
other target. This might explain why Actor detects his error more quickly.

From the number of switches made and the corresponding success rate we can infer that the
number of switches must not be too low, but we do not want them to be too high either. A
threshold of 5 is too high, for the success rate drops terribly. An α value of 1 is acceptable, as
are the dynamic α values. However, we would prefer to see a lower number of switches. With
our hypothesized values we do not achieve that goal.

Why are our α values not good enough? A difference between the static1 and dynamic hy-
potheses was expected. Yet, no such conclusions can be drawn from the given data.

We discussed two stages of decision making:

• Evidence collection

• Reaching a decision

In both stages improvements might have to be made to improve the error detection.

We used the internal criterion found in humans by Steinhauser & Yeung (2010) as a basis for
our assumptions on which we based the hypotheses to reach a decision. Questionable is whether
this human process they found can be easily converted to a computational use. They found
proof for their hypothesis in the human brain, but there might be other processes involved in
creating the internal criterion. It might be complex and defined by other processes.

Our α values might have been dependent on the wrong world parameters. Maybe more or other
knowledge is needed. Such as the angle of the robot with the target, or his heading. Only the
locations of the target may not provide enough exact information, which results into the robot
being indecisive and leads to a lot of false errors. The robot acts the same for a threshold of 1
and all dynamic thresholds.
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The thresholds may lie too close to 1 to make a real difference. This could explain the dynamic5
behavior, for the average α is 1.6, this is close to 1. However, dynamic10 has an average α value
of 3.16, so this behavior cannot easily be explained. When avoiding an obstacle the likelihood
ratio will exceed α eventually, even with a higher threshold.

Furthermore, the robot does not take into account any information about the obstacles in the
world. Indirectly it knows that obstacles are present, for it avoids them, but it does not take
into account any detected obstacle information. This would be a quite complex process, but it
has valuable information. If Actor knows the location of the obstacles it can predict the Robot’s
path better. It might detect that Robot is taking a detour, because of the obstacle. It can then
decide to stick to it’s old goal prediction and look into the likelihoods again when Robot is out
of the obstacle’s influence zone.

We only consider the two best targets, like Levi (1988) assumed we never consider all possible
options. The problem most possibly lies not within this assumption made. Considering a third
option will not influence the choice, for that likelihood is lower and it will not be ruled out by
the threshold.

Levi also spoke about our body of knowledge. One option is adding more information, as
mentioned above. Another option is to change the representation of the knowledge. Can
targets be represented as simple locations or must other information be added to improve error
detection? Cuijpers et al. (2006) added action information to the possibilities and Iacoboni et a.
(2005) say that intentions are important in action observations. This information changes the
stage of evidence collection and that indirectly changes the process of reaching a decision.

To notice errors it is necessary to check whether observations introduce inconsistencies in the
body of knowledge. This seems to work, although too much errors are detected. As Levi said,
the information must be weighed against the risk of error just like the internal criterion defined
by Steinhauser & Yeung. This risk of error can probably defined like the internal criterion,
which we tried to formulate. If we adjust these values, make them dependent on more or other
information, better results might appear.

5 Conclusion

First, we can conclude that the inference does work. Three hypotheses have a 99% success rate,
which is considered good enough. The work by Cuijpers et al. (2006) is not only applicable
to construction tasks, but to navigation tasks as well. The computational interpretation of the
human mirror neuron system seems to be correct.

The detection of errors is eventually successful, but is rather inefficient. The robot changes his
mind often and seems to be quite indecisive. It comes down to the robot switching his choice
if a target is better. Depending on the hypothesis the robot takes more or less time to decide.
As humans we would consider that non-intelligent behavior.

We can conclude that small differences are noticeable between the hypotheses, but dynamic5 and
static1 have no real differences. For now, the threshold values around 1 and 1,5 perform best.
The assumptions made in the model are partly correct and others might be questionable. The
error detection mechanism is working, but not as good as needed to make efficient interaction
possible in joint actions. If the values of the internal criterion are improved, as discussed in the
discussion, the model might work better.
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For the field of Artificial Intelligence this means that improving the error detection mechanisms,
will improve the perceived intelligence of a robot. Robots are able of detecting error, as shown,
but rather inefficient. Some work still has to be done.

For future research the information used by the robot to infer his likelihoods could be improved.
Only he location of the robot is scarce and may be too little information to base any decision
on. Converting the targets to actions with intentions might also help the decision making, this
also ads information. Another option is to base the internal criterion formulated as α values on
more information and give a better distribution of the threshold values.
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