
ArgAF:
The Argumentation Annotation Framework

A framework for annotating arguments

in filed legal cases

Establishing a bridge between documents

and the argument structures they contain

Bachelor thesis (15 ECTS)

Sara Veldhoen

3698661

Supervisor:

Prof. dr. mr. Henry Prakken

April 19, 2013

Acknowledgements

I wish to thank, first and foremost, my supervisor Henry Prakken for his supporting advice and
useful comments. My thanks go also to Gerrit Bloothooft, who was involved as a supervisor in
the first stage of this project. He has been very supportive in figuring out a direction for my
research. I consider it an honor to have him as a second assessor as well.

I would also like to thank my fellow students Ruben Dulek and René van Gasteren for their
dedication in proofreading my thesis in various stages of completion. Their remarks have signifi-
cantly contributed to the quality of this thesis.

Furthermore, it has been a pleasure to discuss my data model with Jan Veldhoen, my father,
whose critical investigations provoked new insights that lead to considerable improvements.

Lastly, I would like to express my appreciation for the organization of the thesis workshop
on Februari 18th, which consisted of Alias1 and a couple of PhD students among whom Jeroen
Goudsmit. It was a supporting day and provided useful practical advice. Also many fellow CKI
students 2 have been helpful by sharing their thesis writing expertise, thanks for that.

1aliasweb.nl
2www.uscki.nl

1

aliasweb.nl
www.uscki.nl

Contents

Acknowledgements 1

Contents 2

List of Abbreviations 3

1 Introduction 4
1.1 Argumentation theory and Artificial Intelligence 4
1.2 State of the art . 5
1.3 Research goals . 5
1.4 The structure of this document . 6

2 Foundations 8
2.1 Annotation fundamentals . 8
2.2 Argumentation fundamentals . 9
2.3 Documents containing natural argumentation . 13

3 Requirements 16
3.1 A priori requirements . 16
3.2 Evaluation . 17

4 Evaluation of Mochales’ Framework 19
4.1 Description of the framework . 19
4.2 Considerations . 20
4.3 Evaluation . 23

5 Abstract data model 25
5.1 AIF: Argumentation Interchange Format . 25
5.2 GrAF: Graph Annotation Format . 27
5.3 A model for the ArgAF . 28

6 Specification of the Proposed Framework 31
6.1 Data format . 31
6.2 The annotations . 36
6.3 Procedural aspects . 37
6.4 How the requirements are met . 38

7 Conclusion 40
7.1 Answering the research questions . 40
7.2 Implications towards the field of Artificial Intelligence 41
7.3 Future research . 42

Bibliography 43

A Example Database 46

2

List of Abbreviations

AIF Argumentation Interchange Format . 25

AIF+ An AIF extension for dialogue . 26

AIFdb The AIF-based database design for the successor of AraucariaDB 31

AraucariaDB The argumentation corpus (database) of the Araucaria project 31

ArgAF Argumentation Annotation Framework. .5

ArgAFdb The database design of the ArgAF . 31

argument1 argument as a product . 9

argument2 argument as a process . 9

CA Conflict application . 25

DCR Data Category Registry. .27

ECHR European Court of Human Rights. .5

GrAF Graph Annotation Format . 9

I-Node Information node . 25

LAF Linguistic Annotation Framework . 8

PA Preference application . 25

POS Part-of-speech . 38

RA Inference application. .25

S-Node Scheme application node . 25

3

Chapter 1

Introduction

The amount of data that is stored worldwide is growing, and it is growing fast. With it, the need
for tools to process large amounts of data grows. This thesis focuses on textual data, in particular
on documents containing argumentation in natural language. To process these documents, a
specialization of natural language processing aimed at the exposure of argument structures is in
development.

This thesis aims to contribute to argumentation research, by proposing a framework for anno-
tating natural arguments as they occur in filed legal cases. Manually formalizing and storing the
arguments as they are encountered in texts, is a first and necessary step in studying the automatic
processing of argumentative texts.

1.1 Argumentation theory and Artificial Intelligence

Informally, argumentation can be defined as putting forward a claim and providing support for
it. Classical argumentation theory, since Aristotle to present, studies the way argumentation
is carried out by people and how to tell apart ‘legitimate’ from ‘flawed’ argumentation [1]. The
difference between argumentation and formal reasoning, which occurs for instance in mathematical
proofs or classical deduction, lies in the presence of defeasible rules. This means that a legitimate
argument can be challenged by adding new information.

Argumentation has become a topic of increasing interest in the field of artificial intelligence.
Different approaches have been taken to study and formalize everyday or defeasible reasoning,
such as (and sometimes a combination of):

Evaluation of arguments Researchers aim to define a formal system that, given some ar-
gumentation, assesses the outcome of the dispute: does the conclusion hold, or its negation?
The different entities making up arguments have to be formally defined, such as propositions,
(defeasible) inference, attack relations between (parts of) arguments, and allocation of the bur-
den of proof. In general, there is some conflict relation between arguments (pro and con some
statement). A set of rules is then defined to resolve this conflict.

Reasoning agents Researchers create multi-agent systems where the agents can compose ar-
guments based on their (individual or shared) knowledge base. The agents use a formal language
wherein statements and inferences can be explicitly expressed. Some calculus must be defined to
resolve the conflict between agents, so this area is somewhat related to the topic of evaluation of
arguments. However, the invention of new arguments by the agents is a new focus in this area.

Visualizing arguments Another branch of study deals with argument diagrams. Given some
argument, how is it best visualized? Software tools like Araucaria provide means to reconstruct
arguments that are found in natural language text, based on different theoretical approaches like
Walton’s argumentation schemes. The arguments can then be visualized in graphs. Relations
between (parts of) arguments can also fall within the diagram. This branch of study is interesting
because it works on modeling not only artificial arguments, which satisfy known normative rules,
but also natural argumentation.

4

Identification of arguments in discourse While the former three topics focus at formally
defining argumentation concepts and relations, this more classical approach deals with arguments
in written or spoken text. It aims to identify and analyze the argumentation as it occurs in
natural discourse.

In itself, argument identification is rather a philosophical or linguistic (pragmatic) issue than
an AI topic. However, the current information society demands more and more automatic pro-
cessing of text documents. In order to apply the argument evaluation techniques that have been
developed in other studies to natural argumentation, the arguments have to be extracted from
the text and presented in a proper format. Since the identification and analysis of arguments
in text is quite laborious, it is desirable to automatically perform this task. This research aims
to contribute to this goal. The identification task is called argument detection, the analysis is
initially reduced to a task called argument classification.

1.2 State of the art

To be able to train and test a system for detecting and classifying argumentation in text, an
annotated corpus is needed: a collection of documents where the argumentation has already been
classified. Some effort has already been put into this, which has resulted in the following two
argumentation corpora.

The Argumentation Research Group at the University of Dundee has composed a corpus that
is called AraucariaDB [2]. The corpus contains text material from diverse sources. Each argument
is represented as a document in the corpus, with an annotation of the conclusion and premises.
Furthermore, each document was assigned a scheme classification from a set of ‘argumentation
schemes’ [3], a format for representing arguments that is described in section 2.2. The major
drawback of this corpus is the absence of context: it consists of snippets of text containing
an argument, rather than entire documents. The corpus can thus be used to train systems to
classify arguments (for instance [4]), but not to detect them. After all, each fragment is a positive
occurrence of argumentation, so there is no need to detect the borders of an argument within its
context. Since the detection of arguments is considered an important task, the Araucaria Corpus
has to be discarded for this purpose.

Mochales [5] worked on an argumentation corpus by having legal experts annotate filed legal
cases from the ECHR (European Court for Human Rights). The framework she used for these
annotations however, has some limitations. In chapter 4 this framework is described and evalu-
ated. In [5], some first attempts towards the automatic detection and classification of arguments
in text have been made using the ECHR corpus. Unfortunately, this corpus is until now not
available for other research. It can therefore be assumed with reasonable certainty that it has not
been used in other studies than those reported in [5].

No other mature argumentation corpora exist at the time of writing. The creation of a
corpus is a first and necessary step towards the goal of automatic detection and classification of
arguments. Given the scale of this research, it is not feasible to create such a corpus. By contrast,
the requirements it should meet are investigated and an annotating framework to match these
requirements is designed. This document presents a first version of this framework, which is called
the ArgAF: Argumentation Annotation Framework.

1.3 Research goals

This research aims for the design of a framework for annotation of arguments in text documents.
Each annotation framework should define what classifications (annotation types) exist and what
features belong to each possible classification. Furthermore, it should establish some procedure
for the annotators to follow.

5

There are two particular requirements for the ArgAF. Firstly, the annotations should be stored
in an adequate format for machine learning. Secondly, the final classifications should be workable
for further processing by some system that evaluates or organizes the arguments.

Many types of documents exist that contain argumentation. The ArgAF is designed to an-
notate filed legal cases, as did Mochales in [5]. The possibility of a generalization towards other
document types is left open for further research.

Research Questions To achieve these goals, the following questions are asked:

(I.) What requirements should be imposed on the framework?

(II.) What are some of the problems with the existing argumentation annotating framework
that was proposed in [5]?

(III.) How can existing argumentation models be related to natural argumentation?
Note that argumentation theories might be normative rather than descriptive.

(a) What is a proper model of argumentation for this purpose?

(b) What entities, such as propositions and attack relations, are defined in this model?

(c) How are these entities represented in written text?
Note that more than one sentence in a document may express the same proposition
and vice versa, so the relation between assertions and propositions is not one-on-one.
Furthermore, some argument entities might be implicit in the text.

(IV.) How should annotations be stored?

(a) What annotation types should be defined?

(b) What features should be assigned to these types?

(c) What data format is suited for the storage?

Methodology This thesis contributes to the development of a corpus by examining the proper-
ties it should possess to be useful for empirical studies. It includes a large proportion of literature
research on the one hand, and resulting therefrom a design phase.

The existing theories and current developments are investigated in order to reveal what limi-
tations could be attempted to remedy. Because the problem concerns different area’s (annotation
and argumentation) the relation between the different existing approaches is studied in particu-
lar. Subsequently, an attempt is made to connect the concepts into a coherent whole. A data
model and corresponding annotating framework are designed, to serve as a basis for actual corpus
development.

1.4 The structure of this document

Chapter 2 introduces the foundations the ArgAF is built upon. The fundamentals of both ar-
gumentation theory and annotation are presented and some relevant concepts of these fields are
introduced. Some observations about documents containing argumentation in general, and filed
legal cases in particular, are made. Next, in chapter 3, research question I is answered: what
requirements should be posed on the framework? A description is given of what the annotating
framework should be capable of and how the quality of the framework should be assessed. In
chapter 4 then, the annotating framework that was used by Mochales in [5] is evaluated to answer
research question II. After a description of this framework follows a discussion of its limitations

6

and why it does not fulfill all the requirements that are posed on the ArgAF. In chapter 5 the data
model is constructed to contain both the relevant argumentation concepts and the structural in-
formation to link this to the discourse that is recorded in the documents. This presents an answer
to research question III. The data model is concreted in a relational database, and some remarks
are made about the procedural aspects of the annotation process in chapter 6. This applies to
research question IV: how should annotations be stored? In chapter 7 lastly, an overview of the
answers to the research questions is presented. The implications of this research for the field of
AI are discussed and some directions for future research are suggested.

7

Chapter 2

Foundations

In this chapter the fundamentals of annotation and argumentation are presented. Furthermore,
some issues about argumentation as it occurs in documents are introduced.

2.1 Annotation fundamentals

An abstract Linguistic Annotation Framework (LAF) has been developed by an ISO committee
in order to provide an international standard. This was considered desirable, because in linguistic
research an increasing demand for commonality and interoperability was observed. Its outline
was described in [6] and in [7] a description of both the LAF and the usage of it to represent
the American National Corpus and its linguistic annotations are given. Although the nature
of ArgAF is not purely linguistic, the LAF provides useful concepts that are described in this
section.

Annotation The word annotation denotes two concepts: the classification of a piece of data (an
annotation) or the activity of an annotator (annotating a corpus) [6]. An annotating framework
correspondingly involves two separate parts, being the annotation scheme and the annotating
process. The first is a formal specification of the classifications and features that can be assigned
to the data, the latter is a procedural description of the task the annotators have to perform.
Informally, an annotation is a ‘classification’ of a ‘piece of text’. Other language data can be
subject to annotation as well, but the focus here is on the annotation of written text. Thus, the
following two tasks are involved [6]:

• Segmentation: the annotator needs to denote a piece of text or segment. The most
obvious segment type is a continuous segment, which appears contiguously in the primary
data. However, other possibilities are discontinuous segments (which are linked continuous
segments), landmarks (points in the primary data) and even groups of sub-segments that
constitute a super-segment.

• Classification: to each segment, the annotator allocates a type or class, e.g. ‘Word’ or
‘Sentence’. It is common to also add features or properties to the classes, e.g. the attributes
‘POS-tag’ and ‘Lemma’ could be added to the class ‘Word’. For each feature, the domain
and allowance for ‘null’ values are given.

Pipeline architecture Linguistic annotation often involves several steps, where low-level anno-
tations are used as input for a higher-level annotating step [7]. For example, in order to determine
the parse tree of a sentence, we have to tag the words that occur in it first. This cascade-like
process is called the pipeline architecture. In principle, the order of the stages is fixed, that is,
the annotation of the low-level structure has to be completed before the higher-level procedure
can start.

Stand-off annotation Annotations can be integrated in the document text as in-line tags, such
as XML tags. This provides a direct relation between the text and the annotations. However,

8

the expressiveness of such tree-based structures is challenged by two tasks [9]. Firstly, multiple
or alternative annotations require distinct trees that might be partially overlapping. Secondly,
discontinuous units can only be represented by a tree if there is but one representation level. This
is problematic, as multiple levels are involved in the representation in all non-trivial annotation
tasks [9].

There are several solutions to this problem, including an approach using stand-off annotations.
This approach is preferred by [9] and is also embodied in the LAF [6]. The annotation information
is separated from the document text; it is specified how the annotations refer to text segments.
The location of a character in the primary document can be referred to by giving its byte offset, as
the byte representations of all characters have an equal length [7]. This works only for documents
in certain encodings (such as Unicode), so an extra requirement has to be posed on the documents.
An atomic annotated text segment is thus represented by its start offset and its end offset.
Alternatively, an annotation can be recursively defined as referencing two existing annotations [7].
The notion of stand-off annotations allows for a clear distinction between the content and the
format [7].

Representation Annotations are rendered in a certain format, which is called their representa-
tion. The representation is independent of the content, the same annotation may be represented
in different formats and the same format may accordingly represent different annotations [6].
According to the LAF design, a mapping must exist from the representation that is used and the
underlying abstract data model [7]. A rigid dump format, which should be isomorphic to the data
model, accomplishes this mapping. The primary intention for this dump format is to be machine
readable.

Data Model The model is a schematic, formal description of the annotating information. The
main principle here is distinction between the structure and the content information [7].

The annotations are suggested to be modeled as a directed graph. This model is universally
used in general-purpose annotation formats [7]. A more elaborate description of modeling anno-
tations as a graph is presented in [8], which introduces the GrAF (Graph Annotation Format).
In the GrAF, text segments are modeled as edges between pointers to the primary data. Annota-
tions are modeled as nodes. The content information (type and possibly features) is stored in the
annotation node. The structural information is represented by edges from the annotation nodes
to text segments or to other annotation nodes (in the case of annotations over other annotations).

2.2 Argumentation fundamentals

The word argument too has different connotations. It can be interpreted as a process where
persons (or agents) make statements and give reasons that either support or attack statements;
it is referred to as argument2 in this case. The argumentative structure that is the result of such
a process is referred to as argument1. These names are not very descriptive, but are widely used
in literature [14]. In an argument1, an inference is drawn from premises to a conclusion, with the
characteristic that the inference may rely on either defeasible rules or classical deduction. Just
like other inference structures (such as classical deduction) arguments resemble tree structures,
and indeed are commonly modeled as trees.

The annotation task the ArgAF is created for consists of extracting the complete, formal
argument1 structure from a description of discourse: argument2. This relies on interpretation of
the intentions and beliefs of the participants. However, each interpretation slightly reduces the
reliability of the result. Therefore, only interpretations should be allowed that either improve
the argument1’s consistency or really accommodate the annotator’s work. This is a leading
consideration in the following discussion.

9

Different argumentation theories have been established by researchers with various perspec-
tives. This has lead to theories treating some part of argumentation in detail, but leaving other
concepts unspecified. To determine the theoretical basis for the ArgAF, aspects from different
argumentation theories will be combined.

2.2.1 Inference Rules

The inference rules in argumentation can be deductive or defeasible. Deductive inferences are
monotonic, which is to say: given the truth of the premises, the conclusion must hold. Defeasible
rules are different in nature: given a set of premises, presumably the conclusion is true as well.
Adding extra premises may however show the conclusion to be false [10]. The notion of non-
monotonic consequence has been the object of study called ‘non-monotonic reasoning’, which is
a subfield of Artificial Intelligence.

Argumentation Schemes Different approaches exist regarding non-monotonic reasoning, one
major theory proposes argumentation schemes to model argumentation. A description of this the-
ory and its implications can be found in [3]. There is no agreed-on set of argumentation schemes,
but an extensive list of schemes is given in [3, chapter 9]. An example of an argumentation scheme
is given in figure 2.1.

ARGUMENT FROM POSITION TO KNOW

Major Premise: Source a is in position to know about things in a certain
subject domain S containing proposition A.
Minor Premise: a asserts that A is true (false).
Conclusion: A is true (false)

Critical Questions

CQ1: Is a in a position to know whether A is true (false)?
CQ2: Is a an honest (trustworthy, reliable) source?
CQ3: Did a assert that A is true (false)?

Figure 2.1: Argument from position to know, as described in [3, page 309]

An argumentation scheme describes what propositions can make up an argument. Further-
more, each scheme comes with a set of critical questions that indicate how an argument2 that is
an instance of this scheme can be questioned, in order to reveal its weaknesses.

The premises embody the essential elements of the argument, whereas the critical questions
serve as a reminder of the assumptions that are made, thus revealing ways to probe the weaknesses
of the argument [3]. Some of the critical questions merely question the premises of the scheme,
such as CQ1 and CQ3 in figure 2.1.

There are also critical questions that point to assumptions (note that in literature also the
word presumption is used for this phenomenon). Assumptions resemble premises, but are not
required in the composition of a complete argument: they are mostly implicitly assumed to be
true. Another way to look at assumptions is that they point at emphexceptions: situations in
which the inference should not be drawn, even if the premises are true. Q2 in figure 2.1 is an
example of such a question.

The ArgAF will rely on argumentation schemes to model the arguments. It has been argued
that argumentation schemes provide a proper basis for modeling natural argumentation [11]. Ac-
cording to [5], an argumentation scheme can be assigned to any argument1 occurring in natural

10

argumentation. Furthermore, the argumentation schemes are simple patterns that allow for au-
tomatic processing and moreover are an intuitive formalism that is easy to work with for human
annotators [5]. These characteristics are beneficial for the ArgAF as well.

One objective of the ArgAF is to be compatible with argument processing tools. As argu-
mentation schemes are a common way to model argumentation, this formalism is presumed to be
compatible with many tools. Furthermore, all arguments that are stored as instantiation of an
argumentation scheme can be translated in a more general argument form, by simply discarding
the specific roles and only distinguishing the premises and conclusions. Therefore, this formalism
can also be used for tools that are less sophisticated, whereas a translation in the opposite direc-
tion would be impossible. Of course the stored annotations would not be compatible with tools
taking a fundamentally different approach.

2.2.2 Discourse

Studying the relation between argument1 and argument2 exposes some interesting issues, which
are discussed below.

Assertions Although an argument1 can be considered to be built up from propositions, it is
important to realize that these propositions are assertions in argument2. An assertion is a speech
act involving a proposition, but also the speaker and the circumstances such as time and place,
which constitute the (dialectical) context of the assertion.

The relation between statements in the text and their meaning in the argument1 structure
is not one-on-one: multiple sentences may refer to the same proposition. Either verbatim (the
same phrase occurring in different places in the text) or semantically: different phrases denoting
the same proposition. It may even occur that the same phrase denotes different propositions in
different places, due to the scope of anaphora for example.

Furthermore, assertions can be either atomic or complex. Sometimes a complex statement
needs to be deconstructed, as its parts play different roles in the argument. The deconstruction
of statements is not a trivial task, as the semantics of natural language conjunctions may vary in
different situations and when discarding conjunctions, the richness of their semantics might get
lost. Therefore, deconstruction should only take place if it is mandatory for a good reconstruction
of the argument, in other situations the assertions should be kept intact.

Enthymemes Sometimes in argumentative discourse, premises (and even the conclusion) are
not asserted but left implicit. The argument2 is then commonly referred to as an enthymeme. It
has been argued that most everyday arguments2 are enthymematic [5, page 12]. However, the
argument1 structure is supposed give a complete view of the argumentation. Discovering the
complete argument1 structure of an enthymematic argument2 is not a trivial task: filling in the
implicit premises and/ or conclusion rely on interpretation of what the arguer meant, which might
be wrong [3].

Time Argument2 takes place in stages, the agents take turns reasoning towards or against some
statement. The proceeding of discourse is monotonic, which is to say: an assertion cannot be
undone. The sequence of speech acts can be expressed by transitions from each stage to the next.

The documents the ArgAF is intended to annotate typically contain a resumé of such discourse,
presenting the product of the argumentative process (all the reasoning structures, possibly with
support and conflict relations between them) rather than displaying the process in a chronological
order. Quite often there is no explicit information about the progress of the discourse in these
document, nor do we need this information to be stored.

However, to accommodate for other document types an extension may be formulated, incor-
porating the stages of the discourse.

11

2.2.3 Relations between arguments

Natural arguments rarely appear in isolation. Relations between arguments1 are either supportive
or conflicting.

Support relations Natural argumentation is often a complex structure built up from several
arguments1 working together to substantiate a conclusion. A distinction is made between three
kinds of support relations. Firstly, arguments with one inference, which will be called simple
arguments, can have several premises that are coordinate. This means the premises are interde-
pendent to yield a conclusion. Secondly, multiple independent arguments that support the same
conclusion occur in multiple argumentation. Although multiple arguments may share premises,
the arguments can be completely unrelated except for their conclusion. Lastly, an argument
supporting a premise of another argument is an occurrence of subordinate argumentation. In
figure 2.2 each of these structures is presented in a diagram. These are examples from [12] that
are presented in [5, page 17] to clarify the three structures.

We have to dine out.

There is nothing
left at home.

All the shops
are closed.

(a) Coordinate
argumentation

It is impossible that
you saw my mother
last week in Sher-
ringham in Marks

and Spencer’s.

My mother died
two years ago.

Sheringham does
not have a Marks

and Spencer’s

(b) Multiple
argumentation

I cannot help
you with paint-
ing next week.

Next week I
have no time.

I have to study
for an exam.

(c) Subordinate
argumentation

Figure 2.2: Support relations

Conflict relations Conflict relations between arguments1 occur when an agent attacks an
argument2 that was put forward. There are divergent theories about how conflicts between
arguments should be formalized and how their relative strength is computed. The ArgAF should
give a very general formalization of the conflict relations, leaving the possibility of different
interpretations to further processing.

An influential theory is the so-called ‘three way hypothesis’ (a term that is employed in [3]).
To be compatible to argument processing tools, the concepts in this theory need to be modeled
in the ArgAF. According to the three way hypothesis, three types of attacks can be distinguished
[13]:

1. attacking a premise: undermining,

2. attacking a conclusion: rebuttal, and

3. attacking an inference: undercutting

While the first two attack types rely on a conflict relation between assertions, the third type
requires a more sophisticated approach.

One way to model undercutting defeat in the argumentation schemes formalism uses the crit-
ical questions that are specified for each scheme. Remember that some of the critical questions
point to exceptions in which the inference should default. These exceptions can be formulated as
propositions. An argument with such a proposition as its conclusion can be used as an undercut-
ting attack.

The assumption that the critical questions are complete, that is, specify all possible exceptions,
is at least controversial. The ArgAF will adopt this method for modeling undercutting defeat
nonetheless. Application of the ArgAF to real argumentation should reveal the fitness of this
theory in practice.

12

Questioning An agent can also question the premises of an argument2, rather than oppose
them. This is a special kind of conflict relation, and may have a different effect on the status of
an argument2 than an undermining attack: there is no implication that the questioner is against
the questioned proposition.

Questions are only meaningful in argument2, and are not part of argument1, the product of
the discourse [14]. This can be illustrated with a dialogue (argument2) where agent 1 makes some
statement P1. Another agent may ask “why P1?”, after which the first agent provides a reason
P2 from which P1 may be inferenced. The corresponding argument1 will be “P2, therefore P1”.
The question can no longer be retrieved from this information.

Relations between assertions Relations between assertions can serve to infer relations be-
tween arguments. Recall, for instance, that an undermining attack has a conclusion that opposes
a premise of the attacked argument. Rather than the conflict between the arguments, the conflict
relation between the statements is stored.

Classical contradiction (p and ¬p) is however not sufficient: other types of conflict between
statements exist. An extensive description of theories of contraries and opposition is given in [3,
section 7.2]. For example, the statement S1:“The grass is green” is opposed by S2:“The grass
is red”. A possible solution is to add an inference to S3:“The grass is not green” from S2,
resulting in a classical contradiction of S1 and S3. However, this adds a new statement based on
interpretation, whereas storing the fact that the statements S1 and S2 are (somehow) conflicted
remains closer to the actual discourse. Since conflict relations need to be stored already, that
could include other types of conflict as well.

Modeling different types of conflict relations based on the meaning of the assertions, stretches
beyond the purposes of this first version of the ArgAF. It suffices to store the relation as it
is classified by the annotators, but it is surely interesting to study these relations for a future
extension.

Also support relations between arguments can be expressed in terms of agreement between
their premises and/ or conclusions. And again, there are other types of agreement than statements
denoting exactly the same proposition. For instance, the statement S4:“The grass is green and
the sky is blue” supports S1. At first view, the same two approaches can be taken: either to
explicitly store the agreement relation between S4 and S1, or to add an inference from S4 to
S1. In this case however, the approaches coincide: no new statement is added in either case,
only a connection (‘agreement relation’ or ‘inference step’) is established between the existing
statements. At most, new inference rules have to be defined to account for the different possible
types of agreement between statements.

2.3 Documents containing natural argumentation

Natural argumentation can occur in very different circumstances. The number of agents partic-
ipating, the modality of the discourse (whether it is in writing or spoken), the formality of the
setting and the goal of the discussion are features that determine how the argumentative process
is carried out.

2.3.1 Mismatch between document and discourse

Analysis of natural argumentation is often performed to a record of argumentative discourse, not
the actual discourse itself. It may concern audio or video material but mostly written text. In
the latter case, an oral or written debate is saved in a transcription.

Any transcription of discourse reduces information, such as the time and place of an utter-
ance, the speaker or his gestures. Even if the discourse was itself in writing, information about

13

the circumstances (such as authorship) might be lost. The loss of information is not always a
problem, as not every aspect of the situation is meaningful to the argument2 itself. However,
this information may be rather helpful in the reconstruction of the argument2. And some other
information is essential to the argumentation.

In many cases, a transcription also adds information. In a literal transcript of oral discussion,
the transcriber adds punctuation, and may restructure a sentence to make it grammatically correct
or easier to understand. When the author of the transcription is summarizing the discourse, he
might change the order of the clauses to clarify the structure of an argument1. The transcriber
can even (intentionally or not) express his own sentiment by using certain expressions. These
adjustments can be helpful in the reconstruction of the argument1, but might also be misleading
as the interpretation of the transcriber might not be completely adequate and because information
about the argument2 might be lost.

The adding and discarding of information alters the information contained in the document,
to good or to bad. In spite of this, the document is all there is, its content is the starting point
for the annotation. Any doubts about it exist at another level and should not be included in the
annotation.

2.3.2 Argumentative discourse and its argument structure

The documents the ArgAF is concerned with contain a resumé of argumentative discourse:
argument2. It contains both descriptions of speech acts and an interpretation of the way these
are part of the argument structure: argument1. Consider for instance the following sentence:

“On the basis of the above Complainant maintains that the Disputed Domain Name
was both registered and used in bad faith.”

(WIPO case d2002-0801, 1)

This sentence expresses a locution (speech act) with a proposition P1 =“the Disputed Domain
Name was both registered and used in bad faith” that is uttered by a party E1 =the complainant.
Furthermore, it relates this utterance to statements that have been made earlier in the text, which
illustrates its embedding in the argument structure. The discourse information can be annotated
directly, whereas the argument information is more indirect, it merely offers an indication of how
the reconstruction of the argument1 should take place. Note that this is an interpretation of the
intention of the speaker. Also the propositions in the argument network are interpretations of
beliefs of the speaker, rather than his literal statements, although these may coincide.

The document contains both information about the argument1 and argument2, but this in-
formation is rarely complete with respect to either domain. Reconstructing information is risky,
but it makes sense to make an interpretation to create a complete argument1 network, whereas
reconstructing the discourse is less relevant.

2.3.3 Discriminating discourse information and argument structure

Imagine the following conversation:

Artistotle: A1: Socrates is mortal.
Plato: A2: Artistotle says that Socrates is mortal.

A3: Aristotle is always right,
A4: therefore Socrates is mortal.

It seems perfectly reasonable to connect the first sentence Plato utters (A2) to the first clause
(the assertion of A1), as Plato quotes the words by Aristotle. But now consider the following,
slightly altered conversation:

1http://www.wipo.int/amc/en/

14

http://www.wipo.int/amc/en/

Artistotle: B1: Socrates is mortal.
Plato: B2: Artistotle says that Socrates is a turtle.

B3: Aristotle is always right,
B4: therefore Socrates is a turtle.

Again, Plato quotes Aristotle in B2, but in this case Plato is wrong: he believes Aristotle said
that Socrates is a turtle, but he misheard the statement (B1) Aristotle made. The statement B2
is completely new in this case, it cannot be connected to an earlier statement. This is a somewhat
artificial example of course, but situations with people believing someone said something, while
in fact he said something (slightly) different are easy to imagine.

The above example shows that the information about the discourse is in another domain than
the information contained within the assertions. The truth of the statements in the first domain
is assumed by the annotator: the document text is the starting point. The transcriber might have
been wrong as well, but that is not of concern for the annotation task. The statements in the the
latter domain, however, are part of the argument structure that is the subject of annotation. In
fact, their truth is of no importance for the annotation task.

Because of this, entities in the argumentation should never refer directly to concepts in the
communication level. The documents to be annotated contain information about both domains.
What the parties said will be called ‘locutions’ (speech acts), these can be annotated. What the
parties meant (from an argumentative viewpoint) is an interpretation of the locutions. This is
where propositions, inferences, conflict and support relations are situated.

15

Chapter 3

Requirements

From the findings of chapter 2, it becomes clear what requirements should be met by the ArgAF.
There are also demands that may only prove to be satisfied after application of the framework.

3.1 A priori requirements

Content information Usually, each annotation has a type and a (possibly empty) set of
features. However, there is much more to the content information in the ArgAF: the annotations
may relate to nodes in an argument graph, which is itself a rather complex structure. Determining
this relation is what the annotation task is really about.

Many documents simply do not offer enough information to recover the complete argument2
(the discourse structure), but neither is the argument1 structure explicit. The ultimate task for
the annotator is to reveal the complete argument1 structure by interpreting the partial information
about both structures. As has been argued, the possibility for storing annotations that have no
meaning for the argument1 structure should be retained.

Remember that the LAF demands the definition of a data model that specifies the structures
to be annotated. Surely, the following concepts that make up argument1 structures need to be
represented:

• Statements (propositions) in the role of premises, conclusions and exceptions.

• Inferences drawn according to argumentation schemes. Different sets of argument schemes
could be defined, perhaps dedicated for a specific domain. An argumentation scheme must
specify which conclusions may be drawn from what premises. In addition, an argument
scheme may specify what exceptions cause the inference to default.

Basic deductive inferences should not be forgotten: not all argumentation follows defeasible
rules. Remember, furthermore, that agreement between statements is stored in inferences,
which may require other schemes to be added.

• Conflict relations between statements. As has been argued in section 2.2, different types of
conflict relations can occur and need to be stored. The conflict relations between arguments
can be derived from these. The specification of exceptions as statements allows undercutting
attack to be derived as well.

There are also concepts that exist primarily or exclusively in the argument2 structure. These
need not be modeled for the core task, but might prove helpful for the annotation task as well as
for the future machine learning.

• Locutions: primarily, storing assertions is useful as these are direct suppliers of statements
for the argument1 structure. Other locutions include questions, which do not fulfill a role
in the argument1 structure but may have an important function in argument2, for instance
in the role of critical questions.

• Enthymemes: an argument1 structure is assumed to be ‘complete’ regarding the argument
scheme. Thus, the notion of enthymemes resides in the argument2 scope. Because of that,

16

this property can be derived: if there is no connection from a statement in an argument1
structure to the textual data, the corresponding argument2 is enthymematic.

Structural information A demand that is inspired by the LAF is to separate the structural
information (segmentation) about the annotations from their content information (classification).
It might seem that this requirement stretches beyond the purposes of the ArgAF, since for the
core task (the restoring of the argument1 structure) the annotation structure needs not be very
complex. Only ‘statement’-annotations have to be stored, as these are the only annotations that
link to the argument network.

However, other annotations (such as locutions) may help the annotator with this task, and
indeed might also be helpful in the task of automatically determining the argumentative role of
text fragments. Indeed, if an external system were able to parse the documents and annotate
their discourse structure, this might serve as a basis for some future argument reconstruction tool.
Far more complex annotation structures with various levels could thus be useful, so it is desirale
to indeed make the distinction between the structural and content information.

Storage The ArgAF is intended to create argumentation corpora that are usable for both
machine learning of argument detection and classification, and argumentation processing tools.
This creates a specific constraint on the representation: the annotations should be accessible at
both ends.

Furthermore, the annotations must be stand-off, which is to say they are to be stored in a file
separate from the documents themselves. This retains the possibilities of comparing or combining
different versions of annotations for the same document.

Lastly, the annotations should be stored in a format that is isomorphic to the data model
underlying the framework: the so-called ‘rigid dump format’.

Procedural aspects There needs to be a specification of how the annotating should be carried
out. In order to obtain the argument1 structure, several subtasks for the annotators can be
determined, such as the annotation of discourse structure. Instructions for these tasks need to be
provided. Furthermore, the procedure should dictate whether each of these tasks is mandatory
and whether they should be performed in a fixed order (pipeline architecture) or not.

3.2 Evaluation

It is beyond the scope of this research to have annotators actually use the ArgAF, let alone to use
the annotations for machine learning or argument processing. In fact, these three tasks should
determine the quality of the ArgAF, as the quality of any annotating framework is assessed by
evaluating its performance in practical application.

Annotation quality The stability and reproducibility are quality measures for all annotating
frameworks [15]. The former refers to the extent to which one single annotator produces the same
annotations at different moments and is a prerequisite for reproducibility. The latter is the extent
to which different annotators produce the same result, which reflects the conceptual consistency.
These measures can only be computed after the ArgAF has been used to annotate documents,
by using the Kappa coefficient for example: the agreement between annotators is then compared
to a random distribution.

Only after several annotators have used the framework to annotate the same documents, can
the stability and reproducibility be assessed. The Kappa measure can then be computed as well,
but there is no gold standard to compare it to. We might compare the value to the Kappa measure

17

that is assessed for the framework that was used by Mochales in [5], if the framework is used for
the same set of documents.

Performance Besides the quality of the annotations, the usability of the database for the two
tasks it is designed for is of course the most important performance measure. This too can
only be assessed after a reasonable number of documents have been annotated, and furthermore
these annotations have been used for either task: machine learning of argument detection and
classification, and processing arguments by different tools.

18

Chapter 4

Evaluation of Mochales’ Framework

Mochales’ research [5] was aimed primarily at detection and classification of argumentation in
legal cases. However, as she learned there were no serviceable corpora available, the creation of
a corpus became a major part of her project. In [5, chapter 5], Mochales presents the framework
that was used to annotate her ECHR (European Court of Human Rights 1) corpus. A description
of this framework is presented here, after which some unclarities and concerns are pointed out.
To conclude, the framework is evaluated in the light of the requirements of the ArgAF.

4.1 Description of the framework

Mochales describes the framework in two ways. Firstly, she states the task with sentences as a
starting point.

“[...] for each sentence it should be necessary to determine if it is part of the argu-
mentative process or not. If the sentence is part of the argumentative process then, it
has to be decided if it is part of the final decision or the set of arguments to achieve
the final decision. If it is part of an argument its function in the argument has to be
determined. Moreover, if two or more arguments are related it should be indicated.”

([5, page 60])

After this global description, an explanation of the steps to take is given. First, the arguments
in the text should be detected. Then each argument has to be classified (assigned a type). After
this, the elements (premises and conclusion) of the argument have to be classified. The result of
these steps is:

Each detected argument is represented by the following information:

• Group of premises: Pi, i = [0..n]

• Conclusion: C

• Type of argument: Ta = [1..m]

• Reported/ Non-reported

([5, pages 64-65])

This results in several isolated coordinate arguments. The relations between the arguments can
be derived from this information. Indeed, arguments that have the same sentence as conclusion
are multiple and if a sentence that is the conclusion of some argument serves as the premise of
another argument, the arguments are subordinate [5].

The data model underlying this framework is believed to correspond to the entity relationship
diagram that is displayed in figure 4.1. Rectangles, diamonds and ellipses represent entities,
relationships and attributes respectively.

1http://www.echr.coe.int

19

http://www.echr.coe.int

Sentence

Is-a

Premise

Conclusion

Non-
argumentative

Sentence

ArgumentReportedness

Scheme

Has-a

Has-a

0,n

1

Figure 4.1: A diagram of the data model that was used by Mochales

The procedure of the annotation is described as:

• Lecture for general knowledge

• Identification final decision

• Identification of single arguments

– Identification conclusion

– Identification premises

– Identification type

• Recursive till all connected to final decision

– Connection between single arguments

– Integration in super-argument

([5, page 66])

4.2 Considerations

This framework has proven itself useful in the studies Mochales has conducted [5]. However, it
is based on assumptions that require some attention. This section discusses some questionable
claims and indicates the decisions that were made and their effect on the results.

4.2.1 Granularity

Annotations can exist at several levels. For many machine learning algorithms, a decision has to
be made in advance about the level of granularity. When working with a classifier, for instance,
the training data is broken down into documents, which are the objects to be classified. For
natural language applications, these levels can be paragraphs, sentences, words, etcetera.

For the annotation of arguments, Mochales chose sentences to be the level of granularity:

“[..] a suitable annotation should annotate all the sentences in each document and
for each sentence it should be necessary to determine if it is part of the argumentative
process or not.”

([5, page 60])

However, she does not provide reasons to believe that a sentence expresses exactly one conclusion
or premise. The choice of sentences as granularity level for the annotation of argumentation is
argued by means of the following two cases.

20

1. In [5, section 4.2.5], a reasoning pattern is described that occurred a lot in the corpus: a
form of argument from precedent where the entire argument (premise and conclusion) is
presented in a single sentence. The connection between the two parts is represented by a
keyword. The following example is given:

“It is furthermore established that the burden of proving the existence of available
and sufficient domestic remedies lies upon the State invoking the rule (cf. Eur.
Court H.R., De Jong, Baljet and Van den Brink judgment of 22 May 1984,
Series A no. 77, p. 18, para. 36, 11.5.89, D.R. 61, pp. 250,262).”

([5, page 56])

In this example, a single sentence contains both the premise and the conclusion:

Premise: “(cf. Eur. Court H.R., De Jong, Baljet and Van den Brink judg-
ment of 22 May 1984, Series A no. 77, p. 18, para. 36, 11.5.89, D.R. 61, pp.
250,262).”
Conclusion: “It is furthermore established that the burden of proving the exis-
tence of available and sufficient domestic remedies lies upon the State invoking
the rule.”

([5, page 56])

Mochales solved this problem by modifying the corpus. She used an automatic process
to separate sentences such as this one into two separate sentences, based on the keywords
{“cf.”, “see”,“see eg.”, “see also”}. In this way, the annotators could properly classify the
two parts of the sentence as premise and conclusion.

Although this method might suffice for the ECHR corpus, other situations are conceivable
where the conclusion and premise are contained within the same sentence.

2. Consider the following sentence, which was taken from ECHR case no. 50064/99, Girardi
v. Austria:

“The court therefore finds that the overall length of the proceedings cannot be
regarded as reasonable.”

(ECHR case no. 50064/99, Girardi v. Austria)

According to Mochales, this entire sentence should be classified as being the conclusion of
an argument. However, it expresses more than the actual conclusion, which is only a part
of the sentence:

“the overall length of the proceedings cannot be regarded as reasonable.”

while the words

“The court therefore finds that”

merely express the reasoning step, and furthermore provide information about the entity
expressing this conclusion.

Therefore, the granularity of an argumentation annotation framework should be less coarse than
sentences. Unfortunately, there is no obvious alternative. It may not always be possible to
annotate a known linguistic unit as ‘statement’: statements may be sub-sentences that are linked
with connectives, but they may also be interleaved.

21

4.2.2 Procedure

Mochales distinguishes three tasks (or aspects), being

• Detection and classification of arguments

• Classification of elements of an argument

• Relations between arguments

([5, page 60])

She implies, also in the description of the procedure of annotation, that these tasks should be
performed in this order. However, detecting a complete argument at once seems quite a hard
task. It might be easier to first detect the statements that can constitute arguments and then
work out how they are related to an argument scheme and how they form a complete argument.
It is even possible to imagine a process of switching back and forth between these steps (or levels)
to reveal the proper structure of the argument. The suitability of any order of the steps has yet
to be demonstrated and it is until now not clear what is the proper way to accomplish this task.

4.2.3 Argument theory

The choice of argument schemes as a starting point for the annotation is convenient as it is an
intuitive system. There is nothing wrong with that, but keep in mind that this is not the only
possibility and that this choice may very well affect the information contained in the annotated
corpus.

Besides, Mochales points to another study by Walton [16], where the argument schemes are
considered to be a hierarchical system with each scheme being a subcategory of another. By
allowing annotators to choose the proper annotation of an argument from this hierarchy, the
agreement between annotators per level (in the hierarchy) might improve. [5]. This idea deserves
further investigation, it is added to the suggestions for further research in chapter 7.

4.2.4 Reportedness

In the ECHR cases, some of the arguments are ‘reported’, which indicates that the arguments
have been previously filed to the court, while other arguments are ‘non-reported’, which are the
arguments put forward by the court itself. This reportedness status is not an intrinsic property
of the arguments themselves, but rather of the role they have in the document. It is important
to be aware of this distinction, and to make a deliberate decision about the way this is modeled.

4.2.5 Critical Questions

Recall the critical questions that were introduced in section 2.2, belonging to the argumentation
schemes. Mochales is not clear about the role of critical questions:

“Critical questions are important tools for the evaluation of argumentation when work-
ing with argument schemes. In the ECHR corpus they figure as premises, either im-
plicit or explicit, in the argumentation of both parties, either in anticipation of critical
questions from the counter-party (this is usually the case for the applicant’s argumen-
tation) or in answer to the critical questions from the counter-party (which is usually
the case for the government)”

([5, page 64])

22

Mochales points out that critical questions function as premises in the ECHR corpus, but she does
not explain how this works and how annotators should deal with critical questions. Recall from
section 2.2 that some critical questions point to assumptions or exceptions, from which conflict
relations between arguments can be derived.

4.2.6 Relating arguments

Mochales states that relations between arguments can and should be extracted from the infor-
mation gathered in the earlier stages of the procedure. But the relations between arguments are
defined as relations between their parts:

“If the premises of two arguments maintain a coordinate of multiple relation, both will
have the same conclusion”

([5, page 65])

Because of this, it is extremely important to distinguish propositions from sentences, as two
sentences may express the same proposition and thus a relation holds between the arguments
wherein this proposition has a role, even though the sentences occur in different places in the
document.

4.3 Evaluation

This section investigates the extent to which the framework that was described in this chapter
fulfills the requirements that were posed for the ArgAF in chapter 3.

Content information The ArgAF requires the data model to represent statements, inferences,
and relations between statements. No data model is explicitly defined to serves as a basis for
Mochales’ annotating framework. An attempt was made to deduce the data model from the
descriptions, it is displayed in figure 4.1.

The diagram shows that not statements but sentences are considered the basic units, which has
already been criticized. The inferences are represented as arguments with an argument scheme
in the diagram. However, no information is stored about how the scheme is instantiated by the
sentences. Relations between statements (or sentences) are not represented in the diagram. Re-
lations between arguments are derived from the fact that they have the same sentence as premise
or conclusion, but this does not suffice as different sentences can express the same statements.

Structural information To store the content and structural information, the document text
is broken down into sentences with a unique index. The annotations reference such an index,
which is their structural information. In particular, an argument annotation references the sen-
tence indexes of its premises and conclusion. The same sentence can be referenced by different
arguments.

The structural information is thus separated form the content information, as the ArgAF re-
quires. However, there is no way to store intermediate annotations that could ease the annotation
task.

Storage Mochales’ framework partially fulfills the storage requirements, as she does store the
annotations in a separate document. However, she did not explicitly specify a data model that
defines how the arguments are represented internally. It is therefore uncertain if and how the ar-
gument structure could be extracted and used by other tools than the machine learning algorithms
it was created for: classification of sentences, and parsing of sequences of sentences.

23

Procedural aspects Mochales is clear about the subtasks and provides a description of the
way and order in which they should be performed. However, it is uncertain whether the decisions
that were made, lead to the best possible annotation results.

Discussion It is important to differentiate between the model and the text. The structure of
the data model should be explicitly defined. Annotations function as a bridge between the text
and the data model. A framework should aim for enough informativeness in the annotations,
without losing generality and while keeping an eye on the clarity of the definitions.

The model contains the argument, which is a set of propositions and their relation expressed
by the reasoning step, represented by an argument scheme. The text contains sentences describing
the utterances by the parties. Their utterances contain propositions. The propositions should be
distinguished from the occurrence of words expressing them.

24

Chapter 5

Abstract data model

The purpose of this chapter is to present an abstract data model that represents the argumentation
concepts described in 2.2 and the structural information about the annotations. The model was
founded on the AIF ontology and the GrAF.

5.1 AIF: Argumentation Interchange Format

A group of argumentation experts has created an interchange format capable of expressing the
various argumentation concepts that are described in the concerned fields. The purpose was to
define a single markup language that would account for different kinds of theories and applications,
so that ideas and results could be interchanged. In [17] a first draft version of the AIF is presented,
which is a rather abstract data model. A later version is presented in [18], which is extended with
ideas from [19] to incorporate the argumentation schemes theory by [3].

5.1.1 Extended AIF core ontology

Here follows a description of the AIF as it was presented in [18]. All concepts are grouped
into three categories: arguments, communication, and context. The arguments ontology will be
reffered to as the ‘upper layer’, the ‘forms layer’ belongs to the context category. These two layers
are connected by ‘fulfills’-relations between their concepts.
In the upper layer, arguments are modeled to be networks, with argument entities as nodes
in a directed graph. There are two kinds of nodes: I-Nodes and S-Nodes. An I-Node contains
information, which is a proposition in the argument. An S-Node represents the application of
a scheme. There are three types of S-Nodes: inference application (RA), preference application
(PA), and conflict application (CA).

Directed edges may connect I-Nodes to any S-Nodes or S-Nodes to other S-Nodes. If there
is an edge from N1 tot N2, then N1 is said to support N2. The semantics of the edges can be
inferred from the types of Nodes they connect, there is no need to explicitly mark the edges. For
instance, if an RA-Node N1 supports an I-Node N2, the edge means that N2 is the conclusion
that is inferred in N1.

The forms layer, contains the schemes that are fulfilled by the S-Nodes. There are three
types of schemes accordingly: inference schemes, preference schemes, and conflict schemes. The
extension by [19] aims to integrate the argumentation scheme theory by [3]. An argumentation
scheme schematically describes the roles of statements that make up an instance of the argument:
its premises and conclusion. So-called descriptions are added to the form layer, so that an I-Node
can be said to fulfill such a role. Note that in [19] the descriptions are called ‘F-Nodes’, but that
practice obscures the distinction between the two layers as nodes are the entities in the upper
layer.

A ‘uses’-relation may exist between two forms. Recall for instance the ‘argument from position
to know’ (figure 2.1). Its scheme in the AIF uses two premise descriptions and one conclusion
description.

25

As regards the critical questions, a distinction is made between two types. Questions that
capture assumptions have a corresponding presumption description in the AIF, which is used by
the scheme. Critical questions that capture exceptions on the other hand, are contained in a
conflict scheme which is said to be used by the inference scheme as well. An undercutting attack
(attacking the inference step) at an argument fulfilling some scheme S is thus represented by a CA-
node, supported by an I-Node that fulfills some exception description belonging the the scheme S.

Node

I-Node

S-Node

RA-Node

PA-Node

CA-Node

Form

Description

Premise

Conclusion

Presumption

Scheme

Inference
Scheme

Preference
Scheme

Conflict
Scheme

Fulfills

Is-a

Figure 5.1: The core concepts in the AIF ontology

In figure 5.1, these two ontologies are displayed along with the possible ‘fulfills’-relations
between them. The edges in the upper layer and the uses-relations in the forms layer are not
included in this diagram.

5.1.2 AIF+: extension for dialogue

Although there is an elaborated description of the concepts in argument networks and the forms
they fulfill, the communicative aspect of argumentation is quite underexposed in the AIF descrip-
tion in [18]. The concepts of asserting and questioning a proposition are missing from the current
ontologies. Neither exists a way to express whether a premise or conclusion is left implicit (not
asserted).

In [20], a correspondence between the AIF and a so-called pragma-dialectical approach is
established. It is based on the AIF+, which is an extension by [14] to connect dialogue obeying
certain protocols to argument networks. The IAF+ considers locutions to be a special kind
of I-nodes called L-nodes. The proceeding of the discourse is expressed in transitions, which
are applications of illucutionary schemes. These schemes represent the dialogue protocols from
pragma-dialectics and dialogue games.

This extension is not suited for the ArgAF however, for the following reasons:

• Natural argumentation, even in a formal setting, is not bound to a finite set of dialogue
protocols, or at least there is no extensive description of the way transitions may occur in

26

natural discourse. The normative approach to argumentative discourse is thus too narrow
for the ArgAF.

• Recall from chapter 3 that the ArgAF requires a distinction between the dialogue domain
(containing locutions and speakers, which can be annotated directly) and the argumentation
domain (which contains an interpretation of the locutions to be arguments). The AIF+
incorporates the communication concepts in the same layer as the argumentation, which
obscures this distinction.

• As the documents the ArgAF is primarily concerned with do not represent the discourse
verbatim, one cannot expect to be able to recover all transitions from the document. For
instance, the order of the locutions might not be the same in the document as was it in the
real discourse. It is better to not make assumptions about the discourse if there is no need
to do so.

5.2 GrAF: Graph Annotation Format

Recall that the annotation requirements were based on the notions from the LAF (2.1). A
concrete extension for the LAF is called GrAF and is described in [8]. It views annotations as
directed graphs, rather than trees. This means an annotation can span both segments of the
primary data and other annotations at the same time. There are two kinds of nodes: segment
nodes and annotation nodes. The edges constitute the referential structure. Thefeature structure
representation composes the content information, which is done by labeling edges and annotation
nodes.

The primary data has a virtual sink node between each pair of characters, edges connecting
these are proper segments. The resulting graph G serves as a basis for the annotation graph: the
edges in G are treated as nodes (‘segments’) in the final annotation graph. In practice, this means
a segment is a node that stores two character offsets. Segment nodes have no content information
(labels).

Annotation nodes are labeled with one or more features, which have a name and a value. A
node can have an arbitrary number of such labels and there is no constraint on the features,
such as a the existence of a main type (classification). The GrAF does not specify content
categories, annotation types, but refers to the Data Category Registry (DCR) that is part of the
LAF architecture. Hence, it is possible to specify schemas that annotations should fulfill. Note
that this possibility to externally specify schemes resembles the forms layer in the AIF ontology.

Annotation nodes reference segment nodes, other annotation nodes, or both. The referencing is
performed by directed edges, which can be labeled with features as well. The resulting annotation
graph is not allowed to have cycles and all paths that start in annotations, need to end in segments.

The GrAF structure is illustrated in figure 5.2. An annotation graph is displayed with annota-
tion nodes as rectangles with rounded corners (the node text shows its labels), edges as (possibly
labeled) arrows, and segment nodes as small rectangles. The segments reference characters in the
example sentence, while in fact a segment just stores character offsets of course.

The figure illustrates that there may be several paths from one annotation down to segments:
the sentence annotation references both a segment and its constituents. It also shows how one
segment can have several annotations: the segment ‘Robin’ is referenced by different annotation
nodes. The labeling of edges is optional, indeed not all the edges are labeled in the figure.

27

Type=Sentence

Type = NP Type=VP

Subject
Predicate

Type=Word
POS=Det

Type=Word
POS=Noun

Type=word
POS=Verb

Type=NP
Object

Type=word
POS=PropNoun

Type=Person
Gender=Male

T h e d o g c h a s e d R o b i n .

Figure 5.2: An example annotation graph

5.3 A model for the ArgAF

In figure 5.3, the model for the ArgAF is presented in an ER diagram. The entities are presented
as rectangles, relations as diamonds, and attributes as ellipses.

The diagram consists of four parts: the forms layer and the upper layer, which are adopted
from the AIF ontology; the annotation schemes, which describe how annotations can be created;
and the objects layer, in which the actual annotations reside.

The upper and forms layers The ArgAF incorporates the concepts of the extended AIF
model that was described in 5.1.1, as it is considered to be a solid foundation that connects to
many argument processing tools. Not that three modifications are made to the model.

Firstly, the subtypes of the S-Nodes (RA, PA, CA) are not displayed as distinct entities in
figure 5.3, but instead the kind is added as an attribute. The same goes for schemes. This is
because in the ArgAF, the types only function to make sure an S-Node of some kind fulfills a
scheme of the corresponding kind. There is thus no need to model them as different entities.

Secondly, the modeling of critical questions as either assumptions or exceptions is questionable:
exceptions are assumed to be negated assumptions and vice versa. The assumptions are therefore
discarded as a separate category. Just like in the AIF ontology, exceptions are premises to conflict
schemes that are used by inference schemes.

Thirdly, a more conceptual modification is made: the descriptors are considered to be just one
type. The usage relation (scheme uses descriptor) is assigned the role of the descriptor: premise
or conclusion (recall that assumptions were already discarded). This adjustment saves space, as
similar descriptors only need to be saved once. Moreover, it seems to be a more accurate model
of the situation. The sole fact that it is used by an inference causes a descriptor to be a premise
or conclusion.

Note that there is no information about locutions or other discourse aspects in the upper
layer, only the argument1 structure and semantics are stored here.

The object and annotation schemes layers For the annotations, the ArgAF incorporates a
slightly altered version of the GrAF model from section 5.2. The adjustment lies in the fact that
the ArgAF model requires each annotation to have a type that is defined in the annotation scheme
layer. Furthermore, mandatory referents can be defined in that layer as is explained below. On
the other hand, assigning features to annotations is not mandatory and entirely takes place in
the object layer.

Observe that the division in an object and a scheme layer resembles the division in the other
two layers: in the one part it is specified how the structure can be established, in the other part

28

are the instantiations. Take a look at the annotation schemes layer. The annotation types should
encompass at least locutions, and in particular assertions. The main focus is the annotations of
discourse concepts, but there are no restrictions on the addition of other annotation types, such
as linguistic entities.

As is the case in the GrAF model, annotations may reference both text segments and other
annotations. In the ArgAF model, the edges from an annotation to its references are labeled as
well. This accommodates an extended notion of ‘feature’: an annotated piece of text does not
‘accidentally’ reference segments or other annotations. Rather, this referencing has an explicit
semantic sense. The need to refer is included in the Annotation Scheme Layer, which contains an
entity ‘Referent’ to express that there must be something to refer to. This entity has no additional
features or role.

For instance, each locution must reference a speaker (which can be a ‘named entity’ annotation
or a text segment), a verb (which expresses the so-called illocutionary force of the locution: a verb
like ‘maintains’ expresses another kind of assertion than ‘admits’). And for certain, it needs to
explicitly reference its content as either other annotations (such as statements) or a text segment
(or perhaps both).

Connecting the layers The upper layer is connected to the forms layer via the familiar ‘fulfills’-
edges. Although the fulfillment primarily links the entities, such as I-Node to Descriptor, the
relation could be emphasized to hold between the Edges (in the Upper Layer) and the Uses-edges
(in the forms layer) as well. Indeed, the latter seems a better representation as one I-Node may
play a role in different arguments, and could thereby fulfill several Descriptors. The edges in the
Upper Layer have a unique role however.

The fulfillment of annotations embodies the fact that each annotation needs to have a type.
The Referent can be fulfilled by both text segments and other annotations, but each ‘Needs’-edge
should be matched by a reference in the object layer.

The connection between the object layer and the upper layer, which is the central issue of the
ArgAF, is carried out by the ‘Expresses’-relation between Annotation and I-Node. In particular,
a specific annotation can be part of this relation, namely a Statement. A further requirement
could be posed that a statement can only link to an I-node if it is referenced as content by an
assertion.

The text may very well contain words or phrases that indicate the presence of argumentation,
such as “therefore”. It might seem desirable to link the annotation of such a phrase to an S-
Node. This is not allowed in the ArgAF model. The rationale is that the inference step does
not belong to a particular text segment, but rather emerges from the concurrence of statements.
Note however that it is permitted, and even recommended, to annotate such phrases. These
annotations could indeed help the annotator (and accordingly the machine learner) to detect the
argument.

29

F
o
rm

s
L

ay
er

U
p

p
er

L
ay

er

A
n

n
ot

at
io

n
S

ch
em

es
L

ay
er

O
b

je
ct

s
L

ay
er

S
ch

em
e

K
in

d

U
se

s

U
se

s
R

o
le

D
es

cr
ip

to
r

F
u

lfi
ll

s

F
u

lfi
ll

s

S
-N

o
d

e
K

in
d

E
d

ge
D

ir
ec

ti
on

E
d

ge
D

ir
ec

ti
on

I-
N

o
d

e

A
n

n
ot

at
io

n
T

y
p

e

N
ee

d
s

R
ef

er
en

t

R
o
le

F
u

lfi
ll

s
A

n
n

ot
at

io
n

R
ef

er
en

ce
s

R
ef

er
en

ce
s

R
ol

e

T
ex

t
S

eg
m

en
t

E
x
p

re
ss

es

Figure 5.3: The ArgAF model in an ER diagram

30

Chapter 6

Specification of the Proposed
Framework

The data model for the ArgAF that was described in chapter 5 can serve as a basis to specify
the data format. The two parts of the framework, corresponding to the annotations themselves
(the product) and the process of annotation, are described in the following sections. After this,
a description is given of how the framework fulfills the requirements from chapter 3.

6.1 Data format

According to the requirements, the annotations should be stored in a ‘rigid dump format’ that
is isomorphic to the data model, which was described in section 5.3. A relational database is
considered a good representation of the annotations. A relational database is a durable way
to store information and allows for flexible querying of the data, so that tools may access the
information in different ways. For example, a machine learner may ask for any annotations that
cover some part of the textual data.

The database design is called ArgAFdb. A more concrete implementation (in SQL for instance)
can follow this description. It was inspired by a database definition called AIFdb that was
implemented in Dundee for the successor of AraucariaDB, which is displayed in figure 6.1 and
was described in [21]. However, there are some differences between the two designs, which are
described below.

The ArgAFdb is divided into layers, corresponding to four layers from the data model and a
fifth layer that is added to contain meta-information. Tables can reference a table in another layer;
the division exists for the purpose of clarity only. For each layer, a figure is presented depicting
its tables. The key attribute(s) are underlined, foreign keys are preceded by a symbol: �. A
description is given below of the structure of the layers and the design decisions, based on the
AIFdb.

31

Figure 6.1: AIFdb, the AIF-based Database definition by Dundee for the Araucaria project that
was used as a starting point for ArgAFdb

32

• The meta layer (figure 6.2) contains information about the annotation process.

Document

documentID INT(10)
document VARCHAR(128)

Annotator

annotatorID INT(10)
name VARCHAR(128)

Viewpoint

viewpointID INT(10)
�documentID INT(10)
�schemeSetID INT(10)
�annotationTypeSetID INT(10)

Figure 6.2: ArgAFdb - The meta information

The administration of documents is left outside of this database for the user to implement.
The attribute document is designed to store a reference to external information about the
document including its location in the file system and its source, among others. The table
Annotator stores the name of the annotator, any additional information needs to be stored
outside of the database.

The table Viewpoint keeps track of the document as well as the scheme set and the an-
notation type set. Each new tuple in the object layer or upper layer references such a
viewpoint, which expresses the theory the annotation was based on. The idea is that an
annotator selects the scheme sets he will use before starting to annotate a document. A
further description of the scheme set and annotation type set is given in their respective
layers.

• The forms layer (figure 6.3) contains the two types of forms and the use-edges connecting
them.

Scheme

schemeID INT(10)
name VARCHAR(128)
schemeType ENUM(Inf,Pref,Conf)

SchemeSet

schemeSetID INT(10)
name VARCHAR(250)

SchemeSetMapping

�schemeSetID INT(10)
�schemeID INT(10)

Descriptor

descriptorID INT(10)
text VARCHAR(250)

SchemeUsesScheme

�userSchemeID INT(10)
�usedSchemeID INT(10)

SchemeUsesDescriptor

schemeUsesDescrID INT(10)
�userSchemeID INT(10)
�usedDescriptorID INT(10)
role ENUM(Prem,Conc)

Figure 6.3: ArgAFdb - The forms layer

In both AIFdb and ArgAFdb, schemes and descriptors are expressed in distinct tables. In
the AIFdb there is only one formEdges table, with a separate table to store the semantics
of the form edges. In the ArgAFdb, there are two tables for form edges: a scheme may use
either another scheme (such as a conflict scheme specifying an exception to an inference

33

scheme), or a descriptor (a premise or conclusion belonging to an inference scheme). Recall
from section 5.3 that the role of the descriptor is modeled in this relation, rather than
storing it as a feature of the descriptor itself.

The separate table schemeTypes is not adopted by the ArgAFdb, instead the possible
scheme types are enumerated.

The table SchemeSet enables the definition of several scheme sets that can be chosen by
an annotator to use. This allows for flexibility as new scheme sets may be defined in the
future. The SchemeSetMapping is a separate table so that the same scheme may be part
of several scheme sets. A scheme set can be easily extended because of this. A descriptor
can not exist on its own: it is always used by a scheme, thus there is no need to map the
descriptors in the scheme set.

• The annotation schemes layer (figure 6.4) stores the annotation types and the way they
should reference.

AnnotationType

annotationTypeID INT(10)
name VARCHAR(250)

AnnotationTypeSet

annotationTypeSetID INT(10)
name VARCHAR(250)

AnnotationTypeSetMapping

�annotationSchemeSetID INT(10)
�annotationSchemeID INT(10)

AnnotationNeedsReferent

annotationNeedsRefID INT(10)
�annotationTypeID INT(10)
role VARCHAR(250)

Figure 6.4: ArgAFdb - The annotation schemes layer

The AIFdb allows for speech acts to be stored in a table locution, referencing a person
(the speaker), a time stamp (the time of the actual utterance) and a source (URL) of the
locution. The time stamp may be hard to instantiate, especially for locutions that were
found on the internet, so one might assume that either one of these values be NULL.

The ArgAF has a richer structure to store not only locutions but other annotations as well.
The annotation schemes layer has a table AnnotationType that should contain at least the
type statement and probably locution, but other annotations can be added as desired. The
role of the AnnotationTypeSet is comparable to that of SchemeSet in the forms layer.

For each annotation, it can be specified what referents it needs in AnnotationNeeds-

Referent. Recall that a loctution needs to reference a speaker, a verb and its content.
The role is added as an attribute to this table.

• The upper layer (figure 6.5) contains nodes and edges between nodes.

The AIFdb contains a single table for both S- and I-Nodes. As a result, only one table is
needed to store the edges in the upper layer. A different table nodeSetMappings stores the
type of the nodes. In the ArgAFdb there are separate tables for I- and S-Nodes, because
they have different attributes. This creates the necessity to have three distinct tables for
edges in the upper layer. This is not a problem however, because there are no references to
edges in other tables. Remember that all three edge tables and the two node tables need to
be consulted to obtain the complete argument network.

Each S-Node fulfills exactly one scheme, so SchemeID is a foreign key in the table SNode.
When a simple argument structure is instantiated based on a piece of text, an RA-Node
(inference application) is created and it is mandatory to assign a scheme right away (which

34

INode

iNodeID INT(10)
text LONGTEXT
�viewpointID INT(10)
�annotatorID INT(10)
timestamp TIMESTAMP

SNode

sNodeID INT(10)
�schemeID INT(10)
�viewpointID INT(10)
�annotatorID INT(10)
timestamp TIMESTAMP

EdgeS2S

�fromSNodeID INT(10)
�toSNodeID INT(10)
�viewpointID INT(10)
�annotatorID INT(10)
timestamp TIMESTAMP

EdgeS2I

�fromSNodeID INT(10)
�toINodeID INT(10)
�schemeUsesDescrID INT(10)
�viewpointID INT(10)
�annotatorID INT(10)
timestamp TIMESTAMP

EdgeI2S

�fromINodeID INT(10)
�toSNodeID INT(10)
�schemeUsesDescrID INT(10)
�viewpointID INT(10)
�annotatorID INT(10)
timestamp TIMESTAMP

Figure 6.5: ArgAFdb - The upper layer

is to say, the feature schemeID has a NOT NULL constraint). All the descriptors that come
with a scheme are required to be fulfilled by an I-Node. Whether or not that I-Node is
expressed in a statement (an annotated piece of text in the primary document) reflects
its enthymematic status. Missing premises can thus be attacked, as they do exist in the
argument structure.

An I-Node may however fulfill several descriptors, belonging to the schemes of the supporting
and supported S-Nodes. This is why the foreign key SchemeUsesDescrID is added to the
tables EdgeS2I and EdgeI2S. The text attribute of the I-Node contains the proposition it
expresses in natural language, although another (logical) language could be used as well.

All the tables store information about their creation: the viewpoint, the annotator, and a
time stamp.

• The object layer (figure 6.6) contains annotations that are connected to the upper ontol-
ogy.

The most basic structural units are tuples in the table TextSegment. The start- and end-
offset are stored, together with a reference to the document. This combination is required
to be unique, there is no point in storing the same text segment several times.

An Annotation has a type, which is a foreign key referencing an AnnotationType from the
annotation schemes layer. Furthermore, it references other annotations or text segments
via the tables AnnotationRefAn and AnnotationRefSeg. The meaning of the reference is
derived from the annotationNeedsRefID.

Recall that the GrAF puts some restrictions on the paths in the annotation graph. These
should be translated to constraints and triggers for the actual database implementation.

35

TextSegment

textSegmentID INT(10)
startOffset INT(10)
endOffset INT(10)
�documentID INT(10)

Annotation

annotationID INT(10)
�annotationTypeID INT(10)
�viewpointID INT(10)
�annotatorID INT(10)
timestamp TIMESTAMP

AnnotationFeature

�annotationID INT(10)
feature VARCHAR(250)
value VARCHAR(250)
�viewpointID INT(10)
�annotatorID INT(10)
timestamp TIMESTAMP

AnnotationRefAn

�fromAnnotationID INT(10)
�toAnnotationID INT(10)
�annotationNeedsRefID INT(10)
�viewpointID INT(10)
�annotatorID INT(10)
timestamp TIMESTAMP

AnnotationRefSeg

�fromAnnotationID INT(10)
�toTextSegmentID INT(10))
�annotationNeedsRefID INT(10)
�viewpointID INT(10)
�annotatorID INT(10)
timestamp TIMESTAMP

ExpressingStatements

�annotationID INT(10)
�iNodeID INT(10)
�viewpointID INT(10)
�annotatorID INT(10)
timestamp TIMESTAMP

Figure 6.6: ArgAFdb - The object layer

The table ExpressingStatements links the annotations to the argument structure. A
requirement of the annotationID attribute is that its referenced annotation be a statement.

Again, each table stores information about its creation.

6.2 The annotations

This section summarizes what the product of the annotation process is. The database design that
was introduced in section 6.1 is the format to store it. The result is a set of actual annotations
(linguistic and discourse) and an argument structure that is related to the text via the annotations.
Therefore, content information concerns both the annotations and the argument structure whereas
the structural information refers to the annotations only.

Content Even after the implementation of a concrete database, it would not be ready for
annotating yet. Both the forms layer and the annotation schemes layer need to be instantiated,
because the tables in the object and upper layer reference it. It is beyond the scope of this
research to instantiate a complete set, but an example database is given in appendix A.

Scheme sets can be adjusted for several reasons. For one, the application of scheme sets
in practice could reveal unwanted limitations. And should the theoretical basis for argument
schemes develop, the ArgAF can still be used with an altered scheme set. Furthermore, a scheme
set can be instantiated for a particular type of documents, for instance a scheme set containing a
specialization of a particular argument scheme. Different annotators could also use a scheme set
that suits their specialization. It is even imaginable to have annotators specify new (specializations
of) argument schemes during the annotation process. Also annotation type sets could be changed,

36

for similar reasons. However, an uncontrolled growth of argument schemes and annotation types
should be avoided. Indeed, it is harder to compare annotations from divergent viewpoints that
come with different classifications.

After the forms and annotation schemes layer are instantiated, annotations can be created
in the object layer that reference the annotation types they fulfill. Furthermore, the argument
structure can be instantiated with nodes and edges referencing the tables in the forms layer and
statements referencing I-Nodes.

Structural information The way annotations reference text segments or other annotations
is included in the database. The document can be accessed via the table Viewpoint. How the
file system containing the documents should be equipped and how the references point to the
right files is deliberately left unspecified. It is up to the end users to decide on an appropriate
representation of the documents. Remember that the documents are required to contain only
Unicode characters to make sure their byte offset can be mapped to the character offset.

6.3 Procedural aspects

To be able to actually use the framework for annotating documents, a user interface needs to be
implemented. Furthermore, a description is needed of the task and subtasks of the annotation.

User interface To accommodate for annotators, a user interface should be created that takes
care of inserting entries in the database so the annotators would not need to worry about technical
details. A user interface can additionally ease the annotating process, for instance by allowing
annotators to select a piece of text for an annotation. The machinery of the user interface would
translate this action to the internally represented textFragment with the correct byte offsets.
Other helpful features would include the suggestion of all the required I-Nodes at the time an
S-Node is created.

Unfortunately, the creation of even a minimal user interface was not achievable within this
research project. This raises the entry threshold to actually use the framework, as a lot of work
needs to be done before the annotators can be put to work. Existing environments can possibly
be altered to facilitate the framework, or used for a part of the annotating tasks.

Tasks This section suggests a procedure, but it is recommended to be adapted in consultation
with the annotators to obtain the best practicable solution. Alternatively, a different approach
could be taken to specify a completely new procedure. The database specification offers flexibility
in this respect. Note that it is recommended to monitor the feasibility of comparison between
different approaches and procedures at specifying alternatives.

The procedure suggested here divides the actual annotation task is divided in two stages:
annotating the discourse structure, and building the argument network. It furthermore specifies
some preparatory tasks

• Preparations:

– Selecting annotators

The annotation task is not a trivial one: it relies on a lot of interpretation. The
profession of the annotators is expected to influence the result. The obvious choice is
between argument experts, linguistic annotators or legal experts (in the current case of
filed legal cases). Each group has its own specialization and corresponding approach:
legal experts best understand the subtleties of legal language, linguistic annotators are
best aware of the way text segments can be interrelated, argument experts are trained
to recognize the argumentative structure.

37

It is recommended to combine the expertise of the diverse professions, thus to have a
group of annotators with divergent backgrounds work on the same documents.

– Determine a viewpoint

Remember that the Viewpoint specifies the argumentation scheme set and annotation
type set. As has been argued earlier, the formulation of new sets should be restrained.
It is best to carefully consider what schemes are desired for the annotation of a range
of document, before starting the rest of the procedure.

– Lecture for general knowledge

This item is inspired by the procedure from [5, page 66]. It is recommended to have
a session with the involved annotators to introduce topics such as the goal of the
annotation process, the nature of the documents, the annotation tasks, and the user
interface.

• Stage 1:

The annotators are first required to annotate the discourse structure, that is: the locu-
tions. Wherever possible, the statements that make up the content of the locutions should
be distinguished and annotated. When performing this task, the annotator learns what
statements the argument structure includes.

It might prove to be convenient for the annotators to have some linguistic annotations as
a starting point, such as sentences and part-of-speech (POS) tags (classification of words).
These can be automatically extracted. It is possible that (parts of) the rest of stage 1 can
be executed automatically, now or in the future.

• Stage 2:

Based on the statement annotations, argument structures can be created. Argument schemes
need to be assigned to inferences. These are supposed to help identify the premises and
conclusion by means of the descriptors. The S-Nodes and edges should directly be connected
to the proper descriptor, and the I-Nodes should be connected to statements immediately,
or left unconnected to express their enthymematic status.

It is possible that, on closer inspection, new statements need to be annotated or existing
statements taken apart. The user interface should allow for this, but it is is discouraged to
make many changes to the annotations.

It is proved to be hard to obtain complete arguments, as premises and conclusions can be
far apart in the text [5]. Also complex structures involving several arguments are hard to
compose. Providing a graphical representation of the argument network might help the
annotator keep an overview.

• Follow-up:

After the group of selected annotators have performed stages 1 and 2, their results would
hopefully have some essentials in common. Based on a comparison of their results, a new
(and therefore somewhat unbiased) annotator should put together a gold standard. Because
the argument structure is the core result, an argumentation expert is recommended to
perform this last step.

6.4 How the requirements are met

Storage Both the annotations and the argument structure are stored in a relational database.
This storage fulfills both the demands of flexible retrieval of the information and a stand-off

38

storage of the annotations. The database is based on the data model, thus the requirement of an
isomorphic dump format is fulfilled.

Structural information Not only is the structural information kept separate from the doc-
uments (that is, the annotations are stand-off) but from the content too, based on the GrAF
annotation structure. Annotation structures of arbitrary complexity can be created without
problems but it is still possible to only consider some part of the structure. The structural infor-
mation can be derived from the sub-annotations that can subsequently be discarded within some
view.

Content information The data model is based on an existing model, the AIF, that describes
argumentation1 structures in such a way that they are translatable to other argumentation sys-
tems. All crucial concepts like statements, inferences and conflicts are recognized in the model.
Argumentation schemes are incorporated in the model, but at the same time the option to ap-
pend other argumentation theories is open. The argument2 concepts are not included in the
argumentation model itself, but can be annotated if requested.

Procedural aspects A suggestion is made for a procedure, which consists of two ordered stages.
A general description of the tasks is given, a detailed version should be specified for actual usage.

Evaluation As has been said before, the post hoc evaluation can only take place after usage of
the framework. The quality of the annotations can be trustworthy assessed after the framework
has been used by several annotators to annotate a large amount of documents. The stability and
reproducibility can be compared to the results that were achieved by other frameworks, such as
the one described in chapter 4.

The usability of the resulting annotations for machine learning or argument processing can be
assessed by performing those tasks with the annotations. The specific implementation of those
tasks is quite divergent and also often it is based on the input material, which does not facilitate
an easy comparison to annotations resulting from other frameworks.

39

Chapter 7

Conclusion

The focus of this thesis was to formulate the ArgAF: a framework for annotating the argument
structure in filed legal cases, or generally documents containing resumé of discourse. To achieve
this, the foundations of the fields of both argumentation and annotation were discussed in chap-
ter 2. After this, the research questions that were set out in the introduction were answered in
the subsequent chapters. In chapter 6 the resulting framework was presented as well.

This chapter summarizes how the research questions were answered. Next, the results are
reviewed in the light of other research. Lastly, some suggestions for future research are made.

7.1 Answering the research questions

Recall the research questions that were presented in chapter 1:

(I.) What requirements should be imposed on the framework?

In chapter 3 the demands on storage, structural information, content information, and
procedural aspects are put in place, based on the foundations that were investigated in
chapter 2. The essential factor is to make clear distinctions between the different facets of
the project. The evaluation techniques that can only be applied after the framework has
been used, are introduced.

(II.) What are some of the problems with the existing argumentation annotating framework that
was proposed in [5]?
The most striking problem is that the distinction between argument1 and argument2 is not
reflected in the annotations. Entire sentences are classified as premises and conclusions,
whereas they express discourse information as well. There is no way to designate the
(smaller) statements, which are the building blocks of the arguments after all. The relations
between arguments cannot always be derived, because there are no means to indicate that
different sentences express the same (or even contradictory) statements.

(III.) How can existing argumentation models be related to natural argumentation?
Note that argumentation theories might be normative rather than descriptive.

(a) What is a proper model of argumentation for this purpose?
The argumentation schemes theory was chosen as a starting point, as it is an intuitive
formalism that has been widely used and proved useful. In chapter 5 the AIF and the
GrAF are introduced, which are abstract formats for argumentation and annotation
respectively. It is argued that they provide concepts that constitute a good basis for
the ArgAF.

(b) What entities, such as propositions and attack relations, are defined in this model?
Inference schemes specify which premises can yield which conclusions. These schemes
provide semantics for an argumentation graph that consists of S-Nodes (expressing
scheme application) and I-Nodes (expressing statements) and directed edges between
them. The relations between arguments are not explicit in the model, but can be
derived from conflict between statements.

40

(c) How are these entities represented in written text?
The distinction from chapter 2 between argument as a product (argument1) and argu-
ment as a process (argument2) reveals how statements in the text can be related to an
argument1 structure, whereas discourse aspects can be annotated but are not part of
the argument1 domain. Inferences themselves are not explicitly represented in written
text.

(IV.) How should annotations be stored?

(a) What annotation types should be defined? The argument entities are not modeled as
annotations but rather as nodes and edges in an argument network, which is a formal
structure. Discourse elements can be annotated. There is not a fixed set of annotation
types. At least a statement type needs to be defined, which can express the I-nodes in
the argument network. It is recommended to define a locution type which references
a speaker, verb, and content. Furthermore, annotating phrases that are indicative of
argumentation could prove beneficial.

(b) What features should be assigned to these types? Annotating features of the discourse
elements is not necessary, as long as the referencing obeys certain constraints. The
entities in the argument network have semantics by fulfilling schematic descriptions,
primarily argument schemes (introduced in chapter 2, but other theoretic approaches
can be modeled as well.

(c) What data format is suited for the storage? In chapter 6, a relational database design
is presented to store the annotations, based on the data model from chapter 5. It
allows for flexible data manipulation and retrieval. However, its structure is quite
complicated and not suited for direct human operation. A user interface still needs to
be implemented to overcome this issue.

7.2 Implications towards the field of Artificial Intelligence

The development of systems that are capable of processing all kinds of documents is an interesting
branch of AI. Especially extracting argument structures from textual documents is worthy of
pursuit, as this has been proven to be a hard task even for humans [5]. The availability of
corpora is a prerequisite for training machine learners. The only mature existing argumentation
corpora have some limitations. The Araucaria project1 has a database of annotated arguments.
Only snippets of text are annotated though, while the context can be indicative of the kind of
argument and thus should be used to classify argumentation. Moreover, argument detection can
only be trained on arguments within their context. Mochales [5] has created a corpus of legal
cases with annotations of the argument structure. However, the annotation framework she used
showed some conceptual imperfections.

This thesis resulted in an annotation framework that resembles the more elaborated data
model that underlies the Araucaria database, with an extension to cover complete documents.
Furthermore, text fragments that strictly do not contribute to the argument structure itself, can
be annotated and used for the tasks of argument detection and classification.

Although the ArgAF in its current form is not yet ready for usage, it is intended to provide
a solid basis for the development of practical annotating applications. In this manner, this thesis
has contributed to development of corpora that eventually can be used to train machine learners
on the difficult task of detecting and classifying argumentation.

1http://www.arg.dundee.ac.uk/

41

http://www.arg.dundee.ac.uk/

7.3 Future research

Two directions for future studies are suggested, one concerning the evaluation of the framework
as it is proposed in this document, the other working on extensions or improvements.

7.3.1 Evaluation

Annotating Recall from chapter 6 that the current framework is not ready for annotating yet.
Some work needs to be done before the framework can be used and evaluated.

First, the database design needs to be implemented (in SQL, for instance). Then, a user
interface needs to be created or an existing interface modified. For instance, a combination of
an annotating interface like GATE 2and the existing user interface of Araucaria. Finally, the
procedural description needs to be elaborated.

Performance measures How the reproducibility and stability can be assessed is described in
[15]. These quality measures were already computed for the framework by Mochales [5], so a
comparison can be made. Computing these measures for Araucaria’s AIFdb would determine
ArgAF’s position once more.

The convenience of the ArgAF for the annotating task is less easy to measure, but should add
to the valuation of the framework. This is expected to depend greatly on the user interface.

Machine Learning The usability of the framework for machine learning of argument detection
and/ or classification is the next goal. There is not yet a definite description of such a task, but a
comparison of the performance would be an option if it were based on existing research. In [5] the
experiments were focused first on the distinction between argumentative and non-argumentative
sentences, and later between premises and conclusion. Another series of experiments aimed to
parse documents and detect the complete argument tree-structure.

In [5] the approach was taken to view argument detection as a classification problem. Many
machine learning algorithms exist for such tasks. The identification of the argument structure
was performed with a rule-based parser. One new approach that could be taken in the machine
learning is to use Markov Models, to create a probabilistic predictor based on the sequence of
annotations that are encountered.

Argument processing The ArgAF was developed with a task in mind that has thus far been
described as ‘argument processing’. There is of yet no clear task description, but it would involve
applications such as decision making based on argument evaluation, reasoning agents that add
the arguments to their knowledge base, and perhaps agents that learn from historical arguments.

7.3.2 Improving and extending the framework

A critical discussion of the framework could reveal room for improvement. Some suggestions are
presented here, along with some options for extension of the framework.

Theoretical considerations Some assumptions were made in the specification of the ArgAF.
Other decisions could have been made of course, the effect of which could be the subject of
investigation. The assumptions that are open for discussion include several topics.

One is the choice for argumentation schemes as a leading theory. There is room in the data
model for alternative approaches, but there could be theories that are incompatible with the
current framework. The flexibility of the framework in this sense could be studied.

2http://gate.ac.uk/

42

http://gate.ac.uk/

Also more generally, the role of (critical) questions in argumentation is an interesting topic. Is
the assumption correct that questions do not reside in the argumentation1 domain? What is the
effect of a question on the argument structure? Questions are sometimes disguised statements,
so questions can have divergent illocutionary force.

Enthymemes too are assumed to belong to the argument2 domain in the ArgAF. Is this a
correct assumption? A set of premises is specified for each argument scheme, an argument is
enthymematic if one (or the conclusion) is missing. How can the completeness of these sets be
justified? What about the assumptions that are expressed in the ciritical questions?

Discourse The objective of the ArgAF was to model the argument1 structure. An obvious
direction for extension is to try and model the argument2 structure, that is the argumentative
discourse. A requisite for this approach is to have documents with a (practically) complete
discourse structure, such as verbose transcripts of debates. This comes with new challenges such
as modeling the stages in the discourse and the effect of moves in the dialogue on the status of the
argument. The pragma-dialectical approach could provide notions to accomplish this, although
the question remains whether it is possible to capture natural argumentation in a finite set of
dialogue rules.

Other argumentation theories For the ArgAF, the argumentation schemes theory was cho-
sen as a starting point for the model. However, the options to adopt other theoretic approaches
were deliberately left open. The extent to which this is actually possible is an interesting point
of investigation.

Also alternative versions of the argumentation schemes theory could be investigated. For
instance, the possibility of creating a classification system of argument schemes, seeing schemes
as subtypes of others. This idea is elaborated in [3, chapter 10]. This approach might require a
modification of the forms layer in the data model, and correspondingly in the database.

Relations between assertions As suggested in 2.2, deriving the relation between assertions
from their content would be an interesting extension. A conflict relation can be more sophisticated
than the relation between a statement p and its classical negation ¬p, and this goes for agreement
relations as well. To begin, [3, section 7.2] suggests different types of opposition that can be
distinguished.

Procedure As was indicated before, the procedure might be subject of improvement by con-
sulting the annotators of a pilot. Alternatively, another procedure for the annotating task can be
established. For example, an intermediate comparison of the annotation results could be inserted
after stage 1, resulting in a common basis for stage 2.

43

Bibliography

[1] T. Bench-Capon and P. E. Dunne, “Argumentation in artificial intelligence,” Artificial In-
telligence, vol. 171, pp. 619–641, 2007.

[2] C. Reed and G. Rowe, “Araucaria: software for argument analysis, diagramming and repre-
sentation,” International Journal on Artificial Intelligence Tools, vol. 13, pp. 961–979, 2004.

[3] D. Walton, C. Reed, and F. Macagno, Argumentation Schemes. Cambridge University Press,
2008.

[4] V. W. Feng and G. Hirst, “Classifying arguments by scheme,” in Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics, pp. 987–996, 2010.

[5] R. Mochales Palau, Automatic detection and classification of argumentation in a legal case.
PhD thesis, Katholieke Universiteit Leuven, 2011.

[6] N. Ide, L. Romary, and E. de la Clergerie, “International standard for a linguistic annotation
framework,” in Proceedings of the HLT-NAACL 2003 workshop on Software engineering and
architecture of language technology systems, vol. 8, pp. 25–30, Association for Computational
Linguistics, 2003.

[7] N. Ide and L. Romary, “Towards international standards for language resources,” in Evalu-
ation of Text and Speech Systems (L. Dybkjæ r, H. Hemsen, and W. Minker, eds.), vol. 37
of Text, Speech and Language Technology, ch. 9, pp. 263–284, Springer Netherlands, 2007.

[8] N. Ide and K. Suderman, “GrAF: A graph-based format for linguistic annotations,” in LAW
’07 Proceedings of the Linguistic Annotation Workshop, pp. 1–8, 2007.

[9] E. Pianta and L. Bentivogli, “Annotating discontinuous structures in XML: the multiword
case,” in Proceedings of LREC 2004 Workshop on XML-based Richly Annotated Corpora,
pp. 30–37, 2004.

[10] H. Prakken and G. Vreeswijk, “Logics for defeasible argumentation,” in Handbook of Philo-
sophical Logic (D. Gabbay and F. Guenthner, eds.), vol. 4, pp. 218–319, Kluwer Academic
Publishers, second ed., 2002.

[11] H. Prakken, “AI & law, logic and argument Schemes,” Argumentation, vol. 19, pp. 303–320,
2006.

[12] F. H. van Eemeren, Crucial Concepts in Argumentation Theory. Amsterdam University
Press, 2001.

[13] F. Bex, H. Prakken, and C. Reed, “A formal analysis of the AIF in terms of the ASPIC
framework,” in Computational Models of Argument: Proceedings of COMMA 2010, pp. 99–
110, 2010.

[14] C. Reed, S. Wells, K. Budzyńska, and J. Devereux, “Building arguments with argumenta-
tion: the role of illocutionary force in computational models of argument,” in Computational
Models of Argument: Proceedings of COMMA 2010, pp. 415–426, 2010.

44

[15] S. Teufel, J. Carletta, and M. Moens, “An annotation scheme for discourse-level argumen-
tation in research articles,” in Proceedings of the Ninth Conference on European Chapter of
the Association for Computational Linguistics, (Morristown, NJ, USA), p. 110, 1999.

[16] D. Walton, Informal Logic: A Pragmatic Approach. Cambridge University Press, 2008.

[17] C. Chesñevar, J. Mcginnis, S. Modgil, I. Rahwan, C. Reed, G. Simari, M. South, G. Vreeswijk,
and S. Willmott, “Towards an argument interchange format,” The Knowledge Engineering
Review, vol. 21, p. 293, 2006.

[18] I. Rahwan and C. Reed, “The argument interchange format,” in Argumentation in Artificial
Intelligence (G. Simari and I. Rahwan, eds.), ch. 19, pp. 384–402, Springer US, 2009.

[19] I. Rahwan, F. Zablith, and C. Reed, “Laying the foundations for a World Wide Argument
Web,” Artificial Intelligence, vol. 171, pp. 897–921, 2007.

[20] J. Visser, F. Bex, C. Reed, and B. Garssen, “Correspondence between the pragma-dialectical
discussion model and the argument interchange format,” Studies in Logic, Grammar and
Rhetoric, vol. 23, pp. 189–224, 2011.

[21] J. Lawrence, F. Bex, C. Reed, and M. Snaith, “Aifdb: Infrastructure for the argument web,”
in Computational Models of Argument: Proceedings of COMMA 2012, pp. 4–5, 2012.

45

Appendix A

Example Database

An example instantiation of the database is presented in this appendix, along with a working
example. All superfluous zeroes in identiefiers were omitted. The appendix comprises of the
following figures and tables:

• In table A.1 the forms layer is instantiated. Minimal instances of the tables are given, with
Argument from position to know (figure A.1) and Argument from memory (figureA.2). The
mapping to the scheme sets is omitted here.

• In table A.2, the annotation schemes layer is instantiated. Only locutions and statements
are included. The mapping to scheme sets is omitted again.

• A text fragment is presented in figure A.3 with a dialogue containing a classical example of
the argument from position to know. The same text with character offsets displayed is also
given.

Although the fragment is much less complicated in language and structure, it resembles the
documents the ArgAF is designed for as it is a resumé of discourse.

• In table A.3, the object layer is instantiated. The meta information (viewpoint and times-
tamp) are omitted. The information in italics and between brackets is provided for clarity,
it is not stored in the database.

• In table A.4, the upper layer is instantiated. Again, the meta information is omitted.

• The corresponding argument structure is displayed in a diagram in figure A.4. The nodes
are numbered to match the database instances. In the diagram, I-Nodes have two anchors
for descriptors, corresponding to the incoming and outgoing edges.

Figure A.1: Argument from position to know, as described in [3, page 309]

ARGUMENT FROM POSITION TO KNOW

Major Premise: Source a is in position to know about things in a certain
subject domain S containing proposition A.
Minor Premise: a asserts that A is true (false).
Conclusion: A is true (false)

Critical Questions

CQ1: Is a in a position to know whether A is true (false)?
CQ2: Is a an honest (trustworthy, reliable) source?
CQ3: Did a assert that A is true (false)?

46

Figure A.2: Argument from memory, as described in [3, page 346]

ARGUMENT FROM MEMORY

Premise 1: Persom P recalls φ.
Premise 2: Recalling φ is a prima facie reason to believe φ.
Conclusion: It is reasonable to believe φ

Critical Questions

CQ1: Was φ originally based on beliefs of which one is false?
CQ2: Is φ not originally believed for other reasons?
CQ3: Does the agent who recalls φ express doubt about φ?

Figure A.3: Example dialogue

Vera and Paul, who live in a
small village in the south, had
visited Amsterdam. They de-
cided to return home and headed
for the train station. Vera sug-
gested to go right because she
just asked a someone for direc-
tions. Paul argued those city
people can’t be trusted, they
came from the left this morning.

[000]Vera and P[010]aul, who l[020]ive in a s

[030]mall villa[040]ge in the [050]south, had

[060] visited A[070]msterdam. [080]They decid

[090]ed to retu[100]rn home an[110]d headed f

[120]or the tra[130]in station[140]. Vera sug

[150]gested to [160]go right b[170]cause she

[180] just aske[190]d a someon[200]e for dire

[210]ctions. Pa[220]ul argued [230]those city

[240] people ca[250]n’t be tru[260]sted, they

[270] came from[280] the left t[290]his morni

[300]ng.

47

Table A.1: Example database entries for the arguments in figures A.2 and A.1 (forms layer)

(a) Scheme

schemeID name schemeType

1 “argument from position to know” “Inf”
2 “conflict from dishonesty” “Conf”
3 “argument from memory” “Inf”
4 “Conflicting statements” “Cond”

(b) Descriptor

descriptorID text

1 “Source a is in position to know about things in a certain
subject domain S containing proposition A”

2 “a asserts that A is true”
3 “A is true”
4 “a is not an honest (trustworthy, reliable) source”
5 “Person P recalls φ”
6 “Recalling φ is a prima facie reason to believeφ
7 “It is reasonable to believe φ
8 “B is true”

(c) SchemeUsesScheme

user-
SchemeID

used-
SchemeID

1 2

(d) SchemeUsesDescriptor

schemeUses-
DescrID

user-
SchemeID

used-
DescriptorID

role

1 1 1 “Prem”
2 1 2 “Prem”
3 1 3 “Conc’
4 2 4 “Prem”
5 3 5 “Prem”
6 3 6 “Prem”
7 3 7 “Conc”
8 4 8 “Prem”
9 4 3 “Prem”

Table A.2: Example database entries for “Locution” and “Statement” (annotation schemes layer)

(a) AnnotationType

annotation-
TypeID

name

1 “Statement”
2 “Locution”

(b) AnnotationNeedsReferent

annotation-
NeedsRefID

annotation-
TypeID

role

1 2 “Speaker”
2 2 “Verb”
3 2 “Content”

48

Table A.3: Example database entries for the dialogue in figure A.4 (object layer)

(a) Annotation

annotationID annotationTypeID

1 2 (Locution)
2 1 (Statement)
3 1 (Statement)
4 2 (Locution)
5 1 (Statement)
6 1 (Statement)

(b) TextSegment

textSegmentID startOffset endOffset

1 142 215 (Vera suggested to go right because she just
asked a someone for directions)

2 142 145 (Vera)
3 147 155 (suggested)
4 157 167 (to go right)
5 176 215 (she just asked a someone for directions)
6 218 302 (Paul argued those city people can’t be trusted,

they came from the left this morning)
7 218 221 (Paul)
8 223 228 (argued)
9 230 263 (those city people can’t be trusted)
10 266 302 (they came from the left this morning)

(c) AnnotationRefSeg

from-
AnnotationID

toText-
SegmentID

annotation-
NeedsRefID

1 1 NULL
1 2 1 (Speaker)
1 3 2 (V erb)
2 4 NULL
3 5 NULL
4 6 NULL
4 7 1 (Speaker)
4 8 2 (V erb)
5 9 NULL
5 10 NULL

(d) AnnotationRefAn

from-
AnnotationID

to-
AnnotationID

annotation-
NeedsRefID

1 2 3 (Content)
1 3 3 (Content)
4 5 3 (Content)
4 6 3 (Content)

(e) ExpressingStatements

annotationID iNodeID

2 1
3 2
5 3
6 6

49

Table A.4: Example database entries for the dialogue in figure A.4 (upper layer)

iNodeID text

1 To reach the train station, we should go right
2 A passer-by said the train station is rightwards
3 City people cannot be trusted
4 A passer-by knows the way in his town
5 To reach the train station, we should go left
6 Paul remembers that the train station was left
7 Paul could know, they came along this spot

(a) INode

sNodeID schemeID

1 1
2 2
3 4
4 3

(b) SNode

from-
SNodeID

toINodeID schemeUses-
DescrID

4 5 7
1 1 3

(c) EdgeS2I

from-
SNodeID

toSNodeID

2 1

(d) EdgeS2S

fromINodeID toSNodeID schemeUses-
DescrID

7 4 6
6 4 5
5 3 8
1 3 9
2 1 2
4 1 1
3 2 4

(e) EdgeI2S

50

Figure A.4: Example argument structure

INode 1

To reach the train sta-
tion, we should go right

SNode 1 (RA)

INode 2

A passer-by said the train
station is rightwards

INode 4

A passer-by knows
the way in his town

SNode 2 (CA)

INode 3

City people can-
not be trusted

1 (Argument from
position to know)

3 (A is true)

2 (a asserts that A is true)

1 (Source a is in position
to know about things in a
certain subject domain S
containing proposition A)

2 (Conflict from
dishonesty)

4 (a is not an hon-
est (trustworthy,
reliable) source)

SNode 3 (CA)

INode 5

To reach the train sta-
tion, we should go left

SNode 4 (RA)

INode 6

Paul remembers that
the train station was left

INode 7

Paul could know, they
came along this spot

4 (Conflicting statements)

8 (B is true)

7 (It is reason-
able to believe φ)

3 (Argument
from memory)

5 (Person P recalls φ)

6 (Recalling φ is a prima
facie reason to believeφ)

51

	Acknowledgements
	Contents
	List of Abbreviations
	Introduction
	Argumentation theory and Artificial Intelligence
	State of the art
	Research goals
	The structure of this document

	Foundations
	Annotation fundamentals
	Argumentation fundamentals
	Documents containing natural argumentation

	Requirements
	A priori requirements
	Evaluation

	Evaluation of Mochales' Framework
	Description of the framework
	Considerations
	Evaluation

	Abstract data model
	AIF: Argumentation Interchange Format
	GrAF: Graph Annotation Format
	A model for the ArgAF

	Specification of the Proposed Framework
	Data format
	The annotations
	Procedural aspects
	How the requirements are met

	Conclusion
	Answering the research questions
	Implications towards the field of Artificial Intelligence
	Future research

	Bibliography
	Example Database

