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Chapter 1

Introduction

Predicting events in time is something that all organisms do on a large part of every day

[1]. It helps them to decide which sequence of actions they need to perform to survive.

Humans for example need to decide when and how much to eat every day based on a

estimation of how much time to the next meal. Because the reality is far too complex

to predict directly, humans predict only on a few things they believe to be true. This is

implicitly a model of those variables and how they are related to each other. If I miss

the train for example I predict that I will also be late for the next train in the planning I

made at home. This is based solely on the departing times I read and believe to be true.

However there are numerous variables I could use to make a prediction. In my personal

opinion predicting is a phenomenon that is strongly connected to intelligence, since it

influences beliefs and therefore planning. Even in a tighter view on human estimation

[2].

Predictions with a large number of variables in time, the so-called time series, are done

mainly with numerical systems [3] [4] [5] [6]. As humans have difficulty finding pat-

terns directly from time series, machines can process numbers faster and can therefore

find those patterns in reasonable time. Popular choices of prediction methods include

ARIMA methods [6] and methods based on networks [3]. Both systems are based on a

reinforcement learning paradigm. That is a prediction gets corrected by a (partial) next

observation.

In this project we explore the possibilities of predictions directly from the underlying

patterns. An applicable system is created only very recently [7]. The basic idea is

to see a batch of data as the outputs of a function (just like with ARIMA and neural

networks). If we can find or learn this function we can predict the next time steps. More

specific [7] breaks a sequence of data values, here after called a signal, into component

signals which are easier to predict. Moreover this method in Chapter 5.
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Chapter 1. Introduction 2

Figure 1.1: View of the prediction scheme.

We compare our method with and ARIMA method and a network method. All networks

are modules in our proposed prediction scheme. This scheme incorporates features that

are normally used for time series prediction where data is obtained through sensors.

First we denoise the incoming data. Second we reduce dimensions (if there are a lot

of them) in order to keep the system fast. After that we perform the prediction on

the reduced dimensions. And finally generalize the prediction to all dimensions and

calculate performances. Figure 1.1 gives a schematic view of the scheme. We use this

scheme in order to make the resulting system applicable for the SEAM4-US project,

that is described in Chapter 2.

1.1 Time line

This thesis project will take 9 months in total to finish. From December to February

we will survey literature for techniques that can be used to build up the scheme. After

that we will conduct research on the theory of the prediction techniques. Since this

is the main part of the project we reserve about 3 or 4 months for this. In this time

we also want to test the solution on simulations with data from the Barcelona metro

station. After this step we want to implement our findings, review our work and finally

give suggestions for future research.



Chapter 2

Problem formulation and

background

In this chapter we formulate the problem we want to solve in this thesis project. First

some background and a general description of the problem. Then a translation into a

formal constrained based problem. And finally a strategy of solving the problem and on

which part we will focus. Almost all examples and simulations in this project are based

on data from the project described below.

2.1 SEAM4US

This thesis project is part of the SEAM4US-project1. SEAM4US stands for Sustainable

Energy mAnageMent for Underground Stations. As the name does suspect the objective

of the project is to minimize energy consumption on a regional level. Since underground

transportation systems are among the largest energy consumers in regions, reducing

their energy consumption have a large impact on the energy consumption as a whole. A

way of reducing energy consumption is by optimising the management of systems that

use most of the energy. For example lightning, ventilation, elevator and temperature

regulation systems. On this project work people all over Europe together in order to

create a modular system that manages subsystems of metro stations.

2.1.1 Goal

The goal of the SEAM4US project is a reduction of 5% of the energy consumption of

a metro station on yearly basis. This is a relative small percentage, but with a metro

1http://seam4us.eu/
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Figure 2.1: Schematic view for the SEAM4US Approach.

station the size of Barcalona metro station, it is equivalent to the electricity consumption

of 700 households of a whole year. If every metro station in Europe makes use of this

system we would have an immense energy saving.

2.1.2 Focus

Figure 2.1 gives a schematic overview of the modules of the system. It starts of course

with sensor data from the environment, which is in our case the Barcalona metro station.

That data is then collected at the next stage and structured, which we will call data

fusion. This is done by a system called hydra, which is the core of the entire system.

From there the data will be transferred to modelling and prediction. This will be the

main focus of this project. In this part we will make a prediction model based on

the data provided. This prediction is an estimation whether we can turn down some

system in order to save energy, with adhering to certain constraints. This prediction is

then used in controlling the systems. For this purpose we want to make use of an agent

based approach. The prediction part and the control part are closely related because the

prediction part is dependent on feedback from the controlling system and the controlling

system is dependent on the prediction. Finally the commands for the subsystems are

collected by the core system and then send to the subsystems themselves. Also in this

stage we get feedback from the systems, e.g. in case of system malfunction.

Our focus will be on the prediction and the control of the subsystems. The input for

this module is the structured data and the output are commands for subsystems.
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2.2 Scientific problem formulation

We will define the general problem more formally as a objective-constraint problem.

2.2.1 Objective

The objective of the SEAM4US project is to realize energy consumption minimizing

strategies si, where i is an index of a subsystem (i.e. a fan or a light). A strategy for

a fan for example can be on which times during the day it is on the highest frequency

or for a light at which time steps of the day it is off. Strategies are thus sequences of

commands and are based on the prediction of context information, e.g. temperature

and airflow. More formally the objective is:

∫
t

∑
i

e(si)dt (2.1)

Where e(si) is the energy consumption with use of si. Which states we look for the best

combination of strategies, that in our case minimize energy consumption.

2.2.2 Constaints

If we minimize the energy consumption for a metro station, we should of course make

sure that the people using this facility keep a certain level of comfort. Turning off

ventilation for example saves a lot of energy, but makes the place very inhospitable in

a matter of hours. For this purpose we define constraints that are divided into two

categories, namely the comfort level constraints and the operational constraints. The

comfort Level constraints are to keep the metro fully operational and hospitable. We

define these constrains as:

• TempL ≤ Temp(x, t) ≤ TempH

• AirflowL ≤ Airflow(x, t) ≤ AirflowH

• HumL ≤ Hum(x, t) ≤ HumH

• Co2L ≤ Co2(x, t) ≤ Co2H

• LumL ≤ Lum(x, t) ≤ LumH
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Where Temp stands for the temperature, Hum stands for humidity, Co2 the percentage

of CO2 in the air and Lum for lumination. L and H are the minimum and maximum

respectively. Furthermore x is a value and t the time at which that value occurs.

In order to keep all equiment running smoothly we also have one operational constraint.

When a fan for example, gets turned off/on too many times in a short period, it will

has a higher chance of breaking down. To make sure that strategies don’t change to

radically between time steps we have te constraint:

|si(t+ 1)− si(t)| < C (2.2)

C is a maximum at which states may change between time steps.

The solution we want to create unifies the objective with the constraints.

2.2.3 General solution strategy

The solution strategy we want to pursue lies in Model Predictive Control (MPC) [8].

As the name does suspects MPCs use models that represent the behaviour of complex

processes. Based on the models a prediction is made which can be used for influencing

the system in some way. A simple example is the case where the model predicts high

temperature for tomorrow and we make sure the fans are on high frequency. Furthermore

MPC is a multivariable process consisting of a dynamic model, past observations and a

cost function over strategies on all time steps. Our main focus is creating the predictive

model.

2.3 Model construction and prediction

Since there are a lot of fans, elevators, lights and so on, we get a huge amount of data

that keeps growing over time. In order to cope with this we have to have an efficient

algorithm that updates our model incrementally, i.e. as data comes in the model gets

updated. The model itself consists of state of the system. With it we want to predict

the dependent variables, e.g. the temperature, in order to influence the independent

variables, e.g. the fan frequency. In the next chapters we will describe how we can

create such a model and draw predictions from it.



Chapter 3

Survey of smoothing and filtering

techniques

In this chapter we give a broad overview of techniques that can be used for prepossessing

sensory data. Measurements from sensors are often noisy. If for example someone stands

before a temperature sensor at the time the sensor measures we get a spike in the data.

Of course we dont want this spike to influence our prediction. Two common ways to

do this are by smoothing or filtering. Because we have high dimensional data it is

important we look for techniques that can be used incrementally, i.e. process new data

as it becomes available. Also the computational costs of techniques becomes important

on bigger data sets.

3.1 Smoothing

In order to de-noise the data we can smooth the data. This simply means we give an

approximation function in which every data point gets modified so that the outcome

is a smoother signal and the heights of spikes are lessened. This will leave us with a

more robust system. In our case we also look for something that is incremental since we

have high dimensional data that keeps growing over time, i.e. as time progresses more

data points come in. Also on the point of high dimensional data is that we want an

smoothing algorithm that has as low complexity as possible. Many different techniques

are introduced and this section we will give a review of some of them, namely:

• moving average

• exponential smoothing

7
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• Savitzky-Golay smoothing

• total variation reconstruction

3.1.1 Moving average

We start off with one of the oldest and best-known techniques called the moving average.

Smoothing the signal is done by taking the averages of sequences of raw data. The length

of those sequences have to be odd, because we want for every data point a modification

based on the average of a sequence where that data point is the middle. The length of

the sequence over which we take the average is called the filter width f . For example if

we have a f of 5 and we modify the 3rd data point in an data array, we take the average

of the data point 1 to 5. The formula of the moving average is given by:

yt =

∑k
i=−k xt+i

f
(3.1)

Where yt is the moving average of a sequence of which xt is the middle and f = 2k+ 1.

Examples are given in appendix A for a couple of filter widths. Larger filter widths

smooth the data more, i.e. the smoothed signal reacts less to fluctuations in the original

signal. From this the trade-off between reducing noise and distorting the signal becomes

clear. The moving average can be used incrementally, which means that if new data

comes in it can be used for prediction. However there will be a lag of the size (f − 1)/2,

since we need those data points to calculate the moving average for the middle data

point.

3.1.2 Exponential smoothing

Exponential smoothing [9] is in some way similar to the moving average. It also calculates

averages but gives weights to every data point. More specifically as the values get

older values they get assigned exponentially decreasing weights. Predictions with the

exponential smoothing technique will be influenced more by the recent data points. Our

only use of exponential smoothing will be the smoothing itself, which can be done with

the following formula:

yt = αxt + (1− α)yt−1 (3.2)
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Where yt is the smoothed value of data point xt and α is a smoothing paramether, the

higer this parameter the more it reacts to fluctuations in the original signal. Initially,

y0 = x0.

The lower the smoothing parameter the more the signal is smoothed as can be seen in

appendix A. These examples also show that the more the signal is smoothed the more

lag we introduce, i.e. the smoothed signal is behind the original signal. This means that

we might lose information about trends in the data which will be very important in the

prediction step. With the moving average we just shifted the signal filterwidth− 1/2.

To cope with this problem for exponential smoothing we can apply the exponential

smoothing also backwards and average over the two [10], called Centered Exponential

Moving Average (CEMA). The complete formula for the smoothing then becomes:

yt = α

(
xt +

∑N
i=1 (1− α)i (yt−i + yt+i)

2

)
(3.3)

Where N is the number of data points.

Examples in appendix A show indeed that the lag is gone as to the normal Exponen-

tial smoothing. Since there is no theoretical way to get a good α, researchers rely on

experimentation for this.

3.1.3 Savitzky-Golay smoothing

Another smoothing technique that has properties in common with the moving average

is called Savitzky-Golay smoothing (SG-smoothing) [11], [12]. While moving average

takes the average of a certain window, the SG-smoothing fits a polynomial to the data

points in that window. This is preferred over the moving average since it distorts the

original signal less.

For SG-smoothing we need two parameters. One is the filter width and the other is the

polynomial degree we want the data to fit too. Most common degrees are two to five.

Smoothing with degree two is also called quadratic smoothing.

As SG-smoothing makes use of least squares regression [13], we can efficiently compute

the smoothed value for every data point with the formula:

yt =

∑nR
i=nL

cixt+i∑nR
i=nL

ci
(3.4)
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Where nL is the number of data points to the left, nR the data points on the right and

ci is a polynomial coefficient.

It is computationally very inefficient to fit a polynomial for every data point, but since

the least squared regression takes only matrix inversions we can calculate the coefficients

in advance [12].

This technique allows for non-linear smoothing, i.e. we take a window with more points

on the right than on the left of the data value we want to smooth. Which means that

with a little more computational effort we can eliminate lag. Of course under the basic

assumption that values are dependent on past and future values.

Examples of SG-smoothing are in appendix A.

3.1.4 Total variation reconstruction

Total Variation Reconstruction (TVR) [14] is somewhat different from the techniques

introduces so far. First of all it assumes that:

yt = xt + wt, t = 0, ..., t = N − 1 (3.5)

Where yt is the noisy original signal, xt a piece wise constant signal and wt is white

noise, i.e. noise with a zero mean. That noise is white is a reasonable assumption, since

noise is probably normally distributed.

Secondly, TVR uses all the data points instead of a moving window, making it less

practical for large data sets.

TVR minimizes the total variation and a distance measure between x and y. The total

variation for a signal xt is defined as:

TV (x) =
N−1∑
i=1

|xi+1 − xi| (3.6)

And a distance measure, e.g. the Sum of Squared Errors (SSE) between the approxi-

mated signal y and the input signal x:

SSE(x, y) =
1

2

N−1∑
i=1

(xi − yi)2 (3.7)
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Figure 3.1: A rapid variation in data. For the top figure quadratic smoothing was
used and for the bottom figure TVR. While the variation is in this case important to
model, the TVR method works well. The quadratic smooth however loses some of the

signal, i.e. distorts the signal

Which leads to the minimization problem:

argmin
x

N−1∑
i=1

(xi − yi)2 + λ

N−1∑
i=1

|xi+1 − xi| (3.8)

Where λ is a regulation parameter, which emphasizes the total variation term, in this

case a higher λ means more smooting.

The solution to the minimization problem 3.8 is the smoothed signal. TVR was de-

signed for data with rapid variations. While quadratic smoothing (SG-smoothing with

polynomial degree 2) smooth these variations out, TVR preserves the occasional rapid

variations in the original signal. Figure 3.1 shows this clearly. The Figure and the exam-

ples of TVR in appendix A were made by a java implementation of a recent developed

fast algorithm [15].

3.2 Filtering techniques

Another way of de-noising data is by applying filters. Using filters is mostly the same

as smoothing. Most filters can be used for smoothing and smoothing techniques can

be written as filters but not all. There are a few differences. Firstly, filters are applied

during evaluation, which means as new data comes in it can be processed directly. Some
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smoothing techniques like the Exponential smoothing do this too, but moving average

for example does not. Secondly, filters are computationally less expensive that moving

window techniques in general. An example of this is already given, namely the SG-

smoothing. If we would try to fit a polynomial for every data point we would have

an algorithm with an high run time complexity. However if we write the technique as

a filter, that is as a set of coefficients with linear combinations, we can make a faster

algorithm. Thirdly, some smoothing techniques cannot be undone, while filters are

reversible. An obvious example is the moving average. Fourthly, there is a small differ-

ence in approach. Adjusting the parameters on filters relate to reducing the frequency

of noise in data, while smoothing parameters relate to the reduction of the magnitude of

noise. Another difference is that filters are also used for data compression, while most

smoothing techniques are not. This has also to do with reversibility of the smoothing

operations.

Here we will review the following filters:

• Fourier filter

• wavelet filter

• Kalman filter

• particle filter

3.2.1 Fourier Filter

The Fourier filter is based on the Discrete Fourier Transformation (DFT) [16]. The

theory was devised in the 19th century by Joseph Fourier for a chemistry application.

It shows that every discrete function can be written as the sum of complex sinusoids

also known as frequencies. Time series are said to be in the time domain, since they

are time dependent. Now we transform the data into frequencies and project it on the

frequency domain. Since noise in data has high frequency, i.e. peaks in short time span,

we can easily filter our data if it is written as such a function. Instead of looking for the

total function there is a way to quickly find the coefficients of such a function with the

formula:

Yk =

N−1∑
t=0

xt · e−i2πk/N (3.9)

And its inverse:
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xt =
1

N

N−1∑
t=0

Yk · ei2πk/N (3.10)

Where Yk is the new sequence known as the Fourier series and i is the complex part of

a number.

The coefficients that are relatively low represent the short peaks and the higher peaks

represent the longer waves in the data. We can now just change every coefficient between

two certain values to zero. This technique is called thresholding. The threshold values

determine the smoothing, i.e. if more values are set to zero we get a smoother result.

After this we use the Inverse Fourier Transformation (IFT) to get an approximation of

our input data.

The examples in appendix B are an implementation of the Fast Fourier Transform

(FFT) [17] of the commons math library1. This algorithm has a runtime complexity of

O(nlogn), which is an significant improvement over a nave implementation which takes

O(n2) runtime. However this algorithm has one extra assumption, namely the input

data has to be a power of two. Since our example data has 2293 data points we show

filtering for 2048 data points. Furthermore we only use the real part of the complex

output, since the input is purely real valued.

3.2.2 Wavelet filter

The wavelet filter is based on an approach similar to the Fourier filter [18]. As the

Fourier transformation is based on infinite waves, the wavelet transformation is based

on wavelets. Wavelets are finite waves that most of the time start high and die out over

time. An example is given in Figure 3.2. This wavelet can then be scaled and dilated

with the data. Again we are looking for coefficients rather than a function. In the case

of a wavelet it is an square-integrable sequence called the wavelet series. The wavelet

we start with is referred to as the mother wavelet and for every mother wavelet the

coefficients are calculated differently. As an example we take the simplest of mother

wavelets called the Haar wavelet. The formula for the Haar wavelet (plot in Figure 3.3:

yt =


1 0 ≤ t ≤ 1/2,

−1 1/2 ≤ t ≤ 1,

0 otherwise

(3.11)

A simple algorithm for calculating the Haar Wavelet Transform (HWT) on data:

1http://commons.apache.org/math/
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Figure 3.2: Linear B-spline wavelet.

Figure 3.3: Haar wavelet.

1. Initialize an Array with the same size as the input data.

2. Calculate the average of each consecutive pair of data values.

3. Calculate the difference between the average and the first value of each pair.

4. Fill the first half of the array with the averages and the second with the differences.

5. Repeat with the first half of the Array.

Since we divide every iteration by 2, our input size needs to be a power of 2 just as with

the Fourier transform.

Then we can do thresholding just as with the Fourier transform and reverse the algorithm

above to get an approximation of our input data. Examples are given in appendix B.

3.2.3 Kalman Filter

The Kalman filter is a filter that is studied more extensively [19]. The filter recursively

minimizes the Mean Squared Error (MSE) of the estimated state with the actual state

of a process or signal. Furthermore it keeps track of the current state of the process and
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the measurements (the data), so we can use it incrementally. The algorithm for Kalman

filtering:

1. Initialize:

(a) A, the state transition matrix.

(b) B, the control input

(c) H, the vector representing the state of the measurements.

(d) Q, the covariance matrix for the noise of the process.

(e) R, the covariance matrix for the noise of the measurements.

2. Compute the Kalman gain Kt.

3. Update the estimate using Kt and a measurement.

4. Update the covariance matrix with the estimate.

5. Calculate the state for t + 1.

6. Go to 2.

Formula for the Kalman gain:

Kt = P ′tH
T (HP ′tH

T +R)−1 (3.12)

Where P t is the differential of the MSE on time t.

Formula for updating the estimate:

x̂t = x̂′t +Kt(zt −Hx̂′t) (3.13)

Where x̂t is the updated estimate of data point x, x̂′t is the old estimate of x and zt is

the actual measurement. The term zt −Hx̂′t is called the innovation.

Formula for updating the error covariance with maximal gain:

Pt = (I −KtH)P ′t (3.14)

Where I is the vector representing the innovation.

Formulas for calculating the next state:

x̂′t+1 = Ax̂t

Pt+1 = APtA
T +Q

(3.15)
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Figure 3.4: Kalman filter on very noisy data.

An example on the example data is given in appendix B. However this filter works better

on data that has noise of bigger magnitude. This is shown in Figure 3.4. These examples

where implemented with the commons math library.

3.2.4 Particle Filter

The last filter we want to discuss is the particle filter [20]. Like the Kalman filter it is

based on estimates from states. A Kalman filter however assumes that noise is Gausian

and the system is linear, while this is not needed for the particle filter. The state for a

particle filter is a Probability Density Function (PDF) represented as a set of weighted

samples. As the number of samples is going to infinity, this set converges to the PDF.

The sum of the weights has to be 1. The algorithm for the particle filter:

1. Initialize: sample particle values xi,t from an initial distribution p(x0).

2. Preform Importance sampling step:

(a) Sample xi,t from a freely chosen distribution q(xt|xi,t−1, zt) (zt is a data point)

(b) Update corresponding weights with: wi,t ∝ wi,t−1 p(zt|xi,t)p(xi,t|xi,t−1)
q(xi,t|xi,t−1,zt)

3. Normalize weights so they sum up to 1.

4. Extract state estimate.

5. Resample if necessary.

6. Go to 2.

Resampling is a solution for the degeneracy problem, i.e. after a few iterations most

particles have weights very close to zero and we waste computational effort on them.

Resampling throws away all particles with weights that are too small and draws a new

set of particles from the old set of particles according to the weight importances. A

method that looks like natural evolution.
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A disadvantage of the Particle filter is that is computationally expensive filter as compare

to the Kalman filter. The complexity of the algorithm above grows linearly with the

number of particles which relate to the accuracy of the estimates. So there is a clear

trade-off between the accuracy and the complexity. For large data sets it is reasonable

to assume that the noise is Gaussian which leaves us with the Kalman filter as the better

choice.

Two examples are given in appendix B.



Chapter 4

Survey of prediction techniques

In this chapter we will review some techniques that can be used for building the model

and get useful predictions from it. We review techniques that shrink the data, finds

underlying patterns in the data and techniques that use past observations in order to

predict.

4.1 Interdependencies

First we want to shrink the data if possible, in order to make other techniques applicable.

A general way to do this is looking for strong interdependencies in the data. An example

of this are the temperature sensors in the Barcelona metro station. If one sensor measures

an increase in temperature it is likely that other temperature sensors will do the same.

In this case we dont have to make a prediction for all variables related to temperature

but only one and then maybe scale it to the interdependent variables.

4.1.1 Principal Component Analysis

Principal Component Analysis (PCA) [21] is a tool for shrinking the dimensions of large

data sets. In this analysis we look for the variable that is the best representation of a

given data set. PCA consists of the following steps:

1. Subtract the mean of the values of a variable from every data point.

2. Calculate the covariance matrix.

3. Calculate the eigenvectors and the eigenvalues of the covariance matrix.

4. Mark the eigenvectors with the highest eigenvalues as the principle components

and put them in a so called feature vector.

18
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5. Multiply the transposed feature vector with the mean subtracted transposed data.

The number of principle components can be chosen freely in range of 1 to the number of

dimensions. The trade off with PCA is the variance information left in the transformed

set and the reduction of dimensions. The total variance that is accounted for is exactly

the sum of the eigenvalues (computed in step 3) in the feature vector divided by the

sum of all the eigenvalues.

In order to get the old data back we multiply the transposed feature vector with the

data we got from step 5 and add the mean.

4.1.2 Cross-Spectral Analysis

As PCA looks for cross-correlations in the time domain Cross-Spectral Analysis (CSA) [22]

does this for the frequency domain. In other words CSA looks for correlations at differ-

ent frequencies. If we have two variables Xt and Yt then the cross-covariance is defined

as:

γi(XY ) =
∑
j

XjYi+j (4.1)

The cross-spectrum ΓXY (ω) is the Fourier transformation (see section 3.2.1) of γXY (ω),

where ω is the given frequency. ΓXY (ω) can be decomposed in a real part ΛXY (ω) and

an imaginary part ΨXY (ω)i. From those components we can calculate the amplitude

spectrum with the formula:

AXY (ω) =
√

ΛXY (ω)2 + ΨXY (ω)2 (4.2)

The amplitude spectrum is like a normal set of amplitudes but now in the frequency

domain. With these amplitudes we can check if two signals correlate. This is done by

use of the coherency spectrum which can be calculated with:

κXY (ω) =
AXY (ω)2

ΓXX(ω)ΓY Y (ω)
(4.3)

κXY (ω) is a dimensionless number that works the same as the normal correlation coef-

ficient.
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4.2 Patterns

If we take for example a week consisting of 7 days of 24 hours with observations every

5 minutes (the example data to make the figures in Chapter 3), then probably there is

some pattern that shows days. This is probable because at night there are less people

which means that many subsystems will need less energy. Of course it is very useful to

know these patterns if we are to make a good prediction.

4.2.1 Fourier Analysis

Fourier analysis is already described in section 3.2.1. The only difference is that our

goal is different. In section 3.2.1 we wanted to filter out the high frequency noise and

here we want to isolate certain components of the signal which will be mostly the low

frequencies. The low frequencies often show periodicity in data. As is shown in the

Fourier filter examples in appendix A we can isolate the day filter easily since it is the

most low frequency component. We can do this for every part of the week and look for

example for rush hour patterns that maybe important for the energy consumption of

the subsystems.

4.2.2 Wavelet Analysis

Just like the Fourier analysis we can do a wavelet analysis (see section 3.2.2). That

is we wavelet transform the data and we set certain wavelet coefficients to zero. This

basically eliminates those localized frequencies. If we then transform the data back the

frequencies that were not eliminated can be shown. The advantage over the Fourier

transformation is that we can find the frequency at different time steps and not only

find some wave over the whole timespan. In a sense the wavelet analysis is a more refined

version of the Fourier analysis. Another advantage is that wavelet transforms are often

computationally less expensive and in that way better applicable for large datasets.

4.2.3 Slow Feature Analysis

A more recent developed analysis that looks for patterns in data is the Slow Feature

Analysis (SFA). The purpose of SFA is extracting the slow varying components of a

quickly varying signal. We do this by searching for a function g(x) that given the input

signal has the most slowly varying component as output. We do this by applying a

vector of basic functions h(x), which are all monomials of degree 1 or 2, to the input

signal. Functions in h(x) maybe nonlinear and the result is a nonlinear expanded signal
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z(x). After this we sphere the expanded signal to make sure we get a zero mean and a

unit covariance matrix. This is basically choosing the matrix S in:

z′(t) = S(z(t)− 〈z〉) (4.4)

Where 〈z〉 is the average of z(x).

Choosing S can be done with PCA (see section 4.1.1). After that we take the derivative

of z(t) and look for the eigenvector with the smallest eigenvalue a. Again this can be

done with PCA. Now the output signal y(t) is given by:

y(t) = aT z′(t) (4.5)

Which shows the most slow varying component.

4.3 Time series prediction

Now we have arrived at the main part of the predictive model, namely the function that

actually makes the prediction. Although we have already introduced some simple func-

tions that can make predictions, like the exponential smoothing, the Kalman filter and

the Particle filter, this mini survey is more about Artificial Neural Networks (ANNs) [23].

Reasons for this choice are that ANNs are used in prediction systems before with success

and the empirical prove that these networks are far more robust that most techniques.

Moreover ANNs can be used for online learning on large data sets but are rather costly

to train.

4.3.1 MultiLayer Perceptron

One of the simplest type of ANN is the MultiLayer Perceptron (MLP) [3]. It consist of

an input layer, one or more hidden layers and an output layer in that topological order.

The nodes of each layer are fully connected to the next. The connections represent

weights. Each node has an activation function which describes the information flow

through the network. If this is a linear function the whole MLP will be linear, but

for nonlinear prediction we need a nonlinear activation function. The training of the

network is done by a supervised learning technique called back propagation which is

based on the minimization of the SSE. The algorithm is as follows:
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1. Feed the information, e.g. time series, to the input layer and calculate via all layers

the output for the output layer.

2. Calculate backwards through the network the errors for each node.

3. Update the weights with w′ij = wij + α(errorj · outputi), where α is a learning

parameter 0 < α < 1.

Commonly the Sigmoid function is used and in that case the error is calculated as:

errori = outputi(1− outputi)(targeti − outputi) (4.6)

This is because we want to use the gradient, derivative of the activation function, instead

of the absolute value to make sure we have the lowest SSE over the data in the end.

After the training we feed the latest data points to the network and the output values

of the output layer is the prediction of the next time step.

4.3.2 Spiking Neural Network

A more sophisticated ANN is the Spiking Neural Netwok (SNN) [4]. This network model

is said to be more biological plausible since SNN allows for much faster data processing.

This is because every signal is encoded as a number of spikes called the spiketrain,

rather than a real value. So instead of neurons that fire every propagation cycle we have

a threshold for every neuron and firing happens only when the sum of its inputs is above

the threshold. This sum is called the potential and is leaky, meaning that newer spikes

make higher contributions.

The activation function in a SNN is some step-function, which results in every output

being the same. However after the firing of a neuron it is scaled by the weight so

that every spike may have a different effect on the potential of the next neuron. The

information through the network is encoded in the timing of the spikes and not in the

height of the spikes.

The training algorithm can look like that of the MLP. But other novel methods have

been developed [24] or another based on the Hebbian rule [25]:

w′ij =
wij + αv̄x̄)

κ
(4.7)
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Figure 4.1: The top figure are the standard units and the bottom the units for a
TDNN. Ui are nodes, wi are weights, and F is the activation function.

Where v̄ and x̄ are the average spikes at a stable firing state and κ is a normalization

factor. The use of this rule makes neurons fire synchronously which is useful for detecting

image features.

4.3.3 Time Delay Neural Network

A network that was specially designed for recognizing and predicting temporal patterns

is the Time-Delay Neural Network (TDNN) [5]. The TDNN introduces the concept of

short term and long term memory in the network. We still try to minimize the SSE by

back propagation which represents the long term memory but we introduce delays in

the network that are equivalent to short term memory. Figure 4.1 shows the difference

in basic units in a MLP and a TDNN. The number of delays decides the window of the

short term memory. If we have for example three delays of one cycle each the network

compares the current input with the history of the three other events in the window.

Because of the number of weights and the large number of iterations for training, the

back propagation is computationally expensive. But it is possible to start the learning

process offline and put the weights in the online model which than can continue to learn

online.

4.3.4 Bayesian Network

In order to understand the Dynamic Bayesian Network (DBN) we first have to describe

a Bayesian Network (BN) [26]. BN is a graphical model of conditional independences
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Figure 4.2: A simple Bayesian network. X and Y are conditionally independent given
Z. The joint probability distribution is: P (XY Z) = P (X|Z)P (Y |Z)P (Z)

Figure 4.3: A DBN in three time steps. The edges between the states are the temporal
components.

among variables. The model is represented as a Directed Acyclic Graph (DAG). In the

graph the nodes represent variables and the edges the dependencies. An example is

given in Figure 4.2.

Dependencies are based on probability theory and the Bayesian rule:

P (X,Y ) = P (X|Y )P (Y ) (4.8)

Where P (X,Y ) is the joint probability of X ∧ Y .

Learning in a BN is done by a process called inference. It is a propagation of beliefs

about some of the variables in the network and computing the probability of each state

of a node. In other words we infer the probability distribution over some variables in the

network given observations of other variables in the network. This strategy is NP-hard

so in practise it is done by approximation algorithms.

In order to use a BN for time series analysis, we allow the BN to change over time. The

states of the BN are often called time slices. Time slices are connected by temporal

relationships that are represented by edges from variables in one slice to variables in the

next. The edges in the BN itself are still representations of dependencies. Figure 4.3

shows this more clearly.

The DBN satisfies the Markovian condition, that is the present is only dependent on

the direct past, i.e. the state on t − 1. In total the DBN now consists of probability

distribution of hidden-state variables and observable variables. From this distribution

and the observable variables we can predict the variables in the future state.
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4.3.5 Support Vector Regression

A more recent prediction method makes use of the Support Vector Machine (SVM) [27]

and is called Support Vector Regression (SVR) [28]. This technique is mostly used for

classification problems but is successfully adjusted to handle regression. In order to train

the SVM we solve the Quadratic Optimization Problem (QOP):

minw,b
1
2w

T · w + C
∑N

t=0(ξt + ξ∗t )

s.t.


yt − (wTφ(t) + b) ≤ ε+ ξt

(wTφ(t) + b)− yt ≤ ε+ ξ∗t

ξt, ξ
∗
t ≥ 0, t = 0, .., N

(4.9)

Where w is the margin (moreover below), yt the value on time step t, φ() a kernel

function, ε the error tolerance, ξt, ξ
∗
t and C are boundaries on the error tolerance, and

b is the intercept of w.

In the classification case we try to find a separation line between two groups of samples,

when projected onto a hyper plane. The samples that are closest to the line are inherently

harder to classify. In order to minimize the error we want a rectangular instead of a line

and we search for a rectangular with biggest possible width. This rectangular is called

the margin w.

In order to make non-linear classification possible we make use of a kernel function φ()

which is commonly chosen as the Gaussian kernel.

The extension to the SVR is made by introducing the ε. Basically we try to find

continuous function with the maximal number of samples on it. The ε widens the

function into a tube. So we search for a function where most samples lie in this tube.

Samples that fall in this tube are not seen as errors, while all others are. As in the

classification case we try to minimize the error.

Finally ξt, ξ
∗
t and C are the boundaries on ε. They give us theoretical guarantees about

the prediction performances.



Chapter 5

Fourier prediction with trend

compensation

5.1 Fourier prediction

The following section is about the main prediction method we explore in this project.

It is related to [7]. The basic idea is that we decompose a complicated signal in to two

or more simple signals. As shown in Chapter 3 we can do this by performing a Fourier

transformation. The theory of Fourier shows that every complex signal can be described

by an infinite number of sinoid signals. Since for our practical solution we can only

use a finite number of signals we make use of the DFT which is an approximation of

the complex signal. As explained in Chapter 3.2.1 we can filter out every one of those

components. The components that we get from the Fourier transform are represented

by complex coefficients. If we order those complex coefficients on the value of the real

part (from high to low), we obtain the frequencies in leading order. This is the order

were the simpler components with the highest amplitudes are on top. Signals with higher

amplitudes contribute more to the original signal and are therefore more important from

an prediction perspective.

If we got all the components we can extrapolate them. Since all components are sinusoids

we need three things from every component:

• The amplitude, the height of the waves

• The phase, the horizontal shift

• The period (or frequency), the number of waves in one time unit

26
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All of the above can be calculated directly from the coefficients themselves. If we have

the formula of the DFT:

Yk =
N−1∑
t=0

xt · e−i2πk/N (5.1)

We can calculate the amplitude with:

Ak =

√
Re(Yk)2 + Img(Yk)2

N
(5.2)

Where Re() is the real part of the complex component and Img() the imaginary part.

The phase can be calculated with:

Pk = atan2(Img(Yk), Re(Yk)) (5.3)

The atan2(y, x) is the angle (in radians) between the positive x-axis and the point (x, y)

on a two dimensional plane, which is positive for counter clockwise and negative for

clockwise.

And the frequency with:

fk = k/N (5.4)

We can then fill them in the following formula and extrapolate as long as we want:

Lk(t) = x̄+Ak(sin(fkt)− Pk) (5.5)

Where t is the time step and x̄ is the mean of the input data that takes care of the

needed vertical shift.

Hereafter we sum L:

Pre(t) =

k∑
i=0

Lk(t) (5.6)

which is basically the inverse of the Fourier transform to reconstruct the signal and form

the prediction. This signal the represents a complex extrapolation of the original signal



Chapter5. Fourier prediction with trend compensation 28

Figure 5.1: GDP of the Netherlands, economical time series. Source: OECD,
http://stats.oecd.org/

made up from is periodical components. In order to add low pass filtering we can use

only a few components for reconstruction which leaves us with a smoother extrapolated

prediction signal that could be a better representation of the underlying signal.

5.2 Regressional trend compensation

The method in 5.1 is shown to be very effective at predicting signals with high periodic

patterns [7]. Prediction with trends however will be very poorly in theory because this

information is not in a discrete windowed frequency representation of the signal. In

many time series however there is a trend, see e.g. Figure 5.1 of the Gross Domestic

Product (GDP) of the Netherlands. Not correcting for this trend would leave us with a

much less generic method (or low accuracy).

This correction is done as follows. First we test if there is an statistical significant trend

in the data that we use for prediction. This is done with the so-called Mann-Kendall

trend test [29] which is widely used in analysis of hydrologic time series. It is a fairly

simple test based on hypothesis testing:

• H0: There is no trend.

• H1: There is a trend.

We test our H0 via the Mann-Kendall statistic:

S =
n−1∑
i=0

n∑
j=i+1

sign(Tj − Ti) (5.7)

Where Ti are time series values and:
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sign(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

(5.8)

We assume that the S statistic is normally distributed with mean:

S̄ = 0 (5.9)

and variance, as derived by [30]:

σ2 =
n(n− 1)(2n− 5)

18
(5.10)

With this we can calculate the Z(S) score as:

Z(S) =


S−1
σ if S > 0

0 if S = 0
S+1
σ if S < 0

(5.11)

If |Z(S)| is greater than Zα/2, with α = 0.05, there is a 95% probability that H0 is false.

This means that we should adopt H1. If α is chosen at 5 percent, which is common in

statistics, the Z0.025 score is 1.96.

When we have a significant trend we compensate for it by:

PreCom(t) = Pre(t) +Regr(t)− ¯Pre (5.12)

Where Regr(t) is a regression line and ¯Pre is the average of the unadjusted prediction.

This regression line can be any kind of regression. In most economical and natural

time series a linear regression will suffice. PreCom(t) is a prediction for t based on the

periodical information and a trend.



Chapter 6

Emperical Analysis

In this chapter we describe the experiments we performed in order to analyse the quality

of methods introduced in Chapter 4. We test our methods by the prediction scheme

proposed in Chapter 1. Furthermore we compare against two other successful methods.

6.1 Scheme details

In order to make a comparison with other methods based on the sensory data of

Barcelona metro station we propose a scheme with the following components:

• Data denoising

• Dimension reduction

• Prediction

• Data reconstruction

For our data smoothing is not really needed since we have low-pass filtering in the

prediction step. However in order to have more generic scheme we add smoothing as the

first step. In order to decide the best smoothing technique we tested on a bell shaped

function (see Figure 6.1) with Gaussian noise. With this test we assume that noise is

normally distributed. Since we know which part is noise and the shape of the function

we can look how much the noise is reduced but the signal is not distorted with a simple

SSE. The result is in Figure 6.2. From the techniques of Chapter 3 only the CEMA

(section 3.1.2) and the quadratic smoothing (section 3.1.3) are shown because the other

techniques performed much worse. We think this is due to lag those methods introduced.

30
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Figure 6.1: A Gaussian function with Gaussian noise.

Figure 6.2: The results, with on the x-axis the different parameter values for the
different methods and on the y-axis the SSE. The blue line is the quadratic smoothing
result and the red one shows the result for the CEMA. Furthermore the CEMA is tested
for parameter values ranging from 0.05 to 0.99 and the quadratic smoothing for values

ranging from 5 to 500 (only the uneven values).

As suspected the quadratic smoothing reduced the noise more while leaving the original

bell shape mostly intact with a window of 157. Therefore in the experiments we used

this method. We estimate a good window for other input lengths with:

RN =

{
round(157∗N2048 ) + 1 if round(157∗N2048 ) is even

round(157∗N2048 ) if round(157∗N2048 ) is uneven
, W = max(5, RN )

(6.1)

Where round() is a rounding function to an integer and W the window. The window

needs to be 5 at least.

On the dimension reduction we make use of the popular PCA method. It has the

advantage of low computing cost and practical usability because we can explicitly choose

the variance, i.e. amount of amplitude information, we want to keep. For experiments

we choose that at least 90
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We test our method against the SVR (section 4.3.5) and a simple MLP (section 4.3.1).

These methods are implemented in de popular WEKA environment1 with the time series

package2 .

We compare with the metrics Root Mean Squared Error (RMSE), Mean Absolute Per-

centage Error (MAPE) and Normalized Root Mean Squared Error (NRMSE):

RMSE =

√∑N
t=0(xt − x̂t)2

N
(6.2)

MAPE =
100%

N

N∑
t=0

∣∣∣∣xt − x̂txt

∣∣∣∣ (6.3)

NRMSE =
RMSE

omax − omin
(6.4)

Where xt is the actual value x̂t is the estimated (predicted) value and omax and omin are

the highest observed and lowest observed values respectively. We choose multiple error

metrics in order to make a fairer and clearer comparison between methods on different

data sets.

6.2 Results

The first results are from testing the method from [7] with our adjusted version on three

data sets. One with temperatures from the metro station with very little trend, one with

just two linear functions that are trend only and one with production values from [32],

see Figures 6.3, 6.4 and 6.5. For the temperatures we try to predict 245 steps. This is an

arbitrary choice, except that we want to make sure that we can get a good comparison

on multi-step predictions for which the number of steps need to be large enough. For

the linear functions we predict 452 steps, because more steps do not make a difference

here on the chosen error metrics. Results are in Table 6.1.

1http://www.cs.waikato.ac.nz/ml/weka
2http://wiki.pentaho.com/display/DATAMINING/Time+Series+Analysis+and+Forecasting+with+Weka
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Figure 6.3: Two linear functions.

Figure 6.4: Two temperatures from the metro station.

Figure 6.5: Production values see [32].
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Table 6.1: Results from the Fourier prediction, the proposed method, SVR and a
MLP on three error metrics. We use 5 data sets as described in the text. The bold
values are the values of the methods that are the best on the given data set on the

given error metric.

RMSE: MAPE (%): NRMSE:

FP without compensation

Production1 3158,098 8,985 0,178
Linear1 2514,676 54,853 0,503
Linear2 1886,000 54,853 0,503

Temperature1 0,994 0,290 0,080
Temperature2 0,508 0,140 0,047

sunspots1 34,22 infinite 0,13

Proposed method

Production1 3158,098 8,985 0,178
Linear1 5,538 0,100 0,001
Linear2 4,154 0,100 0,001

Temperature1 1,000 0,275 0,080
Temperature2 0,602 0,167 0,056

sunspots1 34,22 infinite 0,13

SVR

Production1 12209,859 24,052 0,419
Linear1 4,003 0,073 0,004
Linear2 3,002 0,073 0,004

Temperature1 1,622 0,488 0,739
Temperature2 2,142 0,603 0,454

sunspots1 57,58 infinite 0,23

MLP

Production1 11742,078 25,492 1,144
Linear1 15,036 0,242 0,017
Linear2 11,277 0,242 0,017

Temperature1 3,680 1,038 0,268
Temperature2 3,493 1,005 0,740

sunspots1 508,63 infinite 2,00
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Discussion

7.1 Discussion of quality

Table 6.1 shows that the Fourier prediction and proposed method work better than the

comparing methods on data with periodical patterns. The prediction accuracy of the

proposed method even comes close on the state of the art method from [32] on the

Production1 data set. This is not surprising since the proposed method focusses on

finding periodical patterns that are very usable for multi-step prediction. So for the

temperatures data it works relatively well and. The minor difference in the Fourier

prediction method and the proposed method is possible due to a overcompensation

for the trend. The Mann-Kendall test only test for a monotonic trend, which is not

necessarily a linear one. We use however linear regression which leaves us with a very

small over compensation. This error is only clear from the RMSE metric which does not

take the total variation of the prediction into account.

On the linear data sets, which have no periodical patterns and are trend only, the Fourier

prediction for the trend predicts relatively bad. This we also expected since there is only

a trend. The proposed however predicts quite well. The RMSEs of 5,538 and 4,154 are

due to the number of frequencies we keep. If we add more frequencies the RMSE of the

proposed method with compensation will approach 0. The sinusoids have to cancel each

other out, that is need to have the same frequency and amplitude but are in anti-phase.

With only 8 available frequencies this is not yet happened and thus leaves us with an

sinusoidal pattern around the regression line and therefore an error. However it is clear

from Table 6.1 that the compensation increases the accuracy which makes the proposed

method more generic than the Fourier prediction.

The most surprising result is the MLP multi-step prediction on the linear data is worse

than the proposed method, i.e. the accumulation of errors over more time steps is greater

35
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Figure 7.1: Two linear functions.

than we expected. The output of the prediction is shown in Figure 7.1. The slope of

the predicted curve is a little off which leads to a larger RMSE at later time steps.

The RMSE of the SVR is due to the width of the tube for which error are still considered

as good prediction. Although it is very small it can be even smaller if we use extra an

assumption, i.e. that the data is linear. The prediction on the other datasets however

will be worse probably, because this loss of generality.

7.2 Discussion of practical value

All methods from Table 6.1 are not well suited for online prediction. Therefore it is

imperative that we use batch methods in practise. However for the MLP the trainings

complexity is NP-hard as explained by [33] which makes it not very practical to use.

The SVR training has a complexity of O(N4) which is the N for the number of data

points times O(N3) for the quadratic optimization problem [34]. For very large data

sets or batch sizes this can become a problem. Finally the complexity for the proposed

method is O(NlogN) due to the FFT. The näıve implementation will yield a algorithm

with complexity O(N2). So if we take the batch size a power of 2, this will be more

practical in use than the MLP or the SVR for online prediction.

The other parts of the prediction scheme have also low computational costs, the smooth-

ing part is only O(N) (see Section 3.1.3) and the PCA can be done in O(d2h+d2N) [35],

where d is the number of raw dimensions and h the number of reduced dimensions. Since

N is large compared to h, for the metro station data, the complexity can be estimated

with O(d2N).



Chapter 8

Conclusions and future work

8.1 Conclusions

In this thesis project we proposed a prediction method that is well suited for period-

ical data that also works with trends in the data. We compared the method against

the popular prediction methods the MLP and SVR. For the metro data the proposed

method outperformed the other two on accuracy. Furthermore the proposed method has

relatively low complexity which makes it practical for projects like the SEAM4US. To

make this method applicable for the metro station data we proposed a prediction scheme

which includes data smoothing and dimension reduction. We used quadratic smoothing

and PCA but the scheme is modular enough to incorporate all types of smoothing and

dimension reduction techniques.

8.2 Future work

Future research can be extrapolation with wavelets. Although we expect a small increase

in accuracy on single-step prediction because of the better representation, the multi-step

prediction will probably not benefit from the localized patterns. In the Fourier prediction

we only use a combination of waves.

An extension to the proposed technique could be an technique for other trend detections

than linear trends. Linear trends (or near linear trends) are most common in natural

and economical time series but the method can be more generic if we also can detect

quadratic or logarithmic trends.

And an extension on the Fourier extrapolation is Chirp extrapolation.

37
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Figure 8.1: A chirping data set.

8.3 Chirp extrapolation

Instead of using the Fourier transform we can take a more general form as extension,

namely the Chirp-Z transform. Prediction with this transform allows to take chirping

signals into account. An example of a chirping signal is in 8.1. In other words a signal

that has an increasing or decreasing frequency over time. This transform is a little more

complex to compute and unnecessary for most natural and economical time series, but

it makes the complete method more general in use.

The formal definition of a chirp is given by:

y(t) = sin(Φ0 + 2π(f0t+
k

2
t2)) (8.1)

Where k is the chirp rate, i.e. the rate at which the frequency increases or decreases.

Thus instead of transforming a complex signal in simple sinusoids we transform it into

chirps. The transformation is done with the algorithm of [31]. And an inverse transform

based on the same algorithm. This algorithm in turn is based on:

Yk =
N−1∑
t=0

xtA
−tW tk (8.2)

Where A and W are of the form:

A = A0e
i2πθ0 (8.3)

and
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W = W0e
i2πφ0 (8.4)

The algorithm can be described in the following steps:

1. Create for every time value (or frequency value since in our use their the same) a

complex number wk with:

wk = cos k2
φ0
2

+ sin k2
φ0
2

(8.5)

where φ0 = −2π
nz and z is related to the chirp rate. Multiply these values with the

corresponding values of the input array to obtain an array yn. If the values of the

input array are real valued then first make a complex number with the imaginary

part set to zero.

2. Add as many zeros to yn as the length of the input.

3. Take the Fourier transformation of yn, i.e. FT (yn).

4. Create an array vn of wk with:

wk =

{
cos−k2 φ02 + sin−k2 φ02 if 0 ≤ k ≤ n− 1

cos−(2n− k) (2n−k)φ02 + sin−(2n− k) (2n−k)φ02 if n ≤ k ≤ 2n− 1

(8.6)

5. Take the Fourier transformation of vn, i.e. FT (vn).

6. Multiply FT (yn) by FT (vn) point by point and save the output in gn.

7. Take the inverse Fourier transform of gn, i.e. IFT (gn).

8. The output is given by multiplying IFT (gn) by wk the same as in step 1.

And the in inverse is basically the same algorithm backwards:

1. Create for every time value (or frequency value since in our use their the same) a

complex number wk with:

wk = cos k2
φ0
2

+ sin k2
φ0
2

(8.7)

where φ0 = −2π
nz and z is related to the chirp rate. Divide the input values with

the corresponding wk to obtain gk.
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2. Take the Fourier transformation of gn, i.e. FT (gn).

3. Create an array vn of wk with:

wk =

{
cos−k2 φ02 + sin−k2 φ02 if 0 ≤ k ≤ n− 1

cos−(2n− k) (2n−k)φ02 + sin−(2n− k) (2n−k)φ02 if n ≤ k ≤ 2n− 1

(8.8)

4. Take the Fourier transformation of vn, i.e. FT (vn).

5. Divide FT (gn) by FT (gn) point by point and save the output in yn.

6. Take the inverse Fourier transform of yn, i.e. IFT (yn).

7. The output is given by dividing IFT (yn) by wk the same as in step 1.

For certain data sets we expect it to enhance prediction accuracy. For A = 1 and

W = e−i2π/N this transformation is the same as the DFT, which is why we think we

will never be worse than the method described in 5.1.



Appendix A

Smoothing examples

Figures A.1 A.2 A.3 are the smoothing examples for the Moving average. The data

comes from temperature measurements of a part of the Barcalona metro station and

contains 2293 data points. These examples show clearly that a larger filter width means

a smoother signal. The horizontal parts at the beginning and the end of the smoothed

signal will be the lag in a prediction system. All graphs below are made with help of

JFreeChart1.

Figure A.1: Moving average with filter width 5. The smoothed signal will probably

still contain a lot of noise.

1http://www.jfree.org/jfreechart/t
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Figure A.2: Moving average with filter width 91. The smoothed signal filters out

more fluctuations in the original signal.

Figure A.3: Moving average with filter width 201. The smoothed signal filters out a

lot of fluctuations in the original signal and the original signal will probably distorted

a lot.

Figures A.4 A.5 A.6 are the smoothing examples for the Exponential smoothing. The

examples show that the more smoothing means more lag.

Figure A.4: Exponential smoothing with smoothing factor 0.01. Probably filters out

a lot of noise but distorts the signal and introduces a great deal of lag.
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Figure A.5: Exponential smoothing with smoothing factor 0.03. Looks to be a good

smoothing factor but the signal has lag.

Figure A.6: Exponential smoothing with smoothing factor 0.09. Probably reduces

the noise not that much but introduces less lag.

Figures A.7 A.8 A.9 are the smoothing examples for the CEMA. It works as well as

Exponential smoothing only the lag is gone.

Figure A.7: CEMA with smoothing factor 0.01.
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Figure A.8: CEMA with smoothing factor 0.03.

Figure A.9: CEMA with smoothing factor 0.09.

Figures A.10 A.11 A.12 are the smoothing examples for the SG-smoothing. No lag

and probaly less distorted than with the Moving average.

Figure A.10: SG with filter width 5. Almost a perfect fit so probably too less smooth-

ing.
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Figure A.11: SG with filter width 91.

Figure A.12: SG with filter width 201.

Figures A.13 A.14 A.15 are the smoothing examples for the TVR. It ”cuts off”

variations that are too rapid. An higher λ means more smoothing.

Figure A.13: TVR with λ = 10.
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Figure A.14: TVR with λ = 50.

Figure A.15: TVR with λ = 100.



Appendix B

Filtering examples

This are the examples of smoothing with filters. We use the same example data as in

Appendix A.

Figures B.1 B.2 B.3 are the filtering examples for the Fourier filter. As more coefficients

are set to zero, i.e. the higher the threshold values, there is more smoothing.

Figure B.1: Fourier filter with threshold 100 and -100.

47
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Figure B.2: Fourier filter with threshold 500 and -500.

Figure B.3: Fourier filter with threshold 1000 and -1000. Here every coefficient except

one is filtered and we are left with a single sinusiodal wave.

Figures B.4 B.5 B.6 are the filtering examples for the Haar Wavelet filter. As more

coefficients are set to zero, i.e. the higher the threshold values, there is more smoothing.

Figure B.4: Wavelet filter with threshold 0.2 and -0.2.
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Figure B.5: Wavelet filter with threshold 0.5 and -0.5.

Figure B.6: Wavelet filter with threshold 1.0 and -1.0.

Figure B.7 is an example of the Kalman Filter. The result is dependent on the initial

estimates.

Figure B.7: Kalman Filter.

Figure B.8 and B.9 is an example of the Particle filter. The result is dependent on the

sample size, i.e. number of particles. More precision takes more run time.
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Figure B.8: Particle filter with 30 particles. This example took 2.07 seconds to make

on a modern laptop.

Figure B.9: Particle filter with 400 particles. This example took 251.56 seconds to

make on a modern laptop.
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