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1. Preface  

This master thesis is written by Danny Chan in the field of mathematical infectious 

disease epidemiology. The research has been conducted between December 2011 and 

January 2013. A part of this study was done at The University of Hong Kong, The 

School of Public Health. It has been written under the supervision of dr. Martin 

Bootsma (Utrecht University), dr. Hiroshi Nishiura, dr. Joseph Wu (The University of 

Hong Kong) and prof. dr. Odo Diekmann (Utrecht University).  

 Epidemics have caused great disorders in the history of human kind and novel 

infectious diseases likely will remain a threat for all societies in the world. Examples of 

recent epidemics are the H1N1-2009 pandemic and the SARS outbreak in 2002. Both 

epidemics caused great disorders as school closures and excess of health care capacity. 

To be able to control future outbreaks, it is important to have an understanding of the 

dynamics of infectious diseases. A lot of work has been done in this area in the 20
th
 

century. A part of this work is in mathematical modelling. The aim of mathematical 

modelling is to create and analyze simplified models of reality that capture the most 

important determinants of the dynamics. The advantage of a mathematical framework is 

that it helps to explain and predict events in infectious disease epidemiology.  

 For this thesis we have conducted two separate studies with two different 

mathematical models. We have attempted to answer the two questions: 1) What is the 

relation between the final size
1

 and the basic reproduction number
2

 with the 

demography of a population? 2) Under what conditions are interventions which reduce 

infectiousness and susceptibility of health care workers useful in reducing the 

                                                           
1
 The cumulative number of individuals that became infected over the course of the infectious disease 

outbreak.. 

2
 The average number of new infections made by an infectious individual at the most early stage of an 

epidemic. 
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probability of a major outbreak in a long-term care facility for the elderly? The 

questions are explained further in this introduction. 

 Most of the developed countries are facing the problem of an ageing population. 

An extreme example is Japan, where only 18% of the population existed of individuals 

between 0 and 19 years old in 2012. In the Netherlands this age group consists of 

around 24% of the population and in USA it is around 30% in 2012. In all these 

countries it is expected that the fraction consisting of individuals between 0 and 19 

years old will decrease. A higher fraction of elderly in the population may result in a 

higher mortality in case of an infectious disease outbreak, as the case fatality of elderly 

is usually above average. As the fraction of younger individuals decreases, the spread of 

the infectious disease may decrease as well since young individuals have a key role in 

the spread of most respiratory pathogens. This is explained by the relative high contact 

rate of young individuals with their own group (<20 years) in comparison with older 

individuals. This trade-off suggests that the effect of ageing on the severity of an 

infectious disease outbreak may be difficult to predict. The results on this topic are 

presented in chapter 2. 

 As ageing occurs in many societies, it is expected that the number of long-term 

care facilities for the elderly will increase as well. Successful protection of long-term 

care facilities for the elderly against major outbreaks may, therefore, become even more 

important than it is now due to the high case fatality among elderly. Typically, a novel 

pathogen is introduced in a long-term care facility for the elderly by health care workers 

or visitors. We have studied how interventions, which lower the infectiousness and 

susceptibility of health care workers and visitors, effect the probability of a minor 

outbreak in a long-term care facility for the elderly. We will show that weak
3
 

interventions, for example socially acceptable non-pharmaceutical interventions, only 

reduce the probability of a major outbreak in the facility when the basic reproduction 

                                                           
3
 Interventions which reduce susceptibility and infectiousness by 40% or less. 
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number of the pathogen is lower than around 1.6. Our work attempts to clarify the 

results of earlier work on the effectiveness of interventions in long-term care facilities 

for the elderly. Our results coincide and extend the work of Van den Dool et al., 2008 [I], 

but are different from the one presented by Nuño et al. in 2008 [I I], which showed that 

the same interventions as in this study can reduce the probability of a major outbreak in 

a facility greatly even for higher values of the basic reproduction number. We support 

our simulation results by analytical approximations. The results of our study on this 

topic are presented in chapter 3.  
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Abstract 

Ageing and the effect of birth restriction change the demography in populations. These 

changes in demography influence contact patterns in societies, and, since contact 

patterns are important in disease transmission, influence the severity of infectious 

disease outbreaks. Here we use a deterministic multi-type SIR model to study 

theoretically and numerically how demographical changes impact the basic 

reproduction number 0R  and the final size of an infectious disease outbreak. We study 

either a density dependent contact pattern or a frequency dependent contact pattern. 

There is no consensus in literature in which multi-type contact pattern should be called 

frequency dependency. We have defined several new contact patterns in which the 

number of contacts per unit of time of an individual with a specific group is constant if 

we scale all group sizes by the same factor. In a model with reciprocal contacts where 

individuals have a fixed amount of contacts per unit of time with their own group and 

each young individual has a fixed amount of contacts per unit of time with older 

individuals, the basic reproduction number and final size increases when the number of 

young individuals increases. For other contact patterns, including the density dependent 

contact pattern, we have found theoretical results of a similar character. Numerical 

results suggest that if the society would have been more aged in Hong Kong in 2009, 

the number of cases of H1N1-2009 infection would have been smaller. However, due to 

the dependence of severity of an infection on the characteristics of the infected 

individuals, this need not imply a decrease in burden on the health care system. In a case 

study, we have found that birth restriction in Hong Kong may prolong the time before a 

similar H1N1 strain to the H1N1-2009 can cause an epidemic in Hong Kong. 
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1. Introduction  

In many developed countries like Hong Kong, the USA and Japan, the national 

institutes of demography predicts that the fraction elderly will increase in the 

forthcoming years. Ageing can cause problems varying from an increased public health 

burden due to the increase of elderly (Yoshikawa, 1997), to a lack of work force due to 

a decrease of young adults. These problems are currently major issues in countries as 

Japan (Muramatsu, Akiyama, 2011). So far, the impact of ageing on the severity of 

infectious disease outbreaks with short duration has not been studied. Changes in 

demography influence contact patterns in society, and, since contact patterns affect 

disease transmission, it influences the severity of infectious disease outbreaks. For 

policy makers it is vital to understand how ageing affects the severity of an outbreak in 

order to design effective intervention strategies to prevent or mitigate epidemics.  

Here we study theoretically and numerically the qualitative relationship between 

demographic changes, such as ageing, and the severity of an infectious disease outbreak. 

We only consider outbreaks that have a short duration in comparison with demographic 

changes, which implies that we can neglect the effect of demographic changes during 

the outbreak. An important example is the yearly influenza pandemic which lasts for 

several months, while ageing occurs at a time scale of decades. We focus on the basic 

reproduction number 0R  and the final size of a deterministic multi-type SIR model. The 

type of an individual corresponds to its age. The basic reproduction number can be 

interpreted as the average number of new infections due to an infectious individual at 

the earliest phase of an outbreak and the final size measures the cumulative number of 

infected individuals during the course of the outbreak.  

 We focus on frequency and density dependent contact patterns in the multi-type 

model. In single type models, these contact patterns have been extensively discussed in 

previous work (e.g. Begon et al., 2002, McCallum et al., 2001). The two contact 

patterns have different assumptions on how the contact process changes as a result of a 

change in population size. In a density dependent contact pattern the number of contacts 
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per unit of time per individual increases linearly if we scale all group sizes by the same 

factor. In a frequency dependent contact pattern, the number of contacts per unit of time 

of an individual is constant if we scale all group sizes by the same factor. There is no 

consensus in the literature on which multi-type contact pattern should be called 

frequency dependency. In section 2 we present several contact patterns where the 

number of contacts per unit of time of an individual is constant if all group sizes are 

scaled by the same factor. In general, the best contact pattern description of the 

transmission dynamics in a population, depends on the type of the population under 

consideration (Smith et al., 2009, Kelly et al., 2011).  

In the theoretical part, which is also the main part of this paper, we present 

situations where the qualitative changes of the final size and the basic reproduction 

number due to a change in demography is revealed and proven formally. Almost all 

theoretical results hold for general m-type SIR models, {1,2,3,...}mÍ , as formulated in 

section 2. 

Apart from theoretical work, a case study has been performed on the relation 

between the final size and demography of the Hong Kong population. We have 

estimated the next generation matrix of the H1N1-2009 virus in Hong Kong in a 2- and 

3-type model using  similar methods as Nishiura et al., 2010. We used the demographic 

predictions of the birth and death rate of the national institute of Hong Kong to calculate 

the effect of demographic changes on the outbreak size of an epidemic caused by an 

introduction of a H1N1 strain similar to the H1N1-2009 in Hong Kong in the period 

2010-2039. To prepare a society for an outbreak, an accurate prediction of the public 

health burden during an outbreak is important. As the disease severity may depend on 

the age of the individual, the burden of an epidemic can, therefore, not be directly 

derived from the final size. In the numerical study we will use mortality as an additional 

measure for public health burden. 

The article has the following structure. A description of the multi-type 

deterministic model with different contact patterns is presented in section 2. This is 
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followed by main results in section 3. The proofs which involve more abstract 

mathematics are given in section 4. Numerical results of the case study are presented in 

section 5 and we end with a discussion. 

 

2. Model and properties 

2.1. Model 

We use a deterministic model with {1,2,3,...}mÍ  disjunct types of individuals. Let 

group {1,..., }i mÍ  be the set of type i individuals and let iN  be the size of group i and 

1( ,..., )TmN N N=  be the vector of all group sizes and 
1

m

i

i

N N
=

=ä  the population size. 

We denote the fraction of the population that belongs to group i by /i in N N= , we call 

the vector 1( ,..., )Tmn n n=  the composition of the population. We have the relation 

1( ,..., )TmN N n n= . In this paper the term demography is referred to the composition and 

the size of the population. In order to avoid ambiguity we will speak about these terms 

separately if not stated otherwise. We think of a group as an age category, but the results 

are equally valid for other interpretations of disjunct groups.  

Individuals can be in one of the three disease stages: susceptible, infectious and 

removed. The number of i-type individuals in each disease stage at time t is denoted by 

( )iS t , ( )iI t  and ( )iR t  respectively and the vector with the number of susceptible 

individuals in each group at time tÍ  is denoted by 1( ) ( ( ),..., ( ))TmS t S t S t= . All 

individuals are assumed susceptible before the first infectious individual arises in the 

population.  When an i-type individual becomes infectious, it will remain in the 

infectious stage for an exponentially distributed period with mean 1/ 0ia> . The mean 

1/ ia  is independent of the composition and the size of the population. We write 
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1( ,..., )Tma a a= . When an i-type infectious individual recovers, it changes its disease 

stage to iR  instantaneously and remains in that stage forever.  

We think of the model in a timeframe of ( , )-¤ ¤ =. When we look back in 

time, the population is infection free when t®-¤. The introduction of a new pathogen 

cannot be controlled in a deterministic model, since it does not incorporate individual 

events. We leave therefore open how and when the pathogen is introduced in the 

population and assume only for all {1,..., }i mÍ  that ( ) 0i iI t > , for some it Í . As 

stated in the introduction, we neglect change in composition and population size (e.g. 

disease-induced deaths) during the time scale of the epidemic, so iN  is constant for all 

{1,..., }i mÍ . As iR  satisfies the relation i i i iR N S I= - -, the system of disease stages 

and group types over time is fully described by  iS  and iI  only, {1,..., }i mÍ . Let 0ijp ² , 

, {1,..., }i j mÍ , denote the probability of a susceptible i-type individual becoming 

infectious due to contact with an infectious j-type individual given contact of the 

susceptible i-type and the infectious j-type individual. We assume ijp  to be independent 

of the composition and the size of the population. Let ( ) 0ijk N > , 1 ,i j m¢ ¢ , denote 

the number of contacts per unit of time of a j-type individual with group i individuals 

which can depend on the composition and the size of the population. We write ( )K N  

for the m m³  matrix 1 ,( ( ))ij i j mk N ¢ ¢ .  

For notational convenience, we will sometimes suppress the dependency of 

variables on the composition and size of the population (e.g. ( )K K N= ). In this paper, 

unless specified otherwise, vectors are column vectors. We say that an expression is 

positive and negative respectively when the expression is larger and smaller than 0. We 

say that an expression is non-positive and non-negative respectively when the 
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expression is equal to 0 or smaller than 0 and equal to 0 or larger than 0. Let x  and y  

be real vectors of dimension {1,..., }m mÍ . We write x y>  when entry {1,..., }i mÍ  of 

x  is larger than entry i of y  for all {1,..., }i mÍ . We extend this notation naturally to 

x y² , x y< , x y¢  and x y= . A diagonal line ñ/ò through the symbols >, ², <, ¢, 

= means that the statement is false. We denote the m-dimensional unit and zero vector 

by 1  and 0  respectively. 

Let b to be the m m³  matrix with elements ij ij ijp kb=  for , {1,..., }i j mÍ , ijb  

can be interpreted as the average number of new infections per unit of time in group i 

due to an infectious individual in group j, given that all individuals in group i are 

susceptible. At time t , a fraction ( ) /i iS t N  of group i is susceptible. The deterministic 

model is therefore fully described by the following set of differential equations: 

 

1

1

,

m
i i

ij j

ji

m
i i

ij j i i

ji

i
i i

dS S
I

dt N

dI S
I I

dt N

dR
I

dt

b

b a

a

=

=

=-

= -

=

ä

ä  (2.1) 

with the condition ( ( ), ( )) : lim( ( ), ( )) ( ,0)i i i i i
t

S I S t I t N
®-¤

-¤ -¤ = =  for all {1,..., }i mÍ . 

 

Assumption 

The m m³  matrix 1 ,( )ij i j mb b¢ ¢=  is irreducible, i.e., for every pair of indices 

, {1,..., }i j mÍ  there exists an ijl  such that ( )ijl

ijb  is positive. 

 

Note that irreducibility of b implies that any susceptible individual of any group can be 

infected through a chain of infections starting from an infectious individual of any 

group.  



14 

 

Define ( ) lim ( )i i
t

S S t
¬¤

¤ =  for all {1,..., }i mÍ . Convergence of ( )iS t  follows from 

monotonicity and boundedness. We denote the absolute final size of group {1,..., }i mÍ  

by ( ) ( )i i iR N S¤ = - ¤ and the fractional final size by 1 : 1 ( )i i iS Ns- = - ¤  and the 

normalized total final size by ( ) /R N¤  with 
1

( ) ( )
m

i

i

R R
=

¤ = ¤ä . Note that the 3 types of 

final size are related by the involvement of  ( )iS ¤  in all measures. We write 

1( ) ( ( ),..., ( ))TmS S S¤ = ¤ ¤ and 1 1 1( ,..., ) ( ( ) / ,..., ( ) / )T T

m m mS N S Ns s s= = ¤ ¤ . Note that 

the following holds, 

 
1

( ) 1 1
log( ( )) log( ( )) ( )

( )

m
i

i i ij j

ji i

dS t
S S dt I t dt

dt S t N
b

¤ ¤

=-¤ -¤

¤ - -¤ = =-äñ ñ , (2.2) 

 
( ) ( )

( ) ( ) ( )i i
i i i i

dS t dI t
S S dt I t dt

dt dt
a

¤ ¤

-¤ -¤

¤ - -¤ = + =-ñ ñ , (2.3) 

for all {1,..., }i mÍ . The first and second equality of equation (2.2) and (2.3) follow from 

the standard integration rules and the differential equations (2.1) respectively. It follows 

from (2.3) that ( ( ) ( )) / ( )i i i iS S I t dta
¤

-¤
¤ - -¤ =-ñ  for all {1,..., }i mÍ . Substituting this 

expression in (2.2) gives 
1

log( ) ( 1)
m

ij j

i j

j j i

N

N

b
s s

a=
= -ä  with ( )i iN S= -¤ and 

( ) /i i iS Ns= ¤  for all {1,..., }i mÍ . Hence the relation between b, a, N  and s, is 

give by the so-called final size equations 

 
1

exp[ ( 1)],
m

ij j

i j

j j i

N

N

b
s s

a=
= -ä  (2.4) 

1,...,i m= . Note that the m-dimensional unit vector, 1 , is always a solution of (2.4). The 

final size equations (2.4) can also be derived heuristically as follows (see, e.g., 

Diekmann, Heesterbeek, Britton, 2013). If irreducibility of b holds, any susceptible 

individual of any group can be infected through a chain of infections starting from an 

infectious individual of any group, therefore, the transmission dynamics in the 
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population depends on the transmission rate from all groups, and, hence, the fractional 

final size of a specific group should depend on the fractional final size of all groups. 

Denote ( )iF t  to be the probability of an i-type individual to be susceptible at time t. 

Note that ( ) : lim ( ) 1i i
t

F F t
®-¤

-¤ = =. We reason that the probability of being susceptible 

over the course of the epidemic is equal to the fraction individuals that did not become 

infected over the course of the epidemic, therefore, ( ) : lim ( )i i
t

F F t s
¬¤

¤ = =. From the 

interpretation of the differential equations (2.1) we have the expression 

 
1

( )
( )

m
iji

i j

j i

dF t
F t I

dt N

b

=

=- ä  (2.5) 

for all {1,..., }i mÍ . Hence, 
1

( ) exp[ ( ) ]

t m
ij

i j

j i

F t I d
N

b
t t

=-¤

= -äñ  and 

1

( ) exp[ ( ) ]
m

ij

i i j

j i

F I d
N

b
s t t

¤

=-¤

= ¤ = -äñ . Note that 
1

( )
m

ij

j

j i

I d
N

b
t t

¤

=-¤

äñ  is the cumulative force 

of infection (FOI; the rate of a susceptible individual becoming infected) of group 

{1,..., }i mÍ  individuals. The total number of infections in group j is equal to 

( ( ))j jN S- ¤ . A fraction 1/ iN  of the contacts of each j-type individual is with a 

specific individual in group i. Hence, 
1 1

( ) (1 )
m m

ij ij j

j j

j ji j i

N
I d

N N

b b
t t s

a

¤

= =-¤

= -ä äñ  and the final 

size equations (2.4) follow from the equality 
1

exp[ ( ) ]
m

ij

i j

j i

I d
N

b
s t t

¤

=-¤

= -äñ  .  

 The basic reproduction number in a finite discrete multi-type model is defined 

(Diekmann, Heesterbeek, Metz, 1990) as the dominant eigenvector of the next 

generation matrix (NGM). The i,jth entry (ith row, jth column) of the next generation 

matrix is the average number of new infections in group i due to a single j-type 

infectious individual at the earliest phase of the epidemic.  

 Choose , {1,..., }i j mÍ . Each j-type individual has ( )ijk N  contacts per unit of 

time with group i individuals, hence when all i-type individuals are susceptible, which 
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holds at the earliest phase of the epidemic, an infectious j-type individual infects 

( ) ( )ij ij ijN p k Nb =  i-type individuals per unit of time. Each j-type infected individual is 

infectious for an average duration of 1/ ja . Therefore, the next generation matrix X  for 

general contact pattern K  is  

 

111

1

1

1

( )( )

( ) ( )

m

m

m mm

m

NN

X

N N

bb

a a

b b

a a

å õ
æ ö
æ ö
æ ö=
æ ö
æ ö
æ ö
ç ÷

. (2.6) 

Note that, since 0a> , irreducibility of b implies irreducibility of X . 

 

2.2 Contact patterns 

For this study, we have to make assumptions on how the contact process changes when 

the composition and the size of the population changes. In this study we distinguish two 

main types of contact patterns: frequency and density dependency. 

 In multi-type human contact patterns, contacts are often reciprocal, i.e., if person 

A has contact with person B, then person B has contact with person A as well. The 

mathematical formulation of this condition is / /ij i ji jk N k N=  (or equivalently 

ij j ji ik N k N= ).  

2.3.1 Frequency dependent contact patterns 

We introduce frequency dependency by an example to give the reader an intuition.  

Imagine the situation of a sandbank with a group of seals on it. It is known that seals, 

when lying on the sandbank, have the tendency to lie at a fixed distance next to other 

seals. Hence, the distance between neighbouring seals on the sandbank, which is a 

proxy for the contact rate, is independent of the population size. This typical example of 



17 

 

a population with frequency dependent contact pattern was studied in Diekmann et al., 

1995.  

 There is no consensus in the literature on the exact definition of frequency 

dependency in a multi-type model. Recall 
1 1( ,..., ) ( ,..., )T T

m mN N N N n n Nn= = = , 

where N  is called the population size and 
1( ,..., )Tmn n n=  the composition. In this 

article we say that a contact pattern is a candidate of frequency dependency if the 

number of contacts per unit of time of all individuals, 1) only depends on the 

composition n  of the population and 2) satisfies the reciprocal condition 

/ /ij i ji jk N k N= . 

2.3.2 Proportionate mixing 

Assume that a j-type individual, {1,..., }j mÍ , has a fixed amount of contacts 0jk >  

which is independent of time, composition and population size. If the fraction of 

contacts per unit of time of any individual with individuals of any group is 

proportionate to the number of contacts of that group, then, the contact pattern is called 

proportionate mixing. For proportionate mixing the elements of K  are equal to  

 

1

prop i i
ij jm

s s

s

k N
k k

k N
=

=

ä
, (2.7) 

for 1 ,i j m¢ ¢ . Clearly, prop

ijk  depends on the composition of the population but not on 

the population size and satisfies the reciprocal condition, hence, proportionate mixing is 

a candidate of frequency dependency.  

Note that a change in size of any group  affects the value of 
prop

ijk  for all 

, {1,..., }i j mÍ . The advantage of proportionate mixing is that it allows us to think 

intuitively about the contact pattern. A disadvantage is that it does not allow individuals 

of specific pairs of groups to have a certain number of contacts per unit of time, which 
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is needed to model, for example, contacts of children with parents and contacts of 

grandchildren with grandparents. 

2.3.3 Semi-domination contact patterns 

We show the expression of ijk  in a semi-domination contact pattern and present the 

interpretation in section 2.3.4. The semi-domination contact pattern is given by 

 
(1 )

s s i
ij ij

ij i ij j

N
k q

c N c N
=

+ -
, (2.8) 

1 ,i j m¢ ¢ , with 0s s

ij jiq q= > and 1ij jic c= -  with [0,1]ijc Í . Note that, when i j= , s

ijk  

is equal to s s

ij jiq q= . It is clear that the semi-domination contact pattern is independent of 

the population size and satisfies the reciprocal conditions. Hence, the semi-domination 

contact pattern is a candidate of frequency dependency.  

Note that, for every , {1,..., }i j mÍ , s

ijk  depends only on the sizes of group i and j. 

In the context of three age groups: young, middle-aged and elderly, this means that a 

change in number of elderly does not change the number of contacts between young and 

middle-aged individuals. Note that s

ijq  gives the freedom to choose a specific number of 

contacts per unit of time between groups i and j. The importance of the group sizes of 

group i and j in determining the number of contacts per unit time between group j and i 

is determined by the parameter ijc . 

By substituting the expression of (2.8) into the differential equations (2.1) we 

obtain the model with semi-domination contact pattern in differential equations  

 
1

,
(1 )

ss m
ij iji ii ii

i i i j

ji ij i ij j
j i

p qdS p q
S I S I

dt N c N c N=
¸

=- -
+ -

ä  (2.9) 
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1 i m¢ ¢ . We write 

s

ij ijs

ij

j

p q
a

a
= , 1 ,i j m¢ ¢ . Each j-type, {1,..., }j mÍ , infected 

individual is infectious for an average duration of 1/ ja  units of time and infects 

(1 )

s

ij ij i

ij i ij j

p q N

c N c N+ -
 i-type, {1,..., }i mÍ , individuals per unit of time when all individuals 

in group i are susceptible. Hence, the next generation matrix in a model with semi-

domination contact pattern is 

 

1
11 1

1 1 1

1

1 1 1

(1 )

(1 )

s s

m

m m m

s

s sm
m mm

m m m

N
a a

c N c N

X

N
a a

c N c N

å õ
æ ö+ -
æ ö
æ ö=
æ ö
æ ö
æ ö+ -ç ÷

. (2.10) 

The derivation of the final size equations (2.4) does not depend on the choice of contact 

pattern. Hence, the final size equations with a semi-domination contact pattern can be 

obtained by substituting (2.8) in (2.4). The final size equations are  

 
1

exp[ ( 1) ( 1)]
(1 )

sm
ij js

i ii i j

j ij i ij j
j i

a N
a

c N c N
s s s

=
¸

= - + -
+ -

ä , (2.11) 

for 1 i m¢ ¢ . 

2.3.4 Domination contact patterns 

In general, the semi-domination contact pattern does not allow for a simple intuitive 

interpretation. We introduce a subset of the semi-domination contact pattern, which we 

call the domination contact pattern and show that it can be interpreted intuitively. 

Choose two groups, which we denote by group , {1,..., }i j mÍ  and assume that the 

contacts between the 2 groups are described by the semi-domination contact pattern. If 

1ijc = , then 
s s

ij ijk q=  and 
j js s s

ji ij ij

i i

N N
k q k

N N
= = , hence, the number of contacts of a j-type 

individual with group i individuals is independent of the composition of the population. 
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We can think of this contact pattern as that group j individuals want to keep the number 

of contacts per unit of time with group i individuals fixed and that group i individuals 

feels comfortable to adjust their number of contacts per unit of time with group j as a 

result of a change in size of group j and group i. In this case, we say that group j 

dominates group i and that group i is being dominated by group j. We call a pair of 

groups , {1,..., }i j mÍ  a domination pair when group i dominates group j or group j 

dominates group i.  

We define a semi-domination contact pattern to be a domination contact pattern 

when each pair of groups in the population is a domination pair.  

Thus a domination contact pattern is a semi-domination contact pattern with 

{0,1}ijc Í , for all , {1,..., }i j mÍ . By allowing ijc , , {1,..., }i j mÍ , to obtain values in 

between 0 and 1, we introduce contact patterns that are in between contact patterns with 

the characteristic that group j dominates i and vice versa. This explains the choice of 

calling the contact pattern (2.8) a semi-domination contact pattern. 

Additionally we introduce two terms. We say that group i is a royal group if 

group i dominates all other groups in the population. We call group i a servant group if 

group i is being dominated by all other groups in the population. Note that a domination 

contact pattern does not necessarily have a royal or servant group and that a semi-

domination contact pattern with a royal or servant group is not necessarily a domination 

contact pattern. 

We think in this article that children have a fixed number of contacts per unit of 

time with middle-aged (parents) and aged (grandparents) individuals, independent of the 

composition and the size of the population. Also, we assume that the aged individuals 

adjust their number of contacts per unit of time with the younger groups to the need of 

contacts of the younger individuals (including middle-aged individuals). Therefore, in 

the context of semi-domination contact patterns, the group of children and aged 

individuals are respectively a royal and a servant group.  
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2.3.5 Power contact patterns 

We present the set of power contact patterns first and explain the advantages and 

disadvantages of the contact pattern afterwards. We call the following set of contact 

patterns the power contact patterns: 

 

d

p p i
ij ij

j

N
k q

N

å õ
= æ öæ ö
ç ÷

, (2.12) 

for 1 ,i j m¢ ¢ , with 0p p

ij jiq q= >  and dÍ . Note that p

ijk  is independent of the 

population size and satisfies the reciprocal condition only for 1/ 2d= . Hence, the 

power contact pattern is a candidate of frequency dependency only for 1/ 2d= . Note 

that, when i j= , we have p p

ij ijk q= . We emphasize that for 1/ 2d¸ , the power contact 

pattern does not satisfy the reciprocal condition and is, hence, not a candidate of 

frequency dependency.  

 The power contact pattern does not allow for a simple intuitive interpretation for 

general dÍ . Although the following subset of power contact patterns do not satisfy 

the reciprocal condition, these contact patterns are easy to be interpreted. When 0d= , 

the number of contacts per unit of time of any individual in the population with 

individuals of any group is independent of composition. When 1d= , the number of 

contacts per unit of time of a j-type individual with individuals of group i has an 

inversely proportional relation with the size of group j, hence, the total number of 

contacts per unit of time of group j individuals with group i individuals is independent 

of the size of group j. 

 The power contact pattern is interesting from a mathematical point of view. We 

will show in section 3 that the basic reproduction number, in a model with the power 

contact pattern, is independent of the composition for all dÍ . Also, when 1d= , the 

fractional final size is independent of the composition of the population. 
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 The differential equations, next generation matrix and final size equations in the 

case of a power contact pattern can be obtained by substituting (2.12) in the associated 

expressions in section 2.1. We write 

p

ij ijp

ij

j

p q
a

a
= .The differential equations, next 

generations matrix pX  and final size equations are respectively 

 
1

1

p dm
i ii ii i

i i i ij ij jd
ji j
j i

dS p q N
S I S p q I

dt N N

-

=
¸

=- -ä , (2.13) 

 

( )

( )

11 1 1

1 1

/

/

dp p

m m

p

dp p

m m mm

a a N N

X

a N N a

å õ
æ ö
=æ ö
æ öæ ö
ç ÷

, (2.14) 

 1 1

1

exp[ ( 1) ( 1)]
m

p p d d

i ii i ij i j j

j
j i

a a N Ns s s- -

=
¸

= - + -ä , (2.15) 

for 1 i m¢ ¢ . 

2.4 Density dependency 

We illustrate density dependency by an example. Imagine a swimming pool of fixed 

size with an increasing number of swimmers. We assume that the number of contacts 

per unit of time increases when the distance between individuals decreases. As the 

number of swimmers increases, the average area available per swimmer decreases 

which results in a smaller distance between swimmers, causing an increase in contacts 

per unit of time between swimmers. 

We say that a contact pattern is a density dependent contact pattern when the 

number of contacts per unit of time of a j-type, {1,..., }j mÍ , individual with group 

{1,..., }i mÍ  individuals has a linear relation with the size of group i and satisfies the 

reciprocal condition, thus the elements of K  are equal to  

 
d d

ij ij ik q N= , (2.16) 
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for 1 ,i j m¢ ¢ , with 0d d

ij jiq q= >. The reciprocal condition is clearly satisfied. The main 

difference between the candidates of frequency dependency and the density dependent 

contact pattern is that K , in the density dependent case, depends on the size of the 

population. The total number of contacts of a group {1,..., }j mÍ  individual is 

1 1

m m
d d

ij ij i

i i

k q N
= =

=ä ä . Hence, when all group size are increased by the same factor, the total 

number of contacts of a group j individual increase as well. 

 The differential equations, next generation matrix and final size equations in the 

case of density dependency is obtained by substituting (2.16) in the associated 

expressions in section 2.1. Write 

d

ij ijd

ij

j

p q
a

a
= . Then the differential equations, next 

generations matrix and final size equations  are respectively 

 
1

m
di

i ij ij j

j

dS
S p q I

dt =

=-ä , (2.17) 

 

11 1 1 1

1

d d

m

d

d d

m m mm m

a N a N

X

a N a N

å õ
æ ö
=æ ö
æ ö
ç ÷

, (2.18) 

 
1

exp[ ( 1)]
m

d

i ij j j

j

a Ns s
=

= -ä , (2.19) 

for 1 i m¢ ¢ . 

3. Results 

3.1. General results 

In this section we show results which hold for general contact patterns. These results 

form the basis of the proofs of the other results in section 3. All proofs of section 3.1 are 

given in section 4. We define the matrix  
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11 11 1

1 1 1

1

1

( ) ( )

( ( ))

( ) ( )

m

m

m m m mm

m m m

S t S t

N N

X S t

S t S t

N N

bb

a a

b b

a a

å õ
æ ö
æ ö
æ ö=
æ ö
æ ö
æ ö
ç ÷

. (2.20) 

Note that ( ( ))X S t , tÍ , is the next generation matrix of a population where the 

number of i-type susceptible individuals at the earliest phase is ( )iS t , 1 i m¢ ¢ , hence, 

( ( ))X X S= -¤. We define ( ( ))sX S t , ( ( ))pX S t  and ( ( ))dX S t  to be ( ( ))X S t  for a 

semi-domination, power and density dependent contact pattern respectively. Let M be 

an m-dimensional real valued irreducible square matrix, in the forthcoming we write 

( )Mr  for the dominant eigenvalue of the matrix M.  

Theorem 1 

Assume the model as described by (2.1) with a general contact pattern K  and 

1 ,( )ij i j mb b¢ ¢=  irreducible. If and only if 0 ( ( ( ))) 1R X Sr= -¤ >, the final size equations 

(2.4) has a solution in (0,1)m. If so, this solution is unique. 

 Theorem 1 shows that 0 1R ¢  and 0 1R >  corresponds respectively to no 

occurrence and occurrence of an outbreak in the population. Also, it states that the final 

size given an outbreak is unique. In the forthcoming, if 0 1R > , we refer to ( )S¤  as the 

unique solution of (2.4) in 1(0, ) ... (0, )mN N³ ³ . 

Theorem 2 

Assume the model as described by (2.1) with a general contact pattern K  and 

1 ,( )ij i j mb b¢ ¢=  irreducible. If 0 ( ( ( ))) 1R X Sr= -¤ >, then ( ( ( )) 1X Sr ¤ <. 



25 

 

Theorem 2 is expected intuitively.  ( ( ))X S¤  is the next generation matrix when 

the number of susceptible individuals in each group is equal to the number of uninfected 

individuals at the end of the epidemic. Intuitively, it is expected that the state of the 

population after an epidemic does not allow for a new outbreak. We expected 

( ( ( )) 1X Sr ¤ <, since outbreaks in the deterministic model occur if and only if the basic 

reproduction number is larger than 1 as stated in Theorem 1. The above reasoning 

should be read to obtain an intuition only, since ( ) 0I t ¸  for tÍ  and, hence, the end 

of an epidemic cannot be trivially be defined as the 0t Í  for which 0( )I t  is equal to 0  

for the first time. 

Theorem 3 

Assume the model as described by (2.1) with K  continuously differentiable to N  and 

1 ,( )ij i j mb b¢ ¢=  irreducible in the domain of N , 11 12, ,..., mmp p p , a . If 

0 ( ( ( ))) 1R X Sr= -¤ >, then ( )iS ¤  is continuously differentiable to N , 11 12, ,..., mmp p p , 

a for all {1,..., }i mÍ . 

Lemma 4 

Assume the model as described by (2.1) with a general contact pattern K  and 

1 ,( )ij i j mb b¢ ¢=  irreducible in the domain of N . Choose {1,..., }i mÍ . Fix jN  for all 

{1,..., }j mÍ  except for j=i . Assume K  to be element-wise differentiable to iN . Let 

* 0T Tx >   and 0x>  be respectively the left and right eigenvector corresponding to the 

dominant eigenvalue of X  and * 1Tx x= . Then the basic reproduction number, 

0 ( ( ( )))R X Sr= -¤, is differentiable to iN  and 0 * '( )T

i

i

dR
x X N x

dN
= , i=1,...,m. 
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 3.2.1 Frequency dependent contact patterns 

It has been argued in section 2 that all candidates of frequency dependency do not 

depend on the population size. Therefore, when the contact pattern is a candidate of 

frequency dependency, a change in population size, does not change the transmission 

dynamics and hence, the basic reproduction number and fractional final size. In the case 

of candidates of frequency dependency, we study the qualitative impact of a change in 

size of any group on the basic reproduction number and fractional final size. Recall that 

the vector, N , with on the ith entry the size of group i, can be written as 

1 1( ,..., ) ( ,..., )T T

m mN N N N n n Nn= = = . When the size of the group with index 1 

increases by 0d> , N clearly increases by d  too. The vector N  becomes  

**
* * * 1
1 * *

( ,..., ) ( )( ,..., )
( ) ( )

T Tm
m

NN
N N N

N N

d
d d

d d

+
+ = +

+ +
 with * *

1( ,..., )TmN N  the initial vector 

N  and *N  the initial population size. Clearly, after the increase, the relative size of 

group 1 has increased in comparison with the other groups, while the ratio between all 

other pairs of groups, excluding group 1, has not changed. Therefore, since population 

size has no effect on transmission dynamics, the effect of increasing the size of one 

group is equivalent to the effect of increasing the proportion of that group in the 

population while keeping the ratio between all other pairs of groups and the population 

size constant.  

3.2.2 Semi-domination contact patterns 

Theorem 5 

Assume the model as described by (2.1) with a semi-domination contact pattern 

1 ,( )s

ij i j mK k ¢ ¢=  and 1 ,( )s

ij ij i j mp kb ¢ ¢=  irreducible for 0N>  and 0 ( ) 1sR Xr= >. Assume 

the population to have a royal group {1,..., }z mÍ . Then 0 0
z

dR

dN
>  and 0i

z

d

dN

s
< , 

1 i m¢ ¢ . 
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 The proof of Theorem 5 is presented in section 4. Theorem 5 is expected from 

the definition of a royal group and the intuition behind a semi-domination contact 

pattern. An individual of the royal group z has a fixed number, s
izk , of contacts with 

group {1,..., }i mÍ  individuals. For any time tÍ  we can reason as follow. As the size 

of the royal group z increases, the number of contacts per unit of time of each individual 

of group i z̧  with the royal group z increases. Hence, the force of infection in group 

i z̧  increases. Since the contact rates between groups other than the royal group do not 

change, we expect 0i

z

d

dN

s
< , i z̧ , 1 i m¢ ¢ . The number of contacts per unit of time of 

individuals in the royal group does not change, but as an effect of 0i

z

d

dN

s
< , i z̧ , 

1 i m¢ ¢ , we expect also 0z

z

d

dN

s
< . By a same reasoning we expect that 0 0

z

dR

dN
> . The 

same type of reasoning applies for servant groups and the following theorem is expected. 

 Theorem 6 

Assume the model as described by (2.1) with a semi-domination contact pattern 

1 ,( )s

ij i j mK k ¢ ¢=  and 1 ,( )s

ij ij i j mp kb ¢ ¢=  irreducible for 0N>  and 0 ( ) 1sR Xr= >. Assume 

the population to have a servant group {1,..., }z mÍ . Then 0 0
z

dR

dN
<  and 0i

z

d

dN

s
> , 

1 i m¢ ¢ . 

 The proof is given in section 4. Theorem 5 and 6 are useful in a population 

where individuals are categorized in for example 3 groups: young, middle-aged and 

aged individuals. As mentioned in section 2.3.4, young individuals can intuitively be 

associated with the royal group and aged individuals can be associated with the servant 

group. By this association, we can interpret that a fractional increase of the number of 

aged individuals, which can be interpreted as ageing, will decrease the severity of an 

epidemic, if severity is measured in the basic reproduction number and the fractional 
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final size. Theorem 5 and 6 show that whether the number of contacts per unit of time 

of individuals of a group is fixed or depends in a manner such that the number of 

contacts per unit of time of other groups is fixed, is a major factor in the qualitative 

impact of a change in size of the group on the basic reproduction number and the 

fractional final size.  

3.2.3 Power contact patterns 

As mentioned in section 2.3.5, power contact patterns are independent of the population 

size for all dÍ , but only satisfy the reciprocal condition for 1/ 2d= , hence, power 

contact patterns are only a candidate of frequency dependency when 1/ 2d= . An 

interesting property in a model with the power contact pattern is that the basic 

reproduction number is independent of the composition of the population. 

Theorem 7 

Assume the model as described by (2.1) with a power contact pattern 1 ,( )p

ij i j mK k ¢ ¢=  

and dÍ  and b  irreducible for 0N> . Then the basic reproduction number, 

0 ( )pR Xr= , is independent of the size and composition of the population. 

Proof 

Since b is irreducible for 0N>  and 0a>  we conclude that also pX  is irreducible. 

Existence of 0 0R >  follows directly from the Perron-Frobenius Theorem. The power 

contact pattern is independent of the population size as mentioned in section 2.3.5, 

hence, also the next generation matrix, which depends on N  only in 1 ,( )p

ij i j mk ¢ ¢ , is 

independent of the population size. Let ( )Diagu  denote the diagonal matrix with at the 

jth diagonal the jth entry of vector u for {1,..., }j mÍ  and 0 for all other entries. Call 
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1( ) (( ,..., ) )d d T

p md Diag N ND = , dÍ . Note that the next generation matrix (2.14), in a 

model with a power contact pattern with dÍ , can be written in the form  

 

11 1

1

1

( ) ( )

p p

m

p p p

p p

m mm

a a

X d d

a a

-

å õ
æ ö

=D Dæ ö
æ ö
ç ÷

. (2.21) 

Thus pX  is similar to a matrix which is independent of the composition (and the size) 

of the population. Since similar matrices have the same eigenvalues, we conclude that  

0 ( )pR Xr=  is independent of the composition of the population. QED 

Theorem 8 

Assume the model as described by (2.1) with a power contact pattern 1 ,( )p

ij i j mK k ¢ ¢=  

and 1 ,( )p

ij ij i j mp kb ¢ ¢=  irreducible for 0N>  and 1d= . Then the fractional final size is 

independent of the size and composition of the population. 

Proof 

The statement is directly proven by substitution of 1d=  in the final size equations 

(2.15). QED 

3.3 Density dependency 

Theorem 9 

Assume the model as described by (2.1) with a density dependent contact pattern 

1 ,( )d

ij i j mK k ¢ ¢=  and 1 ,( )d

ij ij i j mp kb ¢ ¢=  irreducible for 0N> . Then 0 0
z

dR

dN
> , 1 z m¢ ¢ .  

Proof 

We are in the situation of Lemma 4 since b is irreducible for 0N>  and K  

continuously differentiable to 0N> . Choose {1,..., }z mÍ . '( )d zX N  is the matrix with 
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elements 0d

zja ²  for all {1,..., }j mÍ  in the z,jth position and 0 for positions other than 

the zth row. By irreducibility of b, d

zja  is positive for at least one {1,..., }j mÍ . Since 

* 0Tx >  and 0x>  (notation as in Lemma 4), we conclude 0 0
i

dR

dN
>  for all {1,..., }i mÍ . 

QED 

Theorem 10  

Assume the model as described by (2.1) with a density dependent contact pattern 

1 ,( )d

ij i j mK k ¢ ¢=  and 1 ,( )d

ij ij i j mp kb ¢ ¢=  irreducible for 0N> . Assume 0 ( ) 1dR Xr= >, 

then 0i

z

d

dN

s
<  for , {1,..., }i z mÍ . Additionally, if 1d

zz za N > , then 
( )

0z

z

dS

dN

¤
<  for 

{1,..., }z mÍ . 

 The proof of Theorem 10 is presented in section 4. In a density dependent 

contact pattern, both the size as the composition of the population has influence on the 

basic reproduction number and the fractional final size. Therefore, the impact of an 

increase of the group size of any group on the basic reproduction number and the 

fractional final size is a result of both a change in composition and size of the 

population. Note the difference with the theorems involving candidates of frequency 

dependency, where the impact is only due to a change in composition. Clearly, when the 

population size increases, all group sizes changes and hence, the qualitative results of 

Theorem 9 and 10 also holds for 0dR

dN
 and id

dN

s
,  1 i m¢ ¢ .  

 Theorem 9 is intuitively expected by the  fixed pool metaphor; an increase of 

individuals, increases the number of contacts and hence increases the average number of 

infections due to a single infectious individual at the earliest phase of an epidemic.  
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 The impact on the basic reproduction number as an effect of a change in 

composition 1( ,..., )mn n n=  only (population size N  is fixed) is different than stated as 

in Theorem 9. We write for convenience d

ij ija a N=  for all , {1,..., }i j mÍ . The next 

generation matrix with the density dependent contact pattern can then be written in the 

form 

 

11 1 1 1

1

m

d

m m mm m

a n a n

X

a n a n

å õ
æ ö
=æ ö
æ ö
ç ÷

. (2.22) 

When b is irreducible for (0,1)mnÍ , the expression 0 * '( )T

d i

i

dR
x X n x

dn
=  follows 

directly from Lemma 4, with * 0T Tx >  and 0x>  as in the notation of Lemma 4. In the 

m-type model, with m large, it is difficult to determine the sign of the expression 

0 * '( )T

d i

i

dR
x X n x

dn
=  due to the condition 

1

1
m

i

i

n
=

=ä . In the 2-type model we have the 

following theorem.  

Theorem 11 

Assume the 2-type (m=2) model as described by (2.1) with a density dependent contact 

pattern 0d

ijk >  for 1 (0,1)n Í  and 0ijp >  for , {1,2}i jÍ , and a fixed population size N  

(i.e. 1 21n n= - ). Then 0R  is a differentiable function to 1n  on [0,1] , with at most 1 

extremum. The sign of the slope of 0R  in 1 0n = , 1 1/ 2n =  and 1 1n =  corresponds 

respectively to the sign of 2

12 21 22a a a- ,  11 22a a-  and 2

11 12 21a a a- . 

 The proof of Theorem 11 is  presented in section 4. Theorem 11 implies that the 

qualitative behaviour of the basic reproduction number as a function of 1n  depends on 

the values of 1 [0,1]n Í  and the terms 1 , 2( )ij i ja ¢ ¢. This is different in the case of a non-
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fixed population, where the basic reproduction number has a monotone relation with iN , 

{1,..., }i mÍ  as shown in Theorem 9.  Note that the signs of 0

1

dR

dn
 at 

1 0n = , 
1 1/ 2n =  and 

1 1n = , i.e. the signs of 2

12 21 22a a a- , 11 22a a-  and 2

11 12 21a a a- , determine the existence of 

an extremum and whether the extremum is located at a value of 
1n  greater, smaller or 

equal to 1/ 2 by Theorem 11.  

4. Proofs  

In this section we present the skipped proofs in section 3. This section can be skipped if 

one is not interested in technical details. The proofs use foremost the ideas of Schmidt, 

1990. 

Proof of Theorem 1 

The following proof follows the steps of a more general proof as described in Rass & 

Radcliffe, 2003. Assume all conditions as stated in Theorem 1. We define 

: (1 ) [0,1]i in s= - Í  and :
ij j

ij

j i

N
b

N

b

a
=  for all , {1,..., }i j mÍ  and 1 ,: ( )ij i j mB b ¢ ¢= . Note that 

B  is irreducible when b is irreducible, since 0a>  and 0N> . The final size 

equations (2.4) are now 
1

1 exp[ ]
m

i ij jj
bn n

=
- = -ä , which are equivalent to  

 
1

log(1 )
m

i ij j

j

bn n
=

- - =ä , (2.23) 

{1,..., }i mÍ . Note that 1( ,..., ) 0T

mn n n= = is a solution of (2.23) and other solutions of 

(2.23) cannot have entries equal to 1, since exp( )Ö has a range of (0, )¤ . We are 

therefore only interested in solutions of (2.23) with [0,1)mnÍ . There is a one to one 

correspondence between values of [0,1)xÍ  and [0, )zÍ ¤  when the equation 
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log(1 )x z- - = holds, or equivalently, 1 exp( )z x- - =. Note that 0x=  if and only if 

0z= . Now, solutions of (2.23) corresponds to solutions of  

 
1

(1 exp[ ])
m

i ij j

j

z b z
=

= - -ä , (2.24) 

 1,...,i m= , with 
1( ,..., ) 0T

mz z z= ²  and 1 exp[ ]i izn= - - and log(1 )i iz n=- - . In 

matrix notation (2.24) is equivalent to  

 (1 exp[ ])z B z= - -, (2.25) 

 with (1 exp[ ])z- -  the m-dimensional vector with at the ith entry 1 exp[ ]iz- - , 

{1,..., }i mÍ . Theorem 1 can now be stated as: (2.25) has a unique solution 0z>  if and 

only if 0 1R >  

 First we prove that (2.25) only has the trivial 0  solution when 0( ) 1X Rr = ¢. 

Let ( )Diagu  denote the m m³  diagonal matrix with at the jth diagonal the jth entry of 

the m-dimensional vector u for all {1,..., }j mÍ  and 0 for all other entries. We define 

( )Diag ND= . Note that 1X B-D D=, hence B  and X  are similar matrices and if 

( ) 1Xr ¢  then ( ) 1Br ¢ . Let 1( ,..., ) 0T T

mx x x= >  be the left eigenvector of B  

corresponding to ( )Br , which exists by irreducibility of B and the Perron-Frobenius 

Theorem. Assume that 1(0) ( (0),..., (0)) [0, )T

mz z z= Í ¤ is a solution of (2.25). Then, we 

have (0) (1 exp[ (0)]) ( ) (1 exp[ (0)])T T Tx z x B z B x zr= - - = - - . Hence, 

1 1
(0) ( ) (1 exp[ (0)])

m m

j j j jj j
x z B x zr

= =
= - -ä ä , and equivalently, 

 
1

( (0) ( )(1 exp[ (0)])) 0
m

j j j

j

x z B zr
=

- - - =ä . (2.26) 
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 Define the function ( ) ( )(1 exp[ ])f z z B zr= - - - for [0, )zÍ ¤, then (0) 0f =  and 

'( ) 1 ( )exp( ) 0f z B zr= - - >, since ( ) 1Br ¢  and 0 exp( ) 1z< - <. Hence ( ) 0f z >  for 

0z> . Since 0Tx > , we conclude that only (0) 0z =  can be a solution of (2.25).  

 We prove that (2.25) has a unique solution (1) 0z >  if 0( ) 1X Rr = >. Note that 

( ) 1Xr >  implies ( ) 1Br >  by similarity of X  and B . Let 0w>  be the right 

eigenvector of  B  corresponding to ( )Br , which exists by irreducibility of B  and the 

Perron-Frobenius Theorem. Choose a 0 1m< < such that ( ) 1Br m> . Since 1 exp( )z- - 

is continuous and differentiable to [0, )zÍ ¤, there exists by the Mean Value Theorem 

for any [0, )zÍ ¤ a 0 z zz< < such that (1 exp[ ] (1 exp[ 0])) / ( 0) exp[ ]zz z z- - - - - - = -, 

which is equivalent to 1 exp[ ] exp[ ]zz zz- - = -. Clearly exp[ ] 1zz- ¬ as 0z® . Hence, 

for z  sufficiently small we have 1 exp[ ]z zm- - ². There exists therefore an 0e>  such 

that 1 exp[ ]i iw we me- - ²  for all {1,..., }i mÍ . Now define (0)u we=  and 

( ) ( 1)(1 exp[ ])n nu B u -= - -  for {1,2,3,...}nÍ . Then 

(1) (0)(1 exp[ ]) ( )u B w Bw B w w ue me r me e= - - ² = > =. Choose 2n²  and assume 

( 1) ( 2)n nu u- -> , then we have ( ) ( 1) ( 2) ( 1)(1 exp[ ]) (1 exp[ ])n n n nu B u B u u- - -= - - ² - - = since 

(1 exp[ ])z- - , [0, )zÍ ¤, is a strictly increasing function. Hence, by induction, we 

conclude that ( )nu  is a strict increasing sequence of vectors and is bounded from above 

by 1B . We conclude that ( )nu  converges to a vector (1) 0z >  satisfying 

(1) (1 exp[ (1)])z B z= - - .  

 We prove uniqueness by contradiction. Note that each solution of (2.25) with at 

least one zero entry, must be the trivial 0  solution by irreducibility of B . Assume 
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therefore two solutions of (2.25), 
1 0z >  and 

2 0z >  and assume without loss of 

generality 1 2z z² , which means that there is a {1,..., }j mÍ  such that the jth entry of 1z  

is smaller than the jth entry of 
2z . Define 

0 1 2
{1,..., }
min (( ) / ( ) )i i

i m
t z z

Í
=  with 

1( )iz  and 
1( )iz  

the ith entry of 1z  and 2z  respectively, {1,..., }j mÍ . We have 00 1t< <  and 

1 0 2( ) ( )i iz t z=  for some {1,..., }i mÍ  and 1 0 2( ) ( )z t z² . Additionally we have by strict 

concavity of 1 exp[ ]z- - for [0, )zÍ ¤ the following inequality,  

 
0 0 0 0

0

1 exp( ( (1 )0)) (1 exp[ ]) (1 )(1 exp[ 0])

(1 exp[ ]).

t z t t z t

t z

- - + - > - - + - - -

= - -
 (2.27) 

Hence, 1 1 0 2 0 0 2 0 2(1 exp[ ]) (1 exp[ ]) (1 exp[ ])z B z B t z Bt t z t z= - - ² - - > - - =, which 

contradicts the previous result that 1 0 2( ) ( )i iz t z=  for some {1,..., }i mÍ . We conclude by 

contradiction that (1) 0z >  must be the unique solution of the equation (2.25) in (0, )m¤ . 

QED 

Proof of Theorem 2 

This proof uses the ideas of Schmidt, 1990. Assume all conditions as stated in Theorem 

2. Theorem 1 states that the condition 0 1R >  and irreducibility of b imply the 

existence and uniqueness of the non-trivial solution of the final size equations: 

1( ) (0, ) ... (0, )mS N N¤ Í ³ ³ . Let ( )Diag Ö be defined as in the proof of Theorem 1. Since 

( )Diags  has positive entries in the diagonal and ( ( ))X X S= -¤ is a nonnegative 

irreducible matrix, it follows that ( ) ( ( )) ( ( ))Diag X S X Ss -¤ = ¤ is also a non-negative 

irreducible matrix. The final size equations in terms of 1( ),..., ( )mS S¤ ¤  are given by 

 
1

( )( )
exp[ ( 1)],

m
ij j ji

ji j i j

N SS

N N N

b

a=

¤¤
= -ä  (2.28) 
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i=1,...,m (see (2.4)). Choose {1,.., }i mÍ . We rewrite (2.28) by taking logarithm and 

multiplying by ( )iS ¤  on both sides. We obtain: 

 
1

( ) ( )
log( ) ( ) ( ( ) )

m
iji i

i j j

ji i j

S S
S S N

N N

b

a=

¤ ¤
¤ = ¤ -ä . (2.29) 

We write this in matrix notation, 

 1 1

( )
log( ) ( ) ( ( ( ))( ( ) ,..., ( ) ) )Ti

i m m i

i

S
S X S S N S N

N

¤
¤ = ¤ ¤ - ¤ - . (2.30) 

From the irreducibility of ( ( ))X S¤ , the  Perron-Frobenius Theorem guarantees the 

existence of a  unique, real valued dominant eigenvalue ( ( ( )))X Sr ¤  and a 

corresponding left eigenvector 0Ty > . Summing over the expression (2.30) over all 

{1,..., }i mÍ  and using the left eigenvector property we obtain 

 

1

1

1 1

1 1

1

( ) ( )
log( ) ( ) (log( ) ( ))

( )

( ( ))

( )

( )

( ( ( )))

( )

( ( ( ))) ( ( ) ),

m
j jT

j j j j m

j j j

T

m m

T

m m

m

j j j

j

S S
y S y S

N N

S N

y X S

S N

S N

X S y

S N

X S y S N

r

r

¢ ¢

=

=

¤ ¤
¤ = ¤

å ¤ - õå õ
æ öæ ö

= ¤æ öæ ö
æ öæ ö¤ -ç ÷ç ÷

¤ -å õ
æ ö

= ¤
æ ö
æ ö¤ -ç ÷

= ¤ ¤ -

ä

ä

 (2.31) 

the third equality follows from the associative property of vector-matrix multiplication 

and  the definition of the left eigenvector. Now, ( ( ( )))X Sr ¤  satisfies 

 
1

( )
(log( ) ( ) ( ( ( )))( ( ) )) 0

m
j

j j j j

j j

S
y S X S S N

N
r

=

¤
¤ - ¤ ¤ - =ä . (2.32) 
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 We prove by contradiction and assume ( ( ( ))) 1X Sr ¤ ². Let {1,.., }i mÍ  and define the 

differentiable function ( ) log( ) ( ( ( )))( )i
i i i i i

i

x
f x x X S x N

N
r= - ¤ - with (0, ]i ix NÍ . The 

derivative of if  to ix  is equal to ( ) log( ) 1 ( ( ( )))i
i

i i

xd
f x X S

dx N
r= + - ¤, which is smaller 

than 0 for (0, )i ix NÍ  by the assumption ( ( ( ))) 1X Sr ¤ ² . Hence, if  is a strict 

decreasing function in (0, )i ix NÍ . It follows that if  is a positive function in (0, )ix NÍ   

by ( ) 0i if N = . We conclude that 
1

( ) 0
m

j j j

j

y f x
=

>ä , (0, )j jx NÍ , by the positivity of jf , 

j=1,...,m and 0Ty > . Since 1( ) (0, ) ... (0, )mS N N¤ Í ³ ³  by Theorem 1, the above 

conclusion contradicts condition (2.32) and hence ( ( ( ))) 1X Sr ¤ <. QED 

Proof of Theorem 3 

Assume all conditions as stated in Theorem 3. Define the function 

1 11 12( ,..., ) : ( ,( , ,..., ), , )T m

m mmF F F N p p p xa= ­  by  

 
1

( )
exp[ ( )]

m
ij ij

i i i j j

j j i

p k N
F x N x N

Na=

= - -ä , (2.33) 

for i=1,...,m with 1 1( ,..., ) (0, ) ... (0, )T

m mx x x N N= Í ³ ³ . Note that F  is continuously 

differentiable to N , 11 12( , ,..., )mmp p p , a  and x  since ( )ijk N  is continuously 

differentiable to N . Then 0F =  is equivalent to the system of final size equations (2.4). 

Define the indicator function conditionI  which is 1 if óconditionô is true and 0 otherwise. 

Recall that we are in the situation 0 1R > . Fix , {1,..., }i j mÍ , 0

mN >Í , 

2

11 12 0( , ,..., ) m

mmp p p ²Í  and 0

ma >Í , then the derivative of iF  to jx  satisfies: 
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 { }

1

( ) ( )
exp[ ( )]

m
ij ij ij iji

i j i j j

jj j i j i

p k N p k NdF
N x N

dx N Na a
=

=

=I - -ä . (2.34) 

Since b is irreducible in the domain N , 11 12( , ,..., )mmp p p  and a and 0 1R > , it follows 

by Theorem 1 that the equation 0F =  has a unique solution 1( ) (0, ) ... (0, )mS N N¤ Í ³ ³ . 

Hence in matrix formulation, the equality holds 

 

1 , ( )

( (1) ( ( )))i

j i j m x S

dF
Diag X S

dx
¢ ¢ = ¤

å õ
= - ¤æ öæ ö

ç ÷

, (2.35) 

with ( )Diag Ö as defined in the proof of Theorem 1 and ( ( ))X S¤  as defined in (2.20) 

and ( )ij ij ijp k N b=  and 
1

( )
( ) exp[ ( ( ) )]

m
ij ij

i i j j

j j i

p k N
S N S N

Na=

¤ = ¤ -ä  for all , {1,..., }i j mÍ . 

By Theorem 1 we have that ( ( ( ))) 1X Sr ¤ <, therefore, all eigenvalues of ( ( ))X S¤  are 

less than 1 in absolute value and, hence, det( ( ( ))) 0I X S- ¤ ,̧ which implies that 

1 , ( )

i

j i j m x S

dF

dx
¢ ¢ = ¤

å õ
æ öæ ö
ç ÷

 is an invertible matrix. By the Implicit Function Theorem we 

conclude that ( )iS ¤  is differentiable N , 11 12( , ,..., )mmp p p  and a for all {1,..., }i mÍ . 

QED 

Proof of Lemma 4 

Assume the conditions as stated in Lemma 4. Irreducibility of ( )iX N  follows from 

irreducibility of b and 1( ,..., ) 0T

ma a a= >. Therefore, by the Perron-Frobenius 

Theorem, there exist, corresponding to the dominant eigenvalue ( )Xr  with multiplicity 

1, left and right eigenvectors * ( ) 0T T

ix N >  and ( ) 0ix N > . By scalar multiplication we 

choose the eigenvectors such that * 1Tx x= . Since K  is element-wise differentiable to 
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iN , also ( )iX N  is element-wise differentiable to iN . It follows from Lax, 1996, that 

the dominant eigenvalue 0 ( )R Xr=  and the left and right eigenvector, *Tx  and x , of 

X  are differentiable to iN . The left and right eigenvectors satisfy the equations 

 0( )iX N x R x=  (2.36) 

 
0* ( ) *T T

ix X N R x=  (2.37) 

Differentiation of (2.36) to iN  gives  

 0
0'( ) ( )i i

i i i

dRdx dx
X N x X N R x

dN dN dN
+ = +  (2.38) 

by the product rule. Left multiplication of (2.38) by *Tx  gives 

 0
0 0* '( ) * *T T T

i

i i i

dRdx dx
x X N x R x R x

dN dN dN
+ = + . (2.39) 

Hence, the identity  

 0 * '( )T

i

i

dR
x X N x

dN
=  (2.40) 

holds. QED 

Proof of Theorem 5 

Assume all conditions as stated in Theorem 5. Since 1 ,( )s

ij i j mK k ¢ ¢=  is element-wise 

differentiable to zN  and b is irreducible for 0N> , we are in the situation of Lemma 4, 

and we have, using the notation in Lemma 4, the expression 0 * '( )T

s z

z

dR
x X N x

dN
= . Only 

the entries in the z-th column and row of ( )s zX N  depend on zN , therefore, '( )s zX N  is 

0 in the entries other than the z-th column and row. Since z is the royal group, we have 

1jzc =  for all {1,..., }j mÍ . Hence, the j,zth entry of ( )s zX N  is 
s

jza , and the z,jth entry 
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of ( )s zX N  is /s

zj z ja N N , {1,..., }j mÍ . Therefore, the z-th column and row of '( )s zX N  

exists respectively of zeros only and (1/ ) 0s

zj ja N >  for z j¸ , 1 j m¢ ¢ . Since 

* 0T Tx >  and 0x> ,  we conclude 0 * '( ) 0T

s z

z

dR
x X N x

dN
= >. 

 We are working in the conditions of Theorem 3 since b is irreducible for 0N>  

and K  is continuously differentiable to N  and 0 1R > , hence, is , {1,..., }i mÍ , is 

continuously differentiable to zN  by Theorem 3. Recall the final size equations (2.11) 

in a semi-domination contact pattern. Since z  is a royal group, we have 1izc =  for all 

{1,..., }i mÍ . Using this substitution, we obtain, by the standard rules of differentiation 

for i z̧ , 

 
1

[ ( 1)]
(1 )

s sm
ij j j si i iz

i ii z

jz ij i ij j z z i
j i

a N dd d a
a

dN c N c N dN dN N

ss s
s s

=
¸

= + + -
+ -

ä , (2.41) 

 and for  i z= , 

 
1

[ ]
m

js si i
i ij ii

jz z z
j i

dd d
a a

dN dN dN

ss s
s

=
¸

= +ä . (2.42) 

Equations (2.41) and (2.42) are respectively equivalent to 

 
1

( 1) (1 )
(1 )

ss m
ij i j jsiz i

i z ii i

ji z ij i ij j z
j i

a N da d
a

N dN c N c N dN

s ss
s s s

=
¸

- = - -
+ -

ä  (2.43) 

 
1

0 (1 )
m

js si
ii i ij i

jz z
j i

dd
a a

dN dN

ss
s s

=
¸

= - -ä . (2.44) 

Let ( )Diag Ö be defined as in the proof of Theorem 1 and recall ( )Diag ND= . Define 

* 1( ( )) ( ( ))s sX S X S-¤ =D ¤ D, hence, * ( ( ))sX S¤  and ( ( ))sX S¤  are similar matrices. 

Using the expressions of ( ( ))sX S¤  as defined in (2.20), the i,j th entry of * ( ( ))sX S¤  is 
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equal to 
(1 )

s

ij i j

ij i ij j

a N

c N c N

s

+ -
, 1 j m¢ ¢ . Therefore, we can write the equations (2.43) and 

(2.44) in the following matrix notation,  

 *( (1) ( ( )))z s kb Diag X S D= - ¤ , (2.45) 

with 
zb  the column vector with at the jth entry ( 1)

s

jz

j z

j

a

N
s s- , for j z̧  and 0 for j z=  

and 
zD  the column vector with at the jth entry 

j

z

d

dN

s
, 1 j m¢ ¢ . By similarity it follows 

that * ( ( ))sX S¤  and ( ( ))sX S¤  share the same eigenvalues. By Lemma 4 we conclude 

*( ( ( ))) 1sX Sr ¤ < and hence, all eigenvalues of * ( ( ))sX S¤  is smaller than 1 in absolute 

value. Hence *( (1) ( ( )))sDiag X S- ¤  is an invertible matrix and  

 

* 1

*

1

( (1) ( ( )))

( ( ( ))) .

z s z

l

s z

l

D Diag X S b

X S b

-

¤

=

= - ¤

= ¤ä
. (2.46) 

The second equality follows from the convergence of the geometric series for matrices 

with spectral radius less than 1. By irreducibility, each column of b must have at least 

1 positive entry. Since 0 1R >  and b is irreducible, it follows from Theorem 1, that 

1( ,..., ) (0,1)mms sÍ . Therefore, 0zb ¢  and has at least one negative entry. Assume that 

the {1,..., }n mÍ  entry is negative. By irreducibility, there exists an 0( )l j , such that the 

j,nth entry of 0*( ( ( )))
l

sX S¤  is positive for all j=1,...,m. We conclude that 

*

1

( ( ( ))) 0l

z s z

l

D X S b
¤

=

= ¤ <ä . QED 

Proof of Theorem 6 

The proof of Theorem 6 goes analogue to the proof of Theorem 5. We give the proof for 

completeness of this paper. Assume all conditions as stated in Theorem 6. Since 
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1 ,( )s

ij i j mK k ¢ ¢=  is element-wise differentiable to 0zN >  and b is irreducible for 0N> , 

we are in the situation of Lemma 4, and we have, using the notation in Lemma 4, the 

expression 0 * '( )T

s z

z

dR
x X N x

dN
= . Only the entries in the z-th column and row of 

( )s zX N  depend on zN , therefore, '( )s zX N  is 0 in the entries other than the z-th column 

and row. Since z is the servant group, we have 0jzc =  for all {1,..., }j mÍ . Therefore 

the j,zth entry of ( )s zX N  is 
js

jz

z

N
a

N
 and the z,jth entry of ( )s zX N  is s

zja , 1 j m¢ ¢ . 

Hence, the z-th column and row of '( )s zX N  is respectively 2( / ) 0s

jz j za N N- < for z j¸ , 

1 j m¢ ¢  and zeros only. Since * 0T Tx >  and 0x> ,  we conclude 

0 * '( ) 0T

s z

z

dR
x X N x

dN
= <. 

 We are working in the conditions of Theorem 3 since b is irreducible for 0N>  

and 0 1R >  and K  is continuously differentiable to N , hence, is  is differentiable to 

zN  for all {1,..., }i mÍ  by Theorem 3. Recall the final size equations (2.11) in a semi-

domination contact pattern. Since z  is a servant group, we have 1zic =  for all 

{1,..., }i mÍ . Using this substitution, we obtain by the standard rules of differentiation 

for i z̧ , 

 
1

[ ]
(1 )

sm
ij j j si i

i ii

jz ij i ij j z z
j i

a N dd d
a

dN c N c N dN dN

ss s
s

=
¸

= +
+ -

ä , (2.47) 

 and for  i z= , 

 
2

1 1

[ ( 1)]
m m

j j js s si i
i ij ii ij j

j jz z z z z
j i j i

N d Nd d
a a a

dN N dN dN N

ss s
s s

= =
¸ ¸

= + - -ä ä . (2.48) 

Equations (2.47) and (2.48) are respectively equivalent to 
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1

2
1 1

0 (1 )
(1 )

(1 ) (1 ) .

sm
ij i j js i

ii i

jz ij i ij j z
j i

m m
j j js s si

ij j ii i ij i

j jz z z z
j i j i

a N dd
a

dN c N c N dN

N N dd
a a a

N dN N dN

s ss
s

ss
s s s

=
¸

= =
¸ ¸

= - -
+ -

- = - -

ä

ä ä

 (2.49) 

Let ( )Diag Ö be defined as in the proof of Theorem 1 and recall ( )Diag ND=  and 

* 1( ( )) ( ( ))s sX S X S-¤ =D ¤ D. Note that * ( ( ))sX S¤  and ( ( ))sX S¤  are similar matrices. 

Using the expressions of ( ( ))sX S¤  as defined in (2.20), the i,j th entry of * ( ( ))sX S¤  is 

equal to 
(1 )

s

ij i j

ij i ij j

a N

c N c N

s

+ -
 for , {1,..., }i j mÍ . Therefore, we can write (2.49) in the 

following matrix notation  

 *( (1) ( ( )))z s zb Diag X S D= - ¤ , (2.50) 

with zb  the column vector with at the zth entry 
2

1

(1 )
m

js

ij j

j z
j i

N
a

N
s

=
¸

-ä  and 0 for j z̧ . 

Recall that zD  is the column vector with at the jth entry 
j

z

d

dN

s
, 1 j m¢ ¢  (see proof of 

Theorem 5). By similarity, * ( ( ))sX S¤  and ( ( ))sX S¤  share the same eigenvalues. By 

Lemma 4 we conclude *( ( ( ))) 1sX Sr ¤ <, and hence, all eigenvalues of * ( ( ))sX S¤  is 

smaller than 1 in absolute value. Hence *( (1) ( ( )))sDiag X S- ¤  is an invertible matrix 

and therefore, 

 

* 1

*

1

( (1) ( ( )))

( ( ( ))) .

z s z

l

s z

l

D Diag X S b

X S b

-

¤

=

= - ¤

= ¤ä
 (2.51) 

The second equality follows from the convergence of the geometric series for matrices 

with spectral radius less than 1. By irreducibility, each column of b must have at least 

1 positive entry. Since 0 1R > , it follows from Theorem 1, that 1( ,..., ) (0,1)mms sÍ . 
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Therefore, 0zb ²  with at the zth entry a positive number. By irreducibility, there exists 

an 0( )l j , such that the j,zth entry of 0*( ( ( )))
l

sX S¤  is positive for all {1,..., }j mÍ . We 

conclude *

1

( ( ( ))) 0l

z s z

l

D X S b
¤

=

= ¤ >ä . QED 

Proof of Theorem 10 

Assume all conditions as stated in Theorem 10. We can use Theorem 1 since b is 

irreducible for 0N> , hence, by 0 1R > , s is in 1(0, ) ... (0, )mN N³ ³  and is unique. 

Choose {1,..., }z mÍ . Since b is irreducible for 0N>  and K  continuously 

differentiable to 0N>  and 0 1R > , we have by Theorem 3 that s is continuously 

differentiable to zN . We prove in the forthcoming 0i

z

d

dN

s
<  for all {1,..., }i mÍ . Write 

* 1( ) ( )d dX X-¤ =D ¤ D, with ( )Diag ND=  as introduced in the proof of Theorem 1. Note 

that * ( )dX ¤  is irreducible since ( )dX ¤  is irreducible and 0N> . * ( )dX ¤  and ( )dX ¤  

are similar matrices by the identity of * ( )dX ¤  and, hence, share the same eigenvalues. 

Recall the final size equations (2.19) in the case of a density dependent contact pattern. 

Using these equations and the standard differentiation rules we have 

 
1

( ( 1))
m

jd di
i ij j iz z

jz z

dd
a N a

dN dN

ss
s s

=

= + -ä , (2.52) 

for {1,..., }i mÍ . After rewriting equation (2.52) such that all derivatives of is , 

{1,..., }i mÍ , is in the RHS, we obtain 

 { }

1

( 1) (I ( ) )
m

j jd d

i iz z i j i ij

j z i

d N
a S a

dN N

s
s s =

=

- = - ¤ä , (2.53) 
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with Icondition  as defined in the proof of Theorem 3. Recall 
zD  from the proof of 

Theorem 5 and define Ĕ
zb  to be the m-dimensional vector with at the jth entry, 

{1,..., }j mÍ , ( 1)d

j jz zas s- . Then (2.53) can be written in matrix notation 

 *Ĕ ( (1) ( ))z d zb Diag X D= - ¤ , (2.54) 

With ( )Diag Ö as defined in Theorem 1. By Theorem 2, which is applicable since b is 

irreducible for 0N>  and 0 1R > , and similarity of * ( )dX ¤  and ( )dX ¤ , it follows that 

all eigenvalues of * ( )dX ¤  is smaller than 1 in absolute value. We conclude that 

*( (1) ( ))dDiag X- ¤ is an invertible matrix. Therefore the following expression holds 

 

* 1

*

1

Ĕ( (1) ( ))

Ĕ( ( )) .

z d z

l

d z

l

D Diag X b

X b

-

¤

=

= - ¤

= ¤ä
 (2.55) 

The second equality follows from the convergence of the geometric series for matrices 

with spectral radius less than 1. By irreducibility, each column of b must have at least 

one positive entry. Recall that s is in (0,1)m and is unique by Theorem 1. Therefore we 

have Ĕ 0zb ¢  with at least one negative entry. Assume that this is entry {1,..., }n mÍ . By 

irreducibility of * ( )dX ¤ , there exists an 0( )l j , such that the j,nth entry of 0*( ( ))
l

dX ¤  is 

positive for all j=1,...,m. Hence, we conclude *

1

Ĕ( ( )) 0l

z d z

l

D X b
¤

=

= ¤ <ä .  

Differentiability and 
( )

0i

z

dS

dN

¤
<  for {1,..., }i mÍ , i z̧  follow from Theorem 3 

and the first part of this proof. We are left to show that 
( )

0z

z

dS

dN

¤
<  when 1zz za N > . We 

proceed as before. The following follows from the final size equations (2.19) and the 

standard rules of differentiation 
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dS S
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=

=

=

=

¤¤ ¤
= + ¤ -

¤ ¤
= ¤ + - ¤

ä
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 (2.56) 

for all {1,..., }i mÍ . After rewriting (2.56) such that all derivatives of ( )jS ¤ , j=1,...,m, is 

in the RHS,  we have 

 { } { }

1

( )( )
I ( ) (I ( ))

m
jd dz

i z i iz j i ij i

jz Z

dSS
S a a S

N dN
= =

=

¤¤
- ¤ = - ¤ä . (2.57) 

Denote 1( ( )) ( ( ) / ,..., ( ) / )Tz z m zD S dS dN dS dN¤ = ¤ ¤  and 

1 { 1} 1 { }

1 1Ĕ( ( )) ( ( )( ),..., ( )( ))d d T

z z z m z m mz

z z

b S S I a S I a
N N

= =¤ = ¤ - ¤ - . In matrix notation, 

equation (2.57) is equivalent to Ĕ( ( )) ( (1) ( )) ( ( ))z d zb S Diag X D S¤ = - ¤ ¤. By Theorem 2, 

all eigenvalues of ( )dX ¤  is smaller than 1 in absolute value, hence, ( (1) ( ))dDiag X- ¤ 

is invertible and 1Ĕ( ( )) ( (1) ( )) ( ( ))z d zD S Diag X b S-¤ = - ¤ ¤. Now Ĕ( ( )) 0zb S¤ ¢  with at 

least 1 negative entry by the irreducibility of b and the assumption 1d

zz za N > . By the 

same reasoning as in the first part of the proof of this theorem, we conclude 

( ( )) 0zD S¤ < and in particular 
( )

0z

z

dS

dN

¤
< . QED 

Proof of Theorem 11 

Note that 1 21n n= - . Assume all conditions as stated in Theorem 11. Since 0d

ijk >  for 

1 (0,1)n Í  and 0ijp > , we conclude that 0d

ij ij ijp kb= > for , {1,2}i jÍ , hence, b is an 

irreducible matrix for 1 (0,1)n Í . In addition, K  is clearly differentiable to 1n , therefore, 

differentiability of 0R  to 1 (0,1)n Í  follows directly from Lemma 4. We show 

differentiability of 0R  in 0 and 1. By simple algebra, the expression of the basic 

reproduction number in the 2-type model is  
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 1
0 22 1 11 22 12

( ( ) ( ))R a n a a D n= + - + , (2.58) 

with 2 2 2

1 11 22 12 21 1 1 12 21 22 11 22 22( ) (( ) 4 ) (4 2 ( ))D n a a a a n n a a a a a a= + - + - + +. 1( )D n  is 

clearly a differentiable function in 1n , hence, the square root of 1( )D n  is differentiable 

to 
1n  in 

0n Í  if and only if 
0( ) 0D n > . Since 2

22(0) 0D a= > and 2

11(1) 0D a= > by the 

assumption 0d

ijk >  for , {1,2}i jÍ , it follows that 0R  is differentiable to 
1 [0,1]n Í . By 

standard rules of differentiation we have for 1 [0,1]n Í , 

 0 12 21 1 11 22 22 1 11 1
11 22

1

(2 4 ) ( )( ( 1) )1
( ).

2

dR a a n a a a n a n
a a

dn D

- + + - +
= - +  (2.59) 

The expression of 0

1

dR

dn
 is in general complex, but it obtains simpler forms in the cases 

1 0n = , 1 1n = , 1 1/ 2n = . The expressions are respectively 

 

1

1

1

2

0 12 21 22
0

1 22

0 11 22 11 22
1/2

1

2

0 12 21 11
1

1 11

,

( )( )
,

2

.

n

n

n

dR a a a

dn a

dR a a a a A

dn A

dR a a a

dn a

=

=

=

-
=

- + +
=

- +
=

 (2.60) 

with 2

12 21 11 224 ( )A a a a a= + - . Hence, the signs of 
1

0
0

1

n

dR

dn
= , 

1

0
1/2

1

n

dR

dn
=  and 

1

0
1

1

n

dR

dn
=  

correspond respectively to the signs of  2

12 21 22a a a- , 11 22a a-  and 2

11 12 21a a a- .  

To prove that  0R  has at most 1 extremum, we show that 0

1

0
dR

dn
=  has at most 1 

solution to 1 [0,1]n Í . Rewriting 0

1

0
dR

dn
=  gives 

 11 22 12 21 1 11 22 22 1 11 1( ) [ (2 4 ) ( )( ( 1) )].a a D a a n a a a n a n- =- - + + - + (2.61) 
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Equation (2.61) is solved analytically by taking the square in the LHS and RHS of the 

equation. The square operation increases the solution set by 1 since the equation after 

taking the square satisfies additionally 

 
11 22 12 21 1 11 22 22 1 11 1( ) (2 4 ) ( )( ( 1) ).a a D a a n a a a n a n- = - + + - + (2.62) 

This implies that the solution of (2.61) is one of the two unique solutions of the root of a 

second order polynomial. The Fundamental Theorem of Algebra states that a second 

order polynomial has 2 roots (possibly complex and with multiplicity 2), hence, the 

basic reproduction number as a function of 1n  has at most 1 unique extremum in 

1 [0,1]n Í . QED 

 

5. Case study: impact of demographical change on the severity of a 

H1N1 strain outbreak in Hong Kong 

5.1 Introduction  

In this section we illustrate the impact of demographical change on the severity of an 

outbreak in the setting of Hong Kong and an H1N1 strain similar to the H1N1-2009. 

We focus in this numerical study on the qualitative relation only. The fraction of the 

population that is 20 years or older is projected to increase between the years 2010 and 

2039 in Hong Kong, the USA and Japan (see Figure 1A). The projection of the age 

composition of Hong Kong is shown in figure 1B. The population is categorized in the 

age groups 0-19, 20-59 and 60+. These projections are made available by the Hong 

Kong Census and Statistics Department, the United States Census Bureau and The 

National Institute of Population and Social Security Research of Japan respectively.  



49 

 

 

Figure 1. Evidence of ageing in Hong Kong, the USA and Japan. 

Projections of the age demography in Hong Kong, the USA and Japan of the period 2010-2039. Figure 

1A shows a relative increase of the number of individuals of age 20+ in all three countries. Figure 1B 

shows the change of age composition in Hong Kong. 

 

5.2 Impact of demographical change on the final size and normalized total 

mortality of a H 1N1 virus outbreak in Hong Kong 

 In the following we adjust the definition of a contact pattern, K , as defined in 

section 2 by requiring additionally that a contact pattern must satisfy the reciprocal 

condition. We define the normalized total mortality of an epidemic by the fraction of 

individuals of the total population that die killed due to infection. In this case study, we 

consider a H1N1 strain similar to the H1N1-2009 (in the sense of similar transmission 

dynamics) in the population of Hong Kong and study the final size and normalized total 

mortality for different age distributions. We use the estimated case fatality ratios per age 

group (Dawood et al., 2012), defined as the average number of individuals that die 

given an infection, to show the relation between age distribution and normalized total 

mortality.  

We use the estimation method as in Nishiura et al., 2010 to estimate the next 

generation matrix of the H1N1-2009 virus in a model with 2 or 3 age groups. 

Individuals in the 2-type model are categorized as 0-19 years old or 20+ years old, 

which we label as group 1 and 2 respectively. Individuals in the 3-type model are 

categorized in the groups 0-19, 20-59 and 60+ and are labelled by group 1, 2 and 3 
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respectively. We illustrate the estimation method of the next generation matrix for the 2-

type model only, since the method is similar for the 3-type model. First we introduce 

some concepts to estimate the next generation matrix.  

Let the relative susceptibility of group 2 with respect to group 1 be denoted by 

2 0s >Í , i.e., given the same number of contacts with infectious individuals in the 

population at any time, the rate at which a type 2 susceptible individual gets infected is 

a factor 
2s  lower than a type 1 susceptible individual. We define the dummy variables 

0ijk ² , , {1,..., }i j mÍ , which is interpreted as the average number of contacts per day of 

a group j individual with group i individuals. The interpretation of ijk  is the same as ijk , 

, {1,..., }i j mÍ , but it does not necessarily satisfy the reciprocal condition in general and 

is, hence, not a contact pattern. In this study we will use 1 , 2( )ij i jk ¢ ¢ to obtain a relative 

relation between contact rates of individuals of different groups. Therefore, we are free 

to multiply all elements of 1 , 2( )ij i jk ¢ ¢  by the same scalar. Mossong et al., 2008, 

estimated the average number of contacts of individuals in the age groups 0-4, 5-

9,...,65-69, 70+ with individuals of different age groups in 8 European countries. We 

adjusted the estimated average number of contacts per day of Mossong et al., 2008, of 

the population of the UK  to estimate the average number of contacts per day of 

different individuals of different age groups in Hong Kong. We have calculated the 

number of contacts per day of individuals in the groups 0-19 and 20+ with individuals 

of the groups 0-4, 5-9,..., 70+ by summing over the estimated number of contacts per 

day of individuals in the groups 0-4, 5-9, ..., 15-19 and 20-24,...,70+ with the groups 0-4, 

5-9,..., 70+ respectively. The number of contacts per day of an individual in the age 

group 0-19 and 20+ with the age groups, 0-4, 5-9,..., 70+ were then summed over the 

age groups 0-4, 5-9, ..., 15-19 and 20-24,...,70+ with weights based on the fractional 

size of the age groups of Hong Kong in 2009 to obtain the number of contacts per day 

of individuals in the groups 0-19 and 20+ with individuals of the groups 0-19 and 20+. 
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To obtain the estimate for 1 , 2( )ij i jK k ¢ ¢=  in Hong Kong in 2009, this 2 2³  matrix is 

adjusted such that the number of contacts per day between the 0-19 and 20+ group 

satisfies the reciprocal conditions under the condition that the sum of the total number 

of contacts of individuals of age 0-19 with group 20+ and the total number of contacts 

of individuals of age 20+ with group 0-19 is constant (see Appendix A). Define 
1 1s =  

and choose 2 0.185s =  which is in agreement with the estimations given in Nishiura et 

al., 2010. 1 , 2( )i ij i js k ¢ ¢ is a matrix which indicates the relative infectiousness and does not 

state the actual infectiousness between the age groups, in contrast to 1 , 2( )ij ij i jp k ¢ ¢ (see 

section 2 for notation). As mentioned earlier, we are free to multiply 1 , 2( )i ij i js k ¢ ¢ by a 

constant 0c>  such that the dominant eigenvalue of 1 , 2( )i ij i js k ¢ ¢ is exactly 1. Define 

i is cs=  for {1,2}iÍ . We model the next generation matrix as follows 

 0ij i ijX R s k= , (2.63) 

1 , 2i j¢ ¢. Recall that ijX , , {1,2}i jÍ ,  is the i,j th element of the next generation 

matrix and 0R  is the basic reproduction number. We use 0 1.22R =  which is in 

agreement with the estimated basic reproduction number of the H1N1-2009 virus as 

given in Nishiura et al., 2010 of Japan.  A detailed description of the estimation method 

is given in Appendix A. The estimated next generation matrix is 

 
1.17 0.25

0.20 0.23

å õ
æ ö
ç ÷

. (2.64) 

 The difference between the 0-19 and 20+ group is large. In the earliest phase of 

the outbreak, an infectious individual between 0 and 19 year old infects on average 1.17 

individuals of their own group before recovery. This differs greatly from individuals of 

age 20 or older, they infect 0.23 individuals of the same age group before recovery. This 
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difference is explained by the low relative susceptibility among individuals in the 20+ 

group in comparison with younger individuals. 

  As shown in section 2 and 3, the next generation matrix depends on the 

composition and the size of the population, where the qualitative dependency is 

determined by the choice of contact pattern K . We show numerical results of the 

relation between final size and normalized total mortality in models with the semi-

domination and density dependent contact pattern. Our opinion is that these contact 

patterns can be well interpreted and represent two extremes of the contact dynamics, 

frequency and density dependent contact patterns, of a human population (semi-

domination contact pattern representing ófrequency dependencyó). In order to estimate 

1 , 2( )s

ij i ja ¢ ¢, 1 , 2( )ij i jc ¢ ¢ and 1 , 2( )d

ij i ja ¢ ¢ from the estimated next generation matrix (2.64), we 

assumed that 20% of the population in Hong Kong exists of individuals in the 0-19 

group in 2009 ( 1 2( , ) (0.2,0.8)n n = ), which is in agreement with the data from the Hong 

Kong Census and Statistics Department. The values 1 , 2( )s

ij i ja ¢ ¢, 1 , 2( )ij i jc ¢ ¢ and 1 , 2( )d

ij i ja ¢ ¢ 

are estimated by equating the analytical expression of the next generation matrix in a 

model with the semi-domination and density dependent contact pattern, sX  and dX , 

with the estimated next generation matrix (2.64). We assume a fixed population size N . 

The expression of the estimated next generation matrix in the case of a semi-domination 

contact pattern where group 1 dominates group 2 (12 0c = ), group 2 dominates group 1 

( 12 1c = ) and exactly in between (12 1/ 2c = ) is respectively (see section 2 for notation) 
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 (2.65) 

The expression of the next generation matrix with a density dependent contact pattern is  

 
1 1

2 2

5.85 1.25

0.25 0.29
d

n n
X

n n

å õ
=æ ö
ç ÷

. (2.66) 

The final size equations given in (2.4) are solved numerically in Wolfram Mathematica 

version 7, for different age compositions (recall 2 11n n= -).  
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Figure 2. Relation of final size and normalized total mortality with age distribution  

A 0.2 fraction existing of individuals in the 0-19 group of the Hong Kong population in 2009 is chosen. 

The black and dashed line is the curve related to the model with density dependent contact pattern. The 

green, blue and purple solid line is the curve related to the model with semi-domination contact pattern 

with 12 0c =  (group 1 dominates group 2), 12 1/ 2c =  and 12 1c =  (group 2 dominates group 1) 

respectively and 23 13 1/ 2c c= =  for all three cases. Figure 2A shows the development of the fractional 

final size of the 0-19 group. Figure 2B shows the fractional final size of the 20+ group. Figure 2C shows 

the change of the normalized total final size. Figure 2D shows the normalized total mortality. Case 

fatality ratios of 0.005% and 0.09% for the 0-19 and 20+ group has been used.  

 

Figure 2A and 2B illustrate the relation between the fractional final sizes, 

1(1 )s-  and 2(1 )s- , and the age composition (fixed population size). Figure 2A and 2B 

suggest that a change in composition in a model with density dependent contact pattern 

has a higher impact on the fraction final sizes than in a model with semi-domination 

contact pattern (for all 12 [0,1]c Í ). In the case of the semi-domination we have revealed 

in section 3 (Theorem 5 and 6) that the fractional final size can either increase or 
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decrease due to a change in composition depending on whether group 1 dominates 

group 2 or the other way around. Figure 2A and 2B agree with the theoretical results. 

Numerical experiments suggest that curves related to a semi-domination contact pattern 

with 12 (0,1)c Í , as in Figure 2, are in between the curves that relate to 12 0c =  and 

12 1c =  (between the green and purple lines). The curve corresponding to 
12 1/ 2c =  

supports this suggestion. Figure 2C illustrates the relation between the normalized total 

final size, 
( )R

N

¤
, and composition (fixed population size). We see that, when the 

fraction of 0-19 individuals decreases, the normalized total final decreases. Hence, if 

ageing corresponds to a relative decrease of the size of group 1 (and constant population 

size), then in an aged Hong Kong population the cumulative number of infections due to 

the H1N1 strain in 2009 would be smaller.   

We have estimated the normalized total mortality by using the estimated case 

fatality ratios per group as given in Dawood et al., 2012. Normalized total mortality per 

group is hence estimated by multiplying the normalized final size per group by the 

corresponding case fatality ratio. The normalized total mortality of the total population 

is the sum of the normalized mortality per group. Recall that the model considered in 

this study neglects death over the course of the epidemic, hence, this method of 

calculation is only approximately correct, but, since the case fatality ratio is in general 

low the difference is expected to be small. Case fatality ratios of 0.005% and 0.09% are 

used for individuals in the 0-19 and 20+ group respectively (Dawood et al., 2012). In 

figure 2D, the relation between normalized total mortality and age composition (fixed 

population size) is shown. If the fraction of the 0-19 group was lower than in 2009, the 

normalized mortality would be lower if the density dependent or semi-domination with 

12 0c =  and 12 1/ 2c =  contact pattern is an appropriate contact pattern for the Hong 

Kong population. But, if the semi-domination contact pattern with 12 1c =  is more 

appropriate for the Hong Kong population, then the normalized total mortality would 
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increase. We conclude that a lower normalized total final size due to a different 

composition of the population does not imply immediately a decrease in public health 

burden measured in normalized total mortality.  

 In the same manner, as in the 2-type model, an estimation can be made of the 

next generation matrix for the H1N1 virus in 2009 in Hong Kong in a 3-type model. 

Again the basic reproduction number is chosen to be 1.22. Relative susceptibility of 

group 2 and 3 with respect to group 1 is chosen to be 
2 0.30s =  and 

3 0.07s =  as given 

in Nishiura et al., 2010. The resulting next generation matrix in the 3-type model is 

 

1.13 0.28 0.12

0.28 0.31 0.20

0.01 0.01 0.02

å õ
æ ö
æ ö
æ ö
ç ÷

. (2.67) 

The extra subdivision of groups increases the number of free parameters by 1 in 

the composition of the population. For example, in contrary to the 2-type model, an 

increase of 1n  does not imply a decrease of 2n  by the constraint 
3

1

1i

i

n
=

=ä . Therefore we 

assume additionally that the ratio of the size of the 20-59 and the size of the 60+ group 

is constant: 1:0.28, which agrees with the data of the Hong Kong population in 2009. In 

the semi-domination contact pattern we choose 12 13 23 1/ 2c c c= = = . By equating the 

expressions of the next generation matrices in a model with the semi-domination and 

density dependent contact pattern (see section 2 for expressions) with (2.67) we obtain 

estimations of 1 , 3( )s

ij i ja ¢ ¢ and 1 , 3( )d

ij i ja ¢ ¢.  

Figure 3 shows the normalized total final size in the 2-type and 3-type model. 

The major heterogeneity in the population in terms of transmission is between the 

younger (<19) and older individuals (see the estimated next generation matrices). The 

contact rates of individuals in the 20-59 and 60+ groups are different, but since the 

transmission rates are relatively low, the additional subdivision does not has a major 

impact, see figure 3.  
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Figure 3. Comparison of 2- and 3-type model 

The normalized total final size as a function of the fractional size of group 0-19 is shown for a 2- (solid 

line) and 3-type (dashed line) model. The blue line is the curve related to the model with semi-domination 

contact pattern with 12 1/ 2c =  and the black line is the curve related to the model with density 

dependent contact pattern. The difference between the curves related to the 2- and 3-type model are 

almost negligible. 

 

 

5.3 Impact of birth restriction on the expected absolute final size of a first new 

H1N1 strain introduction  in Hong Kong after the H1N1-2009 pandemic in the 

period 2010-2039 

For a pathogen to cause an outbreak in a population, it is necessary that the 

infectiousness of the infectious disease is strong óenoughô, i.e., an outbreak can occur if 

and only if 0 1R >  (Diekmann, Heesterbeek, Metz, 1990). The infectiousness of a 

pathogen depends not only on the transmission parameters, but also on the number of 

susceptible individuals in the population. For example, in 2009, the H1N1 virus 

decreased the size of the susceptible group in Hong Kong so much, that the virus lost 

the capability to spread further. Therefore, when assuming lifelong immunity after 
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infection and unchanged contact dynamics of the population, an outbreak due to a 

H1N1 strain similar to the H1N1-2009 can only occur when the size of the susceptible 

group has increased sufficiently. Assuming lifelong immunity, we studied the expected 

absolute final size for a first new introduction of a H1N1 strain after the H1N1-2009 

pandemic in Hong Kong. 

Based on the composition and the size of the population of Hong Kong in 2009 

and the projected birth and death rate in the period 2010-2039 provided by the Hong 

Kong Census and Statistics Department, we have made a projection of the number of 

susceptible individuals in the groups 0-19, 20-59 and 60+ in Hong Kong. These 

projections combined with the estimated transmission values of the H1N1-2009 virus in 

the first part of section 5, are used as input for the final size equations.  Projections of 

the absolute final size given an introduction of a H1N1 strain similar to the H1N1-2009 

in Hong Kong in the period 2010-2039 are then calculated by solving the final size 

equations numerically. 

For this study, we use the 3-type model as described in section 5.2. We assume 

the following 1) there is no migration in the period 2010-2039 in Hong Kong, 2) natural 

deaths occur only in the 60+ group and the death rate among individuals in the 60+ 

group is independent of the H1N1-2009 infection history, 3) all individuals are 

susceptible before the 2009 outbreak, except for individuals of the 60+ group, 70% of 

these individuals are susceptible (Hancock et al., 2009), 4)  the newly introduced H1N1 

strain has exactly the same transmission values as the H1N1-2009 strain in the sense 

that 1 , 3( )s

ij i ja ¢ ¢ and 1 , 3( )d

ij i ja ¢ ¢ are equal to the situation in 2009, and, 5) susceptible 

individuals are assumed to be distributed uniformly over the age groups 0-4, 5-9, ..., 80-

84, 85+  (i.e. 100 susceptible individuals in age group 0-4 implies 20 susceptible 

individuals of age 2). The 30% immunity of individuals in the 60+ group in assumption 

3) is caused by previous exposure to the H1N1 strain in the period 1918-1956. 
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Data of the composition and the size of the population in 2009 and the projected 

birth and death rate of the period 2010-2039 in Hong Kong is provided by the Hong 

Kong Census and Statistics Department. The data of the age distribution of Hong Kong 

in 2009 is given in the age groups 0-4, 5-9, ..., 80-84, 85+. To obtain a projected number 

of susceptible individuals in the age groups 0-19, 20-59 and 60+ of all years in the 

period 2010-2039, we project the number of susceptible individuals per year class, i.e., 

the age classes of the projection must be 0, 1, 2, ..., 59, 60+. Using assumption 3) and 

the transmission values as estimated in the first part of section 5 ( 1 , 3( )s

ij i ja ¢ ¢, 1 , 3( )d

ij i ja ¢ ¢), 

we calculate the number of susceptible individuals in each age group 0-4, 5-9, ..., 80-84, 

85+ after the H1N1-2009 pandemic in Hong Kong (using the final size equations). By 

assumption 5), it is straightforward to obtain the age distribution of susceptible 

individuals in 2009 after the H1N1-2009 pandemic in the age classes 0, 1, 2, ..., 59, 60+. 

Each year, susceptible individuals become 1 year older and shifts to the age group that 

is 1 age class higher. In the years 2010-2039, the number of susceptible individuals in 

age group 0, is equal to the projected birth rate of that year. By assumption 2), deaths 

occur only in the 60+ group and the death rate among susceptible individuals is 

calculated by multiplying the projected death rate by the fraction of susceptible 

individuals in the 60+ group. With this method, we have obtained a projection of the 

number of susceptible individuals in the groups 0-19, 20-59 and 60+ in the period 2010-

2039. Alternatively, we considered the situation of lowering the birth rate such that it 

equals the projected death rate in Hong Kong (birth rate is projected to be higher than 

death rate by the Hong Kong Census and Statistics Department). Note that the 

population size remains constant in this alternative situation. This fictive situation can 

occur when the government accepts a birth restrictive law. An example of birth 

restriction, is the one-child policy in People's Republic of China which was introduced 

in 1978. 
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Figure 4. Absolute final size of an outbreak caused by a first new introduction of a H1N1 strain 

similar to the H1N1-2009 in Hong Kong after the H1N1-2009 pandemic 

The black and dashed line is the curve related to the model with density dependent contact pattern. The 

green, blue and purple solid line is the curve related to the model with semi-domination contact pattern 

with 12 0c =  (group 1 dominates group 2), 12 1/ 2c =  and 12 1c =  (group 2 dominates group 1) 

respectively and 23 13 1/ 2c c= =  for all three cases. Figure 4A illustrates the base case in which birth 

and death rates are as projected by the Hong Kong Census and Statistics Department. Figure 4B illustrates 

the alternative case in which birth rate is lowered to equal the death rate. The figure should be read as 

follows. If in year 2025 (16 years after the H1N1-2009 pandemic) a first new introduction occurs of a 

H1N1 strain similar to the H1N1-2009 in Hong Kong, given no epidemics or interventions in the past 

which causes immunity, the average outbreak size is 1200 and 700 in a model with the density dependent 

and semi-domination (with group 1 a royal group) contact pattern respectively in the base case. Clearly, a 

reduction of birth rate extends the average time before an introduction of a H1N1 strain similar to the 

H1N1-2009 can cause an outbreak. 

 

Figure 4 shows the absolute final size in Hong Kong for a first time  

introduction of a H1N1 strain similar to the H1N1-2009 in the years 2010-2039 given 

the outbreak in 2009. In both the model with semi-domination and density dependent 

contact pattern, it is observed that an introduction of a similar H1N1 strain to the H1N1-

2009 in Hong Kong will not lead to an outbreak until 2016. Due to the 2009 outbreak, 

the fraction of susceptible individuals of age 0 to 19 was relatively low in 2009 after the 

pandemic. Each year after 2009 until 2029, the number of susceptible individuals of age 

19 becoming 20 is significant lower than the new born (susceptible) individuals of age 0. 

The net difference in susceptible individuals has therefore a steady increasing character 

in the period until 2029. In 2030, all individuals who were in the 0-19 group during the 
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2009 outbreak are in the 20+ group and, hence, the net difference in susceptible 

individuals in the 0-19 group between year 2029 and 2030 is lower than before. 

Therefore, we expect, since the 0-19 group is the major determinant in the spread of the 

H1N1-2009 virus, a qualitatively different slope of the absolute final size (see Figure 4). 

After the 19 years, the absolute final size changes, mainly, due to changes in the size of 

the 0-19 group. The number of susceptible individuals before the first new H1N1 

outbreak after 2009 is exactly the same in a model with the semi-domination and 

density dependent contact pattern. The difference between the curves related to the 

semi-domination and density dependent contact pattern can therefore be fully 

contributed to the number of contacts per unit of time, K . Recall that K  depends on the 

group sizes 1N , 2N  and 3N  and not on the number of susceptible individuals in each 

group.  

In the alternative situation, where birth rate is lowered to equal the death rate, a 

first new introduction of a H1N1 strain similar to the H1N1-2009 after the 2009 

pandemic does not lead to a new outbreak until 2019 and 2033 in a model with the 

semi-domination and density dependent contact pattern as seen in figure 4B. Figure 4 

shows that restrictions on birth and migration rate can delay the time before an 

introduction of a H1N1 strain similar to the H1N1-2009 can cause an outbreak in Hong 

Kong and if an outbreak occurs then the outbreak size is likely to be smaller. 

Comparing Figure 4A and 4B we find that the effect of birth restriction on the absolute 

final sizes in the period 2010-2039 has a higher impact in the model with the density 

dependent than in the semi-domination contact pattern.  

6. Discussion 

We have shown in this paper that the effect of demographical changes on the severity of 

an outbreak depends both on the contact pattern of the population and the measure of 

severity (final size, basic reproduction number and mortality). In a semi-domination 

contact pattern where each young individual has a fixed amount of contacts (royal 
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group), we have shown theoretically that a decrease of the number of young individuals 

in the population decreases the fractional final size of each age group and the basic 

reproduction number for any infectious disease with a short infectious period and 0 1R > . 

The case study suggests that ageing, if defined as a fractional increase of older 

individuals (with fixed population size), will decrease the absolute final size in both a 

model with the density dependent and the semi-domination contact pattern. On the other 

hand, depending on the choice of contact pattern, the normalized total mortality 

increases or decreases due to ageing. The case study shows that birth restriction or other 

forms of restrictions that prevents a rapid growth of the number of young individuals 

(e.g. migration restriction for young individuals) can prolong the expected time needed 

before a new introduction of a H1N1 strain similar to the H1N1-2009 can cause an 

outbreak in Hong Kong.  

The message for policy makers from this study is that ageing and other types of 

demographical change can influence the severity of future infectious disease outbreaks. 

When faced with a comparable outbreak in the past, policy makers should consider the 

demographical changes that have occurred and change intervention strategies 

accordingly. Although ageing can imply a lower severity measured in final size, still an 

increase of public health burden is possible (see section 5).  

This study has been conducted in the framework of a deterministic SIR multi-

type model. It is unclear whether and how the results change in a stochastic model 

where the concept of final size has a stochastic definition. The SIR model is a rough 

simplification of the reality. Although the final size and basic reproduction number (Ma 

and Earn, 2006) are in most situations (almost) not sensitive to extensions of the SIR 

model, e.g. multistage of infections, it is unclear whether a model which incorporates 

high mortality rate infectious diseases, as SARS, will have the same results. This holds 

especially when disease-induced deaths impact the contact structure. 
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The numerical study on the expected outbreak size of a first new H1N1 

epidemic in Hong Kong is based on many unrealistic assumptions as no migration in the 

population and no deaths in individuals younger than 60 years. Although many key 

factors of ageing still holds in the projection, the results must therefore not be used as an 

actual forecast. Instead it should be used as an example to grasp an idea of the 

qualitative relation between the size of the susceptible groups, the composition and size 

of the population, and the final absolute final size.  

This study, both the theoretical as the numerical part, has been conducted in the 

spirit of qualitative impact of demographical change on the severity of an outbreak. To 

understand the quantitative impact, it is important to conduct empirical studies to find 

the best contact pattern to the population of interest. In order to study, for example, the 

validity of a model with the semi-domination contact pattern, one can repeat a study as 

Mossong et al., 2008, and try to find fitting values for 1 ,( )ij i j mc ¢ ¢ . 

 We revealed that contact patterns and the transmission rates of the pathogen, 

determine the quality of the effect of demographical change on the final size, the basic 

reproduction number and mortality. As effects of demographical change can change the 

severity of an epidemic significantly, policy makers should consider demographical 

change as ageing in future strategies of outbreak control.  
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Appendix  

A. Estimation of the next generation matrix in the 2-type model in Hong Kong 

The estimated average number of contacts per day of an individual of any group with 

any group in the UK is extracted from Mossong et al., 2008. See the last page of this 

section of the appendix. In the following we use the same notation as in the main text.  

Step 1: we sum over the number of contacts per day that individuals with age 0-19 and 

20+ have with the other groups. The resulting matrix is Table A1. 

Age group of participant

Age of contact 0-19 20+

0-4 3.22 4.30

5-9 9.41 6.46

10-14 10.16 5.28

15-19 8.41 7.61

20-24 1.90 9.82

25-29 2.63 9.88

30-34 3.16 9.75

35-39 4.35 10.85

40-44 3.63 10.39

45-49 2.17 9.64

50-54 1.52 7.68

55-59 1.10 7.21

60-64 0.94 5.60

65-69 0.52 3.35

70+ 0.55 6.15  

Table A1. Data from Mossong et al., 2008 of the average number of contacts per day of an 

individual  from the age group 0-19 or 20+ group with individuals of any age group in the UK. 
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Step 2: we calculate the fractional weights of the age classes with respect to the age 

groups 0-19 and 20+ in Hong Kong in 2009. The results are given in Table A2. 

Group sizes Hong Kong

Age group Group size (x1000)

0-19 1308.70

20+ 5695.00

Age group Group size (x1000)

Weights relative to 

age group 0-19

Weights relative to 

age group 20+

0-4 229.20 0.18 N.A.

5-9 265.30 0.20 N.A.

10-14 378.90 0.29 N.A.

15-19 435.30 0.33 N.A.

20-24 458.50 N.A. 0.08

25-29 536.70 N.A. 0.09

30-34 539.70 N.A. 0.09

35-39 574.80 N.A. 0.10

40-44 599.80 N.A. 0.11

45-49 673.20 N.A. 0.12

50-54 609.20 N.A. 0.11

55-59 476.20 N.A. 0.08

60-64 333.40 N.A. 0.06

65-69 222.10 N.A. 0.04

70+ 671.40 N.A. 0.12

Total 7003.70 1.00 1.00  

Table A2. Group sizes of Hong Kong in 2009 as given by the Hong Kong Census and Statistics 

Department and the fractional weights of the age groups within the age group 0-19 and 20+. 

 

Step 3: we sum, weighted by the size of the age classes, over  the number of contacts 

per day that an individual of type 0-19 (20+) has with the groups 0-19 and 20+. In order 

to be consistent in the interpretation of matrices with the main text, we take the 

transpose of this matrix and obtain Table A3. 

0-19 20+

0-19 8.21 2.17

20+ 6.12 8.58  

Table A3. Estimated number of contacts per day of an individual from the age group 0-19 or 20+ 

with individuals from the age group 0-19 or 20+ before reciprocity adjustment. 

The table should be read as follows. An individual of age between 0 and 19 years old has on average 6.12 

contacts per day with individuals older than 19. 
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Table A3 should be read as follows: an individual in the group 0-19 has on average 6.12 

contacts with individuals of the 20+ group. Note that this matrix is not equal to 

1 , 2( )ij i jk ¢ ¢ since it does not satisfy the reciprocity conditions. 

Step 4: let 1N  and 2N  denote the group sizes of group 1 (0-19 group) and 2 (20+ 

group). The reciprocity condition states that the total contacts of group 1 with group 2 

should be equal to the total contacts of group 2 with group 1, thus: 21 1 12 2k N k N= . We 

assume that the true total number of contacts of group 1 with group 2  is equal to the 

average number of contacts between group 1 with 2 and 2 with 1 in the resulting matrix 

of Step 3. It is easy to check that only 1 26.12 2.17

2
ij

j

N N
k

N

+
= , 1 , 2i j¢ ¢, satisfy the 

above 2 conditions. Note that the group sizes are known from Table A2. Hence, we 

have the following estimation of 1 , 2( )ij i jk ¢ ¢  

0-19 20+

0-19 8.21 1.79

20+ 7.79 8.58  

Table A4. Estimated number of contacts per day of an individual from the age group 0-19 or 20+ 

with individuals from the age group 0-19 or 20+ after reciprocity adjustment. 

The table should be read as follows. An individual of age between 0 and 19 years old has on average 7.79 

contacts per day with individuals older than 19. 

 

Step 5: recall that 1 ' 1s =  and  2 ' 0.185s = . Hence 1 , 2( ' )i ij i js k ¢ ¢ is given by Table A5. 

0-19 20+

0-19 8.21 1.79

20+ 1.44 1.59  

Table A5. Estimation of 1 , 2( ' )i ij i js k ¢ ¢. 

The dominant eigenvalue of 1 , 2( ' )i ij i js k ¢ ¢ is 8.6.  
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Step 6: the estimate of the next generation matrix is now obtained by dividing the 

resulting matrix in Step 5 by the dominant eigenvalue 8.6 and multiplying by the basic 

reproduction number 1.22.  
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Table A6. Data from Mossong et al., 2008 of the average number of contacts per day of an 

individual from any age group with individuals any age group in the UK. 



72 

 

 

 

 

 

3. Effectiveness of interventions targeted at health care 

workers and residents in reducing the probability and the size 

of an infectious disease outbreak in a long-term care facilit y 

for the elderly 

 

 

 

 

Supervised by 

Dr. Joseph Wu 

The University of Hong Kong 

 

Dr. Martin Bootsma 

Utrecht University 

 



73 

 

Abstract  

Protecting elderly from an infectious disease infection is important due to the high case 

fatality ratio among elderly. It is predicted that the fraction elderly will increase in most 

developed countries, which can lead to an increase of the number of required long-term 

care facilities for the eldery in the future. Hence, in the future, protection of individuals 

in long-term care facilities for the elderly from infectious diseases infection becomes 

even more important in order to reduce the severity of an outbreak of an infectious 

disease outbreak. Previous studies contradict each other on how effective of 

interventions targeted at residents and health care workers are in reducing the 

probability of a major outbreak in a long-term care facility for the elderly. We used a 

stochastic simulation model and an analytical model to clarify this issue. Interventions 

can target health care workers and/or residents and may reduce the susceptibility and/or 

infectiousness of the individuals. In this study we define the level of an intervention of 

any type by the reduction of susceptibility and/or infectiousness of the targeted 

individual in percent. We call an intervention of any type weak, if the level of the 

intervention is less than 40% in comparison with the situation with no interventions. 

This study shows that weak interventions targeted at health care workers or visitors 

cannot reduce the probability of a major outbreak in the facility when the infectious 

disease has a basic reproduction number higher than 1.6 in the general population. 

These interventions hardly influence the average outbreak size given a major outbreak 

in the facility, in contrast to residents of the facility. Weak interventions aimed at 

residents can be effective even when the basic reproduction number exceeds 1,6. We 

showed that intervention level and the effectiveness of interventions in reducing the size 

and probability of a major outbreak in the long-term care facility for the elderly are in 

general not linearly related. Our study also reveals that interventions must start early in 

the epidemic and should not be stopped when the peak of the force of infection has been 

reached.  
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1. Introduction  

Novel infectious diseases can lead to high morbidity and mortality as experienced in the 

H1N1-2009 pandemic. An global study showed that the case fatality ratio of the H1N1-

2009 virus among elderly was significantly higher compared to other age groups (1). 

Interventions like frequent hand washing, wearing facemask, pre-pandemic vaccination, 

prophylactic antiviral therapy and isolation of health care workers and residents may 

mitigate the epidemic in the long-term care facility for the elderly. 

In the beginning of an infectious disease outbreak, both economically 

developed and developing countries need to rely on non-pharmaceutical interventions 

(NPIs) to control the speed and the size of the outbreak. Reasons are that 

pharmaceutical based interventions may not exist, are not properly distributed or it is 

not yet known whether the epidemic is severe enough to justify pharmaceutical based 

interventions.  

Previous simulation studies did not provide a clear overview of the effectiveness 

of interventions targeted at health care workers and residents in reducing the probability 

and the size of a major outbreak in a long-term care facility for the elderly. Interventions 

targeted at health care workers and residents which reduces susceptibility (2) and 

infectiousness (3) has been studied for a limited range of basic reproduction number and 

combination of intervention types. The basic reproduction number is defined as the 

average number of new infections caused by an infectious individual in its infective 

period at the earliest phase of the outbreak. Nuño et al., 2008 (3), identified re-entry in 

the facility of health care workers as the critical factor in causing an outbreak in a long-

term care facility. Van den Dool et al., 2008 (2) showed a linear relation between health 

care worker vaccine uptake and average attack rate, defined as the fraction residents 

who have experienced the infection at the end of the epidemic. Additionally, Nuño et al., 

revealed that socially acceptable NPIs for health care workers and visitors can reduce 

the probability of a major outbreak in a long-term care facility substantially. Also Van 

den Dool et al., 2008, revealed a positive relation between probability of a major 
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outbreak and pharmaceutical interventions on health care workers, but, for the same 

reduction in susceptibility and infectiousness of health care workers, Nuño et al., 2008, 

predicted  a significantly higher effectiveness of the interventions than Van den Dool et 

al., 2008.  

For a moderate value of the basic reproduction number, 1.4, approximately fifty 

percent of the population will become infected in a standard deterministic SIR model 

when all individuals are susceptible before the outbreak (see Diekmann, Heesterbeek, 

Britton 2013 (9), for a detailed discussion of the deterministic SIR model). As health 

care workers are a substantial part of their days off-duty they also have a substantial 

chance to acquire the pathogen when off-duty, and, if so, they have a chance to enter the 

facility when being infectious.  Because most long-term care facilities have more than 

50 health care workers, it is likely that one of the health care workers will introduce the 

pathogen into the facility by one of the health care workers during the epidemic if no 

interventions are applied. Since for high basic reproduction number, a single infectious 

individual in the facility already has a substantial chance to cause a major outbreak, we 

expect that the number of infectious health care workers who enter the facility must be 

greatly reduced before the probability of a major outbreak in the facility reduces 

substantially. Assuming this reasoning to be true and complete, socially acceptable NPIs 

should have almost no effect on the probability of a major outbreak in the facility when 

the basic reproduction number is high.  

The primary aim of this paper is to clarify the discrepancy between the results 

in the paper of Nuño et al., Van den Dool et al., and the given reasoning. We created a 

stochastic simulation model and provide two analytical approximations for the 

probability of that no major outbreak occurs in the facility. These approximations have 

the advantage that they require hardly any computation time. 
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2. Methods 

2.1. Long-term care facility for the elderly and community 

Our model consists of one community and a single long-term care facility for the 

elderly. In the forthcoming, a long-term care facility should be read as a long-term care 

facility for the elderly. Residing individuals in the community are called community 

members and residing individuals in the long-term care facility are called residents. A 

third group, which completes the categorization of the population, are the health care 

workers. Health care workers like nurses and physicians alternate between locations. If 

a health care worker is in the long-term care facility, we call the health care worker on-

shift and otherwise off-shift. Visitors are neglected in this model, but, as explained in 

the discussion,  a visitor has a similar role in the spread of the disease as a health care 

worker. The community should be interpreted as the group of all citizens of a 

country or city excluding individuals of a single long-term care facility. The size of the 

community is assumed to be 7 million which is in agreement with the size of Hong 

Kong. Our long-term care facility has 150 residential beds which are 100% occupied 

during the period of the epidemic. It is assumed that 60 health care workers work for the 

long-term care facility. Health care workers are divided in 2 groups of 30; when one 

group is on-duty, the other is off-duty. These groups alternate every 12 hours. It is 

assumed that individuals in the community mix randomly with other individuals of the 

community and individuals of the long-term care facility mix randomly with other 

individuals of the long-term care facility. Hence, health care workers mix 12 hours with 

community members and 12 hours with residents in 1 day.  

2.2. Stages of infection and disease properties 

We assume that individuals can be in 3 disease stages: susceptible, infectious and 

removed. An individual is susceptible when he/she has never been infected by the 

disease. An individual is infectious when he/she has acquired the disease and is 

infectious towards others. An individual is called removed when the individual has 
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recovered and is no longer infectious. It is assumed that recovered individuals cannot go 

to the susceptible disease stage again. In literature, this model is called the SIR model. 

Note that this model neglects asymptomatic individuals and disease-induced deaths.  

In this study, we consider a disease with properties similar to the influenza 

virus. The duration of the infectious period of an individual is chosen to be 

exponentially distributed with mean 2.8 (4-5). The basic reproduction number of 

influenza is assumed to be in the range 1.2 to 2.2 (6-8).  

 

2.3 Deterministic and stochastic simulation model 

The disease stage of community members and, hence, the force of infection, FOI, ( the 

average rate at which a susceptible individuals becomes infectious) in the community is 

modelled  by a deterministic SIR model. It is assumed that the FOI of susceptible 

community members does not change due to the alternating locations of the health care 

workers. This assumption is valid when the relative number of health care workers is 

negligible small in comparison to the number of community members.  

The transmission parameters 0b>  and 0a> , which reflects the rate of 

transmission of an infectious individual to all individuals in the population if all 

individuals are susceptible and the average rate of recovery respectively are assumed to 

be equal in the community and the long-term care facility. Note that the FOI in a site at 

any time is calculated by multiplying b by the number of infectious individuals at that 

time and dividing by the total number of individuals in that site. 

The occurrence of infections among residents and on-duty health care workers is 

modelled stochastically. The Poisson rate of new infections in the facility is equal to the 

FOI in the long-term care facility multiplied by the number of susceptible individuals in 

the facility. Note that susceptible on-duty health care workers and susceptible residents 

are infected at the same rate. We assume that all health care workers and residents are 
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susceptible at the beginning of the outbreak, and, hence, the FOI  in the facility is equal 

to 0 at the earliest phase of the outbreak. Therefore, an outbreak in the facility can only 

occur when an off-duty infectious health care worker enters the facility. Due to 

stochastic extinction, an introduction of the infectious disease by a health care worker 

need not lead to a major outbreak in the facility, e.g., because the infectious health care 

worker did not infect any individual in the facility before he/she recovered.  

By the random mixing assumption and the negligible number of health care 

workers with respect to the number community members, we set the FOI of off-duty 

susceptible health care workers equal to the FOI of community members in a population 

without health care workers. A scheme of the model is depicted in Figure 1. 

 

 

Figure 1. Schematic of the studied model 

A scheme of the location (left) and disease (right) progression. Health care workers can switch location 

between community and long-term care facility. S, I, R, denote respectively the size of the number of 

susceptible, infectious and removed individuals in the population.  

 

The basic reproduction number, 0R , in the community is defined as the average 

number of new infections due to 1 infectious individual given that all community  
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members are susceptible, is given by 
0R
b

a
= . It is assumed that at the first occurrence 

of an infected case (time is 0), 100 community members are infectious and that the 

outbreak ends after 1 year of the outbreak (time is 360) or when the incidence rate 

(number of new infections per day among residents and health care workers) is below 

1010- . For each parameter combination we performed 300 independent runs of the 

simulation model. The analytical model is described in section 2.6. A more detailed 

description of the stochastic simulation model and techniques can be found in Appendix 

A and B.  

 

2.4 Intervention types  

In this study, we distinguish three types of interventions targeted at health care workers 

and residents. We call interventions, which reduce the risk for a susceptible health care 

worker to acquire the infection in the community, óHCs interventionsô. H, C and s 

represents health care workers, community and susceptibility respectively. Examples of 

HCs interventions are: 1) isolation of health care workers before re-entering the long-

term care facility, 2) recommendations for health care workers to avoid large gatherings 

and public transport, and, 3) voluntary or mandatory prophylactic usage of antivirals by 

health care workers. The second type of interventions, óHFi interventionsô (F for facility 

and i for infectiousness), reduces the infectiousness of infectious health care workers 

within the long-term care facility. Examples are 1) the use of facemask, 2) better hand 

hygiene, and, 3) a reduction of close contact in the facility. The third prevention strategy 

considered, an óRFi interventionô (R for residents), reduces the infectiousness of 

residents. Examples are 1) isolation of infectious residents, 2) use of facemasks by 

residents and 3) use of antiviral prophylaxis. All interventions are applied for the whole 

period of the epidemic unless stated otherwise. Note that interventions can be of more 

than 1 type, e.g., the usage of facemask by health care workers and residents over the 

whole epidemic is an intervention of the types HCs, HFi and RFI. The interventions are 

implemented in the model by reducing the FOI upon health care workers in the 
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community, the FOI in the facility due to infectious on-duty health care workers and the 

FOI in the facility due to residents respectively for intervention types HCs, HFi and RFi. 

We say that an intervention is of level x% if the FOI as described above is reduced by 

x%. An intervention is called weak if the level is smaller than or equal to 40%, 

otherwise it is called a óstrong interventionô. In the forthcoming, we write ñHCs&HFi 

interventionò for the intervention where both the HCs and HFi interventions are applied 

with the same level. We note that socially and ethically acceptable NPIs are mostly 

weak interventions. This corresponds roughly with the category 1-2 interventions as 

defined in the paper of Nuño et al., 2008. We have not considered explicitly 

interventions which reduce the susceptibility of on-duty health care workers, we expect 

that the effect is small, since the number of on-duty health care workers is relative small 

in comparison with the total number of individuals in the facility..  

 

2.5 Measures for severity of an infectious disease outbreak in the facility  

The probability density function of the attack rate in the facility has typically two peaks, 

a peak close to zero, which represents the probability of a minor outbreak, and a bell-

shaped peak that corresponds to a major outbreak. In this study, we are interested in two 

quantities, the probability of a major outbreak and the average attack rate given a major 

outbreak. We define an outbreak in the long-term care facility to be major when the 

attack rate exceeds 10% and minor otherwise. We define the average attack rate to be 

the mean attack rate of all simulations with a major outbreak. Hence, the average attack 

rate should be read as the average attack rate given a major outbreak in the facility.  

 

2.6 Analytical  model  

We also use an analytical model to understand which parameters critically influence the 

probability of a major outbreak in the facility. We present 2 approximations of the 

probability of a minor outbreak in the facility, including one with an explicit analytical 

expression.  
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In the analytical model we denote the level of the inventions HCs, HFi and RFi 

by 
11 c- , 

21 c-  and 31 c-  respectively. For example, a HCs intervention which reduces 

the susceptibility of health care workers by 30% corresponds with 1 0.7c = . Assuming a 

deterministic SIR model of the community and that we can neglect health care workers 

in the community, we can define 
coms  by the fraction of total susceptible individuals in 

the community at the end of the epidemic. This fraction can be calculated by solving the 

so-called final size equation: 0exp[ (1 )]com comRs s= - - , with 0R  the basic reproduction 

number, see, e.g., Diekmann,  Heesterbeek, Britton, 2013 (9). 

The probability that a health care worker will be infected over the course of the 

epidemic given that he/she did not get infected in the facility is 
1 0

1
(1 )

21
comc R

e
s- -

-  (see 

Appendix C for derivation). In this study we use this quantity as an approximation for 

the probability that a health care worker becomes infected when off-duty given that no 

major outbreak occurs in the facility. When no major outbreak has occured in the 

facility and assuming that the number of health care workers is negligible compared 

with the number of resident, each infectious health care worker infects on average 

approximately 2 0

1

2
c R  residents in the facility. The basic reproduction number arises in 

the expression since approximately all individuals in the facility are susceptible when 

no major outbreak has occurred in the facility. The factor 
1

2
 arises because  health care 

workers spend approximately half of their infectious period in the facility as they work 

in 12 hour shifts. The multiplication by 2c  follows directly from the definition of a HFi 

intervention. In appendix C3 we show an alternative approximation of the number 

infections caused by an infectious health care workers among residents given no major 

outbreak in the facility.  Let hcwN  denote the total number of health care workers. Then, 

on average, approximately 
1 0

1
(1 )

0 2
2 (1 )

2

comc R

hcw

R
c N e

s- -

-  residents become infectious in 
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the facility due to health care workers who became infectious in the community. We 

approximate the probability of a minor outbreak given an infectious individual in the 

population by the known formula in a homogeneously mixing population: 
3 0

1

c R
, see 

e.g., Diekmann, Heesterbeek, Britton, 2013 (9). Hence, we obtain the following 

expression for the probability of a minor outbreak: 

 

1
(1 )1 00 2

2 (1 )
2

3 0

1
(minor outbreak) min(( ) ,1).

c R com

hcw

R
c N e

P
c R

s- -

-

=  (2.68) 

We call this approximation, Approximation 1. A more detailed description of the 

derivation can be found in Appendix C. 

In a more precise approximation, which we call Approximation 2, the number 

of new infections among residents due to an infectious health care worker is considered 

from a stochastic point of view. Unfortunately, this model does not provide an explicit 

expression for the probability of a minor outbreak, but the computer time needed to 

calculate this probability is negligible in comparison with the stochastic simulation 

model. The full derivation, the description and the comparison of the results of the two 

approximations is given in Appendix C.  

 

3. Results 

3.1 Probability of a minor outbreak in the facility in a stochastic simulation model 

and Approximation 1 and 2 compared.  

The probability of a minor outbreak in the facility in the stochastic simulation model 

coincides very well with the results of Approximation 1 and 2. As seen in Figure 2, 

Approximation 1 and 2 suggest a higher probability of minor outbreak than the 

simulation model for 0 1.2R = . Since for 0R  small, the average outbreak size in the 

facility is typically small, major and minor outbreaks in the facility are difficult to 

distinguish. Hence, for 0R  small, the randomly chosen definition of a minor outbreak  



83 

 

(recall the 10% threshold in section 2) in a stochastic simulation model can explain the 

difference in results with the analytical approximations.  

Approximation 1 underestimates the probability of a minor outbreak in the 

facility by 10 to 20 percent. This can be the result of the overestimation of new 

infections among residents caused by an infected health care worker given no major 

outbreak in the facility, which we approximated by 2 0 / 2c R . Although Approximation 1 

is quantitatively not always accurate, it provides similar qualitative results as the 

simulation results. As Approximation 1 provides an explicit expression it can help in 

understanding the qualitative dependency of the probability of a minor outbreak in the 

facility on the size of the community and the facility, the basic reproduction number and 

the intervention types HCs, HFi and RFi. Approximation 2 gives for 0 1.4R ²  very 

similar estimates of the minor outbreak probability as the simulation model, see Figure 

2. In the text to follow we focus on the simulation results. We want to emphasize that all 

results on the probability of a minor outbreak in the facility are supported by 

Approximation 1 and 2 as well.  

  

Figure 2. Similarity between the probability of a minor outbreak in the facility in a stochastic 

simulation model and Approximation 1 and 2 for a HCs intervention. 

The probability of a minor outbreak in the facility is plotted against the basic reproduction number. In the 

legend, ósimô, óappr 1ô and óappr 2ô denote respectively the results of the stochastic simulation model, 

Approximation 1 and Approximation 2. The numbers before ósimô, óappr 1ô and óappr 2ô denote the level 

of the HCs intervention in %.  
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3.2 Probability of a minor  outbreak in the facility  

A high basic reproduction number implies a high probability of a major outbreak in the 

facility given an infectious individual in the facility. Therefore, we expect for high 0R , 

that HCs interventions, which reduce the number of infectious health care workers 

entering the facility, only have effect in reducing the probability of a major outbreak 

when the level is near 100%. This reasoning is supported by our simulation results, see 

Figure 3C-3F: when the basic reproduction number is greater than or equal to 1.6, weak 

HCs interventions will hardly effect the major outbreak probability in the facility. Our 

study shows, that the effect of interventions which reduce the susceptibility of off -duty 

health care workers (HCs) and interventions which reduce the infectiousness of on-duty 

health care workers (HFi) are nearly the same. When both types the HCs and HFi 

interventions are executed with the same level (HCs&HFi intervention), the 

effectiveness in reducing the major outbreak probability in the facility increases 

significantly for all basic reproduction numbers in the range 1.2 to 2.2. In the case of 

0 1.2R = , an intervention of level 40% of type HCs or HFi reduces the probability of a 

minor outbreak by 40 to 60 percent. The probability of a minor outbreak in the facility 

is almost a linear function of the level of intervention when 0 1.2R =  (see Figure 3A). 

However, this linearity breaks down as the basic reproduction number increases, see 

Figure 3B-3F. 
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Figure 3. Effectiveness of interventions in increasing the probability of a minor outbreak in the 

facility  

The probability of a minor outbreak in the facility has been plotted for different values of the basic 

reproduction number and types and levels of interventions. Diamonds and squares denote HCs and HFi 

interventions respectively. Triangles represent the situation where both the HCs and HFi interventions are 

applied with the same level (HCs&HFi intervention). Crosses denote RFi interventions.  

 

Interventions which reduce the infectiousness of residents (RFi interventions) 

have a different character than interventions aimed at health care workers (HCs and HFi 

interventions). Health care workers are pivotal in triggering a major outbreak in the 

facility, but have, in contrast to residents, a minor role in disease transmission in the 

facility when a major outbreak is occuring. Any weak RFi intervention (recall that an 

intervention is weak if the level is less than 40%) has nearly no effect on the probability 


