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1. Preface

This master thesis ritten by Danny Chan in the field of mathematiaafectious
diseaseepidemiology.The research has been conducted between December 2011 and
January 2013A part of this study was dorst The University of Hong Kong, The
School of Public Healthlt has been witen under the supervision of dr. Martin
Bootsma (Utrecht University), dr. Hiroshi Nishiuir. Joseph W{The University of

Hong Kong)and prof. dr. Odo Diekmaniutrecht University)

Epidemicshave caused great disorders in the history of humanddaddovel
infectious diseasdsgkely will remain a threafor all societies in the worldexamples of
recentepidemics are the HLINA009 pandemic and the SARS outbreak in 2@x#h
epidemicscaused great disorders as school closures and excesdtbfdaea capacity.

To be able to control future outbreakisis important tohavean understanding of the
dynamics of infectious diseases. A lot of work has been done in this area in"the 20
century. A part of this work is in rathematical modéng. The aim ofmathematical
modeling is to create and analyze simplified models of reality ttegdture themost
important determinantsf the dynamics. The advantagiea mathematicdtrameworkis

thatit helpsto explain and prediatvents in infectioudisease epidemiology.

For this thesiswe have conducted two separate studies with two different
mathematicamodels. We have attempted to answer the two questignathat is the
relation betweenthe final size® and the basic reproduction numbérwith the
demographyf a populatio® 2) Under what conditions amgterventionswhich reduce

infectiousnessand susceptibility of health care workers usefuh ireducing the

! The cumulativenumber ofindividualsthat became infected over the coun§¢heinfectious disease

outbreak.

2 The average number of new infections made by an infectious individual at the most eerlyf sta

epidemic.



probability of a majoroutbreak in alongterm care facility for the elderl The

questias are explained further in this introduction.

Most of the developed countries are facing the problem of an ageing population.
An extreme example is Japan, wherdy 18% of the population existl of individuals
between 0 and 19 yeamdd in 2012.In the Netherlands thiage group consists of
around 24% of the population and in USA it is around 30% in 20izlllthese
countries it is expected that the fraction consisting of individuals between 0 and 19
years oldwill decrease A higher fraction of elderly irthe populationmay result ina
highermortality in case ofan infectious disease outbreals, the case fatality of elderly
is usually aboveaverageAs the fraction of younger indiduals decreasgthe spread of
the infectious diseasmay decreaseas wellsinceyoungindividualshavea key role in
the spreaf most respiratorypathoges. This is explained by the relative high contact
rate of young individualswith their own group(<20 yearg in comparison with older
individuals. This tradeoff suggeststhat the effect of ageing on the severity ai a
infectious disease outbreakkay be difficult to predict The results on this topic are

presented in chapter 2.

As ageing occurs in marspcieties, it is expected that the numbeloafyterm
care facilities forthe elderly will increaseas well Successful protection dadbngterm
care facilities foithe elderly againsimajoroutbreaksmay, therefore become even more
important than it i;mow due to the high case fatality among eldeflypically, a novel
pathogeris introducedn along-termcare facilityfor the elderlyby health care workers
or visitors. We have studied how interventions, which lotier infectiousnessand
susceptibility of health care workerand visitors, effect the probability o& minor
outbreak in alongterm carefacility for the elderly We will show that weaR
interventions,for example socially acceptable rpharmaceutical interventionsnly

reducethe probabilty of a major outbreakn the facility when the basic reproduction

% Interventions which reduce susceptibility and infectiousness byatQess



number of the pathogen is lewthan around 1.60ur work attempts talarify the
results ofearlier work onthe effectiveness of interventions long-term care facilities
for theelderly Our resultxoincide and extend the work @an den Dool et al., 2008,
but are different from the one presentedNyfio et al.in 2008[11], which showed that
the sameanterventionsas inthis studycan reduce the probability afmajoroutbreak in

a facility greatly even fohigher values of théasic reproduction numbeéfe support
our simulation resultby analytical approximationsihe results of our study on this

topic are presented in chapter 3.
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Abstract

Ageingand the effect obirth restrictionchange the demography in populatiohkese
changs in demography influence contact patterns in societé®l, since contact
patternsare important indisease transmissiomnfluence the severity of infectious
disease dibreaks. Here weuse a deterministic muitype SIR model tostudy

theoretically and numericallyhow demographal changes impact the basic

reproduction numbeR,;, and the final size of an infectious disease outbréékstudy

eitha a density dependent contact pattern or a frequency dependent contact pattern.
There is no consensus literature inwhich multitype contact pattern should be called
frequency dependenc We have defined severakew contact patternsn which the
numberof contacts per unit of timef an individual with a specific group onstant if

we scale all group sizes by the same fadtom modelwith reciprocal contactashere
individuals have a fixed amount obntacts per unit of timeith their own group and

each young individual has a fixed amountaaointacts per unit of timevith older
individuals the basic reproduction number and final size increases tikemumbeof

young individuals increaseBor other contact patternsicluding the density dependent
contact patternwe have foundheoreticalresults of a similar characteNumerical
resultssuggest thaif the society wuld have been moraged in Hong Kong in 2009,

the number of cases of HLNDO9 infection wouldhavebeensmaller.However,due to

the dependence of severity of an infection on the characteristics of the infected
individuals,this need not imply a decrease in burden on the health care system. In a case
study, we have found that birth restriction in Hong Kong mayongthe time befora

similar HIN1 strain to the HINER009 can cause an epidemic in Hong Kong.



1. Introduction

In many developed countrieske Hong Kong, the USA and Japanthe national
institutes of demography predicthat the fraction elderly will increase in the
forthcaming years. Ageingancause problems varying froem increasegublic health
burdendue tothe increase alderly (Yoshikawa 1997) to alack of work force due to
a decrease ofoung adultsThese problems are currently major issues in countries as
Japa (Muramatsu, Akiyama, 201150 far, theimpact of ageing on the severity of
infectious disease outbreakgth short durationhas not been studiedChanges in
demography influence contact patterns in society, ame contact patterns affect
disease tmasmission, it influences the severity of infectious disease outbr&aks.
policy makers it is vital to understand how ageafifgctsthe severity of an outbreak
order to design effective intervention strategies to prevent or mitigate epidemics.

Here we studytheoretically and numericalihe qualitativerelationship between
demographic changesuchas ageingandthe severity of @& infectious disease outbreak.
We only consideputbreakghathave a short duration comparsonwith demographic
changeswhich implies that we can neglétte effect of demograjh changs during
the outbreakAn important example is the yearly influenza pandemic which lasts for

several months, while ageing occurs at a time scale of ded&@efacus on the basic

reproducion numberR, and the final size of a deterministiwlti-type SIR model The

type of an individualcorresponds to itage. The basic reproduction numbean be
interpreted ashe average number of new infections due to an infestindividualat

the earliest phase of an outbreak and the final size measures the cumulative number of
infected individualgluring the course of the outbreak.

We focus on frequency and density dependent contact patterns in théypuaulti
model.In single type modelshese contact patterns have been extensively discussed in
previous work €.g. Begon et al., 2002, McCallum et al., 200The two contact
patterns have different assumptiarshow the contacproceschangesas a result of a

changdn population size. In a density dependent contact pattern the numtmartatts



per unit of timeperindividual increases lineariy we scale all group sizes by the same
factor.In a frequency dependent contact patténe number ofontacts per unitfdime
of an individualis constant if we scale all group sizes by the same fattwre is no
consensus in the literature on which mtype contact pattern should be called
frequency dependem. In section 2 w present several contact pattenvbere the
number of contacts per unit of time of an individisatonstant if all group sizes are
scaled by thesame factar In general, the best contact pattern description of the
transmission dynamics in a population, depends on the typieegfopulationunder
consideration (Smith et aRP09, Kelly et al., 2011

In the theoretical partwhich is also the main padf this paperwe present
situations where the qualitative changes of the final size and the basic reproduction

number due to a change in demodmaps revealed and proven formally. Almost all

theoretical results hold for generaitype SIR modelsmi {1,2,3,...}, as formulated in

section 2.

Apart from theoretical worka case studhas been performeoh the relation
betweenthe final sze and demography of the Hong Kong populatiowe have
estimated the next generation matrix of the HIA0D9 virus in Hong Kong in a-2nd
3-type model usingsimilar method as Nishiura et al2010. We used the demographic
predictions othe birth anddeath rate ofhe national institute of Hong Kong talculate
the effect of demographic charsgen the outbreak sizeof an epidemic caused by an
introduction ofa HIN1 strainsimilar to the HIN12009 in Hong Kongn the period
20102039 To prepare a soeiy for an outbreak, an accurate prediction of the public
health burden during an outbreak is important. As the disease severity may depend on
the age of the individual, the burden of an epidemic can, therefore, not be directly
derived from the final sizén the numerical study we will use mortality as an additional

measure for public health burden.

The article has the following structure. A description of the nriytte

deterministic modelvith different contact patternis presented in section 2. This is
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followed by main resultsn section 3 The proos which involve more abstract
mathematicsregiven insection4. Numerical resultsf the case studgre presented in

section5 and we end with a discussion.

2. Model and properties

2.1. Model

We use a derministic model withmi {1,2,3,...} disjunct types of individuals. Let

grow il {L,...,m} bethe set of type individualsand letN, be the size of groupand

N=(N,...,N,) be the vectoof all group sizesand N =4 N the population size

i=1

We denotethe fraction of the population that belongs to groby n =N / N, we call
the vectorn=(n,...,n,) the composition of the populationNe have the relation

N=N(n,...,n,) . In this papethe termdemographys referredto the compositiorand

the size of the populationin orderto avoid ambiguity we wilspeakabouttheseterms
separatelyf not stated otherwis&Ve think ofa group as an age category, theresults

are equally valid foother interpretations of disjunct groups.

Individuals can beén one of thehree disease stages: susceptible, infectious and

removed. The number oftype individuals in each disease stag¢imet is denoted by

S(Y, I.t) and R(t) respectivelyand the vectomwith the number of susceptible

individuals in each groupat time ti R is denoted byS()=(S(},.... S())' . All

individuals are assumed susceptible betbe first infectious individual arisan the

population When ani-type individual becomes infectious, it will remain in the

infectious stage for an exponentially distributed pewmaith meanl/a, >0. The mean

1/a, is independent othe composition andhe size of the populationWe write

11



a=(a,.., 4 .When ani-type infectious individual recovers, it changes its disease

stage toR instantaneouslgnd remairin that stage forever.

We think of the model in a timeframe ¢f ¢ ¥ [E. Whenwe look back in

time, the populations infection freewhent® - . The introdudbn of a new pathogen

cannot be controlled in a deterministic model, since it does not incorporate individual

events.We leavethereforeopen how and when the pathogen is introduced in the
population and assume onfgr all il {1,....m} that I (t)>0, for somet | R. As
stated in the introductiorwe neglectchange in composition and population s{eey.

diseaseanduced deaths) during the time scale of the epidemidy, 6 constanfor all

il {,...m}. As R saisfies he relationR =N -S 4, the systenof disease stages

and group types over tinie fully described byS and |, only, il {,...,m}. Let p, 20,
i,jl {1,...m}, denote the probability of a susceptilikype individual becoming
infectious due to contact witAn infectiousj-type individual given cotact of the
susceptible-type andtheinfectiousj-type individual We assumep; to beindependent
of the composition and the size of the populatibet Kj(N) >0,1¢i,j ¢n, denote
the numberof contacts per unit of timef a j-type individual with group individuals
which candependon the composition and the size of the populatitie write K(N)

for the m3 m matrix (K, (N)) ; 4 -

For notational convenience, we will sometimes suppress the dependency of
variableson the composition and size of the populafiery. K = K(N)). In this paper,

unless specified otherwisgectors arecolumnvectors. We say that an exps&n is
positive and negative respectively when the expression is larger and smaller than 0. We

say that an expression is npaositive and noimegative respectively when the

12



expression is equal to 0 or smaller thaan@d equal to O or larger thanl@®t X andy

be real vectors of dimensiami {L,..., n}. We write x>y whenentryii {l,...,m} of

X is larger than entry of y for all il {l,...,m}. We extend this notation naturally to

X2y, X<y,X¢Cyandx=y.A di agonal l ine fA#$8,<tthrough t
= means that the statement is faé denote then-dimensional unit and zero vector

by 1 and0 respectively.

Let b to be them?® m matrix with elementst, =k fori,ji {I,..m}, b,

canbeinterpreted ashe average number afiew infectionsper unit of time in groupi

due to an infectious individual in groyp given that all individuals in group are

susceptibleAt time t, a fractionS(t)/ N of groupi is suscepble. The deterministic

model isthereforefully described by théollowing set of differential equatian

ds_ s 1

b1
a - N2
dl. a
Genan -4 (2)
e
d_R:ailu
dt

with the condition(§ (- 9, (- lim(S$(), 1(8) (N5O) for all if {,...,m}.

Assumption

The m® m matrix b=( ), o IS irreducible i.e., for every pair of indies

i,ji {L....m} there exists@l; such that(b'“ ); is positive

Note that irreducibilityof 6 impliesthatany susceptible individual of amyoup can be

infected through a chain ofinfections starting froman infectious individual ofany
group

13



Define S(=) :|tim S() for all il {,...,m} . Convergence ofS(f) follows from

monotonicityand boundednes®/e denote thabsolutefinal size of group i {L,...,m}

by R(®) =N $( ) and thefractional final size byl-s,: 1 §( )M\ and the

normalizedtotal final size byR(=)/ N with R(r) =§ R( ¥. Note that the3 types of

i=1
final size are relateddy the involvement of S(=) in all measuresWe write

S(®) (S( R..., S( ¥ ands =(§,..., s =S( ¥N,...S ( ¥ N,Y. Note that

the following holds,

oS @) oS I g a4 Ay @)
s@ -5 et A g g = gya, 23)

forall il {.,...,m}. The first and second equality of equat{@r2) and(2.3) follow from
the standard integration rules and the differential equafibhsrespectively. It flows
from (2.3) that (S(=) - S( -)F & ﬁn-il(b difor all il {1,...,m}. Substituting this

m b N
expression in (2.2) gives Iog(si):a—”WJ(q 1) with N =S(-¥ and
j=1 i

-1 4,

S, =S( 9/ N for all il {1,....,m}. Hencethe relation betweent, &8, N and s , is

give by theso-called final sizeequations

n b N
S, :exp[a__ Wf(q -1)], (2.9)

b
s a
i =1,...m. Note thatthe m-dimensional unit vectorl, is always a solution qR.4). The
final size equations(2.4) can also be derived heuristicallyas follows (see e.qg,
Diekmann, HeesterbeeBritton, 2013. If irreducibility of 6 hdds, any susceptible

individual of any group can be infected through a chain of infections starting from an
infectious individual of any groyptherefore, the transmission dynamics in the

14



population @pends on the transmission ré&tem all groups, and, hence, the fractional
final sizeof a specific grouphoulddepend orthe fractional final size oéll groups.

DenoteF (t) to be the probability of antype individual to be susceptible at tirhe
Note thatF (- 9: E;m F(t) 1. We reason that the probability bking susceptible

over the course of the epidengcequal to the fractiomdividuals that did nobecone

infected over the course ofhe epidemic, therefores; (a): :|tim F(t) s, . From the

interpretation of thalifferential equation§2.1) we have the expression

dF (t) T b
dt I( )21 Ni ] ( )
. tmp
for all il f,...,m} . Hence, F (t) =exp[ -ﬁé_lﬁ“lj ¢t and
- o= i
“nb b . .
s;=F(9 exp[ pa WJIJ (2d ]. Note that g W’Ij(t)d (is the cumulative force
-aj=l MY o=l MY

of infection (FOI; the rate of a susceptible individual becoming infectdygrouy

il {,....m} individuals. The total number of infections in groypis equal to

(N;- S(9). A fraction 1/N, of the contacts of eacfitype individual is with a

b m HON ,
specific individual in group. Hence, (33 W”Ij(z‘)d E a—p—'(l - ;¥ and the final
- njzl i J E3 J
: : . °Ln b
size equationg.4) follow from the equalitys; =exp[ -fa WJIj (M ].
- njzl i

The basic reproduction number in a finite discrete mtytte model is defined
(Diekmann, Heesterbeelyletz, 1990 as the dominant eigenvector of the next
generation matrix (NGM). Thgjth entry (th row, jth column) of the next generation
matrix is the average number of new infections in grougue to a singlg-type

infectious individual at the earliest phase of the epidemic.

Choosei, ji {L,...m}. Eachj-type individual has Igj(N) contacts per unit of

time with groupi individuals hence when ailttype individuals are susceptibMhich

15



holds at the earliest phase of the epidenaig, infectiousj-type individual infects
b; (N)= Rk ( N) i-type individuals peunit of time. Eachj-type infected individual is
infectious for a averageluration of1/a; . Therefore, the next generation matix for

general contact patterd is

é'bll(N) blm(N)
e 4 &,

x _ _
& a 4

Note thatsince& >0, irreducbility of & implies irreducibility of X .

2.2 Contact patterns

For this studywe haveto make assumptions d¢row the contacprocesschangesvhen
thecomposition andhesize of the populationhangesin this study we distiguishtwo

maintypesof contact patterndrequency and densityependency

In multi-type human contact patterm®ntacts are often reciprocal, i.e., if person

A has contact with person B, then person B has contact with persorw&llaghe

mathematical formulation of this condition ik /N =k / N (or equivalently
kij N, = lﬁi N).
2.3.1 Frequency dependent contact patterns

We introduce frequencygependencypy an example to give the reader iatuition.
Imagine the situation o sandbank with a group of seals it. It is known that seals,
when lying on the sandbank, have the tendency tatleefixed distance next to other
seals Hence, the distance betwearighbouringsealson the sandbankwhich is a

proxy for the contact ratés independent of theopulationsize This typical example of

16



a population withfrequencydependencontact patternvasstudied in Diekmann et al.,

1995

There is no consensus in the literature on the exact definitiomeqbiéncy
dependencyin a multitype model. Recall N=(N,...,N. )’ =N(n,..,nJ =,
where N is called the population size ant=(n,...,n,) the composition.In this

article we say that a contact pattern icandidate offrequency dependendf/ the
number of contacts per unit of timef all individuals 1) only depends on the

composition n of the population and 2) satisfies the reciprocal condition

ki/N=k/N.
2.3.2Proportionate mixing

Assume that g-type individual, ji {1,...,m}, has a fixed amount of contadts >0

which is independent of time, composition and population dize¢he fraction of
contacts per unit of timeof any individual with individuals of any group is
proportionate to the number of contacts of that group,, thencontact pattern is called

proportionate mixingFor proportionate mixinghe elements oK areequal to

e Ny e
é. kS NS

for 1¢i,j ¢n. Clearly, k™ depends on the comptisn of the population but not on
)

the population size and satisfies the reciprocal condition, hence, proportionate mixing is

a candidate of frequency dependency.

Note that a change in size ahy group affects the value ok for all

i,jl {1,...m}. The advantage of proportionate mixing is that it allowstaighink

intuitively about thecontact patternA disadvantage is that it does not allowlividuals

of specific pais of groups to have a certain numbercohtacts per unit of timgwhich

17



is needed to model, for example, contaatschildren with parentsand contacts of

grandchildren with grandparents

2.3.3Semidomination contact patterns

We show the expression ok; in a semidomination contact pattern and present the

interpretationn section 2.3.4The semidomination contact pattern is given by

Ni
¢N+@ -g)N'

1¢i,j ¢n, with qif' =qu ¥ andg =1 -g; with ¢ I [0,1]. Note thaf wheni =j, Kf

ky =g (2.8)

is equal togy = ¢ . It is clear that the sertiomination contact pattern is independent of

the population size and satisfies the reciprocal conditions. Hence, thel@@mation

contact pattern is a candidate of frequency dependency.

Note that, foreveryi, ji {L,....m}, k; depends only on th&izes of group and;.
In the context othree age groups: young, middiged and elderlythis means that a
change imumberof elderly does not change thember of contacts between young and
middle-aged individuals.Note thatq; gives the freedom to choose a specific number of
contacts per unit of timbetween groupsandj. The importance of the group sizes of
groupi andj in detemining the number of contacts per unit time between gyraunali

is determined by the parametgr.

By substituting the expression (#.8) into the differential equation@.1) we

obtain the model with sertiomination contact pattern in differential equations

(2.9)

18



P, g

1¢i &n. We write g = , 1¢i,j ¢n . Each j-type ji {1,...m}, infected
a

J

individual is infectious for a averageduration of 1/a; units of timeand infects

Pig N
GN+1-¢)N

in groupi are susceptible. Hence, the next generation matrix in a model with semi

i-type il {L,...,m}, individuals perunit of time when all individuals

domination contact pattern is

3 : : N,
e W N 6N,

X, =e : . : (2.10
s N :
%ml m a

c Cim Nl + (1 _Cim) Nm

The derivation of the final size equatidi2s4) does not depend ohd choice otontact
pattern Hence, the final size equations with a seimnination contact pattercan be
obtained by substitutin@?.8) in (2.4). The final size equations are
s =expl (5 ) &

| | =GN+ -G)N

j=!
J

(s DI, (2.12)

— B

for1¢i ¢n.
2.3.4 Domination contact patterrs

In general, he semidomination contact pattern does not allow for a simple intuitive
interpretationWe introduce a sules of the semdomination contact pattern, which we

call the domination contact pattermnd show that it can be interpreted intuitively.

Choose two groups, which we denote by groujpl {L,...m} and assume that the

contacts between the 2 gpmuare described by the sedamination contact patterif.

N. N.
¢, =1, thenkj = g’ and kj = qu‘ dﬁSW‘, hence, the number of contacts gttgpe

individual with groupi individualsis independent of theomposition of thgopulation.

19



We can think of this contact pattern as that grpmglividualswantto keep the number
of contacts per unit of timeith groupi individualsfixed and that group individuals
feels comfortable to adjust their numbercohiacts per unit of timevith groupj as a
result of a changén size of group] and groupi. In this case, we say that groyp

dominatesgroupi and that group is beingdominatedby groupj. We call a pair of
groupsi,ji {L...m} a dominationpair when groupi dominates groug or group]

dominates group

We define a sermilomination contact pattern to be a domination contact pattern

wheneach pair of groupin the populations a domination pair.

Thus a domination contact pattern is a sdomination contact pattern with

¢, 1 {013, for all i,ji {L,...m}. By allowing ¢, , i,ji {i,...m}, to obtain values in

j 1
between 0 and 1, we introduce contact pattdratarein betwesncontact patterns with
the characteristic thajroupj dominaesi and vice versaThis explainsthe choice of

calling the contact pattei2.8) a semidomination contact pattern.

Additionally we introduce two terms. We say that group aroyal group if
groupi dominates all other groups in the population. We call graupervant groupf
groupi is being dominated by all other groups in theyapon. Note that a domination
contact patterrdoes not necessarily V¥@a royal or servant group and that a semi
domination contact pattern with a royal or servant glisuqpt necessarily a domination

contact pattern.

We think in this article that chilcen have a fixed number obntacts per unit of
time with middleaged (parents) and aged (grandparents) individuals, independent of the
composition and the size of the population. Also, we assume that the aged individuals
adjust their number afontacts peunit of timewith the youngegroups to the need of
contacts of the youngendividuals (including middleaged individuals Therefore in
the context of semdlomination contact patterns, the group of children and aged

individuals are respectivelyroyd andaservant group.

20



2.3.5Power contact patterns

We present the set of power contact patterns first and explain the advantages and
disadvantages of the contact pattern afterwards. We call the following set of contact

patterns the power contact pattern

kP =g (212

J

for 1¢i,j ¢n, with ¢ =g’ 0 and di R. Note thatk’ is independent of the

O

B2
SLAm A

population size and satisfies the reciprocal condition dotyd =1/2. Hence, the

power contact pattern is a candidate of frequengeni@gency onlyor d =1/2. Note

that, wheni = j, we havek? = ¢°. We emphasize that fat, 1/2, the power contact

pattern does not satisfy the reciprocal conditeord is, hence, not a candidate of

frequency dependency.

The power contact pattern does not allow for a simple intuitive interpretation for
generaldi R. Although the following subset of power contact patterns do not satisfy
the reciprocatondition, these contact patterns are easy to be interpwtezhd =0,
the number ofcontacts per unit of timef any individual in the population with
individuals ofany group isindependent of composition. Wheh=1, the number of
contacts per unit of timef a j-type individual withindividuals of groupi has an
inversely proportional relation with the size of groyphence, the total number of
contactsper unit of timeof groupj individualswith groupi individualsis independent

of the size of group

The powercontact pattern is interesting from a mathematical point of view. We
will show in section 3 that the basic reproduction numisea model with the power
contact patternis independent of theomposition for alldi R. Also, whend =1, the

fractional final sizas independent of the composition of the population.
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The differential equations, next generation matrix and final size equations in the
caseof a power contact pattecan beobtained by substitutin(?.12) in the associated

P, g’

a,

expressions in section 2.1. We writg = .The differential equations, next

generations matrixX,, and final size equations are respectively

-1

aS_ nd T
g N 56} o Nd i 2.13)
i‘e aj; o al (NN
Xp=ae : , (2.14)
%ml N /I\ll ag]m
s, =exp@a’ (s -1 % 3 Nd-lN:l-d (s 1 (2.15)

N

for1¢i ¢n.
2.4 Density dependeng

We illugtrate densitydependencyy an example. Imagine swimming poolof fixed
sizewith anincreasing number of swimmers. We assume thantimeber ofcontacts
per unit of timeincreases whethe distance between individuals decreases. As the
number of swimmersncreasesthe averagearea available per swimmer decreases
which resultsn a smaller distance between swimmers, cauamgncrease igontacts

per unit of timebetween swimmers

We say that a contact pattern is a density dependent contact patternhehen

number ofcontacts per unit of timef a j-type ji {1,...m}, individual with groyp

il {,...,m} individuals has a linear relation with the size of groumnd satisfies the

reciprocal conditionthusthe elements oK areequal to

KS=gf'N, (2.16)
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for 1¢i,j @n, with qif' = qj? >. The reciprocal condition is clearly satisfied. The main

difference between the candidates of frequency dependency and the density dependent

contact pattern is tha , in the density depelent case, depends on the size of the

population. The total number of contacts of a groyd {L...,m} individual is

m m

a k' = aq'N . Hence, whemll group size are increased by the same fathertotal
i=1 i3

number of contacts ofgroupj individual increasas well

The differential equations, next generation matrix and final size equations in the

case of density dependency is obtained by substituit) in the associated
d
expressions in section 2.1. Wri&? =M. Then the differential equations, next

a

generations matrix and final size equatiare respectively

d m
d—?= sangdl. (2.17)
j=1
daiN, ... &N
Xi=a ° SRR (2.18)
%Nm afrjnmNm
s, =expl@ a'N (s -1, (2.19)
j=1
for 1¢i dn.
3. Results

3.1. General results

In this section we show results which hold for general contact patterns. These results
form the basis of thproofs of theotherresults in section 3All proofs of section 3.1 are

givenin section 4We define the matrix
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aS(9 by SO by

le al Nl ‘%

X(S()) =2 : . (2.20)
Oln . SO B
EN, a N, a&,

Note that X(S(9), ti R, is the next generation matrix of a populatisthere the
number ofi-type susceptible individuals at the earliest ph&as& (1), 1¢i ¢n, hence,

X=X(Y - ®. We define X,((9), X,(S(9) and X (D) to be X((P) for a

semidomination, power and density dependent contact pattern respectigeM. be

an m-dimensionalreal valued irreduciblsquare matrix, in the forthcoming we write
r (M) for the dominant eigenvalue of the matikilx
Theorem 1

Assume the model as described {®1) with a general contact patterd and

b=( Py, » irreducible.If and only if R, = r(X(Y - ® 1, thefinal size equations

(2.4) has asolution in (0,1)". If so, this solution is unique.

Theorem 1 shows thaR,¢1 and R,>1 corresponds respectively to no

occurrence and occurrence of an outbreak in the population. Also, it states that the final

size given an outbreak is unigue.the forthcoming, ifR, >1, we referto S(z) asthe

unique solution of2.4) in (O,N;)3 ... 3(O,N,, ).

Theorem2

Assume the model as described {®1) with a general contact patterld and

b=( P, o ireducible If Ry =r(X(K - B 1, thenr(X(=)) <.
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Theorem2 is expected intuitively. X (S(=)) is the next generation matrix when

thenumber of susceptible individuals in each group is equal to the number of uninfected
individuals at the end of the epidemlatuitively, it is expected that the state of the

population after an epidemic does not allow for a new outbréék. expected
r(X(S(=)) <, since outbreaks in the deterministic model occur if and only if the basic
reproduction number is larger thana$ stated in Theorem. The above reasoning

should be read to obtain an intuition only, sin¢® ., 0 for ti R and, hence, the end
of an epidemic cannot be trivially be defined astiieR for which I (t,) is equal to0

for the first time.

Theorem3

Assume the model as described (Byl) with K continuously differentiable ttN and
b=( f); » Irreducible in the domain ofN , Py PRy » 8@ . If
R =r(X( - ® 1,thenS(n) iscontinuouslydifferentiableto N, P, Piys---» Byns

a fordl ii {,...,m}.

Lemma4

Assume the model as described {®1) with a general contact patterd and

b=( f); o irreduciblein the domain ofN . Chooseil {,....m}. Fix N; for all

ji {,....m} except forj=i. AssumeK to be elemenwise differentiable toN,. Let

x*T >0"7 and x>0 berespetively the left and right eigenvector corresponding to the

dominant eigenvalue ofX and x*' x=1. Then the basic reproduction number,

R, =7r(X(q - ), is differentiable toN, andg—ﬁ =x*" X'(N) x,i=1,....m
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3.2.1Frequency dependent contact patterns

It has been argued in section 2 that all candidates of frequency dependency do not
depend on the population size. Therefosen the contact pattern is a candidaite
frequency dependency change in population size, does not change the transmission
dynamics and hence, the basic reproduction number and fractional findh ¢fze case

of candidates of frequency dependencg, studythe qualitative impacbf a charge in

size ofanygroup on the basic reproduction numbad fractional final sizeRecall that

the vector N , with on the ith entry the size of group, can be written as

N=(N,...,N. Y =N(n,..,nJ Nr. When the size othe group with index 1

increases byd>0 , N clearly increases byd too. The vector N becomes

N, +d N,

(N; +d,...,N_ ) =N 41:)’((N* )N m+ Ni with (N;,...,N_ ) the initial vector

N and N" the initial population sizeClearly, after the increase, the relative size of

group 1 has increased in comparison with the other groups, while the ratio between all
other pais of groups, excluding group 1, has rmbtanged. Therefore, since population
size has no effect on transmission dynamics, the effect of increasing the size of
group is equivalent to the effect of increasing the proportion of that group in the
population while keeping the ratio between dliey pairs of groupand the population

sizeconstant.
3.2.2 Semidomination contact patterns
Theorem5

Assume the model as described (&1) with a seni-domination contact pattern

K=K ; o« and 6=(p;k’)yg; o irreduciblefor N>0and R, = (X)) 3. Assume

the population to have a royal groufd {,...,n} . Theng%>0 and %<O,

z z

1¢i an.
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The proof of Theorend is presented in section 4. Theoré&ms expected from

the definition of a royal group and the intuition behind a s#omnination contact

pattern. An indiidual of the royal grou has a fixed numbelk>, of contacts with

groupil {L...,m} individuals For any timeti R we can reason as follawAs the size

of the royal grougz increasesthe rumber ofcontacts per unit of timef each individual
of groupi , z with the royal groupz increasesHence, thdorce of infectionin group

i, z increases. Since the contact rates between groups other tmayatihgroup do not

change, we expecg% <0,i, z,1¢i @n. The number otontacts per unit of timef

individuals in the royal group des not change, but as an effect gﬁl—i<0, i, z,

1¢i ¢n, we expect alsej‘%Z <0. By a same reasoning we expect tﬁ% >0. The

sametype ofreasoningapplies for servant groupsd the following theorens expected.
Theorem6

Assume the model as described (&1) with a semidomination contact pattern
K=(K)wi; » and &H=(p,k"); o irreduciblefor N>0and R, =7 (X)) 3. Assume

the population to have a servant gvomi {L,...,n} . Then:%<o and%>o,

z z

1¢i on.

The proof is gien in section 4.Theorem5 and 6 are usefulin a population
where individuals are categorized fior example3 groups: young, middiaged and
aged individuals. As mentioned in section 2.3.4, young individuals can intuitively be
associated ith the royal group and aged individuals can be associated with the servant
group. By this association, we can interpret that a fractional increase of the number of
aged individuals, which can be interpreted as ageing, will decrease the severity of an

epidemic if severity is measureth the basic reproduction number and fretional
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final size.Theorem5 and6 showthat whether the number obntacts per unit of time
of individuals ofa group is fixed odependsin a manner such that the number of
contads per unit of timeof other groups is fixed, is a major factor in the qualitative
impact of a change in size of the group tdme basic reproduction numband the

fractional final size.
3.2.3 Power contact patterns

As mentioned in section 2.3.5, powentact patterns are independent of the population
size for alldi R, but only satisfy the reciprocal condition fdr=1/2, hence, power
contact patterns are only a candidate of frequency dependency dvh&h2. An
interesting property in a model with the power contact pattern is that the basic

reproduction number is independent of the composition of the population.

Theorem7

Assume the model as described @yl) with a power contact patterd = (k{)q | o

and di R and b irreducible for N>0. Then the basic repduction number,

R, =r(X,), is independent of the size and composition of the population.

Proof

Since b is irreducible forN >0 and a >0 we conclude that als,()(p is irreducible.

Existence ofR, >0 follows directly from the Perreirobenius TheoreniThe power

contact pattern is independent of the population size as mentioned in section 2.3.5,

hence, also the next generationatrix, which depends oN only in (K e j & o 1S
independent of the population sizet Diag(#Z) denote the diagonal matrix with at the

jth diagonal thgth entry of vectow7 for ji {L,...,m} and Ofor all other entriesCall
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D,(d) =Diag((N,...,N7)"), di R. Note that the next generation mat(X14), in a

model with a power contact pattern witH R, can be written in the form

da’, ... a) o
X,= D(da: . i gHd). (2.21)
®y, a0

Thus X, is similar to a matrix which is independent of the composiferdthe size)

of the population. Since similar matrices have the same eigenyvaleendtude that

R, =r(X,) is independent of the composition of the population. QED

Theorem8

Assume the model as described (Byl) with a power contact pattert = (k") ; s

and 0 =(p; k") ; w irreduciblefor N >0 andd =1. Then the fractional final size is

independent of the size and composition of the population.
Proof

The statementis directly proven bysubstitution ofd =1 in the final size equations

(2.15). QED

3.3 Density dependency

Theorem9

Assume the model as described (1) with a density dependent contact pattern

K=(k'); o and b=(p, k"),  irreduciblefor N >0. Thenj% >0,1¢z ¢m.

z

Proof

We are in the situation of Lemma dince b is irreducible for N>0 and K

coninuously differentiable tdN >0. Choosezi {,...,n}. X, '(N,) is the matrix with
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elementsaﬁj 2 0 forall ji {I,...,m} in thezjth position and 0 for positions ar than

the zth row. By irreducibility of b, aj is positive for at leasbne ji {L,...,m}. Since

x*T >0 and x>0 (notation as in Lemma 4jve comludej—ﬁ’ >0 forall il {1,...,m}.

QED
Theorem 10

Assume the model as described (1) with a density dependent miact pattern

K =(Igf)1¢i iw and b=(p, Iﬁd)m.j o irreducible for N>0. AssumeR, =r(X,) %,

then %<O for i,zI {1,...,m . Additionally, if a’N_ >1, then %<O for

z z

zl {,...,n}.

The proof of TheorenlO is presented in section 4n a density dependén
contact pattern, both the size as the composition of the population has influence on the
basic reproducdn number and the fractional final size. Therefore, the impact of an
increase of the group size of any groop the basic reproduction number and the
fractional final sizeis a result of botha change in composition and size of the
population. Note the tference with the theoremsavolving candidates of frequency
dependency, where the impacbnly due to a change in compositi@iearly, when the

population size increases, all group sizes changes and hencglathativeresults of
Theorem9 and10also holds ford—R’ andﬁ, 1¢i ¢n.
dN dN
Theorem9 is intuitively expected by the fixed pool metaphor; an increase of

individuals, increases the number of contacts and haenosaseshe aerage number of

infections due to a single infectious individual at the earliest phase of an epidemic.
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The impact on the basic reproduction number as an effect of a change in

compositionn =(n,...,n,) only (population sizeN is fixed) is different than stated as

in Theorem9. We write for convenience?;j = ah.d N for all i,ji {1,....m}. The next

generation matrixvith the density dependent contact patteanthenbe written in the

form
agn ... a,n
Xg=o2 0 o (2.22)
é%mlnm T ammnm
. . . Y . dR) _ T '
When b6 is irreducible fornl (0,1)", the expressmnd——x* X4'(n) x follows
n

directly from Lemma4, with x*" >0" and x>0 as in the notation of Lemm# In the

mtype model with m large, it is difficult to determinethe sign of theexpression

(;_?:X*T X,'(n) x due to the conditiorg n =1. In the 2type model we have the
i=1

following theorem.
Theorem11

Assume the&-type (m=2) model as described {R.1) with a density dependent contact

patternkijd >0 for n,I (0,2) and p, >0 fori,] i {1,2}, and a fixed population sizN
(.,e. n,=1 -n,). ThenR, is a differentiable function tay, on [0,1], with at most1l

extremum. The sign of the slope & in n =0, n,=1/2 and n =1 corresponds
respectivelyto thesign of 4,a,,- &,, &,- &,,and &, - &,3,,.

The proof of Theoma 11 is presented in section #heoremll implies thatthe

qualitative behaviour of thbasic reproduction numbess a function ofy, dependn

the values of, I [0,1] and theterms (§; ), ; - This is different in the case af non
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fixed populationwhere the basic reproduction number has a monotone relatioNyith

il {L...,m} as shown in Theore® Note that the sighof i—R’ an=0,n=1/2and
n

n =1, i.e. the signs o8,,4,,- &,, &,- &,, and &, - &,3,,, determine the existence of
an extremurmand whether the tremum is locatedt a value ofn, greater, smaller or

equal tol/ 2 by Theoremll.

4. Proofs

In this section we present the skipped proofs in section 3. This section can be skipped if
one is not interestkein technical details. The proofs use foremost the ideas of Schmidt,
1990.

Proof of Theorem 1

The following proof follows the steps of a more general proof as described in Rass &

Radcliffe, 2003. Assume all conditions as stated in Theorem We define

) b N )
n=@1 -9 [01andb :=——foralli,jl{l..m}andB:=(h),, .. Note that

a, N,

B is irreducible whenp is irreducible since 8 >0 and N>0. The final size

equationg2.4) are nowl- 7, =exp[ § Tzlbj ], which are equivalent to

- log(1 ) g_hj n, (2.23)

il {1,....m}. Note that7 =( f1..., ./ =Ois a solution 0f2.23) and other solutions of
(2.23) cannot have entries equal to 1, sireg@@ has a range of0,a). We are
therefore only interested in solutions @23) with 771 [0,1)™. There is aone to one

correspondence between values »f [0,1) and zi [0, @ when the equation
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- log(l -x) =z holds, or equivalently,1- exp(z) x. Note thatx=0 if and only if

z=0. Now, solutions 0f2.23) corresponds to solutions of

2 =8 expl 7)), (2.24)

i=1,..m, with 2=(z,...,z) 20 andn =1 -exp[ z] and z = dog( ~). In
matrix notation(2.24) is equivalent to

2= Bl -exp[ Z)), (2.25
with (1- exp[ 2]) the m-dimensional vector with at théth entry 1- exp[ z],
il {1,...,m}. Theorem 1 can now be stated ¢s25) has a unique solutioa >0 if and

onlyif Ry >1

First we prove thai(2.25) only has the triviaD solution whenr (X) = R d.
Let Diag(Z) denote them® m diagonal matrix with at thgh diagonal thgth entry of
the m-dimensionalvector 7 for all ji {L,...,m} and O for all other dries. We define
D =Diag(N). Note thatD'X D 8, henceB and X are similar matrices and if
r(X)¢1 then r(B)¢1. Let X' =(x,...,%,) >0 be the left eigenvector oB
corresponding ta(B), which exists by irreducibility oB and the Perroifrrobenius
Theorem. Assume that(0) = (z(0),...,z, (0)J [0, €is a solution 0f(2.25). Then, we
have x'2(0)=X B1 -exp[ ZO)]) r¥B X @1 exp[ z0)] : Hence,

a rj“zlxj z(0)=r(B éjmi x(L -exp[ 7 (0)]), and equivalently,

2 %,(2(0)- 7 (B -expl 7 (O)) © (226
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Define the functionf(z)=z -r(B@ exp[ & for zi [0, ©), then f(0)=0 and
f'(2=1 -r(Bexp( 2) C, sincer(B)¢1andO<exp(z) 3. Hencef(z)>0 for

z>0. Sincex' >0, we conclude that onlg(0) = 0 can be a solution ¢2.25).

We prove tha{2.25) has a unique solution(1)> 0 if 7(X)=R 3. Notethat
r(X)>1 implies r(B)>1 by similarity of X and B . Let w>0 be the right
eigenvector of B corresponding tor(B), which exists by irreducibility oB and the
PerronFrobenius Theorem. Choos&a /m 4 such thatr (B) /1. Sincel- exp(z)
is continuous and differentiable @ [0, ©), there existdy the Mean Value Theorem
for any zi [0, ©) a0<z, < swh that(l- exp[ 2] € exp[ 0]/ O) -expk, ,
which is equivalent td- exp[ z] exp[ z,-]z. Clearlyexp[-z,] -1 as z®0. Hence,
for z sufficiently small we havéd- exp[ z] Az. Thee exists therefore ae@>0 such
that 1- exp[ew] 2m¢ for all il {,,...m} . Now define 0 =ew and
u™ =B@ -exp[ t"V)) for ni {1,2,3,...} . Then
u®=B@1 -exp[ ew]) Bwme (Bw me & . Choosenz?2 and assume
a™?>u"?, then we havei™® =Bl -exp[ t"V]) B exp[ U"2]) U""Y since
(1- exp[ z]), zi [0, ©), is a strictly incredng function. Hence, by induction, we
concludethat a™ is a strict increasingequence of vectors and is boundiedn above
by Bl . We conclude thata™ converges to a vectorz(1)>0 satisfying
z(1)= B(1 -exp[ z@))).

We prove uniqueessby contradiction. Note that each solution(2225) with at

least one zero entrynust be the triviaD solution by irreducibility ofB. Assume
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therefore two solutions of (2.25), z >0 and z, >0 and assume without loss of

generalityz # z, which means that there isjd {l,...,m} such that thgth entry of 2
is smaller than thgth entry ofz,. Define t, =iimi_wﬂ}((2l)i /(z)) with (z). and (2),
the ith entry of z and z, respectively, ji {,...m} . We have0<t, 4 and
(2), =t,(z), for someil {i,....m} and (2)2 t,(z). Additionally we have by strict
concavity of1- exp[ z] for zI [0, @) the following inequality,

1-exp(-6z € 4)0) L, & explz]) -1 4, )L expl O
=t,(1 -exp[ z)).

(2.27)
Hence,z = B exp[ 2]) BL expl §3D) By(® expl 42]) -{3 which
contradicts the previous result th@), = t,(z,), for someii {,...,m}. We conclude by
contradiction thatz(1) > 0 must be the unique solution of the equat@25) in (0,2 )".

QED

Proof of Theorem?2
This proof uses the ideas of Schmidt, 1990. Assume all conditions as stated in Theorem

2. Theorem 1 states thahe conditionR,>1 and irreducibility of 4 imply the

existence and uniquenesd the nontrivial solution of the final size equatians

S(=) 1(0,N) 3.. @,N,). Let Diag(® be defined as in the proof of Theorenince
Diag(s) has positive entries in the diagonal and= X(S - }¥ is a nonnegative
irreducible matrixit follows that Diag(s) X(- 9) =X $ )Xis also a nomegative

irreducible matrix. The final size equat®in terms of§(=),..., S, (®) aregiven by

S@) ot BN SE)
N _exp[jgzllaj N ¢ N 1), (2.29)
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i=1,...,m (see(2.4)). Chooseil {l,..,m} . We rewrite (2.28) by taking logarithm ah

multiplying by S(=) on both sideswWeobtairn

o m S(n0) b
g Ths @) A 2 S(r W), (229

We write this in matrix notation,

gL ThS @) =(X(A (K P W SO e M) (@230

From the irredudbility of X(S(r)), the PerrosFrobeniusTheorem guarantees the
existence of a unique, real valued dominant eigenval@X(S(=))) and a
corresponding left eigenvector >0. Summing over the expssion (2.30) over all

il {1,...,m} and using the left eigenvector property algtain

S (o
(,()

s @) =y 1093 ) $( 9

N,

a y,log
j=1

(2.30)
) 4S(a) - N
=r(X(MWyo
& (a) - N,

= r(X(X MNA Y(S( P ),

-O0: O: Ot e .:%:

the third equality follows from the associative property of venotatrix multiplication

and the definition of  left eigenvectoMow, r(X(S(2))) satisfies

o]

@) -r(XE BB W 0. (232

4y, (og>
e N
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We prove by contradiction and assumeX (S(a))) 21. Letil {I,..,m} and define the

differentiable functionf, ()g):xlog(%) -r (X(S ®(x  N) with xi (O,N]. The

derivative of f. to x is equal todi f.(x)= Iog(ﬁ) 4 £(X(S( )R, which issmaller
X

than 0 for xi (0,N) by the assumptionv (X(S(=))) 21. Hence, f is a strict

decreasing function i i (0,N). It follows that f, is a positive function irxi (0,N )
by f,(N,)=0. We conclude thag y; f,(x)>0, le' (O,N;), by the positivity of f; ,
j=1

j=1,...m and y' >0. Since S(a) i (0,N) 3.. ®,N,) by Theorem 1 the above

conclusion contradictsondition(2.32) and hencer (X(S(=))) <L. QED

Proof of Theorem3

Assume all conditions as stated in Theorem Befine the function

F=(RF) (N (P Py B )@ X) - R by

F=x -Nexpi PN oy, (233
3 P 0

for i=1,...,m with x=(x,....x.) 1(O,N) 3. ®,N, . Note thatF is continuously

differentiable to N , (Py, P Ban) » @ and X since k; (N) is continuously
differentiable toN . Then F =0 is equivalent to the system of final size eiprzs (2.4).
Define the indicator functioth_,, .,

Recall that we are in the sitiem R >1 . Fix i,ji {,..m}, Ni RT ,

(Pyys Prosees B )l IRL"ZO andal RT,, thenthederivative ofF, to x; satisfies:
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(N

: N
P )Nexp[a “?;N (5 NI (239

—— =y
dx, j

Since b is irreducible in the domaiiN , (p;, Ppr--» B,,) @nd & and R, >1, it follows

by Theorem Zhatthe equation® =0 has a unique solutio(=) i (0, N) 3.. (®,N,).

Hencein matrix formulation, the equality holds

[}

d

ny

a: = (Diag@ -X(( ¥). (239

W/Tj mg=g( g

ﬁ

L)

with Diag(® as defined in the proof of Theoremahd X(S(2)) asdefined in(2.20)

andplﬁ(N) 4 and §() —Nexp[a UK.‘ISI N)

] 1

(SC ¥ N)]for alli, il f,...m}.

By Theorem Iwe havethat r (X (S(=))) <1, therefore, all eigenvalues &(S(z)) are

less than 1lin absolute valueand, hencedet( - X (S(9)) 0, which implies that

o

d

ny

0
: 8 is an invertible matrix. By thdmplicit Function Theorem we
-

%“f

L)

187 mi3-g 9
conclude thatS(a) is differentiableN , (p,,, Py».., B,,) @nd a for al il {.,...,m}.
QED

Proof of Lemma4

Assume the conditions as stated in Lemmiardducibility of X(N ) follows from
irreducibility of » and@ =( 4,..., @) >0. Thereforgby the PerrosFrobenius
Theoren, there existcorresponding to the dominant eigenvalueX) with multiplicity
1, left and right eigenvectors*™ (N) >0 and x(N.) >0. By scalar multiplication we

choose the eigenvectsach thatx*" x=1. Since K is elememnwise differentiable to
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N,, also X(N) is elemenwise differentiable toN, . It follows from Lax, 1996, that

the dominant eigenvaluB, = r ( X) and the left and right eigenvectoc*™ and x, of

X are differentiable td\,. The left and right eigeneeors satisfy the equations

X(N)x=R x

x*T X(N) = R x'

Differentiation of(2.36) to N, gives

X(N) Xt X(N) =Fsdi,: A

by the product rule. Left multiplication ¢2.38) by x*' gives

dx dx dR
x*T X' x+ RxT— =R%'— +2.
(N)x+ B27 oS =B S 8

Hence, the identity

dR) _ st
d_M_X X'(N) x

holds. QED

Proof of Theorem5

(2.36)

(2.37)

(2.39)

(2.39)

(2.40)

Assume all conditions as stated in TheorenSkice K =(k7),, ; o is elemenwise

differentiable toN, and & is irreducible forN >0, we are in the situation of Lemma

dR,

and we haveusing the notatiom Lemmad4, the expressio%W =x*" X_/'(N,) x. Only

z

the entries in the-th columnand row of X,(N,) depend onN,, therefore,X,'(N,) is

0 in the entries other than tke¢h column and row. Sinceis the royal groupwe have

c, =1 for all ji {,...,m}. Hencethej,zth entry of X_(N,) is a

39
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of X,(N,) is 3N,/ N;, jI {I,...,m}. Therefore thezth column and row ofX,‘(N,)

exists respectively of zeros only araf(1/N;)>0 for z, j, 1¢j ¢n. Since

x*">0" and x>0, Weconcludeg% =x*T X'(N) x .

A

We are working in the conditions of Theor&mince b is irreduciblefor N >0
and K is continuously differentiable tdN and R, >1, hence,s, , il {,...m}, is
continuouslydifferentiable toN, by Theorem 3Recall the final size equatiorf8.11)
in a semidomination contact patter®incez is a royal group, we have, =1 for all

il {1,...,m}. Using this substitution, we obtaiby the standard rules of differentiation

fori, z,
ds, _.nm a N, ds; .ds g
i=s, . (5 1}, 241
an, AN gy ay Tay W7 G
J,1
andfori=z,
E:s['rp s4s; SH] (2.42)
an, TN N, |
i

Equationg2.41) and(2.42) are respectively equivalent to

& . . ,ds, m as N ds
s, Ni(g DAl & is)dl\L %%Nﬂl FSYNRTY (2.43)
_ . \ds, o _ ds,
0=t as)yy adFgy (2.44)

Let Diag(Q) be defined as in the proof of Theorermard recallD =Diag(N). Define
X (S(m)) = BDX(F )r , hence, X_(S(z)) and X (S(z)) are similar matrices.

Using the expressions of_(S(r)) as defined in2.20), thei,jth entry of X_(§(a)) is
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asi N
G N +(1 -G ) N

(2.44) in the following matrix notation

equal to ,1¢ j dn. Therefore, we can write the equatiq@st3) and

b, =(Diag(1) -X.(X ¥ Q. (2.45)

s
jz

N.

J

with b, the column vector with at ttjéh entrys,

(s-1),for j, zandOforj=z

- ds.
and D, the column vector with at thjéh entryd—N', 1¢ j ¢n. By similarityit follows

z

that X_(S(=)) and X (S(z)) share the same eigenvalues. Bsmma4 we conclude
r(X.(S(=))) <L and hence, all eigenvalues ¥f (S(2)) is smaller than 1 in absolute
value Hence(Diag(1)- X.(S( 9)) is an invertible matrix and
D, = (Diag(1) -X,(S{ »)* b
. [ (2.46)
=a (X, (S(9)) b.
1=1

The second equality follows from the convergence of the geometric series for matrices

with spectral radius lssthan 1. By irreducibility, each column &f must have at least

1 positive entry. Sincd®) >1 and 4 is irreducible it follows from Theorem 1 that
(5,,-., §)I (0,2). Theefore,b, ¢ 0 and hasat least one negative entry. Assume that
the ni {L,...,m} entry is negativeBy irreducibility, there exists aly(j), such that the

jnth entry of (X (S(=))° is positive for all j=1,..,m We conclude that
D,=& (X{(S( 9))'h &.QED
=1

Proof of Theorem6

The proof of Theorers goesanalogue to the proof of TheorésnWe give the proof for

completeness of this papeissume all conditions as stated in TheorémSince
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K =(K), o IS elementwise differentiable toN, >0 and 4 is irreducible forN >0,
we are in the situation of Lemn#g and we have, using the notation in Lennahe
daR,

expressiondN =x*T X,'(N,) x. Only the entries in the-th column and row of

z

X.(N,) depend onN,, therefore,X,'(N,) is O in the entries other than ta¢h column

and row.Sincez is the servant group, we haeg =0 for all il {L,...,m}. Therefore

N.
the j,zth entry of X,(N,) is aJ.SZN—‘ and thezjth entry of X (N,) is a;, 1¢ j dn.

z

Hence, thez-th column and row ofX_‘(N,) is respectively- a, (N, / N’) < for z, j,

1¢j ¢n and zeros only. Since x*' >0" and x>0 , we conclude

dl:%’—X*TX '(N) x 9.
dN,

We are working in the conditions of Theor&mince b is irreduciblefor N >0
and R, >1 and K is continuously differentiable t& , hence,s; is differentiable to
N, for all ii {1,...,m} by Theorem 3Recall the final size equatioif2.11) in a sem
domination contact patternSince z is a servantgroup, we havec, =1 for all

il {1,...,m}. Using this sbstitution, we obtain by the standard rules of differentiation

fori, z,
ds, a;N, ds, .ds
an, - [‘1 SN+ -¢)N TR (247
and fori=z,
95 _sraa i B geds BN ooy (249
o TSARTG WG ARG |
L

]
1,i J

Equationg2.47) and(2.48) are respectively equivalent to
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oom ss N d s
0=(1 a5 ) B — T
dN, S gN+@ -¢g)N di
= (2.49
2 Sm(l-S) =(1 s )E % as S&E
%a"j N2 i L dN, -?Efil "N, dN,’
i L

| ]
N J

Let Diag(® be ddined as in the proof of Theoremahdrecall D =Diag(N) and
X (S(r)) = BX(] )P . Notethat X;(S(=)) and X_(S(=)) are similar matrices.
Using the expressions of_(S(a)) as &fined in(2.20), thei,jth entry of X_(S(=)) is

as N

fori,ji {L...m}. Therefore, we can ite (2.49) in the
GN+@1-G)N

equal to

following matrix notation
b, =(Diag(1) -X,(X ») D, (250)

~ T N .
with b, the column vector with at theth entry aﬂsN—’z(l- s;)and O forj, z.
j=t z
N

_ ds.
Recall thatD, is the column vector with at thigh entryd—NJ, 1¢ j dn (see proof of

z

Theorem5). By similarity, X (S(a)) and X (S(z)) share the same eigenvalues. By
Lemma4 we conclué 7 (X.(S(=))) <, and hence, all eigenvalues X (S(n)) is

smaller than 1 in absolute valudence(Diag(1)- X (S( 9)) is an invertible matrix

and therefore,

D, =(Diag(1) -X.(S( ¥ b
P - (2.51)
=8 (X(X( 'k

The second equality follows from the convergence of the geometric series for matrices

with spectral radius less thanBy irreducibility, each column ob must have at least

1 positive entry. Sinc&R, >1, it follows from Theorem 1 that(s,,..., )i (0,1).
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Therefore,BZ 2 0 with at the zth entrya positivenumber By irreducibility, there exists

anly(j), such that the,zth entry of (X, (S(=)))" is positivefor all ji {,...,m}. We

concludeD, = a (X.(S(9)'h 6.QED

Proof of Theorem 10

Assume all conditions as stated in Theorem 10. We can use Theorem & ssce
irreducible forN >0, hence, byR, >1, 5 isin (O,N,)3 ... 3(0,N,, ) andis unique
Choosezi {1,...,n}. Since b is irreducible forN >0 and K continuously

differentiable toN >0 and R, >1, we hae by Theorem 3 that is continuously

differentiable toN,. We prove in the forthcoming(;% <0 forall il {1,...,m}.Write

z

X (@) = DX,( )=, with D =Diag(N) as introduced in the proof Fheoreml. Note
that X (=) is irreducible sinceX (=) is irreducible andN >0. X (a) and X, (=)

aresimilar matricesy the identityof X (=) and henceshare the same eigenvalues.

Recall the final size equatiof2.19) in the cae of a density dependent contact pattern
Using these equations atite standardlifferentiationrules we have

ds, oo dsy
— 1l =g N —— r 2.52

z

for il {i,...,m} . After rewriting equation (2.52) such thatall derivatives ofs, ,

il {1,...,m},is in the RHSwe obtain

g 1 ds, N,
Siaz(é-l) :a_.dW(l{i:ﬂ S( )#‘WL (2-53)

44



with | as defined in the proof of Theorem Becall D, from the proof of

condition

Theorem 5 and define tEZ to be themdimensional vector with at th@gh entry

il g,...m}, s.a

i, ( §-1). Then(2.53) can be writtenn matrix notation

& = (Diag@ -X,( ¥D, (2.54)
With Diag(® asdefinedin Theorem 1By Theorem 2, whicls applicable sinceb is
irreducible forN >0 and R, >1, and similarityof X (a) and X (=), it follows that
all eigenvalues ofX;(a) is smaller than 1 in absolutealue. We conclude that

(Diag(i)- X; (' 9) is an invertible ratrix. Therefore théollowing expressiorholds

D, = (Diag(@) -X;( ¥'E
5 o 2.5
=4 0G(0E (&5

The second equality follows from the convergence of the geometric series for matrices

with spectral radius less thanBy irreducibility, each column ob must have at least
onepositive entryRecallthat s is in (0,1)" andis uniqueby Theorem 1Thereforene
havet% ¢ 0 with at least one negative entkssume that this isntry ni {1,...,n} . By

irreducibility of X, (a), there exists ah,(j), such that thg,nth entry of (X (2))" is

positivefor all j=1,...,m Hence, ve concludeD, = § (X ,( t))'lEZ 8.
=1

Differentiability and% <0 foril fi,...m}, i, z follow from Theorem3

z

and théfirst part of thisproof. We are left tashow thatm <0 whena,N,>1. We

dN

proceed abefore The following follows from the final size equatior{®.19) and the

standard rules of differentiation
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ds (2)

dS(=) S,(2)

_ o dS(@
Tl oy SO g
. ds () 5(6) (2.56)
=S98 § — = ko5 KA

forallii {1,...,m}. After rewriting (2.56) such that all derivatives & (=), j=1,...m s

in the RHS, we have

a n dS (a
2 s9 AT 00, F) 257
Denote D,(S(m)) H(dS( ¥ dN,..., dS( ¥ diy and
B(S(m)) (S K !M}Ni a),.... S )(l?IZ:}nW1 ) . In matrix notation,

equation(2.57) is equivalentto IE(S(O ) < Diagﬂ) -X,( )rD( % )). By Theorem 2
all eigenvalues ofX, (=) is smaller than 1 in absolute value, hen@iag(i)- X,( 9)
is invertible andD,(S(2)) :(Diag(i) X, ()R E( % )). Now l%(S(o )) ¢0 with at
least 1 negative entry by tleducibility of 4 andthe assumptiora’ N_>1. By the

same reasoning as in thast part of the proof of this theorem,we conclude

D,(S(=)) <0 and in particulardjz’\(la) <0.QED

z

Proof of Theorem 11

Note thatn, =1 -n,. Assume all conditions as stated in Theorem 11. Slhﬂceo for
nl (0,1) and p, >0, we conclude that, = p k* 0 fori,ji {1,2}, hence,b is an
irreducible matrixfor n, 1 (0,1). In addition,K is clearly differentable ton,, therefore,
differentiability of R, to ni (0,1) follows directly from Lemma4. We show

differentiability of R, in 0 and 1. By simple algebrahe expraesion of the basic

reproduction number in thetgpe model is
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R=1(a, (3, & ), (259
with D(n)=((&, #,)° 4a,8,)n nda;a, 2afa, "ay "a. D) is
clearly a differentiable function in_, hence, the square root Bf(n) is differentiable
to n, in n,I R if and only if D(n)) >0. SinceD(0)=4&2, >0 and D(1)=&’, >0 by the
assumptionk’ >0 for i,j i {1,2}, it follows thatR; is differentable ton i [0,1]. By
standard rules of differentiation we haee n, i [0,1],

dR _
dn

5 3 éj,zézl(z' 4nl) +(~a11 ~azz)(%'zz(nl 1)' ~a11

N

The expression oﬂi is in general complex, but it obtains simpler forms in the cases
n

n =0, n, =1, n,=1/2. Theexpressions are respectively

dR, ‘ - S8, - é?zz
S
((11_2) n=12 E aZZ)(;l/l—+a22 M (2.60)
dR) é12a21 -l-ail
dn a,
with A=43,3, €3, 3a,)°. Hence, the signs o%ﬁ‘nlzo, ‘ _,, and R" )
n
correspond respectively to the signs &fa,,- &,, &,- &,and&’,- 3,3,
dR, _
To prove that R, has at most 1 extremum, \sBow thata =0 hasat mostl

solution ton, I [0,1]. Rewriting Ccii_i) =0 gives

(&,- B, VD =[3,8(2 4n) (ax a)fagnl “an: (261
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Equation(2.61) is solved analytically by taking the square in the LHS and RHS of the
equation. The square operation increases the solution set by 1 since the equation after

taking the square satisfies additionally

(@:- 3 VD A2 4n) (B, aXa(n D “a (262
This impliesthat the solutiorf (2.61) is one of the two unique solutions of the root of a
second order polynomiallhe Fundamental Theorem of Algebra states that a second

order polynomial has 2 roots (possibly complex and with multiplicity 2), hence, the

basic reprodu@n number as a function af hasat mostl unique extreram in

n i [0,1]. QED

5. Case study: mpact of demographcal changeon the severity of a

H1N1 strain outbreak in Hong Kong

5.1 Introduction

In this sectio we illustrate the impact of demographical change on the severity of an
outbreak in the setting of Hong Kong and an H1N1 strain similar to the {2089.
We focus in this numerical study on the qualitative relation ofitye fractionof the
population thais 20 years or oldds projected to increadmetweenthe years 2010 and
2039in Hong Kong,the USA and Japarfsee Figure 1A)The projection ofthe age
composition ofHong Kong is shown in figure 1B. The populatiorc&egorizedn the
age groups 19, 20-59 and 60+.These projections are madavailableby the Hong
Kong Census and Statistics Departmehe United States Census Bureand The

National Institute of Population and Social Security Reseafrdaparrespectively
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Figure 1. Evidence of aging in Hong Kong,the USA and Japan

Projections of the age demography in Hong Kahg,USA and Japan of the ped 20102039. Figure
1A shows a relativéncrease othe number oindividuals of age 20+ in all three countries. Figure 1B
shows the changef agecompositionin Hong Kong.

5.2 Impact of demographical changeon the final size and normalized total

mortality of a H1N1 virus outbreak in Hong Kong

In the following weadjust the definition of a contact patteiq, as deined in
section 2by requiring additionally that a contact pattern must satisfy the reciprocal
condition. We definghe normalized total mortality of an epidemic by the fraction of
individuals of the total population thdie killed due to infectionIn this case study, we
considera H1IN1 strainsimilar to the HLINX2009 (in the sense adimilar transmission
dynamics)in the population of Hong Kongndstudythe final sizeand normalized total
mortality for different age distributiondVe usethe estimated ase fatality ratios peage
group (Dawood et al.,, 2012)lefined as the average number of individuals that die
given an infectionto show the relatiometween age distribution and normalized total

mortality.

We use he estimation methods inNishiura etal., 2010 to estimatthe next
generation matrixof the HIN22009 virus in a model with 2 or 3 age groups
Individuals in the Z2ype model are categorizeak 0-19 yearsold or 20+ yearsold,
which we label as group 1 and Zespectively Individuals in the3-type model are

categorized in the groupsl®, 2059 and 60+and arelabelledby group 1,2 and 3
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respectivelyWe illustrate theestimation method of the next generation matrix for the 2
type model only, since the methadsimilar for the3-type model First we introduce

some concepts to estimate the next generation matrix.

Let the relative susceptibilitgf group2 with respect to group the denoted by

51 R,,, i.e., given the samaumber ofcontacts withinfectious individuals inthe

population at any timehe rateat whichatype 2susceptiblendividual getsinfected is

a factorS, lower thana type 1 susceptible individualve definethe dummy variable

Iij 2.0,i,jlI {1,...m}, which is interpretedisthe average number of contacts per ddy
agroupj individual with groupi individuals. The interpretatiorof I§j is the same ak, ,

i,jl {L,...m}, but it doesnot necessarily satisfy the reciprocal condition in general and

is, hence, not a contact pattein.this studywe will use(IZij )i j o O Obtaina relative
relation between contact rateSindividuals ofdifferent groupsTherefore, we i@ free
to multiply all elements of(l%i)l¢i j e Dy the same scalaMossong et al., 2008,

estimated theaverage number of contacts of individuals in #ge groups-4, 5
9,..,6569, 70+ with individuals ofdifferent age groupsin 8 Europ&n countriesWe
adjusted theestimatedaverage number afontacs per dayof Mossong et al., 200&f
the population of theUK to estimatethe average number ofontacs per dayof
different individualsof different age groups inHong Kong We have caldated the
number ofcontacs per day of individuals in the groupsl® and 20+with individuals
of the group®-4, 59,..., 70+by summing over thestimatednumber of contacts per
dayof individuals in the groups-9, 59, ..., 1519 and 2e24,...,70+with the group$-4,
5-9,..., 70+respectively.The number ofcontacs per dayof an individual in the age
group 319 and 20+with the age groups, 4, 59,..., 70+were then summedver the
age groups @, 59, ..., 1519 and 2e4,...,70+with weights basean the fractional
size of theagegroups of Hong Kong in 200% obtain thenumber of contacts per day

of individuals in the group6-19 and 20+with individuals of the groups-09 and 20+
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To obtain the estimate fdK =(k;),; o in Hong Kang in 2009 this 23 2 matrix is

adjusted such that theumber of contacts per day between th&90and 20+ group
satisfes the reciprocal conditionander the condition thahe sum of theéotal number

of contactsof individuals of ge 019 with group 20+ and the total number of contacts

of individuals of age 20+ with group-I® is constant(see Appendix A)Define § =1

and chooses, =0.18€ which isin agreement with the estimatiogs&zenin Nishiura et

al., 2010 (§k ). ;  Is @ matrix which indicates the relative infectiousness and does not
state the actual infectiousnesstweenthe agegroups in contrast to(p, k )4 ; o (s€€
section 2for notatior). As menticmed earlierwe are free to multiply(§k ), ; o by @
constant¢ >0 such that the dominant eigenvalaé (§k ), ; o is exacly 1. Define

s = for il {1,2}. Wemodel the next generation matrix as follows

X, =R sk, (2.63)
1¢i,j ¢2.Recall thatX;,i,] [ {,2}, is thei,jth element of the next generation
matrix andR, is the basic reproduction nuntb&/e useR, =1.22 which is in
agreenent with the estimated basic reproduction number of the FHAMND virusas
givenin Nishiura et al., 2016f Japan A detailed description of the estimation method

is given in AppendiA. The estimated next generation matrix is

alr.17 0.25

. 2.64
g%.zo 0.23 (2649

The difference between thel® and 20+ group is largin theearliest phasef
the outbreak aninfectiousindividual between 0 and 19 yeald infectson averagd.17
individuals of their own group beforecovery. This differs greatly frommdividuals of

age 20 or older, thepfect0.23 individuals of the same age group before regovidris
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differenceis explained by the lowelative susceptibilittamongindividuals in the 20+

groupin comparison wittyounger individuals.

As shown in section 2 and 3, the next generation matrix depends on the
composition and the size of the populatiovhere the qualitative dependeyncis
determinedby the choice of contact patteid. We show numerical resultsf the
relation between final size and normalized total mortality in models thighsem
domination and density dep#ent contact pattern. Our opinion is that these contact
patterns can be well interpreted and represent two extremes of the contact dynamics
frequency and density dependent contact patteshsa human population (semi

domination contact pattern represangf 6 f r e g u e n ¢ In ordee fpestmdte nc y 6 ) .
(&) e (6w e @nd (@) ; o fromthe estimated next generation ma(@64), we

assumd that 20% of the population in Hong Kong exists of individuals in tH& 0

group in 2009 (n,, n,) =(0.2,0.8), which is in agreement with the data from Hheng

Kong Census and Statistics Departméiite values(a;), ; ¢, (G,  and (a,.]?j )

are estimatedoy equating the analytical expression of the next generation matax in

model with the semdomination and density dependent contact patt&mnand X, ,

with the estimatedext generation matri2.64). We assume a fixed population sikk.

The expressiorof theestimatechext generation maiiin the case of a semdbmination

contact pattern where group 1 dominates group,2=0), group 2 dominates group 1

(c, =1) and exactlyn between ¢, =1/2) is respectively (segection 2 for notation
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_® 6
Xolos "gp 125 023 @ (269
¢ N +
2117 0252
X, = ERRLAY
dlc, = .
T Bos 2 g2z |
¢ ntn -

The expression of the next generation matrix with a density dependent contact pattern is

_45.8% 1.2% (266

X, = .
‘%025, 029,

The final size equations given {8.4) aresolvednumericallyin Wolfram Mathematica

version 7 for differentagecompositiongrecall n, =1 -n).
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Figure 2. Relation of final size andnormalized total mortality with age distribution

A 0.2 fractionexisting of individuals in the @19 groupof the Hong Kongpopulationin 2009is chosen.

The black and dashed line is the curve related to the model with density dependent contact pattern. The
green, blue and purple solid line is the curve related to the model withdsemmation contact pattern

with C,, =0 (growp 1 dominates group 2)¢, =1/2 and C, =1 (group 2 dominates group 1)

respectivelyand C,; = C4 4/ 2 for all three casedigure 2A shows the development of fhactional

final sizeof the 019 group Figure 2B shows thiactionalfinal sizeof the 20+ groupFigure ZC shows
the changeof the normalized totalfinal size.Figure 2D shows thenormalizedtotal mortality. Case
fatality ratios of 0.005% and 0.09% for thel® and 20+ group has been used.

Figure 2A and 2B illustrate the relation between freetional final sizes,
(1- s,) and(1- s,), and the ageomposition (fixed population sizdjigure 2A and 2B

suggest that a change in composition in a moddl density dependent contact pattern

has a higher impact on the fraction final sizes thaa model withsemidomination

contact pattern (for akt, i [0,1]). In the case of the serdbmination we have revealed

in section 3(Theorem5 and 6) that the fractional final size cagither increase or

54



decreasadue to a change in compositiaepending on whether group 1 dominates
group 2or the other way aroundrigure 2A and 2B agree with the theoretical results.

Numerical experiments suggest tatves related to a sefdomination contact pattern

with ¢, i (0,1), as in Figure 2are in between the curves that relatecto=0 and

C, =1 (between the green and purple lineShe curve comsponding toc,=1/2

supports this suggestion. Figure 2C illustrates the relation between the normalized total

R(=)

final size,T, and composition (fixed population size). We see thdten the

fraction of 019 indviduals decreaseshe normalized total finallecreasesHence, if
ageing corresponds to a relative decrease of the size of group 1 (and constant population
size), thenn an agedHong Kongpopulationthe cumulative number of infections due to

the H1N1 stain in 2009would be smaller

We haveestimated thenormalized totaimortality by usingthe estimateatase
fatality ratiospergroupas given in Dawood et al., 201%ormalizedtotal mortality per
group is henceestimatedby multiplying the normalizedfinal sizeper groupby the
correspondingase fatality ratioThe normalizedotal mortality of the total population
is the sum of the normalized mortality per groRecallthat the modetonsidered in
this study neglects deatlover the course of the epidé, hence, this method of
calculation isonly approximately correcbut, since the case fatality ratio is in general
low the difference is expected to be sm@lse fatality ratios of 0.005% and 0.09% are
usedfor individuals in the @19 and 20+ groupespectively(Dawood et al., 2012). In
figure 2D, the relation betweenormalized totamortality and ageomposition (fixed
population size)s shown If the fraction of the €9 group was lower than in 2009, the

normalized mortality would be lower if thadensity dependent or seitidmination with

c, =0 andc, =1/2 contact pattern is an appropriate contact pattern for the Hong

Kong population.But, if the semidomination contact pattern with, =1 is more

appropriate for the Hong Kong population, then the normalized total mortality would
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increase.We concludethat a lower normalized total final size due to a different
composition of the populatiodoes not implyymmediatelya decreasen public health

burden measured mormalizedotal mortality.

In the same manner, as in théype model, an estimation can be made of the
next generation matrix for the H1NArus in 2009in Hong Kong in a dype model.

Again the basic reproduction number is b0 to be 1.22. Relative susceptibility of

group2 and 3 with respect to group laBosento be S, =0.30 and §, =0.07 as given

in Nishiura et al., 2010rheresultingnext generation matrix the 3-type modelis

41.13 0.28 0.12
29.28 0.31 0.20. (2.67)
.01 0.01 0.02

The extra subdivision of groups increases the number of freenpters by 1In

the composition of the populatiofror examplejn contrary to the 2ype model,an

3
increase ofn, does not imply a decrease f by the constrainfy n =1. Thereforewe
i=1

assume additionallthat theratio of the size of the 269 and thesize of the60+ group

is constant1:0.28, which agrees with the data thle Hong Kongpopulationin 2009.In

the semidomination contact pattern we choose=c, =,, ¥ 2. By equating the

expressions of the next generation matricea modelwith the semidomination and

density dependent contact pattésee section 2 for expressiongth (2.67) we obtain

estimations of(&]), ; ¢ and (& )y ; &-

Figure 3 shows theormalized totafinal size in the2-type and 3-type model.
The major heterogeneity in the population in terms of transmissidoetween the
younger (<19) and older individua{see the estimated next generation matyicEse
contact rates of individuals in the -B9 and 60+groupsare different,but sincethe
transmissiorrates are relatively lowthe additional subdivisiodoes not hasa major

impact, see figure 3.
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Figure 3. Comparison of 2 and 3-type model
The normalized total final sizas a function of the fractional size of groul®is showrfor a 2 (solid
line) and 3type (dashed linejnodel The blue line is theurve related to the model with sedomination

contact patternwith C,, =1/2 and the black line is the curve related to the model with density

dependent contact patterfihe difference betweethe curves related tdhe 2 and 3type malel are
almost negligible.

5.3 Impact of birth restriction on the expected absolute final sizeof a first new
H1IN1 strain introduction in Hong Kong after the H1IN1-2009 pandemicin the
period 20102039

For a pathogen to cause an outbreak in a populatios,necessary that the

i nfectiousness of t he i nifeeao buitbealkcanoaturs e as e
and only if R, >1 (Diekmann, Heesterbeek, Metz, 1990he infectiousnessof a
pathogendependsot onlyon the transiission parametersut also on thenumber of
susceptible individualsn the population For example, n 2009, the HIN1 virus

decreased the size of the susceptible group in Hong Konguch thatthe virus lost

the capability to spread furtherherefore,when assuming lifelong immunitgfter
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infection and unchanged contact dynamics of the populatéon outbrealkdue to a
H1N1 strainsimilar tothe H1IN22009can onlyoccur when the size of the susceptible
grouphasincreasd sufficiently. Assuminglifelong immunity, we studiedthe expected
absolute final size for a first new introduction of a HIN1 stedter the H1IN12009

pandemian Hong Kong.

Based on the composition atitk size of the population of Hong Kong in 2009
and the projected birth and deatter in the period 201R039 provided by the Hong
Kong Census and Statistics Departmerg, lvave made a projection of the number of
susceptible individuals in the groupsl9, 2059 and 60+ in Hong Kong. Thes
projectionscombined with the estimatéchnsmssionvaluesof the H1IN12009 virusin
the first part of sectiod, are useds input forthe final size equationsProjections of
theabsolutefinal size givernan introduction of 8H1N1 strainsimilar to the HLN12009
in Hong Kongin the period 2012039 are then calculated by solving the final size

equations numerically.

For this study, w use the -3ype modelasdescribed in sectioh.2. We assume
the following 1)there isno migration in theperiod 20162039in Hong Kong 2) natural
deaths occuonly in the 60+ groumand the deathrate among individualdn the 60+
group is independent of the H1NA009 infection history, 3) all individuals are
susceptiblebefore the 2009 outbreakxcept forindividuals ofthe 60+ group, 70%f
these individuals arsusceptible (Hancock et al., 2009%) the newy introducedH1N1

strainhas exactly the same transmissi@iues as the H1N2009 strain in the sense
that (&), ¢ and (a,.;’)l¢i ;j ¢ @re equal to the situation in 2Q08nd, 5)susceptite
individualsareassumed to be distributed uniformly oviee age group$-4, 59, ..., 80
84, 85+ (i.e. 100 susceptible individualsn age group @8 implies 20 susceptible

individualsof age 2).The 30% immunity of individuals in the 60+ groupassumption

3) iscaused byrevious exposure to the H1Nfrainin the periodl9181956.
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Data of thecomposition and the size of the populatior2009and theprojected
birth and death ratef the period 201{2039in Hong Kong isprovided bythe Hong
Kong Census and Statistics Departmdiite data of the age distribution of Hong Kong
in 2009 is given inheagegroups 64, 59, ..., 8084, 85+. To obtaim projectechumber
of susceptible individuals in the age group&9) 2059 and 60+of all yeas in the
period 20162039, we project the number of susceptible individuals pear classi.e.,

the ageclasses of the projectianust be 0, 1, 2, ..., 59, 60+. Using assumptioarf)

the transmissionaluesas estimated in the first part of sect®(a).s; ¢r (& ) | o)»

we calculate the number of susceptible individuals in each age gréupd ..., 8084,

85+ after the HIN12009 pandemic in Hong Kong (using the final size equatids)
assumption 5), it is strangforward to obtain the age distribution of susceptible
individuals in 2009 after thl1N1-2009pandemidn the age classes 0, 1, 2, ..., 59, .60+
Each yearsusceptiblendividualsbecome 1 year older and shifts to the age group that
is 1 ageclasshigher. In the years 20120039, the number of susceptible individuals in
age group 0, is equal to the projected birth rate of that gaassumption 2), deaths
occur only in the 60+ group and the death rate among susceptible individuals is
calculated by multilying the projected death rate by the fraction of susceptible
individuals in the 60+ group. With this method, we have obtained a projection of the
number of susceptible individuals in the groupkd) 2659 and 60+ in the period 2010
2039. Alternatively, we considezd the situation of lowering the birth rageich that it
equas the projecteddeath rate in Hong Kong (birth rate is projected to be higher than
death rate by theHong Kong Census and Statistics Departimenlote that the
population size remainsonstant in this alternative situatiobhis fictive situation can
occur when the government accepts a birth restrictive law. An example of birth
restriction, is the onehild policy in People's Republic of Chinghich was introduced

in 1978.
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Figure 4. Absolute final size of an outbreak caused bw first new introduction of a H1N1 strain
similar to the HIN1-2009in Hong Kong after the H1N1-2009 pandemic

The black and dashed line is the curve related to the model with density dependent contact pattern.
green, blue and purple solid line is the curve related to the model withdsemmation contact pattern

with ¢, =0 (group 1 dominates group 2§, =1/2 and c, =1 (group 2 dominates group)

respectivelyand C,; = C 5 4/ 2 for all three casesFigure 4Aillustrates the base case in which birth

and death rates are as projected by the Hong Kong Census and Statistics DegéigunedB illustrates

the alternative case in whidsirth rate is lowered tequalthe death rate. The figure should be read as
follows. If in year 202516 years after the HIN2009 pandemica first newintroduction occurs of a
H1N1 strainsimilar to the HIN42009in Hong Kong, given no epidemics or intentions in the past
which causes immunity, the average outbreak siZ2@0 and 700 in a model with the density dependent
and semidomination (with group 1 a royal group) contact pattern respeciivehe base cas€learly, a
reduction of birth rateextends the average time befame introduction of a HIN1 strain similar to the
H1N1-2009 can cause an outbreak.

Figure 4 shows theabsolutefinal size in Hong Kong for &first time
introduction ofa H1N1 strairsimilar to the HLIN12009in the years 2012039 given
the outbreak in 2009. Ibhoth the model with semidomination and density dependent
contact patternt is observed thatmaeintroduction of a similar HLN1 strain to the HI:N1
2009in Hong Kong will not lead to an outbreak until Z)Due to the P09 outbreak,
the fraction of susceptible individuals of age 0 to 19 was relatively low in 2@&9the
pandemic Each year after 2009 until 2028e numbenf susceptible individuals of age
19becoming20is significant lower than the new bofsuscepble) individuals of age 0
The net difference in susceptible individuals has therefore a steaeépsingcharacter

in the period until 2029. In 2030, all individuals who were in tHQ@roup during the
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2009 outbreak are in the 20+ group and, hence, nét differencein susceptible
individuals in the @19 group between year 2029 and 2030 is lowban before
Therefore, v expect, since theI® group is the major determinant in the spread of the
H1N1-2009 virus, aqualitatively different slope of th@bsolute final sizésee Figured).

After the 19 years, the absolute final size changes, mainly, due to changes in the size of
the 019 group.The number of susceptible individuals before the first new H1N1
outbreak after 2009 is exactly the same in a rhedth the semidomination and
density dependent contact pattern. The difference between the curves related to the
semtdomination and density dependent contact pattern can therefore be fully

contributed to the number of contaper unit of time,K . Recall thatK depends on the

group sizesN,, N, and N, and not on the number of susceptible individuals in each
group

In the alterntive situation, where birth rate is lowered to edhaldeath ratea

first new introduction of a HIN1 strairsimilar to the H1IN12009 after the 2009
pandemicdoes not lead to a new outbreaktil 2019 and2033in a model with the
semtdomination anddensty dependent contact patteas seen in figurdB. Figure4
shows that restrictions on birth and migration rate can delay the hafame an
introduction of a H1N1 strain similar to the H1{2009 can cause an outbreak in Hong
Kong and if an outbreak ocaurthen the outbreak size is likely to be smaller.
Comparing FigurelA and4B we find that the effect of birth restriction on the absolute
final sizes in the period 2012039 has a higher impact in the model with the density

dependent than in the sedomiration contact pattern.

6. Discussion

We have shown in this paper that the effect of demographical changes on the severity of
an outbreak depends both on the contact pattern of the population and the measure of
severity (final size, basic reproduction nuenkand mortality). In a sersiomination

contact pattern where each young individual has a fixed amount of contacts (royal
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group) we have showrheoretically that a decrease of the number of young individuals

in the population decreasehe fractioal find size of each age group and the basic

reproduction number fanyinfectious diseaswith a short infectious period arfg, >1.

The case study suggests that ageing, if defined as a fractional increase of older
individuals (with fixedpopulation size), will decrease the absolute final size in both a
model with the density dependent and the s@omnination contact pattern. On the other
hand, depending on the choice of contact pattdra, normalized totaimortality
increases or decreassise to ageing. The case study shows that birth restriction or other
forms of restrictions that prevents a rapid growth of the number of young individuals
(e.g. migration restriction for young individualsan prolong the expected time needed
beforea newintroduction of a H1IN1 strain similao the H1IN12009 can cause an

outbreak in Hong Kong.

The message for policy makers from this study is that ageing and other types of
demograpltal changecaninfluencethe severity ofuture infectious disease outbksa
When faced with a comparable outbreak in the past, policy makers should consider the
demographial changes that have occurred and change intervention strategies
accordingly. Although ageingan implya lower severity measured in final size, still an

increase of public health burden is poss{ske sectioh).

This study has been conducted in the framework of a deterministic SIR multi
type model. It is unclear whether and how the results change in a stochastic model
where the concept of final size hasstochastic definition. The SIR model is a rough
simplification of the reality. Although the final size abdsic reproduction numbé¥ia
and Earn, 2006) are in most situatidganost)not sensitive textensionsof the SIR
model, e.g. multistage of infgons, it is uncleawhether a model which incorporates
high mortality ratenfectious disease as SARSwill havethe sameresults.This holds

especiallywhendiseasenduced deaths impact the contact structure.
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The numericalstudy on theexpected outlmak sizeof a first new HIN1
epidemic in Hong Kong based on many unrealistic assumptions as no migiatitie
populationand no deaths in individuals younger thanygars Although many key
factors of ageing still holds in the projectidhe resultsnustthereforenot be used ama
actual forecast. Instead ishould be used aan exampleto graspan idea of the
qualitativerelation betweethe size othe susceptible groupshe composition and size

of the population, and the final absolute finaksiz

This study, both the theoretical as the numerical part, has been conducted in the
spirit of qualitative impact of demographical chamgethe severity of an outbreak. To
understand the quantitative impact, it is important to conduct empirical stodiesl t
the best contact pattern to the population of interest. In order to study, for example, the

validity of a model with the serdomination contact pattern, one can repeat a study as

Mossong et al., 2008, and try to find fitting values Q). ; o -

We revealedthat contactpatterrs and thetransmission ratesf the pathogen
determine thejuality of the effect of demographal change orthe final size the basic
reproduction numbeaind mortality As effects of demographical changmachange the
severity of an epidemic significantly, policy makers should consider demographical

change as ageing in future strategies of outbreak control.
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Appendix

A. Estimation of the next generation matrix in the 2type model in Hong Kong

The estimated averageimber ofcontacs per dayof an individual of anygroupwith
any groupin the UK is extractg from Mossong et al.,, 200&eethe last page of this

section of theppendix In the following we use the same notation as in the main text.

Step 1 we sum over theaumber ofcontacs per day that individuals with agel® and

20+ have with the other gups.The resulting matrix iableAl.

Age group of participant

Age of contact 0-19 20+
0-4 3.22 4.30
5-9 9.41 6.46
10-14 10.16 5.28
15-19 8.41 7.61
20-24 1.90 9.82
25-29 2.63 9.88
30-34 3.16 9.75
35-39 4.35 10.85
40-44 3.63 10.39
45-49 2.17 9.64
50-54 1.52 7.68
55-59 1.10 7.21
60-64 0.94 5.60
65-69 0.52 3.35
70+ 0.55 6.15

Table Al. Data from Mossong et al.,, 2008 of the average number of contagier day of an
individual from the age group0-19 or 20+ group with individuals of any age group in the UK.
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Step 2:we calculae the fractional weights of the age classes with respect to the age

groups 019 and 20+ in Hong Konigp 2009.The results argiven inTableA2.

Group sizes Hong Kong

Age group [Group size (x1000)

0-19 1308.70

20+ 5695.00

Weights relative to |Weights relative to

Age group |Group size (x1000) |age group 0-19 age group 20+

0-4 229.20 0.18 N.A.
59 265.30 0.20 N.A.
10-14 378.90 0.29 N.A.
15-19 435.30 0.33 N.A.
20-24 458.50 N.A. 0.08
25-29 536.70 N.A. 0.09
30-34 539.70 N.A. 0.09
35-39 574.80 N.A. 0.10
40-44 599.80 N.A. 0.11
45-49 673.20 N.A. 0.12
50-54 609.20 N.A. 0.11
55-59 476.20 N.A. 0.08
60-64 333.40 N.A. 0.06
65-69 222.10 N.A. 0.04
70+ 671.40 N.A. 0.12
Total 7003.70 1.00 1.00

Table A2. Group sizes of Hong Kongin 2009 as given by the Hong Kong Census and Statistics
Department and the fractional weights of the age groups within the age group D9 and 20+.

Step 3:we sum weighed by the size of the age classes, abemumber ofcontacs
per day that an individual of typel® (20+) has with the groupsl® and 20+In order
to be consistat in the interpretation of matrices with the main text, we take the

transpose of this matrix and obtdiable A3.

0-19 20+
0-19 8.21 2.17
20+ 6.12 8.58

Table A3. Estimated number of contacts per day of an individual from the age group-@9 or 20+

with individuals from the age group 0-19 or 20+ before reciprocity adjustment

The table should be read as follows. An individual of age between 0 and 19 years old has on average 6.12
contacts per day with individuals older than 19.
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Table A3should be read as follows: an individual in the grouf®®as on average 6.12

contactswith individuals ofthe 20+ groupNote that this matrix is not equal to

(K )i ; @ Since it does not satisfy the reciprocity conditions.

Step 4:let N, and N, denote the group sizes of groug0i19 group)and 2(20+

group) The reciprocity condition states that the total contacts of group 1 with group 2

should be equal to the total contacts of group 2 with group 1, ks, = k ,N,. We

assumehat the true total number of contacts of group 1 with group 2 is equal to the
average number of contacts between group 1 with 2 and 2 with 1restiigngmatrix

of Step 3. It is easy to check thatly k; = 6'1Z\I12+N 21N, ,1¢i,j ¢2, satisfy the

J

above 2 conditiondNote that the group sizes are known froable A2 Hence, we

have the following estimation dk; )., ; o

0-19 20+
0-19 8.21 1.79
20+ 7.79 8.58

Table A4. Estimated number of contacts per day of an individual from the age group-Q9 a 20+

with individuals from the age group 0-19 or 20+ after reciprocity adjustment.

The table should be read as follows. An individual of age between 0 and 19 years old has on average 7.79
contacts per day with individuals older than 19.

Step S recallthat s '=1 and s,'=0.18E Hence(s 'k ),,; ¢ isgiven by Table AS.

0-19 20+
0-19 8.21 1.79
20+ 1.44 1.59

Table A5. Estimation of (§ 'K )4 | o-

The dominant eigenvalue ¢§ 'k ),;; o is86.
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Step 6:the estmate of the next generation matrix is now obtained by dividiey
resulting matrix in Step by the dominant eigenvalu&6 and multiplying by the basic

reproduction number 1.22.
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Table A6. Data from Mossong et al., 2008 of the average number of cowkta per day of an

individual from any age group with individuals any age group in the UK.
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Abstract

Protectingelderly froman infectious diseasafection is important due to tHagh case
fatality ratio amang elderly.lt is predicted that the fraction elderly will increasanost
developed countriesvhich can lead to amcreaseof the number ofequiredlong-term
care facilities for the eldery the future Hence,in the future protection ofindividuals

in long-term care facilities for the elderly from infectious diseasésction becoms
evenmore importantin order to reduceghe severityof an outbreakof an infectious
disease outbreakPrevious studies contradiokach other on howeffective of
interventions targeted at residentsand health care workerare in reducing the
probability of a major outbreakn a long-term carefacility for the elderly. We used a
stochastic simulation model and an analytiwaldelto clarify this issuelnterventions
can argethealth care workers afat residens andmay reduce theusceptibilityand/or
infectiousnes®f the individualsIn this studywe define the level of an intervention of
any type by the reduction of susceptibility and/or infectiousness of the targeted
individual in percent. We calhn interventionof any typeweak if the level of the
intervention islessthan 40%in comparison withthe situation with nanterventions
This study shows that weak interventidiasgetedat health care workersr visitors
cannot reduce the probabiligf a major outbreakn the facility when the infectious
disease has a basic reproduction number higher than 1.6 igettezal population.
Theseinterventionshardly influencethe averageoutbreak sizegyiven a major outbreak
in the facility, in contrast to residents of the facilitfWeak interventions aimed at
residents can be effective even when the basic reproduction number exceatie 1,6.
showed thaintervention level anthe effectivenes®f interventions in reducing treze
and probability of a major outbreak in the lotgrm care facility for the elderlgire in
general not linearly relate@ur studyalsorevealsthat interventions must start early in
the epidemicand should not be stopped when the peak of the forcdeation has been

reached.
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1. Introduction

Novel infectious diseases can lead to high morbidity and mortaigxperienced in the
H1N1-2009 pandemicAn global study shoedthat he case fatalityatio of the HIN®
2009 virus amonglderly was significaitly highercompared to other age grou(s.
Interventiondike frequent hand washing, wearing facemask;ganedemic vaccination,
prophylactic antiviral therapy and isolation of health care workers and residagts

mitigate the epidemic in the lorstgrmcare facility for the elderly

In the beginning of @ infectious disease outbrealboth economically
developed and developing countries need to rely onphanmaceutical interventions
(NPIs) to control thespeed and the size of theutbreak. Reasons arthat
pharmaceutical based interventions may not exist, are not properly distributed or it is
not yet known whether thepidemicis severe enough to justify pharmaceutical based

interventions.

Previous simulation studies did not provide a clear overvietveo&ffectiveness
of interventiors targeted at health care workers and residenmteducing theprobability
andthesizeof a majoroutbreakin a longterm care facilityfor the elderly Interventions
targeted athealth care workers and residents whielduces susceptibility (2) and
infectiousness (3) has been studied for a limited range of basic reproduction anchber
combination of intervention type§.he basic reproduction number defined as the
averagenumber ofnew infections caused by an infectindividualin its infective
periodat the earliest phase of the outbrddlfio et al., 2008 (3), identified-entryin
the facility of health care workers as the critical fadgtocausingan outbreak in a long
term care facility. Van den Dool et a&2008 (2) showed a linear relation between health
care worker vaccine uptake and average attack daténed as the fraction residents
who have experienced the infectianthe end of the epidemi&dditionally, Nufio et al.,
revealed that socially acceptaiNPIs for health care workers and visitors can reduce
the probabilityof a major outbreakn a longterm care facility substantiallyAlso Van

den Dool et al., 2008, revealed a positive relation between probatiilisy major
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outbreakand pharmaceuticahterventions on health care worketsit, for the same
reduction in susceptibility and infectiousness of health care woiKer® et al., 2008
predicted aignificanty higher effectiveness dheinterventions than Van den Dool et

al., 2008.

For a maleratevalue of thebasic reproduction numhet.4, approximatelyfifty
percent of thgopulationwill become infectedn a standardleterministicSIR model
when all individuals are susceptible before the outbfsek DiekmannHeesterbeek,
Britton 2013 (9), for adetailed discussionf the deterministicSIR model) As health
care workers are a substantial part of their dayslwif§y they also have a substantial
chance to acquire the pathogehen offduty, and, if so, theynave a chance tenterthe
facility when being infectious Because most lorgrm care facilities have more than
50 health care workers, it is likely thate of the health care workesdll introducethe
pathogeninto the facility by one of the health care workers during the epidénnic
interventions are applie®ince for high basic reproduction numbarsingleinfectous
individual in the facility already has a substantial chance to cansgaoutbreakwe
expect thathe number of infectious health care workers who enteratibty must be
greatly reduced before the probability af major outbreak in the facility reduces
substantiallyAssuming this reasoning betrue and completesocially acceptablblPls
should havalmostno effect on the probabilitgf a major outbreakn the facilitywhen

the basic reproduction number is high

The primary aim of this paper is to clarify the discrepancy between the results
in the paper of Nufio et al., Van den Dool et al., andjihenreasoning. Wereated a
stochastic simulation modednd provide two analyticalapproximations for the
probability of that no major outbreakoccursin the facility. Theseapproximationdhave

the advantagthatthey require hardly any computation time
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2. Methods

2.1. Long-term care facility for the elderly and community

Our model consists of onecommunity anda single longerm care facilityfor the
elderly. In the forthcominga long-term care facilityshould be read aslang-term care
facility for the elderly Residing individualsn the community areatled community
members and residing individuals in the lgegnm care facility are called residenss.
third group, which completes the categorization of the population, are the health care
workers. Health care workeli&e nurses and physiciamdternatebetweenlocatiors. If

a health care worker is in the lotgrm care facility, we call the health care worker on
shift and otherwise offshift. Visitors are neglected in this model, but, as explained in
the discussion,a visitor has a similar role in thspread of the diseass a health care
worker. The community should bimterpretedas the group of all citizens of a
country or cityexcluding individuals o& singlelong-term care facility The size of the
community is assumed to be 7 millievhich is in agreement with the size of Hong
Kong. Our long-term care facility has 15@esidentialbedswhich are100% occuped
duringthe period of the epidemitt is assumed th&0 health care workessork for the
long-term care facility. Health care workers argidied in 2 groups of 30; wheane
group is onduty, the other is offluty. These goups alternateevery 12 hours.lIt is
assumed that individuals in the commumitix randomly with other individuals of the
community and individuals of the longterm care faility mix randomly with other
individuals of the longerm care facilityHence health care workers mix 12 hours with

community members and 12 hours with residents in 1 day.
2.2. Stages of infection and disease properties

We assume thaindividuals canbe in 3 disease stages: susceptible, infectious and
removed. An individual is susceptible when he/she has never been infected by the
disease. An individual is infectious when he/she has acquired the disease and is

infectious towards others. An individuad called removed when the individual has
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recovered and is no longer infectioltds assumed that recovered individuals cannot go
to the susceptible disease stage adaititerature, this model is called the SIR model.

Note that this model neglects agyiomatic individuals and diseaseluced deaths.

In this study, we consider a disease with properties similar to the influenza
virus. The duration of the infectious period of an individual cisosen to be
exponentially distributed with mean 2.8-% The basic reproduction number of

influenza is assumed tie in the rangé.2to 2.2 (68).

2.3 Deterministic and stochasticsimulation model

The disease stage of community members and, hencirdeeof infection, FOI( the
averagaate at which a susctiple individuals becomes infectious) in the community is
modelled by a deterministic SIR modelt is assumd that the FOI of susceptible
community memberdoes not change due tite alternatindocationsof the health care
workers This assumptiors vdid when the relativenumberof health care workers is

negligible smalin comparison tehe number of community members

The transmission paramete#s>0 and a >0, which reflects the rate of

transmission of @ infectious individual to all individuals in the populatiah all
individuals are susceptible and the average rate of recovery respeateagsumed to

be equal in the community and the letegm care facilityNote that thé=Ol in a siteat

any timeis calculated by multiplyingy by the number of infectious individuadd that

time and dividing by the total number of individuals in that site.

The occurrence of infections among residemson-duty health care workeris
moddled stochasticallyThe Poisson rate of new infectioirs the facilityis equal to the
FOI in the longterm care facilitynultiplied by the number of susceptible individuals in
the facility. Note that susceptible esuty health care workers and susceptitdsidents

are infected at the same rai¥e assumehatall health care workers and residents are
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susceptible at the beginning of the outbteaid, hencethe FOI in the facility isequal
to O at the earliest phase of the outbreak. Therefore, an akitioréhe facility can only
occur when anoff-duty infectious health care worker enters the faciliBue to
stochasticextinction an introduction of the infectious diseaseéthealth care worker
neednot lead taa major outbreak in the facilitye.g., lecause thenfectioushealth care

workerdid not infect any individual in the facility befohe/sherecovered

By the random mixing assumption and the negligible number of health care
workers with respect to the number community memberssetthe FOI of off-duty
susceptible health care workers edoahe FOI of community members in a population

without health care workeré. scheme of the model is depicted in Figure 1.

Model scheme
, . Disease
Location progression )
progression
Y
(E )o?nnlu_n:_ty ;
etermimstc 3
»Jr S+I+R
Y
Health care workers 7
l e
Y
Long-term care facility R
Stochastic
N

Figure 1. Schematic of the studied model

A schene of the location (left) and désmse (right) progression. Health care worlas switch location
between community and lortgrm care facility.S |, R, denote respectively the size of the number of
susceptible, infectious and removed individuals in the population.

The basic reproduicin number R,, in thecommunityis defined as the average

number of new infections due to 1 infectious individual given thatc@athmunity
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members arsusceptibleis given byR; :g. It is assumed thatt d&he first occurrence
a

of an infected casé@ime is 0),100 community members are infectious ahdt the
outbreak ends after 1 year of the outbreak (time 3 88 when the incidence rate

(number of new infections per daynong residents and health care veoskis below

10'°. For each parameter combination we performed 300 independent runs of the

simulation model.The analytical model is described in section 2.6. A more detailed
description of the stochastic simulation model and teghes can be found in Appendix

A and B.

2.4 Intervention types
In this study, ve distinguish three types oftarventiongargeted at health care workers

and residentsNe call interventions, which reduce the risk for a susceptible health care

workertoacquire the infectHCsomtiem v#Hh@® and ®sndnu ni t

represents health care workers, community and susceptibility respedixainples of

HCs interventions are: 1) isolation of health care workers befeentering the long

term cardacility, 2) recommendations for health care workers to avoid large gatherings
and public transport, and) voluntary or mandatory prophylactic usageanofiviralsby
health care workers. THE&II ©¢ €0 v @ fotfacity s 6 f
and i for infectiousne$sreduces the infectiousness of infectious health care workers
within the longterm care facility. Examples are 1) the use of facemask, 2) better hand
hygiene,and,3) a reduction of close contact in the facility. The third preéion strategy
considered,an RFi i nt e r v (®nfdr iresiagelts) reduces the infectiousness of
residents. Examples are 1) isolation of infectious residentsis@pf facemasks by
residents and 3)se of antiviraprophylaxis.All interventions are agigd for the whole

period of the epidemic unless stated otherwlisate that interventions can be of more

than 1 type, e.g., the usage of facemask by health care workers and residents over the

whole epidemic is an intervention thfe types HCs, HFi and RFEIThe interventions are

implemented in the model by reducing tR®Il upon health care workers in the
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community, the=Ol in the facilitydue toinfectious onduty health care workers and the
FOI in the facilitydue to residentsespectivelyfor interventiontypesHCs HFi andRFi.
We say that an intervention is of level x% if th@®I as described above is reduced by

x%. An intervention is called weak ithe level is smaller than or equal #®%,

otherwise it iscalleda O st r on g Inthefathconmg e omréi.t e AHCs &HF

i nterventiono for the intervention where

with the same levelWe note that socially and ethically acceptable NPIs are mostly
weak interventions. This corresponds roughly with the cayefiét interventions as
defined in the paper of Nufio et al., 2008/e have not considered explicitly
interventions which reduce the susceptibility ofdaurty health care workersve expect
that the effect is small, since the number ofdoty health care waers is relative small

in comparison with the total number of individuals in the facility..

2.5 Measuresfor severity of aninfectious diseaseutbreak in the facility

The probability density function of tretack rate in the facilitihastypically two peaks,

a peak close to zeravhich represents the probability afminoroutbreak and a bell
shaped peak that corresponds to a major outbhedlkis study, v are interested in two
quantities, the probability of a major outbreak and the aveatigekrate givena major
outbreak We define an outbreak in the lotgrm care facility to be major when the
attack rate exceeds 10% and minor otherwige.define the averagattack rateto be
the meanattack rateof all simulations witha major outbreakHence the averagattack

rateshould be read as the averagack rategiven a major outbreai the facility.

2.6 Analytical model

We alsousean analytical model to understand which parameters critically infludece
probability of amajor outbreak in he facility. We present 2 approximations ¢fie
probability ofa minor outbreak in the facilityincludingonewith an explicit analytical

expression.
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In the analytical model weethotethe level of the inventions HCs, HFi and RFi

by 1- ¢, 1- ¢, and1- c, respectively For example, &Csinterventionwhich reduces

the susceptibility of health care workers382 corresponds witls, =0.7. Assuming a

deterministic SIR modeadf the community and that we can neglect health care workers

in the community, we canefine s___ by the fraction of total susceptible individuals in

com

the community at the end of tlepidemic This fraction can be calculatég solving the

so-called final size equatiors _,=exp[ R, (1 =,,)], with R, the basic reproduction

com

number see, e.g., DiekmanrHeesterbeelBritton, 2013(9).
The probabilitythata health care workewill beinfectedover the cotse of the

L6 R Seom)

epidemic given thahe/she did not get infected in the facility 1- e?” (see
Appendix C for derivation)ln this study we use this quantity as an approximation for
the probability that a health care worker becomes infeetezh oftduty given that no
major outbreak occurs in the facilitywhen no major outbreakas occued in the
facility and assumingthat the number of health care worké&segligible compaed

with the number of residentaeh infectious health care workenfects on average
apprommatelyECZRj residents in the facilityThe basic reproduction number arises in
the expression since approximately all individuals in the facility are susceptible when

: : . 1 .
no major outbreak has occurred in theility. The factorE arises because health care

workers spend approximately half of their infectious period in the facility as they work
in 12 hour shiftsThe multiplication byc, follows directly fromthe definition of aHF:i
intervention. In appendixC3 we show an alternative approximation thie number
infections caused by an infectious health care workers among residents given no major

outbreak in the facility.Let N, . denotethe total number of health care workers. Then,

hcw

1
. '701%(1 'Scom) . . . .
on average, approxmatek;g% N, (1- e2 ) residents become infectious in
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the facility due to health care workers who became infectious in the community. We

approximate the probability of a minoutbreak giverman infectious individual in the

populationby the known formula in a homogeneously mixing populatie%, see
C

e.g., Diekmann Heesterbeek Britton, 2013 (9). Hence, we obtain the following

expression for the probatiliof a minor outbreak:

1
-5aRo(1 Scom)
thw(l' e? )

P(minor outbreaky min(é fj% 1 (2.68)
&R
We call this approximation,Approximation 1L A more detailed description of the
derivation can be found in Appendix C.
In a more precise approximation, which we @gproximation 2 the number
of new infections among residents due to an infectious health care worker is considered
from a stehastic point of view. Unfortunatelyhis model does not provide an explicit
expression for the probability of a minor outbreak, but the computer time needed to
calculate thisprobability is negligible in comparison with the stochastic simulation
model The full derivationthe description andhe comparison otheresults of thawo

approximations is given in Appendix C.

3. Results

3.1 Probability of a minor outbreak in the facility in a stochastic simulation model

and Approximation 1 and 2 compared.

The probability of a minor outbreak in the facility the stochastic simulation model
coincides very well with the results of Aproximation 1 and 2As seen in Figure 2,

Approximation 1 and 2suggest a higher probability of minor outbretidan the

simulaton modelfor R)=1.2. Since forR, small, the average outbreak size in the

facility is typically small, major and minor outbresakn the facility are difficult to

distinguish. Hence, foR, small, the randomly chosen definition of a minor outbreak
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(recall the 10% threshold in section 2) in a stochastic simulation modekpéain the

difference in results with the analytical approximations.

Approximation 1 underestimates the probapildf a minor outbreakin the
facility by 10 to 20 percent.This can bethe result ofthe overestimation of new

infectionsamong residents caused by an infected health care worker given no major

outbreak in the facilitywhich we approximated by, R,/ 2. AlthoughApproximationl

IS quantitatively not always accurate, it provides similar qualitative results as the
simulation results. A®\pproximation1 provides an explicit expressioncan help in
understandinghe qualitative dependenoyf the probability of a minor outbreak in the

facility on the size of the community atite facility, the basic reproduction numbend

the intervention types HCs, HFi and RFpproximation 2 gives foR 2 1.4 very

similar estimates othe minor outbreak probabilitys the simulation modetee Figure
2. In the text to follow we focus ahe simulation resultsWe want to emphasize that all
results on the probability of a minor outbreak in the facibine supported by

Approximationl and 2 as well.

1 .
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Figure 2. Similarity between the probability of a minor outbreak in the facility in a stochastic

simulation model and Approximation 1 and 2 for a HCs intervention.

The probability of a minor outbreak the facilityis plotted against thieasic reproduction numben the

|l egend, 0si mo, Oappr 106 theamgllts 6fdhe ptocha@sdnulaienmadele r es pec
Approximation 1 and\pproximation 2. The numbetefored s i mé , 60 apprdendtdthedavedl oS appr

of theHCsinterventionin %.
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3.2 Probability of a minor outbreak in the facility

A high basic reproduction numbienplies a high probability od major outbreakn the

facility given an infectious individual in the facilityTherefore we expecfor high R,

that HCs interventionswhich reduce the number affectious health care workers
entering the facilityonly have effect in reducing the probability of a major outbreak
when the level is near 100%his reasoning is supportéy our simuléion results, see
Figure 3C3F: when the basic reproduction numliegreater than or equal to 1véeak
HCs interventions will hardly effect the major outbreak probabilitythe facility. Our
study shows, that the effect of interventionsich reduce thesusceptibilityof off-duty
health caravorkers(HCs) and interventionsvhich reduce the infectiousnes$ onrduty
health care workers (HFire nearly the sameWhen both typegshe HCs and HFi
interventions are executed with the same leYEICs&HFi interention) the
effectivenessin reducing the major outbreak probability in the facilitcreases

significantly for all basic reproduction numbensthe rangel.2 to 2.2. In the case of

R, =1.2, an intervention of level 40% of type HCs HiFi reduce the probability of a

minor outbrealkby 40 to 60 perceniThe probability of a minor outbreak the facility

is almosta linear function of thdevel of interventionwhen R =1.2 (see Figure 3A).

However, this linearity brég down as the basic reproduction number increeasss

Figure 3B3F.
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Figure 3. Effectiveness of interventionsin increasing the probability of a minor outbreak in the
facility

The probability of a minor outbreak the facility has been plotted for d#rent values othe basic
reproduction number antypes and leves of interventiors. Diamondsand squaredenoteHCs and HFi
interventiongespectively. Tianglesrepresent the situation where both the HCs and HFi interventions are
applied with the sameVel (HCs&HFi intervention) Crosses denoteFi interventions.

Interventionswhich reduce e infectiousness of resider(RFi interventiony
have a differentharactethan interventionaimed at health care workgitdCs and HFi
interventions) Health @re workers are pivotah triggering a major outbreak in the
facility, but have in contrast to residents minor role in disease transmission in the
facility when a major outbreais occuring Any weakRFi intervention(recall that an

intervention is wak if the level is less than 40%) has nearly no effect on the probability
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