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Abstract We study the evolution of coeval stellar hierarchical triple systems with intermediate mass (initial primary mass
1.0 < m1/M� < 6.5) and relatively wide inner binary systems (a1[1 − e2

1] > 12 AU, where a1 and e1 are the initial inner orbit
semi-major axis and eccentricity respectively). For these triple systems, the inner binary stars do not interact in the absence of
the third star (tertiary). Special attention is paid to the channels in which the tertiary affects the inner binary system through
high-amplitude eccentricity cycles or dynamical instability of the triple system such that potentially a compact object merger is
triggered in the inner binary system. To model hierarchical triple systems, we have developed a new algorithm which couples an
existing rapid binary population synthesis code with a newly written module that computes the secular gravitational three-body
dynamics. With this algorithm, we perform a population synthesis study of triples and we present the main channels. We find that
in ∼ 9% of systems of the computed sample, Kozai cycles with tidal friction (KCTF) are responsible for significantly shrinking
the inner binary orbit to a1 < 12 AU, possibly leading to common-envelope (CE) evolution and/or an inner binary merger. In
∼ 5% of all systems the eccentricity driven by Kozai cycles is high enough for an orbital collision (eccentric merger) and ∼ 10%
of the triple systems become dynamically unstable. In the latter possibility, previous N-body simulations show that in ∼ 10%
of such cases the destabilization eventually leads to a collision. The latter two channels of eccentric mergers and dynamical
instability are unique channels in the evolution of hierarchical triple systems and the associated type of mergers are otherwise
expected to occur only in dense stellar systems. Several channels found in the population synthesis study involve mergers of CO
WDs and therefore potentially lead to type Ia supernovae (SNe Ia). We estimate the expected rate of SNe Ia and compare the
delay time distribution to a binary population synthesis study and observations. We find that the expected triple-induced SNe
Ia rate is one to three orders of magnitude lower than the binary population synthesis rate. The former represents a lower limit,
however, due to fact that only initially wide-orbit inner binary systems are considered in this work. Further study is needed in
which triple systems are included with initially tighter inner orbits.
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Chapter 1
Introduction

From the naked eye, the night sky appears to contain mostly isolated stars. However, detailed measurements, either by
astrometry, spectroscopy or photometry, show that many stars are binaries and that the multiplicity of a non-negligible

fraction of all stellar systems is even higher, i.e. they consist of three or more stars. For solar-like stars in the Hipparcos catalogue,
for example, the observed fractions of single, double, triple and higher-order systems are approximately 54%, 34%, 9% and 3%
respectively (Raghavan et al., 2010). Moreover, stellar multiplicity is believed to increase with stellar mass (e.g. Zinnecker
2008); for example, for massive B stars the triple fraction is believed to be as high as 50% (Remage Evans, 2011). The fact that
systems with multiplicity higher than two are observed with such large frequency implies that these systems are dynamically
stable on long timescales. Despite their relatively high frequency and stability, many aspects of their evolution remain elusive
and unstudied.

The evolution of single stars is reasonably well understood, although uncertainties remain such as convective overshooting
and mass loss in massive stars. By bringing another star into the picture, the evolution of binary systems is made much more
complicated than that of single stars. Yet it appears that such complication is needed to explain a multitude of phenomena which
cannot be explained in terms of single stellar evolution, e.g. stars with peculiar properties such as carbon-enhanced metal poor
stars or more violent phenomena such as cataclysmic variables and transient X-ray sources. By extension, the evolution of triple
systems is even more complicated. For example, to describe the initial state of a triple system which is dynamically stable one
needs at least ten parameters, compared to one parameter for single stars (the mass) and four for binaries (primary mass, mass
ratio, orbital period and eccentricity)1. In this thesis we shall attempt to take on the daunting task of describing the evolution of
such dynamically stable triple systems. In particular, we will focus on those dynamically stable triples which are coeval, i.e. in
which the three stars formed at the same time. The most important aspect will be the interplay between gravitational dynamics
and stellar evolution.

Most multiple systems, including triple systems, are endowed with a hierarchical structure, which implies that the system
is composed of nested binary pairs, each of which is characterized by the masses of the components, the orbital period and the
eccentricity. Such systems with hierarchical structure are almost invariably dynamically stable on long time scales, i.e. over
times scales much longer than the orbital periods of any binary pair. Non-hierarchical multiple systems2 exist but are rare, as
such systems are not dynamically stable and are thus likely to be disrupted on dynamical timescales. In particular hierarchical
triple systems are well-described in terms of two perturbed Keplerian orbits, the “inner binary” and the “outer binary” orbits.
The outer binary orbit consists of a single star (the tertiary) and the inner binary, which is to be interpreted as a point mass at
the position of the center of mass of the inner binary system with a mass equal to the total inner binary mass. See Fig. 1.1
for a schematic depiction of a hierarchical triple system. We will use the following nomenclature throughout this thesis. The
inner binary component masses are denoted by m1 and m2 and the mass of the tertiary is denoted by m3. The orbital periods,
semi-major axes, eccentricities, arguments of periastron and longitudes of the ascending nodes are denoted by P j, a j, e j, g j and
h j respectively for the inner ( j = 1) and outer ( j = 2) orbits. The mutual inclination angle between the inner and outer binary
orbits, itot, is defined as the angle between the orbital angular momentum vectors of the inner and outer binary orbits. With these
coordinates, a hierarchical triple system is minimally described in terms of the ten parameters m1, m2, m3, a1, a2, e1, e2, g1, g2
and itot. The longitudes of the ascending notes h j and orbital phases f j are not included in this list as the secular (i.e. long-term)
evolution is not dependent on these quantities (see Chapter 2).

1The metallicity is also an important parameter for any stellar system, but in this thesis we shall restrict exclusively to the standard quasi-solar metallicity
Z = 0.02.

2By these we mean to exclude groups of a large number of stars such as (the cores of) globular clusters.
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Figure 1.1: Schematic depiction of a hierarchical triple system. Jacobi coordinates are used to describe both inner and outer binary orbits. The
orbital angular momenta of both orbits are denoted by G1 and G2. Note that typically a2 � a1 (and thus G2 � G1), which is not the case in this
depiction.

Unquestionably the most notable feature of the secular gravitational dynamics of hierarchical triple systems is the periodic
exchange of orbital angular momentum between the inner and outer binary orbits if the initial mutual inclination angle itot is
sufficiently large, i.e. 39.2◦ . itot . 140.8◦ (Kozai, 1962; Lidov, 1962). This exchange results in the perturbation of the shapes
of the inner and outer binary orbits while the orbital energies and thus a1 and a2 are conserved to very high accuracy (see e.g.
Mardling & Aarseth 2001, their Fig. 11). Consequently the inner (and outer) orbit eccentricities and mutual inclination angle itot

vary periodically in cycles known as Kozai cycles. During these cycles, the quantity
√

1 − e2
1 cos(itot) remains (approximately)

constant, implying that inner orbit eccentricity maxima are associated with maxima in cos(itot). In addition, the arguments
of periastron g j and longitudes of ascending nodes h j change during these cycles. During the Kozai cycles, the inner orbit
eccentricity may reach high values on a timescale which is on the order of (P2/P1) P2. The magnitude of the associated maximum
inner orbit eccentricity, e1,max, is mainly determined by the mutual inclination angle itot and the ratio of semi-major axes a2/a1.
Typical values of this ratio for which Kozai cycles are important are 10 . a2/a1 . 103, where the rough lower limit corresponds
to triples which are close to being dynamically unstable. The rough upper limit corresponds to triples in which in most physical
situations, the mechanism of orbital angular momentum exchange in Kozai cycles is suppressed by other processes in the inner
binary orbit, in particular those related to general relativistic effects, tidal distortion and stellar rotation. This phenomenon will
be investigated in detail in Sect. 2.3. In the regime around the lower limit (a2/a1 ∼ 10), e1,max may reach extremely high values
at times when the mutual orientation between both binary orbits changes from prograde (0 < itot < 90◦; i.e. the components in
the inner and outer orbits rotate in the same sense) to retrograde (90 < itot < 180◦; i.e. the components in the inner and outer
orbits rotate in the opposite sense) and vice versa. The latter process is known as the eccentric Kozai mechanism (e.g. Naoz et al.
2011), during which very high inner orbit eccentricities can be reached – e.g. Shappee & Thompson (2012) find values as high as
1 − e1 = 10−6. Such high eccentricities can trigger various interesting processes such as strong tidal friction, strong gravitational
wave emission and even direct orbital collisions.

Extremely high eccentricities in the inner binary system are quite rare, however. Much more common is that the eccentricity
cycles reach amplitudes of order e1 ∼ 1 − 10−1 to e1 ∼ 1 − 10−3, sufficient to induce significant tidal effects in the inner binary
system in many cases. These tidal effects are strongly dependent on the distance between the inner binary components relative
to their radii and may thus become important even in relatively wide orbits if the inner orbit eccentricity is high enough. This is
because the binary periastron distance rp = a1(1− e1) decreases with increasing eccentricity. During the process of tidal friction,
the total inner binary angular momentum remains constant while orbital and spin energies are exchanged until circularization,
synchronization and coplanarity are achieved (Hut, 1980). The coupling between tidal friction and Kozai eccentricity cycles
introduces a complex behavior in which the eccentricity cycles are gradually damped while keeping the eccentricity at a fairly
high value, until complete circularization and orbital shrinkage occurs. This process of Kozai cycles with tidal friction (KCTF)
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has been studied in a simplified fashion by Mazeh & Shaham (1979) and in more detail by Eggleton & Kisseleva-Eggleton
(2001). A population synthesis study incorporating KCTF in triples with solar-like main sequence (MS) stars has been performed
by Fabrycky & Tremaine (2007), who showed that KCTF can explain the observed peak in the period distribution in close MS
binaries around 3 days. These close MS binaries are indeed found to be very likely orbited by a third star (Tokovinin et al., 2006).

The same process does not automatically apply to more massive (m & 1.25 M�) stars, however, because these stars possess
radiative envelopes, in contrast to their less massive counterparts for which the envelope is convective. Consequently tidal friction
is much less effective because convective regions precipitate dissipation of tidal energy much more than radiative regions do (e.g.
Zahn 1977). Therefore KCTF is not expected to play a major role during the MS evolution of these more massive triples. As they
evolve beyond the MS, however, they develop deep convective envelopes during the red giant branch (RGB) and asymptotic giant
branch (AGB) phases. During those phases, not only the structure of the star changes in favor of potentially much stronger tidal
effects, but also the radii increase substantially. Therefore KCTF can be an important process in the later phases in the evolution
of higher mass triples.

The aim of this thesis is to study quantitatively the process of KCTF and other processes which are induced by Kozai cycles
in the evolution of coeval stellar triples. We will in particular be interested in channels leading to mergers of carbon-oxygen
(CO) white dwarfs (WDs). Such mergers are considered one of the main candidate progenitors of type Ia supernovae (SNe Ia),
which are important in many aspects of physics and astrophysics. Most notably they play a central role as distance indicators
in cosmology (Riess et al., 1998; Perlmutter et al., 1999). We will focus on triple systems in which the inner binary is initially
relatively wide such that in the absence of the tertiary, the inner binary stars would not interact during their evolution and end
as relatively wide CO WD binaries. Because of this application to CO WD systems, we choose an initial inner orbit primary
mass range of 1.0 < m1/M� < 6.5. Furthermore, we select the initial inner orbit semi-major axes such that a1

(
1 − e2

1

)
> 12 AU,

where the factor
(
1 − e2

1

)
ensures that in the absence of the tertiary, tidal friction in the inner orbit would not decrease a1 below

12 AU – the lower value of a1 of 12 AU satisfies the requirement of non-interactivity without a tertiary. We will show that the
secular gravitational influence of the tertiary introduces various channels in which two CO WDs merge in the inner binary system.
Channels leading to CO WD mergers are important in binary population synthesis studies (e.g. Nelemans et al. 2001; Ruiter et
al. 2009; Claeys et al. 2012), which are generally faced with the problem that the predicted SNe Ia rate is too low compared to
the observed rate (see Maoz & Mannucci 2012 and Wang & Han 2012 for recent reviews). Any (new) channel leading to a CO
WD merger not considered previously is therefore a welcome one. We will also compare the expected SNe Ia rate in our study
with those predicted in a binary population synthesis study and observed rates.

The notion that a tertiary in a wide orbit around a binary system could introduce novel channels leading to SNe Ia is not a
new one. For example, in Iben & Tutukov (1999) several channels are discussed in which the tertiary plays an important role
at the moment when the triple system becomes dynamically unstable due to mass transfer and/or wind mass loss in the inner
binary system, the latter two processes which increase the inner orbital period. More general scenarios (i.e. not necessarily
leading to a SN Ia) involving dynamically unstable triple systems are explored quantitatively with N-body techniques in Perets
& Kratter (2012). In these studies, the dynamical instability plays a key role in the scenarios. Since many dynamically stable
triple systems are observed, however, it is also relevant to consider the effect that the tertiary has in dynamically stable systems in
which Kozai cycles can play an important role. For example, Thompson (2011) suggests that high eccentricities induced by the
tertiary in close CO WD binaries can significantly reduce the merger time due to gravitational wave emission. In the latter study
the evolution of the triple system prior to the formation of the CO WD binary is not taken into account, however. It is important
to consider such prior evolution because in the standard binary evolution scenarios a common-envelope (CE) evolution phase
is needed to produce the close CO WD binary. During this CE phase the inner orbital period P1 decreases substantially. Thus
even if the ratio of the outer to the inner orbital period P2/P1 prior to CE is relatively small, it is increased significantly after the
CE, thus quenching any subsequent Kozai cycles as these are typically suppressed for close inner binary systems unless P2/P1 is
relatively small. In this thesis we will investigate quantitatively whether this effect of the CE is important.

A (limited) quantitative study of these intermediate (and higher) mass triple systems has recently been performed by Shappee
& Thompson (2012) using N-body integrations to demonstrate the existence of the eccentric Kozai mechanism, which can be
induced by mass loss in triple systems with low P2/P1. However, Shappee & Thompson (2012) did not fully include the statistics
of triples and we therefore aim to perform a population synthesis study where such statistics are taken into account. To achieve
this goal we have developed a new algorithm, which we will refer to as triple_c, which couples an existing binary population
synthesis code (binary_c) with a new code that takes into account the secular gravitational dynamics of hierarchical triple
systems. The main feature of this algorithm is that it is very fast, such that it is feasible to perform a population synthesis study
of a sizable sample of triples.

The outline of this thesis is as follows. In Chapter 2 we discuss the theoretical background of hierarchical triple systems. This
background forms the basis of the triple_c algorithm which is described in Chapter 3. As a demonstration of this algorithm,
we give a few relevant examples of the evolution of coeval stellar triples as computed with this new algorithm in Chapter 4.
Subsequently, the results of a population synthesis study performed with triple_c are described in Chapter 5, where we also
compute the expected SNe Ia rates. We discuss some of the assumptions made and uncertainties in this work and compare our
findings to other studies in Chapter 6. We conclude in Chapter 7.
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Chapter 2
Theory

Unlike the two-body problem for which the orbits are either parabolic, hyperbolic or elliptic, no closed-form analytic
solutions exist to the three-body problem, as first shown by Henri Poincaré in the mid 1890s. This is not surprising

because in the case in which the distances between the three bodies (for now treated as point particles) are comparable to each
other, the behavior can be chaotic, i.e. highly sensitive to the initial conditions. Time integrations show that in this case one
body is likely ejected from the system and escapes to infinity, while the two remaining bodies form a stable binary system. If, on
the other hand, one of the three particles is relatively distant from the other two, the three-body system can remain dynamically
stable on long timescales and it is referred to as a hierarchical triple system. In the latter case, the system is well-described in
terms of two perturbed elliptical orbits, those of the inner and outer binary orbits. One method of investigating this perturbation
quantitatively is by formulating the Hamiltonian of the three-body system and deriving the secular equations of motion. This is
done in Sect. 2.1. Subsequently in Sect. 2.2 an analytic solution to a simplified case is given to illustrate how basic Kozai cycles
arise. Furthermore additional physical effects are included which modify the behavior of Kozai cycles in Sect. 2.3. Note that
most of the results discussed in this chapter have been derived before in the literature. In many cases, however, many details are
omitted. In the present thesis, effort has been made to present a consistent and complete theoretical framework for the secular
description of hierarchical triple systems, starting from basic physical principles such as Hamiltonian mechanics.

2.1 Hamiltonian formalism

2.1.1 The three-body Hamiltonian

m
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R
2

r
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r
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Figure 2.1: Graphical depiction of the definitions of various position vectors required for the formulation of the three-body Hamiltonian.

The (classical) Hamiltonian H is defined as H = T + V where T is the total kinetic energy and V the potential energy.
Consider a system of three point masses with position vectors R1, R2 and R3. Following conventions commonly used (e.g. Ford
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et al. 2000) define the position vector r1 = R2 −R1 pointing from mass 1 towards mass 2, the center of mass of point masses m1
and m2, rB = (R1m1 + R2m2)/(m1 + m2) and the vector of the third point mass m3 relative to rB, r2 = R3 − rB (see Fig. 2.1). By
simple manipulation of these definitions, one finds the following two useful relations:

rB =
1

m1 + m2
[m1R1 + m2R2] =

1
m1 + m2

[m1R1 + m2 (r1 + R1)] = R1 +
m2

m1 + m2
r1 (2.1)

=
1

m1 + m2
[m1 (R2 − r1) + m2R2] = R2 −

m1

m1 + m2
r1. (2.2)

Hence, using the definition of r2 and Eqs. 2.1 and 2.2, the distances between masses 3 and 1 and masses 3 and 2 respectively are
given by the lengths of the difference vectors

R3 − R1 = r2 + rB − R1 = r2 +
m2

m1 + m2
r1; (2.3)

R3 − R2 = r2 + rB − R2 = r2 −
m1

m1 + m2
r1. (2.4)

The gravitational potential of the three-body system V may thus be readily computed, taking into account all pairs of point masses:

V = −
1
2

3∑
i, j=1
i, j

GNmim j∣∣∣∣∣∣Ri − R j

∣∣∣∣∣∣ = −
GNm2m1

||R2 − R1||
−

GNm3m1

||R3 − R1||
−

GNm3m2

||R3 − R2||

= −
GNm2m1

r1
−

GNm3m1∣∣∣∣∣∣∣∣r2 + m2
m1+m2

r1

∣∣∣∣∣∣∣∣ − GNm3m2∣∣∣∣∣∣∣∣r2 −
m1

m1+m2
r1

∣∣∣∣∣∣∣∣ , (2.5)

where GN is the gravitational constant and r1 ≡ ||r1|| (similar notation applies to all other vectors). It will prove advantageous
to expand the last two terms in Eq. (2.5) in terms of r1/r2 by means of the generating function of the Legendre polynomials.
Consider two arbitrary position vectors r and r′, let γ be the angle between r and r′ such that r̂ · r̂′ = cos(γ) and let α be a real
constant. Then:

1
||r − αr′||

=
[(

r − αr′
)2
]−1/2

=
[
r2 − 2α r · r′ + α2r′2

]−1/2
=

1
r

1 − 2α
(

r′

r

)
cos(γ) + α2

(
r′

r

)2−1/2

=
1
r

∞∑
n=0

αn
(

r′

r

)n

P̃n(cos(γ)), (2.6)

where P̃n is the nth Legendre polynomial (the tilde is to avoid any confusion with the inner and outer orbital periods P j). Applying
Eq. 2.6 with r = r2 and r′ = r1 twice to the last two terms in Eq. 2.5 with α = −m2/(m1 +m2) and α = m1/(m1 +m2) respectively,
one obtains:

V = −
GNm2m1

r1
−

GNm3m1

r2

∞∑
n=0

(
−m2

m1 + m2

)n (
r1

r2

)n

P̃n(cos(Φ)) −
GNm3m2

r2

∞∑
n=0

(
m1

m1 + m2

)n (
r1

r2

)n

P̃n(cos(Φ))

= −
GNm2m1

r1
−

GNm3m2m1

r2

∞∑
n=0

−(−m2)n−1

(m1 + m2)n

(
r1

r2

)n

P̃n(cos(Φ)) −
GNm3m2m1

r2

∞∑
n=0

mn−1
1

(m1 + m2)n

(
r1

r2

)n

P̃n(cos(Φ))

= −
GNm2m1

r1
−

GN

r2

∞∑
n=0

m1m2m3
mn−1

1 − (−m2)n−1

(m1 + m2)n

 ( r1

r2

)n

P̃n(cos(Φ)), (2.7)

where Φ is the angle between r1 and r2. Using the fact that P̃0(x) = 1∀ x ∈ R and noting that the term n = 1 in the last line of
Eq. 2.7 vanishes, the potential energy can be written as:

V = −
GNm2m1

r1
−

GN

r2
m1m2m3

(
1

m1
+

1
m2

)
−

GN

r2

∞∑
n=2

m1m2m3
mn−1

1 − (−m2)n−1

(m1 + m2)n

 ( r1

r2

)n

P̃n(cos(Φ))

= −
GNm2m1

r1
−

GNm3(m1 + m2)
r2

−
GN

r2

∞∑
n=2

Mn

(
r1

r2

)n

P̃n(cos(Φ)), (2.8)
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where we have defined a mass parameter Mn ≡ m1m2m3

(
mn−1

1 − (−m2)n−1
)
/(m1 + m2)n.

Next we compute the kinetic energy T , which is defined as:

T =
1
2

3∑
i=1

miṘ2
i =

1
2

m1Ṙ2
1 +

1
2

m2Ṙ2
2 +

1
2

m3Ṙ2
3. (2.9)

The aim is to write T in terms of the relative velocities ṙ1 and ṙ2 as measured in a frame comoving with the center of mass, i.e.
in a frame in which the time derivative of the centre of mass

RCM =
1

m1 + m2 + m3
(m1R1 + m2R2 + m3R3) , (2.10)

vanishes: ṘCM = 0. Such a frame clearly exists if there are no external forces acting on the three-body system. To this aim we
first write Ṙ1 and Ṙ2 in Eq. 2.9 in terms of ṙ1 and ṙB using Eqs. 2.1 and 2.2, giving:

T =
1
2

m1

(
ṙB −

m2

m1 + m2
ṙ1

)2

+
1
2

m2

(
ṙB +

m1

m1 + m2
ṙ1

)2

+
1
2

m3Ṙ2
3 =

1
2

(m1 + m2) ṙ2
B −

m1m2

m1 + m2
ṙB · ṙ1

+
m1m2

m1 + m2
ṙB · ṙ1 +

1
2

m1m2
2

(m1 + m2)2 ṙ2
1 +

1
2

m2m2
1

(m1 + m2)2 ṙ2
1 +

1
2

m3Ṙ2
3

=
1
2

m1m2

m1 + m2
ṙ2

1 +
1
2

(m1 + m2) ṙ2
B +

1
2

m3Ṙ2
3. (2.11)

To express rB and R3 in terms of RCM and r2, first note that, by virtue of Eqs. 2.1 and 2.2:

RCM =
1
M

(m1R1 + m2R2 + m3R3) =
1
M

(
m1rB −

m1m2

m1 + m2
r1 + m2rB +

m1m2

m1 + m2
r1 + m3R3

)
=

1
M

((m1 + m2) rB + m3R3) , (2.12)

where M ≡ m1 + m2 + m3. Thus one has the following two equations,{
r2 = R3 − rB;

MRCM = (m1 + m2) rB + m3R3,
(2.13)

which can be solved for R3 and rB in terms of RCM and r2. Multiplying the first equation in Eq. 2.13 by (m1 + m2) and adding
the result to the second equation yields:

R3 = RCM +
m1 + m2

M
r2, (2.14)

while multiplying the first equation in Eq. 2.13 by m3 and subtracting from the result the second equation yields:

rB = RCM −
m3

M
r2 (2.15)

(note that Eqs. 2.14 and 2.15 are natural extensions of Eqs. 2.1 and 2.2, which apply to the inner binary system, to the outer
binary system). Differentiating Eqs. 2.14 and 2.15 with respect to time, substituting the results into Eq. 2.11 and using that
ṘCM = 0 then gives:

T =
1
2

m1m2

m1 + m2
ṙ2

1 +
1
2

(m1 + m2)
m2

3

M2 ṙ2
2 +

1
2

m3
(m1 + m2)2

M2 ṙ2
2 =

1
2

m1m2

m1 + m2
ṙ2

1 +
1
2

m3(m1 + m2)
M

(m3

M
+

m1 + m2

M

)
︸               ︷︷               ︸

=1

ṙ2
2

=
1
2

m1m2

m1 + m2
ṙ2

1 +
1
2

m3(m1 + m2)
M

ṙ2
2. (2.16)
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In other words, the total kinetic energy, as measured in any frame comoving with the frame of the centre of mass, consists of the
relative kinetic energies of the inner and outer binary orbits.

The Hamiltonian is thus given by (cf. Eqs. 2.8 and 2.16):

H = T + V =

(
1
2

m1m2

m1 + m2
ṙ2

1 −
GNm1m2

r1

)
+

(
1
2

(m1 + m2)m3

m1 + m2 + m3
ṙ2

2 −
GN(m1 + m2)m3

r2

)
−

GN

r2

∞∑
n=2

Mn

(
r1

r2

)n

P̃n(cos(Φ)). (2.17)

The two terms in large brackets in Eq. 2.17 can be interpreted as the Hamiltonians of two isolated binary systems. The inner bi-
nary system consists of point masses m1 and m2, while the outer binary system consists of point masses with masses (m1 +m2) and
m3. The last term in Eq. 2.17 represents a coupling term and is a source of perturbations to the Keplerian orbits of these binary
systems. Since the total energy in a binary system comprised of point masses m1 and m2 can be written asHbin = −Gm1m2/(2a),
where a is the semi-major axis, it is natural to introduce in a similar fashion the semi-major axes a1 and a2 of the inner and outer
binary systems respectively, such that the Hamiltonian of the three-body system can be written rather suggestively as:

H = −
GNm1m2

2a1
−

GN(m1 + m2)m3

2a2
−

GN

r2

∞∑
n=2

Mn

(
r1

r2

)n

P̃n(cos(Φ)). (2.18)

If r2 � r1 during both binary orbits, the coupling term in Eq. 2.18 is relatively small and both binary orbits remain almost
unaffected by the perturbing term, i.e. the orbits continue to be Keplerian orbits, although their shape and orientation may change
over timescales which are (much) longer than the orbital periods. In this situation the triple system is hierarchical. Because in
such systems a2 � a1 (or at least a2 > a1), it is convenient to write the coupling term in terms of the quantity α ≡ a1/a2 as follows:

H = −
GNm1m2

2a1
−

GN(m1 + m2)m3

2a2
−

GN

a2

∞∑
n=2

αnMn

(
r1

a1

)n (
a2

r2

)n+1

P̃n(cos(Φ)). (2.19)

Note that in the literature, the total energy expressed by Eq. 2.19 is usually multiplied by −1 such that for bound systemsH > 0
(e.g. Harrington 1968). In Sect. 2.1.2 we express Eq. 2.19 in terms of Euler angles commonly used in celestial mechanics and
we perform an averaging procedure, effectively eliminating any short-term effects. The resulting Hamiltonian is then referred to
as the secular Hamiltonian.

2.1.2 Secularization of the Hamiltonian
Numerical N-body calculations show that in hierarchical triple systems (i.e. dynamically stable three-body systems), the semi-
major axes of the inner and outer orbits, a1 and a2, remain secularly constant to very good approximation (see. e.g. Mardling &
Aarseth 2001 and Naoz et al. 2011). The two separate binary energy terms in Eq. 2.19 are therefore also secularly constant, i.e.
in hierarchical triple systems, energy is not exchanged between the inner and outer orbits. It will turn out, however, that angular
momentum is exchanged between both orbits, of course in such a way to conserve the total angular momentum of the three-body
system.

It is necessary to introduce some coordinates and coordinate systems before averaging the Hamiltonian. We shall refer to
the invariable plane as the plane perpendicular to the z component of the total angular momentum vector Gtot. Due to the fact
that this component is conserved, this plane is indeed fixed in space at all times. The invariant coordinate system (X,Y,Z) is
then defined as the coordinate system in which the X and Y axes lie within the invariable plane and the Z axis is perpendicular
to this plane. The relative orbits of both binary systems are well-described in terms of elliptical orbits at least for the duration
of one orbital period. The quantities r1/a1 and r2/a2 in Eq. 2.19 are then functions only of the phase angles (i.e. mean, true
or eccentric anomalies) and eccentricities of their respective orbits. The relative orbits each lie within a plane which forms the
(x j, y j) plane (with j = 1 and j = 2 for the inner and outer binary orbits respectively) of the orbital coordinate systems, with the
x j axes pointing to the periapses. The z j axes are perpendicular to these (x j, y j) planes. The transformations between the orbital
coordinate systems (x j, y j, z j) and the invariant coordinate system (X,Y,Z) are described in terms of 6 rotations (3 per orbit), each
involving an Euler angle. These Euler angles are (g j, i j, h j), i.e. arguments of periastron, inclination angles and longitudes of the
ascending nodes1. We refer to Appendix A.1.1 for the precise definitions of these angles and further derivation for an expression

1In celestial mechanics, the argument of periastron is also frequently denoted by ω and the longitude of the ascending node by Ω.
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for the quantity cos(Φ), which appears in the perturbing term in Eq. 2.19. Recall that Φ is the angle between r1 and r2. In terms
of the true anomalies f j of orbit j, cos(Φ) is given by:

cos(Φ) = cos(g2 + f2)
[
cos(g1 + f1) cos(∆h) − cos(i1) sin(g1 + f1) sin(∆h)

]
+ sin(g2 + f2)

[
cos(i2) cos(g1 + f1) sin(∆h)

+ sin(g1 + f1) {cos(i1) cos(i2) cos(∆h) + sin(i1) sin(i2)}
]
, (2.20)

where ∆h ≡ h1 − h2. Furthermore, as shown in Appendix A.1.2, the choice of coordinate system (which is linked to conservation
of total angular momentum) implies a constraint on ∆h, namely ∆h = π. As shown by Naoz et al. (2011), caution is advised as
to when to apply this constraint because it suggests that cos(Φ), and hence the Hamiltonian, is independent on h j, which would
lead to the conclusion that the associated z components of the canonical momenta H j = G j cos(i j) are conserved, where G j is the
magnitude the angular momentum of orbit j. We will return to this issue in Sect. 2.1.3.

The secularization procedure amounts to averaging Eq. 2.19 over the mean anomalies l1 and l2 of both inner and outer orbits,
which for orbit j we denote as:

〈...〉 j =
1

2π

∫ 2π

0
... dl j, (2.21)

where the dots denote the quantity to be averaged. Note that it is incorrect to average over the true or eccentric anomalies because
these quantities are not linear in time, whereas the mean anomaly is (for any binary orbit, the mean anomaly l is generally given
by l = 2π(t−T )/P where t is the time, T is the time of periastron passage and P is the orbital period). To simplify the integration,
however, it may be more convenient to transform the integration over mean anomaly to an integration over true or eccentric
anomaly. In principle the calculations can be done for any arbitrary order of α = a1/a2 in Eq. 2.19, but for many hierarchical
triple systems, already the lowest order-term ∝ α2 (referred to as the quadrupole order term) is quite adequate. For a smaller but
non-negligible fraction of systems, also the next order term ∝ α3 (the octupole order term) is required for an adequate description.
It has not been investigated whether the next order term ∝ α4 introduces any substantial new behavior, although according to
Naoz et al. (2011) this is likely not the case. More importantly, in the regime in which terms ∝ α4 would be expected to be
important (i.e. large α), hierarchical triple systems are not expected to be dynamically stable anyway.

In this section we include the quadrupole and octupole perturbing terms of the three-body Hamiltonian, which we denote as
Rquad and Roct. Eq. 2.19 is thus rewritten as:

H = −
GNm1m2

2a1
−

GN(m1 + m2)m3

2a2
− Rquad − Roct −

GN

a2

∞∑
n=4

αnMn

(
r1

a1

)n (
a2

r2

)n+1

P̃n(cos(Φ)), (2.22)

where

Rquad =
GN

a2

(
a1

a2

)2

M2

(
r1

a1

)2 (
a2

r2

)3

P̃2(cos(Φ)) =
GNm1m2m3

(m1 + m2) a2

(
a1

a2

)2 (
r1

a1

)2 (
a2

r2

)3

P̃2(cos(Φ))

= 16 Cquad

(
r1

a1

)2 (
a2

r2

)3 (
1 − e2

2

)3/2
P̃2(cos(Φ)), (2.23)

with the quantity (with dimensions of energy) Cquad:

Cquad ≡
1

16
GNm1m2m3

(m1 + m2) a2

(
a1

a2

)2 (
1 − e2

2

)−3/2
(2.24)

and

Roct =
GN

a2

(
a1

a2

)3

M3

(
r1

a1

)3 (
a2

r2

)4

P̃3(cos(Φ)) =
GN

a2

(
a1

a2

)3 (
r1

a1

)3 (
a2

r2

)4 m1m2m3

(m1 + m2)3

(
m2

1 − m2
2

)
P̃3(cos(Φ))

=
GN

a2

(
a1

a2

)3 (
r1

a1

)3 (
a2

r2

)4 m1m2m3

(m1 + m2)2 (m1 − m2) P̃3(cos(Φ))

= −
16
15

4 Coct

(
1 − e2

2

)5/2
(

r1

a1

)3 (
a2

r2

)4

P̃3(cos(Φ)), (2.25)

with the quantity (again, with dimensions of energy) Coct:

Coct ≡ −
15
16

GN

4
m1m2m3

(m1 + m2)2 (m1 − m2)
(

a1

a2

)3 1
a2

(
1 − e2

2

)−5/2
. (2.26)

12



Note that the factors in Eqs. 2.24 and 2.26 are introduced to ensure that the final expressions for the secularly averaged perturbing
terms to both quadrupole and octupole orders are without an overall multiplicative factor. After some straightforward calculations,
which are described in Appendix A.1.3, the secularly averaged perturbing terms are found to be:

〈〈Rquad〉2〉1 = Cquad

[
6
(
Z2

a + Z2
c

) (
1 + 4e2

1

)
+ 6

(
Z2

b + Z2
d

) (
1 − e2

1

)
− 4

(
2 + 3e2

1

)]
; (2.27)

〈〈Roct〉2〉1 = Cocte1e2

[
Za

{
5
(
3 + 4e2

1

) (
Z2

a + Z2
c

)
− 4

(
3e2

1 + 4
)}

+ 5
(
1 − e2

1

) (
3ZaZ2

b + ZaZ2
d + 2ZbZcZd

)]
. (2.28)

Here the quantities Za, Zb, Zc and Zd are functions of g1, g2, i1, i2 and ∆h ≡ h1 − h2 and we have defined them as follows:
Za ≡ Da cos(g1) cos(g2) − Db sin(g1) cos(g2) + Dc cos(g1) sin(g2) + Dd sin(g1) sin(g2);
Zb ≡ −Da sin(g1) cos(g2) − Db cos(g1) cos(g2) − Dc sin(g1) sin(g2) + Dd cos(g1) sin(g2);
Zc ≡ −Da cos(g1) sin(g2) + Db sin(g1) sin(g2) + Dc cos(g1) cos(g2) + Dd sin(g1) cos(g2);
Zd ≡ Da sin(g1) sin(g2) + Db cos(g1) sin(g2) − Dc sin(g1) cos(g2) + Dd cos(g1) cos(g2);
Da ≡ cos(∆h);
Db ≡ cos(i1) sin(∆h);
Dc ≡ cos(i2) sin(∆h);
Dd ≡ cos(i1) cos(i2) cos(∆h) + sin(i1) sin(i2).

(2.29)

Note that the Z-functions satisfy the following two relations:{
Z2

a + Z2
c = (Da cos(g1) − Db sin(g1))2 + (Dc cos(g1) + Dd sin(g1))2 ;

Z2
b + Z2

d ≡ (Da sin(g1) + Db cos(g1))2 + (Dc sin(g1) − Dd cos(g1))2 ,
(2.30)

which implies that the secularly averaged Hamiltonian to quadrupole order is independent of g2, which in turn implies that e2
is constant in this approximation (cf. Sect. 2.1.3). Making the substitution ∆h = π into Eqs. 2.27 and 2.28 (which is strictly
incorrect for deriving the equations of motion), one finds the following simplified expressions (see Appendix A.1.3 for details):

〈〈Rquad〉2〉1|∆h=π = Cquad

[(
2 + 3e2

1

) (
3 cos2(itot) − 1

)
+ 15e2

1 sin2(itot) cos(2g1)
]

; (2.31)

〈〈Roct〉2〉1|∆h=π = Cocte1e2

[
A cos(φ) + 10 cos(itot) sin2(itot)

(
1 − e2

1

)
sin(g1) sin(g2)

]
, (2.32)

where itot = i1 + i2 and:

cos(φ) = Za|∆h=π; A = 4 + 3e2
1 −

5
2

sin2(itot)B; B = 2 + 5e2
1 − 7e2

1 cos(2g1). (2.33)

Eqs. 2.31 and 2.32 are identical to the expressions in Ford et al. (2000). In Sect. 2.1.3 the equations of motion are derived that
follow from Eqs. 2.27 and 2.28.

2.1.3 The equations of motion
Following common convention (Harrington, 1968; Ford et al., 2000) we employ canonical coordinates known as Delaunay’s
elements, which are the mean anomalies l j, arguments of periastron g j and longitudes of the ascending nodes h j of both binary
orbits. These coordinates are found as follows (Valtonen & Karttunen, 2006). Starting from the Hamiltonian of the two-body
problem expressed in terms of spherical coordinates (r, θ, φ) one performs a canonical coordinate transformation such that the
pure binary terms in the Hamiltonian (i.e. the first two terms in Eq. 2.19), expressed in these new coordinates, vanish identically.
The reason to perform such a transformation is that the equations of motion in the pure binary case are trivial in such a coordinate
system, i.e. all coordinates are simply constant. The explicit equation giving such a transformation is the Hamilton-Jacobi
equation (Valtonen & Karttunen 2006, Chapter 4.10). The result is that the new canonical coordinates in which the Hamiltonian
of the binary system vanishes are minus the time of periastron passage, −τ, the longitude of the ascending node h and the
argument of periastron g (Valtonen & Karttunen 2006, Chapter 4.11). Now another canonical transformation is made such that
the first coordinate is the mean anomaly rather than minus the time of periastron passage. The conjugate momenta of these
coordinates, denoted by L j, G j and H j for orbit j, are then given by (Valtonen & Karttunen 2006, Chapter 4.12):

L1 = m1m2

√
GNa1

m1 + m2
;

L2 = (m1 + m2)m3

√
GNa2

m1 + m2 + m3
;

G j = L j

√
1 − e2

j ; H j = G j cos(i j),

(2.34)
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The Hamiltonian equations of motion are then given by:



L̇ j =
∂H

∂l j
; l̇ j = −

∂H

∂L j
;

Ġ j =
∂H

∂g j
; ġ j = −

∂H

∂G j
;

Ḣ j =
∂H

∂h j
; ḣ j = −

∂H

∂H j
.

(2.35)

As a consequence of the secularization procedure,H is no longer dependent on l j, hence L j and thus a j are constant. Furthermore,
if one substitutes the constraint ∆h = π into the Hamiltonian, one finds that it is independent of h j and thus that the H j are constant.
This is formally incorrect because the derivation of Hamilton’s equations of motion relies on the possibility of making arbitrary
variations of the system’s trajectory and these arbitrary variations are restricted by the dynamical constraint ∆h = π. The correct
approach is thus to apply the constraint after deriving the equations of motion (Naoz et al., 2011). The inclination angles i1
and i2 are not part of the canonical coordinates (l1, l2, g1, g2, h1, h2); they are readily found from the fact that the total angular
momentum Gtot ≡ G1 + G2 is conserved. Squaring this definition gives G2

tot = G2
1 + G2

2 + 2G1 ·G2 = G2
1 + G2

2 + 2G1G2 cos(itot),
where itot = i1 + i2 is the mutual inclination angle between G1 and G2. Separate equations for the time derivatives of i1 and i2
follow from the cosine rule in the triangle spanned by G1, G2 and Gtot:

cos(i1) =
G2

tot + G2
1 −G2

2

2GtotG1
; cos(i2) =

G2
tot + G2

2 −G2
1

2GtotG2
. (2.36)

Eq. 2.36 describes the evolution of i1 and i2 as a consequence of a change in G1 and G2. To find first-order differential equations
for the secular evolution of the orbital quantities e j and g j we apply 2.35 to the secularly averaged perturbing terms Eqs. 2.27
and 2.28 and substitute ∆h = π. The details are included in Appendix A.1.4. The resulting equations are:

ġ1 = 6 Cquad

{
1

G1

[
4 cos2(itot) + (5 cos(2g1) − 1)

(
1 − e2

1 − cos2(itot)
)]

+
cos(itot)

G2

[
2 + e2

1(3 − 5 cos(2g1))
]}

−Cocte2

{
e1

(
1

G2
+

cos(itot)
G1

) [
sin(g1) sin(g2)

[
A + 10

(
3 cos2(itot) − 1

) (
1 − e2

1

)]
− 5B cos(itot) cos(φ)

]
−

1 − e2
1

e1G1

[
cos(φ)

(
3A − 10 cos2(itot) + 2

)
+ 10 cos(itot) sin2(itot)

(
1 − 3e2

1

)
sin(g1) sin(g2)

] ; (2.37)

ġ2 = 3 Cquad

{
2 cos(itot)

G1

[
2 + e2

1(3 − 5 cos(2g1))
]

+
1

G2

[
4 + 6e2

1 +
(
5 cos2(itot) − 3

) (
2 + e2

1(3 − 5 cos(2g1))
)]}

+ Cocte1

sin(g1) sin(g2)
4e2

2 + 1
e2G2

10 cos(itot) sin2(itot)
(
1 − e2

1

)
− e2

(
1

G1
+

cos(itot)
G2

) (
A + 10

(
3 cos2(itot) − 1

)
×

(
1 − e2

1

))]
+ cos(φ)

5B cos(itot) e2

(
1

G1
+

cos(itot)
G2

)
+

4e2
2 + 1

e2G2
A
 ; (2.38)

ė1 = Cquad
1 − e2

1

G1
30 e1 sin2(itot) sin(2g1) + Cocte2

1 − e2
1

G1

{
35 cos(φ) sin2(itot)e2

1 sin(2g1) − 10 cos(itot) sin2(itot)

× cos(g1) sin(g2)
(
1 − e2

1

)
− A (sin(g1) cos(g2) − cos(itot) cos(g1) sin(g2))

}
; (2.39)

ė2 = −Cocte1
1 − e2

2

G2

{
10 cos(itot) sin2(itot)

(
1 − e2

1

)
sin(g1) cos(g2) + A (cos(g1) sin(g2) − cos(itot) sin(g1) cos(g2))

}
. (2.40)

In general, it is necessary to employ numerical integration techniques to solve these highly non-linear first order coupled differ-
ential equations. For a limiting case in the quadrupole order approximation, analytic solutions exist and are discussed below in
Sect. 2.2.

2.2 Analytic solutions in the test particle quadrupole order limit
In order to gain some analytical insight into the nature and properties of Kozai cycles, we investigate solutions which exist for the
quadrupole order with the additional constraint that G2 � G1, i.e. that the outer orbital angular momentum completely dominates
the inner orbital angular momentum. Since in most cases the masses are comparable, this implies a2 � a1. This limit is also
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known as the test particle quadrupole order limit (Naoz et al., 2011) and is the limit originally explored by Kozai (1962). Many
of the results given here were first derived by Kinoshita & Nakai (1999).

Consider the three-body system at the initial state, denoted with a subscript 0 and at some later time. Due to conservation of
total angular momentum the following relation holds:

G2
1,0 + G2

2,0 + 2G1,0G2,0θ0 = G2
1 + G2

2 + 2G1G2θ, (2.41)

where θ ≡ cos(itot). In the quadrupole approximation, e2 is constant (cf. Appendix A.1.4), thus with Eq. 2.34 this becomes:

L2
1

(
1 − e2

1,0

)
+ L2

2

(
1 − e2

2,0

)
+ 2L1L2

√
1 − e2

1,0

√
1 − e2

2,0 θ0 = L2
1

(
1 − e2

1

)
+ L2

2

(
1 − e2

2,0

)
+ 2L1L2

√
1 − e2

1

√
1 − e2

2,0 θ

⇐⇒
L1

L2

(
1 − e2

1,0

)
+ 2

√
1 − e2

1,0

√
1 − e2

2,0 θ0 =
L1

L2

(
1 − e2

1

)
+ 2

√
1 − e2

1

√
1 − e2

2,0 θ

⇐⇒ θ =
1

2
√

1 − e2
1

√
1 − e2

2,0

[
2
√

1 − e2
1,0

√
1 − e2

2,0 θ0 +
L1

L2

(
e2

1 − e2
1,0

)]
(2.42)

L2�L1

−−−−−→

√
1 − e2

1,0√
1 − e2

1

θ0 ≡

√
x0

x
θ0, (2.43)

where for convenience we defined x ≡ 1 − e2
1 and x0 ≡ 1 − e2

1,0. Eq. 2.43 implies that
√

1 − e2
1 cos(itot) is constant in the limit

L2 � L1. This is a well-known property of the Kozai resonance: during eccentricity maxima, cos(itot) is at its maximum value
and vice versa. Another conserved quantity besides total angular momentum is total energy and hence the Hamiltonian. Since a j

(and mi) are constant, Eq. 2.19 implies (after secularization) that Eq. 2.31 is conserved to quadrupole order. Thus:

Cquadr0 ≡ Cquad

[(
2 + 3e2

1,0

) (
3θ2

0 − 1
)

+ 15e2
1,0

(
1 − θ2

0

)
cos(2g1,0)

]
= Cquad

[(
2 + 3e2

1

) (
3θ2 − 1

)
+ 15e2

1

(
1 − θ2

)
cos(2g1)

]
. (2.44)

In Eq. 2.44, θ can be eliminated in favor of e1 with Eq. 2.43 and the resulting equation can be solved for cos(2g1) in terms of e1
and initial parameters. With this expression for cos(2g1) and Eq. 2.43, the quadrupole order term of ė1, given by Eq. 2.39, can
be expressed solely in terms of e1, or, equivalently, a differential equation is found for ẋ in terms of x and constants. The result
is (see Appendix A.1.5 for details):

dx
dt

= −
24
√

6
τ

√
(x − xA)(x − xB)(x − xC), (2.45)

where τ is a characteristic time scale of the problem,

τ =
8
π

(
P2

P1

)
P2

m1 + m2 + m3

m3

(
1 − e2

2

)3/2
(2.46)

(with e2 = e2,0) and the quantities xA, xB and xC are functions of x0, θ0 and g1,0 and are given by:
xA = x0 + 5

2 (1 − x0)
(
1 − θ2

0

)
sin2(g1,0);

xB = 1
2 b − 1

2

√
b2 − 4c;

xC = 1
2 b + 1

2

√
b2 − 4c;{

b = x0 + 5
3

[
θ2

0 + (1 − x0)
(
1 − θ2

0

)
cos2(g1,0)

]
;

c = 5
3θ

2
0 x0.

(2.47)

These quantities satisfy xA − xB > 0 and xC − xB > 0. As shown in Appendix A.1.5, the solution of Eq. 2.45 is given in terms of
a Jacobi elliptic function:

x(t) = xA + (xB − xA) cn2
(
12
√

6
t
τ

√
xC − xB − t̃0

∣∣∣∣∣ k) , (2.48)

where cn(t|k) is a Jacobi elliptic function (Gradshteyn & Ryzhik 2007, 8.154) with modulus:

k2 =
xA − xB

xC − xB
(2.49)
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Figure 2.2: Left panel: maximum inner orbit inclination, e1,max, as function of θ0 ≡ cos(itot,0), where itot,0 is the initial mutual inclination angle,
for g1,0 = 0 (dashed), g1,0 = 45◦ (dotted) and g1,0 = 90◦ (solid). Four different values of e1,0 are shown: 0.01, 0.1, 0.2 and 0.5 (from bottom

to top). The vertical dashed lines show the values of θ0 =
[

3
5

(
1 − e2

1,0

)]1/2
corresponding to each set of curves with different e1,0. Right panel:

inner orbit eccentricity as function of time according to the solution Eq. 2.48 for the example system discussed in the text. Also included are
points from numerical integrations of Eqs. 2.37, 2.38, 2.39 and 2.40.

and t̃0 is defined via:

t̃0 = −arccn
(√

x0 − xA

xB − xA

)
. (2.50)

The function cn(t|k) is 4K-periodic, where K is the complete elliptic integral of the first kind,

K =

∫ π/2

0

dθ√
1 − k2 sin2(θ)

. (2.51)

Furthermore, cn(t|k) is symmetric around t = 2K, hence cn2(t|k) is 2K-periodic. This implies that a full cycle of x, and hence e1,
is completed after a “Kozai period” PK , where PK is given by:

12
√

6
PK

τ

√
xC − xB = 2K ⇒ PK =

τK

6
√

6

1
√

xC − xB
=

4K

3π
√

6

1
√

xC − xB

(
P2

P1

)
P2

m1 + m2 + m3

m3

(
1 − e2

2

)3/2
. (2.52)

The factor 4K/
(
3π
√

6
√

xC − xB

)
in Eq. 2.52 is typically of order unity, as are the mass and outer orbit eccentricity factors;

the most important quantity that determines PK is therefore (P2/P1) P2. Since (P2/P1) � 5 for most observed hierarchical triple
systems (Tokovinin et al., 2006) this implies that typically PK � P2, thus Kozai cycles can play an important role on timescales
which are much longer than the dynamical timescales. Kozai timescales of Myr are common and even timescales of Gyr are
possible (for an example see Sect. 4.2), which are comparable to stellar evolutionary timescales. During the Kozai cycle, x varies
between xB and xA, implying that the minimum and maximum values of e1 are given by e1,min =

√
1 − xA and e1,max =

√
1 − xB.

Fig. 2.2 (left) shows e1,max as a function of θ0 ≡ cos(itot,0), where itot,0 is the initial mutual inclination angle, for several values
of e1,0 and g1,0. In the case that g1,0 = 90◦, if θ2

0 >
3
5

(
1 − e2

1,0

)
then e1,max = e1,0. However, this does not mean that there are no

Kozai cycles (see below). In the other two cases shown in Fig. 2.2 (left), g1,0 = 0◦ and g1,0 = 45◦, e1,max > e1,0 for all values
of θ0 < 1. Regardless of the value of g1,0 the maximum eccentricity can become very high as θ0 approaches 0. In particular, if

e1,0 = 0 and θ2
0 <

3
5 then it follows from e1,max =

√
1 − xB and Eq. 2.47 that e1,max =

(
1 − 5

3θ
2
0

)1/2
independent of the value of

g1,0, which is consistent with Fabrycky & Tremaine (2007). Note that e1,max → 1 as θ0 → 0. This may seem unrealistic, but it
is important to remember that this derivation is only strictly valid in the limit a1/a2 → 0. The latter limit implies that a2 → ∞

(for finite a1 > 0), which in turn implies an infinitely long Kozai period (cf. Eq. 2.52) – this is clearly not possible in realistic
situations. For any realistic systems, the second term ∝ L1/L2 ∝

√
a1/a2 in Eq. 2.42 is not negligible, in which case the above

expression for e1,max is no longer valid. In Sect. 2.3.3 we will take into account this second term in Eq. 2.42, however.
To better understand the different behavior of e1,max as function of θ0 for different g1,0, Fig. 2.3 shows the (cos(g1), e1) space

for e1,0 = 0.5. The curves are obtained from Eq. 2.44 with θ given by Eq. 2.43. Solid curves correspond to g1,0 = 0◦ and dashed
curves to g1,0 = 90◦. From top to bottom, both sets of curves correspond to itot,0 = 70◦, itot,0 = 46◦, itot,0 = 40◦ and itot,0 = 39◦ (the
dashed curve with −1 ≤ cos(g1) ≤ 1 corresponds to itot,0 = 39◦). If g1,0 = 0◦ then cos(g1,0) = 1 and g1 increases monotonically
(−1 ≤ cos(g1) ≤ 1), which qualitative behaviour is independent of θ0. In this case g1 is said to circulate. Whenever g1,0 = 0◦,
e1,max > e1,0 as also shown by Fig. 2.2 (left). If g1,0 = 90◦ then the behaviour is more complicated and strongly dependent on θ0.
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Figure 2.3: The (cos(g1), e1) space for e1,0 = 0.5. The curves are
obtained from Eq. 2.44 with θ given by Eq. 2.43. Solid curves
correspond to g1,0 = 0◦ and dashed curves to g1,0 = 90◦. From
top to bottom (also indicated by the numbers) both sets of curves
correspond to itot,0 = 70◦, itot,0 = 46◦, itot,0 = 40◦ and itot,0 = 39◦ (the
dashed curve with −1 ≤ cos(g1) ≤ 1 corresponds to itot,0 = 39◦).

If θ2
0 > 3

5 (cf. the curve corresponding to itot,0 = 39◦ in Fig.
2.3) then g1 circulates, although the fact that the cycle starts
with cos(g1,0) = 0 implies that e1,0 = e1,max. As θ0 decreases
and passes the point where θ2

0 = 3
5 (cf. the dashed curve corre-

sponding to itot,0 = 40◦ in Fig. 2.3), g1 no longer circulates but
oscillates between two fixed values (−0.4 . cos(g1) . 0.4 in
Fig. 2.3). In the latter case g1 is said to librate. As demon-
strated by Fig. 2.3, still e1,max = e1,0 at this point. As θ0
decreases further, the size of the “libration island” decreases
(cf. the curve corresponding to itot,0 = 46◦ in Fig. 2.3), un-
til at some critical value of θ0 this island is reduced to a single
point in the (cos(g1), e1) space at (cos(g1), e1) = (0, e1,0). This
critical value of θ0 can be obtained by setting ġ1,quad = 0 with
(cos(g1), e1) = (0, e1,0), where ġ1,quad is given by the quadrupole
order part of Eq. 2.37, neglecting the term ∝ G−1

2 as appropriate
for the limit in which the solutions of this section are valid. Thus
we find that the critical value is given by θ0 =

[
3
5

(
1 − e2

1,0

)]1/2
.

For e1,0 = 0.5, this expression yields a critical mutual inclina-
tion angle of itot,0 ≈ 47.9◦. If θ0 is less than the critical value
then e1,min = e1,0 and e1,max > e1,0, i.e. the “libration island”
has “flipped” from the region e1 ≤ e1,0 to e1 ≥ e1,0 (note that
for g1,0 = 0◦, always e1 ≥ e1,0). This explains why in the case

that g1,0 = 90◦, e1,max > e1,0 only if θ0 <
[

3
5

(
1 − e2

1,0

)]1/2
. In

the latter case, if θ0 >
[

3
5

(
1 − e2

1,0

)]1/2
then still there are Kozai

cycles from the point of view that e1, g1 and θ still exhibit periodic behaviour. However, the maximum eccentricity does not
exceed the initial eccentricity.

As an illustration of Eq. 2.48, Fig. 2.2 (right) shows a few Kozai cycles for an equal-mass three-body system with m1 = m2 =

m3 = 1 M�, a1 = 1 AU, a2 = 103 AU, e1,0 = 0.1, e2,0 = 0.5, itot,0 = 70◦ and g1,0 = 0◦ (in the quadrupole limit, the dynamics are
independent of g2). In addition to this analytical solution, calculations from numerical integrations of the three-body dynamics
to quadrupole order (not neglecting the L1/L2 term in Eq. 2.42) have been shown with red points. These numerical integrations
are performed in a standalone c-code which implements the CVODE ordinary differential equation integrator software package
(Cohen & Hindmarsh, 1996). This code will be discussed in Sect. 3.2. Eq. 2.52 gives PK = 0.58 Gyr for this system, which is in
excellent agreement with Fig. 2.48, as is the value e1,max ≈ 0.90 given by Eq. 2.47.

For this particular system, octupole order terms are completely unimportant (we have verified this by means of numerical
integration with the same code as above) because the ratio a2/a1 = 103 is very large. This implies that Coct is small compared to
Cquad, (cf. Eqs. 2.24 and 2.26; see also Sect. 2.3.3 and in particular Eq. 2.56). An effect which is important, however, and is not
included in the above discussion is apsidal motion in the inner binary system due to general relativity. This additional source of
apsidal motion acts to detune the Kozai resonance between e1 and g1. For the example system, this effect completely dominates
three-body dynamic apsidal motion, thus Kozai cycles are completely damped2 (see Fig. 2.4). This and other additional sources
of apsidal motion are discussed further in Sect. 2.3.

2.3 Additional sources of apsidal motion
The secular three-body dynamics (STD) cause apsidal motion in both inner and outer binary orbits, cf. Eqs. 2.37 and 2.38.
Various physical processes may be responsible for additional apsidal motion. In terms of celestial mechanics, they are the result
of forces which do not obey the Newtonian gravity law (i.e. the force being inversely proportional to the square of the distance).
A common property of the additional apsidal motion terms is that they do not change sign over time and thus act to detune the
resonances between e j, g j and itot which are present during Kozai cycles. Consequently the latter may be reduced in amplitude
or even be completely suppressed. Here the main additional sources which are of interest in stellar systems are discussed. In
addition, a semi-analytic method is introduced to calculate the maximum eccentricity reached during Kozai cycles.

2A different example system in which the above solutions hold and this damping effect does not occur can easily be chosen, however, by significantly
increasing a1 while keeping a2/a1 constant.
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2.3.1 Apsidal motion due to general relativity
The apsidal motion in the inner binary system due to general relativity (GR), ġ1,GR, can be derived from the Schwarzschild metric,
employing the Killing vectors associated with conservation of angular momentum and conservation of energy (see Appendix B
for more details). The canonical expression for this apsidal motion is given by (see e.g. Fabrycky & Tremaine 2007):

ġ1,GR =
3

c2a1

(
1 − e2

1

) [
GN(m1 + m2)

a1

]3/2

, (2.53)

where c is the speed of light. In order to derive Eq. 2.53, one needs to make the assumption that the eccentricity is small
compared to unity. In cases where the inner orbit eccentricity is high, such as during eccentricity maximum in a Kozai resonance,
the canonical expression is no longer valid in the strict sense and may therefore be inadequate. Nevertheless, this canonical
expression has been used in previous works where Kozai cycles play an important role, e.g. Blaes et al. (2002) and Fabrycky
& Tremaine (2007). In Appendix B this issue is addressed and it is investigated whether Eq. 2.53 is still valid for the most
extreme conditions which we find in the population synthesis study (Chapter 5). These conditions are e1 ∼ 1 − 10−5 for inner
binary orbits of a1 ∼ 1 AU and e1 ∼ 1 − 10−8 for inner binary orbits of a1 ∼ 103 AU. We find that Eq. 2.53 is still valid if
log10(1 − e1) & −8.3 − log10(a1/AU) + log10[(m1 + m2)/M�]. This condition is satisfied for the two extreme conditions and we
thus conclude that for the purposes of the population synthesis study it is justified to use Eq. 2.53.

2.3.2 Apsidal motion due to tidal bulges and rotation
In addition to relativistic apsidal motion which applies to point masses, the non-dissipative tidal bulges induced in physically
extended stars in relatively close proximity also introduce apsidal motion. To lowest order in R1/a1 and R2/a1, where R1 and R2
are the radii of the primary and secondary inner orbit stars respectively, the total rate of the latter apsidal motion, ġ1,tide, is given
by (e.g. Smeyers & Willems 2001):

ġ1,tide = ġ1,tide,1 + ġ1,tide,2; ġ1,tide,i =
15
8

n1
8 + 12e2

1 + e4
1(

1 − e2
1

)5

q̃i kam,i

(
Ri

a1

)5 , (2.54)

where n1 = 2π/P1 =
[
G(m1 + m2)/a3

1

]1/2
is the mean inner orbital motion, kam,i is the classical apsidal motion constant of star i

(see Kopal 1946 for a definition) and q̃i ≡ m3−i/mi. Furthermore, the intrinsic rotation of the stars causes deformation of the stars
in the inner orbit and therefore apsidal motion of which the total rate ġ1,rotate is given by (Fabrycky & Tremaine, 2007)

ġ1,rotate = ġ1,rotate,1 + ġ1,rotate,2; ġ1,rotate,i =
n1(

1 − e2
1

) (1 + q̃i) kam,i

(
Ri

a1

)5 (
Ωi

n1

)2 , (2.55)

where Ωi is the angular spin frequency of star i. Here we assume that the spin vectors Ω1 and Ω2 of both stars in the inner orbit
are parallel to the inner orbit angular momentum vector G1 (i.e. we assume coplanarity), which is consistent with the assumption
made in the binary population synthesis code on which the triple algorithm in this work is based (Chapter 3).

2.3.3 Semi-analytic computation of e1,max

In the limit that energy is not dissipated, i.e. in the absence of tidal friction and/or gravitational wave emission, the maximum
eccentricity reached during Kozai cycles, e1,max, can be computed semi-analytically in the quadrupole order approximation.
Clearly energy is conserved in this limit and therefore the total Hamiltonians corresponding to the initial and final states may be
equated. To our knowledge, the octupole order STD Hamiltonian contains too many degrees of freedom to obtain e1,max; this
does not apply to the quadrupole order STD Hamiltonian. This limitation implies that the method does not apply when octupole
order terms are important. A quantity which measures the importance of octupole terms relative to quadrupole order terms is the
ratio εoct of the octupole quantity Coct (Eq. 2.26) to the quadrupole quantity Cquad (Eq. 2.24) (Naoz et al., 2011). Disregarding
the numerical factor of 15/4 and the minus sign and introducing an additional factor of e2, this quantity is given by3:

εoct =
m1 − m2

m1 + m2

a1

a2

e2

1 − e2
2

. (2.56)

3The motivation for the additional factor of e2 in εoct comes from the fact that 〈〈Roct〉2〉1 contains an overall factor of e2 (cf. Eq. 2.28) which is not the case
for 〈〈Rquad〉2〉1 (cf. Eq. 2.27).
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Figure 2.4: Maximum inner orbit eccentricity reached during Kozai cycles as function of β ≡ a2/a1 according to the method described in Sect.
2.3.3. Fixed triple parameters are as follows: m1 = 1.0 M�, m2 = 0.5 M�, m3 = 0.5 M�, R1 = 1.0 R�, R2 = 0.57 R�, e1,0 = 0.01, e2,0 = 0.30,
θ0 = 0, g1,0 = 0◦ and kam,1 = kam,2 = 0.014. Both inner orbit stars have spin periods of 10 days. In the left panel, the dotted curve shows the
dependence in the absence of additional sources of motion. For the other three curves apsidal motion due to general relativity, tidal bulges and
rotation is included, with three different values of a1: a1 = 1.0 AU (solid), a1 = 2.0 AU (dashed) and a1 = 5.0 AU (dot-dashed). Calculations of
e1,max according to direct numerical time integration of the STD equations of motion accurate to quadrupole order (with the same code used in
Fig. 2.2) have also been shown. See Fig. 2.5 for a comparison with direct numerical time integration of the STD equations of motion accurate
to octupole order. In the right panel thick curves correspond to a1 = 1.0 AU and thin curves correspond to a1 = 0.1 AU. In the solid curves
apsidal motion due to both general relativity and tidal bulges and rotation is included. In the dashed curves apsidal motion due to general
relativity alone is included. Lastly, in the dot-dashed curves apsidal motion due to tidal bulges and rotation alone is included.

The main parameters which determine the importance of the octupole order terms are therefore the relative inner binary mass
difference (m1−m2)/(m1 +m2), the ratio a1/a2 and the outer orbit eccentricity. Typically log10(|εoct|) & −3 indicates that octupole
order terms are important, in which limit the eccentric Kozai mechanism applies (e.g. Lithwick & Naoz 2011). When this
mechanism is important extremely high inner orbit eccentricities can be reached, far greater than predicted by quadrupole order
terms alone. We will return to this mechanism in the example systems (Chapter 4) and in the population synthesis (Chapter 5).

The procedure to compute e1,max within the limits described above is as follows. Excluding the constant inner and outer
binary orbital energy terms, −GNm1m2/(2a1) and −GNm3(m1 + m2)/(2a2) respectively, and excluding the energies associated
with the stellar spins, the total energy, i.e. the full Hamiltonian, is given by:

Htot = HSTD, quad +HGR +Htide +Hrotate, (2.57)

whereHSTD, quad is given by Eq. 2.31;HGR is given by (e.g. Blaes et al. 2002):

HGR =
Gm1m2

a1

3G(m1 + m2)
c2a1

1(
1 − e2

1

)1/2 (2.58)

and the last two terms in Eq. 2.57 are taken from Fabrycky & Tremaine (2007):

Htide = Htide,1 +Htide,2; Htide,i =
Gm1m2

a1

1 + 3e2
1 + 3

8 e4
1(

1 − e2
1

)9/2

q̃i kam,i

(
Ri

a1

)5 ; (2.59)

Hrotate = Hrotate,1 +Hrotate,2; Hrotate,i =
Gm1m2

a1

1

3
(
1 − e2

1

)3/2

(1 + q̃i) kam,i

(
Ri

a1

)5 (
Ωi

n1

)2 , (2.60)

where q̃i ≡ m3−i/mi. Note that the spin angular frequency Ωi of each inner binary star is assumed to be constant.
From the quadrupole order equation of motion for e1 (i.e. the quadrupole part of Eq. 2.39) it follows that e1 is stationary

(ė1 = 0) for g1 = (π/2) k, k ∈ Z. Whenever g1 = 0 or g1 is a multiple of π (even k), the stationary point corresponds to a
minimum in e1. This follows from Fig. 2.3: even k correspond to cos(g1) = cos((π/2) k) = ±1, which in turn correspond to
minima in e1, provided that g1 circulates. On the other hand, if k is odd then the stationary point corresponds to cos(g1) = 0,
which implies a minimum or a maximum in e1 in the case that g1 librates or a maximum in e1 in the case that g1 circulates. Note
that the inclusion of the additional apsidal motion terms to the Hamiltonian does not affect these properties because these terms
do not alter the equation for ė1,STD. This is because they do not imply any additional change of inner orbit angular momentum
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G1 for they are independent of g1. We conclude that the state where the inner orbit eccentricity is at a maximum corresponds to
cos(2g1) = cos(πk) = −1 for odd k (in the case that g1 librates, odd k can also correspond to a minimum eccentricity, but this
value is easily distinguished from the maximum eccentricity). Furthermore, the corresponding value of θ = cos(itot) is found from
total angular momentum conservation of the triple system and given by Eq. 2.42. Thus the maximum eccentricity during Kozai
cycles, e1,max, can be found in terms of the initial parameters by numerically solving (e.g. by means of the Newton-Raphson
method) the algebraic equation Htot = Htot,0 for e1 = e1,max with cos(2g1) = cos(πk) = −1 and θ given by Eq. 2.42. Here Htot,0
is the total Hamiltonian corresponding to the initial state and is a function of the initial e1,0, θ0, g1,0 and parameters appearing in
Eqs. 2.58, 2.59 and 2.60.

As a demonstration of the method described above and to show the significance of the additional sources of apsidal motion,
Fig. 2.4 shows e1,max as function of the outer to the inner orbit semi-major axes a2/a1, which is constant during the dynamical
evolution with the assumption of no dissipation. Since this quantity will turn out to be very important in the evolution of triples
we will denote it with special symbol, i.e. β ≡ a2/a1. The parameters of the triple system are typical for a solar-mass hierarchical
triple system in which the components are MS stars. Firstly, note that an expression for e1,max as function of initial parameters and
in the absence of additional sources of apsidal motion was derived in Sect. 2.2. This expression is independent of β. However, in
this derivation the second term ∝ L1/L2 ∝

√
a1/a2 in Eq. 2.42 was neglected. It turns out that if this second term is included the

effect is to decrease e1,max. In other words, e1,max decreases as L1/L2 ∝ β
−1/2 increases. This dependence is shown by the dotted

curve in Fig. 2.4 (left) for which the additional sources of apsidal motion are not included4. As β → ∞ the second term in Eq.
2.42 becomes negligibly small and the previous result obtained in Sect. 2.4 applies, i.e. e1,max =

(
1 − 5

3θ
2
0

)1/2
if e1,0 = 0 (and

θ2
0 <

3
5 ).

0 10 20 30 40
-2.1

-2.0

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

β→

lo
g 1

0(
1
−

e 1
,m

ax
)
→

Figure 2.5: Maximum inner orbit eccentricity reached during
Kozai cycles as function of β ≡ a2/a1 for small β for the same triple
system as in Fig. 2.4. The solid curve applies to a1 = 1.0 AU and is
computed according to the method described in Sect. 2.3.3, i.e. it
is accurate to quadrupole order. The individual points show direct
numerical time integrations where octupole order terms are also in-
cluded. For β . 18 there is a distinguishable difference between
the quadrupole order and octupole order results, although this dif-
ference is small. Note that the system is no longer dynamically
stable for β . 5 according to the stability criterion of Mardling &
Aarseth (2001).

Furthermore, when the additional sources of apsidal motion
are included the effect is to detune the Kozai resonance and
hence decrease e1,max. This is demonstrated by Fig. 2.4 (left),
where contributions of apsidal motion due to general relativity,
tidal bulges and rotation have been taken into account for three
different values of a1 (solid, dashed and dot-dashed curves). De-
pending on the value of a1 these additional sources of apsidal
motion can completely quench the Kozai resonance if β is suf-
ficiently large. In addition, points from direct numerical time
integration of the equations of motion accurate to quadrupole
order are included in Fig. 2.4 (left) and show excellent agree-
ment with the semi-analytical curves. For this system octupole
order terms are generally not important, even for small β: only
for β . 18 the octupole order integrations predict higher e1,max,
but the differences are not significant (cf. Fig. 2.5).

The individual contributions of additional apsidal motion
due to general relativity on the one hand and tidal bulges and ro-
tation on the other hand are illustrated in Fig. 2.4 (right), where
curves are shown for a1 = 0.1 AU and a1 = 1.0 AU. In this ex-
ample the contribution of the damping of the Kozai resonance
due to tidal bulges and rotation dominates for β . 100, whereas
the contribution due to general relativity dominates for β & 100.
Which of the two processes dominates is strongly dependent on
the stellar radii and spin periods (cf. Eqs. 2.54 and 2.55). If the
radii are very small (e.g. for compact objects) and/or the spin
periods are long then the contribution due to tidal bulges and
rotation is typically negligible. In the latter case, apsidal motion due to general relativity can still significantly detune the Kozai
resonance. Note that for both contributions the damping effect increases in significance for smaller values of a1. Thus for tight
inner binary orbits the Kozai resonance can be effective only for a narrow range of β. This has important consequences for the
evolution of triples as will become clear in the population synthesis study (Chapter 5).

4For this case (to quadrupole order, with no additional sources of apsidal motion and with Eq. 2.42) we have found an analytic expression for e1,max as

function of β. The general expression is very complicated, but for e1,0 = 0 it reduces to the following relatively simple expression: let γ ≡ 1
2

(
1 − e2

2

)−1/2
L1/L2 =

1
2

(
1 − e2

2

)−1/2
β−1/2 m1m2

m3(m1+m2)

( m1+m2+m3
m1+m2

)1/2
then e1,max =

{
1 − 1

8γ2

[
3 + 9γ2 + 8γθ0 −

(
9 + γ

(
48θ0 + γ

(
54 + γ2 − 16γθ0 − 16θ2

0

)))1/2
]}1/2

. The critical inclina-

tion for which e1,max > e1,0 = 0 is θ0 =
[

3
5

(
1 + 1

15γ
2
)]1/2

− 1
5γ <

(
3
5

)1/2
, i.e. the minimum mutual inclination angle for significant Kozai cycles is increased with

respect to the case γ = 0. As γ → 0, it can be shown that e1,max →
(
1 − 5

3 θ
2
0

)1/2
, which is the familiar limit derived in Sect. 2.2.
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Chapter 3
Hierarchical triple evolution algorithm

In previous studies of (coeval) stellar hierarchical triple systems usually a specific aspect of the evolution is studied. In
particular, the coupling of Kozai cycles with tidal friction (KCTF) has been studied in the context of main sequence systems

(Mazeh & Shaham, 1979; Eggleton & Kisseleva-Eggleton, 2001; Kisseleva-Eggleton & Eggleton, 2010; Fabrycky & Tremaine,
2007). Furthermore, the occurrence of extremely-high eccentricity cycles in relatively high mass (primary mass m1 = 7.0 M�)
triple systems has recently been studied by Shappee & Thompson (2012), where the effect of mass loss due to stellar evolution
was taken into account. To our knowledge a comprehensive population synthesis study of triples, including a realistic description
of the stellar evolution of the inner binary components and their binary interaction, has not been performed. Such a study is
needed to gain quantitative understanding of the importance of Kozai cycles in triples at various stages in the evolution of the
inner binary system. Because a relatively fast algorithm is required for such a population synthesis study and in order to ensure
that the evolution of the inner binary system is treated adequately, we utilize an existing binary population synthesis code which
has been extensively used and tested previously, binary_c (Izzard et al., 2004, 2006, 2009). To this code we have added a
newly-developed module (hereafter triple_c) which takes into account the secular gravitational dynamics introduced by the
tertiary in hierarchical triple systems. In this chapter we describe the details of this new algorithm: in Sect. 3.1 we give the
equations which form the basis of the algorithm, in Sect. 3.2 we describe the implementation of the coupling of the secular
gravitational dynamics to the binary population synthesis code and in Sect. 3.3 we include some information on how various
required physical quantities are obtained. Examples of the new algorithm are given in Chapter 4 and the results of the population
synthesis study are described in Chapter 5.

3.1 Equations
In Sect. 2 the basic theoretical background of the dynamics of hierarchical triple systems was introduced. To octupole order,
these dynamics are described by Eqs. 2.37, 2.38, 2.39 and 2.40, in conjunction with conservation of total angular momentum
which is expressed by Eq. 2.41. In addition there are sources of apsidal motion other than due to STD as discussed in Sect. 2.3.
These dynamics are restricted to non-dissipative processes during which the inner and outer orbital energies remain constant. If
the eccentricity in the inner binary system reaches high values due to Kozai cycles, however, dissipative processes, in particular
tidal friction and gravitational wave emission (GWE), may become (very) important in the inner binary system. These processes
are non-conservative and orbital and/or spin energy is dissipated either into the interior of the inner orbit stars or in the form of
gravitational waves. It is therefore important to also incorporate such effects into the triple evolution algorithm. We address these
processes below.

3.1.1 Tidal friction
Whenever the distances between the stars in hierarchical triple systems become comparable to the stellar radii, tidal effects may
become important. For most hierarchical triple systems, tidal effects in the outer binary system are unimportant due to the large
separation of the tertiary with respect to the inner binary components. In the inner binary system the separation between binary
components is typically much smaller and hence tidal effects can be important. In the case of inner binary components with
convective envelopes, the components may induce hydrostatic tidal bulges on each other. Dissipative convective motions in
the stellar envelopes may then produce a misalignment of these tidal bulges with respect to the line joining the two centers of
mass of the inner binary components. This misalignment causes a tidal torque which enables the exchange between stellar spin
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and orbital angular momentum and energy. This exchange continues until circularization, synchronization and coplanarity are
achieved (Hut, 1980). Because convective processes typically occur on short (i.e. dynamical) timescales, this mechanism for
tidal friction, also known as the equilibrium tide (Zahn, 1977; Hut, 1981) is generally an effective mechanism. In the absence of a
convective envelope, which is the case for MS stars with m & 1.25 M�, a different, much less effective mechanism is responsible
for the exchange between stellar spin and orbital angular momentum and energy. In the latter case, low-frequency gravity
modes are excited by the time-varying tidal potential (the dynamical tide, Zahn 1975). Consequently damping of these modes
near the surface of the star by radiation provides the torque necessary for the coupling between rotation of the spin and orbit.
Similarly to the equilibrium tide, in the dynamical tide the final result of the tidal interaction is circularization, synchronization
and coplanarity. Due to the much lower efficiency of energy dissipation in the dynamical tide compared to that in the equilibrium
tide, the timescales of these processes are generally much longer.

Regardless of the mechanism which produces the necessary torque, the effect of tidal friction on the dynamical evolution of
the orbital parameters can be described by the same equations, which are given by (Hut, 1981):

ȧ1,TF = ȧ1,TF,1 + ȧ1,TF,2; ȧ1,TF,i = −6
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]
, (3.1)

where TF denotes tidal friction, i ∈ {1, 2} denotes the inner binary star number, kam,i is the apsidal motion constant, Ti is a
typical time scale on which significant changes in the orbit take place through tidal evolution, q̃i = m3−i/mi, n1 = 2π/P1 =[
G(m1 + m2)/a3

1

]1/2
is the mean inner orbital motion, Ωi is the spin frequency and r2

g,i ≡ Ii/
(
miR2

i

)
is the radius of gyration, where

Ii denotes moment of inertia. The functions fk
(
e2

1

)
, k ∈ {1, 2, 3, 4, 5}, are functions of the square of the inner orbit eccentricity

and their explicit expressions are given in Hut (1981). Note that we assume coplanarity for both inner orbit stars, consistent with
the treatment in Hurley et al. (2002). The ratio ki/Ti measures the strength of tidal friction due to the structure of the stars. In
Sect. 3.3 we elaborate on how we obtain this quantity at various evolutionary stages of the inner binary stars.

3.1.2 Gravitational wave emission
Although in hierarchical triple systems the outer binary system is too wide for any significant gravitational wave emission (GWE),
this process may be important in the much tighter inner binary system. As a consequence of the emission of gravitational waves
the inner binary is circularized and shrinks, which processes are described quantitatively by (e.g. Blaes et al. 2002):

ė1,GWE = −
304 G3

Nm1m2(m1 + m2) e1
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1
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ȧ1,GWE = −
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24
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Typically, GWE is only important in rather tight inner binary systems, at least if e1 is not very high. For circular orbits
Eq. 3.3 is easily integrated to give a merger time as a function of the initial inner orbit semi-major axis a1,0 of tGWE,merge =

5c5a4
1,0/

[
256G3

Nm1m2(m1 + m2)
]
. For a 0.6 M� + 0.6 M� binary system this gives tGWE,merge = tH = 13.7 Gyr (i.e. a Hubble time)

if a1,0 ≈ 0.012 AU (corresponding to an orbital period of P1 ≈ 0.42 d). This merger time can be significantly reduced for highly
eccentric orbits, however, e.g. as a consequence of Kozai cycles. The latter scenario has been investigated by Thompson (2011)
who finds that inner binaries with orbital periods as high as P1 ∼ 300 d can still merge within a Hubble time if the triple param-
eters are chosen appropriately. In the present work, however, we find that the tertiary is too distant for this to be an important
effect by the time GWE becomes important (i.e. when a1 is sufficiently small), see also Chapters 5 and 6 and in particular Fig.
5.6.
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3.1.3 System of first-order differential equations
The triple_c algorithm computes the change of various dynamical inner and outer orbit quantities according to the following
system of ordinary differential equations:

ġ1 = ġ1,STD + ġ1,GR + ġ1,tide + ġ1,rotate;
ġ2 = ġ2,STD;
ė1 = ė1,STD + ė1,TF + ė1,GWE;
ė2 = ė2,STD;
ȧ1 = ȧ1,TF + ȧ1,GWE;
θ̇ = −1

G1G2

[
Ġ1 (G1 + G2θ) + Ġ2 (G2 + G1θ)

]
;

Ω̇1 = Ω̇1,TF;
Ω̇2 = Ω̇2,TF,

(3.4)

where ġ1,STD, ġ2,STD, ė1,STD and ė2,STD are given by Eqs. 2.37, 2.38, 2.39 and 2.40 respectively, ġ1,GR, ġ1,tide and ġ1,rotate are given
by Eqs. 2.53, 2.54 and 2.55 respectively, ȧ1,TF, ė1,TF and Ω̇i,TF are given by Eq. 3.1 and ė1,GWE and ȧ1,GWE are given by Eqs. 3.2
and 3.3 respectively. The main assumption in these equations is that all processes that they describe are independent such that
terms due to different processes may simply be added. It is important to note that both tidal friction and GWE act only to change
a1 and e1 and therefore affect the magnitude and not the direction of G1, the orbital angular momentum vector of the inner binary
system. This implies that θ is not affected by these processes. To compute the effect of STD on θ (i.e. the expression for θ̇),
differentiate the relation G2

tot = G2
1 + G2

2 + 2G1G2θ with respect to time, noting that Gtot due to STD is constant and subsequently
solve for θ̇. The quantities Ġ1 and Ġ2 due to STD in the relation that follows are given by Ġ j = −G je jė j/

(
1 − e2

j

)
. The latter

follows from differentiation of G j in Eq. 2.34 with respect to time, using that L j due to STD remains constant.

3.2 Coupling to binary algorithm
The hierarchical triple evolution algorithm developed in this work couples the system of differential equations Eq. 3.4 with
the existing rapid binary population synthesis algorithm binary_c, developed originally by Hurley et al. (2002) and further
developed by Izzard et al. (2004, 2006, 2009). This binary star algorithm includes stellar evolution and a variety of binary
interaction processes such as mass loss due to stellar winds, mass transfer and common-envelope evolution. We refer to Hurley
et al. (2002) for further details of the binary population synthesis algorithm. The novel aspect of our approach is that the evolution
of the inner binary system is taken into account through the coupling with binary_c. Also taken into account is the evolution of
the tertiary, which is treated as being isolated such that its mass may be computed from single stellar evolution. The mass of the
tertiary enters the differential equations Eq. 3.4 through the m3-dependent quantities Cquad, Coct and G2. We restrict ourselves to
hierarchical triple systems in which at all times the tertiary is sufficiently distant from the inner binary system that it does not fill
its Roche-lobe in its orbit around the inner binary system as has been suggested in earlier studies (e.g. Iben & Tutukov 1999).
Therefore the latter processes are not modeled in the triple algorithm.

The system of differential equations Eq. 3.4 is solved for the duration of each time step of the binary_c algorithm. In
order to ensure proper convergence of the solutions of Eq. 3.4, which are quite stiff in nature, we use an ordinary differential
equation (ODE) solver specifically designed to integrate stiff ordinary differential equations (Cohen & Hindmarsh, 1996). We
have checked the results of our algorithm when not coupled with the binary_c code by computing the evolution of the same
hierarchical triple systems as in Ford et al. (2000), Blaes et al. (2002) and Naoz et al. (2011) and have found good agreement.
During each binary_c time step, quantities not included in the right hand side of Eq. 3.4 such as the inner binary masses and
radii are assumed to be constant. Because the binary_c algorithm uses adaptive time steps to match the rate of binary evolution,
it is always ensured that these quantities do not change significantly during each iteration of the triple evolution algorithm. In
addition, the triple algorithm decreases the binary_c time step such that the inner orbital angular momentum G1 does not change
significantly. Thus, changes to the inner orbit semi-major axis and eccentricity due to STD coupled with tidal friction and GWE
are relayed to the binary_c algorithm at appropriate times.

The version of binary_c used in this work enforces circularization at the onset of Roche Lobe overflow (RLOF) and
common-envelope (CE) evolution. Although this assumption is generally justified for isolated binaries, in hierarchical triple
systems high-amplitude eccentricity cycles could be induced even during these phases, in particular if the timescale of these
cycles is comparable to or smaller than the timescales of mass transfer driven by RLOF. An accurate treatment of the latter
processes in eccentric orbits is beyond the scope of this work (for recent work in this area we refer to Sepinsky et al. 2007) and
so in this work the triple algorithm is disabled whenever mass transfer driven by RLOF or CE evolution ensues. Whenever the
triple algorithm is active, it is ensured that tidal evolution and GWE in the inner binary system as calculated by binary_c do not
change the inner orbital parameters, as these processes are taken into account by the triple module through the equations for ė1
and ȧ1 in Eq. 3.4. In this manner the coupling of eccentricity cycles with tidal friction and GWE in the inner orbit is calculated
consistently.
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If the ratio β ≡ a2/a1 is relatively large, the effects of STD are likely quenched by different processes in the inner binary
system, in particular due to general relativistic apsidal motion in very tight inner binary systems, as has been illustrated in
Sect. 2.3.3. In such situations it is not necessary to solve Eq. 3.4 as the STD-related terms are negligible and the inner
binary evolution can therefore be handled fully by the existing binary_c code. In order to speed up computation, a criterion is
therefore introduced which disables the ODE solver module and leaves the inner binary evolution up to binary_c in such cases.
Specifically, for each iteration the ODE solver module is disabled if β > 10 βcrit,GR, where βcrit,GR is the value of β such that the
periods associated with apsidal motion due to STD and general relativity are equal. An estimate of the period due to general
relativistic apsidal motion is given by the reciprocal of Eq. 2.53, whereas an estimate of the period due to STD apsidal motion is
given by1 Eq. 2.52. Equating these two periods and ignoring factors of order unity, we find that the critical value of β for which
GR apsidal motion dominates STD apsidal motion is given by:
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Outer orbital expansion due to mass loss in either inner or outer binary systems is taken into account with the assumption of
fast, isotropic winds (i.e. Jeans mode) such that a2(m1 + m2 + m3) and e2 remain constant (Huang, 1956, 1963). With this relation
a new value of a2 is computed from the changes of m1, m2 and m3 during each time step of binary_c. The assumption implies
that if the inner orbit components also lose mass in a fast isotropic wind such that a1(m1 + m2) is constant and if the tertiary mass
m3 remains constant, then a2 increases by a relatively smaller amount than a1 increases, such that β ≡ a2/a1 decreases. We return
to this important feature of triple evolution in Chapters 4 and 5.

Lastly, at each time step the triple system is checked for dynamical stability by means of the stability criterion formulated by
Mardling & Aarseth (2001), which states that the system is stable if β ≡ a2/a1 satisfies:

β > βcrit =
2.8

1 − e2

(
(1 + q2)

1 + e2

(1 − e2)1/2

)2/5

(1 − 0.3itot/π) , (3.6)

where q2 ≡ m3/(m1 + m2) and itot is expressed in radians. The factor depending on itot expresses the property that inclined triple
systems tend to be more dynamically stable than coplanar ones. Whenever β ≤ βcrit, the STD equations are no longer strictly
applicable and the triple algorithm is disabled. Subsequent evolution would have to be computed with a three-body integrator
code, which is beyond the scope of this work (see e.g. Perets & Kratter 2012 for a study of triple systems which become
dynamically unstable).

3.3 Evaluation of various physical quantities
In this section we include information on how various physical quantities occurring in Eq. 3.4 are evaluated in the triple_c
algorithm. The ratio kam,i/Ti, which is a measure for the strength of tidal friction (Sect. 3.1.1), is computed according to the
same prescription which is used in binary_c (Hurley et al., 2002). In this prescription a distinction is made between convective,
radiative and degenerate envelopes and the quantity ki/Ti is computed based on results of Rasio et al. (1996), Zahn (1977) and
Campbell (1984) for these three cases respectively. Typically for MS stars with radiative envelopes ki/Ti ∼ 10−18 s−1, for evolved
stars with convective envelopes (i.e. giants) ki/Ti ∼ 10−8 s−1 and for degenerate stars ki/Ti ∼ 10−15 s−1 (see also the bottom right
panel in Fig. 4.1). The gyration radii r2

g,i, required for the expressions for Ω̇i,TF (Eq. 3.1), are computed with a prescription in
which the stars are split into two parts, consisting of the core and the envelope, detailed in Hurley et al. (2000) and Hurley et al.
(2002). The quantities kam,i/Ti and r2

g,i are thus calculated from precisely the same prescription as in the binary_c code which
is necessary for a consistent treatment.

The classical apsidal motion constant kam,i for star i in the inner binary orbit required for Eqs. 2.54 and 2.55 (note that in
the above prescription of Hurley et al. (2002) the ratio kam,i/Ti is obtained and not kam,i) is computed as a function of mass and
time relative to the zero-age main sequence from detailed stellar models for metallicity Z = 0.02 calculated by Claret (2004).
The run of kam,i with time is determined by means of linear relations scaled to the time spent during each evolutionary stage
for all tabulated masses in Claret (2004). Subsequently, kam,i is calculated for arbitrary mass by means of linear interpolation
between adjacent mass values. Furthermore, for low mass stars, i.e. mi < 0.7 M�, the classical apsidal motion constant is taken
to be kam,i = 0.14 corresponding to n = 3/2 polytropes as an estimate for these (nearly) fully convective stars. For helium main
sequence stars and white dwarfs, kam,i is calculated as function of mass by means of interpolations of tabulated data from Vila
(1977). Lastly, for neutron stars, kam,i is calculated as function of mass and radius from the expression given in Hinderer (2008)
and for black holes kam,i = 0 as appropriate for non-spinning black holes.

1In this limit of relatively large β, Eq. 2.52 gives an adequate estimate of the Kozai period because in this limit the second term ∝ L1/L2 in Eq. 2.42 and
octupole order effects are not important.
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Lastly, we detail some of the fixed binary evolution parameters used in this work. We choose quasi-solar metallicity, i.e.
Z = 0.02. The initial spin periods of the inner orbit components are computed from a formula given by Hurley et al. (2000),
which is fitted from data of the rotational speed of MS stars of Lang (1992). The common-envelope parameter αCE describes the
efficiency of the conversion of orbital energy into binding energy with which to shed the envelope and it is set to the canonical
value of αCE = 1. In the αCE common-envelope description, an additional parameter λ is required, which is a dimensionless
measure of the relative density distribution within the envelope; here it is determined by means of functional fits as detailed in
Claeys et al. (2012). All other parameters intrinsic to the binary_c algorithm are also set to identical values as in Claeys et al.
(2012).
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Chapter 4
Example systems

To demonstrate the triple algorithm described in Chapter 3, we discuss in detail the evolution of two coeval stellar hierar-
chical triple systems which are typical examples of systems in our population synthesis study (Chapter 5) in which an

inner binary carbon-oxygen (CO) white dwarf (WD) merger occurs through either a triple-induced circular mechanism (TICM)
or a triple-induced eccentric mechanism (TIEM). These systems are selected from a triple sample in which the inner binary
would not interact in the absence of a tertiary; we refer to Chapter 5 for more details.

4.1 CO WD TICM merger
We consider a hierarchical triple system with initial parameters m1 = 3.95 M�, m2 = 3.03 M�, m3 = 2.73 M�, a1 = 19.7 AU,
a2 = 636.1 AU, e1 = 0.23, e2 = 0.82, itot = 116.0◦, g1 = 28.5◦ and g2 = 249.6◦. Fig. 4.1 shows a1, e1, β ≡ a2/a1, itot, εoct and the
tidal strength quantity ki/Ti (Eq. 3.1) as a function of time. Here εoct is the octupole parameter which quantifies the importance
of octupole terms with respect to quadrupole terms and was introduced earlier in Sect. 2.3.3. In Fig. 4.1 the evolution is shown
with both the triple algorithm enabled (triple case; solid curves) and disabled, leaving all inner binary evolution to binary_c
(binary case; dashed curves). The latter binary case is equivalent to the situation in which there is no tertiary present. In the
binary, case the inner orbit semi-major axis increases at the two moments when the inner binary stars evolve from AGB stars to
CO WDs as a consequence of the associated wind mass loss. Here it is assumed that the wind mass loss is fast and isotropic
such that a1(m1 + m2) remains constant. When either star in the inner binary system enters the RGB or AGB phase, it develops
a convective envelope which increases the possibility for significant tidal fraction (cf. Sect. 3.1.1). In addition, the radii increase
significantly. The change of envelope structure is reflected by a corresponding substantial increase of the tidal strength quantity
ki/Ti, as is shown by Fig. 4.1, where ki/Ti is shown specifically during the primary AGB phase. Note that k1/T1 increases by 9
orders of magnitude during this phase and that it lasts for a relatively short time. Despite the large k1/T1 and radii, in the binary
case there is no significant tidal friction due to the large a1 and low e1. Consequently in the binary case the CO WDs end their
evolution in a wide binary of a1 ≈ 84 AU; note that during the evolution the stars did not interact.

In the triple case, Kozai cycles are induced in the inner orbit by the tertiary with e1,max ≈ 0.9. Octupole order terms are
important as |εoct| ≈ 10−2. Nevertheless, the eccentricity is not high enough to drive significant tidal friction during the MS
because the tidal strength quantity is very small, ki/Ti ∼ 10−18 s−1. This is due to the fact that both inner binary stars have radiative
envelopes. In addition, e1 is not high enough for an orbital collision. During the primary RGB phase e1 is not high enough to
trigger significant tidal friction, but this is the case during the primary AGB phase starting at t ≈ 220.5 Myr. Subsequently strong
tidal friction circularizes the inner orbit during the time span of five Kozai cycles, where significant orbital shrinkage occurs at
eccentricity maxima (Fig. 4.2). Consequently a1 is reduced to a1 ≈ 7 AU and the orbit is completely circularized. Note that for
complete circularization to occur, the duration of the phase in which k1/T1 is substantial must be sufficiently long compared to
the Kozai period PK , which is the case for this example system. In other cases, however, the Kozai period PK ∝ (P2/P1) P2 (Eq.
2.52) can be much longer than the duration of the RGB/AGB phases, thus avoiding strong tidal friction even if the eccentricity
maxima are high. After KCTF the ratio β has increased substantially to β ∼ 1200, which is large enough to fully quench any
subsequent eccentricity cycles (cf. Fig. 2.4). Consequently the mutual inclination angle itot is frozen to itot ≈ 128◦.

Shortly after this episode of KCTF during the primary AGB phase in the triple case, the primary which swells to R1 ≈ 600 R�
fills its Roche Lobe and invokes common-envelope (CE) evolution, thus evolving to a CO WD and shrinking the orbit further
to a1 ≈ 1 AU (Fig. 4.2). The secondary emerges from the CE as a MS star and continues its evolution. During its RGB phase
the orbit is shrunk slightly due to tidal friction which explains the small kink in the plot of a1 at t ∼ 102.6 Myr in Fig. 4.1.
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Figure 4.1: Several quantities of interest in the evolution of the TICM example system. Shown as a function of time are a1, e1, β ≡ a2/a1, itot,
εoct (Eq. 2.56) and ki/Ti. Solid lines: triple case; dashed lines: binary case. For the plot of ki/Ti, the triple and binary cases are very similar;
here the solid line applies to the primary (i = 1) and the dot-dashed line to the secondary (i = 2). Note that the evolution is not fully sampled
in these plots which results in several kinks (in particular in the plots for e1 and itot) – more detailed calculations are performed internally in the
triple algorithm but are not shown here (cf. Sect. 3.2).
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Figure 4.2: Detail of Fig 4.1 (top left).

At t ∼ 102.7 Myr the secondary evolves to an AGB star, invoking a second
CE phase. A close CO WD binary with a1 ∼ 10−2 AU emerges from the
CE. Due to gravitational wave emission (GWE), the system subsequently
merges at t ≈ 104.1 Myr in a circular orbit. We refer to the mechanism
through which the merger occurs as the triple-induced circular mecha-
nism (TICM) because the tertiary is (indirectly) responsible for driving a
merger, although by the time the merger occurs the inner orbit has been
completely circularized. The combined CO WD mass, 1.45 M�, exceeds
the Chandrasekhar mass, thus the merger potentially leads to a SN Ia (see
also Sect. 5.4.2). A notable aspect of this scenario is that the tertiary af-
fects the inner binary system only for the first ∼ 220 Myr of the evolution,
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Figure 4.3: Quantities of interest for the TIEM example system, similar to Fig. 4.1.

which is only 1.7 % of the total lifetime of the inner binary system. Thus it is unlikely that the system is observed at a time when
e1 is high. Furthermore, due to mass loss in the inner and outer binary systems a2 increases by over a factor of four compared to
the initial value to a2 ≈ 2750 AU at t ≈ 600 Myr while a1 decreases significantly, thus making it difficult to observe the system
as a hierarchical triple system after this time.

4.2 CO WD TIEM merger
The second example system has initial parameters m1 = 3.26 M�, m2 = 2.00 M�, m3 = 1.39 M�, a1 = 716.6 AU, a2 = 2.012 ·
104 AU, e1 = 0.78, e2 = 0.64, itot = 93.4◦, g1 = 150.0◦ and g2 = 151.2◦. The evolution of a1, e1, β ≡ a2/a1 and itot for this system
as function of time is shown in Fig. 4.3. The main difference in initial parameters in this example system compared to the previous
TICM example system is that a1 and a2 are larger, although their ratio β is comparable. Due to the larger a2 the Kozai period
PK ≈ 100 Myr is much longer. Consequently the primary RGB and AGB phases (which occur at t ∼ 102.5 Myr and t ∼ 102.6 Myr
respectively) do not coincide with eccentricity maxima and there is no significant tidal friction during these phases, even though
e1 reaches higher maximum values compared to the TICM example. As the primary and secondary evolve to CO WDs the
associated wind mass loss widens the orbit to a1 ≈ 103.42 AU. Although this inner binary wind mass loss increases a2 as well, the
ratio β = a2/a1 decreases with the assumption of fast isotropic winds such that a1(m1 + m2) and a2(m1 + m2 + m3) are constant
and if m3 also remains constant. As a consequence the ratio β decreases significantly to β ≈ 18 after the secondary has evolved
to a CO WD. As the tertiary evolves to a CO WD and subsequently loses mass at t ∼ 103.6 Myr, a2 increases while a1 stays
constant, thus increasing β again. The latter process also increases the Kozai period and, somewhat surprisingly, the eccentricity
cycles increase in amplitude. This process is associated with cos(itot) increasing slowly from negative values (retrograde orbit)
to positive values (prograde orbit). At the moment of the orbital “flip” from retrograde to prograde at t ≈ 7.0 Gyr, e1 reaches a
value of 1− e1 ≈ 10−7.4, which is high enough to trigger an orbital collision even though a1 ≈ 103.42 AU ≈ 2630 AU is very large.
This phenomenon of complex eccentricity modulations and orbital flips resulting into extremely high eccentricities is known as
the eccentric Kozai mechanism (Lithwick & Naoz , 2011). It has also been studied in the context of systems in which mass loss
is important (Shappee & Thompson, 2012) because mass loss significantly increases εoct (cf. Eq. 2.56). Intuitively it might be
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expected that the extreme eccentricity of e1 ∼ 1 − 10−7 as computed in this example system induces strong tidal friction in the
CO WD system instead of triggering an orbital collision. For this example, however, the tidal strength quantity ki/Ti ∼ 10−15 s−1

as given by the Hurley et al. (2002) recipe is too small for significant tidal friction. Uncertainties in ki/Ti for degenerate (and
radiative) damping still exist, however, in particular for highly eccentric orbits. We have performed a test in which ki/Ti for
degenerate damping is multiplied by an artificial ad hoc factor of 103 to investigate the effect of much more effective degenerate
damping. We find that the outcome is identical and thus we conclude that these uncertainties do not affect this system. We have
performed similar tests for all systems in the population synthesis and find similar results; see Sect. 6.2 for more details.
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Chapter 5
Triple population synthesis

Using the algorithm described in Sect. 3 we perform a population synthesis study of coeval stellar hierarchical triple
systems. First we formulate the selection criteria of the specific triple population in Sect. 5.1 and based on these

criteria we synthesize two triple populations by means of Monte Carlo methods in Sect. 5.2. These populations are subsequently
evolved with the triple algorithm and the results are discussed in Sect. 5.3. We focus in more detail on triple-induced CO WD
mergers, i.e. mergers induced by the secular gravitational influence of the tertiary, in Sect. 5.4.

5.1 Selection criteria
As mentioned in the introduction, in the present study we are mainly interested in inner binary mergers involving a CO WD.
Hence we take an upper limit of the inner binary primary mass m1 of m1,u = 6.5 M�, which approximately captures the boundary
between forming a CO WD and an oxygen-neon (ONe) WD in the case of single star evolution. The lower limit of m1 is set
to m1,l = 1.0 M� as any lower mass will not produce a significant number of CO WDs within a Hubble time for the chosen
metallicity Z = 0.02. In addition we focus on triple systems with relatively wide inner binary systems, such that in the absence
of a tertiary the inner binary stars do not interact during their evolution. With 1.0 < m1/M� < 6.5, this implies that in the
latter situation most systems consist of wide CO WD or CO WD + MS binaries after a Hubble time. The requirement of non-
interactivity implies that neither star in the inner orbit fills its Roche Lobe during its evolution. This is achieved by choosing
an inner orbit semi-major axis which is large enough to prevent Roche Lobe Overflow (RLOF) when the inner orbit stars attain
their largest radius, i.e. during their AGB phases. In the absence of the tertiary tidal friction can act to shrink the orbit during
this phase. If this happens prior to significant mass loss the inner orbital angular momentum is approximately conserved, hence
also the inner orbit semi-latus rectum l1 ≡ a1

(
1 − e2

1

)
is conserved (cf. Eq. 2.34 with m1 and m2 constant). Therefore, in order

to select non-interacting inner binary systems we select systems with initially l1 > l1,l = 12 AU, such that after tidal friction the
inner orbit semi-major axis is at least larger than 12 AU, which is large enough to prevent RLOF for binaries in the mass range
1.0 < m1/M� < 6.5.

A possible method to obtain the initial triple parameters is to directly sample from data of observed triple systems. Fig. 5.1
(top) shows the observed sample of 725 triple systems of Tokovinin (2008) in the (P1, P2)-diagram. A clear paucity of systems
with inner orbital periods between log10(P1/d) = 2 and log10(P1/d) = 4 is present, which is likely due to the difficulty of
detecting such systems in the regime between spectroscopic and visual binaries. Our selection criteria of inner binary systems
with 1.0 < m1/M� < 6.5 and l1 > 12 AU decrease the number of systems from 725 to 165, where a value of log10(P1/d) = 4
is taken to represent the dividing value l1,l = 12 AU. The number of remaining systems is not large enough for direct sampling,
therefore we choose to utilize the method of Monte Carlo sampling from distributions which are based on observed distributions.
In order to gain information on the uncertainties of our results we use two distinct sampling methods, which are described below.

5.2 Sampling methods
The first triple sampling method (TSM1) is based on the supposition that a hierarchical triple system is composed of two uncor-
related binary systems. The main advantage of this approach is that the statistics of binary parameters are known with greater
certainty than those of triple systems. A primary mass 1.0 < m1/M� < 6.5 is sampled from a Kroupa et al. (1993) IMF, i.e. with
slope −2.70. Subsequently two mass ratios, q1 ≡ m2/m1 and q2 ≡ m3/(m1 + m2), are sampled independently from a uniform
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Figure 5.1: Inner (P1) and outer (P2) orbital periods of triple systems of the observed triple sample of Tokovinin (2008) (top left) and the
two synthetic triple samples described in Sect. 5.2 (top right and bottom left). In the former observational sample, systems satisfying our
selection criteria are denoted with •. In the latter synthetic samples, • denotes the systems which undergo an early MS inner binary merger
or destabilization and hence are not likely to be observed. The solid lines correspond to P2/P1 = 5 and represent the typical critical value for
dynamical stability. In the bottom right panel, the probability density function (PDF) of P2/P1 is shown for the Tokovinin sample satisfying
the selection criteria (thick solid curve; error bars based on Poisson statistics are included), TSM1 (solid curve), TSM1u (dashed curve), TSM2
(dot-dashed curve) and TSM2u (dotted curve).

distribution such that 0 < q j ≤ 1 (where j ∈ {1, 2}), m2 > 0.01 M� and m3 > 0.01 M�, consistent with Claeys et al. (2012). The
lower limit on the stellar masses is in accordance with the limit found by Kouwenhoven et al. (2007). The secondary and tertiary
masses are subsequently computed from these mass ratios. We sample e1 and e2 from a thermal distribution dN/de j = 2e j as is
appropriate for P j > 103 d binaries (Kroupa & Burkert, 2001). Two semi-major axes are then sampled from a distribution which
is flat in log10(a j), the smaller of which is designated a1 and the larger of which is designated a2. The lower and upper limits al

and au in the distribution of the semi-major axes are al = 5 R� and au = 5 · 106 R� for both inner and outer orbits (Kouwenhoven
et al., 2007). From these systems we reject those which do not satisfy l1 = a1

(
1 − e2

1

)
> l1,l = 12 AU. Lastly, we sample the

initial mutual orbital inclination angle itot from a distribution which is uniform in cos(itot) with −1 < cos(itot) < 1 and the initial
arguments of periastron of both orbits, g1 and g2, from a uniform distribution with 0 < g j < 2π. From the triple systems obtained
in this manner, we subsequently reject the systems which are not dynamically stable based on the stability criterion of Mardling
& Aarseth (2001), consistent with our triple evolution algorithm (cf. Sect. 3.2).

In the second triple sampling method (TSM2) we use the multiple system recipe developed by Eggleton (2009). This recipe
is designed to reproduce the properties of a set of 4558 stellar systems with Hipparcos magnitude brighter than 6 collected by
Eggleton & Tokovinin (2008). It is followed until the second bifurcation, effectively selecting the multiple systems which are
triple. The parameters given by the recipe are m1, m2, m3, P1 and P2. The primary mass distribution in this recipe is designed
to resemble the Salpeter distribution at large masses and turns over for masses below 0.3 M�. The mass ratio distribution is
approximately flat and the P2 distribution has a broad peak around 105 d. We refer to Eggleton (2009) for further details. The
corresponding semi-major axes are computed from Kepler’s third law. The parameters not prescribed by the recipe are itot, e j

and g j, which are sampled from the same distributions as in TSM1. Similarly to the method in TSM1, systems are rejected if
l1 ≤ l1,l = 12 AU and if they do not satisfy the stability criterion of Mardling & Aarseth (2001).

Fig. 5.1 (top right & bottom left) shows the period-period diagram for a small sample (360 systems) of the TSM1 and
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TSM2 populations. Note that the upper boundaries of P1 and P2 in both populations are quite different. In TSM1, P1 and P2
are limited by al and au, whereas in TSM2 such sharp boundaries do not exist. In TSM2 there exists an upper boundary of P2
which is dependent on P1, because in this sampling method the largest ratio P2/P1 is given by P2/P1 = 2 · 106. This maximum
period ratio has no physical origin and the consequences are minimal as such wide outer binary systems are very rare. Fig.
5.1 (top right & bottom left) also shows the systems which according to our triple algorithm experience a merger in the inner
binary system or a destabilization early on the MS (see also Sect. 5.3). Such systems are not likely part of any observed sample
of hierarchical triple systems. The populations with these systems removed are denoted by TSM1u and TSM2u respectively.

Tokovinin TSM1 TSM1u

Mean SD Mean SD Mean SD

m1/M� 2.36 1.23 1.85 1.01 1.85 1.02
m2/M� 1.69 0.94 0.93 0.79 0.95 0.80
m3/M� 1.53 1.39 1.36 1.23 1.37 1.24
log10(P1/d) 5.13 0.73 5.47 0.81 5.44 0.79
log10(P2/d) 7.04 0.76 7.87 0.75 7.89 0.73

TSM2 TSM2u

Mean SD Mean SD

m1/M� 2.17 1.24 2.18 1.24
m2/M� 1.09 0.93 1.11 0.93
m3/M� 1.59 1.43 1.61 1.44
log10(P1/d) 5.77 1.29 5.78 1.31
log10(P2/d) 8.28 1.61 8.36 1.62

Table 5.1: Mean and standard deviation (SD) of masses and orbital periods
of the Tokovinin (2008) sample satisfying the selection criteria and of both
sampled triple populations TSM1 and TSM2. TSM1u and TSM2u refer to
the populations where the inner binary MS mergers and MS destabilizations
are excluded. The relatively sharp boundaries in the orbital periods in TSM1
compared to TSM2 are reflected by the relatively small standard deviations.

In Table 5.1 the distributions of the masses and or-
bital periods of the Tokovinin sample with our se-
lection criteria applied are compared with the two
sampled populations. In addition, Fig. 5.1 (bot-
tom right) shows the distribution of P2/P1 of these
systems. Due to the relatively steep slope of −2.70
in the mass distribution in TSM1 the mean masses
in TSM1 are low compared to those in TSM2, for
which a Salpeter-like slope of −2.23 applies for
m1 > 1.0 M�. The orbital periods of TSM1 and
TSM2 show reasonable agreement, the orbital pe-
riods and their ratio being on average somewhat
higher in TSM2 compared to those in TSM1. The
number of systems with a MS merger or MS desta-
bilization is relatively small and therefore these do
not significantly affect the expected observed triple
population. The distributions of the orbital periods
and their ratio of the Tokovinin sample show fair
agreement with those of the sampled populations,
although the outer orbital periods in the Tokovinin
sample are clearly smaller. This may well be due to
observational bias because very long orbital periods
in the order of 107 days or longer are very difficult
to measure. The masses show poorer agreement, al-
though selection effects in the observational sample
may also play a role as it is likely that many rela-
tively faint triple systems escape detection, thus bi-
asing the observations to higher masses and higher mass ratios. Apart from selection effects it must be taken into account that the
number of systems in the Tokovinin sample that satisfy our selection criteria is limited and thus the errors are relatively large, as
demonstrated by the error bars in Fig. 5.1 (bottom right).

5.3 Results: main channels
We sample Ncalc = 2 · 106 triple systems for both populations TSM1 and TSM2, making a total of 4 · 106 systems. Using the
triple algorithm described in Sect. 3 these systems are evolved from t = 0, with all three components starting as ZAMS stars, to
a Hubble time t = tH = 13.7 Gyr. In order to retain sufficient resolution in higher-mass systems (2.0 < m1/M� < 6.5) we split
both TSM1 and TSM2 into two parts of 1 · 106 systems, one with 1.0 < m1/M� < 2.0 and one with 2.0 < m1/M� < 6.5. In
the results given below systems in each part are given appropriate weights determined by the mass function of m1 to account for
the fact that the actual number of systems in the 1.0 < m1/M� < 2.0 range is larger than that in the 2.0 < m1/M� < 6.5 range.
For TSM1 the relative weights are 0.722 and 0.278 for both parts respectively; for TSM2 these relative weights are 0.603 and
0.397 (see also Appendix C). Several key events in the evolution are kept track of, most notably the onset of significant Kozai
cycles with tidal friction (KCTF), common-envelope (CE) evolution, a merger in the inner binary system and a destabilization of
the triple system. We thus obtain a catalogue of the evolutionary outcomes, where we distinguish between three main channels:
inner binary mergers, no inner binary mergers and triple destabilizations. In a very small number of systems (55 and 44 for
TSM1 and TSM2 respectively) the calculation of the evolution cannot be completed due to convergence errors in the ordinary
differential equation solver routine; these systems are excluded from the results below. In these cases the errors occur just prior
to MS merger or RGB + MS merger. Since the affected systems constitute a tiny fraction of all systems for which a MS merger
or RGB + MS merger applies, this does not affect our conclusions.

Table 5.2 shows the probabilities of the main channels. Fig. 5.2 shows more detailed information on the likelihood of
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Figure 5.2: Left: the number of systems in TSM1 which merge for each occurring combination of stellar types just prior to merging, normalized
to the total number of merger systems (which constitute ∼ 8% of all triple sampled triple systems). Right: the number of systems in TSM1
in which the merger occurs through the triple induced eccentric mechanism (TIEM), again normalized to the total number of merger systems.
The stellar types are identical to the ones used in Hurley et al. (2002) and are repeated for convenience Table 5.3.

the different combinations of mergers, where the stellar types are given in Table 5.3. A post-MS merger is defined as a
merger between a post-MS (non-compact object) primary and any secondary, whereas a compact object merger is defined as
a merger between a compact object primary and any secondary. In addition to the probabilities of the channels, informa-
tion on the occurrence of KCTF, CE evolution and the nature of the merger is given by means of the quantities fKCTF, fCE
and fTIEM. Here fKCTF is defined as the fraction of systems in each channel in which |ė1,STD| > 10−18 s−1 (such that there
is a significant change in e1 due to STD in a Hubble time) and 0.1 |ė1,TF| < |ė1,STD| < |ė1,TF| (i.e. ė1,STD and ė1,TF are of
comparable order of magnitude). This may happen at various points in the evolution and it is strongly influenced by the en-
velope structure of the inner binary stars because this determines the effectiveness with which tidal energy can be dissipated.

k Description

0 MS (m . 0.7 M�)
1 MS (m & 0.7 M�)
2 Hertzsprung Gap (HG)
3 Red Giant Branch (RGB)
4 Core Helium Burning (CHeB)
5 Early Asymptotic Giant Branch (EAGB)
6 Thermally Pulsing AGB (TPAGB)
7 Naked Helium Star MS (He MS)
8 Naked Helium Star Hertzsprung Gap (He HG)
9 Naked Helium Star Giant Branch (He GB)
10 Helium white dwarf (He WD)
11 Carbon-oxygen white dwarf (CO WD)
12 Oxygen-neon white dwarf (ONe WD)
13 Neutron Star (NS)
14 Black Hole (BH)
15 Massless remnant

Table 5.3: Description of the different stellar types used in
Fig. 5.2. Identical to the types used in Hurley et al. (2002).

In particular if any inner binary star possess a convective envelope
strong tidal friction is likely if e1 is also high due to Kozai cycles. The
former is true in particular for low-mass MS stars, HG/RGB stars and
AGB stars. In Table 5.2 a distinction for fKCTF is made between the
types of the star in which tidal energy is dissipated for the duration of
KCTF. Furthermore, fCE is defined as the fraction of systems in each
channel in which common-envelope (CE) evolution is at some point
invoked. This includes both CE evolution triggered by a highly ec-
centric orbit and CE evolution triggered by Roche-Lobe overflow (in
circular orbits). The fraction fCE includes the possibility for multiple
phases of CE evolution. Lastly, the quantity fTIEM is defined as the
fraction of systems in each channel in which the merger occurs due to
an eccentric collision, i.e. in which a triple-induced eccentric mech-
anism (TIEM) applies (see Sect. 4.2). We define such a collision to
occur if the inner binary periastron distance is smaller than or equal to
the sum of the inner binary radii, i.e. if a1(1− e1) ≤ R1 + R2 and when
in the corresponding circular case there would not be a collision, i.e.
a1 > R1 + R2.

The most important feature of Table 5.2 is that in ∼ 8% of all
systems an inner binary merger occurs, in ∼ 6% of all systems no
inner binary merger occurs but the orbit is shrunk significantly and
that in ∼ 10% of all systems a dynamically instability occurs. This
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fKCTF

P MS PHG/PRGB PAGB SHG/SRGB SAGB fCE fTIEM

TSM1 TSM2 TSM1 TSM2 TSM1 TSM2 TSM1 TSM2 TSM1 TSM2 TSM1 TSM2 TSM1 TSM2 TSM1 TSM2

Merger 8.054 7.743 0.018 0.012 0.242 0.233 0.147 0.212 0.029 0.025 0.001 0.001 0.408 0.463 0.607 0.561

• On MS→ single MS 4.547 3.986 0.010 0.007 — — — — — — — — 0.001 0.001 0.991 0.994

→ CO WD 4.377 3.717 0.007 0.005 — — — — — — — — 0.001 0.001 0.994 0.996
→ ONe WD 0.071 0.128 0.000 0.000 — — — — — — — — 0.000 0.000 1.000 1.000
→ CC SN→ NS 0.064 0.124 0.000 0.000 — — — — — — — — 0.000 0.000 1.000 1.000

• Post-MS 1.379 1.467 0.035 0.022 0.650 0.569 0.209 0.283 0.110 0.089 0.000 0.000 1.000 1.000 0.130 0.146

• HG + MS (2) 0.074 0.093 0.131 0.054 0.135 0.095 — — — — — — 1.000 1.000 0.798 0.904
• RGB + MS (3) 0.755 0.693 0.048 0.038 0.901 0.896 — — — — — — 1.000 1.000 0.045 0.046
• CHeB + MS (4) 0.082 0.094 0.000 0.000 0.025 0.023 — — — — — — 1.000 1.000 1.000 1.000
• AGB + MS (5) 0.177 0.266 0.000 0.000 0.213 0.172 0.905 0.925 — — — — 1.000 1.000 0.002 0.002
• AGB + CHeB (4) 0.112 0.146 0.000 0.000 0.260 0.240 0.795 0.818 0.289 0.294 — — 1.000 1.000 0.000 0.000

• Compact Object 2.128 2.290 0.024 0.014 0.496 0.423 0.420 0.534 0.039 0.028 0.003 0.003 0.893 0.924 0.098 0.072

• He WD + MS (3) 0.471 0.376 0.007 0.005 0.994 0.986 0.000 0.000 — — — — 1.000 1.000 0.000 0.000
• He WD + RGB (7) 0.156 0.139 0.079 0.059 0.903 0.916 0.000 0.000 0.000 0.000 — — 1.000 1.000 0.000 0.000
• He WD + He WD (7) 0.126 0.110 0.000 0.000 0.986 0.979 0.000 0.000 0.087 0.060 0.000 0.000 1.000 1.000 0.000 0.000
• CO WD + MS (5) 0.297 0.282 0.106 0.067 0.188 0.276 0.198 0.291 — — — — 0.277 0.435 0.607 0.486
• CO WD + HG (5) 0.060 0.099 0.027 0.011 0.444 0.473 0.559 0.606 0.023 0.012 — — 1.000 1.000 0.082 0.046
• CO WD + RGB (5) 0.149 0.188 0.004 0.006 0.287 0.253 0.790 0.852 0.069 0.032 — — 1.000 1.000 0.018 0.009
• CO WD + CHeB (4) 0.007 0.008 0.000 0.000 0.000 0.000 0.132 0.153 0.012 0.010 — — 1.000 1.000 1.000 1.000
• CO WD + HeMS (8) 0.124 0.178 0.000 0.000 0.127 0.090 0.918 0.932 0.063 0.042 0.000 0.000 1.000 1.000 0.000 0.000
• CO WD + He WD (8) 0.618 0.746 0.001 0.000 0.257 0.202 0.793 0.845 0.063 0.038 0.000 0.000 1.000 1.000 0.000 0.000
• CO WD + CO WD 0.095 0.128 0.000 0.000 0.130 0.104 0.719 0.786 0.145 0.105 0.025 0.022 0.873 0.899 0.121 0.091

No merger 81.717 81.400 0.002 0.001 0.067 0.046 0.205 0.191 0.015 0.011 0.027 0.026 0.047 0.046 — —

• a1, f /AU > 12 75.535 75.836 0.000 0.000 0.029 0.015 0.178 0.162 0.010 0.007 0.024 0.022 0.000 0.000 — —
• 10−2 < a1, f /AU < 12 5.614 5.104 0.005 0.003 0.536 0.470 0.562 0.614 0.080 0.071 0.081 0.090 0.611 0.655 — —
• a1, f /AU < 10−2 0.569 0.460 0.150 0.096 0.510 0.490 0.330 0.416 0.033 0.025 0.001 0.001 0.794 0.855 — —

Triple destabilization 10.228 10.857 0.000 0.000 0.001 0.001 0.024 0.030 0.000 0.000 0.001 0.001 0.000 0.000 — —

• On MS 3.680 3.722 0.000 0.000 — — — — — — — — 0.000 0.000 — —
• Post-MS 4.635 5.124 0.000 0.000 0.001 0.001 0.027 0.031 0.000 0.000 0.000 0.000 0.000 0.000 — —

• AGB + MS 4.036 4.603 0.000 0.000 0.001 0.001 0.030 0.034 — — — — 0.000 0.000 — —

• Compact Object 1.913 2.011 0.000 0.000 0.002 0.001 0.064 0.085 0.002 0.002 0.003 0.004 0.000 0.000 — —

• CO WD + MS 0.888 0.769 0.000 0.000 0.002 0.002 0.036 0.049 — — — — 0.000 0.000 — —
• CO WD + AGB 0.751 0.977 0.000 0.000 0.002 0.000 0.097 0.115 0.004 0.002 0.007 0.007 0.000 0.000 — —
• CO + CO WD 0.122 0.122 0.000 0.000 0.002 0.001 0.066 0.092 0.001 0.002 0.009 0.005 0.000 0.000 — —

Table 5.2: Probabilities P (in per cent) of various evolutionary channels for both sampled triple populations. Any two objects in the first
column refer to inner binary components. For the post-MS and compact object mergers, the integer numbers in brackets denote the stellar type
of the remnant according to the binary evolution algorithm which occurs most frequently. We refer to Table 5.3 for the meaning of the stellar
types and of abbreviations used and to Fig. 5.2 for a complete overview of all occurring combinations of stellar types prior to merger. In the
no merger channels, a1, f denotes a1 at t = tH . The quantities fKCTF, fCE and fTIEM denote the fraction of systems within each channel for which
significant KCTF, common-envelope (CE) evolution and the triple-induced eccentric mechanism (TIEM) applies respectively. For fKCTF, a
distinction is made between the types of the star in which significant tidal energy is dissipated: MS (both stars are MS or the primary is a
compact object and the secondary is a (low-mass) MS star); PHG/PRGB/PAGB (primary star is a HG/RGB/AGB star) and SHG/SRGB/SAGB
(secondary star is a HG/RGB/AGB star). A long dash (—) indicates that this particular combination is not applicable.

means that in ∼ 24% of all systems the tertiary significantly alters the inner binary evolution. Taking into account that triple
systems in which the inner binary components merge during the MS (∼ 4%) or in which the triple system becomes dynamically
unstable during the MS (∼ 4%) are not likely to be observed (cf. Sect. 5.3.1), this estimate is reduced by ∼ 8%. This implies
that the tertiary significantly alters the inner binary evolution in ∼ 16%/(1 − 0.08) ∼ 17% among the “observable” triples.
Furthermore, the results for TSM1 and TSM2 are generally similar. The number of destabilizations is higher in TSM2, most
likely due to the fact that TSM2 contains more systems with very low β compared to TSM1, cf. Fig. 5.1 (bottom right). To
provide insight into the dependence of the probabilities of the main channels on the initial parameters we show in Fig. 5.3 these
probabilities (expressed as fractions) as function of all initial parameters except g2, for which we find no significant dependence.
The various channels are discussed in more detail below.
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Figure 5.4: Distribution of the octupole parameter εoct (Eq. 2.56)
prior to merger for the TSM1 population, distinguishing between MS
mergers (solid curve), post-MS mergers (dashed curve) and compact
object mergers (dot-dashed curve).
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Figure 5.5: Cumulative distributions for TSM1 of the time t of
MS merger t (solid curve) or MS destabilization (dashed curve),
normalized to the MS timescale which is estimated as τMS =

10 (m1/M�)−2.8 Gyr.

5.3.1 Inner binary mergers
Due to high-amplitude eccentricity cycles induced in the inner orbit the components in the inner binary may at some point merge,
either directly as a consequence of an orbital collision through the triple-induced eccentric mechanism (TIEM) or indirectly as a
result of strong tidal friction induced by high eccentricity, possibly invoking common-envelope (CE) evolution. In the latter case
the inner binary may either merge directly after the CE or survive the CE in a relatively tight orbit and subsequently merge as a
result of orbital energy loss due to gravitational wave emission (GWE). Fig. 5.3 shows that these mergers typically have initial
mutual inclination angles close to itot = 90◦, which is intuitively correct as the Kozai mechanism is most effective for highly
inclined systems (cf. Fig. 2.4). Note that a maximum in fmerge occurs at inclinations slightly above itot = 90◦, i.e. for retrograde
orbits. This is consistent with Shappee & Thompson (2012) who find an asymmetry in cos(itot) towards negative values for
the probability of the eccentric Kozai mechanism to occur. In addition the systems which merge typically have relatively small
β compared to the systems which do not, with the initial β peaking at β ∼ 101.3 ≈ 20. Other general trends in fmerge are
that this fraction increases with increasing e1 for e1 ≥ 0.7 (higher e1 imply higher eccentricity maxima) and in addition fmerge
increases for increasing outer binary mass ratios q2 = m3/(m1 + m2) (higher q2 also imply higher eccentricity maxima because
Cquad/G1 ∝ m3/

√
m1 + m2, cf. Eqs. 2.37, 2.38, 2.39 and 2.40). We separate further discussion into mergers occurring on the MS,

after the MS and mergers involving a primary compact object.

MS mergers As Table 5.2 demonstrates, most mergers occur on the MS and for almost all of the latter the merger occurs
through an eccentric collision. In the latter case, −4 . log10(1−e1) . −5. In the binary_c algorithm it is assumed that the result
of the merger is a single MS star with mass m1 + m2; depending on the latter value, the final remnant is either a CO WD (most
cases), an ONe WD or a neutron star (NS) (following a core-collapse supernova). Fig. 5.4 shows the distribution of the octupole
parameter εoct (cf. Eq. 2.56) prior to merger for the main merger channels. It shows that octupole terms are very important for
MS mergers because these typically have log10(|εoct|) ∼ −1.5 prior to merger, which is large enough for octupole order terms to
be important in the secular three-body dynamics (STD). This relatively large εoct is due to a combination of initially small ratios
β ≡ a2/a1, small inner binary mass ratios q1 ≡ m2/m1 and high outer orbit eccentricities e2. This is demonstrated by Fig. 5.3
which shows that the fraction of MS mergers fMS merge decreases significantly with increasing q1 and is peaked towards relatively
small β around 0.5 < log10(β) < 2.0. Furthermore fMS merge increases with e2, although it decreases again for e2 & 0.8 which is
probably because systems with low β and high e2 are likely to become dynamically unstable (compare the dependence of fdest
on e2 in Fig. 5.3). It might be expected that MS mergers are more likely to occur for small initial a1 as a tighter orbit makes an
eccentric collision more likely. However, we find that MS mergers on average have relatively large initial a1 with a maximum of
fMS merge around a1 ∼ 102.8 AU ≈ 6 · 102 AU (cf. Fig. 5.3). This implies that the effect of increasing the eccentricity maxima with
increasing a1 and hence decreasing β (cf. Sect. 2.3.3) is stronger than the effect that eccentric collisions become less likely with
increasing a1 if e1 were fixed. The dependence of fMSmerge on m1 is quite weak, although a slight decrease with increasing m1
is noticeable, which is possibly due to the fact that eccentricity maxima generally decrease with increasing inner binary masses.
The latter effect is apparently stronger than the effect that MS radii increase with m1 and thus a collision would be more likely
for the same e1. Lastly, a tendency of large fMS merge for g1 around 0◦ or 180◦ is evident in Fig. 5.3, which can be explained by
the fact that circulating Kozai cycles (initially satisfying cos2(g1) > 3/5) tend to have larger eccentricity maxima than librating
ones (initially satisfying cos2(g1) < 3/5); see e.g. Ford et al. (2000). For post-MS and compact object mergers this dependence
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on g1 is much weaker because for these systems octupole order terms are an average less important (cf. Fig. 5.4).
As Table 5.2 shows, for a small fraction of MS mergers (0.009 of all MS mergers for TSM1) the merger does not occur through

the TIEM mechanism and hence the merger occurs in a circular orbit (i.e. the triple-induced circular mechanism applies). Instead
KCTF is responsible for strong orbital shrinkage leading to a tight inner orbit, eventually resulting in a merger in a circular orbit
due to GWE within a Hubble time. The fraction of MS merger systems in which the TICM applies (0.009 for TSM1) is indeed
comparable to the fraction of MS merger systems which satisfy our KCTF criterion on the MS (0.010 for TSM1) and the same
applies to TSM2. We find that strong KCTF on the MS occurs only in low-mass inner binary systems (m1 < 1.25 M�) because
inner binary components with these masses have convective envelopes which are much more effective at dissipating tidal energy
than radiative envelopes found in higher-mass MS stars (in the algorithm used, 1.25 M� marks the boundary between stars with
convective and radiative envelopes).

The TIEM mergers, which constitute the bulk of MS mergers, occur relatively early on the MS, with the majority of mergers
(∼ 70%) occurring within 10% of the primary MS lifetime, see Fig. 5.5. This is due to the fact that in many cases the collision
occurs during the first few Kozai cycles, which typically have timescales of a few Myr which is a small fraction of the MS
lifetime of the primary stars considered in the triple sample. The time of merger is thus mainly determined by the Kozai period
PK ∝ (P2/P1) P2 and hence the orbital periods. We indeed find that the distribution of the times of MS merger is very similar to
the initial distribution of the Kozai periods. The fact that most MS mergers occur relatively early on the MS makes it unlikely to
observe the progenitor triple systems. A similar conclusion applies to MS destabilizations (Sect. 5.3.3).

Post-MS mergers For any merger after the MS, an evolutionary change in the inner binary system plays a key role in the
mechanism that leads to the merger. The radius expansion during the primary Hertzsprung Gap (HG) is responsible for an
eccentric collision for most mergers during this phase. Note that in such an event the binary_c algorithm invokes CE evolution
contrary to the MS TIEM mergers. For ∼ 20% of the HG + MS mergers strong KCTF triggered by the substantial increase
of the tidal strength quantity ki/Ti during the primary HG phase, leads to substantial orbital circularization and shrinkage to
a1 ∼ 0.4 AU. Subsequently CE evolution is invoked leading to a triple-induced circular merger (TICM). Similarly, one might
expect primary RGB + secondary MS mergers to occur mainly through the TIEM as the primary RGB phase is accompanied with
a substantial increase in radius. However, the large increase in the tidal strength quantity ki/Ti during this phase is responsible
for strong KCTF which completely circularizes and shrinks the inner orbit to a1 ∼ 0.3 AU which is small enough to invoke CE
evolution and thus result in a TICM merger. Consequently the TICM dominates for RGB + MS mergers. During the primary
core helium burning (CHeB) phase tides are once again relatively unimportant and most mergers during this phase are driven by
radius expansion in conjunction with eccentricity cycles, in all cases leading to a TIEM merger. For RGB + RGB mergers (not
included in Table 5.2) the TICM applies. For these systems an immediate merger occurs after KCTF and CE evolution. Due to
the fact that KCTF with two RGB stars is particularly effective, the post-MS fraction fpost−MS merge shows a strong peak towards
q1 = 1 corresponding to the RGB + RGB mergers for which a high inner binary mass ratio is required as the RGB phase lasts for
a relatively short time (Fig. 5.3). The merger mechanism for primary AGB mergers is similar to that of primary RGB mergers,
i.e. the TICM. The secondary at this point is most likely a MS or a CHeB star; mergers between AGB and RGB/AGB stars are
also possible (Fig. 5.2) but these are rather unlikely due to the fact that the latter phases last for a relatively short time, making it
unlikely that KCTF during the primary AGB phase coincides with the secondary RGB/AGB phase. For primary AGB mergers
KCTF is effective mainly during the primary AGB phase, although in ∼ 25% of these systems KCTF during the primary RGB
phase is also important. After KCTF a CE is invoked; due to the fact that the orbit at this point is relatively tight the inner binary
does not survive the CE phase and an AGB star (in case of AGB + MS merger) or CHeB star (in case of AGB + CHeB merger)
remains.

Fig. 5.3 shows that post-MS mergers typically have relatively small β similarly to MS mergers, although fpost−MS merge shows
a clear tail for larger β which is not present in the dependence of fMS merge on β (for compact object mergers this tail is even more
prominent). As discussed before, for MS mergers a1 should be sufficiently large that the eccentricity maxima are high enough for
collision. This does not apply to post-MS mergers, where effective tidal friction is the more important effect which requires a1
to be small. For the systems with large a1 and potentially (very) high eccentricity maxima, i.e. those with low β and high mutual
inclination angles, strong tidal effects are expected to be important. Such systems are most likely to have experienced an orbital
collision already on the MS. Thus fpost−MS merge decreases with increasing a1.

Compact object mergers In cases where KCTF during the RGB/AGB phases is less effective, a merger can be avoided when
the most evolved state of the primary is an AGB star. In such cases a merger can occur when the primary has evolved to a WD,
i.e. a compact object merger. Such a merger can occur through CE evolution triggered by KCTF, resulting in a tight orbit of
a1 . 10−2 AU and thus a merger due to GWE within a Hubble time (TICM). In some cases multiple CE phases are triggered and
the evolution is more complicated although we find that in all cases, the ratio β after CE is large enough such that any subsequent
Kozai cycles do not occur. In the latter cases the Kozai mechanism is completely suppressed by other sources of apsidal motion,
most notably apsidal motion due to general relativity (cf. Eq. 2.53). To further illustrate this point, Fig. 5.6 shows the distribution
of β ≡ a2/a1 prior to and after the first CE for all systems in which CE evolution occurs. After the first CE β ∼ 105, which is much
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Figure 5.6: Distribution for TSM1 of β = a2/a1 prior to (solid curve)
and after (dashed curve) first CE for all systems in which CE evolu-
tion occurs. Also shown is the distribution of βcrit,GR (Eq. 3.5) for the
systems in which CE occurs, just after the CE (dot-dashed curve).
Lastly, the dotted curve shows β prior to merger for all compact ob-
ject TIEM mergers.
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Figure 5.7: Distribution for TSM1 of the initial a1 for compact ob-
ject TICM (solid curve) and TIEM (dashed curve) mergers. In ad-
dition, the distributions are shown of a1 after KCTF during primary
AGB for which this is applicable, all of which are TICM merger
systems (dot-dashed curve) and of a1 just prior to a compact object
eccentric merger in TIEM merger systems (dotted curve). Note that
the systems having a1 ∼ 10−1 AU after primary AGB KCTF are those
in which KCTF occurred also during an earlier stage, most notably
the primary RGB phase.

larger than the critical value βcrit,GR (cf. Eq. 3.5) for which general relativity dominates in these systems (Fig. 5.6, dot-dashed
curve). Note that the dot-dashed curve in Fig. 5.6 shows the distribution of βcrit,GR just after the CE.

A relatively frequent channel in which CE evolution is triggered by KCTF is the channel leading to a He WD + MS merger.
In this channel relatively strong KCTF during the primary RGB phase shrinks the inner orbit to a1 ∼ 0.3 AU, thus triggering
the first CE which leaves a He WD + MS star binary with a1 ∼ 10−2 AU which merges due to GWE. Alternatively, if KCTF
during the primary RGB phase is less strong and shrinks the inner orbit to a1 ∼ 0.6 AU, the He WD + MS star inner binary
after CE is wide enough for the secondary to evolve to an RGB star, thus invoking a second CE phase resulting in a He WD +

RGB merger. If KCTF during the primary RGB is weaker still it leaves an inner orbit with a1 ∼ 1 AU, which is large enough
for two subsequent CE phases after which a He WD + He WD binary remains which merges due to GWE. He WD + HG and
He WD + RGB mergers are believed to be important channels leading to carbon-rich K-type giants, known as early-type R stars
(Izzard et al., 2007). Similar paths apply to TICM mergers with higher initial primary masses, resulting not in primary He WD
mergers but primary CO WD mergers instead. The most likely primary CO WD merger is that with a secondary He WD (∼ 0.6%
of all systems). Such mergers have been discussed as progenitors of H-deficient carbon-rich supergiants known as RCrB stars
(Tisserand et al., 2009).

Alternatively, strong KCTF during the MS and post-MS evolution of the primary and secondary star can also be avoided. The
main parameter which determines whether or not strong KCTF occurs during these phases is a1 as illustrated in Fig. 5.7. Many
systems which are initially wider than a1 ∼ 102 AU avoid pre-compact object KCTF and subsequently a1 increases due to wind
mass loss in the primary as it evolves from an AGB star to a CO WD. With the assumption of a fast and isotropic wind, a1(m1+m2)
remains constant during this short episode of wind mass loss. Similarly a2(m1 + m2 + m3) remains constant. If the tertiary does
not lose mass during this phase (which is statistically unlikely because the transition from AGB stars to WDs occurs relatively
quickly) this implies that the ratio β = a2/a1 decreases. Consequently triple configurations are produced with the primary inner
binary component a CO WD and with relatively small β, namely narrowly distributed around β ∼ 15, cf. Fig. 5.6 (dotted
curve). Octupole order effects are very important in such systems as is reflected in the small peak around log10(|εoct|) ∼ 10−2

for compact object merger systems in Fig. 5.4 (dot-dashed curve). In addition, because at this stage the inner orbit semi-major
axis is relatively large (typically a1 ∼ 103 AU, cf. Fig. 5.7) there is no significant damping of Kozai cycles due to additional
sources of apsidal motion. Consequently in such systems “flips” can occur during which the outer orbit switches from prograde
to retrograde and vice versa. During these flips extremely-high eccentricities can be reached (e.g. Naoz et al. 2011; Shappee &
Thompson 2012), in our calculations as high as 1 − e1 ∼ 10−8. In most cases these high eccentricities lead to orbital collisions,
i.e. mergers through the TIEM. The value of the eccentricity required for such a collision is determined by a1 and the radius and
hence the type/mass of the secondary object (mainly a MS star, a CHeB star or a CO WD) and varies between 1 − e1 ≈ 10−3

(CHeB companion), 1 − e1 ≈ 10−5 (MS companion) and 1 − e1 ≈ 10−7 (CO WD companion). Alternatively, in a relatively small
number of systems and mainly for CO WD + low-mass MS systems the high eccentricities do not lead to eccentric collisions
but induce very strong tidal friction in the low-mass secondary which possesses a convective envelope, thus circularizing and
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Figure 5.8: Distribution for TSM1 of the initial a1 (solid curve) and
the final a1 (dashed curve) of all no merger systems.
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Figure 5.9: Distribution for TSM1 of the initial mutual inclination
angle for the no merger systems (solid curve) and the final mutual
inclination angle for the no merger systems with final a1 < 12 AU
(dashed curve) and a1 > 12 AU (dot-dashed curve).

shrinking the inner orbit to a1 ∼ 10−2 AU. These cases correspond to the MS fKCTF fractions for the CO WD + MS merger
channel and the no merger channel with a1, f < 12 AU in Table 5.2. Depending on the precise values of a1 and the masses the
subsequent tight binary merges within a Hubble time due to GWE or a merger does not occur within a Hubble time. The latter
systems constitute ∼ 20% of the tightest inner binary systems which do not merge within a Hubble time (a1, f < 10−2 AU in Table
5.2). They may be recognized in Table 5.2 as the no merger systems with a1, f < 10−2 AU in which CE does not occur. The CO
WD + CO WD merger systems are of particular astrophysical interest and are discussed in more detail in Sect. 5.4.

5.3.2 No inner binary mergers

Wide Tight Very tight

TSM1 TSM2 TSM1 TSM2 TSM1 TSM2

CO + CO WD 0.370 0.428 0.189 0.209 0.010 0.016
CO WD + MS 0.599 0.535 0.503 0.494 0.391 0.392
CO + He WD 0.000 0.000 0.077 0.093 0.255 0.293
He + He WD 0.000 0.000 0.014 0.013 0.058 0.049
He WD + MS 0.000 0.000 0.188 0.159 0.284 0.246

Table 5.4: Likelihood of the most important inner binary configurations
at the end of the evolution for the no merger systems. The no merger
systems are divided into three groups, based on the final value of a1:
wide (a1 > 12 AU), tight (10−2 < a1/AU < 12) and very tight (a1 <

10−2 AU). The fractions are relative to the total number of systems in
each group. Note that in each column these fractions do not add to unity
because not all final configurations are included in the table.

If the initial mutual inclination angle is not close to 90◦

and/or the initial β is relatively large then the maximum
eccentricity induced by Kozai cycles during the evolution
is not high enough to eventually cause a merger. This is
demonstrated by Fig. 5.3 which shows that fno merge in-
creases strongly with increasing β (even fno merge → 1 for
sufficiently large β) and that highly inclined systems are
unlikely not to merge. Furthermore, fno merge increases with
decreasing a1 which might be somewhat counterintuitive.
This can be understood by considering that as a1 decreases
β is also generally larger, thus decreasing the eccentricity
maxima. Although a merger does not occur for these sys-
tems, it is possible that the inner orbit is shrunk significantly
due to KCTF as illustrated by Table 5.2: in ∼ 6% of all sys-
tems, the final inner orbit semi-major axis is smaller than 12
AU, which is the minimum possible value in the absence of
the tertiary (cf. Sect. 5.2). In the majority of these systems
the main points in the evolution at which KCTF is important
are the primary RGB and AGB phases, occurring in roughly
equal proportion. Fig. 5.8 compares the initial and final distributions of a1. The final distribution of a1 shows a broad peak mainly
due to strong KCTF around a1, f ∼ 10−1.5 AU ≈ 0.03 AU (P1 ∼ 2 d). For the tightest of these systems (a1, f < 10−2 AU) it is also
possible that very high eccentricity cycles lead to a tidal capture if the systems consists of a CO WD + low-mass MS star. The
latter systems are very similar to compact object merger TIEM systems, with the exception that the companion is a low-mass
MS star which possesses a convective envelope (Sect. 5.3.1; compact object mergers). Furthermore, the final distribution of a1
shows a gap around a1, f ∼ 1 AU. This gap separates systems in which KCTF is followed by a CE (a1, f < 1 AU) and in which a
CE does not occur after KCTF (a1, f > 1 AU). In the latter case KCTF is responsible for an enhancement of systems near final
values of a1 ∼ 10 AU (cf. Fig. 5.8). If a CE occurs then this affects the final configuration of the inner binary system. This is
shown in Table 5.4 where the likelihoods are shown of the most important inner binary configurations at the end of the evolution
for the no merger systems. A distinction is made between the three groups with a1, f > 12 AU (“wide”), 10−2 < a1, f /AU < 12
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(“tight”) and a1, f < 10−2 AU (“very tight”). A CE does not occur in the wide systems and therefore these mainly end as CO WD
+ MS and CO WD + CO WD systems. In the case of a CE there is also a possibility for forming a He WD. The tighter systems
can therefore also end as CO WD + He WD, He WD + He WD and He WD + MS systems.

The no merger systems are interesting from an observational point of view because the hierarchical structure remains intact
during the entire evolution and the process of KCTF affects the mutual inclination angle. Typically during episodes of KCTF
e1 gradually approaches its maximum value in the Kozai cycle, followed by rapid circularization; the mutual inclination angle
during this process tends to remain at its value associated with the eccentricity maximum, i.e. close to one of the two critical
values determined by cos2(itot) = 3/5. Therefore an observational marker of systems in which KCTF has once been important is
a mutual inclination angle close to these critical values, as has been pointed out previously by Fabrycky & Tremaine (2007). Fig.
5.9 shows the initial and final mutual inclination angles for the no merger systems, distinguishing between final a1 > 12 AU and
a1 < 12 AU. The initial distribution shows a clear lack of systems near itot ≈ 90◦ as also illustrated by Fig. 5.3. Systems for which
strong KCTF applies at some point in the evolution (final a1 < 12 AU) end with mutual inclination angles which are strongly
peaked towards the critical values, whereas for systems in which KCTF is weaker or does not act at all (final a1 > 12 AU), these
peaks are much less prominent. In other words, we expect triple systems with tight inner orbits to show a markedly different
inclination distribution than those with much wider inner orbits.

5.3.3 Triple destabilizations
If the initial β is particularly low, typically β . 10 (cf. Fig. 5.3), then the triple system may at some point in the evolution become
dynamically unstable. Subsequent evolution is not modeled by our triple evolution algorithm because the secular evolution
equations no longer apply in this case and N-body simulations are needed for an accurate description of the dynamical evolution.
This scenario has been studied in detail in Perets & Kratter (2012), where it is referred to as the triple evolution dynamical
instability. In our simulations, the destabilization occurs mainly during the MS or when the primary is an AGB star or a CO WD,
cf. Table. 5.2.

In the case of MS destabilization, the triple system is initially marginally stable (i.e. only just satisfies Eq. 3.6) but due to
octupole-order terms of the STD, which are important since β is (very) small and/or e2 is high, e2 varies periodically until it
reaches a value high enough for destabilization of the triple system, i.e. β ≤ βcrit (cf. Eq. 3.6). The time when this occurs is
determined by the Kozai period PK . Similarly to the MS mergers, this occurs relatively early in the evolution with most (90%)
destabilizations occurring within 10% of the primary MS lifetime, cf. Fig. 5.5.

In the other cases destabilization is triggered by mass loss in the inner orbit, which, if fast and isotropic, acts to decrease β
(i.e. the same mechanism discussed in the context of compact object TIEM mergers in Sect. 5.3.1) to a point where β ≤ βcrit.
This happens when the primary loses a significant amount of mass as it evolves from the AGB phase to a WD and similarly when
this happens to the secondary. In a small number of cases both inner binary components are CO WDs when the instability occurs
and since there exists a finite probability of collision in the triple evolution dynamical instability (∼ 0.1 as found by Perets &
Kratter 2012) this could potentially lead to a CO WD collision. The implications of this scenario are investigated further in Sect.
5.4.

5.4 Results: triple-induced CO WD mergers
Of the inner binary merger systems, the double CO WD mergers are of particular astrophysical interest as some of such mergers
are considered as an important progenitor channel for type Ia supernovae (SNe Ia) (Webbink, 1984; Iben & Tutukov, 1984). In
the latter channel the merger results in a violent thermonuclear explosion due to CO burning in degenerate regions. The following
two arguments support such a scenario. Firstly, the amount of energy released in the burning of the CO material is comparable
to that found in SNe Ia. Secondly, because CO WDs contain no significant amount of hydrogen the explosion event is expected
not to produce any spectral hydrogen lines, which is also consistent with SNe Ia. Due to this astrophysical relevance we describe
below in Sect. 5.4.1 in more detail the channels leading to CO WD mergers found in our population synthesis study. Note that in
the absence of the tertiary, such channels would not exist for the triple populations TSM1 and TSM2, i.e. these channels are all
induced by the secular gravitational influence of the tertiary. In binary population synthesis studies these channels are therefore
not taken into account. Subsequently we compute the expected rate of SNe Ia due to the triple-induced scenarios and compare
our results to those of a binary population synthesis study and to observations in Sect. 5.4.2 .

5.4.1 Triple-induced CO WD merger channels
We find that inner binary CO WD mergers (momentarily excluding the possibility for triple destabilization scenarios, see below)
occur through two main mechanisms: either the merger occurs in a tight circular orbit with GWE driving the merger (the TICM)
or the merger is the consequence of an eccentric collision in a highly eccentric orbit (the TIEM). The TIEM channel applies
to ∼ 10% of all CO WD mergers (Table 5.2), i.e. the TICM channel is the dominant one. As discussed before in Sect. 5.3.1,
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Figure 5.10: Distribution for TSM1 of a1 for the CO WD merger
systems which go through CE evolution. Solid: before first CE (i.e.
after KCTF); dashed: after first CE. For those systems in which a
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Figure 5.11: Distribution for TSM1 of the inner orbit mass ratio
q1 = m2/m1 just prior to CO WD merger, for the TICM (solid curve)
and TIEM (dashed curve) mergers.

the main difference between the TICM and TIEM channels with regard to the initial parameters is that in the former initially
101 . a1/AU . 102 while in the latter initially 102 . a1/AU . 103 (Fig. 5.7, solid and dashed curves). Because tidal friction
is strongly dependent on a1 (cf. Eq. 3.1) this aids in avoiding KCTF during the giant phases in the TIEM systems while in the
TICM systems KCTF causes substantial shrinkage of the inner orbit and so invokes CE evolution (Fig. 5.7, dot-dashed curves).

In the CO WD TICM systems, KCTF during the primary AGB phase leaves an inner binary AGB + MS system or an AGB +

CHeB system with a1 ∼ 100.8 ≈ 6 AU (Fig. 5.10, solid curve). Whether the secondary is a MS or a CHeB star after the primary
AGB KCTF phase depends on the initial mass ratio q1 = m2/m1: for the former initially 0.4 . q1 . 0.9 while for the latter
initially 0.9 . q1 . 1. When the primary swells up during the AGB phase CE evolution is invoked, leaving either a CO WD
+ MS binary with a1 ∼ 10−0.5 AU ≈ 0.3 AU (in case of a MS companion prior to CE) or a CO WD + He MS/HG binary with
a1 ∼ 10−2.5 AU ≈ 3 · 10−3 AU (in case of a CHeB companion prior to CE), cf. Fig 5.10 (dashed curve). In the latter case both the
primary and the secondary are stripped of their envelopes resulting in a (much) tighter orbit; the secondary then evolves from a
He MS/HG star to a CO WD. Subsequently a second CE is invoked, during which the inner binary system either mergers directly
or survives the CE and merges due to GWE. In the case of a MS companion prior to the first CE, a second CE is invoked when
the secondary evolves to an RGB/AGB star, leaving a tight CO WD + He MS/HG binary in which eventually a CO WD merger
occurs (Fig. 5.10, dotted curve). Note that after the first CE the tertiary has no more influence on the inner binary system because
β � βcrit,GR after this point in the evolution (cf. Fig. 5.6).

Fig. 5.11 shows the distribution of the mass ratio q1 ≡ m2/m1 prior to the CO WD merger for both TICM and TIEM mergers.
For the TICM mergers, this ratio is broadly distributed between ∼ 0.5 and ∼ 0.8. On the other hand, for TIEM mergers the
distribution of q1 prior to merger is more peaked towards unity. This can be understood as follows: if q1 is relatively low, a
system with initial parameters that are otherwise similar to those of TIEM CO WD merger systems is more likely to experience
a primary CO WD TIEM merger with a MS or CHeB secondary star, cf. Table 5.2. For the latter systems the initial q1 is indeed
distributed around 0.2 . q1 . 0.9 and the mass ratio is typically not strongly affected during the evolution in TIEM systems
because in such systems CE evolution is avoided.

In a very small number of systems (about 0.6% of all CO WD merger systems for TSM1) the evolution is very similar to
that of the TIEM channel with the exception that the high eccentricity after formation of the double CO WD system does not
lead to an orbital collision but instead triggers one or more episodes of very strong and brief gravitational wave emission (GWE).
During the moment(s) that e1 is extremely high (1 − e1 . 10−6) GWE leads to sudden orbital shrinkage reducing a1 by a few
per cent. If a1 has become small enough the high eccentricity leads to a brief episode of orbital shrinkage due to GWE to a tight
orbit of a1 ∼ 10−2 AU. By this time the orbit has been circularized due to GWE (cf. Eq. 3.2). The final merger thus occurs due to
GWE in a circular orbit and therefore these systems are interpreted as TICM systems, although the progenitor evolution is quite
different from TICM systems in which a CE occurs.

In addition to the inner binary CO WD mergers, another triple-induced channel leading to CO WD mergers involves triple
destabilizations which occur when the inner binary system consists of two CO WDs. In most of the latter systems the tertiary is
also a CO WD at the moment of destabilization. In subsequent close three-body encounters it is possible that a CO WD collision
occurs. Note that such a merger is expected to be physically similar to TIEM mergers, although in the latter case the triple system
remains formally stable until the merger event. Perets & Kratter (2012) find that a collision occurs in ∼ 10% of all destabilization
cases. Adopting this fraction, we expect this channel to lead to CO WD mergers in ∼ 0.01% of all systems.
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Figure 5.12: Delay time distribution (DTD) for TSM1 of the triple-
induced inner binary CO WD merger and destabilization channels,
which in an optimistic scenario all lead to SNe Ia. Shown are the
rates in SNuM (per 1010 M� per century) due to the combined in-
ner binary CO WD merger channels (solid curve), due to super-MCh

TICM mergers (dashed curve), due to sub-MCh and super-MCh TIEM
mergers (dot-dashed curve) and due to CO WD collisions induced by
triple destabilizations assuming that in 10% of all inner binary CO
WD destabilizations, a collision subsequently occurs (dotted curve).
Lastly, triple-induced contributions from the single degenerate chan-
nel are shown (thick solid curve).
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Figure 5.13: SNe Ia DTD according to all triple-induced channels
of Fig. 5.12 (thick solid curve) and according to a binary population
synthesis study (Claeys et al., 2012), with the total rate (solid curve),
double degenerate (DD) rate (dashed curve), single degenerate (SD)
hydrogen donor rate (dot-dashed curve) and single degenerate he-
lium donor rate (dotted curve). In addition, observed SNe Ia rates
(points with error bars) are shown from Totani et al. (2008), Maoz &
Badenes (2010) and Maoz et al. (2010) (triangle, diamonds and filled
circles respectively).

5.4.2 Expected SNe Ia rates

f

TSM1 TSM2

TICM 0.879 0.909

• m1 + m2 < MCh 0.503 0.441

• 0 < q1 ≤ 0.8 0.312 0.310
• 0.8 < q1 ≤ 1 0.192 0.131

• m1 + m2 > MCh 0.376 0.467

• 0 < q1 ≤ 0.8 0.350 0.440
• 0.8 < q1 ≤ 1 0.026 0.028

TIEM 0.121 0.091

• m1 + m2 < MCh 0.056 0.035

• 0 < q1 ≤ 0.8 0.011 0.008
• 0.8 < q1 ≤ 1 0.045 0.027

• m1 + m2 > MCh 0.065 0.056

• 0 < q1 ≤ 0.8 0.033 0.033
• 0.8 < q1 ≤ 1 0.032 0.023

Table 5.5: Probabilities of various triple-induced
CO WD merger channels, expressed as fractions
of the total number of CO WD mergers (exclud-
ing the CO WD destabilization scenario).

It is uncertain whether a CO WD merger leads to a SN Ia, even if the com-
bined mass of the CO WDs exceeds the Chandrasekhar mass MCh ≈ 1.44 M�,
which is the maximum mass for a carbon-oxygen gas supported by electron
degeneracy pressure. The mechanism through which the merger occurs is an
important factor in the efficiency of the explosion mechanism. For mergers
occurring in circular orbits (i.e. in which the TICM applies) some hydrody-
namical simulations indicate that during the merger the secondary is quickly
disrupted, finally leading to the formation of a single CO WD surrounded by
an accretion disk (e.g. Guerrero et al. 2004). In the merger process degeneracy
is lifted, quenching a thermonuclear runaway situation. However, other studies
show that a sub-luminous SN Ia may be formed if the mass ratio is larger than
q1 = m2/m1 = 0.8 (e.g. Pakmor et al. 2011). For head-on collisions on the
other hand, which are very similar to highly eccentric collisions (i.e. in which
the TIEM applies), evidence exists that they are more likely to result in a SN Ia
even for sub-MCh encounters. This is due to the high relative speed on the order
of the escape speed, 103 km/s, which causes shocks that aid the ignition of the
thermonuclear explosion. In the simulations of Rosswog et al. (2009) all simu-
lated equal-mass CO WD encounters with m1 = 0.6 M� and m1 = 0.9 M� lead
to thermonuclear explosions and the resulting light curves and spectra resemble
those of observed SNe Ia. For small mass ratios Rosswog et al. (2009) find
that an explosion is avoided, with the critical mass ratio being at least q1 = 2/3
(their Table 1). In the simulations of Raskin et al. (2010), however, mass ratios
as low as q1 = 0.6 still lead to a SN Ia (their Table 2). The total mass prior
to merger m1 + m2 also determines the efficiency of forming a SN Ia as both
Rosswog et al. (2009) and Raskin et al. (2010) find that a 0.5 M� + 0.5 M� CO
WD encounter does not lead to a SN Ia whereas encounters with CO WDs more
massive than 0.6 M� + 0.6 M� do. Note that the latter case is still sub-MCh.

In Table 5.5 probabilities are given of various subpopulations of the triple-
induced CO WD mergers, expressed as fractions of the total number of CO WD
mergers (excluding the CO WD destabilization scenario). Based on the above discussion we distinguish between mergers with
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mass ratios q1 above and below the value q1 = 0.8. Mergers with 0 < q1 ≤ 0.8 are unlikely to result in SNe Ia, whereas for
those with 0.8 < q1 ≤ 1 such an outcome is more probable. For TICM mergers the total mass should also exceed MCh whereas
for TIEM mergers we do not impose such a constraint because we find that the lowest total mass for any TIEM merger exceeds
1.1 M�. Table 5.5 shows that many TICM mergers have relatively low mass ratios as was also shown by Fig. 5.11. The fact that
TICM mergers typically have low q1 prior to merger suggests that many of these mergers do not lead to SNe Ia. Note, however,
that the precise value of the critical mass ratio is uncertain. Moreover, in binary population synthesis studies such a distinction
between mass ratios is usually not made.

In order to relate the expected rate of triple-induced SNe Ia to the binary population synthesis study of Claeys et al. (2012) and
observations we normalize the number of systems in which a SN Ia is expected to occur to the part of the galactic mass represented
by the sampled triple systems. Note that the sampled triple populations constitute only a small fraction of all triple systems. In
addition we must assume specific values for the binary and triple fractions of the galactic population. The binary fraction αbin is
a function of mass and is found to range between αbin = 0.56 for solar-like stars (Raghavan et al., 2010) to αbin ≥ 0.7 for O & B
stars (Kouwenhoven et al., 2007). In order to simplify the calculation we assume an intermediate constant value of αbin = 0.60.
Statistics on the triple fraction αtr, which is similarly a strong function of mass, are less well-constrained. The observed triple
fractions range from 0.11 for solar-like stars (Raghavan et al., 2010; Rastegaev, 2010) to 0.5 for more massive B stars (Remage
Evans, 2011). Again neglecting the mass dependence we take a conservative intermediate constant value αtr = 0.25. With these
fractions we calculate a total mass represented by the number of triple systems we have calculated and with which we normalize
the SNe Ia rates for TSM1. We express the result in rate per 1010 M� per century (SNuM); we refer to Appendix C for more
details on this procedure and explicit numbers. Fig. 5.12 shows these rates as a function of time, i.e. the delay time distribution
(DTD), after an assumed starburst at t = 0. We make a distinction between super-MCh CO WD TICM mergers (dashed) and
CO WD TIEM mergers (dot-dashed). In addition the expected rate due to CO WD destabilizations is included (dotted curve)
assuming that in 10% of all CO WD destabilizations a collision and hence possibly a SN Ia results (Perets & Kratter, 2012). In
an optimistic scenario (i.e. ignoring any constraints with respect to the mass ratio prior to merger), all of these are expected to
lead to a SN Ia. Lastly, we estimate the contribution due to the single degenerate channel in which a single CO WD accretes
material from a MS companion until it reaches MCh. We identify systems in which a SNe Ia is expected to occur due to this single
degenerate channel based on specific regions in the (m2, a1) space. Detailed simulations (Claeys et al., 2012) give predictions
for these regions; if a CO WD is formed with a MS/RGB companion (mass m2) and the parameters lie within these regions in
the (m2, a1) space then the final result is expected to be a SNe Ia. Note that we have also computed the triple-induced DTD for
TSM2 and find very similar results to those of TSM1.

Fig. 5.12 shows that the main contribution to the triple-induced rate is the super-MCh CO WD TICM merger channel, with a
substantial but short contribution due to the single degenerate channel at ∼ 100 Myr. The channel due to destabilizations does not
contribute significantly at any time. The CO WD TIEM merger channel contributes significantly to the combined triple-induced
rate at late times (t ∼ 10 Gyr), whereas it does not at earlier times. This is due to the fact that after double CO WD formation the
Kozai period PK is typically quite long (the distribution of PK peaks around PK ∼ 0.3 Gyr, see also Sect. 4.2) and it typically
takes at least a few cycles before an orbital flip occurs (cf. Fig. 4.3, bottom right panel). Such an orbital flip is almost invariably
required to attain eccentricities high enough for a collision (1 − e1 . 10−7).

Furthermore we show in Fig. 5.13 the expected triple-induced SNe Ia rate according to all channels discussed above (thick
curve) and results from the binary population synthesis study of Claeys et al. (2012). Furthermore observed rates are included
from Totani et al. (2008), Maoz & Badenes (2010) and Maoz et al. (2010). For the binary population synthesis study a distinction
is made between the double degenerate (DD) channel (super-MCh CO WD merger with any mass ratio, occurring invariably
after CE evolution) and the single degenerate (SD) channel (a single CO WD accreting mass from a MS/HG/RGB companion
until it reaches MCh and explodes), the latter with either a hydrogen-rich or helium-rich donor star. Fig. 5.13 shows that the
triple-induced DTD generally follows the same shape as the binary population synthesis DTD, with a rate proportional to t−1

for times later than t ∼ 102.6 Myr (the best fitting slope for t > 102.6 Myr is −0.96). The triple-induced rates are much lower
than the binary population synthesis rates, however: the former are typically a factor of ∼ 10 to ∼ 103 lower than the binary
population synthesis rates, which in turn are typically a factor of ∼ 10 lower than the observed rates. The triple-induced channels
are therefore of some importance but they do not solve the problem that the predicted SNe Ia rates are too low compared to the
observed ones (see also Maoz & Mannucci 2012 and Wang & Han 2012). The present study does not give a complete picture of
the triple-induced rate, however, and we will return to this point in the discussion in Chapter 6.
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Chapter 6
Discussion

In this chapter we compare some of our findings from the population synthesis study (Chapter 5) with other studies (Sect. 6.1).
Furthermore, we discuss the assumptions made and uncertainties in this work in Sect. 6.2. Lastly, we make suggestions for

further study in Sect. 6.3.

6.1 Comparisons to other studies

6.1.1 Effect of mass loss on Kozai cycles
The effect of mass loss due to stellar evolution on the secular dynamical evolution of triples (i.e. Kozai cycles) has recently
been studied by Shappee & Thompson (2012; hereafter ST12). ST12 performed N-body integrations of triples with fixed masses
m1 = 7.0 M�, m2 = 6.5 M� and m3 = 6.0 M� and fixed a1 = 10 AU and a2 = 250 AU, with cos(itot), e1, e2 and g1 in an
equally spaced grid. Mass loss during the primary AGB phase is modeled with a relation which is linear in time, where the
final WD mass is determined by the initial-final mass relation of Kalirai et al. (2008). Similarly to our study ST12 make the
assumption of fast and isotropic wind mass loss in both binary systems such that a1(m1 + m2) and a2(m1 + m2 + m3) remain
constant. Unlike our study, however, ST12 do not model the processes of apsidal motion due to general relativity, tidal bulges
and rotation, gravitational wave emission and tidal friction (cf. Chapter 3). To capture the importance of tidal friction an ad hoc
tidal radius is introduced. Whenever the inner binary separation is smaller than this tidal radius it is assumed that tidal friction
is important. This ad hoc tidal radius is adjusted with different evolutionary phases of the primary in an attempt to capture the
different strengths of tidal forces, analogous to (but likely less accurate than) our approach where the tidal strength quantity ki/Ti

is computed from tidal theory where a main distinction is made between convective, radiative and degenerate damping (cf. Sect.
3.3). Furthermore, in contrast to our study ST12 do not take into account binary interactions such as CE evolution (cf. Sect.
3.2). Nevertheless, because ST12 accurately model the triple dynamics by means of an N-body code and take into account stellar
evolutionary changes it is interesting to see how their results roughly compare with ours. In this comparison it should also be
taken into account that in our study all triple parameters are sampled by means of Monte Carlo methods, whereas ST12 assume
fixed masses and semi-major axes.

ST12 find that there is about 10% probability for close encounters (periastron distance comparable to the stellar radii) during
the MS, which is roughly in agreement with the 5% MS mergers found in this study (cf. Table 5.2). ST12 also find that octupole
order effects are important for these MS systems, which is consistent with our study (cf. Fig. 5.4). Furthermore, ST12 find
that eccentricity cycles are important during the giant phase (with close encounters occurring in ∼ 30% of all systems), which is
consistent with our study where we find that ∼ 24% of all systems experience strong KCTF during the RGB/AGB phases. Lastly,
ST12 find that ∼ 10% of all systems become dynamically unstable which is also consistent with our results (cf. Table 5.2).

6.1.2 Effect of mass loss on triple dynamical instability
The scenario of a triple dynamical instability has recently been studied in detail by Perets & Kratter (2012; hereafter PK12).
PK12 determine which fraction of triple systems with 1.0 < m1/M� < 20 become dynamically unstable during their evolution
by means of a stability criterion. Subsequently PK12 investigate the further evolution by means of N-body simulations and
determine the fraction of systems in which a collision between two (or more) components occurs. Although the evolution
after dynamical stability is beyond the scope of our study, it is interesting to compare their fraction of systems which become
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dynamically unstable with ours. This is because PK12 sample a triple population by means of a method which is qualitatively
similar to the sampling method of our population TSM1 (cf. Sect. 5.2) and because their treatment of mass loss is similar.

In the sampling method of PK12 both inner and outer binary parameters are generated by means of Monte Carlo sampling
from observed binary distributions. The assumed binary distributions in PK12 are not identical to ours, however. Firstly, in
PK12 the period distribution for primary masses m1 < 3 M� is a Gaussian (Raghavan et al., 2010) and for m1 > 3 M� it is flat in
log10(P j), whereas in our study for TSM1 the period distribution is flat in log10(P j) independent of the primary mass. Also note
that PK12 sample a full range of inner and outer orbital periods whereas in our study a selection is made to a1

(
1 − e2

1

)
> 12 AU.

Secondly, PK12 assume a Salpeter IMF with 1.0 < m1/M� < 20, whereas we assume a Kroupa IMF with 1.0 < m1/M� < 6.5
for TSM1. Also PK12 increase the weight of the 3.0 < m1/M� < 20 subsample by a factor of five to account for the dependence
of the triple fraction on mass (this factor of five is motivated by observations, see PK12). We do not employ such an increased
weight for higher mass primaries. Thirdly, PK12 sample mass ratios from a Gaussian distribution for low mass primaries and
a power law for high mass primaries while we assume flat distributions. The remaining parameters are sampled similarly in
both studies: both sample e j from thermal distributions and itot from a distribution which is uniform in cos(itot). Despite these
differences in assumed binary distributions the triple sample of PK12 and our TSM1 sample should be roughly comparable. Note
that in addition to the sampling method described above, PK12 also directly use observed triple data from Tokovinin (2008). We
did not use such a method because of the limited number of systems in the Tokovinin (2008) sample which remain after applying
our selection criteria (cf. Sect. 5.1). In this comparison we shall therefore focus solely on results from the binary sampling
method of PK12.

PK12 model the inner binary mass with the binary_c algorithm (Hurley et al., 2002) similar to our study. Note, however,
that PK12 do not model the effect of Kozai cycles. Furthermore, the tertiary mass is modeled with the SSE code (Hurley et al.,
2000) which is equivalent to the binary_c algorithm in single star mode. This method for the tertiary mass is identical to ours
(cf. Sect. 3.2). PK12 then compute the effect of mass loss in the inner binary system and the tertiary on the outer orbit semi-major
axis with the assumption of fast and isotropic wind, again similar to our study. The effect of this mass loss is to decrease the
ratio β ≡ a2/a1 (as in Sect. 5.3.3), which decrease can drive a triple destabilization. Using the stability criterion of Valtonen et
al. (2008) PK12 then determine the fraction fdest,PK12 of systems which become dynamically unstable (note, however, that PK12
find from their N-body simulations that only 33% of the systems which do not satisfy this stability criterion are truly dynamically
unstable within their 0.5 Myr time integration). They find a fraction fdest,PK12 ∼ 0.053.

This fraction should be compared with our fraction fdest ∼ 0.102 of all systems which become dynamically unstable in TSM1
(cf. Table 5.2). Note that among these systems are MS destabilizations, which are systems which are only marginally stable at
system formation. The MS destabilizations are mainly driven by octupole order effects which increase e2 early in the evolution
such that βcrit increases (cf. Eq. 3.6 and Sect. 5.3.3). Such effects are not modeled in PK12. However, because systems which
in our study destabilize early on the MS are only marginally stable, they would likely destabilize during the AGB phase which is
associated with a decrease in β. The latter systems are taken into account in PK12. The fractions fdest,PK12 and fdest are roughly
comparable, although our fraction is distinctly higher. The main reason for this difference is likely due to different distributions
of β ≡ a2/a1 in PK12 and our study because fdest depends very sensitively on this distribution (see the dependence of fdest on
β in Fig. 5.3; note that this figure only shows the region 0 < fdest < 0.5). In addition (but note that this is a small effect),
PK12 use the stability criterion of Valtonen et al. (2008) whereas we use that of Mardling & Aarseth (2001) (cf. Sect. 3.2). On
average the former gives slightly smaller values of βcrit than the latter1 and in general the number of destabilizations decreases
with decreasing βcrit.

6.1.3 The role of the tertiary in CO WD mergers
As discussed before in Chapter 1, Thompson (2011; hereafter TH11) has recently suggested that high eccentricities induced by
the tertiary in close CO WD binaries can significantly reduce the merger time due to GWE. TH11 models this effect of the tertiary
and finds that binaries with orbital periods as high as P1 ∼ 300 d can still merge due to GWE within a Hubble time if a relatively
close and sufficiently inclined tertiary is present. In the absence of a tertiary the maximum orbital period for a merger due to
GWE within a Hubble time for these CO WD binaries is P1 ∼ 0.3 d (see e.g. Sect. 3.1.2). The scenario introduced by TH11
could significantly increase the expected observed rates of mergers of compact objects, in particular CO WD mergers. The latter
mergers are considered as an important candidate progenitor channel for SNe Ia. TH11 does not take into account the evolution
of the triple system prior to the formation of the CO WD binary, however. We have taken into account this prior evolution in the
case of initially wide inner binaries with a1

(
1 − e2

1

)
> 12 AU. Although we find that CO WD mergers due to GWE (in circular

orbits) occur, these systems are unaffected by Kozai cycles after the first CE phase which precedes the formation of the close CO
WD binary. This is due to the large ratio β ≡ a2/a1 after the CE phase such that Kozai cycles are quenched by general relativistic

1More quantitatively: the ratio between βcrit according to Valtonen et al. (2008) and Mardling & Aarseth (2001) is given by βcrit,V08/βcrit,MA01 =

15
14 (1 + q2)−1/15 (1 − e2)1/30 (1 + e2)−2/5

(
7
4 + 1

2 cos(itot) − cos2(itot)
)1/3 (

1 − 0.3
π itot

)−1
(itot expressed in radians). If we assume a flat distribution in 0 < q2 < 1, a

thermal distribution for e2 and itot uniform in cos(itot) we find a mean weighted value 〈βcrit,V08/βcrit,MA01〉 ≈ 0.98.
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apsidal motion (cf. Fig. 5.6). Note, however, that although Kozai cycles are not important after the CE they do play a key role in
triggering the CE through orbital shrinkage due to KCTF during the primary giant phases.

Furthermore, we find a new channel leading to CO WD mergers in which the tertiary plays a key role and which has not
been considered by TH11. In this channel the merger occurs through an eccentric collision (TIEM) after the formation of an
inner binary CO WD system. Due to mass loss in the inner binary system as both the primary and secondary evolve to CO WDs
the ratio β ≡ a2/a1 at this time is low, typically β ∼ 15 (Fig. 5.6; dotted curve). This induces octupole order effects in which
very high eccentricities occur during orbital flips (e.g. Fig. 4.2). Consequently an orbital collision can occur. Note that these
orbital collisions are similar to head-on encounters which are normally expected to occur only in dense stellar systems such as
the cores of globular clusters, whereas hierarchical triple systems are also common among field stars (e.g. Raghavan et al. 2010).
As discussed in Sect. 5.4.2 these head-on encounters are likely to result in SNe Ia. Another CO WD merger channel in which
the tertiary plays a key role is when a triple destabilization occurs. Note that this scenario has been investigated previously by
PK12. If the inner binary is a CO WD binary at the time of destabilization, a possible outcome is a collision; PK12 find that the
probability for a collision is ∼ 10%.

Because CO WD mergers are considered as an important progenitor channel for SNe Ia we have computed the expected SNe
Ia rates due to the various triple-induced CO WD merger channels and normalized them to the part of the mass represented by the
sampled triple population in Sect. 5.4.2. Fig. 5.13 shows these rates as function of time (for TSM1) in an optimistic scenario (i.e.
in which the dependence of the mass ratio prior to merger on the efficiency of an explosion is neglected) and compares them with
the rates according to the binary population synthesis study of Claeys et al. (2012) and observed rates from Totani et al. (2008),
Maoz & Badenes (2010) and Maoz et al. (2010). As was discussed in Sect. 5.4.2 the triple-induced rates are much lower than the
binary population synthesis rates and the observations. However, it needs to be taken into account that in our work inner binary
systems with initially l1 ≡ a1

(
1 − e2

1

)
< 12 AU are not modeled. It is likely that there is also a contribution from triple systems

with initially tighter inner binaries. Therefore the rates due to a full triple population are likely higher than those presented in
Fig. 5.13, especially when taking into account that in TSM1 only ∼ 0.130 of all triple systems satisfy l1 > 12 AU (cf. Appendix
C).

6.2 Assumptions and uncertainties
In this work many physical processes are modeled and due to the large number of uncertainties associated with these processes
we were forced to make simplifying assumptions. Here we address some of these assumptions and uncertainties. In the triple
algorithm used in this work the assumption of fast and isotropic wind mass loss is made (Sect. 3.2). This assumption is used to
compute the effect of mass loss in the inner binary system and the tertiary on the outer orbit semi-major axis. If, however, the
wind speed vw of the mass-losing star in the inner binary system is comparable to the inner orbital speed vorb,1 then the winds are
likely affected by its companion (e.g. Val-Borro et al. 2009). This may be the case for AGB stars, which have a relatively low
wind speed of typically vw ∼ 10 km s−1 (e.g. Winters et al. 2003). In the case that vw ∼ vorb,1 the mass loss in the inner binary
system may no longer be fast and isotropic and consequently the assumption that a2(m1 + m2 + m3) is constant no longer holds.
In the inner binary system part of the mass lost in the wind is then accreted by the companion. As a result the expansion of the
inner orbit is reduced with respect to the situation of fast and isotropic winds. More quantitatively, if the primary in a binary orbit
loses mass then the effect on the semi-major axis is described by (Hurley et al., 2002)

〈δa〉
a

= −
δm1

m1 + m2
−

(
2 − e2

m2
+

1 + e2

m1 + m2

)
〈δm2〉

1 − e2 , (6.1)

where brackets denote orbital averaging. If the companion does not accrete any mass then the second term in Eq. 6.1 is zero and
Eq. 6.1 reduces to a(m1 + m2) being constant (note that δm1 < 0). If, on the other hand, the companion accretes mass through
wind from the primary then the increase of a is reduced due to the second term in Eq. 6.1, where 〈δm2〉 > 0. Note that this effect
on the inner orbit is taken into account in our triple algorithm because it is implemented in binary_c, where 〈δm2〉 is prescribed
by the Bondi & Hoyle (1944) mechanism (Hurley et al., 2002). The effect is, however, not taken into account for the outer orbit.
In the latter orbit part of the mass lost in the wind may be accreted by the tertiary if the wind is sufficiently slow compared to
the outer orbital speeds. Consequently the expansion of the outer orbit is less than expected based on the assumption made in
the triple algorithm. This would imply that during phases of strong mass loss in the inner binary system, notably during the
primary and secondary AGB phases, there would be a stronger decrease in the ratio β ≡ a2/a1. Consequently in the systems in
which β decreases during the AGB phases due to mass loss in the inner binary system we would expect more systems in which
octupole order terms (and hence also orbital flips) are important after the AGB phase due to the smaller β. This would imply
more eccentric merger systems (in particular eccentric CO WD merger systems) and more systems which become dynamically
unstable during or after the AGB phase. However, we do not believe that this effect significantly changes our results. We find
that systems in which wind mass loss during the AGB phase is responsible for decreasing the ratio β typically have large inner
orbit semi-major axes, i.e. a1 ∼ 102.6 AU ∼ 400 AU (cf. Fig. 5.7, dashed curve). In this case the inner orbital speeds are slow,
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vorb,1 = [GN(m1 + m2)/a1]1/2 ∼ 3 km s−1 < vw (taking m1 + m2 = 4 M� and e1 = 0) and hence we expect the assumption of fast
and isotropic winds to be reasonable.

Furthermore, uncertainties remain in the physics of tidal friction, in particular in the dynamical tide model where high
eccentricities may induce complicated coupling of stellar oscillations with the tidal potential (Zahn, 2005). It is conceivable that
such coupling in the case of high eccentricity could significantly increase the effectiveness of tidal friction and this could have
important consequences for the our study. For example, we have found that MS mergers merge predominantly due to eccentric
collisions (TIEM); only for a small number of systems with low-mass inner binary components, KCTF is effective at shrinking
the orbit and hence resulting in a TICM merger. If tidal friction in stars possessing radiative envelopes in highly eccentric orbits
were more effective than prescribed by the method used in this work (Hurley et al., 2002), for which ki/Ti is independent of e1,
then KCTF could be effective in more systems. The details of such a dependence of e1 on ki/Ti are unclear. Nevertheless, in
order to obtain a rough idea of the consequences of stronger tidal friction than assumed in Chapter 3 we have recalculated the
evolution of the TSM1 population, artificially increasing the tidal strength quantities ki/Ti by an ad hoc factor of 103 for the case
of radiative damping. We find that this has virtually no effect: the probabilities of the main channels are unchanged, as is the
proportion of systems which merge in eccentric orbits. Furthermore, we have performed the same test (i.e. multiplying ki/Ti by
an ad hoc factor of 103) for degenerate damping, for which also uncertainties remain. We similarly find that the artificial increase
in ki/Ti for degenerate damping does not change the results. It may thus be concluded that the uncertainties in radiative and
degenerate damping do not significantly affect the results of our population synthesis study.

Uncertainties exist not only in our triple algorithm but also in the initial parameter distributions. For binary systems these
parameters are reasonably constrained, although the distribution of the mass ratio q1 remains uncertain. For triple systems on
the other hand, the parameters are much less certain due to the small number of observed triple systems with reliable orbital
distributions. In particular the initial distribution of the mutual inclination angle itot is virtually unknown, although efforts are on
the way to better constrain this parameter (e.g. Lane et al. 2007 and Muterspaugh et al. 2008). Because of these uncertainties in
the triple parameters we have sampled two distinct populations with different mass and orbital period distributions (cf. Table 5.1).
Despite the differences with respect to the masses and orbital periods between these methods, we find that our results for both
populations are very similar (cf. Table 5.2). Furthermore, the assumed distribution of itot is the same in TSM1 and TSM2. As
Fig. 5.3 shows, our results are strongly dependent on this distribution, which is ill-constrained by observations. We emphasize,
however, that our assumption of a uniform distribution of cos(itot) is reasonable and that there is no a priori reason to believe that
the distribution of itot is significantly different from uniform in cos(itot).

6.3 Suggestions for further study
In order to gain further insight into the accuracy of the our triple algorithm, it would be valuable to perform detailed three-body
simulations with a realistic treatment of tidal evolution of specific triple systems, in particular those in which the inner orbit
eccentricity maxima are high. Such simulations could specifically be used to verify the extreme inner orbit eccentricities of
1 − e1 ∼ 10−8 in wide inner binary systems of a1 ∼ 103 AU found in CO WD TIEM merger systems in our study (see e.g. the
example system in Sect. 4.2). Also it is of interest to investigate by means of a detailed treatment whether this high eccentricity
leads primarily to an orbital collision (as found in this work) or to tidal capture or a short burst of gravitational wave emission.
The latter two scenarios would lead to very tight circular orbits and subsequent mergers due to GWE. Note that we do find that
the last scenario of strong GWE due to high eccentricities occurs in our population synthesis study (cf. Sect. 5.4.1), but it is very
unlikely. Such detailed simulations could e.g. be carried out in the AMUSE framework (Portegies Zwart et al., 2009), coupling
hydrodynamical, three-body codes and possibly stellar evolution codes.

Lastly, as mentioned previously, the triple sample considered in this work only contains relatively wide inner binary systems.
In order to also simulate those triple systems with l1 < 12 AU, the triple algorithm used would have to be extended to also include
mass transfer in eccentric orbits, for which a formalism has been derived previously (e.g. Sepinsky et al. 2007).
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Chapter 7
Conclusion

We have studied the evolution of coeval stellar hierarchical triple systems with intermediate mass (inner binary primary
mass 1.0 < m1/M� < 6.5) and initially relatively wide inner binary systems (a1[1 − e2

1] > 12 AU) which would
not interact in the absence of the tertiary component. For this purpose we have developed a secular gravitational hierarchical
triple dynamics code and coupled this with an existing binary population synthesis algorithm. We have performed a population
synthesis study and find that in 25% of these systems the process of Kozai cycles with tidal friction (KCTF) is important at some
point in the evolution, most notably during the primary RGB and AGB phases. In particular, in ∼ 6% of all systems the inner
binary is shrunk significantly, thus producing close CO WD and He WD binaries. In ∼ 8% of all systems the tertiary drives
an inner binary merger among which mergers due to eccentric collisions are important (∼ 60% of all mergers). Mergers on the
MS occur most frequently (∼ 4% of all systems) and octupole order terms in the secular-three body dynamics are important
in driving high eccentricities, which in most cases are high enough for an orbital collision. For MS mergers tidal friction is
typically weak due to the radiative structure of the stellar envelopes, such that KCTF occurs only in a small fraction of MS
merger systems (. 0.01). Most inner binary post-MS and compact object mergers are driven by strong KCTF, substantially
shrinking the orbit to a1 < 12 AU and potentially invoking common-envelope evolution as either component grows significantly
in size during the RGB/AGB phase. After any common-envelope phase we find that β = a2/a1 is always so large that the secular
three-body dynamics are completely dominated by general relativistic apsidal motion and Kozai cycles are suppressed. We thus
find that none of the triple systems considered in this sample lead to close CO WD binaries in which the GWE merger time is
reduced by Kozai cycles, as has been suggested by Thompson (2011). In ∼ 10% of all compact object merger systems strong
KCTF is avoided. In such systems, the increase in a1 due to wind mass loss in the inner binary orbit significantly decreases the
ratio β ≡ a2/a1, thus increasing the importance of octupole order effects. Consequently high-amplitude eccentricity cycles are
induced, in particular during transitions between retrograde and prograde orbits and vice versa. Due to weak tidal friction in the
majority of these systems (compact objects and/or MS/CHeB stars), these cycles likely lead to an orbital collision through the
triple-induced eccentric mechanism (TIEM), which is a novel scenario in the evolution of hierarchical triples.

Among the inner binary mergers we find many possible combinations, thus showing that the tertiary, through its secular
dynamical influence, introduces many new merger channels previously only considered in the context of isolated binary systems.
We expect a relatively large number of MS mergers and destabilizations (the latter of which can indirectly lead to mergers) and
these occur relatively early in the evolution. For the resulting merged MS stars to potentially become blue straggler stars (i.e.
stars more luminous than stars at the MS turn-off point) the merger/destabilization would have to occur at a later time in the MS
evolution. A relatively large number of the mergers systems (∼ 2% of all systems) involve compact objects, thus introducing
novel channels for many peculiar types of stars such as early-type R stars (Izzard et al., 2007) and RCrB stars (Tisserand et
al., 2009). We have paid special attention to CO WD mergers and CO WD destabilizations because some of such systems are
considered as an important candidate progenitor channel for SNe Ia. We have computed the expected rates of SNe Ia due to all
plausible triple-induced channels and have compared these to the rates found in a binary population synthesis study and those
from observations. We find that the triple-induced rates are approximately one to three orders of magnitude lower than those
found in binary population synthesis studies. The triple-induced rates represent a lower limit, however, because the triple sample
considered in this work is not complete with respect to m1 and, more importantly, a1. For a more complete study also initially
closer inner binary systems should be included, from which there is also likely to be a significant contribution to the triple-
induced SNe Ia rate. In addition, because the algorithm used in this work faces many uncertainties due to necessary simplifying
assumptions in favor of computational speed, more detailed simulations of specific systems are warranted to evaluate its accuracy,
in particular of those in which the eccentricity maxima are very high.
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Chapter 8
List of acronyms

AGB – asymptotic giant branch
CE – common-envelope
CHeB – core helium-burning
CO – carbon-oxygen
DTD – delay time distribution
GR – general relativity
GWE – gravitational wave emission
He – helium
HG – Hertzsprung gap
KCTF – Kozai cycles with tidal friction
MS – main sequence
NS – neutron star
ONe – oxygen-neon
RGB – red giant branch
RLOF – Roche-lobe overflow
SN(e) Ia – supernova(e) type Ia
STD – secular triple dynamics
TF – tidal friction
TICM – triple-induced circular mechanism
TIEM – triple-induced eccentric mechanism
TSM – triple sampling method
WD – white dwarf

50



Bibliography

Blaes, O., Lee, M.H., Socrates, A. 2002, ApJ, 578, 775

Bondi, H., Hoyle, F. 1944, MNRAS, 104, 273

Campbell, C.G. 1984, MNRAS, 207, 433

Claeys, J. et al., in preparation

Claret, A. 2004, A&A, 424, 919

Cohen, S.D., Hindmarsh, A.C. 1996, Computers in Physics, 10-2, 138

Eggleton, P.P. 2009, MNRAS, 399, 1471

Eggleton, P.P., Kisseleva-Eggleton, L., 2001, AJ, 562, 1012

Eggleton, P.P., Tokovinin, A.A. 2008, MNRAS, 389, 869

Fabrycky, D., Tremaine, S. 2007, ApJ, 669, 1298

Ford, E.B., Kozinsky, B., Rasio, F.A. 2000, ApJ, 535, 385

Gradshteyn, I.S., Ryzhik, I.M. Table of Integrals, Series, and Products, seventh edition. Academic Press, 2007. ISBN 978-0-12-
373637-6

Guerrero, J., García-Berro, E., Isern, J. 2004, A&A, 413, 257

Harrington, R. S. 1968, AJ, 73, 190

Hinderer, T. 2008, ApJ, 677, 1216

Huang, S.S. 1956, AJ, 61, 49

Huang, S.S. 1963, AJ, 138, 471

Hurley, J.R. Pols, O.R., Tout, A. 2000, MNRAS, 315, 543

Hurley, J.R., Tout, C.A., Pols, O.R. 2002, MNRAS, 329, 897

Hut, P. 1980, A&A, 92, 167

Hut, P. 1981, A&A, 99, 126

Iben, I.J., Tutukov, A.V. 1984, ApJS, 54, 335

Iben, I.J., Tutukov, A.V. 1999, ApJ, 511, 324

Izzard, R.G., Tout, C.A., Karakas, A.I., Pols, O.R. 2004, MNRAS, 350, 407

Izzard, R.G., Dray, L.M., Karakas, A.I., Lugaro, M., Tout, C.A. 2006, A&A, 460, 565

Izzard, R. G., Jeffery, C. S., Lattanzio, J. 2007, A&A, 470, 661

51

http://adsabs.harvard.edu/abs/2002ApJ...578..775B
http://adsabs.harvard.edu/abs/1944MNRAS.104..273B
http://adsabs.harvard.edu/abs/1984MNRAS.207..433C
http://adsabs.harvard.edu/abs/2004A%26A...424..919C
http://adsabs.harvard.edu/abs/2009MNRAS.399.1471E
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:astro-ph/0104126
http://adsabs.harvard.edu/abs/2008MNRAS.389..869E
http://adsabs.harvard.edu/abs/2007ApJ...669.1298F
http://adsabs.harvard.edu/abs/2000ApJ...535..385F
http://adsabs.harvard.edu/abs/2004A%26A...413..257G
http://adsabs.harvard.edu/abs/1968AJ.....73..190H
http://adsabs.harvard.edu//abs/2008ApJ...677.1216H
http://adsabs.harvard.edu/abs/1956AJ.....61...49H
http://adsabs.harvard.edu/abs/1963ApJ...138..471H
http://adsabs.harvard.edu/abs/2000MNRAS.315..543H
http://adsabs.harvard.edu/abs/2002MNRAS.329..897H
http://adsabs.harvard.edu/abs/1980A%26A....92..167H
http://adsabs.harvard.edu/abs/1981A%26A....99..126H
http://adsabs.harvard.edu/abs/1984ApJS...54..335I
http://adsabs.harvard.edu/abs/1999ApJ...511..324I
http://adsabs.harvard.edu/abs/2004MNRAS.350..407I
http://adsabs.harvard.edu/abs/2006A%26A...460..565I
http://adsabs.harvard.edu/abs/2007A%26A...470..661I


Izzard, R.G., Glebbeek, E., Stancliffe, R.J., Pols, O.R. 2009, A&A, 508, 1359

Kalirai, J. S., Hansen, B. M. S., Kelson, D. D. et al. 2008, ApJ, 676, 594

Kinoshita, H., Nakai, H. 1999, CeMDA, 75, 125

Kisseleva-Eggleton, L., Eggleton, P.P. 2010, ASP, 435, 169

Kopal, Z. 1946, An introduction to the study of eclipsing stars, Cambridge, Mass., Harvard university press

Kouwenhoven, M.N.B., Brown, A.G.A., Portegies Zwart, S.F., Kaper, L. 2007, A&A, 474, 77

Kozai, Y. 1962, AJ, 67, 591

Kroupa, P., Tout, T.A., Gilmore, G. 1993, MNRAS, 262, 545

Kroupa, P., Burkert, A. 2001, ApJ, 555, 945

Lane, B.F., Muterspaugh, M.W., Fekel, F.C. et al. 2007, ApJ, 669, 1209

Lang K. R. 1992, Astrophysical Data. Springer-Verlag

Lidov, M. L. 1962, Planet. Space Sci., 9, 719

Lithwick, Y. Naoz, S. 2011, ApJ, 742, 94

Maoz, D., Badenes, C. 2010, MNRAS, 407, 1314

Maoz, D., Sharon, K., Gal-Yam, A. 2010, ApJ, 722, 1879

Maoz, D., Mannucci, F. 2012, arXiv:111.4492

Mardling, R.A., Aarseth, S.J. 2001, MNRAS, 321, 398

Mazeh, T., Shaham, J. 1979, A&A, 77, 145

Muterspaugh, M.W., Lane, B.F., Fekel, F.C. 2008, AJ, 135, 766

Naoz, S., Farr, W.M., Lithwick, Y., Rasio, F.A., Teyssandier, J. 2011, arXiv:1107.2414

Nelemans, G., Yungelson, L.R., Portegies Zwart, S.F., Verbunt, F. 2001, A&A, 365, 491

Pakmor, R., Hachinger, S., Röpke, F. K., Hillebrandt, W. 2011, A&A, 528, 117

Perets, H.B., Kratter, K.M. 2012, arXiv:1203.2914

Perlmutter, S. et al. 1999, ApJ, 517, 565

Portegies Zwart, S., McMillan, S., Harfst, S. et al. 2009, New Astronomy, 14, 369

Raghavan, D., McAlister, H.A. et al. 2010, ApJS, 190, 1

Rasio, F. A., Tout, C. A., Lubow, S. H., Livio, M. 1996, ApJ, 470, 1187

Raskin, C., Scannapieco, E., Rockefeller, G., Fryer, C., Diehl, S., Timmes, F. X. 2010, ApJ, 724, 111

Rastegaev, D.A. 2010, AJ, 140, 2013

Remage Evans, N. 2011, arXiv:1102.5316

Riess, A. et al. 1998, AJ, 116, 1009

Rosswog, S., Kasen, D., Guillochon, J., Ramirez-Ruiz, E. 2009, ApJL, 705, 128

Ruiter A.J., Belczynski, K., Fryer, C. 2009, ApJ, 699, 2026

Sepinsky, J.F., Willems, B., Kalogera, V., Rasio, F.A. ApJ, 702, 1387

Shappee, B.J., Thompson, T. A. 2012, arXiv:1204.1053

52

http://adsabs.harvard.edu/abs/2009A%26A...508.1359I
http://adsabs.harvard.edu/abs/2008ApJ...676..594K
http://adsabs.harvard.edu//abs/1999CeMDA..75..125K
http://adsabs.harvard.edu/abs/2010ASPC..435..169K
http://adsabs.harvard.edu//abs/2007A%26A...474...77K
http://adsabs.harvard.edu/abs/1962AJ.....67..591K
http://adsabs.harvard.edu/abs/1993MNRAS.262..545K
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:astro-ph/0103429
http://adsabs.harvard.edu/abs/2007ApJ...669.1209L
http://adsabs.harvard.edu/abs/1962P%26SS....9..719L
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1106.3329
http://adsabs.harvard.edu/abs/2010MNRAS.407.1314M
http://adsabs.harvard.edu/abs/2010ApJ...722.1879M
http://arxiv.org/abs/1111.4492v2
http://adsabs.harvard.edu/abs/2001MNRAS.321..398M
http://adsabs.harvard.edu/abs/1979A%26A....77..145M
http://adsabs.harvard.edu/abs/2008AJ....135..766M
http://arxiv.org/abs/1107.2414
http://adsabs.harvard.edu/abs/2001A%26A...365..491N
http://adsabs.harvard.edu/abs/2011A%26A...528A.117P
http://arxiv.org/abs/1203.2914
http://adsabs.harvard.edu/abs/1999ApJ...517..565P
http://adsabs.harvard.edu/abs/2009NewA...14..369P
http://adsabs.harvard.edu/abs/2010ApJS..190....1R
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:astro-ph/9605059
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1009.2507
http://adsabs.harvard.edu/abs/2010AJ....140.2013R
http://arxiv.org/abs/1102.5316
http://adsabs.harvard.edu/abs/1998AJ....116.1009R
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0907.3196
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0904.3108
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0903.0621
http://arxiv.org/abs/1204.1053v1


Smeyers, P., Willems, B. 2001, A&A, 373, 173

Thompson, T.A. 2011, AJ, 741, 82

Tisserand P. et al. 2009, A&A, 501, 985

Tokovinin, A., Thomas, S., Sterzik, M., Udry, S. 2006, A&A, 450, 681

Tokovinin, A. 2008, MNRAS, 389, 925

Totani, T. et al. 2008, PASJ, 60, 1327

Val-Borro, M., Karovska, M., Sasselov, D. 2009, AJ, 700, 1148

Valtonen, M., Karttunen, H. 2006, The Three-Body Problem, ed. Valtonen, M. & Karttunen, H.

Valtonen, M., Mylläri, A., Orlov, V., Rubinov, A. 2008, in IAU Symposium, Vol. 246, IAU Symposium, ed. E. Vesperini, M.
Giersz, & A. Sills, 209 - 217

Vila, S.C. 1977, ApJ, 213,464

Wang, B., Han, Z. 2012, arXiv:1204.1155

Webbink, J.R. 1984, ApJ, 277, 355

Winters, J. M., Le Bertre, T., Jeong, K. S. et al. 2003, A&A, 409, 715

Zahn, J.P. 1975, A&A, 41, 329

Zahn, J.P. 1977, A&A, 57, 383

Zahn, J.P. 2005, ASP, 333,4

Zinnecker, H. 2008, Multiple Stars Across the H-R Diagram, ESO Astrophysics Symposia

Internal links (useful in the electronic version):
Introduction
Theory
Hierarchical triple evolution algorithm
Example systems
Triple population synthesis
Discussion
Conclusion

53

http://adsabs.harvard.edu/abs/2001A%26A...373..173S
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1011.4322
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0905.3224
http://adsabs.harvard.edu/abs/2006A%26A...450..681T
http://adsabs.harvard.edu/abs/2008MNRAS.389..925T
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0804.0909
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0905.3542
http://adsabs.harvard.edu/abs/1977ApJ...213..464V
http://arxiv.org/abs/1204.1155v1
http://adsabs.harvard.edu/abs/1984ApJ...277..355W
http://adsabs.harvard.edu/abs/2003A&A...409..715W
http://adsabs.harvard.edu/abs/1975A%26A....41..329Z
http://adsabs.harvard.edu/abs/1977A%26A....57..383Z
http://adsabs.harvard.edu/abs/2005ASPC..333....4Z


Appendices

54



Appendix A
Derivations in the hierarchical three-body problem:
further details

A.1 Secular Hamiltonian

A.1.1 Expression for cos(Φ)

An expression is derived for the angle between the two relative binary vectors r1 and r2, Φ, in terms of the Euler angles (g j, i j, h j),
the magnitudes r j and the true anomalies f j. Let rinv denote any vector expressed in the invariant coordinate system (X,Y,Z) and
let rorb denote this vector expressed in an orbital coordinate system (x, y, z). Starting from the orbital coordinate system (x, y, z),
rotate around the z-axis by an angle g. Next, rotate around the X-axis by and angle i. Lastly, rotate around the Z-axis by an angle
h. In mathematical terms, this reads:

rinv = RZ(h)RX(i)Rz(g) rorb, (A.1.1)

where Rk denotes the rotation matrix for rotation around any axis k. In terms of the magnitudes of the relative binary vectors and
the true anomalies f j, r j expressed in its corresponding orbital frame, rorb, j, is given by:

rorb, j = r j

cos( f j)
sin( f j)

0

 . (A.1.2)

Since the orbital frames (x1, y1, z1) and (x2, y2, z2) do not coincide, cos(Φ) is not given by r̂orb,1 · r̂orb,2. Instead, the position vectors
rorb, j first need to be transformed to the common invariant coordinate system, such that cos(Φ) = r̂inv,1 · r̂inv,2. With the relevant
rotation matrices, this transformation reads:

rinv, j = r jRZ(h j)RX(i j)

cos(g j) − sin(g j) 0
sin(g j) cos(g j) 0

0 0 1


cos( f j)
sin( f j)

0

 = r jRZ(h j)RX(i j)

cos(g j) cos( f j) − sin(g j) sin( f j)
sin(g j) cos( f j) + cos(g j) sin( f j)

0


= r jRZ(h j)

1 0 0
0 cos(i j) − sin(i j)
0 sin(i j) cos(i j)


cos(g j + f j)
sin(g j + f j)

0

 = r j

cos(h j) − sin(h j) 0
sin(h j) cos(h j) 0

0 0 1


 cos(g j + f j)
cos(i j) sin(g j + f j)
sin(i j) sin(g j + f j)


= r j

cos(h j) cos(g j + f j) − cos(i j) sin(h j) sin(g j + f j)
sin(h j) cos(g j + f j) + cos(i j) cos(h j) sin(g j + f j)

sin(i j) sin(g j + f j)

 . (A.1.3)

Consequently:

cos(Φ) = r̂inv,1 · r̂inv,2 = cos(h1) cos(h2) cos(g1 + f1) cos(g2 + f2) − cos(h1) cos(g1 + f1) cos(i2) sin(h2) sin(g2 + f2)
− cos(h2) cos(g2 + f2) cos(i1) sin(h1) sin(g1 + f1) + cos(i1) cos(i2) sin(h1) sin(h2) sin(g1 + f1) sin(g2 + f2)
+ sin(h1) sin(h2) cos(g1 + f1) cos(g2 + f2) + sin(h1) cos(g1 + f1) cos(i2) cos(h2) sin(g2 + f2)
+ sin(h2) cos(g2 + f2) cos(i1) cos(h1) sin(g1 + f1) + cos(i1) cos(i2) cos(h1) cos(h2) sin(g1 + f1) sin(g2 + f2)
+ sin(i1) sin(i2) sin(g1 + f1) sin(g2 + f2). (A.1.4)

55



Regrouping terms and using the trigonometric identities cos(α+β) = cos(α) cos(β)−sin(α) sin(β) and sin(α+β) = sin(α) cos(β)+

cos(α) sin(β) Eq. A.1.4 can be written in a more manageable form:

cos(Φ) = cos(g2 + f2)
[
cos(h1) cos(h2) cos(g1 + f1) − cos(h2) cos(i1) sin(h1) sin(g1 + f1) + sin(h1) sin(h2) cos(g1 + f1)

+ sin(h2) cos(i1) cos(h1) sin(g1 + f1)
]
+ sin(g2 + f2)

[
− cos(h1) cos(g1 + f1) cos(i2) sin(h2)

+ cos(i1) cos(i2) sin(h1) sin(h2) sin(g1 + f1) + sin(h1) cos(g1 + f1) cos(i2) cos(h2)
+ cos(i1) cos(i2) cos(h1) cos(h2) sin(g1 + f1) + sin(i1) sin(i2) sin(g1 + f1)

]
= cos(g2 + f2)

[
cos(g1 + f1) cos(∆h) − cos(i1) sin(g1 + f1) sin(∆h)

]
+ sin(g2 + f2)

[
cos(i2) cos(g1 + f1) sin(∆h)

+ sin(g1 + f1) {cos(i1) cos(i2) cos(∆h) + sin(i1) sin(i2)}
]
, (A.1.5)

where for convenience ∆h ≡ h1 − h2. Note that Eq. A.1.5 is invariant under the substitution of indices 1 ↔ 2, as should be the
case.

A.1.2 Relation between the longitudes of the ascending nodes
The relation ∆h = h1 − h2, which may strictly be substituted only after deriving the equations of motion from the Hamiltonian, is
a consequence of the choice of coordinate systems used, which is directly linked to conservation of total angular momentum. To
prove the relation it is necessary to find an expression for the angular momentum vector G in terms of the angles (g, i, h) which
specify the orientation of the binary orbit with respect to the invariant coordinate system, which must be done for both the inner
and outer binary orbits1. For a binary orbit, the kinetic energy T is given by T = 1

2µ
(
ṙ2 + r2 ḟ 2

)
, where µ is the reduced mass of

the binary system and f the true anomaly. The potential energy does not depend on any velocities, therefore the magnitude of
the angular momentum G (the conjugate momentum of the true anomaly f ) is given by:

G =
∂H

∂ ḟ
=
∂T
∂ ḟ

= µr2 ḟ . (A.1.6)

Furthermore, the angular momentum in vector form, G, may be computed from:

G = µr × ṙ, (A.1.7)

where r is to be expressed in the invariant coordinate system, cf. Eq. A.1.3. Since r = rr̂, Eq. A.1.7 can also be expressed as:

G = µr ×
(
ṙr̂ + r ˙̂r

)
= µr2r̂ × ˙̂r. (A.1.8)

The quantity ˙̂r is derived explicitly in the invariant coordinate system from Eq. A.1.3, using the fact that (at least for one orbital
period) the motion remains fixed in the orbital plane such that ġ = ḣ = 0:

˙̂r = ḟ

− cos(h) sin(g + f ) − cos(i) sin(h) cos(g + f )
− sin(h) sin(g + f ) + cos(i) cos(h) cos(g + f )

sin(i) cos(g + f ).

 (A.1.9)

Therefore, in the invariant coordinate system (X,Y,Z):

G = µr2 ḟ

∣∣∣∣∣∣∣∣
X̂ Ŷ Ẑ

cos(h) cos(g + f ) − cos(i) sin(h) sin(g + f ) sin(h) cos(g + f ) + cos(i) cos(h) sin(g + f ) sin(i) sin(g + f )
− cos(h) sin(g + f ) − cos(i) sin(h) cos(g + f ) − sin(h) sin(g + f ) + cos(i) cos(h) cos(g + f ) sin(i) cos(g + f )

∣∣∣∣∣∣∣∣
= µr2 ḟ

[
X̂

{
sin(h) sin(i) cos2(g + f ) + cos(h) cos(i) sin(i) sin(g + f ) cos(g + f ) + sin(h) sin(i) sin2(g + f )

− cos(h) cos(i) sin(i) sin(g + f ) cos(g + f )} − Ŷ
{
cos(h) sin(i) cos2(g + f ) − sin(h) cos(i) sin(i) sin(g + f ) cos(g + f )

+ cos(h) sin(i) sin2(g + f ) + sin(h) cos(i) sin(i) cos(g + f ) sin(g + f )
}

+ Ẑ {− cos(h) sin(h) cos(g + f ) sin(g + f )

+ cos2(h) cos(i) cos2(g + f ) + sin2(h) cos(i) sin2(g + f ) − sin(h) cos(h) cos2(i) sin(g + f ) cos(g + f )

+ cos(h) sin(h) cos(g + f ) sin(g + f ) + cos2(h) cos(i) sin2(g + f ) + sin2(h) cos(i) cos2(g + f )

+ sin(h) cos(h) cos2(i) cos(g + f ) sin(g + f )
}]

= µr2 ḟ
[
sin(i) sin(h) X̂ − sin(i) cos(h) Ŷ + cos(i) Ẑ

]
= G

[
sin(i) sin(h) X̂ − sin(i) cos(h) Ŷ + cos(i) Ẑ

]
. (A.1.10)

1In the following, the indices j are suppressed.
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Eq. A.1.10 applies to both binary orbits j = 1 and j = 2 with respect to the invariant coordinate system hence the total angular
momentum of the three-body system, Gtot ≡ G1 + G2, is given by:

Gtot = X̂ {G1 sin(i1) sin(h1) + G2 sin(i2) sin(h2)} + Ŷ {−G1 sin(i1) cos(h1) −G2 sin(i2) cos(h2)}

+ Ẑ {G1 cos(i1) + G2 cos(i2)} . (A.1.11)

By definition the total angular momentum vector must be parallel to the Z-axis of the invariant coordinate system hence the X-
and Y-components of Gtot must vanish while the Z-component must be equal to Gtot:


G1 sin(i1) sin(h1) = −G2 sin(i2) sin(h2);
G1 sin(i1) cos(h1) = −G2 sin(i2) cos(h2);
Gtot = G1 cos(i1) + G2 cos(i2).

(A.1.12)

Division of the first two equations in Eq. A.1.12 then gives tan(h1) = tan(h2), or h1 − h2 = π. Note that, if no external forces act,
this relation must hold at all times because the total angular momentum vector Gtot is conserved.

A.1.3 Averaging procedure
Transformations between mean, true and eccentric anomalies

We briefly state some relations between the mean, eccentric and true anomalies, here denoted by l, E and f respectively, which
are required for the explicit integrations below. As can be found in any textbook on celestial mechanics for a binary orbit the dis-
tance r between the centre of mass and any point on the relative elliptic orbit is given in terms of the eccentric and true anomalies
E and f as:

r/a = 1 − e cos(E) =
1 − e2

1 + e cos( f )
. (A.1.13)

Furthermore, using geometric arguments it may be shown that:

sin(E) =
√

1 − e2 sin( f )
1 + e cos( f )

; cos(E) =
cos( f ) + e

1 + e cos( f )
; (A.1.14)

these equations may also written in inverted form as:

sin( f ) =
√

1 − e2 sin(E)
1 − e cos(E)

; cos( f ) =
cos(E) − e

1 − e cos(E)
. (A.1.15)

Lastly, we use the Kepler equation,

l = E − e sin(E). (A.1.16)

From Eq. A.1.16 it immediately follows that:

dl = (1 − e cos(E)) dE = (r/a) dE, (A.1.17)

which states the differential transformation between the mean and eccentric anomalies. Furthermore, differentiating both sides
of the second equation of Eq. A.1.14, one finds:

− sin(E) dE =
− sin( f )(1 + e cos( f )) + e sin( f )(cos( f ) + e)

(1 + e cos( f ))2 d f = − sin( f )
1 − e2

(1 + e cos( f ))2 d f ,

which gives, after writing sin(E) in terms of f with the first equation of Eq. A.1.14:

−
√

1 − e2 sin( f )
1 + e cos( f )

dE = − sin( f )
1 − e2

(1 + e cos( f ))2 d f ⇒ dE =

√
1 − e2

1 + e cos( f )
d f =

1
√

1 − e2

r
a

d f . (A.1.18)
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Lastly, combining Eqs. A.1.17 and A.1.18, one finds:

dl =
1

√
1 − e2

( r
a

)2
d f , (A.1.19)

which states the differential transformation between the mean and true anomalies.

Quadrupole order

The quadrupole order term Rquad, Eq. 2.23, is first averaged over the outer orbital period for which it is convenient to integrate
over the true anomaly:

〈Rquad〉2 =
1

2π

∫ 2π

0
Rquad dl2 = 16 Cquad

(
1 − e2

2

)3/2
(

r1

a1

)2 1
2π

∫ 2π

0

(
a2

r2

)3 1
2

(
3 cos2(Φ) − 1

)
︸                ︷︷                ︸

= P̃2(cos(Φ))

(
r2

a2

)2 1√
1 − e2

2

d f2

︸                  ︷︷                  ︸
= dl2

= 8 Cquad

(
1 − e2

2

)3/2
(

r1

a1

)2 1
2π

∫ 2π

0

1 + e2 cos( f2)
1 − e2

2

1√
1 − e2

2

(
3 cos2(Φ) − 1

)
d f2

= 8 Cquad

(
r1

a1

)2 1
2π

∫ 2π

0

[
1 + e2 cos( f2)

] [
3 cos2(Φ) − 1

]
d f2. (A.1.20)

With some trigonometric identities, cos(Φ), Eq. A.1.5, is expressed in terms of cos( f2) and sin( f2) as:

cos(Φ) = Ãa cos( f2) + Ãb sin( f2);
{

Ãa = Za cos( f1) + Zb sin( f1);
Ãb = Zc cos( f1) + Zd sin( f1), (A.1.21)

where Za, Zb, Zc and Zd are defined in Eq. 2.29. Therefore:

〈Rquad〉2 = 8 Cquad

(
r1

a1

)2 1
2π

∫ 2π

0

[
1 + e2 cos( f2)

] [
3Ã2

a cos2( f2) + 6ÃaÃb cos( f2) sin( f2) + 3Ã2
b sin2( f2) − 1

]
d f2

= 8 Cquad

(
r1

a1

)2 [
3
2

Ã2
a +

3
2

Ã2
b − 1

]
. (A.1.22)

For the integration over the inner orbit it is convenient to transform to the eccentric anomaly (cf. Eqs. A.1.15 and A.1.17):

〈〈Rquad〉2〉1 =
1

2π

∫ 2π

0
〈Rquad〉2 dl1 = 8 Cquad

1
2π

∫ 2π

0

(
r1

a1

)2 [
3
2

(
Z2

a + Z2
c

)
cos2( f1) + 3(ZaZb + ZcZd) cos( f1) sin( f1)

+
3
2

(
Z2

b + Z2
d

)
sin2( f1) − 1

] (
r1

a1

)
dE1︸     ︷︷     ︸

= dl1

= 8 Cquad
1

2π

∫ 2π

0
[1 − e1 cos(E1)]3

3
2

(
Z2

a + Z2
c

) ( cos(E1) − e1

1 − e1 cos(E1)

)2

+3(ZaZb + ZcZd)

√
1 − e2

1 sin(E1)(cos(E1) − e1)

(1 − e1 cos(E1))2 +
3
2

(
Z2

b + Z2
d

) 
√

1 − e2
1 sin(E1)

1 − e1 cos(E1)


2

− 1

 dE1

= 8 Cquad
1

2π

∫ 2π

0
[1 − e1 cos(E1)]

[
3
2

(
Z2

a + Z2
c

)
(cos(E1) − e1)2 + 3(ZaZb + ZcZd)

√
1 − e2

1 sin(E1)(cos(E1) − e1)

+
3
2

(
Z2

b + Z2
d

) (
1 − e2

1

)
sin2(E1) − (1 − e1 cos(E1))2

]
dE1 = 8 Cquad

[
3
2

(
Z2

a + Z2
c

) 1
2

(
1 + 4e2

1

)
+

3
2

(
Z2

b + Z2
d

) (
1 − e2

1

)
·

1
2
−

1
2

(
2 + 3e2

1

)]
= Cquad

[
6
(
Z2

a + Z2
c

) (
1 + 4e2

1

)
+ 6

(
Z2

b + Z2
d

) (
1 − e2

1

)
− 4

(
2 + 3e2

1

)]
. (A.1.23)
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Eq. A.1.23 is simplified substantially if ∆h = π is substituted. With ∆h = π, Eq. 2.29 gives Da = −1, Db = Dc = 0 and
Dd = − cos(itot), where itot ≡ i1 + i2 is the mutual inclination between the inner and outer binary orbits. Therefore:(

Z2
a + Z2

c

)∣∣∣∣
∆h=π

= cos2(g1) + cos2(itot) sin2(g1) =
1
2

(1 + cos(2g1)) +
1
2

cos2(itot) (1 − cos(2g1)) ; (A.1.24)(
Z2

b + Z2
d

)∣∣∣∣
∆h=π

= sin2(g1) + cos2(itot) cos2(g1) =
1
2

(1 − cos(2g1)) +
1
2

cos2(itot) (1 + cos(2g1))

and:

〈〈Rquad〉2〉1
∣∣∣
∆h=π

= Cquad

[{
(3(1 + cos(2g1)) + 3 cos2(itot)(1 − cos(2g1))

} {
1 + 4e2

1

}
+ {3(1 − cos(2g1))

+3 cos2(itot)(1 + cos(2g1))
} {

1 − e2
1

}
− 4

(
2 + 3e2

1

)]
= Cquad

[
3 + 3 cos(2g1) + 3 cos2(itot)

−3 cos2(itot) cos(2g1) + 12e2
1 + 12e2

1 cos(2g1) + 12e2
1 cos2(itot) − 12e2

1 cos2(itot) cos(2g1) + 3

−3 cos(2g1) + 3 cos2(itot) + 3 cos2(itot) cos(2g1) − 3e2
1 + 3e2

1 cos(2g1) − 3e2
1 cos2(itot)

−3e2
1 cos2(itot) cos(2g1) − 8 − 12e2

1

]
= Cquad

[
−2 + 6 cos2(itot) − 3e2

1 + 15e2
1 cos(2g1)

−15e2
1 cos2(itot) cos(2g1) + 9e2

1 cos2(itot)
]

= Cquad

[(
2 + 3e2

1

) (
3 cos2(itot) − 1

)
+ 15e2

1 sin2(itot) cos(2g1)
]
. (A.1.25)

Octupole order

The octupole order perturbing term Roct, Eq. 2.25, is first averaged over the outer orbit employing the true anomaly:

〈Roct〉2 = −
1

2π

∫ 2π

0
Roct dl2 = −

32
15

2 Coct

(
1 − e2

2

)5/2
(

r1

a1

)3 1
2π

∫ 2π

0

(
a2

r2

)4 1
2

(
5 cos3(Φ) − 3 cos(Φ)

)
︸                          ︷︷                          ︸

= P̃3(cos(Φ))

(
r2

a2

)2 1√
1 − e2

2

d f2

︸                  ︷︷                  ︸
= dl2

= −
32
15

Coct

(
1 − e2

2

)5/2
(

r1

a1

)3 1
2π

∫ 2π

0

1 + e2 cos( f2)
1 − e2

2

2 1√
1 − e2

2

(
5 cos3(Φ) − 3 cos(Φ)

)
d f2

=
32
15

Coct

(
r1

a1

)3 1
2π

∫ 2π

0

[
1 + e2 cos( f2)

]2
[
5 cos3(Φ) − cos(Φ))

]
d f2. (A.1.26)

Employing Eq. A.1.21 and using that (a + b)3 = a3 + 3a2b + 3ab2 + b3 one finds:

〈Roct〉2 = −
32
15

Coct

(
r1

a1

)3 1
2π

∫ 2π

0

[
1 + e2 cos( f2)

]2
[
5Ã3

a cos3( f2) + 15Ã2
aÃb cos3( f2) sin( f2) + 15ÃaÃ2

b cos( f2) sin2( f2)

+5Ã3
b sin3( f2) − 3Ãa cos( f2) − 3Ãb sin( f2)

]
d f2 = −

32
15

Coct

(
r1

a1

)3 [
3
4

e2 · 5Ã3
a +

1
4

e2 · 15ÃaÃ2
b − 3e2Ãa

]
= −8 Cocte2

(
r1

a1

)3 [
Ã3

a + ÃaÃ2
b −

4
5

Ãa

]
. (A.1.27)

The integration over the inner orbit is performed with the eccentric anomaly:

〈〈Roct〉2〉1 =
1

2π

∫ 2π

0
〈Roct〉2 dl1 = −8 Cocte2

1
2π

∫ 2π

0

(
r1

a1

)3 [
Ã3

a + ÃaÃ2
b −

4
5

Ãa

] (
r1

a1

)
dE1︸     ︷︷     ︸

= dl1

. (A.1.28)

Since all terms in Ã3
a and ÃaÃ2

b involve products of cos( f1) and sin( f1) to third order (cf. Eq. A.1.21) these terms all contain a
denominator which is third order in 1 − e1 cos(E1) (cf. A.1.15), i.e. Ã3

a ∝ 1/(1 − e1 cos(E1))3 and ÃaÃ2
b ∝ 1/(1 − e1 cos(E1))3.

Similarly, Ãa ∝ 1/(1 − e1 cos(E1)). The required integrals for the proceeding calculation are therefore:
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1
2π

∫ 2π

0
(1 − e1 cos(E1)) ·


(cos(E1) − e1)3 dE1 = − 5

8 e1

(
3 + 4e2

1

)
;

sin3(E1) dE1 = 0;
(cos(E1) − e1)2 sin(E1) dE1 = 0;
(cos(E1) − e1) sin2(E1) dE1 = − 5

8 e1;

1
2π

∫ 2π

0
(1 − e1 cos(E1))3 ·

{
(cos(E1) − e1) dE1 = − 5

8 e1

(
3e2

1 + 4
)

;
sin(E1) dE1 = 0,

such that only terms proportional to cos3( f1), cos( f1) sin2( f1) and cos( f1) in Eq. A.1.28 remain after averaging over the inner
orbit. With Eq. A.1.21 the relevant terms are:

Ã3
a = Z3

a cos3( f1) + 3ZaZ2
b cos( f1) sin2( f1) + ...;

ÃaÃ2
b =

[
Za cos( f1) + Zb sin( f1)

] [
Z2

c cos2( f1) + 2ZcZd cos( f1) sin( f1) + Z2
d sin2( f1)

]
= ZaZ2

c cos3( f1) +
(
ZaZ2

d + 2ZbZcZd

)
cos( f1) sin2( f1) + ..., (A.1.29)

where the dots denote terms which vanish after integration. Hence:

〈〈Roct〉2〉1 = −8 Cocte2
1

2π

∫ 2π

0

{
[1 − e1 cos(E1)]

[
(cos(E1) − e1)3

(
Z3

a + ZaZ2
c

)
+

(
1 − e2

1

)
sin2(E1) (cos(E1) − e1)

(
3ZaZ2

b

+ZaZ2
d + 2ZbZcZd

)]
+ [1 − e1 cos(E1)]3

[
−

4
5

Za (cos(E1) − e1)
]}

dE1

= −8 Cocte2

[
−

5
8

e1

(
3 + 4e2

1

)
Za

(
Z2

a + Z2
c

)
−

5
8

e1

(
1 − e2

1

) (
3ZaZb + ZaZ2

d + 2ZbZcZd

)
+

4
5

5
8

e1

(
3e2

1 + 4
)

Za

]
= Cocte1e2

[
Za

{
5
(
3 + 4e2

1

) (
Z2

a + Z2
c

)
− 4

(
3e2

1 + 4
)}

+ 5
(
1 − e2

1

) (
3ZaZ2

b + ZaZ2
d + 2ZbZcZd

)]
. (A.1.30)

With the substitution ∆h = π, it can be shown2 that Eq. A.1.30 is equivalent to Eq. 2.32.

A.1.4 Equations of motion
In this section equations for ġ j and ė j are derived to quadrupole and octupole order. For the secular evolution equations for ġ j

and ė j derivatives of the secularly averaged perturbing term 〈〈R〉2〉1 with respect to e j, i j and g j are required. These derivatives
commute with the substitution ∆h = π, i.e. :

∂〈〈R〉2〉1
∂x

∣∣∣∣∣
∆h=π

=
∂ (〈2〈1R〉〉|∆h=π)

∂x
, (A.1.31)

where x ∈ {e j, i j, g j} (see also Naoz et al. 2011). Thus it is sufficient to use Eqs. 2.31 and 2.32 instead of Eqs. 2.27 and 2.28.
In the quadrupole order, not much complexity is introduced when using the left-hand side of Eq. A.1.31, however, and so this
method is employed below for this order. This is different for the octupole order where the substitution into the perturbing term
introduces a substantial simplification, hence the right-hand side of Eq. A.1.31 is employed below for this order.

Furthermore, to perform the differentiations with respect to G j it is necessary to remark that the quantities Cquad and Coct
depend on G2 through their dependence on e2. These quantities are expressed in terms of L j and G j with Eq. 2.34 as follows:

Cquad =
G2

N

16
(m1 + m2)7

(m1 + m2 + m3)3

m7
3

(m1m2)3

L4
1

L3
2G3

2

; (A.1.32)

Coct = −
15
16

G2
N

4
m1 + m2)9

(m1 + m2 + m3)4

m8
3(m1 − m2)

(m1m2)5

L6
1

L3
2G5

2

. (A.1.33)

Note that differential equations for ḣ j also exist and can be derived straightforwardly. The secular equations for ġ j and ė j are
independent of h j, however, therefore it is not necessary to include equations for ḣ j when solving the secular three-body dynamics
equations. Hence the equations for ḣ j are not included here; refer to Naoz et al. (2011) for explicit expressions for ḣ j up to and
including octupole order.

2This should be possible using appropriate trigonometric identities; in the present work we have checked this statement by means of direct substitution of
various values of g1, g2, e1 and itot into both expressions and in this manner find that they are equivalent.
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Quadrupole order

From Eqs. 2.24 and 2.27 it follows that 〈〈Rquad〉2〉1 depends on e1, e2, g1, i1, i2 and ∆h. There is no dependence on g2, which

implies that G2 = L2

√
1 − e2

2 is constant, hence e2 is constant as well. Furthermore, note that i1 and i2 depend on G1 and G2

through Eq. 2.36 and that e1 is a function of G1. Therefore, by the chain rule for differentiation:

ġ1,quad = −
∂〈〈Rquad〉2〉1

∂G1

∣∣∣∣∣∣
∆h=π

= −
∂〈〈Rquad〉2〉1

∂e1

∂e1

G1

∣∣∣∣∣∣
∆h=π

−
∂〈〈Rquad〉2〉1

∂i1

∂i1
∂G1

∣∣∣∣∣∣
∆h=π

(A.1.34)

(note that when differentiating with respect to G1, G2 and H2 must remain constant such that i2 must remain constant as well;
therefore ∂i2/∂G1 = 0). From Eq. 2.34, it follows that:

∂e1

∂G1
=

∂

∂G1


√

1 −
(
G1

L1

)2
 =

−1√
1 − (G1/L1)2

G1

L2
1

=
−1
e1

G1

G2
1

(1 − e2
1) = −

1 − e2
1

e1G1
. (A.1.35)

From Eq. 2.27:

∂〈〈Rquad〉2〉1

∂e1
= Cquad

[
6 · 8

(
Z2

a + Z2
c

)
e1 − 6 · 2

(
Z2

b + Z2
d

)
e1 − 4 · 6e1

]
= 12Cquade1

[
4
(
Z2

a + Z2
c

)
−

(
Z2

b + Z2
d

)
− 2

]
.

Therefore, with Eq. A.1.24:

∂〈〈Rquad〉2〉1

∂e1

∣∣∣∣∣∣
∆h=π

= 12 Cquade1

[
2(1 + cos(2g1)) + 2(1 − cos(2g1)) cos2(itot) −

1
2

(1 − cos(2g1)) −
1
2

(1 + cos(2g1))

× cos2(itot) − 2
]

= 12 Cquade1

[
2 + 2 cos(2g1) + 2 cos2(itot) − 2 cos(2g1) cos2(itot) −

1
2

+
1
2

cos(2g1) −
1
2

cos2(itot) −
1
2

cos(2g1) cos2(itot) − 2
]

= 6 Cquade1

[
5 cos(2g1) + 3 cos2(itot) − 5 cos(2g1) cos2(itot) − 1

]
. (A.1.36)

From the definitions in Eq. 2.29 and Eq. 2.30, it follows that:

∂
(
Z2

a + Z2
c

)
∂i1

= 2 (Da cos(g1) − Db sin(g1))
(
∂Da

∂i1
cos(g1) −

∂Db

∂i1
sin(g1)

)
+ 2 (Dc cos(g1) + Dd sin(g1))

×

(
∂Dc

∂i1
cos(g1) +

∂Dd

∂i1
sin(g1)

)
= 2 (cos(∆h) cos(g1) − cos(i1) sin(∆h) sin(g1))

× sin(i1) sin(∆h) sin(g1) + 2 {cos(i2) sin(∆h) cos(g1) + sin(g1) [cos(i1) cos(i2) cos(∆h)
+ sin(i1) sin(i2)]} sin(g1) (− sin(i1) cos(i2) cos(∆h) + cos(i1) sin(i2))⇒

∂
(
Z2

a + Z2
c

)
∂i1

∣∣∣∣∣∣∣∣
∆h=π

= 2 sin(g1) (− cos(i1) cos(i2) + sin(i1) sin(i2)) sin(g1) (sin(i1) cos(i2) + cos(i1) sin(i2))

= −2 sin2(g1) cos(itot) sin(itot).

Similarly, it may be shown that:

∂
(
Z2

b + Z2
d

)
∂i1

∣∣∣∣∣∣∣∣
∆h=π

= −2 cos2(g1) cos(itot) sin(itot).
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With these results it follows from Eq. 2.27 that:

∂〈〈Rquad〉2〉1

∂i1

∣∣∣∣∣∣
∆h=π

= 6 Cquad

[
−2 sin2(g1) cos(itot) sin(itot)

(
1 + 4e2

1

)
− 2 cos2(g1) cos(itot) sin(itot)

(
1 − e2

1

)]
= 6 Cquad cos(itot) sin(itot)

[
−2 − 8e2

1 sin2(g1) + 2e2
1 cos2(g1)

]
= 6 Cquad cos(itot) sin(tot)

[
−2 − 4e2

1 + 4e2
1 cos(2g1) + e2

1 + e2
1 cos(2g1)

]
= −6 Cquad cos(itot) sin(itot)

[
2 + e2

1(3 − 5 cos(2g1))
]
. (A.1.37)

Furthermore, differentiating G2
tot = G2

1 + G2
2 + 2G1G2 cos(itot) with G2 and i2 (and Gtot) constant gives:

0 = 2G1 dG1 + 2G2 cos(itot) dG1 − 2G1G2 sin(itot) di1 = 2(G1 + G2 cos(itot)) dG1 − 2G1G2 sin(itot) di1

⇒
∂i1
∂G1

=
1

sin(itot)

[
cos(itot)

G1
+

1
G2

]
. (A.1.38)

Combining Eqs. A.1.34, A.1.35, A.1.36, A.1.37 and A.1.38 yields:

ġ1,quad =
1 − e2

1

e1G1
6 Cquad e1

[
5 cos(2g1) + 3 cos2(itot) − 5 cos(2g1) cos2(itot) − 1

]
+

6 Cquad

sin(itot)

[
cos(itot)

G1
+

1
G2

]
cos(itot) sin(itot)

[
2 + e2

1(3 − 5 cos(2g1))
]

= 6 Cquad

{
1

G1

[
5 cos(2g1) + 3 cos2(itot) − 5 cos(2g1) cos2(itot) − 1 − 5e2

1 cos(2g1) − 3e2
1 cos2(itot)

+5e2
1 cos(2g1) cos2(itot) + e2

1 + 2 cos2(itot) + 3e2
1 cos2(itot) − 5e2

1 cos2(itot) cos(2g1)
]

+
cos(itot)

G2

[
2 + e2

1(3 − 5 cos(2g1))
]}

= 6 Cquad

{
1

G1

[
4 cos2(itot) + (5 cos(2g1) − 1)

(
1 − e2

1 − cos2(itot)
)]

+
cos(itot)

G2

[
2 + e2

1(3 − 5 cos(2g1))
]}

. (A.1.39)

To compute ġ2,quad note that 〈〈Rquad〉2〉1 has the form 〈〈Rquad〉2〉1 = Cquad(G2) · fquad(i2(G2)), where the function fquad is defined by
Eq. 2.27, i.e. fquad = 6

(
Z2

a + Z2
c

) (
1 + 4e2

1

)
+ 6

(
Z2

b + Z2
d

) (
1 − e2

1

)
− 4

(
2 + 3e2

1

)
. Therefore:

ġ2,quad = −
∂〈〈Rquad〉2〉1

∂G2

∣∣∣∣∣∣
∆h=π

= −
∂Cquad

∂G2
fquad

∣∣∣∣∣∣
∆h=π

−Cquad
∂ f
∂i2

∂i2
∂G2

∣∣∣∣∣
∆h=π

. (A.1.40)

From Eq. A.1.32 it follows that ∂Cquad/∂G2 = −3 Cquad/G2. Furthermore, with similar calculations as above the following
relations follow from Eq. 2.30:

∂
(
Z2

a + Z2
c

)
∂i2

∣∣∣∣∣∣∣∣
∆h=π

= −2 sin2(g1) cos(itot) sin(itot);
∂
(
Z2

b + Z2
d

)
∂i2

∣∣∣∣∣∣∣∣
∆h=π

= −2 cos2(g1) cos(itot) sin(itot),

from which it follows that (analogously to the derivation in Eq. A.1.37):

∂ fquad

∂i2

∣∣∣∣∣∣
∆h=π

= 6
∂
(
Z2

a + Z2
c

)
∂i2

∣∣∣∣∣∣∣∣
∆h=π

·
(
1 + 4e2

1

)
+ 6

∂
(
Z2

b + Z2
d

)
∂i2

∣∣∣∣∣∣∣∣
∆h=π

·
(
1 − e2

1

)
= −6 cos(itot sin(itot)

[
2 + e2

1(3 − 5 cos(2g1))
]
. (A.1.41)

Similarly to Eq. A.1.38, but now with G2 and i2 varying and G1 and i1 (and Gtot) constant one finds:

∂i2
∂G2

=
1

sin(itot)

[
cos(itot)

G2
+

1
G1

]
. (A.1.42)
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Combining Eqs. A.1.40, A.1.41 and A.1.42 and using Eq. A.1.25 for fquad
∣∣∣
∆h=π

gives:

ġ2 =
3 Cquad

G2

[(
2 + 3e2

1

) (
3 cos2(itot) − 1

)
+ 15e2

1

(
1 − cos2(itot)

)
cos(2g1)

]
+

6 Cquad

sin(itot)

[
cos(itot)

G2
+

1
G1

]
sin(itot) cos(itot)

[
2 + e2

1(3 − 5 cos(2g1))
]

=
6 Cquad

G1
cos(itot)

[
2 + e2

1(3 − 5 cos(2g1))
]

+
3 Cquad

G2

[
6 cos2(itot) − 2 + 9e2

1 cos2(itot) − 3e2
1 + 15e2

1 cos(2g1)

−15e2
1 cos2(itot) cos(2g1) + 4 cos2(itot) + 6e2

1 cos2(itot) − 10e2
1 cos(2g1) cos2(itot)

]
= 3 Cquad

{
2 cos(itot)

G1

[
2 + e2

1(3 − 5 cos(2g1))
]

+
1

G2

[
4 + 6e2

1 +
(
5 cos2(itot) − 3

) (
2 + e2

1(3 − 5 cos(2g1))
)]}

. (A.1.43)

Lastly, the change of the inner orbit eccentricity with time valid in the quadrupole order follows from Eq. 2.35 as follows:

ė1,quad =
∂e1

∂G1
Ġ1

∣∣∣∣∣
∆h=π

=
∂e1

∂G1

∂〈〈Rquad〉2〉1

∂g1

∣∣∣∣∣∣
∆h=π

. (A.1.44)

The derivative ∂e1/∂G1 is given by Eq. A.1.35 whereas ∂〈〈Rquad〉2〉1/∂g1 follows from Eqs. 2.27 and 2.30:

∂
(
Z2

a + Z2
c

)
∂g1

= 2 (Da cos(g1) − Db sin(g1)) (−Da sin(g1) − Db cos(g1)) + 2 (Dc cos(g1) + Dd sin(g1))

× (−Dc sin(g1) + Dd cos(g1))⇒
∂
(
Z2

a + Z2
c

)
∂g1

∣∣∣∣∣∣∣∣
∆h=π

= −2 cos(g1) sin(g1) + 2 sin(g1) cos(g1) cos2(itot)

= − sin(2g1) sin2(itot);

∂
(
Z2

b + Z2
d

)
∂g1

= 2 (Da sin(g1) + Db cos(g1)) (Da cos(g1) − Db sin(g1)) + 2 (Dc sin(g1) − Dd cos(g1))

× (Dc cos(g1) + Dd sin(g1))⇒
∂
(
Z2

b + Z2
d

)
∂g1

∣∣∣∣∣∣∣∣
∆h=π

= 2 sin(g1) cos(g1) − 2 sin(g1) cos(g1) cos2(itot)

= sin(2g1) sin2(itot),

such that:

∂〈〈Rquad〉2〉1

∂g1

∣∣∣∣∣∣
∆h=π

= 6 Cquad

 ∂
(
Z2

a + Z2
c

)
∂g1

∣∣∣∣∣∣∣∣
∆h=π

·
(
1 + 4e2

1

)
+
∂
(
Z2

b + Z2
d

)
∂g1

∣∣∣∣∣∣∣∣
∆h=π

·
(
1 − e2

1

)
= 6 Cquad sin(2g1) sin2(itot)

[
−

(
1 + 4e2

1

)
+

(
1 − e2

1

)]
= −30 Cquade2

1 sin(2g1) sin2(itot). (A.1.45)

Combining Eqs. A.1.44, A.1.35 and A.1.45 gives:

ė1,quad = Cquad
1 − e2

1

G1
30 e1 sin2(itot) sin(2g1) . (A.1.46)

Octupole order

In contrast to the quadrupole order, the secular octupole order perturbation term 〈〈Roct〉2〉1 does depend on g2 such that e2 is no
longer constant in this limit. As mentioned above, it is allowed to substitute ∆h = π in the perturbing term without affecting the
equations for ġ j and ė j thus Eq. 2.32 is used below. The equations for ġ j,oct follow from:

ġ j,oct = −
∂ ( 〈〈Roct〉2〉1|∆h=π)

∂G j
= −

∂ ( 〈〈Roct〉2〉1|∆h=π)
∂e j

∂e j

∂G j
−
∂ ( 〈〈Roct〉2〉1|∆h=π)

∂i j

∂i j

∂G j
. (A.1.47)
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The quantities ∂e j/G j and i j/G j were computed in the above derivation for the quadrupole order (cf. Eqs. A.1.35, A.1.38 and
A.1.42):

∂e j

∂G j
= −

1 − e2
j

e jG j
;

∂i j

G j
=

1
sin(itot)

[
cos(itot)

G j
+

1
G3− j

]
. (A.1.48)

The other required quantities are obtained from Eqs. 2.32 and 2.33:

∂ ( 〈〈Roct〉2〉1|∆h=π)
∂e1

= Cocte2

[
A cos(φ) + 10 cos(itot) sin2(itot)

(
1 − e2

1

)
sin(g1) sin(g2)

]
+ Cocte2

[
e1
∂A
∂e1

cos(φ)

−20e2
1 cos(itot) sin2(itot) sin(g1) sin(g2)

]
;

e1
∂A
∂e1

= 2
[
3e2

1 −
5
2

sin2(itot)
(
5e2

1 − 7e2
1 cos(2g1)

)]
= 2

[
4 + 3e2

1 −
5
2

sin2(itot)
(
2 + 5e2

1 − 7e2
1 cos(2g1)

)]
− 8 + 10 sin2(itot) = 2A − 10 cos2(itot) + 2⇒

∂ ( 〈〈Roct〉2〉1|∆h=π)
∂e1

= Cocte2

[(
3A − 10 cos2(itot) + 2

)
cos(φ) + 10 cos(itot) sin2(itot)

(
1 − 3e2

1

)
sin(g1) sin(g2)

]
; (A.1.49)

∂ ( 〈〈Roct〉2〉1|∆h=π)
∂i1

= Cocte1e2

[
∂A
∂i1

cos(φ) + A
∂ cos(φ)
∂i1

+ 10
∂

∂i1

{
cos(itot)

(
1 − cos2(itot)

)} (
1 − e2

1

)
sin(g1) sin(g2)

]
= Cocte1e2

[
−5B sin(itot) cos(itot) cos(φ) + A sin(itot) sin(g1) sin(g2) + 10 sin(itot)

×
(
3 cos2(itot) − 1

) (
1 − e2

1

)
sin(g1) sin(g2)

]
= Cocte1e2 sin(itot)

[
sin(g1) sin(g2)

{
A + 10

(
3 cos2(itot) − 1

) (
1 − e2

1

)}
− 5B cos(itot) cos(φ)

]
. (A.1.50)

Combining Eqs. A.1.47, A.1.48, A.1.49 and A.1.50 gives:

ġ1,oct =
1 − e2

1

e1G1
Cocte2

[
cos(φ)

(
3A − 10 cos2(itot) + 2

)
+ 10 cos(itot) sin2(itot)

(
1 − 3e2

1

)
sin(g1) sin(g2)

]
−Cocte1e2

(
1

G2
+

cos(itot)
G1

) {
sin(g1) sin(g2)

[
A + 10

(
3 cos2(itot) − 1

) (
1 − e2

1

)]
− 5B cos(itot) cos(φ)

}
.

For ġ2,oct note that 〈〈Roct〉2〉1|∆h=π = Coct(G2) e1e2 foct(e1, i1, i2, g1, g2), where the function foct is defined in Eq. 2.32. There-
fore:

ġ2,oct = −
∂ ( 〈〈Roct〉2〉1|∆h=π)

∂G2
= −

∂Coct

∂G2
e1e2 foct −Cocte1

∂e2

∂G2
foct −Cocte1e2

∂ foct

∂i2

∂i2
∂G2

. (A.1.51)

From Eq. A.1.33 it follows that ∂Coct/∂G2 = −5 Coct/G2. Furthermore, ∂ foct/∂i2 = ∂ foct/∂i1 and the latter quantity is given by
Eq. A.1.50. Therefore Eq. A.1.51 gives:

ġ2,oct = 5 Coct
e1e2

G2

[
A cos(φ) + 10 cos(itot) sin2(itot)

(
1 − e2

1

)
sin(g1) sin(g2)

]
+ Cocte1

1 − e2
2

e2G2

[
A cos(φ) + 10 cos(itot)

× sin2(itot)
(
1 − e2

1

)
sin(g1) sin(g2)

]
−Cocte1e2

1
sin(itot)

(
1

G1
+

cos(itot)
G2

)
sin(itot) {sin(g1) sin(g2) [A + 10

×
(
3 cos2(itot) − 1

) (
1 − e2

1

)]
− 5B cos(itot) cos(φ)

}

= Cocte1

sin(g1) sin(g2)
4e2

2 + 1
e2G2

10 cos(itot) sin2(itot)
(
1 − e2

1

)
− e2

(
1

G1
+

cos(itot)
G2

) (
A + 10

(
3 cos2(itot) − 1

)
×

(
1 − e2

1

))]
+ cos(φ)

5B cos(itot)e2

(
1

G1
+

cos(itot)
G2

)
+

4e2
2 + 1

e2G2
A
 .
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Lastly, ė j,oct follow from:

ė j,oct =
∂e j

∂G j
Ġ j

∣∣∣∣∣∣
∆h=π

=
∂e j

∂G j

∂ ( 〈〈Roct〉2〉1|∆h=π)
∂g j

. (A.1.52)

The required quantities follow from Eqs. 2.32 and 2.33:

∂ ( 〈〈Roct〉2〉1|∆h=π)
∂g1

= Cocte1e2

[
∂A
∂g1

cos(φ) + A
∂ cos(φ)
∂g1

+ 10 cos(itot) sin2(itot)
(
1 − e2

1

)
cos(g1) sin(g2)

]
;

∂ ( 〈〈Roct〉2〉1|∆h=π)
∂g2

= Cocte1e2

[
A
∂ cos(φ)
∂g2

+ 10 cos(itot) sin2(itot)
(
1 − e2

1

)
sin(g1) cos(g2)

]
;

∂A
∂g1

= −35 sin2(itot)e2
1 sin(2g1);

∂ cos(φ)
∂g1

= sin(g1) cos(g2) − cos(itot) cos(g1) sin(g2);

∂ cos(φ)
∂g2

= cos(g1) sin(g2) − cos(itot) sin(g1) cos(g2),

hence:

ė1,oct = Cocte2
1 − e2

1

G1

[
35 cos(φ) sin2(itot)e2

1 sin(2g1) − 10 cos(itot) sin2(itot) cos(g1) sin(g2)
(
1 − e2

1

)
− A {sin(g1) cos(g2)

− cos(itot) cos(g1) sin(g2)}
]
;

ė2,oct = −Cocte1
1 − e2

2

G2

[
10 cos(itot) sin2(itot)

(
1 − e2

1

)
sin(g1) cos(g2) + A (cos(g1) sin(g2) − cos(itot) sin(g1) cos(g2))

]
.

A.1.5 Analytic solutions in the test particle quadrupole order limit
Differential equation for the inner orbit eccentricity

From Eq. 2.44, substituting θ2 = (x0/x) θ2
0 with x = 1 − e2

1 and x0 = 1 − e2
1,0, cos(2g1) follows as:

cos(2g1) =
r0 − (5 − 3x)

(
3θ2

0
x0
x − 1

)
15(1 − x)

(
1 − θ2

0
x0
x

) =
r0x − (5 − 3x)

(
3θ2

0 x0 − x
)

15(1 − x)
(
x − θ2

0 x0

) . (A.1.53)

As Eq. A.1.45 shows the quantity sin(2g1) = 2 sin(g1) cos(g1) is required for ė1,quad. To this end we compute:

cos2(g1) =
1
2

(1 + cos(2g1)) =
1
2

1

15(1 − x)
(
x − θ2

0 x0

) [
15(1 − x)

(
x − θ2

0 x0

)
+ r0x − 15θ2

0 x0 + 5x + 9θ2
0 x0x − 3x2

]
=

1

30(1 − x)
(
x − θ2

0 x0

) [
−18x2 + x

(
20 + r0 + 24θ2

0 x0

)
− 30θ2

0 x0

]
;

sin2(g1) =
1
2

(1 − cos(2g1)) =
1
2

1

15(1 − x)
(
x − θ2

0 x0

) [
15(1 − x)

(
x − θ2

0 x0

)
− r0x + 15θ2

0 x0 − 5x − 9θ2
0 x0x + 3x2

]
=

x

30(1 − x)
(
x − θ2

0 x0

) [
−12x + 6θ2

0 x0 + 10 − r0

]
.
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Eq. A.1.45 is thus formulated in terms of x as:

dx
dt

= −2e1
de1

dt
= −2e1Cquad

1 − e2
1

L1

√
1 − e2

1

30 e1
x − θ2

0 x0

x︸    ︷︷    ︸
= sin2(itot)

2

30(1 − x)
(
x − θ2

0 x0

) √
x
(
−12x + 6θ2

0 x0 + 10 − r0

)

×

√
−18x2 + x

(
20 + r0 + 24θ2

0 x0

)
− 30θ2

0 x0 = −4
Cquad

L1
(1 − x)

√
x

x

(
x − θ2

0 x0

) 1

(1 − x)
(
x − θ2

0 x0

) √x

×

√
12

[
x −

(
1
2
θ2

0 x0 +
5
6
−

1
12

r0

)]√
18

[
x2 − x

(
10
9

+
1

18
r0 +

4
3
θ2

0 x0

)
+

5
3
θ2

0 x0

]

= −
24
√

6
τ

√
(x − xA)(x − xB)(x − xC) , (A.1.54)

where τ ≡ L1/Cquad is a quantity with dimensions of time and sets a characteristic time scale; with Kepler’s equation to convert
a j to P j and with Eqs. 2.24 and 2.34 it can be can written as:

τ ≡
L1

Cquad
=

m1m2
√

GNa1
√

m1 + m2
16

(m1 + m2) a2

GNm1m2m3

(
a2

a1

)2 (
1 − e2

2

)3/2
=

√
GN

m1 + m2

(
2π
P1

)
1

√
GN(m1 + m2)

16
GN

m1 + m2

m3

×

(P2

2π

)2

GN(m1 + m2 + m3)
(
1 − e2

2

)3/2
=

8
π

(
P2

P1

)
P2

m1 + m2 + m3

m3

(
1 − e2

2

)3/2
. (A.1.55)

Furthermore, xA ≡
1
2θ

2
0 x0 + 5

6 −
1

12 r0 may be written explicitly in terms of x0, θ0 and g1,0 with Eq. 2.44 as:

xA =
1
2
θ2

0 x0 +
5
6
−

1
2
θ2

0 +
1
6
−

3
4

(1 − x0)θ2
0 +

1
4

(1 − x0) −
5
4

(1 − x0)
(
1 − θ2

0

)
cos(2g1,0)

= x0 +
5
4

[(
1 − θ2

0

)
− x0

(
1 − θ2

0

)
− (1 − x0)

(
1 − θ2

0

)
cos(2g1,0)

]
= x0 +

5
2

(1 − x0)
(
1 − θ2

0

)
sin2(g1,0), (A.1.56)

whereas xB and xC are defined via x2 − x
(

10
9 + 1

18 r0 + 4
3θ

2
0 x0

)
+ 5

3θ
2
0 x0 ≡ (x − xB)(x − xC) such that xB = b/2 − (1/2)

√
b2 − 4c

and xC = b/2 + (1/2)
√

b2 − 4c, where c ≡ 5
3θ

2
0 x0 and b may be written with in terms of x0, θ0 and g1,0 with Eq. 2.44 as:

b ≡
10
9

+
1
18

r0 +
4
3
θ2

0 x0 = x0 +
5
6

+
5
6
θ2

0 +
5
6
θ2

0 x0 −
5
6

x0 +
5
6

(1 − x0)
(
1 − θ2

0

)
cos(2g1,0)︸     ︷︷     ︸

= 2 cos2(g1,0)−1

= x0 +
5
3

[
θ2

0 + (1 − x0)
(
1 − θ2

0

)
cos2(g1,0)

]
. (A.1.57)

Solving the equation for ẋ

To solve Eq. 2.45, let x̃ = x − xB. As will be clear from the solution, xB corresponds to the maximum inner orbit eccentricity
therefore xB < x, or x̃ > 0. Eq. 2.45 in terms of x̃ reads:

dx̃
dt

= −
24
√

6
τ

√
x̃ (xA − xB − x̃) (xC − xB − x̃). (A.1.58)

From Eq. 2.47 it follows that xC − xB > 0 and that xA − xB > 0 thus the quantity in the square root in Eq. A.1.58 is always
positive. With the substitution y2 = x̃, Eq. A.1.58 is transformed to:

2y
dy
dt

= −
24
√

6
τ

y
√(

xA − xB − y2) (xC − xB − y2)
⇒

(
dy
dt

)2

=

12
√

6
τ

2

(xA − xB)
(
1 −

y2

xA − xB

)
(xC − xB)

(
1 −

y2

xC − xB

)
.

With ỹ = y/
√

xA − xB this becomes:(
dỹ
dt

)2

(xA − xB) =

12
√

6
τ

2

(xA − xB)
(
1 − ỹ2

)
(xC − xB)

(
1 − ỹ2 xA − xB

xC − xB

)
,
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or, in terms of a dimensionless time t̃ = 12
√

6 (t/τ)
√

xC − xB:(
dỹ
dt̃

)2

=
(
1 − ỹ2

) (
1 − k2ỹ2

)
; k2 ≡

xA − xB

xC − xB
. (A.1.59)

A solution of Eq. A.1.59 is found by noting that the Jacobian elliptic function sn(t|k) satisfies (Gradshteyn & Ryzhik 2007,
8.158):

d sn(t|k)
dt

= cn(t|k) dn(t|k)⇒
(

d sn(t|k)
dt

)2

= cn2(t|k) dn2(t|k) =
[
1 − sn2(t|k)

] [
1 − k2sn2(t|k)

]
, (A.1.60)

where the properties sn2(t|k) + cn2(t|k) = 1 and k2 sn2(t|k) + dn2(t|k) = 1 were used (Gradshteyn & Ryzhik 2007, 8.154).
Comparison between Eqs. A.1.59 and A.1.60 shows:

ỹ
(
t̃
)

= sn
(
t̃ − t̃0

∣∣∣ k)⇐⇒ 1
xA − xB

(x − xB) = 1 − cn2
(
t̃ − t̃0

∣∣∣ k)⇐⇒ x
(
t̃
)

= xA + (xB − xA) cn2
(
t̃ − t̃0

∣∣∣ k) , (A.1.61)

where t̃0 is such that x(0) = x0, i.e. t̃0 is given by Eq. 2.50.
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Appendix B
General relativistic apsidal motion

In the following we investigate the validity of the canonical expression Eq. 2.53 which describes apsidal motion due to general
relativity. Specifically, we shall investigate this validity in the most extreme conditions which we find in the population synthesis
study. In particular, for inner binary orbits of a1 ∼ 1 AU we find eccentricities of at most e1 ∼ 1 − 10−5 and for a1 ∼ 103 AU we
find at most e1 ∼ 1 − 10−8 (see also Sect. 5). First we derive the equation of motion which is exact1, Eq. B.1.7. Subsequently
we compute the frequency of apsidal motion with the assumption that the orbits are still instantaneously described in terms of
Keplerian orbits and in the above limits.

B.1 Equation of motion
Firstly, we employ canonical spherical coordinates (r, θ, φ) in which the Schwarzschild line element reads (with c = 1):

ds2 = gµνdxµ dxν = −

(
1 −

2GN M
r

)
dt2 +

(
1 −

2GN M
r

)
dr2 + r2dΩ2, (B.1.1)

where t denotes coordinate time, M ≡ m1 + m2 and dΩ2 ≡ dθ2 + r2 sin2(θ) dφ2. The metric is independent on t and φ giving rise
to two Killing vectors associated with conservation of energy E and angular momentum L. Application of the Killing equations
then leads to the following two relations: (

1 −
2GN M

r

)
dt
dλ

= E; r2 dφ
dλ

= L, (B.1.2)

where λ denotes proper time. Conservation of angular momentum implies that the motion takes place within a plane, thus
justifying the constraint θ = π/2 such that dΩ2 = r2dφ2. For timelike massive particles the four-velocity Uµ = dxµ/dλ has a
norm of −1. Therefore, from Eq. B.1.1:

−1 = gµνUµUν = −

(
1 −

2GN M
r

) (
dt
dλ

)2

+

(
1 −

2GN M
r

)−1 (
dr
dλ

)2

+ r2
(

dφ
dλ

)2

. (B.1.3)

Eliminating dt/dλ and dφ/dλ from Eq. B.1.3 with Eq. B.1.2 and rewriting the subsequent equation for dr/dλ gives:(
dr
dλ

)2

+

(
1 −

2GN M
r

) (
L2

r2 + 1
)

= E2. (B.1.4)

Since dr/dφ = (dr/dλ)/(dφ/dλ) the latter can be rewritten to a differential equation for dr/dφ by once again using Eq. B.1.2:(
dr
dφ

)2

+

(
1 −

2GN M
r

) (
L2

r2 + 1
)

r4

L2 = E2 r4

L2 . (B.1.5)

Eq. B.1.5 can be written in a more manageable form by introducing the dimensionless quantity x ≡ L2/(GN Mr):(
dx
dφ

)2

+ x2 +

(
L

GN M

)2

− 2
(GN M

L

)2

x3 − 2x =

(
EL

GN M

)2

. (B.1.6)

1The derivation of this equation is adapted from a lecture on general relativity given in 2011-2012 by Tomislav Prokopec at Utrecht University.
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By differentiating Eq. B.1.6 we find the following second-order non-linear differential equation, which is the equation of motion:

d2x
dφ2 + x − 1 − 3x2

(GN M
L

)2

= 0. (B.1.7)

Note that in the Newtonian limit the term ∝ x2 in Eq. B.1.7 vanishes, in which case Eq. B.1.7 reduces to the equation of a
harmonic oscillator. The solution of this equation is the familiar Kepler orbit x = 1+e1 cos(φ) or r =

[
L2/(GN M)

]
/
[
1 + e1 cos(φ)

]
(here the eccentricity e1 is an integration constant).

B.2 Apsidal motion
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Figure B.1: The critical relation between e1 and a1 given
by Eq. B.2.4 for M = 1 M�. The canonical expression
Eq. 2.53 is valid to good approximation in regions above
this curve. In addition the two extreme limits found in the
population synthesis study are indicated.

If the orbit is instantaneously described in terms of a Kepler orbit then
we may write r = a1

(
1 − e2

1

)
/(1+e1 cos(αφ)), where α is a constant on

the order of unity which describes the asynchrony between a complete
cycle of r and a complete cycle of φ. For α = 1, there is no apsidal
motion; in general, ġ1,GR = (1/α − 1)

(
GN M/a3

1

)1/2
(i.e. dividing the

relative change of g1 by the orbital period). The angular momentum L
is given by L2 = GN Ma1

(
1 − e2

1

)
hence the above assumption implies

x = 1 + e1 cos(αφ). Inserting this relation into Eq. B.1.7 and isolating
e1 we find the following relation which is valid for all φ ∈ [0, 2π]:

3
(GN M

L

)2

+

[
cos(αφ)

(
α2 − 1 + 6

(GN M
L

)2)]
e1

+ 3
(GN M

L

)2

cos2(αφ) e2
1 = 0 (B.2.1)

In particular, Eq. B.2.1 should be valid for φ = 0:

3
(GN M

L

)2

+

(
α2 − 1 + 6

(GN M
L

)2)
e1 + 3

(GN M
L

)2

e2
1 = 0. (B.2.2)

Consider the limit (GN M)2 � L2. For the two extreme limits stated
above, e1 ∼ 1− 10−5 for a1 ∼ 1 AU and e1 ∼ 1− 10−8 for a1 ∼ 103 AU and assuming M = m1 + m2 = 1 M�, this limit is certainly
satisfied since (GN M/L)2 = GN M/

[
c2a1

(
1 − e2

1

)]
∼ 5 · 10−4 for these two cases. In the limit (GN M)2 � L2 the first and third

terms in Eq. B.2.2 are negligible and thus the second term must be equal to zero. This condition is straightforwardly solved for
α and the associated degree of apsidal motion thus follows as:

ġ1,GR ≈

[1 − 6
(GN M

L

)2]−1/2

− 1

 GN M
a3

1

1/2

=

{
1 + 3

(GN M
L

)2

+
27
2

(GN M
L

)4

+ O

[(GN M
L

)6]
− 1

} GN M
a3

1

1/2

=
3

c2a1

(
1 − e2

1

) GN M
a3

1

3/2
1 +

9
2

GN M

c2a1

(
1 − e2

1

) + O


 GN M

c2a1

(
1 − e2

1

) 2
 , (B.2.3)

where we used a Taylor expansion. The largest contributing term in Eq. B.2.3 is immediately identified as the canonical
expression Eq. 2.53, whereas the additional terms describe corrections to this term. The ratio of the first of these additional terms
to the canonical expression is proportional to (GN M/L)2 = GN M/

[
c2a1

(
1 − e2

1

)]
. If the canonical expression Eq. 2.53 is to be a

good approximation, then this latter ratio must be small. This is satisfied if (GN M/L)2 � 1, which for M = 1 M� is equivalent
to:

log10

(
1 − e2

1

)
� log10

(
GN M
c2a1

)
≈ −8.0 − log10

( a1

AU

)
. (B.2.4)

Note that to good approximation Eq. B.2.4 can be written as:

log10 (1 − e1) � log10

1 − [
1 −

GN M
c2a1

]1/2 ≈ log10

(
GN M
2c2a1

)
≈ −8.3 − log10

( a1

AU

)
. (B.2.5)

Fig. B.1 shows the critical relation between e1 and a1 given by Eq. B.2.4 for M = 1 M�. The canonical expression Eq. 2.53
is valid to good approximation in regions above this curve. In addition the two extreme limits found in the population synthesis
study are indicated. The corresponding points lie well within the region for which the canonical expression is valid. We thus
conclude that it is justified to use Eq. 2.53 for the systems computed in the population synthesis study.
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Appendix C
DTD normalization calculations

The predicted delay time distribution (DTD) must be normalized to the part of the mass represented by the sampled triple systems.
Note that in Sect. 5.4.2 a comparison is made to the binary population synthesis DTD of Claeys et al. (2012), in which case one
must restrict to the TSM1 population where the same (inner) binary distributions are used (we briefly mention the normalization
quantities for TSM2 below for completeness). In this work the triple populations are split into two parts with 1.0 < m1/M� < 2.0
(TSM[1/2]A) and 2.0 < m1/M� < 6.5 (TSM[1/2]B) (cf. Sect. 5.3). Therefore we perform the calculations separately for these
separate mass ranges. First we illustrate the method in general in Sect. C.1, i.e. without specifying to the A and B populations.
Subsequently, we state the explicit numbers which we find in Sect. C.2.

C.1 General procedure
We decompose the galactic population of Ntot gravitationally bound stellar systems into Nbin = αbinNtot binary star systems,
Ntr = αtrNtot triple star systems and Ns = (1 − αbin − αtr)Ntot single star systems (i.e. we neglect higher-order multiplicities). We
disregard from the calculated triple systems the MS mergers and MS destabilizations as these are not expected to be part of the
observed population. The remaining triple systems constitute a fraction fcalc of all Ntr triple systems. Assuming that the initial
stellar mass m1 is uncorrelated with a1 and e1, fcalc = fcalc,m1 × fcalc,e1,a1,a2 , where fcalc,m1 is the fraction of calculated systems to
all systems with respect to the mass distribution and fcalc,e1,e2,a1,a2 is this fraction with respect to the eccentricity and semi-major
axes distributions of the inner and outer orbits. For a Kroupa et al. (1993) initial mass distribution as is assumed in TSM1,

dN
dm
∝


mα1 , mKr,1 < m < mKr,2;
mα2 , mKr,2 < m < mKr,3;
mα3 , mKr,3 < m < mKr,4,

(C.1.1)

where α j = {−1.3,−2.2,−2.7} and mKr, j/M� = {0.1, 0.5, 1, 80}, the fraction of systems with m1,l < m1 < m1,u, is given by:

fcalc,m1 =
1

α3 + 1
CKrCKr,3

(
mα3+1

1,u − mα3+1
1,l

)
, (C.1.2)

where

CKr =


3∑

j=1

CKr, j

α j + 1

(
mα j+1

Kr, j+1 − mα j+1
Kr, j

)
−1

(C.1.3)

and CKr, j = {1,mα1−α2
Kr,2 ,mα1−α2

Kr,2 mα2−α3
Kr,3 }. Here m1,l = 1.0 M� and m1,u = 2.0 M� for TSM[1/2]A and m1,l = 2.0 M� and m1,u =

6.5 M� for TSM[1/2]B. Furthermore, the determination of fcalc,e1,e2,a1,a2 is complicated by the fact that a1 and a2 are correlated
because the stability criterion of Eq. 3.6 is used and because the selection a1 >

(
1 − e2

1

)
> 12 AU is made. In an analytic treatment

one would therefore have to integrate the probability density function associated with fcalc,e1,e2,a1,a2 , d4N/ (de1de2da1da2) ∝
e1e2/(a1a2), with respect to e1, e2, a1 and a2, where a1βcrit < a2 < au, al/

(
1 − e2

1

)
< a1 < au, 0 < e1 <

(
1 − l1,l/au

)1/2 and
0 < e2 < 1. Here al = 5 R� and au = 5 · 106 R� are the lower and upper limits respectively for the semi-major axis distribution
(Kouwenhoven et al., 2007); the upper limit of e1 is a consequence of the requirement that au

(
1 − e2

1

)
> l1,l or equivalently
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e1 < e1,u ≡
(
1 − l1,l/au

)1/2. The required integration is complicated to do analytically, in particular because of the dependence of
βcrit on e2 (cf. Eq. 3.6).

Instead we determine the fraction fcalc,e1,e2,a1,a2 by the following method: we generate a large sample of systems according
to the method appropriate for TSM1A and TSM1B without making the selection l1 ≡ a1

(
1 − e2

1

)
> l1,l = 12 AU. From these

systems we subsequently select the systems which satisfy l1 > 12 AU. The number of these systems normalized to the number
of sampled systems represents an estimate of fcalc,e1,e2,a1,a2 if a sufficiently large number of systems is sampled. We perform this
procedure with sizes varying between 104 and 106 and thus find fcalc,e1,e2,a1,a2 ≈ 0.130 for both TSM1A and TSM1B (i.e. this
fraction is independent of primary mass).

The last step is to add the mass contributions from the single, binary and triple systems. In general, for a Kroupa IMF the
total mass M in a population of size N is given by:

M =

∫ mKr,4

mKr,1

m
dN
dm

dm

= N ×CKr

3∑
j=1

CKr, j

α j + 2

(
mα j+2

Kr, j+1 − mα j+2
Kr, j

)
≡ NMKr, (C.1.4)

where we have defined the “Kroupa mass” MKr ≈ 0.5006 M� which represents the average mass of a single star in the population.
Hence the total mass of the single star population is given approximately by Ms ≈ MKrNs. For the binary population, we assume
a flat mass ratio distribution such that the secondary is on average half as massive as the primary. Therefore the total mass
contained in the binary population Mbin is given approximately by Mbin ≈

(
1 + 1

2

)
MKrNbin = 3

2 MKrNbin. Similarly, assuming that
in triple systems the distribution of the outer orbit mass ratio q2 = m3/(m1 + m2) is flat, the total mass contained in the triple
population is Mtr ≈

(
3
2 + 1

2 ·
3
2

)
MKrNtr = 9

4 MKrNtr. Hence the total mass Mtot = Ms + Mbin + Mtr represented by the number of
triple systems we have calculated (Ncalc) is given by:

Mtot ≈ MKr

(
Ns +

3
2

Nbin +
9
4

Ntr

)
= MKr

Ncalc

fcalc

1
αtr

(
1 +

1
2
αbin +

5
4
αtr

)
. (C.1.5)

C.2 Explicit numbers
TSM1 We state the explicit numbers of the quantities mentioned in Sect. C.1 for TSM1. Firstly, for a Kroupa IMF with
0.1 < m1/M� < 80 we find that the calculated mass fractions are given by fcalc,m1,A ≈ 0.0634 and fcalc,m1,B ≈ 0.0244 for the A
and B populations respectively (hence the mass fraction with respect to the total TSM1 population is fcalc,m1 ≈ 0.0878). With the
value of fcalc,e1,e2,a1,a2 ≈ 0.130 as determined above this implies that fcalc,A ≈ 0.00824 and fcalc,B ≈ 0.00317. Furthermore, after
rejecting the MS mergers and MS destabilizations we find that there remain Ncalc,A = 915, 395 and Ncalc,B = 923, 660 computed
systems for the TSM1A and TSM1B subpopulations respectively. With a binary fraction of αbin = 0.60 and a triple fraction of
αtr = 0.25 we thus find that the parts of the masses represented by TSM1A and TSM1B are given by Mtot,A ≈ 3.59 · 108 M� and
Mtot,B ≈ 9.41 · 108 M�. These masses are used to normalize the DTDs in Sect. 5.4.2.

TSM2 For completeness we also include these numbers for TSM2 for which different mass and period distributions apply (cf.
Sect. 5.2). For both fractions fcalc,m1 and fcalc,e1,e2,a1,a2 we use a Monte Carlo method similar to the above procedure. With the
distributions of TSM2 we generate systems with 0.1 < m1/M� < 80. In TSM2, without the restriction l1 > 12 AU systems
with very small a1, i.e. significantly smaller than 5 R�, are present. Such systems are expected to merge early during the MS,
however, hence from the generated systems we reject those with a1 < 5 R� (this lower limit is also consistent with TSM1). From
the systems that remain we select systems within the A and B mass ranges and find fcalc,m1,A ≈ 0.0880 and fcalc,m1,B ≈ 0.0580.
Subsequently, making the selection l1 > 12 AU we find fcalc,e1,e2,a1,a2 ≈ 0.0863. Therefore fcalc,A ≈ 0.00759 and fcalc,B ≈ 0.00500.
Rejecting MS mergers and destabilizations we find that there remain Ncalc,A = 920, 137 and Ncalc,B = 927, 061 computed systems.
With the same binary and triple fractions as above we then find Mtot,A ≈ 3.92 · 108 M� and Mtot,B ≈ 5.98 · 108 M�. Note, however,
that the latter two mass calculations are only approximate because the mass distribution of TSM2 is different from that in TSM1.

71


	Introduction
	Theory
	Hamiltonian formalism
	The three-body Hamiltonian
	Secularization of the Hamiltonian
	The equations of motion

	Analytic solutions in the test particle quadrupole order limit
	Additional sources of apsidal motion
	Apsidal motion due to general relativity
	Apsidal motion due to tidal bulges and rotation
	Semi-analytic computation of e1,max

	Hierarchical triple evolution algorithm
	Equations
	Tidal friction
	Gravitational wave emission
	System of first-order differential equations

	Coupling to binary algorithm
	Evaluation of various physical quantities
	Example systems
	CO WD TICM merger
	CO WD TIEM merger

	Triple population synthesis
	Selection criteria
	Sampling methods
	Results: main channels
	Inner binary mergers
	No inner binary mergers
	Triple destabilizations

	Results: triple-induced CO WD mergers
	Triple-induced CO WD merger channels
	Expected SNe Ia rates



	Discussion
	Comparisons to other studies
	Effect of mass loss on Kozai cycles
	Effect of mass loss on triple dynamical instability
	The role of the tertiary in CO WD mergers

	Assumptions and uncertainties
	Suggestions for further study



	Conclusion
	List of acronyms
	Appendices
	Derivations in the hierarchical three-body problem: further details
	Secular Hamiltonian
	Expression for cos()
	Relation between the longitudes of the ascending nodes
	Averaging procedure
	Equations of motion
	Analytic solutions in the test particle quadrupole order limit


	General relativistic apsidal motion
	Equation of motion
	Apsidal motion
	DTD normalization calculations
	General procedure
	Explicit numbers





