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Abstract

We study the dynamics of polymers using the bead-spring model in the overdamped limit. In
particular we take a look at phantom bead-spring chains with the topology of symmetric stars, tad-
poles and polymerized phantom manifolds. After brie�y reviewing how the bead-spring model has
been applied to study the dynamics of linear polymers, we apply similar methods to solve the equa-
tions of motion for bead-spring systems of more complex topologies using the so-called Rouse modes.
These eigenmodes allow full analytical calculations of virtually any static or dynamical quantity.
As examples we determine radii of gyration, mean square displacements of tagged monomers, and
autocorrelation functions of vectors that span between two tagged monomers. Interestingly, even in
the presence of tensile forces of any magnitude the Rouse modes remain the exact eigenmodes for
the membrane, a two-dimensional manifold. With stronger forces the membrane becomes essentially
�at, and does not get the opportunity to intersect itself; in such a situation our analysis provides
a useful and exactly soluble approach to the dynamics for a realistic model �at membrane under
tension. Parts of these results are accepted for publication[1, 2].
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1 Introduction

Bead-spring models play a central role in the theory and modeling of polymer dynamics. Most of the
applications of bead-spring models (and polymer dynamics in general) are for linear polymers, for which
the polymer consists of a linear sequence of beads connected by harmonic springs. The reason why, to
date, the Rouse model deserves a special mention, lies in the fact that it allows full analytical calculations
of virtually any dynamical quantity. Rather than the equations of motion for the individual beads, one
considers the so-called Rouse modes.

Using the de�nition of Rouse modes it has been shown in recent works that the dynamics of a tagged
bead in a linear bead-spring model is described by the Generalized Langevin Equation (GLE) [6, 7], and
that the dynamics of polymers with steric repulsion (also known as self-avoiding polymer chains) [8],
as well as of those in melts as described by the repton model [9] can be well-approximated. Here, we
continue this line of research, but now we are interested in exact solutions of the dynamical properties
of polymers with the topology of stars and manifolds.

In Sec. 2 we explain the bead-spring model that provides the framework for all the research on
various types of polymers that follows. In Sec. 3 this model is applied to linear polymers, which is well
established work. It contains a detailed proof for the solutions of the equations of motion and how it
can be used to obtain information about the behavior of such a polymer. We then apply the bead-spring
model to star polymers in Sec. 4, tadpole polymers in Sec. 5, and polymerized membranes in Sec. 6 and
present some statical and dynamical quantities of interest for these various types of polymers. We end
the thesis with a discussion in Sec. 7.
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2 Bead-spring model

2.1 Brownian motion

A �uid containing a single polymer molecule will have too many degrees of freedom to describe classically
because of the sheer number of particles that the �uid consists of. Instead we only consider the degrees
of freedom in the polymer whilst describing the �uid stochastically.

We start o� with a single spherical particle (bead) in a three-dimensional �uid where its size is
signi�cantly larger than that of the particles that make up the �uid. In a very short amount of time
the bead will collide with many of the �uid particles resulting in some random thermal force g. Even
though we do not know the speci�cs of the forces from the �uid acting on the bead, the central limit
theorem states that we can assume the resulting force to follow a Gaussian distribution. To ensure that
the probability distribution function of the position of the bead is equal to the Boltzmann distribution,
the thermal forces will have the properties

〈g(t)〉 = 0, (1a)

〈g(t) · g(t′)〉 =
6kBT

ζ
δ(t− t′), (1b)

with Boltzmann constant kB and temperature T . We approximate the variance as completely uncorre-
lated in time since the dynamics of the bead has a much larger time scale than that of the particles in
the �uid. In general the bead in the �uid will also have some viscous friction constant ζ that slows down
the bead moving in the solvent. The equations of motion for such a bead with mass m and position R(t)
in a potential �eld become

m
d2R

dt2
= −ζ dR

dt
− ∂U

∂R
+ ζg, (2)

with U the potential energy of the system. For a highly viscous �uid the system will be overdamped,
meaning that the inertial terms are negligible. Since this is typically the case for polymeric systems, we
can use the Langevin equation

dR

dt
= −1

ζ

∂U

∂R
+ g. (3)

2.2 Rouse theory

To investigate the behavior of a polymer we use the so-called bead-spring model. We connect the beads
by ideal springs of length zero. For the position of the beads Rn(t) the equations of motion are then
given by

dRn

dt
= −1

ζ

∂U

∂Rn
+ gn, (4)

with potential energy

U =
k

2

∑
<m,n>

(Rm −Rn)2, (5)

where the sum is over all pairs of beads connected by a spring. In addition, the thermal forces are not only
uncorrelated in time but also between di�erent beads so that 〈gm(t) · gn(t′)〉 = (6kBT/ζ)δmnδ(t− t′).
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3 Linear polymer

The bead-spring model from the previous section creates a framework to theoretically study any type
of polymer. It has been successfully applied to linear polymers[4, 5] for which the dynamics of the
polymer could be solved in the long polymer limit. In this section we show how the equations of motion
can be solved exactly by means of eigenmodes and how they can be used to calculate the mean square
displacement of the monomer in the middle of the polymer, as an example. As an extension we also
provide the eigenmodes for a linear polymer with the ends tied together into a ring polymer.

3.1 Eigenmodes

Linear polymers consisting of N + 1 identical segments can be made in the bead-spring model by con-
necting each of the identical beads, except those at the end, to two other beads and thus creating a linear
chain. Internally labeling the beads n = 0 . . . N results in an explicit form of the potential energy

U =
k

2

N∑
n=1

(Rn −Rn−1)
2
. (6)

If we de�ne R−1 ≡ R0 and RN+1 ≡ RN the equations of motion become

dRn

dt
= −k

ζ
(2Rn −Rn+1 −Rn−1) + gn. (7)

This model was �rst proposed by P.E. Rouse, and so is called the Rouse model[3].
The set of di�erential equations from Eq. (7) is coupled but can be solved by making a transformation

from positions of the beads to so-called eigenmodes for which the di�erential equations are simply linear.
Note that all of the following calculations and solutions in terms of eigenmodes are still valid even in
case of the general Langevin equation (2) where the inertial term is still included since the trouble is
here linearizing the right hand side of the di�erential equations. After solving the equations of motion
for the eigenmodes, many quantities of interest can be expressed in terms of these solutions and thus
they provide valuable and analytical insight in the behavior of the polymer. We start by de�ning the
eigenmodes in terms of the positions of the beads and the inverse as

Xp(t) =
1

N + 1

N∑
n=0

cos

[
π(n+ 1/2)p

N + 1

]
Rn(t), (8)

Rn = X0 + 2

N∑
p=1

cos

[
π(n+ 1/2)p

N + 1

]
Xp. (9)

Note that the zeroth eigenmode is the position of the center of mass, given that all beads are identical.
This transformation is also known as the discrete cosine transform and reversibility is easily shown by
using the orthogonality relation for which the proof can be found in Appendix B.

By taking the time derivative in Eq. (8) and �lling in Eq. (7) we get a set of time derivatives of the
eigenmodes equal to some sum over positions of all the beads. We use the inverse in Eq. (9) such that
the set of di�erential equations is solely expressed in terms of the eigenmodes, which yields

dXp

dt
=

1

N + 1

N∑
n=0

cos

[
π(n+ 1/2)p

N + 1

]
gn −

2

N + 1

k

ζ

N∑
n=0

N∑
q=1

cos

[
π(n+ 1/2)p

N + 1

]
×{

2 cos

[
π(n+ 1/2)q

N + 1

]
− cos

[
π(n+ 3/2)q

N + 1

]
− cos

[
π(n− 1/2)q

N + 1

]}
Xq. (10)

The �rst term, which we will denote as Gp, is the transform of thermal force gn and the second term
can be simpli�ed by using trigonometric identities, namely the angle sum and di�erence identities and
the power-reduction formula, so that this can be rewritten as

dXp

dt
= Gp −

8

N + 1

k

ζ

N∑
n=0

N∑
q=1

cos

[
π(n+ 1/2)p

N + 1

]
cos

[
π(n+ 1/2)q

N + 1

]
sin2

[
πq/2

N + 1

]
Xq. (11)
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Using Eq. (102a) the equations of motion for the eigenmodes are reduced to

dXp

dt
=

{
−αpXp + Gp , p = 1 . . . N
G0 , p = 0

(12a)

with αp ≡ 4
k

ζ
sin2

[
πp/2

N + 1

]
. (12b)

Because of the thermal forces these di�erential equations can only be solved in terms of the time-
averaged values of the eigenmodes. Because the thermal forces are zero on average the time-averaged
value of the eigenmodes will also be zero. A much more interesting quantity is the variance of the
amplitudes of the modes. To do this we must �rst look at the correlation functions of the various
transformations of the thermal forces Gp. The correlation functions for the thermal forces can be used
in combination with the orthogonality relation from Eq. (102a) to calculate the correlation functions for
the transform Gp. The only non-vanishing correlation functions are

〈G0(t) ·G0(t′)〉 =
6kBT

ζ(N + 1)
δ(t− t′), (13a)

〈Gp(t) ·Gq(t
′)〉 =

3kBT

ζ(N + 1)
δpqδ(t− t′). (13b)

With Eqs. (13) the mode amplitude correlation functions can be calculated as shown in Appendix C.
While all cross correlation functions are zero we �nd that

X00(t) ≡ 〈[X0(t)−X0(0)]2〉 ≡ 〈[Rcm(t)−Rcm(0)]2〉 =
6kBT

ζ(N + 1)
t, (14a)

Xpq(t) ≡ 〈Xp(t) ·Xq(0)〉 =
3kBT

ζ(N + 1)

1

2αp
exp [−αpt] δpq. (14b)

As the zeroth eigenmode equals the position of the center of mass, we note that the polymer as a whole has
the same di�usive behavior as a single bead but with friction coe�cient N +1 times as large whereas the
correlation for a mode at di�erent times decay exponentially. This set of eigenmode amplitude correlation
functions can be used to analytically calculate virtually any quantity of interest for the polymer.

3.2 Mean square displacement of the central bead

As an example we use the eigenmode amplitude correlation functions to investigate the mean square
displacement of a monomer in the middle of a linear polymer. We start by de�ning

∆Rm(t) ≡ RN/2(t)−RN/2(0), (15)

which can be rewritten as

∆Rm(t) = X0(t)−X0(0) + 2

N∑
p=1

cos
[πp

2

]
{Xp(t)−Xp(0)} . (16)

The mean square displacement of a monomer in the middle of a linear polymer is given by

〈∆R2
m

(t)〉 =〈[Rcm(t)−Rcm(0)]2〉+ 8

N,N∑
p,q=1

cos
[πp

2

]
cos
[πq

2

]
{Xpq(0)−Xpq(t)} (17)

〈∆R2
m

(t)〉 =
6kBT

ζ(N + 1)
t+

12kBT

ζ(N + 1)

∑
p∈ even

1

αp
{1− exp [−αpt]} , (18)

where Eq. (14) was used. On very short time scales kt/ζ < 1/4 the exponent can be expanded up to
�rst order so that the summation becomes p-independent. The mean square displacement then becomes
exactly 〈∆R2

m
(t)〉 = (6kBT/ζ)t which is the mean square displacement for a single free bead. For

moderate time values the sum can be converted to an integral in the long polymer limit. For very long
times kt/ζ � N2/3 the sum is capped and the mean square displacement of the center of mass will
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dominate.

〈∆R2
m

(t)〉 =
6kBT

ζ(N + 1)
t+ 6

kBT

π2k
N

∫ ∞
0

dx

x2

{
1− exp

[
−kπ

2

ζ

t

N2
x2
]}

, (19)

〈∆R2
m

(t)〉 =
6kBT

ζ(N + 1)
t+ 6kBT

√
t

πkζ
. (20)

So we �nd that for very early times the mean square displacement of a monomer in the middle of a
polymer will be equal to that of a single free bead. After some time has passed the monomer will feel
the connectivity to the rest of the polymer and so the movement is restricted. At very large times this
connectivity is negligible compared to the mean square displacement of the whole polymer and so it will
act like a single bead with a friction coe�cient N + 1 as large as for the single bead.

3.3 Ring polymer

When a linear polymer has its ends connected it becomes a ring polymer which has a very similar
behavior. Although in itself this does not add very much to the knowledge on polymers, we do however
use the eigenmodes for the ring polymers to extend the range of polymers for which we can solve the
equations of motion. The eigenmodes for the ring polymer allow for periodic boundary conditions in the
star polymer, of which the tadpole is an example, and in the polymerized membrane. Consider a ring
polymer with N + 1 beads internally labeled n = 0 . . . N . The eigenmodes are then given by

Cp(t) =
1

N + 1

N∑
n=0

cos

[
2π(n+ 1/2)p

N + 1

]
Rn(t), p = 0 . . . bN/2c , (21a)

Sp(t) =
1

N + 1

N∑
n=0

sin

[
2π(n+ 1/2)p

N + 1

]
Rn(t), p = 1 . . . dN/2e , (21b)

where dxe and bxc are the ceiling and �oor function respectively.
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4 Star polymer

Besides the heavily studied linear polymer chains there are many other types of polymers whose dynamics
deserve closer inspection. In this section we concern ourselves with the dynamics of bead-spring chains
that have the topology of a symmetric star (with f arms). We present the dynamical eigenmodes,
and use the mode amplitudes to provide analytical expressions for the radius of gyration, mean square
displacement of a tagged monomer, and the autocorrelation function of the vector that spans from the
center of the star to a bead on one of the arms.

4.1 Eigenmodes

A major di�culty for dynamics of polymers with a more complex topology like the symmetric star
polymer is that in most cases an elegant analytical expression for the set of dynamical eigenmodes
cannot be found [10]. Here we show that for a symmetric star polymer with a special central bead the
dynamical eigenmodes can indeed be written down exactly, and subsequently the dynamical behavior
of many interesting physical quantities can be determined precisely. For simplicity, in commensuration
with the Rouse model, henceforth we term these dynamical eigenmodes as Rouse modes. Speci�cally,
we consider a star polymer with f identical arms, each consisting of N identical beads, connected to a
central bead whose hydrodynamic radius is f times as big as the other ones, i.e., its viscous drag is f
times as large. A graphical representation of such a star polymer with f = 5 and N = 4 can be found in
Fig. 1. It is worthwhile to note in this context that a key method to synthesize a star polymer chain is
to attach the arms, which are linear chains, to a multivalent central core with sticky ends (see, e.g., Ref.
[11] and the references cited therein). Although from the synthesis process it is realistic that the core has
a signi�cantly higher hydrodynamic radius, the choice in our simpli�ed model to make hydrodynamic
radius of the central bead exactly f times as the other beads is motivated by our strive to determine the
Rouse modes exactly. For modestly-sized chains, where the hydrodynamic radius of the core is not f
times as big as the arm beads, the dynamical matrix (the homogenous part of the dynamical di�erential
equation) has been diagonalized numerically, yielding the numerical identi�cation of the Rouse modes
[10].

Figure 1: Two graphical representations of a symmetrical star polymer to visualize the Rouse modes.
Depicted is a symmetric starpolymer with �ve arms consisting of four beads each and a central monomer
which has a friction coe�cient �ve times that of beads in the arms. The transparent con�gurations are
polymers in the origin stretched in the xy-plane for visual convenience with no Rouse mode excited in
the z-direction. The opaque con�gurations are like the transparent ones but with a pure X1 mode (a)

and Y
(i,j)
1 modes (b) in the z-direction.

We label the position of the central bead as R0 and let Ra,n be the position of the n-th bead,
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n = 1 . . . N , in the a-th arm, a = 1 . . . f . We consider two types of Rouse modes given by

Xp(t) =
1

N + 1

{
cos

[
πp/2

N + 1

]
R0(t) +

1

f

f,N∑
a,n=1

cos

[
π(n+ 1/2)p

N + 1

]
Ra,n(t)

}
, (22a)

Y(i,j)
q (t) =

1

2N + 1

N∑
n=1

cos

[
π(N − n+ 1/2)(q − 1/2)

N + 1/2

]
(Ri,n(t)−Rj,n(t)) , (22b)

with p = 0 . . . N and q = 1 . . . N . A visualization of the two kinds of modes can also be found in Fig.
1. The �rst set of modes Xp(t) are like Rouse modes for a linear polymer through all the arms. The

second set of modes Y
(i,j)
p (t) can also be thought of as Rouse modes as in Eq. (8) with p odd valued

and through a linear chain of length 2N + 1 made up by arms i and j and the central bead. There

are Nf(f − 1)/2 modes of the type Y
(i,j)
p (t) with i < j, but the total set of these modes contain only

(f − 1)N independent degrees of freedom, for instance because Y
(i,k)
p (t)=Y

(i,j)
p (t)+Y

(j,k)
p (t); we could

have constructed, for every p, an orthogonal set of f − 1 modes out of the full set of modes Y
(i,j)
p (t), but

we choose not to do that for the sake of mathematical elegance. Combined with N + 1 modes Xp(t),
the total set contains fN + 1 three-dimensional modes needed to describe the system that has fN + 1
beads so that the number of degrees of freedom is the same.

In similar fashion as for the linear polymer the equations of motion for the eigenmodes can be written
down and the correlation function for the amplitudes of the eigenmodes solved. We de�ne

αYp
≡ 4

k

ζ
sin2

[
π(p− 1/2)

2N + 1

]
, (23a)

αXp
= 4

k

ζ
sin2

[
πp

2N + 2

]
, (23b)

so that the dynamics of these modes for a star polymer are captured by

〈[X0(t)−X0(0)]2〉 =
6kBT

ζf(N + 1)
t (24a)

〈Xp(t) ·Xq(0)〉 =
3kBT

ζf(N + 1)

1

2αXp

exp
[
−αXp

t
]
δpq (24b)

〈Y(i,j)
p (t) ·Y(k,l)

q (0)〉 =
3kBT

ζ(2N + 1)

δ(i,j)(k,l)

2

1

2αYp

exp
[
−αYp

t
]
δpq, (24c)

where δ(i,j)(k,l) = δik − δjk − δil + δjl. This is supplemented by X00(t) ≡ 〈[X0(t) − X0(0)]2〉 =
6kBTt/(ζf(N + 1)) and all other correlations between modes strictly zero. The derivations of the Rouse
mode amplitudes can be found in Appendix D.

4.2 Radius of gyration

The squared radius of gyration is de�ned as the weighted sum over all di�erences between the position
of a monomer and the center of mass squared. Below we work out the radius of gyration for the case
of the star polymer where the central monomer is f times heavier than the other beads, although the
radius of gyration can be calculated following the same line for other cases as well. In the former case
the location of the center-of-mass Rcm(t) ≡ X0(t), and the squared radius of gyration is de�ned as

R2
g =

1

f(N + 1)

f〈[R0(t)−Rcm(t)]2〉+

f,N∑
i,n=1

〈[Ri,n(t)−Rcm(t)]2〉

 , (25)

which can be calculated by plugging in Eq. (117). This reduces to

R2
g = 2

N∑
p=1

Xpp(0) +
4(2N + 1)

f3(N + 1)

N,f,f,f∑
p,i,j,k=1

Y (i,j)(i,k)
pp (0). (26)

Plugging in Eq. (24) explicitly and taking the long polymer limit yields

R2
g =

3kBT

kπ2

N

f

∞∑
p=1

1

p2
+

3kBT

kπ2

N

f3

f,f,f∑
i,j,k=1

δ(i,j)(i,k)

∞∑
p=1

1

(p− 1/2)2
. (27)
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The sums can be evaluated by using Eq. (106).
And so the radius of gyration squared for a long symmetric star polymer becomes

R2
g =

kBTN

k

3f − 2

2f
. (28)

This result is consistent with that of a linear chain (f = 1).

4.3 Mean square displacement of a bead

We now consider the mean square displacement of the central bead and a bead in an arm for a star
polymer with long arms. We start by de�ning the displacement vector for the central bead and writing
it in terms of modes using Eq. (117a):

∆R0(t) ≡R0(t)−R0(0)

=X0(t)−X0(0) + 2

N∑
p=1

cos

[
πp/2

N + 1

]
{Xp(t)−Xp(0)} . (29)

The mean square displacement is then given by

〈∆R2
0(t)〉 = X00(t) + 8

N∑
p=1

cos2
[
πp/2

N + 1

]
{Xpp(0)−Xpp(t)}, (30)

where Eq. (24) can be plugged in, and the orthogonality of the modes was already used for simpli�cation.
Before doing so, let us look at very short time scales kt/ζ < 1/4. The exponent in Xpq(t) can then
be expanded and the sum exactly evaluated using Eq. (103a), resulting in 〈∆R2

0(t)〉 = 6kBTt/(ζf)
dominating over the mean square displacement of the whole polymer which at short time scales is
negligible. At very long time scales Xpq(t) goes to zero and the term with the summation in Eq. (30)
can again be exactly evaluated using Eq. (104a). So for kt/ζ < N2/3 the summation has a larger
contribution than the mean square displacement of the whole polymer. For intermediate times the
summation dominates and can be rewritten as an integral for very long polymers:

〈∆R2
0(t)〉 =

12kBT

π2kf

∫ ∞
0

dx

x2

{
1− exp

[
−kπ

2t

ζ
x2
]}

=
12kBT

f

√
t

πkζ
. (31)

The mean square displacement as approximated for intermediate times is greater than that of the ap-
proximation for the short time scales for t > 4ζ/(πk), so that is when the intermediate time regime
begins. For the central bead in a star polymer the mean square displacement then becomes

〈∆R2
0(t)〉 =



6kBT

ζf
t, for t <

ζ

4k
12kBT

f

√
t

πkζ
, for

4ζ

πk
< t <

N2ζ

3k
6kBT

ζf(N + 1)
t, for t >

N2ζ

3k

. (32)

Figure 2 shows the exact evaluation of Eq. (30) for some star polymer together with approximations
made for the short, intermediate and long time scales found in Eq. (32). The central bead �rst behaves
like a single bead with friction coe�cient ζf . After that the movement is restricted by local connections
to surrounding beads in the polymer. For very long times the position of the bead within the polymer
is negligible and the mean square displacement behaves as that of a single bead with friction coe�cient
ζf(N + 1).

A very similar approach can be used for the mean square displacement of a bead in an arm of the
star polymer, de�ned as

∆Rn(t) ≡Ri,n(t)−Ri,n(0)

=X0(t)−X0(0) + 2

N∑
p=1

cos

[
π(n+ 1/2)p

N + 1

]
{Xp(t)−Xp(0)}

+
4

f

f,N∑
j,p=1

cos

[
π(N − n+ 1/2)(p− 1/2)

N + 1/2

]
{Y(i,j)

p (t)−Y(i,j)
p (0)}. (33)
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Figure 2: The scaled mean square displacement 〈∆R2(t)〉/
√
t as a function of time. The mean square

displacement of several beads in a symmetric star polymer as given by Eqs. (30,34) were exactly evaluated
with f = 12 and N = 104 and other parameters put to 1. The red disks corresponds to the mean square
displacement of the central bead whereas the magenta stars, green triangles, cyan diamonds, and blue
squares correspond to n = 10−3N,N/2, 9N/10, and N in Eq. (34) respectively. A bead positioned
somewhere along the arm will at �rst behave as if it were in the middle of the arm. After time grows
either the end or the center will become an in�uence at �rst and the bead will start mimicking a bead at
one of those places. The short time scale t < ζ/(4k) and the very long time scale t� N2ζ(3f − 2)/(3k)
for which 〈∆R2(t)〉 ∼ t corresponding to the dashed and dotted lines are separated by a time during
which 〈∆R2(t)〉 ∼

√
t corresponding to the solid lines as in agreement with Eqs. (32,36-37).

Using orthogonality of mode Y
(i,j)
p with Xq and with Y

(k,l)
q with q 6= p, and evaluating the double sum

over the arms, the mean square displacement becomes

〈∆R2
n(t)〉 =X00(t) + 8

N∑
p=1

cos2
[
π(n+ 1/2)p

N + 1

]
{Xpp(0)−Xpp(t)}

+
16(f − 1)

f

N∑
p=1

cos2
[
π(N − n+ 1/2)(p− 1/2)

N + 1/2

]
×
{
Y (1,2)(1,2)
pp (0)− Y (1,2)(1,2)

pp (t)
}
. (34)

For small values of t the exponents can again be expanded and the sum exactly evaluated using Eqs.
(103a-103b) so that in the long polymer limit 〈∆R2

n(t)〉 = 6kBTt/ζ. The summation reaches its max-
imum, using Eqs. (104a-104b), on long time scales so that for a bead at the end of an arm the mean
square displacement term of the whole polymer will start to dominate for t > N2ζ(3f − 2)/(3k). The
closer a bead is to the central bead the faster its mean square displacement will behave like that of the
whole polymer. We can again approximate the summation by an integral for intermediate times but
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depending on the position of the bead in an arm it will behave di�erently.

〈∆R2
n(t)〉 =

12kBT

π2kf

∫ ∞
0

dx

x2

{
1− exp

[
−kπ

2t

ζ
x2
]}

×
{

cos

[
π(n+ 1/2)p

N + 1

]
+ (f − 1) cos

[
π(N − n+ 1/2)(p− 1/2)

N + 1/2

]}
(35)

The exponent in the integral will suppress the contribution for higher p-values. For a bead at the end of
an arm, n equals N , the cosines can be taken to be 1 and the integral as the same as the integral for the
central bead but with an extra factor f . For a bead in the middle of an arm, n equals N/2, in the long
polymer limit the �rst cosine will be 1 for even values of p and 0 for odd values, and the second cosine
will be 1/2 for all values of p. This will give the same integral as for the bead at the end of an arm but
smaller by a factor 1/2. We thus �nd for the mean square displacement of a bead at the end of an arm

〈∆R2
N (t)〉 =



6kBT

ζ
t, for t <

ζ

4k

12kBT

√
t

πkζ
, for

4ζ

πk
< t <

N2ζ

3k
6kBT

ζfN
t, for t >

N2ζ

3k
(3f − 2)

. (36)

For the bead located exactly in the middle of an arm the mean square displacement becomes

〈∆R2
N/2(t)〉 =



6kBT

ζ
t, for t <

ζ

4k

6kBT

√
t

πkζ
, for

4ζ

πk
< t <

N2ζ

3k
6kBT

ζfN
t, for t >

N2ζ

3k
(3f − 2)

. (37)

Figure 2 shows the exact evaluation of Eq. (34) and demonstrates the validity of Eqs. (36-37). The
behavior of a bead somewhere along the arm can also be extracted from these results. At �rst it will
behave like the bead in the middle of an arm since locally they are the same. As time progresses it will
either start feeling the end or the center of the polymer at �rst and mimic the behavior of the bead
at the end or center respectively after which the mean square displacement will behave like that of the
whole polymer.

4.4 Correlation function of a vector connecting a bead to the central bead

Consider the spatial vector connecting a bead in some arm to the central bead

ri,n(t) ≡ Ri,n(t)−R0(t). (38)

The correlation function Cn(t) ≡ 〈ri,n(t) · ri,n(0)〉 is then given by

Cn(t) =16

N∑
p=1

sin2

[
π(n+ 1)p/2

N + 1

]
sin2

[
πnp/2

N + 1

]
Xpp(t)

+
16

f2

f,f,N∑
j,k,p=1

cos2
[
π(N − n+ 1/2)(p− 1/2)

N + 1/2

]
Y (i,k)(i,j)
pp (t), (39)

where the cosines were reduced to sines for notational convenience. Having �lled in the mode dynamics
functions explicitly yields

Cn(t) =
24kBT

ζf(N + 1)

N∑
p=1

sin2

[
π(n+ 1)p/2

N + 1

]
sin2

[
πnp/2

N + 1

]
1

αXp

exp
[
−αXp

t
]

+
12(f − 1)kBT

ζf(2N + 1)

N∑
p=1

cos2
[
π(N − n+ 1/2)(p− 1/2)

N + 1/2

]
1

αYp

exp
[
−αYpt

]
, (40)
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Figure 3: The scaled correlation function Cn(t)/n as de�ned in Eqs. (38-39) in a double-logarithmic
plot as a function of time. The correlation functions for several monomers in a symmetric star polymer
as given by Eq. (40) were exactly evaluated with f = 12 arms of length N = 103 and other parameters
put to 1. The red disks, green triangles, and blue squares correspond to n = 1, 10, and N for Cn(t)
respectively. Approximations for the correlation function in the short time scale t < ζ(n + 1)2/(4π2k),
intermediate time scale ζn2(f−1)2/(kπf2) < t < N2ζ/(π2k), and the very long time scale t > N2ζ/(π2k)
as in Eq. (42) correspond solid lines. The approximation for intermediate times is only very accurate
for small n, but for larger n this time domain becomes smaller or even non-existent as is the case for n
equals N as can be seen in the �gure.

where αXp
and αYp

are de�ned in Eqs. (121-122). At very large and very small times the exact
correlation functions for the modes in Eq. (24) can be used. At very small times the exponential can
be omitted and the resulting equations solved using Eqs. (104b,104d). Adding the two terms then
results in Cn(t) = 3nkBT/k. To determine the region for which this approximation is valid we notice
that the exponent is roughly 1 for p2 < ζN2/(π2kt). The term in the summation will go to 0 for
p = 2(N + 1)/(n + 1) and so the largest contribution to the summation is for all the terms before this
happens. Solving this for t where the large polymer limit is taken gives t < ζ(n+ 1)2/(4π2k) for which
the approximation is valid. For very large time values t > (N2ζ)(π2k) only the lowest mode will give
contribution. Since f = 1, 2 are two cases of linear chains we focus on f ≥ 3 for which the second term in
Eq. (40) will dominate. Taking the long polymer limit the sine can be expanded and the cosine reduced
for notational convenience. For very large times the correlation function can thus be approximated by
Cn(t) = 12kBTN/(π

2k) (1− cos [πn/N ]) exp
[
−π2kt/(4ζN2)

]
. For intermediate time values the second

term can be approximated by a Gaussian integral in the long polymer limit by expanding the cosine for
small n.

Cn(t) =
6(f − 1)n2kBT

kf

∫ ∞
0

dx exp

[
−π

2kt

ζ
x2
]

=
3(f − 1)n2kBT

kf
√
π

(
kt

ζ

)−1/2
. (41)
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For t > ζn2(f −1)2/(πkf2) the intermediate time approximation will be smaller and thus more accurate
than the approximation for small times. Putting this together gives for f ≥ 3

Cn(t) =



3nkBT

k
, for t <

ζ(n+ 1)2

4π2k
3(f − 1)n2kBT

kf
√
π

(
kt

ζ

)−1/2
, for

ζn2(f − 1)2

kπf2
< t <

N2ζ

π2k
12kBTN

π2k

(
1− cos

[πn
N

])
exp

[
− π2k

4ζN2
t

]
, for t >

N2ζ

π2k

. (42)

A graphical representation of the correlation function for a spatial vector between some monomer and
the central monomer in a symmetric starpolymer with f = 12 and N = 103 is shown in Fig. 3.
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5 Tadpole

A tadpole polymer can be seen as a star polymer where two of the three arms have the ends connected.
Here we extend our calculations of the previous section and write down the exact solution for the
eigenmodes for the speci�c case where the tadpole is built from a symmetric star polymer with arms of
length N and a central bead with hydrodynamic radius three times as large as that of all the other beads.
The Rouse modes are then a variation of the modes for a ring polymer combined with those for a star
polymer. We use these eigenmodes to calculate the radius of gyration and mean square displacement of
a monomer in the tadpole.

5.1 Eigenmodes

The �rst set of N + 1 modes are like the X modes for the star polymer where all the arms behave the
same. The second set of N modes are very similar to the Y modes of the star polymer where the ring
takes on the role of an arm and the tail of the tadpole the role of another arm. The third set Z of N
modes are Rouse modes for a ring polymer but speci�cally such that it is antisymmetric around the
central bead. In Fig. 4 these three di�erent modes are depicted for p = 1. We label the tadpole polymer

Figure 4: Three graphical representations of a tadpole polymer to visualize the Rouse modes. Depicted
is a tadpole polymer, which can be seen as a symmetric star polymer with three arms consisting of four
beads each where two arms are connected at the ends, with a central monomer which has a friction
coe�cient three times that of beads in the arms. The transparent con�gurations are polymers in the
origin stretched in the xy-plane for visual convenience with no Rouse mode excited in the z-direction.
The opaque con�gurations are like the transparent ones but with a pure X1 mode (a), Y1 mode (b),
and Z1 mode (c) in the z-direction.

like a three-armed symmetric star polymer where arm one and two have the ends connected. The Rouse
modes are then given by

Xp(t) =
1

N + 1

{
cos

[
πp/2

N + 1

]
R0(t) +

1

3

3,N∑
a,n=1

cos

[
π(n+ 1/2)p

N + 1

]
Ra,n(t)

}
, (43a)

Yq(t) =
1

4N + 2

N∑
n=1

cos

[
π(N − n+ 1/2)(q − 1/2)

N + 1/2

]
[R1,n(t) + R2,n(t)− 2R3,n(t)], (43b)

Zq(t) =
1

2N + 1

N∑
n=1

sin

[
π(N − n+ 1/2)q

N + 1/2

]
(R1,n(t)−R2,n(t)) , (43c)
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with p = 0 . . . N and q = 1 . . . N . The validity of these Rouse modes as the dynamical eigenmodes can
be proved like for the star polymer in Appendix D. Let us de�ne

X̃n(t) = X0(t) + 2

N∑
p=1

cos

[
π(n+ 1/2)p

N + 1

]
Xp(t), (44a)

Ỹn(t) =
4

3

N∑
p=1

cos

[
π(N − n+ 1/2)(p− 1/2)

N + 1/2

]
Yp(t), (44b)

Z̃n(t) = 2

N∑
p=1

sin

[
π(N − n+ 1/2)p

N + 1/2

]
Zp(t), (44c)

so that the bead locations are given by

R0(t) = X̃0(t) (45a)

R1,n(t) = X̃n(t) + Ỹn(t) + Z̃n(t), (45b)

R2,n(t) = X̃n(t) + Ỹn(t)− Z̃n(t), (45c)

R3,n(t) = X̃n(t)− 2Ỹn(t). (45d)

The dynamics for these modes are very similar as for the modes of the star polymer. The non-vanishing
correlation functions for the modes of the tadpole are then given by

〈[X0(t)−X0(0)]2〉 =
2kBT

ζ(N + 1)
t (46a)

〈Xp(t) ·Xq(0)〉 =
kBT

ζ(N + 1)

1

2αXp

exp
[
−αXpt

]
δpq (46b)

〈Yp(t) ·Yq(0)〉 =
9kBT

4ζ(2N + 1)

1

2αYp

exp
[
−αYp

t
]
δpq (46c)

〈Zp(t) · Zq(0)〉 =
3kBT

ζ(2N + 1)

1

2αZp

exp
[
−αZpt

]
δpq, (46d)

for p, q = 1, . . . N and

αXp = 4
k

ζ
sin2

[
πp

2N + 2

]
, αYp = 4

k

ζ
sin2

[
π(p− 1/2)

2N + 1

]
, αZp = 4

k

ζ
sin2

[
πp

2N + 1

]
. (47)

5.2 Radius of gyration

When the ends of two arms of a three armed symmetric star polymer are connected the mobility reduces
and the radius of gyration will become smaller. Following the same steps as for the star polymer the
radius of gyration is de�ned in the same way for the case when the central bead is three times as heavy
as any other bead, and by plugging in the inverses it can be rewritten in terms of summations over
the correlation functions of the modes at time zero. The radius of gyration squared for a long tadpole
becomes:

R2
g =

kBTN

k

5

6
, (48)

which is 5/7th of the radius of gyration of the same polymer but with the ends not connected.

5.3 Mean square displacement of a bead

Since the tadpole can be seen as a three armed star polymer with ends of two of the arms connected,
the mean square displacement of the monomers in the third arm and that of the central monomer will
not feel the e�ect of the connection of the two remaining arms. And so for the central monomer and
the monomers in the tail of the tadpole the expressions will be exactly the same as in Eqs. (30,34)
respectively. A monomer in the closed circle of the tadpole should behave in the same way as some
monomer roughly in the middle of the tail:

∆R0(t) ≡ R0(t)−R0(0) , ∆Ri,n(t) ≡ Ri,n(t)−Ri,n(0). (49)
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Figure 5: The scaled mean square displacement 〈∆R2(t)〉/
√
t as a function of time. The mean square

displacement of several beads in a tadpole made by a symmetric star polymer with ends of arm 1 and
2 connected as de�ned by Eq. (49) were exactly evaluated with N = 104 and other parameters put to
1. The red disks correspond to the mean square displacement of the central bead whereas the magenta
stars, green triangles, cyan diamonds, and blue squares correspond to i = 1 and n = 10−3N,N/2, 9N/10,
and N in Eq. (49) respectively. Unlike for the unconnected arms in the star polymer here there is no real
di�erence between a monomer at the middle or end of the connected arm. A bead positioned somewhere
along the arm will at �rst behave as if it were in the middle of the arm. If it is close enough to the
heavy central bead the movement will be restricted and the mean square displacement will mimic that
of the central bead. The short time scale t < ζ/(4k) and the very long time scale t � 5N2ζ/(6k) for
which 〈∆R2(t)〉 ∼ t corresponding to the dashed and dotted lines are separated by a time during which
〈∆R2(t)〉 ∼

√
t corresponding to the solid lines as in agreement with Eqs. (50).
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The mean square displacement for monomers in a tadpole can be described by

〈∆R2
0(t)〉 =



2kBT

ζ
t, for t <

ζ

4k

4kBT

√
t

πkζ
, for

4ζ

πk
< t <

N2ζ

3k
2kBT

ζN
t, for t >

N2ζ

3k

, (50a)

〈∆R2
3,N (t)〉 =



6kBT

ζ
t, for t <

ζ

4k

12kBT

√
t

πkζ
, for

4ζ

πk
< t <

N2ζ

3k
2kBT

ζN
t, for t >

7N2ζ

3k

, (50b)

〈∆R2
1,N (t)〉 = 〈∆R2

3,N/2(t)〉 =



6kBT

ζ
t, for t <

ζ

4k

6kBT

√
t

πkζ
, for

4ζ

πk
< t <

N2ζ

3k
2kBT

ζN
t, for t >

5N2ζ

6k

. (50c)

Note that the domains of validity for the di�erent behavior have changed in comparison to the star
polymer. The exact sums for the monomers in a tadpole have a slightly di�erent maximum as can be
calculated using Eq. (104). Figure 5 shows the exact evaluation of Eq. (49) and demonstrates the
validity of Eqs. (50).

16



6 Polymerized membrane

It is a natural question to ask if the analytical solution of the Rouse model can be generalized to higher
dimensions, e.g., making it useful for the dynamics of polymerized membranes. There is a considerable
amount interest in the properties of polymerized membranes [13]. The interest stems not only from
the point of view of a fundamental understanding, but also because of their importance in biology
and chemistry. Instances of polymerized membranes with a �xed connectivity can be found in 2D-
cytoskeletons of cells [14, 15, 16] and graphite oxide sheets [17, 18, 19].

Static properties of polymerized membranes as a two-dimensional extension of (one-dimensional)
linear polymers came into fashion in the late 80s. At that time the driving question centered on the
equilibrium properties of polymerized membranes, in particular, the scaling of the radius of gyration
of a polymerized membrane with its lateral size, while the corresponding scaling behavior for phantom
and self-avoiding linear polymers were already well-known. Sophisticated renormalized group approaches
were developed to this end [20, 21, 22, 23], accompanied by computer simulations [24, 25, 26, 27, 28, 29,
30, 31, 32]. A notable outcome of these studies is that the radius of gyration Rg of a membrane scales
with its lateral size N as Rg ∼ logN for phantom, and as Rg ∼ N for self-avoiding membranes.

In contrast to the equilibrium properties, the dynamical properties of membranes have been studied
with less intensity. Apart from scaling analyses [33, 34, 35], the bulk of the research on the dynamics of
polymerized membranes are heavily dominated by computer simulations [36, 37, 38, 39], leaving exact
analytical results on the dynamics of membranes a relatively open area. In this paper we attempt to
�ll this void � we consider two-dimensional square-polymerized phantom membranes embedded in a
three-dimensional space, both in the absence and the presence of tensile forces � and perform a Rouse
mode analysis. We show that the Rouse modes are the exact eigenmodes of the membrane dynamics.
Akin to the Rouse model for bead-spring linear polymers, our exercise allows us to exactly solve for the
static and dynamic properties of phantom membranes; in this process also deriving the exact expression
for the scaling of Rg as a function of the membrane's lateral size N (which con�rms the Rg ∼ logN
scaling), as well as show increased �uctuations at the edge of the membrane [40, 41]. In particular, we
draw the reader's attention to the exact solution under tensile forces, for which forces the membrane
essentially encounters a �at geometry. Unlike a phantom membrane in equilibrium, in such a situation
the membrane becomes essentially �at, does not get the opportunity to intersect itself, and therefore
provides a highly useful and exactly soluble approach to the dynamics for a realistic model �at membrane.
We also note that the methods are generalizable to arbitrary internal and spatial dimensions.

The structure of this section is as follows. We describe the dynamical equations without forces, and
their diagonalization by the Rouse modes. Then we derive the scaling of the radius of gyration, the mean
square displacement of a tagged bead and the autocorrelation function of a vector connecting two beads.
After incorporating tensile forces in the dynamical equations we derive the new Rouse modes amplitude
correlation functions. We also give the eigenmodes and their amplitude correlation functions for the
n-torus which is a polymerized membrane with n internal dimensions all with periodic boundaries.

6.1 Eigenmodes

We consider a rectangular polymerized membrane, for which N = L1 × L2 beads are connected in a
perpendicular topology, with Rn(t) denoting the spacial position at time t of the bead internally labeled
as n. Naturally for a membrane it is convenient to take two numbers n = (n1, n2) for labeling the beads
with ni = 1, . . . , Li. The potential energy for a square-polymerized membrane is a simple extension of
the Hamiltonian for a linear polymer in two internal dimensions

U =
k

2

L1−1,L2∑
n1,n2=1

(Rn1,n2
−Rn1+1,n2

)
2

+
k

2

L1,L2−1∑
n1,n2=1

(Rn1,n2
−Rn1,n2+1)

2
(51)

for some spring constant k.
In the absence of externally applied forces, in the overdamped limit the dynamics of each bead of the

membrane is described by

dRn

dt
= −1

ζ

∂U

∂Rn
+ gn, (52)

where ζ is the friction coe�cient of the solvent and gn is the thermal force on the n-th bead. The
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thermal forces are uncorrelated between di�erent beads, as well as in time, i.e.,

〈gm(t) · gn(t′)〉 =
6kBT

ζ
δmnδ(t− t′), (53)

with Boltzmann constant kB and temperature T .
For a linear polymer with positions Rn(t) of beads n = 1, . . . , N at time t the Rouse modes are given

by [4, 5]

Xp(t) =
1

N

N∑
n=1

cos

[
π(n− 1/2)p

N

]
Rn(t), (54)

with p = 0, . . . , N − 1 and the inverse given by

Rn(t) = X0(t) + 2

N−1∑
p=1

cos

[
π(n− 1/2)p

N

]
Xp(t) (55)

The Rouse modes for the membrane are quite similar to those of the linear chain: since topologically the
internal directions (connectivity) are orthogonal, the Rouse modes will be products of Rouse modes for
a linear polymer. Below we introduce the following de�nitions for an elegant notation and proof of the
independence of the Rouse modes.

First we de�ne

βpi =

{
2 if pi = 1, . . . , Li − 1
1 if pi = 0

, βp = βp1βp2 (56)

and

fpi(ni) = cos

[
πpi(ni − 1/2)

Li

]
, fp(n) = fp1(n1)fp2(n2) (57)

The orthogonality relation at the basis of the proof for the Rouse modes for a linear polymer chain in
Eq. 102a can then be generalized for the membrane

1

N

∑
n

βpfp(n)fq(n) = δpq, (58)

where the summation is taken over all allowed values of n. The Rouse modes amplitudes and the
corresponding inverse are then given by

Xp(t) =
1

N

∑
n

fp(n)Rn(t), (59)

Rn(t) =
∑
p

βpfp(n)Xp(t). (60)

The position of the center-of-mass Rcm(t) at time t simply equals X0(t).
Next, we note that when the equations of motion from Eq. (52) for the beads are expressed one gets

a term for each internal dimension equal to that of a term for a bead in a linear polymer. Taking the
time derivative in Eq. (59) and plugging in the equations of motion for the beads and then the inverse
we get

dXp(t)

dt
= −αpXp(t) + Gp(t) (61)

with αp ≡ 4
k

ζ

(
sin2

[
πp1
2L1

]
+ sin2

[
πp2
2L2

])
and Gp(t) =

1

N

∑
n

fp(n)gn(t), (62)

i.e., the Rouse modes diagonalizes the equations of motion. This set of linearized di�erential equations
can be solved just as for a linear polymer by using the correlation function for the thermal forces given
by Eq. (53). By using the orthogonality relation in Eq. (58)

〈Gp(t) ·Gq(t′)〉 =
6kBT

ζNβp
δpqδ(t− t′), (63)
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so that the following two-point correlation functions for the eigenmodes can be derived:

X00(t) ≡ 〈[X0(t)−X0(0)]2〉 ≡ 〈[Rcm(t)−Rcm(0)]2〉 =
6kBT

ζN
t (64)

Xpq(t) ≡ 〈Xp(t) ·Xq(0)〉 =
3kBT

ζNβp

1

αp
exp [−αpt] δpq with p 6= 0. (65)

Just like the case of a linear polymer, any correlation function of interest for the membrane can be
derived using Eqs. (61-63). We address a few of them in the following subsections where, for the sake of
simplicity, we restrict ourselves to square membranes with L1 = L2 = L, and thus N = L× L.

6.2 Radius of gyration

The radius of gyration squared for the membrane is de�ned by

R2
g ≡

1

N

∑
n

〈
[Rn(t)−Rcm(t)]

2
〉

=
1

N

∑
n

∑
p6=0

∑
q6=0

〈Xp(t) ·Xq(t)〉βpβqfp(n)fq(n), (66)

in which Eq. (60) is used for the second line. Having plugged in Eqs. (58) and (65) the squared radius
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Figure 6: The radius of gyration squared R2
g for a square membrane as a function of N = L× L beads,

with kBT/k set to unity. The black dots represents the sum in Eq. (67) evaluated exactly for L up to
L = 104, while the continuous red line represents the function (N − 1)/N + 3/(4π) logN .

of gyration reduces to

R2
g =

3kBT

ζN

∑
p6=0

1

αp
. (67)
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The summation (67), using the de�nition of αp (62), can be split into two parts:

R2
g =

kBT

k

(
3

2N

L−1∑
p=1

sin−2
[πp

2L

]
+

3k

ζN

L−1∑
p1=1

L−1∑
p2=1

1

αp

)
=
kBT

k
(I + J ) . (68)

The �rst term in Eq. (68) can be evaluated exactly: I = (N − 1)/N . For the second term we take the
long polymer limit N � 1 so that αp can be expanded and the sum approximated by an integral with
xi = pi/L where the integral is over a unit square in the positive quadrant excluding the small area near
the origin. The second approximation we make is replacing the area of integration by that of the positive
quadrant of a unit circle excluding the small area near the origin which can be solved analytically

J =
3

π2

∫
dx

x2
=

3

2π

∫ 1

1/L

dr

r
=

3

4π
logN. (69)

The radius of gyration squared for a square membrane in the long polymer limit thus becomes

R2
g =

kBT

k

(
N − 1

N
+

3

4π
logN

)
. (70)

A comparison between the two terms in Eq. (70) shows that the second one is bigger than the �rst
one for N > 61. In Fig. 6 we present a comparison between the analytical result (70) and the exact
evaluation of Eq. (67) for L up to L = 104. Our result (70) con�rms the logN scaling of R2

g obtained
earlier by �eld-theory methods [20, 21, 22, 23].

6.3 Mean square displacement of a tagged bead

Let us de�ne ∆Rn(t) ≡ Rn(t)−Rn(0) for the n-th bead. We use Eq. (60) to write

〈∆Rn(t)2〉 =〈[X0(t)−X0(0)]2〉

+ 2
∑
p6=0

∑
q 6=0

βpβqfp(n)fq(n) {Xpq(0)−Xpq(t)} . (71)

Using Eqs. (64-65) this simpli�es to

〈∆Rn(t)2〉 =
6kBT

ζN
t+

6kBT

ζN

∑
p6=0

βp
αp

fp(n)2
{

1− e−αpt
}
. (72)

At short times kt/ζ � 1/8 the exponential in the second term can be expanded, and the sum is exactly
evaluated. In comparison to the second term the �rst one can be neglected to obtain

〈∆Rn(t)2〉 =
6kBT

ζ
t

1

N

∑
p6=0

βpfp(n)2 =
6kBT

ζ
t, (73)

which agrees with the mean square displacement of a free bead, and con�rms the wisdom that at short
times the beads do not feel the connectivity.

At very long times the exponentials in Eq. (72) reduce to zero, the second term becomes a �xed
number independent of t [but dependent on the location of the bead: the sum is largest when the
bead is located at the corner of the membrane, and equals 6kBT (logN/π − π/4 + 2/3) /k]; i.e., for
kt/ζ � N logN/π the �rst term of Eq. (71) dominates, and the motion of the tagged bead becomes
simply di�usive, with the same di�usion coe�cient as that of the center-of-mass.

At intermediate times the mean square displacement of the tagged bead will depend on its location
on the membrane. We work out three di�erence cases when the tagged bead is (a) the central bead of
the membrane, (b) located in the middle of an edge, and (c) a corner bead.

(a) For the mean square displacement of a bead at the center of the membrane 〈∆Rm(t)2〉 the sum
in Eq. (72) will only be over even values of pi. In the long polymer limit the sum can be converted to
an integral with xi = pi/L, such that

〈∆Rm(t)2〉 =
6kBT

ζ

∫ 1

0

dx1

∫ 1

0

dx2
1

αp

{
1− e−αpt

}
=

6kBT

ζ

∫ t

0

dt′
∫ 1

0

dx1

∫ 1

0

dx2e
−αpt

′
. (74)
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Figure 7: The mean square displacement 〈∆Rn(t)2〉 for beads in a square membrane as a function of
scaled time kt/ζ. The sum in Eq. (72) was exactly evaluated for kBT/k = 1 for beads at the center
of the membrane, at the middle of an edge, and at a corner for N = 3012 and the result is represented
by the red disks, green triangles, and blue squares respectively. The magenta stars represent the exact
evaluation for a bead with internal position n = (151, 5) to show the transition that the mean square
displacement for a bead makes from one region to another. For very short times kt/ζ � 1/8 the mean
square displacement for all beads 〈∆Rn(t)2〉 ∼ t thus behaving like that of a free bead as shown in Eq.
(73) which is represented by the dashed line in (a). For very long times the mean square displacement for
all beads 〈∆Rn(t)2〉 ∼ t/N behaves like that of a mean square displacement of the center-of-mass which
is represented by the dotted line in (a). In the intermediate time regime the mean square displacement
for beads 〈∆Rn(t)2〉 ∼ log[kt/ζ] as in agreement with Eqs. (76), (78), and (80), where the corresponding
approximations are valid for kt/ζ � N/π2, and are represented by the red, green, and blue solid lines in
(b) respectively.

We proceed with Eq. (74) by splitting the exponentials, resulting in two identical integrals which can
be evaluated in terms of the modi�ed Bessel function of the �rst kind Iα(z) and making a change of
variables.

〈∆Rm(t)2〉 =
6kBT

ζ

∫ t

0

dt′
(∫ 1

0

dx exp

{
−4kt′

ζ
sin2

[π
2
x
]})2

=
6kBT

k

∫ kt
ζ

0

dt′e−4t
′
I20 (2t′). (75)

To characterize the moderate time behavior of Eq. (75) we look at the asymptotic expansion Iα(z) =
exp(z)/

√
2πz and evaluated the integral so that

〈∆Rm(t)2〉 =
3kBT

2πk

(
log

[
kt

ζ

]
+ Cm

)
, (76)

where

Cm = lim
x→∞

− log[x] + 4π

∫ x

0

dte−4tI20 (2t) ≈ 4.04. (77)

(b-c) The same can be done for the mean square displacement for a bead located in the middle of an
edge 〈∆Re(t)

2〉 and corner 〈∆Rc(t)
2〉. The corresponding calculations are similar to those in (a), and

they yield

〈∆Re(t)
2〉 =

3kBT

πk

(
log

[
kt

ζ

]
+ Ce

)
, (78)

where

Ce = lim
x→∞

− log[x] + 2π

∫ x

0

dte−4t (I0(2t) + I1(2t)) I0(2t) ≈ 2.47, (79)
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and

〈∆Rc(t)
2〉 =

6kBT

πk

(
log

[
kt

ζ

]
+ Cc

)
, (80)

where

Cc = lim
x→∞

− log[x] + π

∫ x

0

dte−4t (I0(2t) + I1(2t))
2 ≈ 1.47. (81)

Note that all constants C's can be evaluated up to arbitrary precision, and that the approximations
(75), (77) and (79) are valid for kt/ζ � N/π2. In Fig. 7 we compare the exact evaluations from Eq.
(72) and the corresponding approximations (73), (76), (78) and (80).

6.4 Autocorrelation function of a vector connecting two beads

In the most general case the vector rmn(t) ≡ Rm(t)−Rn(t) connects two beads with internal coordinates
m and n at time t. The autocorrelation function of this vector Dmn(t) ≡ 〈rmn(t) · rmn(0)〉 can be
expressed in terms of the eigenmodes

Dmn(t) =
3kBT

ζN

∑
p6=0

βp
αp

[fp(m)− fp(n)]
2

exp [−αpt] . (82)

Like in the case for the mean square displacement of a tagged bead, the behavior of Dmn(t) depends on
time and the internal positions of the beads, hence we only brie�y outline the calculation procedure and
state the results. We focus on two extreme cases (a) Dc(t) where the vector connecting the two beads
located at the opposite corners of the membrane, and (b) Da(t) where the vector connects two beads at
position n and n+a somewhere in the middle of the membrane for a/L ≡ |a|/L� 1. We will generalize
these results qualitatively for the cases when the locations of the beads and the distances between them
are arbitrary.
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Figure 8: The scaled autocorrelation function Dmn(t)/Dmn(0) of the vector connecting beads with inter-
nal position m and n in a square membrane as a function of scaled time kt/ζ. The sum in Eq. (82) was
exactly evaluated with kBT/k = 1 for two beads at positions [(251,251),(250,251)], [(251,254),(258,251)],
[(1,1),(501,501)], and [(251,281),(281,251)] in the membrane with N = 5012, with the results shown by
the red disks, green triangles, blue squares, and cyan diamonds respectively. Note that the �rst two
pairs of beads are very close to each other in the middle of the membrane where the third pair are two
beads in opposing corners of the membrane; i.e., the �rst two cases correspond to Da(t)/Da(0), while
the third one corresponds to Dc(t)/Dc(0). The function D(t) ∼ log[kt/ζ], as in agreement with Eq. (84)
corresponding to the blue solid line in (b), for a duration that is larger when the beads are connected by
a larger vector a. For very small vectors a the behavior will shift to D(t) ∼ 1/t as derived in Eq. (83)
corresponding to the red and green solid lines in (a) before kt/ζ ∼ N/π2. The function D(t) for the last
pair shows a transition from logarithmic behavior to D(t) ∼ 1/t before the di�usive time regime.
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Short times: For times kt/ζ � 1/8 the exponent is roughly 1 and so the functions are constant. In
case two beads are close neighbors the sum can be evaluated Da(t) = kBT (3/2 + log a)/k, which is exact
for a = 1, and a rough estimate Dc(t) = 6kBT logN/(πk) follows from a calculation similar to that
performed for the radius of gyration.

Intermediate times: For a/L� 1 the sum for Da(t) can be expanded in a and evaluated as

Da(t) =
3ζkBT

8πk2
a2

t
. (83)

Further, it can be shown that the summation for Dc(t) equals that of −〈∆Rc(t)
2〉 up to a constant, such

that

Dc(t) = Dc(0)− 6kBT

πk

(
log

[
kt

ζ

]
+ Cc

)
. (84)

Long times: For a/L� 1 and kt/ζ � N/π2 only the lowest mode contributes to the summation and
so expanding the correlation function in Eq. (82) yields

Da(t) =
6kBTa

2

kN
exp

[
−π

2k

ζN
t

]
, (85)

while

Dc(t) =
48kBT

π2k
exp

[
−π

2k

ζN
t

]
. (86)

It is interesting to note the di�erences in behavior for Da(t) and Dc(t) at intermediate times. The
reason behind this di�erence is as follows. For Da(t) the beads are close and as a result they quickly
become `aware' of each other's presence. For Dc(t) on the other hand, the beads do not become `aware'
of each other's presence almost until kt/ζ ∼ N/π2. Based on this observation we expect that when the
beads are neither very close nor very far, there will be �rst a logarithmic decay (84) for Dmn(t), followed
by a 1/t power-law decay (83) before the terminal exponential decay (85-86) sets in. The above results
are veri�ed by comparing the approximations to the exact evaluation of Eq. (82) for di�erent pairs of
beads in Fig. 8.

6.5 External tensile forces

Here we concentrate on presenting the exact eigenmodes when the membrane is stretched in two per-
pendicular directions by forces F1 and F2 applied at the edges of the membrane.

Adding tensile forces to the system ensures that each bead has its own mean position around which it
�uctuates due to thermal forces. For large enough tensile forces the beads are far enough away from each
other, and self-intersection of the membrane is avoided. Such a situation therefore mimics the behavior
of a realistic �exible membrane under tension. The system is still exactly solvable by introducing the
following term to the Hamiltonian

UF =

L1−1,L2∑
n1,n2=1

F1 · (Rn1,n2 −Rn1+1,n2) +

L1,L2−1∑
n1,n2=1

F2 · (Rn1,n2 −Rn1,n2+1) , (87)

making the exercise of this section useful for practical purposes.
The mode amplitudes and their inverses are once again de�ned by Eqs. (59-60), but the following

term Hp will be added to the right hand side of the di�erential equation in Eq. (61) in order to solve
for the dynamics of the mode amplitudes:

Hp =
1

ζN

∑
n

fp(n) [F1(δn1L1
− δn11) + F2(δn2L2

− δn21)]

=
1

ζ

[
δp20{fp1(L1)− fp1(1)}F1

L1
+ δp10{fp2(L2)− fp2(1)}F2

L2

]
. (88)

Note that spatial symmetry for the modes is broken, and that Eq. (65) is replaced by similar equations
but also depending on the spatial components i and j of the vectors.

Xpiqj(t) ≡ 〈Xpi(t)Xqj(0)〉 =
HpiHqj

α2
p

+
kBT

ζNβp

1

αp
exp [−αpt] δpqδij with p 6= 0. (89)
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The assumption F1 ⊥ F2 is necessary in order for the modes to be the exact dynamical eigenmodes. If
the tensile forces are not orthogonal, then it will result in correlations between some of the modes (and
correspondingly a parallelogram-like structure of the membrane).

Figure 9: A randomly generated membrane consisting of 9× 9 beads in a three dimensional space, with
orthonormal tensile forces, kBT = 1/10, and k = ζ = 1. The black lines connects neighboring beads.
Due to tensile forces the membrane gets a rectangular lattice like structure where thermal forces push
the beads out of their mean positions.

It is of course interesting to investigate the transverse �uctuations of the membrane under lateral
tension. Two observables we consider are the e�ective thickness and the additional surface area under
thermal undulations. A quantity that can be used as a measure for the thickness of the membrane, is
the standard deviation of the relative height of the bead in the middle of the membrane with respect to
its mean position. In the limit of a continuous very large membrane, this thickness is given by

D ≡
√
〈R2

m
〉 =

√
kBT

4k
. (90)

We veri�ed numerically that the �uctuations increase for beads near the edge of the membrane, in line
with self-avoiding membranes [40, 41]. Note that this thickness is una�ected by the strength of the
tensile forces.

A much more involved calculation is needed for the area of the membrane. Consider a very large
square membrane with N = L2 beads and perpendicular tensile forces F1 = F2 = F of equal strength.
We consider the case where the temperature is low enough, or the tensile forces are strong enough, such
that the �uctuations of the beads around their equilibrium are small compared to the distances between
two neighboring beads. The total area of the membrane can be written as the sum of areas of all triangles
between the three beads with indices (i, j), (i+ 1, j) and (i, j + 1) plus the sum of areas of all triangles
with indices (i+ 1, j), (i, j + 1) and (i+ 1, j + 1); The expectation value for this area, in the continuum
limit, is then given by

〈A〉 =
F 2(L− 1)2

k2
+
kBT (2L2 − L)

8k
. (91)

The eigenmodes also give access to dynamical information. For instance, to obtain the mean
vector connecting two neighboring beads in the membrane ∆R1(t) ≡ Rn1+1,n2

(t) − Rn1,n2
(t) with
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n1 = 1, . . . , L1 − 1 and n2 = 1, . . . , L2, we use 〈Xp(t)〉 = Hp/αp, which can be proved by solving the
di�erential equation in a similar fashion as for Eq. (89), such that

〈∆R1(t)〉 =
∑
p

βp
Hp

αp
[fp(n1 + 1, n2)− fp(n1, n2)], (92)

yielding ∆R1(t) = F1/k where Eq. (105) was used. The same is true for neighbors in the other internal
direction so that for orthogonal tensile forces, on average, the membrane obtains is a �at rectangular
structure. Further, the random thermal forces are gaussian distributed with a variation given by Eq. (1)
such that 〈X2

pi(0)〉 and 〈Xp(0)〉 can be used to derive the �rst two moments for every mode amplitude.
We use these results to generate a random typical con�guration for a membrane as shown in Figure 9.

6.6 n-Torus

The two dimensional polymerized membrane is a speci�c case of polymerized manifolds that can be solved
by means of these eigenmodes. If the manifold has periodic boundaries in all internal directions, where
the ring polymer is the one dimensional case, we consider the polymerized n-torus. The eigenmodes and
notation are a little more elaborate in comparison to the two dimensional membrane in the previous
section due to the arbitrary number of internal dimensions and the fact that in a ring there are two types
of eigenmodes.

The n-torus polymer with n ≥ 1 consists of N monomers chained together periodically in n directions.
Let there be Li monomers chained together in the i-th direction periodically so that N =

∏n
i=1 Li with

Li ≥ 3 so that all monomers are identical and have 2n neighbors. We introduce parameters ai,pi,εi,i
∈ N0 with i ∈ [1, n] and for convenience write in vector notation a = (a1, a2, . . . , an) and the same for
p, ε and N. The position of a monomer is then given by Ra(t) meaning that it is the a1-th monomer
in the �rst direction, the a2-th monomer in the second direction up to the an-th monomer in the n-th
direction so that ai ∈ [1, Li]. We also need a very important function f εipi (ai) with εi ∈ [0, 1] de�ned as

f εipi (ai) =

 cos
[
2πpi(ai−1/2)

Li

]
if εi = 0

sin
[
2πpi(ai−1/2)

Li

]
if εi = 1

, (93)

where

pi ∈
{ [

0, bLi−12 c
]

if εi = 0[
1, dLi−12 e

]
if εi = 1

,

with bxc and dxe, x rounded down and up to the nearest integer respectively. For short notation
fεp(a) =

∏n
i=1 f

εi
pi (ai).

We need an orthogonality relation similar to that in Eq. (102a) of the function f εipi (ai) but for that
we �rst need to de�ne βεipi as

βεipi =

 2 if pi ∈
[
1, bLi−12 c

]
1 if (pi, εi) = (0, 0)
1 if Li is even and (pi, εi) = (dLi−12 e, 1)

, (94)

where again for short notation write βε
p =

∏n
i=1 β

εi
pi . The orthogonality relation then becomes

1

N

∑
a

βε
pf

ε
p(a)fαq (a) = δpqδεα, (95)

where δ is the Kronecker delta function and the sum is over all possible values of a.
We de�ne the modes Xε

p(t) and its inverse as

Xε
p(t) =

1

N

∑
a

fεp(a)Ra(t), (96)

Ra(t) =
∑
p,ε

βε
pf

ε
p(a)Xε

p(t), (97)
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which is easily veri�ed by plugging Eq. (97) into Eq. (96) and using orthogonality relation Eq. (95)
to simplify the expression. The mode X0

0(t) can be physically interpreted as the center of mass at any
given time t. In similar fashion as for the polymerized membrane we determined the equations of motion
for the eigenmodes. They are given by

dXε
p(t)

dt
= −αpX

ε
p(t) + Gε

p(t) (98)

with αp ≡ 4
k

ζ

n∑
i=1

sin2

[
πpi
Li

]
and Gε

p(t) =
1

N

∑
a

fεp(a)ga(t). (99)

Now we plug in the correlation function for ga(t) and use the orthogonality relation Eq. (95) so that

〈
Gε

p(t) ·Gα
q (t′)

〉
=

6D

Nβε
p

δ(t− t′)δpqδεα.

Finally we use this result in combination with the di�erential equation for the eigenmodes in Eq. (98)
and its general solution found in Eq. (114) and Eq. (116) resulting in the expressions

X00(t) ≡ 〈[X0(t)−X0(0)]2〉 ≡ 〈[Rcm(t)−Rcm(0)]2〉 =
6kBT

ζN
t, (100)

Xεα
pq(t) ≡ 〈Xε

p(t) ·Xα
q (0)〉 =

3D

Nβε
p

1

αp
exp [−αpt] δpqδεα with p, ε 6= 0. (101)
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7 Discussion

The Rouse model has proved to be a cornerstone for polymer dynamics. For bead-spring models of
star and tadpole polymers with the topology of a symmetric star with f arms and tadpoles (f = 3,
a special case), where the hydrodynamic radius of the central bead is f times as heavy as any other
bead, we derived the exact expressions for the dynamical eigenmodes. We demonstrated the usefulness
of this exercise by exact calculations of the radius of gyration, the mean square displacement of central
bead and of various other individual beads, and the correlation function of an orientational vector. We
repeat the exercise for polymers with a phantom manifold topology, in particular the membrane and
n-torus. We have shown that a set of eigenmodes can be used to solve the membrane dynamics in the
overdamped limit, and have demonstrated that many interesting properties can be analytically derived
for the membrane using certain relations for these eigenmodes. Furthermore, we have shown that adding
large enough tensile forces to the membrane system mimics the behavior of a realistic �exible membrane
under tension: the eigenmodes can still be exactly solved analytically, making the analysis useful for
practical purposes.

Although not explicitly stated here, these solutions for various bead-spring systems allow for solutions
to certain other systems as well. In Sec. 4 we determined the eigenmodes for symmetric star polymers
and in Sec. 5 showed that for a three-armed star polymer, if two of the arms are connected, the system
is still solvable. This can also be generalized by letting r < f/2 pairs of arms be connected into r rings
while not changing the other arms. In Sec. 6 we treated the two-dimensional manifold without periodic
boundary conditions and the general manifold with periodic boundary conditions for every internal
dimension. This could easily be generalized to a system with open or periodic boundaries per internal
dimension resulting in for example the cylinder. Besides some very speci�c other types of polymers, like
the comb polymer where all the beads in the middle have a speci�c friction coe�cient, it seems like we
discussed most systems that are similar to the linear polymer.
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A Useful mathematical relations

The following relations are useful for calculating the Rouse modes

2

N + 1

N∑
n=0

cos

[
π(n+ 1/2)p

N + 1

]
cos

[
π(n+ 1/2)q

N + 1

]
= δpq (102a)

4

2N + 1

N∑
n=1

CpCq = δpq , Cp = cos

[
π(N − n+ 1/2)(p− 1/2)

N + 1/2

]
, (102b)

4

2N + 1

N∑
n=1

CpCq = δpq , Cp = sin

[
π(N − n+ 1/2)p

N + 1/2

]
, (102c)

for p, q = 1 . . . N and where the left hand side of Eq. (102a) equals 2δp0 for p = 0 . . . N . A proof for the
�rst orthogonality relation is given in Sec. B whereas the other relations can be proofed in similar ways
or are assumed to be true after verifying numerically for a wide range of parameter values.

N∑
p=1

cos2
[
π(n+ 1/2)p

N + 1

]
=
N

2
, n = 0 . . . N (103a)

N∑
p=1

cos2
[
π(N − n+ 1/2)(p− 1/2)

N + 1/2

]
=

2N + 1

4
, n = 1 . . . N (103b)

N∑
p=1

sin2

[
π(N − n+ 1/2)p

N + 1/2

]
=

2N + 1

4
, n = 1 . . . N (103c)

N∑
p=1

cos2
[
π(n+ 1/2)p

N + 1

]
sin−2

[
πp

2N + 2

]
=
N

3
(2N + 1)− 2Nn+ 2n2 (104a)

N∑
p=1

cos2
[
π(N − n+ 1/2)(p− 1/2)

N + 1/2

]
sin−2

[
π(p− 1/2)

2N + 1

]
= (2N + 1)n (104b)

N∑
p=1

sin2

[
π(N − n+ 1/2)p

N + 1/2

]
sin−2

[
πp

2N + 1

]
= (2N + 1− 2n)n (104c)

N∑
p=1

sin2

[
π(n+ 1)p/2

N + 1

]
sin2

[
πnp/2

N + 1

]
sin−2

[
πp/2

N + 1

]
=
n

2
(N + 1) (104d)

The following relation holds for a = 1 . . . L− 1

2

L

L−1∑
p=1

sin− 1
[πp

2L

]
sin
[πap
L

]
cos
[πp

2L

]
= 1, (105)

where the summation is over odd values of p and yields 0 for a = L.

∞∑
p=1

1

p2
=
π2

6
(106a)

∞∑
p=1

1

(p− 1/2)2
=
π2

2
(106b)
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B Orthogonality

The set of eigenmodes is a di�erent but equivalent set of variables which diagonalizes the set of equations
of motion. What follows here is a proof of an orthogonality relation that is at the basis of the eigenmodes.

Mpq =
βp

N + 1

N∑
n=0

cos

[
π(n+ 1/2)p

N + 1

]
cos

[
π(n+ 1/2)q

N + 1

]
= δpq, (107)

where β0 = 1 and βp = 2 for p = 1 . . . N . We start by expressing the trigonometric functions in terms of
exponentials and so

Mpq =
βp

4(N + 1)

N∑
n=0

r1/2rn + r−1/2r−n + s1/2sn + s−1/2s−n, (108)

with r = exp [iπ(p+ q)/(N + 1)] and s = exp [iπ(p− q)/(N + 1)]. The solution to these geometric series
are known and so the sum can be expressed as

Mpq =
βp

4(N + 1)

{
r−(N+1) − rN+1

r−1/2 − r1/2
+
s−(N+1) − sN+1

s−1/2 − s1/2

}
. (109)

Replacing the exponentials by trigonometric functions again we get that

Mpq =
βp

4(N + 1)

 sin [π(p+ q)]

sin
[
π(p+q)
2(N+1)

] +
sin [π(p− q)]

sin
[
π(p−q)
2(N+1)

]
 . (110)

Considering the domain of p, q the denominator of the �rst term will only go to zero if both p and q are
zero, whereas the denominator of the second term will go to zero when p and q are equal. In all other
cases the denominator is �nite whereas the numerator will be zero for all integers p, q. Using L'Hôpital's
rule in those speci�c cases we see that the terms become 2(N + 1). Because of the factor βp the sum will
always be zero except when p and q are equal in which case it is one.
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C Solving equations of motion for eigenmodes

The di�erential equation in Eq. (12) can not be exactly solved because the transform of the thermal
forces Gp(t) is not exactly known for all times. We do however have the correlation functions in Eq.
(13) and so the correlation functions for the amplitudes of the eigenmodes can be calculated.

The di�erential equations are of the form

dx(t)

dt
= −αx(t) + g(t), (111)

which solved to x(t) gives

x(t) =

∫ t

−∞
dTe−α(t−T )g(T ). (112)

For the correlation function with positive t we get

〈x(t)x(0)〉 =

∫ t

−∞
dT ′

∫ 0

−∞
dTe−α(t−T−T

′) 〈g(T )g(T ′)〉 , (113)

where angular brackets represent the time average of the value. Assume 〈g(T )g(T ′)〉 = Cδ(T − T ′) so
that:

〈x(t)x(0)〉 =

∫ t

−∞
dT ′

∫ 0

−∞
dTe−α(t−T−T

′)Cδ(T − T ′) (114)

=Ce−αt
∫ 0

−∞
dTe2αT =

C

2α
e−αt.

In case α is zero the mode is di�usive and so we look at

x(t)− x(0) =

∫ t

0

dTg(T ), (115)

so that〈
[x(t)− x(0)]2

〉
=

∫ t

0

dT ′
∫ t

0

dT 〈g(T )g(T ′)〉 = Ct. (116)
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D Determination of the Rouse modes of a star polymer

Several steps are needed to derive the dynamics of the modes in Eq. (24) from the equations of motion
for a symmetric star polymer. It is useful to note that the modes are complete, which allows us to express
the positions of the beads from the mode amplitudes, given by

R0 =X0 + 2

N∑
p=1

cos

[
πp/2

N + 1

]
Xp (117a)

Ri,n =X0 + 2

N∑
p=1

cos

[
π(n+ 1/2)p

N + 1

]
Xp +

4

f

f,N∑
j,p=1

cos

[
π(N − n+ 1/2)(p− 1/2)

N + 1/2

]
Y(i,j)
p . (117b)

The correctness of these equations can be checked using the orthogonality relations from Eq. (102).
The dynamical equations of motion for the star polymer combined with the potential energy then

result in the following equation of motion for the beads:

dR0

dt
= −k

ζ

(
R0 −

1

f

f∑
i=1

Ri,1

)
+ g0 (118a)

dRi,1

dt
= −k

ζ
(2Ri,1 −R0 −Ri,2) + gi,1 (118b)

dRi,n

dt
= −k

ζ
(2Ri,n −Ri,n−1 −Ri,n+1) + gi,n. (118c)

Note that i = 1 . . . f and Eq. (118c) is valid for all n = 2 . . . N where Eq. (117b) is needed to show that
Ri,N+1 = Ri,N . For convenience we de�ne

Rn =
1

f

f∑
i=1

Ri,n = X0 + 2

N∑
p=1

cos

[
π(n+ 1/2)p

N + 1

]
Xp, (119)

for n = 0 . . . N which coincides with the inverse of R0 as given in Eq. (117a). Taking the time derivative
on both sides of Eq. (22a), plugging in the equations of motion for the beads from Eq. (118), and using
the de�nition above for which R−1 = R0 and RN+1 = RN results in

dXp

dt
= − 1

N + 1

k

ζ

N∑
n=0

cos

[
π(n+ 1/2)p

N + 1

]
(2Rn −Rn−1 −Rn+1) + Gp , (120)

where Gp is the transform of the thermal forces which will be calculated later. By using Eq. (119), the
trigonometric identities, namely the angle sum and di�erence identities and the power-reduction formula,
and �nally the orthogonality relation the set of di�erential equations becomes

dXp

dt
=

{
−αXpXp + Gp, p = 1 . . . N
G0 , p = 0

, αXp
= 4

k

ζ
sin2

[
πp

2N + 2

]
. (121)

The set of di�erential equations for the Y
(i,j)
p modes can be written down in a similar manner. We de�ne

R
(i,j)
n ≡ Ri,n −Rj,n and follow similar steps as for the Xp modes so that

dY
(i,j)
p

dt
= −αYp

Yp + G(i,j)
p , p = 1 . . . N, αYp

≡ 4
k

ζ
sin2

[
π(p− 1/2)

2N + 1

]
(122)

for some transform of the thermal forces G
(i,j)
p .

With the above transformations, the set of di�erential equations for the beads have been transformed
to a set of disconnected linear di�erential equations.

To �nd the relation for the modes as in Eq. (24) we must �rst determine the transform of the thermal

forces Gp and G
(i,j)
p . The transforms are equal to that of the modes in Eq. (22) but by replacing the

position of the beads by their thermal force. Use that the thermal forces are uncorrelated in time and
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between beads as in Eq. (1) and recall that the central bead has a friction coe�cient f times as large as
that of the other beads. The only nonvanishing functions with p = 1 . . . N are

〈G0(t) ·G0(t′)〉 =
6kBT

ζf(N + 1)
δ(t− t′) (123a)

〈Gp(t) ·Gq(t
′)〉 =

3kBT

ζf(N + 1)
δpqδ(t− t′) (123b)〈

G(i,j)
p (t) ·G(k,l)

q (t′)
〉

=
3kBT

ζ(2N + 1)
δpqδ(t− t′)

δ(i,j)(k,l)

2
. (123c)

With these, the set of di�erential equations can be solved exactly resulting in the following relations
between modes:

〈[X0(t)−X0(0)]2〉 =
6kBT

ζf(N + 1)
t (124a)

〈Xp(t) ·Xq(0)〉 =
3kBT

ζf(N + 1)

1

2αXp

exp
[
−αXp

t
]
δpq (124b)

〈Y(i,j)
p (t) ·Y(k,l)

q (0)〉 =
3kBT

ζ(2N + 1)

δ(i,j)(k,l)

2

1

2αYp

exp
[
−αYpt

]
δpq, (124c)

where all other correlations between modes are strictly zero. By taking the long-polymer limit the sines
can be expanded up to second order and the results are in Eq. (24).
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