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Chapter 1

Introduction

The AdS/CFT correspondence relates a weakly interacting gravity theory in a D + 1-dimensional
anti-de Sitter (AdS) bulk spacetime to a strongly interacting conformal field theory (CFT) on the
D-dimensional boundary of the AdS bulk [1]. Via the weakly interacting gravity bulk the AdS/CFT
correspondence potentially enables us to perform computations on strongly interacting field theories
where regular perturbation theory breaks down [2, 3, 4].

A quantum critical point (QCP) governs quantum phase transitions. See Figure 1.1 for an illustra-
tion. A condensed matter system exactly at a QCP has a divergent correlation length. This renders

Figure 1.1: This graph illustrates a phase diagram. By T we denote temperature and g is some
coupling constant of the theory. The diagonal line denotes a phase transition line governed by the
quantum critical point (QCP) at the origin.

the system to be scale invariant and hence a relativistic condensed matter system exactly at a QCP
is governed by a CFT. Perturbations around the QCP can be realized [5]. For instance by putting
a black brane in the gravitational bulk. A black brane is a black hole with a planar rather than a
spherical topology. In this thesis we will require a brane since we want to have a theory with planar
topology on the boundary. The Hawking temperature associated with this black brane breaks the
conformal symmetry on the boundary. The boundary theory now possesses a temperature scale. This
setup is sketched in Figure 1.2. Moreover we can add electric charge to the black brane to acquire a
scale of chemical potential on the boundary. In addition we can break the relativistic scaling between
space and time on the boundary by generalizing the AdS background to the Lifshitz background [6, 7].
The Lifshitz background admits anisotropic scaling.

3



4 CHAPTER 1. INTRODUCTION

Figure 1.2: This picture illustrates the setup. The coordinate r is called the holographic coordinate
and is the coordinate associated to the extra dimension of the bulk with respect to the boundary. The
boundary sits at r =∞. The first picture describes an AdS space with a CFT on the boundary. The
second picture indicates that there is a black brane in the interior of the bulk spacetime.

An important point is that it is not clear until now what the nature of the QCP described by AdS/CFT
is. We do not know what kind of phase transition it governs. Therefore we do not only hope that we
can acquire more insights in strongly interacting condensed matter systems by studying this correspon-
dence, but in addition the condensed matter systems may help us to learn more about the AdS/CFT
correspondence itself.

In this thesis we are interested in two D = 3 + 1-dimensional fermionic systems. We apply the
holographic description proposed by [8, 9] to compute retarded single-particle propagators of those
systems. Single-particle propagators are crucial in condensed matter physics because of experimental
access. This description ensures that the obtained propagators obey the sum rule,

1

π

∫
dωIm [GR,αα′(k, ω)] = δαα′ , (1.1)

which is a direct consequence of the elementary anti-commutation relations for fermionic single-particle
operators. The resulting propagator is strongly interacting via AdS/CFT and can be decomposed in
a non-interacting propagator on the boundary and a self-energy term which follows from interactions
with a bulk fermion.

The first system we study is a massive Dirac spinor in presence of a strong interaction via AdS/CFT.
We compute the retarded single-particle Green’s functions of this system at finite temperature and
finite chemical potential. Moreover, the result of breaking relativistic scaling is considered. This
system might be the basis for a model of for instance atoms at unitarity which commonly have non-
relativistic dispersion relations [7, 5]. We study the spectral functions which are directly obtained
from the Green’s functions. The spectral function gives the density of states and dispersion relations
of the system.

The second system we consider is when we break a particular symmetry in a massless Dirac spinor
theory. Recall that a Dirac spinor is composed of two chiral spinors. Breaking a particular symmetry
changes the dispersion relation described by one Dirac cone into the dispersion relation described by
two chiral cones with some separation in between. This is illustrated in Figure 1.3. The chiral cones
describe a Weyl semimetal1 [9, 10] in a low-energy range.

1A semimetal is a gapless semiconductor. In addition, a Weyl semimetal is a semimetal with touching valence and
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Figure 1.3: The first graph denotes the dispersion relations of a Dirac spinor. On the horizontal axis
we find momentum and on the vertical axes we have energy. In D = 3 + 1 dimensions a Dirac spinor
is composed of two chiral spinors Ψ+ and Ψ− the following way: Ψ = (Ψ+,Ψ−) [11]. By breaking a
specific symmetry in the Dirac spinor theory we obtain a momentum-space separation between the
chiral spinors, which otherwise would be degenerate in momentum space.

The separation between the chiral cones induces a fictitious magnetic field in momentum-space
generated by monopoles at the points the origin of each chiral cone [12, 13]. The effect is topological
since the number of monopoles is quantized. See Figure 1.4 for a sketch of the fictitious magnetic field
generated by the Weyl cones. This fictitious magnetic field contributes to the electric conductivity [14].
This effect is called the anomalous Hall effect. The effect is well-understood in the non-interacting case
[15, 16]. We are interested in the changes of this magnetic field when the system is strongly interacting
via AdS/CFT. This is our main point of interest. This is studied at zero temperature, zero chemical
potential and relativistic scaling. We leave the generalization to future work. Moreover we compute
the strongly interacting retarded single-particle Green’s functions of this system at finite temperature,
finite chemical potential and relativistic scaling. We analyze the associated spectral functions.

Figure 1.4: The first graph denotes a separation between chiral spinors. The fictitious magnetic field
in momentum space is plotted in the second graph. The location of the monopoles corresponds to the
location of the origins of the chiral cones.

conduction bands based on chiral two-component fermions that in the non-interacting limit satisfy the Weyl equation
±~σ · kψ = Eψ. Here, the ± denotes the chirality of the fermion.



6 CHAPTER 1. INTRODUCTION

1.0.1 Outline

In chapter 2 we develop the bulk theory. A black brane is constructed in the interior of the bulk and
we break the relativistic scaling on the boundary. Using the holographic description proposed in [8, 9]
we obtain a theory for one chiral spinor on the boundary. Furthermore, we add another fermion to the
bulk such that there are two chiral spinors which form one Dirac spinor on the boundary. We expand
the Dirac spinor in the boundary to a strongly interacting massive Dirac spinor theory. We calculate
the corresponding retarded single-particle Green’s functions and spectral functions.

Arriving to chapter 3 we add electric charge to the black brane such that we obtain a doped2 theory
on the boundary. We reevaluate the spectral function of the massive fermion obtained in chapter 2
now in presence of finite chemical potential.

In chapter 4 we revisit the massless Dirac fermion on the boundary. We break a specific symmetry
by adding a suitable term to the action such that we obtain a model describing a strongly interacting
Weyl semimetal. We calculate the corresponding retarded single-particle Green’s functions and spectral
functions, for doped and undoped cases.

We establish that breaking a particular symmetry in a Weyl semimetal generates the anomalous
Hall effect in chapter 5. We compare the anomalous Hall effect in a non-interacting system to the case
where we take the strong interactions via AdS/CFT into account. Finally, in chapter 6 we present
conclusions, discussions and an outlook.

1.0.2 Notational conventions

The metric signature is (−,+,+, ...,+). The total amount of dimensions of the boundary theory is
denoted by D. By k we denote a spatial vector. A latin index, i for example, denotes the components of
ki where i runs through the spatial dimensions. A Greek index, µ for example, denotes the components
of kµ where µ runs through both spatial and temporal dimensions.

2Doping refers to having a finite chemical potential.



Chapter 2

Undoped Fermion Holography

In this chapter we start by engineering a gravity theory in the bulk which manifests itself as a Lifshitz
theory on the boundary. This is needed because we want to obtain the possibility of non-relativistic
scaling on the boundary. Moreover we introduce a massive fermion field in the bulk which needs
boundary terms on the boundary to satisfy the variational principle. We do not take into account the
back reaction on the metric tensor of this field. We introduce the boundary terms on a cut-off surface
near the boundary at r = r0, rather than at r =∞.

Next, we place a dynamical term on the cut-off surface. This term corresponds to a non-interacting
theory. After we make sure that the terms do not diverge in the limit r0 → ∞, we bring the cut-off
surface to the boundary by taking r0 → ∞. This approach gives us a strongly interacting massless
chiral fermion on the boundary. This chiral fermion obeys the sum rule (1.1) for a specific range of
bulk fermion mass M . It is important to stress that the mass in the bulk should not be associated
with mass on the boundary.

We add another fermion field to the bulk. Corresponding boundary terms and dynamical terms are
introduced. Two chiral fermions on the boundary are obtained. Under particular conditions the chiral
fermions form a single Dirac spinor. We study the spectral function of this fermion when we make it
massive. This we do by adding a mass term to the boundary, which breaks the chiral symmetry.

In the first section we develop the bulk theory and set up the Dirac equation in the bulk. In the
second section we acquire a massless chiral boundary action. In the third section we develop a massless
Dirac spinor on the boundary. Finally, in the fourth section we study the case when adding a mass
term to the boundary Dirac spinor.

2.1 Bulk background

2.1.1 Constructing a Lifshitz black brane

The need for a brane arises from requiring a planar topology on the boundary. It is more convenient
to have a horizon with planar topology, rather than a spherical topology. We now develop the tools
to obtain a black brane in the gravitational bulk.

General relativity teaches us [17] that any non-trivial tensor composed of products of solely the
metric and its first and second derivatives, can be expressed in terms of the metric and the Riemann
tensor. Therefore the Ricci scalar R is the unique scalar which takes into account derivatives of the

7



8 CHAPTER 2. UNDOPED FERMION HOLOGRAPHY

metric up to second order. From this notion the Einstein-Hilbert action is constructed,

SEH =

∫
dD+1x

√
−g 1

16πGD+1

[R− Λ], (2.1)

where D is the total number of dimensions of the theory on the boundary. The bulk has D+ 1 dimen-
sions. The cosmological constant is denoted by Λ and g denotes the determinant of the metric, where√
−g represents a volume element of spacetime and is included to render the expression coordinate

invariant. The Newton’s constant of this theory1 is denoted by GD+1. Furthermore we work in natural
units so ~ = c = 1. The energy-momentum tensor is defined by taking variations with respect to gµν

from the matter action SM ,

Tµν := −2
1√
−g

δSM
δgµν

, SM :=

∫
dD+1

√
−gLM , (2.2)

where LM denotes the Lagrangian of some matter field. Using

δR

δgµν
= Rµν ,

δ
√
−g

δgµν
= −1

2

√
−ggµν , (2.3)

we apply the Euler-Lagrange equation to the Einstein-Hilbert action in the presence of matter. This
yields Einstein’s equations,

Rµν −
1

2
gµν +

1

2
Λgµν = 8πGD+1Tµν . (2.4)

Vacuum solutions, i.e. SM = 0, of Einstein’s equations depend on the choice of the cosmological
constant. When Λ = 0 we get just Minkowski space, when Λ > 0 we get de Sitter space and when
Λ < 0 the solution is AdS. The metric of AdS in D + 1 dimensions is given by

ds2
AdS =

`2

r2
dr2 − r2z

`2
dt2 +

r2

`2
d~x2

D−1, (2.5)

where ` is the AdS-radius. A special feature of AdS is that spatial infinity can be reached in finite time
[17, 5]. This is a key feature when defining a notion of a boundary2. In equation (2.9) the r coordinate
is identified as the holographic radial coordinate which corresponds with the extra dimension of the
bulk with respect to the boundary theory. The boundary is at r =∞. The scalings AdS obeys are

t→ λt, ~x→ λ~x, r → λ−1r. (2.7)

The scalings in (2.7) correspond to relativistic scalings on the boundary theory. Because condensed
matter systems are often non-relativistic it is important to include the option to also have non-
relativistic scaling on the boundary. Anisotropic scalings are governed by

t→ λtz, ~x→ λ~x, r → λ−1r, (2.8)

1Newton’s constant is defined in an equation that is the solution to the Poisson equation. The solutions to Poisson’s
equation depend on the dimensions of the problem and thus Newton’s constant varies in different dimensions.

2When taking r̃ = `2/r for AdS we obtain,

ds2AdS =
`2

r̃2
(dr̃2 − dt2 + d~x2

D−1). (2.6)

This expression makes it apparent that AdS is just “slices”, with respect to the holographic radius r, of Minkowski space
with a conformal factor in front, which scales such that these “slices” have the isometries of the conformal group.
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where z, a real number, is called the dynamical exponent. The dynamical exponent governs the
scaling on the boundary. A generalization of the AdS-metric which exhibits these scalings is the
Lifshitz-metric. This metric is given by

ds2
Lif =

`2

r2
dr2 − r2z

`2z
dt2 +

r2

`2
d~x2

D−1. (2.9)

From now on the AdS-radius ` is put to unity. This is always possible through a suitable rescaling of
coordinates. Notice that for z = 1 we obtain the AdS-metric.

Let us have a look at an example. In order to obtain a black brane for the Lifshitz metric from an
action, we remember how the solution of a spherical symmetric Reissner-Nordström electric charged
black hole is obtained, in D = 3+1-dimensions and for a static universe, i.e. Λ = 0. We add a Maxwell
term to the bulk. This term is described by the usual electromagnetic anti-symmetric two-tensor F .
This term is the considered matter field.

The spherical symmetry is taken into account using Killing vector fields together with the Lie
derivative3, Lv, where v ∈ {all Killing vector fields of appropriate symmetries}. This puts constraints
on gµν in the form of Lv(gµν) = 0 for all v. Summarizing the constraints,

LM = −1

4
F 2,

Λ = 0,

Lv(gµν) = 0,

(2.10)

we obtain a system of equations we have to solve. These equations come from Einstein’s equations
and the equations of motion of the matter fields,

Rµν −
1

2
gµν = 8πGD+1(FµρF

ρ
ν −

1

4
gµνFρσF

ρσ),

DµF
µν = 0,

Lv(gµν) = 0.

(2.11)

A strategy for solving (2.11) is to take a spherically symmetric ansatz for the metric tensor, thus
solving the third constraint. The next step can be taking Ai = 0, since we are only interested in
electric fields, and putting A0 = Q/r2. Here Q denotes electric charge. This choice solves the second
equation in exchange for extra constraints on gµν due to the Christoffel symbols that appear in the
covariant derivative Dµ. These steps immensely simplify the task of finding a solution to this system.
Finally, it turns out [17] that the solution becomes,

ds2
RN =

1

V 2(r,Q)
dr2 − V 2(r,Q)dt2 + r2dΩ2

2, V 2(r,Q) =

(
1− 2GM

r
+
G4Q

2

r2

)
. (2.12)

When putting Q → 0 the Schwarzschild black hole solution is obtained. Notice that the electric
constant ε0 is put to unity. The factor V is called the emblackening factor. The black hole horizon
radius rh is defined as the largest real solution such that,

V (rh) = 0. (2.13)

3We mention this for completeness. It is not necessary to know the exact definition to appreciate this argument in
this example. A good reference is [18].
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When r →∞ we obtain Minkowski space, because V → 1. This property is called asymptotic flatness.
When instead of spherical symmetry S2, the choice for planar symmetry R2 would be made, the solu-
tion would remain to be the same except for dΩ2

2 → d~x2
2. In this case the solution is called a black brane.

To obtain a suitable action which provides the metric (2.9) on the boundary, we have to apply the
Reissner-Nordström approach, but in reversed order. The problem becomes what LM we need to
provide such that we obtain a system like (2.11) which is solved by a metric that becomes Lifshitz
on the boundary, i.e. is asymptotically-Lifshitz. It turns out [6] that the following setup solves the
problem,

LM =
1

16πGD+1

[−1

2
(∂φ)2 − 1

4
eλ1(F1)2], Λ = −(D + z − 1)(D + z − 2),

eλ1φ =2(z − 1)(z +D − 1)
1

f 2
r2(1−D), (F1)rt = frz+D−2,

(2.14)

where φ is a dilaton, a scalar field, and F is an anti-symmetric two-tensor as in electromagnetism.
Some free parameter of the theory is f . This solution requires D ≥ 2. Notice that the electric constant
ε0 is put to unity. An important remark is that the just-mentioned fields are not meant to have any
direct physical interpretation. These fields just “feed” the right geometry and values such that we find
the solution,

ds2 =
1

r2V 2(r)
dr2 − V 2(r)r2zdt2 + r2d~x2

D−1, V 2(r) = 1−
(rh
r

)D+z−1

, (2.15)

which asymptotes to (2.9) when r → ∞, as required. By rh we denote the horizon of this particular
black brane. Notice the absence of f in the solution.

2.1.2 Properties of the black brane

The bulk theory we adopt contains a Lifshitz black brane as described by (2.15). A black brane has
a temperature. Due to the asymptotic Lifshitz metric the space has a boundary, because Lifshitz is
generalization of AdS. Because of the boundedness of the bulk, the system can be in thermodynamical
equilibrium with the black brane. Hence the temperature on the boundary equals the temperature T
of the black brane, which is calculated by,

T =
1

4π

(
∂V 2

∂r

)∣∣∣∣
r=rh

rz+1
h . (2.16)

The expression for temperature is obtained by a Wick-rotation of the time-coordinate. We obtain a
periodic coordinate. By demanding the absence of a conical singularity we rescale the periodicity and
make the identification with temperature [5]. In the current setup,

T =
D + z − 1

4π
(rh)

z, (2.17)

so T = 0 corresponds with having no black brane horizon4.
It should be mentioned that the action in (2.14) has an issue for z > 1. It turns out that for

r →∞, the dilation φ and the field F1 diverge. But the metric has good asymptotic behavior and the

4A subtlety for z 6= 1 and rh = T = 0, since geodesics are not well-defined when traveling through the singularity at
r = 0. This subtlety can be solved by always considering an infinitesimal horizon.
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fermions, which are introduced later, couple to none of these diverging fields. Since the metric and the
fermions are the only quantities considered on the boundary, we assume that these divergences do not
spoil the thermodynamic behavior on the boundary. Hence we are not considering renormalization of
any of these terms.

Notice that when taking z → 1 we get that eλ1φ → 05, such that the dilaton and the gauge field
F1 decouple from the action and we end up with a regular Einstein-Hilbert action.

2.1.3 Bulk fermions

Being interested in a fermion systems on the boundary, it is instructive to highlight some properties
of the Dirac equation. Let M represent the fermion mass and Dµ a covariant derivative. The classical
Dirac equation becomes

(��D −M)Ψ = 0, (2.18)

where Ψ denotes the classical Dirac field and where ��D := γµDµ, Ψ := Ψ†γ0. The gammas represent
elements of the Clifford Algebra, {γµ, γν} := γµγν + γνγµ = 2ηµν in D dimensions. The gammas
ensure

0 = (��D ±M)(��D ∓M)Ψ = (
1

2
{γµ, γν}DµDν −M2)Ψ = (D2 −M2)Ψ, (2.19)

meaning that Ψ also solves the Klein-Gordon equation and hence is a classical relativistic field, i.e.
Lorentz invariance applies.

A virtue of the Clifford Algebra is that the representation of the elements in D = 2n, n ∈ N, also
represent the Clifford algebra in the D = 2n + 1 situation [19]. This property is convenient when
relating the γ’s on the boundary to the gamma matrices in the bulk. The gamma matrices in the bulk
we denote by Γ. We are interested in D = 4. The explicit choice of representation when D is even is,

Γr = γD+1, Γt = γ0, Γi = γi, (2.20)

such that the spinors are related by,

Ψ =
1

2
(1D + γD+1)Ψ +

1

2
(1D − γD+1)Ψ := ΨR + ΨL =

(
Ψ+

Ψ−

)
. (2.21)

The chiral spinors in the bulk are also the chiral spinors on the boundary6. The γD+1 is the analogue of
“usual” γ5 in D = 4-dimensions. We work in the chiral, or Weyl, basis. For D = 4 we have explicitly,

Γa =

(
0 σa

σa 0

)
,

σa = (14, ~σ),

σa = (−14, ~σ),

~σ = (σ1, σ2, σ3),

a = {t, i}, (2.22)

5The notation of “→” rather than “=” is used because formally eλ1φ → 0 is obtained by taking a limit.
6The explicit choice of representation used when D on the boundary is odd,

Γr =

(
1bD

2 c
0

0 −1bD
2
c

)
, Γt =

(
γ0 0
0 γ0

)
, Γi =

(
γi 0
0 γi

)
, Ψ =

(
Ψ+

Ψ−

)
,

where 1D denotes D×D unit matrix and b.c denotes the entier (floor) function. Notice that the chiral components Ψ±
in the bulk are Dirac spinors on the boundary. This is contrary to the case when D on the boundary is even, which is
the case of our interest.
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where the σ’s denote Pauli matrices. Notice that when M = 0 we obtain

σa∂aΨ+ = 0, σa∂aΨ− = 0, (2.23)

which are the Weyl equations. The spatial terms in front of the Ψ’s represent spin-orbit couplings. So
k → −k implies switching helicity and chirality. Before generalizing the metric to curved spacetime
we present an example. Observe what happens when we change our metric sign convention,

ηµν → −ηµν ,

{
⇒ (D2 −M2)Ψ = 0→ (D2 +M2)Ψ = 0,

⇒ {γµ, γν} = 2ηµν → {γµ, γν} = −2ηµν .
(2.24)

We require the Clifford algebra not to change. This is done by letting

γµ →
√
−1γµ, ⇒ {γµ, γν} = −2ηµν → −{γµ, γν} = −2ηµν , (2.25)

such that the minus signs cancel. Notice that the Dirac equation picks up a relative i sign by this
substitution. Hence

ηµν → −ηµν ,


⇒ (D2 −M2)Ψ = 0→ (D2 +M2)Ψ = 0,

⇒ (��D ∓M)Ψ = 0→ (i��D ∓M)Ψ = 0,

⇒ 0 = (i��D ∓M)(i��D ±M)Ψ = −(D2 +M2)Ψ.

(2.26)

This lesson is important for curved space. Up to this point we exclusively admitted the fermions to
live in flat space. When ηµν → gµν , where gµν stands for a general metric tensor, it alters the Clifford
algebra such that {γµ, γν} = 2gµν . Requiring that the Clifford algebra remains the same,

ηµν → gµν , ⇒ (��D ∓M)Ψ = 0→ (γaeµaDµ ∓M)Ψ = 0, (2.27)

where eµa is called a vielbein and defined as ηab = eµae
ν
bgµν

7. The vielbein can be regarded to be the

“square root” analogue of
√
−1 in the example where η → −η. The underscored indices mean that

they are coordinates in locally flat space.
This is not all that changes in curved spacetime. Since vielbeins depend on spacetime, the covariant

derivative picks up a term

Dµ → Dµ +
1

4
ΩµabΓ

ab, Γab :=
1

2
ΓaΓb, Ωµab := eνa∂µe

ν
b + eνae

σebΓ
ν
σµ, (2.28)

where the last Γ denotes a Christoffel symbol and Ω is called the spin-connection. The spin-connection
Ω is defined [20] by the requirement that Dµe

ν
a = 0, which is called the tetrad postulate. This is

equivalent to metric compatibility, i.e. Dµgσν = 0. Hence

0 = (γaeµaDµ ∓M)(γaeµaDµ ±M)Ψ = (gµνDµDν −M2)Ψ = (D2 −M2)Ψ. (2.29)

It is concluded that the Lagrangian of fermions in the bulk with a certain coupling constant gf takes
the form of

SDirac = igf

∫
dD+1x

√
−gΨ(γaeµaDµ −M)Ψ, Dµ = ∂µ +

1

4
ΩµabΓ

ab, (2.30)

where the spacetime volume element
√
−g is included to make the expression coordinate invariant.

7It should be noted that when looking at the bulk, a can also take the value r.
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2.2 From bulk to boundary: chiral spinor

2.2.1 Bulk fermions and boundary terms

We now construct the boundary action from the bulk action. The full bulk action under consideration
is represented by,

Sfull = SDirac + S∂ + S0. (2.31)

The term SDirac is defined as (2.30). The term S∂ denotes a set of boundary terms at r0 needed to
satisfy δSfull = 0 together with boundary conditions on r. With S0 a term at the cut-off surface is
meant which generates the dynamical properties of the boundary fermion. The term S0 is chosen to
satisfy δS0 = 0. All terms are fully specified during the calculation below. Applying the variational
principle [21] leads to

0 = δSDirac = term that vanishes due to E.O.M.

+ i
gf
2

∫
dDx
√
−h
√
−grr

(
ΨLδΨR + δΨRΨL −ΨRδΨL − δΨLΨR

)∣∣r=r0
r=rh

,
(2.32)

where h is the determinant of the induced metric. Firstly observe that
√
−grr → 0 as we approach the

horizon rh, such that we only need to worry about the behavior at the cut-off surface. Since the Dirac
equation is a partial differential equation of first order, we can impose either δΨ+ = 0 or δΨ− = 0 when
taking Dirichlet boundary conditions. The result is that we can make the remaining terms vanish if
we define the boundary term S∂ to be,

S∂ = ±igf
2

∫
r=r0

dDx
√
−h
√
−grr(ΨLΨR + ΨRΨL), δΨ± = 0, (2.33)

where h is the determinant of the induced metric on the boundary. Now we have,

δ (SDirac + S∂) = 0. (2.34)

Without any loss of generality the case of δΨ+ = 0 is considered. A term like S0 can be included on
the cut-off surface as long as δS0 = 0. Introduce

S0 = iZ

∫
r=r0

dDx
√
−hΨRΓaeµaDµΨR, (2.35)

where Z is an arbitrary constant. This S0 can be added since δΨR = (δΨ+, 0) = 0. Notice that a
runs through D dimensions. The added S0 term renders the field ΨR dynamical on the cut-off surface.
When D is even the Dµ → ∂µ on the boundary, because the spin-connection vanishes. This is explicitly
shown later on page 14.

We identify Ψ+ on the boundary to be the source of Ψ− in the bulk, because δΨ+ = 0. Using the
bulk Dirac equation we obtain,

Ψ− = −iξΨ+, (2.36)

where we chose some suitable constants. We work out this proportionality ξ later. This expression
is used to integrate out Ψ− from the action. To obtain the retarded Green’s function for Ψ+ on the
cut-off surface, we have to choose the second term ΨLΨR in (2.33) and ignore the other one8. We also

8Choosing either of these terms is equivalent to choosing between an advanced or a retarded propagator. Choosing
both gives neither.
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multiply the term by a factor of two for conventional reasons. Thus

δΨ+ = 0, ⇒ S∂ = igf

∫
r=r0

dDx
√
−h
√
−grr(ΨRΨL). (2.37)

In the case where δΨ− = 0 we would end up with,

δΨ− = 0, ⇒ S∂ = −igf
∫
r=r0

dDx
√
−h
√
−grr(ΨLΨR). (2.38)

Using ξ we equate out Ψ− from the action on the cut-off surface. This results in the following effective
action for Ψ+ on the boundary which is strongly interacting with a fermion in the bulk,

Seff = S0 + S∂ = −
∫
r=r0

dDk

(2π)D

√
−hΨ†+(k, ω)[−Zσaeµakµ + gf

√
grr ξ(k, ω)]Ψ+(k, ω), (2.39)

where it is important to notice that this action for D = 4 has the structure of a 2 × 2 matrix rather
than a 4 × 4 matrix. This corresponds with the fact that Ψ+ is a chiral spinor. We transformed the
action to a momentum space integral using a Fourier transformation.

2.2.2 Determining the proportionality ξ

Let us restrict to a boundary theory of D = 4 dimensions. Our goal is to compute the 2× 2 matrix ξ
such that in momentum space,

Ψ− = −iξΨ+. (2.40)

We assume k = (0, 0, k3)9 and later on we rotate back to a general momentum. The virtue of this
choice is that we only have to deal with the diagonal Pauli matrix σ3. We obtain,

ξΨ+ =

(
ξ+

ξ−

)
Ψ+. (2.41)

For the choice of D = 4 it holds that Ψ ∼ (u+, d+, u−, d−) and Ψ± := (u±, d±), which makes it possible
to derive,

ξ+ = i
u−
u+

, ξ− = i
d−
d+

. (2.42)

To find the expressions above we have to start from the Dirac equation, find the relation between the
components of the chiral spinors and construct the differential equation with respect to r which defines
ξ. Recall,

(��D −M)Ψ(x) = 0,

{
��D := ΓaeµaDµ,
Dµ := ∂µ + 1

4
(ωµ)abΓ

ab.
(2.43)

Bearing in mind that V is still dependent on r, although this information is suppressed for notational
convenience, it is straightforward to compute the non-vanishing vielbeins and other related expressions,

err = rV,
ett = 1

rzV
,

eii = 1
r
,
⇒

1
4
(ωt)abΓ

aΓb = −1
2
rV ∂r(r

zV )Γtr,
1
4
(ωi)abΓ

aΓb = 1
2
rV Γir,

⇒
Dr = ∂r,
Dt = ∂t − 1

2
rV ∂r(r

zV )ΓtΓr,
Di = ∂i + 1

2
rV ΓiΓr.

(2.44)

9Although there is no full Lorentz invariance for generic z, the spatial rotations hold true for any z. Hence we can
always rotate the spatial momentum in the 3-direction.
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This is where we can conclude that on the boundary the spin-connection vanishes. Using these explicit
expressions and a plane wave decomposition,

Ψ(x) = eix·kΨ(r) (2.45)

together with ΓtΓtΓr = −Γr and ΓiΓiΓr = Γr the Dirac equation is expressed as,

(��D −M)Ψ(x)

=(ΓrrV ∂r + Γt(−iω − 1

2
rV ∂(rzV )Γt)

1

rzV
+ Γi(iki + (d− 1)

1

2
rV ΓiΓr)

1

r
− 14M)eix·kΨ(r)

=(ΓrrV ∂r +
i

r
[Γt
−ω
rz−1V

] +
i

r
[Γiki]︸ ︷︷ ︸

=: i
r

Γ · k̃

+
1

2
Γr [r1−z∂r(r

zV ) + (d− 1)V ]︸ ︷︷ ︸
=: pz(r)

−14M)eix·kΨ(r) = 0,
(2.46)

where,

k̃µ := (−ω̃,k), ω̃ := − ω

rz−1V
. (2.47)

From (2.46) it is possible to setup a differential equation relating different components of the Dirac field
to each other, which leads to an expression for ξ±. Before this is done, pz(r), which is the contribution
of the spin-connection, is scaled out to simplify the differential equation,

Ψ(r) = e−
1
2

R
r dr̃

pz(r̃)
r̃V (r̃)φ(r) =

1√
rD−1+zV (r)

φ(r),

⇒ (��D −M)Ψ(x)

=(ΓrrV ∂r[e
− 1

2

R
r dr̃

pz(r̃)
r̃V (r̃) ])φ(r) + (

1

2
Γrpz(r))e

− 1
2

R
r dr̃

pz(r̃)
r̃V (r̃)φ(r) + e−

1
2

R
r dr̃

pz(r̃)
r̃V (r̃) (rV Γr∂r +

i

r
Γ · k̃− 14M)φ(r)

⇒ [rV Γr∂r +
i

r
Γ · k̃− 14M ]φ(r) = 0.

(2.48)
Expressing φ in chiral parts labeled with ± makes it possible to express the equation on the last line
of (2.48) into,

φ±(r) = ∓ i

k̃2
(γ · k̃)A(∓M)φ∓(r), A(∓M) := r(rV ∂r ±M). (2.49)

This is the desired differential equation which relates the components of φ to each other. In the D = 4
case10 the differential equation decouples to,

i(ω̃ + k3)u+ = A(−M)u−, i(ω̃ − k3)d+ = A(−M)d−,

i(ω̃ − k3)u− = A(M)u+, i(ω̃ + k3)d− = A(M)d+,
(2.50)

while we continue letting k = (0, 0, k3). The last step in the computation starts from equating
1
i
r2V ∂rξ+ = r2V ∂r

u−
u+

and 1
i
r2V ∂rξ− = r2V ∂r

d−
d+

, with the aid of the identities of (2.50). This gives
the desired expression for ξ±,

r2V ∂rξ±(r, ω, k3) + 2Mrξ±(r, ω̃, k3) = −ω̃ ∓ k3 + (−ω̃ ± k3)ξ2
±(r, ω̃, k3), ω̃ = − ω

rz−1V
. (2.51)

10For D odd this is slightly more subtle. We find different chiral spinors related to each other instead of different
spin-components.
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Notice that this is a first order differential equation. We need a boundary condition to find a solution.
We choose the boundary condition which corresponds with particles falling into the horizon. We
compute this boundary condition by taking the two equations involving u± from (2.50). We insert a
power law ansatz and take r → rh. This gives an expression for u±. Using (2.42) we find that the
infalling boundary conditions are,

ξ±(rh, k3, ω) = i. (2.52)

The solution of ξ to equation (2.51) together with boundary condition (2.52) possesses certain sym-
metries. When k3 → −k3, we observe a change in chirality,

ξ±(r,−k3, ω) = ξ∓(r, k3, ω). (2.53)

The switch regarding chirality can be understood by realizing that the helicity, as explained in (2.23),
changes sign. Another symmetry is (ω, k)→ (−ω,−k),

ξ±(r,−k3,−ω) = −ξ∗±(r, k3, ω), (2.54)

where the asterisk denotes complex conjugation. This complex conjugate makes sure that the boundary
condition (2.52) is met.

Finally we can also change the sign of the bulk mass M ,

ξ±(r,−M,k3, ω) = −ξ−1
± (r,M,−k3, ω), (2.55)

where ξ−1 denotes the inverse of ξ.
Because of the interest in the behavior of ξ(r0) when r0 → ∞, it is instructive to examine the

asymptotic behavior in terms of r0. Making a power law ansatz gives us [9]

φ± = r±M(1 + ...)A± + r∓M−1(1 + ...)B±, (2.56)

for the case that k 6= 0, where φ is an asymptotic solution to (2.49) when r → ∞. The dots denote
terms of sub-leading orders of r. A± and B± are linearly related spinors. Recalling that Ψ− = −iξΨ+,
we thus see that

ξ = i
Ψ−
Ψ+

∼ i
r−M(1 + ...)

r+M(1 + ...)
∼ r−2M , (2.57)

for large r. This final conclusion holds for the k = 0 case as well. Later on, when we explore which
values for M are allowed, we see that there are some differences in the case when k = 0.

Finally it is worth mentioning that only for z = 1 and temperature T = 0, we are able to obtain
an analytic expression when solving (2.51) with (2.52), for generic k3 and ω and allowed M11. The
solution, for large values of r, takes the form

ξ±(r,M, k3, ω) = r−2M2−2M Γ(1
2
−M)

Γ(1
2

+M)
e−iπ(M+ 1

2
)
√
ω2 − |k3|2

2M−1
(−12ω + σ3k3). (2.58)

Rotating to a general k is done by k3σ
3 → kiσ

i, obtaining

ξ±(r,M,k, ω) = r−2M2−2M Γ(1
2
−M)

Γ(1
2

+M)
e−iπ(M+ 1

2
)
√
ω2 − |k|2

2M−1
(−12ω + σiki). (2.59)

The equations (2.52), (2.53), (2.54), (2.55) and (2.56) also hold for k → k where k is a general vector
due to rotational symmetry.

11Later in this chapter it turns out that in general − 1
2 < M < 1

2 because of causality. There are other analytic
solutions for ξ, for instance at M = 0 with z = 2 and general z for either ω or k equal to zero. These solutions are too
restricted for general analysis in this thesis.
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2.2.3 Renormalization and self-energy

Recall the obtained effective action on the cut-off surface with D = 4,

Seff = −
∫
r=r0

d4k

(2π)4

√
−hΨ†+[−Zσaeµakµ + gf

√
grrξ]Ψ+. (2.60)

We explicitly calculate
√
−h|r=r0 = V (r0)rz+3

0 . We perform rescaling Ψ+ → Z−1/2r3/2Ψ+ to obtain a
canonically normalized action,

Seff = −
∫

d4k

(2π)4
Ψ†+[V (r0)(ω − rz−1

0 ~σ · k) +
gf
Z
r1+z

0 V 2(r0)ξ]Ψ+, (2.61)

where V (r0) is the emblackening factor of the black brane. The next step is to make sure that the
effective action behaves properly on the boundary, i.e. when r0 →∞. We already have that V (r0)→ 1,
which is easily obtained from its definition, (2.15). Let us take care of the term containing ξ by defining,

Σ(k, ω) := −g lim
r0→∞

r2M
0 ξ(r0,k, ω), g :=

gf
Z
r1+z−2M

0 , (2.62)

which is well-defined on the boundary as long as gf/Z is defined to scale such that in a double scaling
limit g remains finite as r0 →∞,

r0 →∞, gf → 0, g = constant. (2.63)

Notice that we choose g > 0. This approach takes care of the ξ term on the boundary. As for the
other term in (2.61), we observe divergent behavior for z > 1. In this case we have to renormalize
this term. This renormalization has not been done explicitly. There are good reasons, dimensional
analysis for instance [8], to expect to obtain,

ω − rz−1
0 σiki → ω − 1

λ
σiki|k|z−1, (2.64)

after a successful renormalization. We choose λ = 1. In general λ is believed to govern quantum phase
transitions [9]. We do not go into that matter in this thesis.

When applying the regulations mentioned above we obtain a boundary effective action when taking
r0 →∞,

Seff = −
∫
d4kΨ†+(ω − σiki|k|z−1 − Σ(k, ω))Ψ+ (2.65)

The corresponding retarded propagator GR for a chiral spinor strongly interacting via AdS/CFT is,

GR(k, ω) = −
[
ω − σiki|k|z−1 − Σ(k, ω)

]−1
. (2.66)

Now that the dust has settled we acquired a propagator with a dynamic term which can be toggled
non-relativistic and a self-energy Σ which interacts with a chiral fermion in the bulk. In Figure 2.1
the holographic setup is illustrated.
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Figure 2.1: At rh there is a black brane horizon and we have the cut-off surface at r0. Equation (2.66)
describes chiral fermion single-particle propagators on the boundary, r0 →∞. The self-energy Σ arises
from the fact that these chiral fermions interact with a fermion of opposite chirality that travels into
the bulk, has classical interactions there, and comes back to the boundary. This Figure is taken from
[9].

2.2.4 Sum rule

Now we study how to interpret GR. We define the spectral function,

ρ(k, ω) :=
1

2π
Im{Tr[GR(k, ω)]}. (2.67)

The 1
2π

is chosen such that ∫ ∞
−∞

dωρ(k, ω) = 1. (2.68)

This property is called the sum rule and is a direct result from elementary anti-commutation relations,
i.e.

[Ψα(~x, t),Ψ†α′(~x
′, t)]+ = δ(~x− ~x′)δα,α′ , (2.69)

where the α denotes the spin space and Ψ denotes fermionic single particle operators. It is important
to stress that this sum rule only applies to retarded single-particle Green’s functions. The beauty of
the spectral function is that it is observable by Angle-Resolved Photoemission Spectroscopy (ARPES).
The idea behind ARPES-experiments is that these experiments can probe spectral functions by firing
photons with specific energy at a solid from different angles. Through the photoelectric effect the
photons excite and sometimes kick out electrons. Of these electrons the energy and angle under which
they leave the solid are measured. Using this information a profile of the dispersion relations can be
obtained, which is also described by the spectral function.
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The sum rule puts restrictions on the bulk mass M . When a propagator is analytic in the upper-half
of the complex plane, it immediately implies,∫ ∞

−∞
dωTr[GR(k, ω)] = 2πi, (2.70)

by Cauchy’s formula. It is the possible to close a contour in the upper half of the complex plane. For
z = 1, it is shown that GR is analytic in the upper-half of the complex plane if [8]

− 1

2
< M <

1

2
. (2.71)

Hence the sum-rules also hold in this regime for M . For z > 1 we do not posses a generic analytic
solution, as mentioned before, hence we have to check the sum rules numerically12.

2.2.5 Spectral function

The spectral function we obtain from (2.66) is,

ρ(k, ω) = − 1

2π
ImTr[

1

ω − σiki|k|z−1 − Σ(k, ω)
]. (2.72)

Using (2.59) for z = 1 and T = 0 we obtain,

Σ = Σµσ
µ, Σµ = 2−2M Γ(1

2
−M)

Γ(1
2

+M)
e−iπ(M+ 1

2
)kµ. (2.73)

The function Σµ can be computed numerically for any value of z and T . We start by finding closed
expressions for Σ0 and Σ3. Observe,

ξ±(k3, ω) =

(
ξ+(k3, ω)

ξ−(k3, ω)

)
=

(
ξ+(k3, ω)

ξ+(−k3, ω)

)

=



1

2
(ξ+(k3, ω) + ξ+(−k3, ω))

+
1

2
(ξ+(k3, ω)− ξ+(−k3, ω))

1

2
(ξ+(k3, ω) + ξ+(−k3, ω))

− 1

2
(ξ+(k3, ω)− ξ+(−k3, ω))


=

1

2
(ξ+(k3, ω) + ξ+(−k3, ω))12 +

1

2
(ξ+(k3, ω)− ξ+(−k3, ω))σ3

∼Σ012 + Σ3σ3.

(2.74)

Because we remain to have rotation symmetry we can therefore numerically obtain

Σ = Σµσ
µ, (2.75)

12This is where the exception of the restricted case k = 0 should be noted. In this case − z2 < M < z
2 . This result

originates from the fact that the relation between the spinors A and B in (2.56) and the sub leading terms in the
expansion, turn out to be different than when k 6= 0.
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for general k, z and T . Take into account the following identity,

(aµσ
µ)(aνσ

ν) = aµaµ, (2.76)

where a is some function. We conclude,

ρ(k, ω) = − 1

π
Im[

ω + Σ0

(ω + Σ0)2 − (ki|k|z−1 + Σi)2
] (2.77)

We have now reproduced the results of [8, 9].

2.3 Two chiral spinors make a Dirac spinor

We are interested in systems governed by a Dirac spinor rather than a chiral spinor. In this section a
chiral spinor with opposite chirality is added to the boundary in addition to the one already developed.
This is done by introducing another bulk field. For the second fermion we integrate out the opposite
chiral spinor, Ψ+ instead of Ψ−. We now obtain two chiral spinors on the boundary. It possible to
construct a Dirac fermion when the second bulk mass M2 is tuned right. This enables us to create
dispersion relations as in Figure 2.2.

Figure 2.2: This Figure shows the dispersion relations of chiral spinors and Dirac spinors. It moreover
sketches how we construct a Dirac spinor by combining two chiral spinors. An outlook to extensions
of the model is also presented. In the chapters 2 and 3 we focus on the mass gap case. In chapter 4
and 5 we consider the topological separation case.
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2.3.1 Adding another chiral spinor

We introduce an additional fermionic field to the bulk theory. We denote this field by Ψ2. The bulk
fermion Ψ2 has bulk mass M2. The goal is to integrate out Ψ2,+, while keeping Ψ2,− on the boundary.
We denote the original chiral spinor by Ψ1,+. We apply the same steps as done for Ψ1,+ but now the
goal is to obtain δΨ2,− = 0. We get,

S2,∂ = −igf
∫
r=r0

d4x
√
−h
√
grrΨ2,LΨ2,R, S2,0 = −iZ

∫
r=r0

d4x
√
−hΨ2,Lγ

aeµaDµΨ2,L. (2.78)

The next step is inverting

Ψ2,− = −iξ2Ψ2,+, ⇒ Ψ2,+ = iξ−1
2 Ψ2,−. (2.79)

When adding the boundary term of the Ψ1,+ case and the Ψ2,− we obtain

S1,∂ + S2,∂ =− igf
∫
r=r0

d4x[Ψ1,+(−iξ1)Ψ+ + Ψ†2,−(iξ−1
2 )Ψ2,−]

=− gf
∫
r=r0

d4x

(
Ψ1,+

Ψ2,−

)†(
ξ1

−ξ−1
2

)(
Ψ1,+

Ψ2,−

)
= + gf

∫
r=r0

d4x

(
Ψ1,+

Ψ2,−

)†
γ0

(
ξ−1

2

ξ1

)(
Ψ1,+

Ψ2,−

)
=gf

∫
r=r0

d4xΨξΨ,

(2.80)

where

Ψ :=

(
Ψ1,+

Ψ2,−

)
, ξ :=

(
ξ−1

2

ξ1

)
. (2.81)

Here ξ is represented by a 4× 4 matrix and Ψ is a Dirac spinor on the boundary. For the special value
of M2 = −M1 the symmetry of (2.55) implies ξ−1

2 (k3, ω) = −ξ1(−k3, ω), which has the consequence,

ξ =

(
−ξ1(−k3, ω)

ξ1(k3, ω)

)

=


−ξ+(−k3, ω)

−ξ−(−k3, ω)
ξ+(k3, ω)

ξ−(−k3, ω)

 ,

(2.82)

using the chiral symmetry from (2.55) in the next step we continue,

=


−ξ+(−k3, ω)

−ξ+(k3, ω)
ξ+(k3, ω)

ξ+(−k3, ω)



=


−ξS(k3, ω) + ξA(k3, ω)

−ξS(k3, ω)− ξA(k3, ω)
ξS(k3, ω) + ξA(k3, ω)

ξS(k3, ω)− ξA(k3, ω)


=ξS(k3, ω)γ0 + ξA(k3, ω)γ3,

(2.83)
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where ξS(k3, ω) := 1
2
(ξ+(k3, ω) − ξ+(−k3, ω)) and ξA(k3, ω) := 1

2
(ξ+(k3, ω) + ξ+(−k3, ω)). Here the

subscript A denotes anti-symmetry in ω and S denotes symmetry in ω. This can easily be understood
using (2.54). In analogy with the rotation in spatial momentum in (2.59) and (2.74), we rotate the
now explicitly in k3 expressed ξ to a general expression,

ξ(k, ω) = ξµ(k, ω)γµ, (2.84)

where ξµ is some function that can be calculated numerically. This is possible due to the conserved
rotational symmetry of the momentum.

The total effective action obtained in the case of two spinors is,

Seff =S1,∂ + S2,∂ + S1,0 + S2,0

=

∫
r=r0

d4k

(2π)4

√
−hΨ(k, ω)[Zγaeµakµ − gf

√
grrξ(k, ω)]Ψ(k, ω),

(2.85)

where the integral is transformed to momentum space. As a check of consistency it is obtained that
when Ψ2,− → 0, the action in (2.60) is recovered.

In the next few lines we first normalize (2.85) and then renormalize the action. This happens in

analogy to the single chiral case. For a canonical normalization, we perform Ψ→ Z−1/2r
−3/2
0 to (2.85),

Seff =

∫
d4k

(2π)4
Ψ(k, ω)[V (r0)(γ0ω − rz−1

0 γiki) +
gf
Z
r1+z

0 V 2(r0)ξ(k, ω)]Ψ(k, ω). (2.86)

Now we start regularizing the terms, one by one. We start with the term containing ξ. Because of the
choice that M2 = −M1, it concluded that ξ(r0) ∼ r−2M

0 as r0 →∞. Defining

Σ(k, ω) := −g lim
r0→∞

r2M
0 ξ(r0,k, ω), (2.87)

and demanding the same double scaling scheme as in (2.62), where g > 0, we make sure that the term
consisting of ξ is well-defined on the boundary. The dynamical term, which needs renormalization for
z > 1, is renormalized in the same fashion as done for (2.64),

γ0ω − rz−1
0 γiki → γ0ω − 1

λ
γiki|k|z−1. (2.88)

Thus when r0 →∞ we obtain

Seff =

∫
dk4

(2π)4
Ψ†γ0[γ0ω − 1

λ
γiki|k|z−1 − Σ(k, ω)]Ψ, (2.89)

where we continue to take λ = 1. When letting ξ2,− → 0, we obtain the regular action for Ψ+, (2.65).
We will use the following identity,

γ0(aγ0 − biγi)(aγ0 − biγi)γ0 = −(a2 − b2
i ), (2.90)

where the coefficients denote arbitrary functions. The function Σµ is still numerical obtainable using
(2.74), (2.83) and (2.84). We establish,

Σ = Σµγ
µ, (2.91)
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where for zero temperature T = 0 and z = 1 we still have in analogy to (2.73),

Σµ = 2−2M Γ(1
2
−M)

Γ(1
2

+M)
e−iπ(M+ 1

2
)kµ. (2.92)

It is concluded that for (2.89) using (2.90),

GR = − (ω + Σ0)14 − (ki + Σi)γ
iγ0

(ω + Σ0)2 − (ki|k|z−1 + Σi)2
. (2.93)

Using equation (2.67), but now times an extra factor 1
2

because our matrix is now 4 × 4 instead of
2× 2, the corresponding spectral function is,

ρ(k, ω) = − 1

π
Im

[
ω + Σ0

(ω + Σ0)2 − (ki|k|z−1 + Σi)2

]
(2.94)

Some plots of spectral functions (2.94) are presented in Figure 2.3. Because we have rotational sym-
metry for the momentum we choose the total momentum to be in one direction when making the
plots.

2.4 Massive Dirac spinor

When adding a mass term on the boundary which couples the different chiralities we obtain a mass
gap. We are interested in inducing a mass gap in a system because this is a start towards describing
atoms at unitarity, for instance.

2.4.1 Gaining mass

Before any renormalization has been done we add the following term to the cut-off surface,

Sm = Z

∫
r=r0

d4x
√
−hΨ[−im̃]Ψ. (2.95)

It is clear that,

δSm ∼δ(Ψ†2,−Ψ+ −Ψ†+Ψ2,−)

=Ψ†2,−δΨ+ + δ(Ψ†2,−)Ψ+ −Ψ†+δΨ2,− − δ(Ψ†+)Ψ2,−

=0,

(2.96)

which means that this term does not obstruct the bulk, hence it can be freely added. The canonical
normalization, Ψ→ Z−1/2r

3/2
0 , implies that

Sm = Z

∫
d4k

(2π)4
Ψ[−V (r0)rz0im̃]Ψ. (2.97)

Now define

m := m̃rz, (2.98)
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such that in some double scaling limit of r0 →∞, m becomes a positive constant. This term behaves
well on the boundary, thus taking r0 →∞ delivers,

Sm =

∫
d4k

(2π)4
Ψ†γ0[−im14]Ψ,

⇒ Seff =

∫
d4k

(2π)4
Ψ†γ0[γ0ω − 1

λ
γiki|k|z−1 − Σ(k, ω)− im14]Ψ.

(2.99)

Take into account,

γ0((aγ0 − biγi)− c14)((aγ0 − biγi) + c14)γ0 = (a2 − b2 + c2), (2.100)

where a, bi and c are complex functions. The retarded propagator corresponding to (2.99) obtained
using (2.100) is,

GR = −(ω + Σ0)14 + (ki|k|z−1 + Σi)γ
iγ0 + imγ0

(ω + Σ0)2 − (ki|k|z−1 + Σi)2 −m2
. (2.101)

Using equation (2.67), times an extra factor 1
2

since our matrix is now 4 × 4 instead of 2 × 2, the
corresponding spectral function is,

ρ(k, ω) = − 1

π
Im

[
ω + Σ0

(ω + Σ0)2 − (ki|k|z−1 + Σi)2 −m2

]
(2.102)

With a vanishing mass m, (2.94) is restored. See Figure 2.4 for plots of z = 1. For plots with z = 2 see
Figure 2.5. Comparing the different dynamical exponents we clearly observe the differences in scaling
of the spectral functions arise.
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(a) M = −0.40, z = 1 (b) M = +0.40, z = 1

(c) M = −0.40, z = 2 (d) M = +0.40, z = 2

Figure 2.3: The plots correspond to the spectral function (2.94). When only taking into account the
k3 and ω axes we obtain the dispersion relations. The width of peaks at fixed momentum carries
information about the possible existence of quasi-particles. The broader these peaks are, the less
well-defined the quasi-particles are because their lifetime becomes shorter. The height of the graph
is related to the distribution of the fermions. The spikes in (c) are due to the numerics. The spikes
should be a smooth surface. All plots are obtained for T = 1. The larger T , the broader the peaks
at fixed momentum become [9]. Moreover we put g = 1 from now on. The effect of increasing or
decreasing g does not change any qualitative properties.
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(a) M = −0.40, z = 1 (b) M = −0.20, z = 1

(c) M = +0.20, z = 1 (d) M = +0.40, z = 1

Figure 2.4: The spectral functions for (2.102) are plotted for m = 2 and T = 1. Notice that there
remain some non-vanishing contributions near origin. We chose different ranges for the z-axes because
we are interested in the qualitative behavior. For non-zero m the correct dynamical exponent z is
recovered at high energies. We observe that for low energy the spectral function does not correspond
to the implied scaling by the dynamical exponent z. Moreover it is observed that for negative M the
distribution seems to be pushed away from the origin in contrast to the case for positive M , where
the distribution seems to be pulled towards the origin. These effects are all manifestations of the
self-energy. The spikes in (a) are due to numerics. It should represent a smooth arc with a bump in
the middle.
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(a) M = −0.40, z = 2 (b) M = −0.20, z = 2

(c) M = +0.20, z = 2 (d) M = +0.40, z = 2

Figure 2.5: The spectral functions for (2.102) are plotted. We take m = 2 and T = 1. We observe the
same behavior as discussed in Figure(2.4).
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Chapter 3

Doping Fermion Holography

Now that certain dispersion relations emerge on the boundary, the next step is identifying a way to
add a chemical potential µ.

When the entropy and volume of a system are fixed in thermodynamics, we define

µ :=
dU

dN
, (3.1)

where U is the internal energy of the system and N the number of particles. Therefore we can say
that the chemical potential µ is the amount of energy needed when adding a particle to a system.
Hence adding a finite chemical potential breaks particle-hole symmetry. When considering fermions,
the higher the value of µ the bigger the Fermi-sea gets.

In general non-interacting dispersion relations are characterized by,

ω = εk − µ, (3.2)

where εk is the energy of some quasi-particle, for instance. The boundary systems considered until
now are identified with system at µ = 0. Hence we have dispersion relations characterized by

ω = εk. (3.3)

This motivates for searching for a transformation such that

ω = εk,

ω → ω + µ,
⇒ ω = εk − µ. (3.4)

The way to obtain such a relation sounds less obvious than it turns out to be. Namely, to introduce
a chemical potential on the boundary, the black brane in the bulk should be charged electrically with
some charge QB. Once the brane is charged with charge QB we charge the fermions in the bulk with
qf . The covariant derivative obtains a minimal coupling term. The fields couple. Thus,

Dν → Dν − iqfAν , (3.5)

where Aν denotes the electric potential for ν = 0, for which the strength depends on QB. Concentrating
on the electric field, we choose Ai = 0. Transform (3.5) to momentum space we get,

k→ k

ω → ω + qfA0.
(3.6)

29
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The obtained equation in the bulk has the desired structure, since a shift in ω occurs. The last step
remaining is identifying µ on the boundary as

µ := lim
r0→∞

qfA0(r0). (3.7)

In the first section of this chapter the matter fields in the bulk are “updated” such that they are
able to hatch a charged black brane solution. Furthermore quantities relevant to the boundary theory
are identified.

In the second section the self-energy Σ is reevaluated, in the presence of the charged black brane.
The spectral functions of the massive boundary theory are obtained including doping. Corresponding
plots are presented and analyzed.

3.1 Charging a black brane

3.1.1 Adding charged matter

Recall the example of a charged Reissner-Nordström black hole, initiated on page 9. There it is estab-
lished that the metric tensor of the Schwarzschild black hole and the Reissner-Nordström black hole
are geometrically the same and only differ in the emblackening factor V . Moreover, the emblackening
factor V , which in the case of Reissner-Nordström depends on charge Q and radius r, coincides with
the emblackening factor of the Schwarzschild black hole when Q→ 0.

The same as mentioned for the black hole case can be done by altering the matter term LM in
(2.14), such that the geometry of the metric tensor as formulated in (2.15) is obtained, with a slight
alteration of the emblackening factor V . Hence,

ds2 =
1

rV 2(r,QB)
dr2 − V 2(r,QB)r2zdt2 + r2d~x2

D−1, (3.8)

where V (r,QB) explicitly depends on the total charge QB of the black brane. The emblackening
factor V (r,QB) should be constructed such that limQB→0 V (r,QB) → V (r), where V (r) denotes the
emblackening factor of the uncharged black brane. This construction secures the asymptotic behavior
of the metric tensor.

The following setup solves the problem of finding a charged Lifshitz black brane metric tensor [6]
and satisfies the equations of motion generated by the matter fields,

LM =
1

16πGD+1

[−1

2
(∂φ)2 − 1

4
eλ1(F1)2 − 1

4
eλ2(F2)2], Λ = −(D + z − 1)(D + z − 2)

`2
,

eλ1φ =`−2z2(z − 1)(z +D − 1)
1

f 2
r2(1−D), (F1)rt = frz+D−2,

(F2)rt =ρ2

[
1

2(D + z − 1)(z − 1)
`2zf 2

]λ2
λ1

r−(z+D−2), λ1 = −
√

2
D − 1

z − 1
, λ2 =

√
2
z − 1

D − 1
.

(3.9)

Here f is some free parameter and ρ2 is related to the total charge on the brane. The ρ2 should be
thought of as a charge density of the brane. Notice that we restored the Lifshitz radius `. Before
discussing this solution further, the resulting emblackening factor is presented,

V 2(r, ρ2) = 1− rmr1−D−z + ρ2
2

[
1

2(D + z − 1)(z − 1)
`2zf 2

]λ2
λ1 `2z

2(D − 1)(D + z − 3)
r−2(z+D−2), (3.10)



3.1. CHARGING A BLACK BRANE 31

where rm is an integration constant. Before analyzing and discussing this emblackening factor, we will
first simplify this function in the next subsection.

The equations in (3.9) and (3.10) solve the problem of finding a charged Lifshitz black brane.
Notice that LM in (3.9) only has one extra term with respect to (2.14). This term is eλ2φF 2

2 , where
F2 is a anti-symmetric two-tensor and φ is a dilaton scalar field. This extra term is analogous to the
Maxwell term, F 2, added in the Reissner-Nordström black hole action. The added term induces charge
on the brane. The dilaton is present to generalize the relativistic z = 1 case to arbitrary z ≥ 1.

It is immediately clear from (3.9) that this extra term does not have divergent properties on the
boundary for any z. This is important because in contrast to the other field F1, the field F2 does
couple to the fermions.

Recall from the uncharged black brane (page 11) that when z → 1 we obtain eλ1φ → 0 and thus
the extra fields decouple. The coupling with the F2 field does not vanish at z → 1 but becomes a
non-zero constant,

eλ2φ = (eλ1φ)
λ2
λ1 = (eλ1φ)−2 z−1

D−1 → constant. (3.11)

When z → 1 it is also noted that,
(F2)rt ∼ ρ2r

−(D−1), (3.12)

which exhibits the proper radial scaling behavior of an electric field inD+1 dimensions1. By integration
of (F2)rt = ∂rA2,t we find

A2,t = −ρ2

[
1

2(d+ z − 1)(z − 1)
`2zf 2

]λ2
λ1 1

d+ z − 3
(r3−d−z − r3−d−z

h ), (3.13)

where the integration constant is fixed such that A2,t vanishes at rh, the horizon of the black brane.

3.1.2 A matter of units

The present goal is to identify the quantities which lead to non-zero chemical potential on the boundary
and to simplify emblackening factor V . To identify quantities natural constants have to be reinserted
to identify the correct quantities. The first issue raised is that the Maxwell term F 2

2 in LM in (3.9) has
the gravitational Newton’s constant GD+1, rather than µ0, the permittivity of the vacuum. This choice
of constants is possible due to the fact that both classical electric and gravity forces are described by
solving Poisson’s equation. Both GD+1 and µ0 are defined via these equations. We choose D = 4 and
let m̂ be a mass such that

G5
m̂2

r3
= Fz = FE =

1

16πε0

e2

r3
= c2 µ0

16π

e2

r3
, ⇒ 1

G5

= 16π
m̂2

e2c2

1

µ0

, (3.14)

where e is the elementary charge. We now know how G5 is related to µ0. Restoring c in the following
term of the action reveals

= dimension of ~︷ ︸︸ ︷∫
d4+1x

c3

16πG5

F 2

4
=

= dimension of ~︷ ︸︸ ︷∫
d4+1x

1

16π

1

G5

e2c2

m̂2c︸ ︷︷ ︸
= 1

µ0c

1

4
(
m̂c

e
F )2︸ ︷︷ ︸

= 1
4

(FSI)2

, ⇒ Frt =
e

cm̂
F SI
rt , At =

e

cm̂
ASIt , (3.15)

1As a check, remember that in D+1=4, the regular case, F ∼ E ∼ r−2 is the normal radial dependence of electro-
magnetism.
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where with the superscripted SI quantities of regular (SI-)units are denoted. Hence we have a con-
version factor for the electric field. We calculate the total charge on the brane Q2 by calculating the
conserved current of F2,2

Q2 = VD−1
1

16πG5

ρ2`
z−1 =

= [QSI ]︷ ︸︸ ︷
1

16πG5

( e
m̂

)2

︸ ︷︷ ︸
= ε0

c2 m̂

e
ρ2r
−(D−z)e−λ2φ︸ ︷︷ ︸

= [ESI ]

rD−zeλ2φ`z−1VD−1︸ ︷︷ ︸
= [LD−1] = [SD]

×m̂
e

1

c2
, (3.16)

where Vn is a dimensionless volume factor. By identification of Gauss’ law in the last line above, we
may conclude that

Qc2 e

m̂
= QSI . (3.17)

Now define QSI
f := q̂fe, where e denotes the elementary charge of an electron such that q̂f is dimen-

sionless. Fermions with charge on the boundary coupled to the electric field of the black brane through
minimal coupling implies,

~Dt = ~∂t − icQSI
f A

SI
2,t, (3.18)

therefore,

µ := c(q̂fe)A
SI(∞) = c2m̂q̂fρ2

1

D + z − 3
r3−D−z
h

[
1

2(D + z − 1)(z − 1)
`2zf 2

]λ2
λ1

. (3.19)

In contrary to the other quantities we defined,

µ = µSI , (3.20)

which denotes that µ is expressed in SI units. In addition we can also express ρ2 in terms of the total
charge on the brane. Using (3.16), (3.17) and Q̂Be = QSI

2 , such that Q̂B is dimensionless we find,

ρ2 =
16π

VD−1

G5`
1−zQ2 =

16π

VD−1

G5`
1−z m̂

c2
Q̂B. (3.21)

Define the following dimensionless rescaling factors,

qf = q̂f

dimensionless︷ ︸︸ ︷( f`z+D−1√
2(D + z − 1)(z − 1)

)λ2
λ1 16π

VD−1

√
1

2(D − 1)(D + z − 3)

m̂G5`
2−D

c2


dimensionless︷ ︸︸ ︷[
c4

G5

`D−2 1
~c
`

](
VD−1

16π
2(D − 1)

)
,

QB = Q̂B

( f`z+D−1√
2(D + z − 1)(z − 1)

)λ2
λ1 16π

VD−1

√
1

2(D − 1)(D + z − 3)

m̂G5`
2−D

c2


︸ ︷︷ ︸

dimensionless

.

(3.22)

2In the case of Reissner-Nordström the total charge Q′ that is calculated via (3.16) naturally coincides with the Q
in the Maxwell field F, Q′ = Q. We formulated the charge on the brane in terms of some charge density, hence we still
have to do this step to calculate the total charge.
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It is important to highlight that both rescaling factors depend on f the same way and moreover it
turns out that this rescaling completely removes f from all expressions on the boundary. Introduce
another rescaling,

r → r`, rh → rh`, (3.23)

such that r and rh are dimensionless. This is convenient when checking whether quantities have the
right dimensions. Using the rescaling factors it is obtained that

µ =
~c
`
QBqfr

3−D−z
h , (3.24)

and

V 2 = 1−
(rm
r

)D+z−1

+Q2
B

(
1

r

)2(D+z−2)

, (3.25)

where rm is a dimensionless integration constant. This emblackening factor, in contrast to the un-
charged emblackening factor, has more than one solutions for the rh and moreover it is not solvable
analytically for D = 4 and non-trivial values of rm.

The temperature is obtained using the formula for temperature (2.17), but this time with restored
units,

T =
~c
kB

1

4π`
rz+1
h ∂rV

2

∣∣∣∣
r=rh

, (3.26)

where kB is Boltzmann’s constant. Hence

T =
~c
kB

1

4π`
rzh

[
(D + z − 1)− (D + z − 3)Q2

Br
−2(D+z−2)
h

]
, (3.27)

where rm was eliminated using V (rh) = 0,

rD+z−1
m = rD+z−1

h

[
1 +Q2

Br
−2(D+z−2)
h

]
. (3.28)

A sign of warning has to be given for the case that T vanishes. When this happens, it can occur that
V ′(r)|r=rh = 0, although rh is not zero. If that happens the black brane is extremal, i.e. has a double
zero at the horizon. This has the result that when T = 0, the entropy S which is proportional to the
area of the black brane [5] is non-zero. This might be a point of caution when matching this model to
a real physical system.

Putting together (3.17), (3.18) and (3.19) we find,

A2,t(r) = A2,t(∞)

[
1−

(
r

rh

)3−D−z
]
⇒ ~Dt = ~∂t − iµ

[
1−

(
r

rh

)3−D−z
]

(3.29)

Looking at (3.25) and (3.24) we see that qf and QB are the only remaining extra parameters when
going from a neutral black brane to a charged black brane. Notice that QB → −QB if and only if
qf → −qf . This is a symmetry of the system.

3.2 The doped boundary action

3.2.1 Self-energy revisited

The self-energy, which depends on ξ, changes due to the addition of a non-zero chemical potential.
Looking back at how (2.51) is derived we see that only two changes matter. Firstly the fact that the
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emblackening factor V now is more complex. This does not effect the derivation but only the solution
to the differential equation changes. The second change is the fact that the covariant derivative picks
up an extra term,

��D = γaeµaDµ = Γaeµa(∂µ − iqfA2,µ +
1

4
ΩµabΓ

ab). (3.30)

This last term only shifts the value of ω which again only changes the final differential equation. This
induces a redefinition of ω̃. Hence, using (3.28),

r2V ∂rξ± + 2Mrξ± = −ω̃ ∓ k3 + (−ω̃ ± k3)ξ2
±, ω̃ = −~ω + µ(1− (r/rh)

3−D−z)

rz−1V

`

~c
. (3.31)

This equation summarizes that the only changes are a redefinition of ω̃ and an altered emblackening
factor V . It should come as no surprise, taking into account what we learned from the undoped
equivalent of this equation, that this equation is not analytically solvable for general k, M and ω,
when µ 6= 0.

It is also important to notice that adding chemical potential does not change the leading order of
the asymptotic power law solution, (2.56). This means that

Σ = lim
r0→∞

−gr2M
0 ξ(r0,k, ω), (3.32)

remains well-defined for the same composition choices for g as defined in (2.62). Moreover, this does
not change the derivation of the boundary condition.

3.2.2 Doped massive spinor

Now we look at the effect of an added finite chemical potential to (2.99), the massive boundary
theory. The things that change are ω → ω + µ and the self-energy Σ. Applying this straightforward
generalization implies that the retarded propagator and thus the spectral function (2.102) for any z
become,

ρ(k, ω) = − 1

π
Im

[
ω + µ+ Σ0

(ω + µ+ Σ0)2 − (ki|k|z−1 + Σi)2 −m2

]
(3.33)

where Σs in general are obtained numerically using (2.84). Plots of (3.33) are shown in (3.1). The
effect of µ is that the peaks get translated and there appears to be more weight on the valence band.
Recall that the height of the graphs is related to the distribution of the fermions.
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(a) M = −0.40, z = 1 (b) M = +0.40, z = 1

(c) M = −0.40, z = 2 (d) M = +0.40, z = 2

Figure 3.1: These are the spectral functions obtained using (3.33). We chose T = 1, m = 2 and
µ = 2.5. Compare these results with the results of Figure 2.4 and 2.5. Not only did the peaks get
shifted, also the heights change. There is more weight on the valence bands. The ranges of the plots
are different, because we are only interested in the qualitative changes of adding chemical potential.
The spikes are due to the numerics.
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Chapter 4

Weyl Semimetals

In this chapter we break a particular symmetry in a massless Dirac spinor theory. Recall that a Dirac
spinor is composed of two chiral spinors. Breaking a particular symmetry changes the dispersion
relation described by one Dirac cone into the dispersion relation described by two chiral cones with
some separation in between, as sketched earlier in Figure 1.3. For z = 1 and µ = 0 the chiral cones
describe a Weyl semimetal in the low energy limit. When breaking the particular symmetry this
system exhibits a topological effect that induces a fictitious magnetic field. This particular effect is
studied in chapter 5.

We start by explicitly inducing a separation between two chiral cones. We study the corresponding
undoped spectral functions at z = 1. We conclude by considering the case where µ 6= 0.

4.1 Making a separation

Similar to when adding the mass term to create a mass gap, as is sketched in Figure 1.4, now a term
that lifts the degeneracy of the dispersion relation of the chiral spinors is considered. On the boundary
we obtain explicitly1 ,

S5 =

∫
d4k

(2π)4
Ψ†γ0[−∆kµγ

µγ5]Ψ, ∆kµ := (∆ω,∆k1,∆k2,∆k3), (4.1)

where the terms with a “∆” are constants, which are chosen to be positive for the sake of simplicity.
∆ω is added for completeness, but is chosen to be vanishing. If the “γ5” is excluded, the extra term
would have the exact same structure as the dynamical part of action (2.89). The extra term would
just shift the peaks of the spectral function on the k-axes in the same direction2.

Now take γ5 = diag(12,−12) into account. The matrix γ5 makes sure that the shift in momentum
space that is done to one chiral spinor, is done to the other chiral spinor but in the reversed direction.
This has as a consequence that the peaks of the spectral function are shifted away from each other on
the k-axes creating a separation. See Figure 2.2. This separation is shown to yield non-trivial effects
in chapter 5. Now consider the effective action when we include S5,

Seff =

∫
dk4

(2π)4
Ψ†γ0[γ0ω − 1

λ
γiki|k|z−1 − Σ(k, ω)−∆kµγ

µγ5]Ψ. (4.2)

1We have taken exactly the same steps as in the case for the mass term m to obtain this term. Starting from
S5 =

∫
r=r0

d4xΨ†γ0[−∆̃kµγµγ5]Ψ, on which the exact same normalization is applied and an analogous double scaling
limit is taken which renders the term well-defined on the boundary, resulting in (4.1). Also it is clear that δS5 = 0.

2Take note that when ∆ω 6= 0 there would also be a relative shift on the ω-axes.
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The goal is to compute the corresponding GR. Because there is still chiral symmetry, the different
chiralities do not couple. Hence the G−1

R is diagonal with respect to the different chiralities. We can
find GR for each chiral spinor and then stack them in a diagonal matrix to find the total propagator.
To make this more concrete suppose,

G−1
R =γ0(aγ0 − biγi + c0γ

0γ5 − ciγiγ5)

=− a14 − biγ0γi − c0γ
5 − ciγ0γiγ5

=a

(
−12

−12

)
+ bi

(
+σi

−σi
)

+ c0

(
−12

+12

)
+ ci

(
+σi

+σi

)
,

(4.3)

which is diagonal with respect to chiral spinors. All coefficients represent functions. Equation (4.3)
can be inverted using,

((−a∓ c0)12 + (ci ± bi)σi)((−a∓ c0)12 − (ci ± bi)σi) = (−a∓ c0)2 − (±bi + ci)
2, (4.4)

where the upper signs corresponds to Ψ+ and the down signs correspond to Ψ−. Thus

GR = −

(
(a+c0)12+(bi+ci)σ

i

(a+c0)2−(bi+ci)2

(a−c0)12+(bi−ci)σi
(a−c0)2−(bi−ci)2

)
. (4.5)

The retarded operator corresponding to (4.2) is

GR = −

(
(ω+Σ0+∆ω)12+(ki+Σi+∆ki)σ

i

(ω+Σ0+∆ω)2−(ki+Σi+∆ki)2

(ω+Σ0−∆ω)12+(ki+Σi−∆ki)σ
i

(ω+Σ0−∆ω)2−(ki+Σi−∆ki)2

)
, (4.6)

where we again use Σ = Σµγ
µ. Compare both terms in GR. Pay attention to the relative minus signs,

this is the manifestation of γ5. The spectral function according to the obtained action is expressed as,

ρ(k, ω) = − 1

2π
Im

[
ω + Σ0 + ∆ω

(ω + Σ0 + ∆ω)2 − (ki + Σi + ∆ki)2
+

ω + Σ0 −∆ω

(ω + Σ0 −∆ω)2 − (ki + Σi −∆ki)2

]
(4.7)

where it is clear that when ∆kµ = 0 the expression is consistent with (2.94). Some plots are shown in
Figure 4.1. An important observation is that for M > 0 the separation also depends on M .

4.2 Doped separation

Adding chemical potential to the boundary system result in a change of (4.7). The self-energy Σ now
depends on the new solution of ξ and the ω gets shifted by µ. We are only interested in the z = 1
case. In addition taking ∆ω = 0,

ρ(k, ω) = − 1

2π
Im

[
ω + µ+ Σ0

(ω + µ+ Σ0)2 − (ki + Σi + ∆ki)2
+

ω + µ+ Σ0

(ω + µ+ Σ0)2 − (ki + Σi −∆ki)2

]
(4.8)

where Σµ is obtained numerically. Plotting (4.8) in Figure 4.2 we observe that there is more weight
on the valence band and that the peaks of the dispersion relations got shifted. We from now on only
consider zero chemical potential in this system.
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(e) M = −0.40 (f) M = −0.20

(g) M = +0.20 (h) M = +0.40

Figure 4.1: The spectral functions for (4.7) are plotted. We chose ∆k3 = 2 and T = 1. In contrary to
the massive spinor we do not get scalings which do not obey the dynamical exponent z. An important
feature is that for positive M the cones obtain a different separation depending on the value of M ,
without changing ∆k3 = 2. For negative M the separation seems to remain the same. This is an effect
of the self-energy. The spikes are due to numerics and should be smoothened out.



40 CHAPTER 4. WEYL SEMIMETALS

(a) M = −0.40, z = 1 (b) M = +0.40, z = 1

Figure 4.2: These spectral functions are obtained using (4.8). We chose T = 1, µ = 2.5 and ∆k3 = 2.
Compare these results to Figure 4.1. Not only did the peaks of the dispersion relation get shifted, also
the heights change. There is more weight on the valence bands. The ranges of the plots are different,
because we are only interested in the qualitative changes of adding chemical potential.



Chapter 5

Anomalous Hall Effect

In this chapter we work exclusively with the chiral boundary action with the topological separation
term. We take z = 1 and restrict ourselves to the undoped case, µ = 0. A solid with the resulting
spectral function is a Weyl semimetal [10, 9].

The particular dispersion created by a non-zero separation generates a non-trivial Berry curvature.
The Berry curvature behaves as a magnetic field in momentum space which gives rise to the anomalous
Hall effect. This effect can be directly expressed in terms of the anomalous Hall conductivity. We are
interested in the changes of the anomalous Hall effect when we add the holographic self-energy to the
system [15, 12].

In the first section we give an overview of the Berry curvature and the anomalous Hall effect. In
addition to that we obtain an expression for the conductivity via linear response for the non-interacting
case. Furthermore, we calculate the anomalous Hall effect via the chiral anomaly. Using the action
formalism we find out that the symmetry which is broken by this separation is the time-reversal
symmetry.

In the second section we include the self-energy in the calculation of the anomalous Hall effect and
compare results to the non-interacting anomalous Hall effect.

5.1 Anomalous Hall effect in the non-interacting case

5.1.1 Berry curvature

We sketch how to establish the Berry connection. In this section about Berry curvature we let k be a
set of parameters which depend on time, i.e. k = k(t). Let H be a Hamiltonian which fully depends
on k,

H(k)|n,k〉 = εn(k)|n,k〉, (5.1)

where εn(k) is the energy corresponding to the eigenstates |n,k〉. The quantum adiabatic theorem
states [14] that when a system initially is in an eigenstate of H, it continues to stay an eigenstate
throughout the evolution of time. This can be translated into

|Ψn(t)〉 = eiCn(t) exp

[
− i

~

∫ t

0

dt′ε(k(t′))

]
|n,k(t)〉, (5.2)

which in combination with multiplying the left hand side of the time-dependent Schrödinger equation
with 〈n,k(t)|,

〈n,k(t)|i~∂t|Ψn(t)〉 = 〈n,k(t)|H(k(t))|Ψn(t)〉, (5.3)
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implies,

Cn =

∫
γ

dk · an(k(t)), an := i〈n,k|~∇k|n,k〉, (5.4)

where γ is some path through parameter space k and Cn is a phase factor. The an is called the Berry
connection. The phase factor can gauged to zero since an is gauge dependent,

|n,k〉 → eiφ(k)|n,k〉 ⇒ an(k)→ an(k)− ~∇kφ(k), Cn → Cn + φ[k(tbegin)]− φ[k(tend)]. (5.5)

However, if γ is a closed path the situation changes. For this purpose, let k(tbegin) = k(tend). Then

φ[k(tbegin)]− φ[k(tend)] = m2π, (5.6)

where m is an integer. So we conclude from (5.2) we obtain that any gauge dependence drops out,
rendering an to be gauge independent, hence observable. In this particular case Cn (5.4) is called the
Berry phase. We define the Berry curvature to be

bn(k) := ~∇k × an, (5.7)

where it is used that the parameter space is three-dimensional, k = (k1, k2, k3). The Berry curvature
can be viewed as a magnetic field in momentum space, sourced by the Berry phase, which takes the
place of an analogous vector potential. By construction it is true that under (5.5) the Berry curvature
remains gauge invariant.

5.1.2 Anomalous Hall effect

In 1889 Edwin H. Hall discovered [15] that when a current carrying conductor is placed in a magnetic
field, the Lorentz force makes the electrons go to one side of the conductor. This effect is now called
the Hall effect. Later Hall found out that the effect was much stronger in ferromagnetic iron. This
effect is called the Anomalous Hall effect. The Anomalous Hall effect contributes to the off-diagonal
terms of the conductivity tensor σij. The tensor σij is defined as the proportionality constant between
the current in a certain direction and an applied electric field,

Ji := σijE
j. (5.8)

We considering the contributions of the anomalous Hall effect to σ12 with ∆k1 = ∆k2 = 0, where 1
and 2 are chosen without any loss of generality. We develop the following formula using the theory of
linear response in the DC limit1 [23],

σij = −εij` e
2

~

∫
d3k

(2π)3

∑
n

nf (εn(k))(bn)`. (5.9)

Notice that σij = 0 if bn = 0.

1DC stands for Direct Current. Because we are interested in the dissipative part we take the real part of the tensor
σij . In addition we are interested in first taking k→ 0 and then ω → 0 which corresponds with taking the DC limit.
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5.1.3 Theory of linear response

Let us consider a Hamiltonian H0 which has eigenstates and energies,

H0(k)|n,k〉 = εn(k)|n,k〉. (5.10)

In linear response theory we study how a system changes when a weak external field is applied. Put
differently, let us introduce some quantum observable A. We want to find out the change of 〈A〉, the
expectation value of A, to linear order in some small perturbation of the Hamiltonian, denoted by H ′.

To make the statement of perturbation more precise, consider a system in thermodynamic equilib-
rium. The system before perturbation is described by,

〈A(k)〉0 =
1

Z0(k)
Tr[ρ0(k)A(k)] =

1

Z0(k)

∑
n

〈n,k|A(k)|n,k〉 exp[−βεn(k)], (5.11)

ρ0(k) = exp[−βH0(k)] =
∑
n

|n,k〉〈n,k| exp[−βεn(k)], Z0(k) = Tr [ρ0(k)] . (5.12)

We denote ρ0(k)/Z0(k) as the Boltzmann distribution. Here β denotes inverse temperature. Now
suppose we switch on a perturbation to the Hamiltonian H ′(k, t) at t = t0, i.e.,

H(k, t) = H0(k) +H ′(k, t)θ(t− t0), (5.13)

such that the equations in (5.11) and (5.12) become

〈A(k, t)〉 =
1

Z0(k)
Tr[ρ(k, t)A(k)] =

1

Z0(k)

∑
n

〈n,k, t|A(k)|n,k, t〉 exp[−βεn(k)], (5.14)

ρ(k, t) =
∑
n

|n,k, t〉〈n,k, t| exp[−βεn(k)]. (5.15)

The states are now time dependent and are governed by the new Hamiltonian. The time dependence
of the states is given by the Schrödinger equation, i.e.,

i~∂t|n,k, t〉 = H(k, t)|n,k, t〉, (5.16)

so recall that in the interaction picture [22],

|n,k, t〉 = e−
i
~H0tU(t, t0)e

i
~H0t|n,k, t0〉, (5.17)

where the time operator is given by U(t, t0) = 1 − i
∫ t
t0
dt′H ′(k, t′), which is up to linear order in H ′.

Expressing (5.14) as in (5.17) shows,

〈A(k, t)〉 =〈A(k)〉0 − i
∫ t

t0

dt′
1

Z0(k)

∑
n

exp[−βεn(k)]〈n,k, t0|A(k, t)H ′(k, t′)−H ′(k, t′)A(k, t)|n,k, t0〉

=〈A(k)〉0 − i
∫ t

t0

dt′〈[A(k, t), H ′(k, t′)]〉0.

(5.18)
Consider equation (5.18). It is important to notice that the non-equilibrium quantity 〈A(k, t)〉 is
expressed in terms of thermal equilibrium, 〈..〉0. Define,

δ〈A(k, t)〉 := 〈A(k, t)〉 − 〈A(k)〉0 = −i
∫ ∞
t0

dt′θ(t− t′)〈[A(k, t), H ′(k, t′)]〉0, (5.19)

which expresses the linear response to a pertubation H ′. The Heaviside step function θ enters the
expression because we change the integration boundaries. This formula is known as the Kubo formula.
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5.1.4 Kubo formula for conductivity

We consider a system of charged particles of a single species with elementary charge e, which are
subjected to a small external electric field Eext. This field induces a current which has a linear
response coefficient. Put in a formula,

Jie(r, t) =

∫
dt′
∫
dr′
∑
j

σij(r, r′, t, t′)Ej
ext(r

′, t′), (5.20)

where σij is the conductivity tensor. The Je stands for the electric current. Within linear response,
we know that the conductivity tensor is a property of the equilibrium system and therefore it is
time-translation invariant, i.e. σ(t, t′) = σ(t− t′). Performing a Fourier transform we obtain,

Jie(r, ω) =

∫
dr′
∑
j

σij(r, r′, ω)Ej
ext(r

′, ω). (5.21)

The electric field Eext is given by an external electric potential φext and an external vector potential
Aext [22],

E(r, t) = −∇rφext(r, t)− ∂tAext(r, t). (5.22)

Therefore, the perturbation of the Hamiltonian due to the electric field up to linear order takes the
form [23],

H ′(t) = −e
∫
drρ(r)φext(r, t) + e

∫
drJ(r) ·Aext(r, t), (5.23)

where the first term, which depends on the electric potential, can be put to zero with a suitable gauge
choice. The ρ(r) denotes the particle density operator. Here J denotes the current density operator.
The operator J is related to Je through Je = −e〈J〉. We let A0 denote the vector potential before
Aext is applied and let A denote the total vector potential,

A = A0 + Aext. (5.24)

From the quantization of the electromagnetic field [23] we obtain the decomposition of J,

J(r) = Jpara(r) +
e

m
A(r)ρ(r), (5.25)

where e denotes the elementary charge, m denotes particle mass, ρ(r) again is the particle density
operator and Jpara is the paramagnetic contribution to the current density operator. Equivalently to
J we define J0 to be,

J0(r) = Jpara(r) +
e

m
A0(r)ρ(r), (5.26)

such that we can express,

J(r) = J0(r) +
e

m
Aext(r)ρ(r). (5.27)

When Aext → 0 then J→ J0. Regarding H ′(t) as defined in (5.23) only up to first order in Aext and
with a suitable choice of gauge we obtain,

H ′(t) = e

∫
drJ0(r) ·Aext(r, t). (5.28)
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Performing a Fourier transform (5.28) becomes,

H ′(ω) =
e

iω

∫
drJ0(r) · E(r, ω). (5.29)

Calculating the expectation value of (5.27) we find,

Je = −e〈J(r)〉 = −e〈J0(r)〉 − e〈 e
m

Aext(r)ρ(r)〉. (5.30)

The second term is not important for us because it only contributes to the diagonal part2 of the
conductivity tensor σ. For the first term, since the equilibrium state does not carry any current, we
conclude that δ〈J0〉 = 〈J0〉. Therefore using (5.19) we calculate,

〈(J0(r, ω))α〉 = δ〈(J0(r, ω))α〉 =

∫
dr′
∑
β

ΠR
αβ(r, r′, ω)

e

iω
Eβ(r′, ω),

ΠR
αβ(r, r′, t− t′) = −iθ(t− t′)〈[Jα0 (r, t),Jβ0 (r′, t′)]〉0.

(5.31)

Using (5.21) and (5.31) we can conclude,

σαβ(r, r′, ω) =
ie2

ω
ΠR
αβ(r, r′, ω). (5.32)

Let it be stressed that this formula only takes into account the off-diagonal part. We are interested in
finding the real part3 of the conductivity in the DC limit,

σαβ := Re [σαβ(0, 0)] = −e2 1

ω
lim

ω+→0+i0
lim
q→0

Im
[
ΠR
αβ(q, ω+)

]
. (5.33)

We assume that Π is isotropic, in addition to time-translation invariant. This choice is justified later.
Taking the Fourier transform of both space and time of (5.31) we arrive at

ΠR
αβ(q, ω+) =

∫ ∞
−∞

d(t− t′)
∫ ∞
−∞

d3(r− r′)ΠR
αβ(r− r′, t− t′)e−i(r−r′)qe−i(t−t

′)ω+

=− i
∫ ∞
−∞

d(t− t′)θ(t− t′)〈[Jα0 (q, t),Jβ0 (−q, t′)]〉0e−i(t−t
′)ω+

.

(5.34)

Taking the q→ 0 limit of the retarded propagator ΠR,

ΠR
αβ(ω+) = lim

q→0
ΠR
αβ(q, ω+) = −i

∫ ∞
−∞

d(t− t′)θ(t− t′)〈[Jα0 (t),Jβ0 (t′)]〉0e−i(t−t
′)ω+

(5.35)

where ω+ := ω + iε, ensuring that Π is analytic in the upper half of the complex plane. The next
step is inserting several complete basises

∫
dkj

∑
lj
|lj,kj〉〈lj,kj|. Notice that therefore in the following

2For this term we use that to linear order in Aext the expectation value can be evaluated in the equilibrium state
[23],

〈 e
m

Aext(r)ρ(r)〉 ≈ e

m
Aext(r, ω)〈ρ(r)〉0 =

e

iωm
〈ρ(r)〉0Eext(r, ω)

3Taking the real part makes sure we look at the dissipative part of the conductivity [23].
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derivation the subscript does not necessarily denote an entry. We expand Â(t) := e
i
~H0tÂ0e

− i
~H0t such

that,

ΠR
αβ(ω+) =− i

∫ ∞
0

d(t− t′){∫
d3k

(2π)3

∑
n

〈n,k|ρ0(H0(k))

Z0(k)

∫
d3k1

(2π)3

∑
n1

|n1,k1〉〈n1,k1|e
i
~H0t

∫
d3k2

(2π)3

∑
n2

|n2,k2〉

〈n2,k2|Jα0
∫

d3k3

(2π)3

∑
n3

|n3,k3〉〈n3,k3|e−
i
~H0t

∫
d3k4

(2π)3

∑
n4

|n4,k4〉〈n4,k4|e
i
~H0t′

∫
d3k5

(2π)3

∑
n5

|n5,k5〉

〈n5,k5|Jβ0
∫

d3k6

(2π)3

∑
n6

|n6,k6〉〈n6,k6|e−
i
~H0t′|n,k〉

−
(

Jα0 ↔ Jβ0
t↔ t′

)
}e−i(t−t′)ω+

=− i
∫

d3k

(2π)3

∫ ∞
0

d(t− t′){
∑
n6=m

[nf (εn(k))− nf (εm(k))]e
i
~ (εn(k)−εm(k)−~ω+)(t−t′)Jα0nm(k)Jβ0mn(k)}

=− ~
∫

d3k

(2π)3

∑
n 6=m

[nf (εn(k))− nf (εm(k))]
1

εn(k)− εm(k)− ~ω+
Jα0nm(k)Jβ0mn(k),

(5.36)
where ρ0/Z0 = nf is the Fermi-Dirac distribution. Because we are interested in describing a fermionic
system we let ρ0/Z0 denote the Fermi-Dirac distribution rather than the Boltzmann distribution. A
complete derivation is presented in [24]. Putting (5.33) and (5.36) together we find,

σαβ =− e2 lim
ω+→0+i0

{
− 1

ω+
Im

[
~
∫

d3k

(2π)3

∑
n6=m

[nf (εn(k))− nf (εm(k))]
1

εn(k)− εm(k)− ~ω+
Jα0nm(k)Jβ0mn(k)

]}

=~e2

∫
d3k

(2π)3

∑
n6=m

[nf (εn(k))− nf (εm(k))]
1

(εn(k)− εm(k))2
Im[Jα0nm(k)Jβ0mn(k)],

(5.37)
where4 the current is given by Jα0 := ∂kαH.

5.1.5 Conductivity of the anomalous Hall effect

We are interested in the DC conductivity corresponding to the following Hamiltonian,

H(k) = γ0γiki + ∆kµγ
0γµγ5, (5.38)

which corresponds to the action in (4.2), without consideration of the self-energy term. This Hamil-
tonian is invariant under differences in time and space, hence we can use the derivation from the last

4We used Im
[
ΠR(0)

]
= 0. This is obtained from the fact that a retarded propagator defined as (5.35) has an odd

imaginary part [5],
Im
[
ΠR(ω)

]
= −Im

[
ΠR(−ω)

]
.

Therefore,

lim
ω→0

Im
[

Π(ω)
ω

]
= lim
ω→0

Im
[

Π(ω)−Π(0)
ω

]
= Im [Π′(ω)]|ω=0 .
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section. Let vi := 1
~Ji0 = ∂kiH. Thus the DC conductivity is given by

σij =
e2

~

∫
d3k

(2π)3

∑
n6=m

[nf (εn(k))− nf (εm(k))] Im

[
〈n,k|vi(k)|m,k〉〈m,k|vj(k)|n,k〉

(εn(k)− εm(k))2

]
. (5.39)

Observe that,

〈n,k|∂ki(H(k))|m,k〉 =〈n,k|∂ki(H(k)|m,k〉)− 〈n,k|H(k)∂ki(|m,k〉)
=〈n,k|∂ki(εm(k)|m,k〉)− εn(k)〈n,k|∂ki(|m,k〉)
=∂ki(εm(k))〈n,k|m,k〉+ εm(k)〈n,k|∂ki(|m,k〉)− εn(k)〈n,k|∂ki(|m,k〉).

(5.40)
Hence,

〈n,k|∂ki|m,k〉 =
〈n,k|∂ki(H(k))|m,k〉

εn(k)− εm(k)
, (5.41)

where we assumed n 6= m, which is the case we are considering. In the equation above, the operator

works on the object right of the operator. It is useful to define
←−
∂ for a derivative working on the

object on the left of the operator. We apply the same approach as in (5.40) to establish,

〈n,k|
←−
∂ki |m,k〉 =

〈n,k|(H(k))
←−
∂ki|m,k〉

εm(k)− εn(k)
=
〈n,k|

−→
∂ki(H(k))|m,k〉

εm(k)− εn(k)
= −〈n,k|

−→
∂ki |m,k〉. (5.42)

We are now ready to simplify (5.39),

σij ∼
∑
n 6=m

[nf (εn(k))− nf (εm(k))]Im

{
〈n,k|vi(k)|m,k〉〈m,k|vj(k)|n,k〉

(εn(k)− εm(k))2

}
=
∑
n6=m

(nf (εn(k))− nf (εm(k)))Im
{
〈n,k|

←−
∂ki|m,k〉〈m,k|

−→
∂kj |n,k〉

}
=
−1

2i

∑
n6=m

nf (εn(k))
(
〈n,k|

←−
∂ki |m,k〉〈m,k|

−→
∂kj |n,k〉 − 〈m,k|

←−
∂ki |n,k〉〈n,k|

−→
∂kj |m,k〉

)
−
(
nf (εn(k))↔ nf (εm(k))

)
=
−1

2i

{∑
n

nf (εn(k))
(
〈n,k|

←−
∂ki
−→
∂kj −

←−
∂kj
−→
∂ki |n,k〉

)
+
∑
m

nf (εm(k))
(
〈m,k|

←−
∂ki
−→
∂kj −

←−
∂kj
−→
∂ki|m,k〉

)}
=
−1

i

∑
n

nf (εn(k))
(−→
∂ki〈n,k|

−→
∂kj |n,k〉 −

−→
∂kj〈n,k|

−→
∂ki |n,k〉

)
=−

∑
n

nf (εn(k))εijk(∇k × ~an)k, ~an := 〈n,k|~∇k|n,k〉,

(5.43)
where εijk is the Levi-Civita symbol. Using what we established we can express (5.39) as

σij = −e
2

~
εij`
∫

d3k

(2π)3

∑
n

nf (εn(k))(~∇k × ~an)` = −e
2

~
εij`
∫

d3k

(2π)3

∑
n

nf (εn(k))(bn)`. (5.44)
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5.1.6 Hamiltonian formalism

Now we solve (5.44). The first step is calculating bn and εn(k) for all four eigenfunctions, i.e. solve,

H(k)|n,k〉 = εn(k)|n,k〉, bn := ~∇k × an, an := i〈n,k|~∇k|n,k〉, n ∈ {1, 2, 3, 4}, (5.45)

with the Hamiltonian given in (5.38). We obtain,

n εn(k) bn

1 −|k−∆k| −∆ω + k−∆k
2|k−∆k|3

2 +|k−∆k| −∆ω − k−δk
2|k−∆k|3

3 −|k + ∆k|+ ∆ω − k+∆k
2|k+∆k|3

4 +|k + ∆k|+ ∆ω + k+∆k
2|k+∆k|3

From now on we put ∆ω = 0 and take temperature to be zero, T = 0, so nf (εn(k)) = θ(−εn(k)).
Clearly the n = 2, 4 cases do no contribute to σij since θ(−|k|) = 0. Another way to see this is that
only the valence bands contribute. Taking into account that θ(+|k|) = 1,

σij = −εij` e
2

~

∫
d3k

(2π)3
[b1,` + b3,`] = −εij` e

2

~

∫
d3k

(2π)3

[
1

2

(k−∆k)`
|k−∆k|3

− (∆k→ −∆k)

]
. (5.46)

The Berry curvature, b1 + b3, is visualized in Figure 5.1. When considering the total integral it is

Figure 5.1: Plotted is the magnetic field generated by the Berry curvature in equation (5.47). Due to
cylindrical symmetry we can consider the following intersection without any generality. The horizontal
axes denote k1 and the vertical axes k3. The value for ∆k3 is 5. A three-dimensional version of this
plot was presented in the introduction as Figure 1.4.

important to notice that for the `th component of the integrand it is allowed to choose the ∆ki and
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∆kj in the integrand to be vanishing. It is allowed to consider σ12 without any loss of generality. Thus
we can consider solving,

σ12 = −e
2

~

∫
d3k

(2π)3

[
1

2

(k3 −∆k3)

(k2
1 + k2

2 + (k3 −∆k3))3/2
− 1

2

(k3 + ∆k3)

(k2
1 + k2

2 + (k3 + ∆k3))3/2

]
. (5.47)

The details of solving (5.47) are discussed and evaluated in appendix A. Transforming to cylindrical
coordinates implies,

k1 → r cos(φ),

k2 → r sin(φ),

k3 → h.

(5.48)

For the measures, ∫ ∞
−∞

dk3

∫ ∞
−∞

dk2

∫ ∞
−∞

dk1 →
∫ ∞
−∞

h

∫ 2π

0

dφ

∫ ∞
0

dr[r], (5.49)

where [r] denotes the Jacobian. Notice that the order of k1 and k2 with respect to k3 does not change,
also in new coordinates. This new choice of coordinates only “mixes” the k1 and k2, which commute
anyway. We can now conclude that this is an allowed choice of coordinates, as long as we perform the
integral over h as the last one. The integral is independent of φ, as we see,

σ12 =− e2

~
1

(2π)3

∫ ∞
−∞

dh

∫ 2π

0

dφ

∫ ∞
0

dr[r]

[
1

2

h−∆k3

(r2 + (h−∆k3)2)3/2
− 1

2

h+ ∆k3

(r2 + (h+ ∆k3)2)3/2

]
=− e2

~
1

(2π)3

∫ ∞
−∞

dh[2π]

∫ ∞
0

dr[r]

[
1

2

h−∆k3

(r2 + (h−∆k3)2)3/2
− 1

2

h+ ∆k3

(r2 + (h+ ∆k3)2)3/2

]
=− e2

~
1

2

1

(2π)2

∫ ∞
−∞

dh

[
h−∆k3

|h−∆k3|
− h+ ∆k3

|h+ ∆k3|

]
=− e2

~
1

2

1

(2π)2

∫ ∞
−∞

dh[sign(h−∆k3)− sign(h+ ∆k3)]

=− e2

~
1

2

1

(2π)2

∫ ∆k3

−∆k3

dh[−2]

=
e2

~
1

2π2
∆k3.

(5.50)

Hence we find,

σij =
e2

~
εij`

1

2π2
∆k`. (5.51)

5.1.7 Action formalism and chiral anomaly

Consider,

S =

∫
d4xΨ[iγµ(∂µ − iAµ)−∆kµγ

µγ5]Ψ, (5.52)

where Aµ indicates the external applied electric field. This is analogous to the external electric field
applied in the derivation using linear response. It is important to stress that the fermionic fields Ψ
and Ψ are dynamical. When performing an infinitesimal chiral rotation, Ψ → exp(i∆kµx

µγ5)Ψ and
Ψ→ Ψ exp(i∆kµx

µγ5), we do not only render,

S =

∫
d4xΨ[iγµ(∂µ − iAµ)−∆kµγ

µγ5]Ψ→
∫
d4xΨ[iγµ(∂µ − iAµ)]Ψ, (5.53)
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but we get a non-trivial contribution from the integration measures of the dynamical fields Ψ and Ψ,∫
DΨDΨ→

∫
DΨDΨ|Jacobian|. (5.54)

The non-triviality is a result of the action having different symmetries than the path integral measures.
All information about the axial “γ5” term is captured in the Jacobian, which can be evaluated using
the Heat Kernel regularization trick [11, 10]. The effective action we obtain,

Seff =
e2

16π2

∫
d4x∆kµx

µεµναβFµνFαβ. (5.55)

Notice that the new term captures all information about the axial term, because it originates from the
Jacobian. If the fields Ψ and Ψ would not have been dynamical, but classical instead, the new term
would be absent. The transformation would have had a conserved current j5 instead. Making the fields
dynamical, which corresponds to making the theory semi-classical or quantum, “suddenly” renders j5

to be non-conserved. This is what is called the chiral anomaly. The new term is a topological field
theory, i.e. this term is metric independent, since it does not couple to gµν in any way.

Computing the currents of the “anomalous” term associated with Aµ we obtain,

jν =
e2

2π2
∆kiε

iναβ∂αAβ, (5.56)

and

jν = − e2

2π2
∆k0ε

0ναβ∂αAβ. (5.57)

From (5.56) it is concluded that,

Je =
e2

2π2
∆k× Eext, (5.58)

which enables us, by comparing this equation with the definition of the conductivity tensor and
restoring dimensions to obtain (5.51).

The following table, borrowed from [11], summarizes transformation properties of the various
fermion bilinears under C, P and T . Here C stands for the inversion of charge, P stands for the
inversion of parity and T stands for the inversion of time.

ΨΨ iΨγ5Ψ ΨγµΨ Ψγµγ5Ψ ∂µ

P +1 −1 (−1)µ −(−1)µ (−1)µ

T +1 −1 (−1)µ (−1)µ −(−1)µ

C +1 +1 −1 +1 +1

Where (−1)µ = 1 when µ = 0 and (−1)µ = −1 when µ = i. The term Ψ†γ0∆kµγ
µγ5Ψ picks up a minus

sign under T , when µ = i. This means that this term breaks time-reversal symmetry. When µ = 0
the terms picks up a minus sign under P . This means that it is not symmetric under space-reversal.
Thus it is said that for the anomalous Hall effect it is needed to break time-reversal symmetry [12]5.

5QCD allows a CP-symmetry breaking term, but there have been no measurements showing the existence of such
a particle. Denote θ := ∆µx

µ to be a field. This θ arises from Peccei-Quinn theory[16] as proposal for a particle that
breaks CP-symmetry. This particle is called an Axion.
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5.2 Anomalous Hall effect in the interacting case

5.2.1 Revisiting the Berry curvature

We now turn to the big question: “How do interactions change the magnetic field induced by the Berry
curvature?”. We add the holographic self-energy Σ(ω,k) to the action,

S =

∫
dk4

(2π)4
Ψ†γ0[γ0ω − γiki − Σ(k, ω)−∆kiγ

iγ5]Ψ, (5.59)

which is the action as posed in (4.2). This self-energy, which explicitly depends on ω, changes the
dispersion relations. The magnetic field in momentum space receives corrections from the self-energy.
The Berry curvature gets an additional contribution in addition to the magnetic field, a term which
can be identified as an electric field in momentum space. In the non-interacting case we considered
eigenfunctions of the Hamiltonian. When adding a self-energy we consider the eigenfunctions of the
Hermitian part of the inverse retarded propagator denoted by G−1

H,R [13]. This is equivalent to adding
the real part of the self-energy to the non-interacting Hamiltonian. The on-shell energy εn(k) is
obtained from solving,

G−1
R,H(k, ω)

∣∣
ω=εn(k)

= 0. (5.60)

The conductivity, when including a self-energy, is calculated via [13],

σijΣ = εij`
e2

~

∫
d3k

(2π)3

∑
n

nf (εn(k))[(bΣ,n)` − (En × ~∇kεn(k))`], (5.61)

where,

bΣ,n := ~∇k × an, an := i〈n,k|~∇k|n,k〉, (5.62)

which, in contrast to (5.45) might depend on ω, because we now consider eigenstates of G−1
H,R. The

electric field En is defined as,

En := i(∂ω〈n,k|~∇k|n,k〉 − ~∇k〈n,k|∂ω|n,k〉). (5.63)

All expressions in (5.61) are evaluated on-shell, i.e. ω = εn(k). Since we want to examine the effect of
the self-energy, we want to compare its effect on the magnetic field in momentum space. Thus we are
not doing any calculations on the electric field. We neglect this part of the conductivity from now on
and leave the consideration of this term to future work.

We return to the matter of the eigenfunctions of G−1
R,H . We need to calculate

G−1
R,H =

1

2
[(G−1

R )† +G−1
R ], (5.64)

where G−1
R is obtained from (5.59),

G−1
R = γ0[γ0ω − kiγ

i − Σ(k, ω)−∆kiγ
iγ5]. (5.65)

After establishing the following identities,

(γ0γµ)† = (γ0γµγ0)(γ0γ0γ0) = γ0γµ, (γ0γµγ5)† = (γ5)†(γ0γµ)† = γ5γ0γµ = γ0γµγ5, (5.66)
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we conclude

G−1
R,H =− γ0ω14 − kiγ

0γi − 1

2
γ0(Σ(k, ω)† + Σ(k, ω))−∆kiγ

0γiγ5

=Σ(k, ω)kµγ
0γµ − kµγ

0γµ −∆kiγ
0γiγ5,

(5.67)

where using (2.59) we redefined Σ in the second line,

Σ(k, ω) = g2−2M Γ(1
2
−M)

Γ(1
2

+M)
Re

[
e−iπ(M+ 1

2
)
(√

ω2 − |k|2
)2M−1

]
. (5.68)

To determine the on-shell energy εn(k) we are required to solve (5.60). Solving this expression ana-
lytically yields a very complicated expression, if solveable at all. Thus we take εn(k) to be the energy
from the case without self-energy, as an approximation. This is a preliminary approach which might
be justified in a low-energy regime. Finding the eigenfunctions of G−1

R,H makes it possible to determine
bΣ,n via (5.62),

n εn(k) (bn)3 (bΣ,n)3

1 −|k−∆k| +1
2

k3−∆k3
(k2

1+k2
2+(k3−∆k3)2)3/2

+1
2

(1−Σ)[(k3+∆k3)−(2k3+∆k3)Σ+k3Σ2−∆k3(k2∂k2Σ+k1∂k1Σ)]

(k2
1+k2

2+(k3+∆k3)2−2(k2
1+k2

2+k3(k3+∆k3))Σ+(k2
1+k2

2+k2
3)Σ2)3/2

2 +|k−∆k| −“ ” −“ ”
3 −|k + ∆k| −(∆k3 → −∆k3) −(∆k3 → −∆k3)
4 +|k + ∆k| +(∆k3 → −∆k3) +(∆k3 → −∆k3)

We are only interested in the 3-component at ∆k1 = ∆k2 = 0. When considering the 1 and 2 compo-
nents in cylindrical coordinates these terms turn out to depend linearly on cos[θ] or sin[θ]. Therefore,
it is checked that when considering σ13 or σ23 they instantly vanish because of the integration, just
like in the non-interacting case. The third column describes the case without Σ and the fourth column
describes the 3-component when taking Σ into account. It is immediately clear that when Σ→ 0, not
only En → 0, but also6 bΣ,n → −bn. Inserting the last into (5.61) exactly gives us (5.44). Hence it is
checked that

Σ→ 0 ⇒ σijΣ → σij. (5.69)

5.2.2 Obtaining the effects of holographic self-energy

It is instructive to explicitly evaluate Σ(k, ω) using the approximated energy,

Σ(k, ω)|ω=εn =Σ(k,±∆k3)

=g2−2M Γ(1
2
−M)

Γ(1
2

+M)
Re

[
e−iπ(M+ 1

2
)

(√
k2

1 + k2
2 + (k3 ±∆k3)2 − |k|2

)2M−1
]

=cM,gRe

[
e−iπ(M+ 1

2
)

(√
(k3 ±∆k3)2 − k2

3

)2M−1
]
,

(5.70)

where cM,g := g2−2M Γ( 1
2
−M)

Γ( 1
2

+M)
. It is important to notice that in our approximation the self-energy does

not depend on k1 or k2. Hence,

∂k1(Σ(k, ω)|ω=εn) = ∂k2(Σ(k, ω)|ω=εn) = 0. (5.71)

6The minus sign corresponds to the minus sign when applying a Legendre transformation when switching from the
Hamiltonian approach to the Action of Lagrangian formalism.
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This also means that Σ is independent of r and φ when turning to cylindrical coordinates. Another
important identity of Σ in cylindrical coordinates is,

Σ(h,∆k3) =cM,gRe

[
e−iπ(M+ 1

2
)
(√

(h+ ∆k3)2 − h2
)2M−1

]
=cM,gRe

[
e−iπ(M+ 1

2
)
(√

((−h)−∆k3)2 − (−h)2
)2M−1

]
=Σ(−h,−∆k3).

(5.72)

Now we make the first step towards calculating σ12
Σ ,

σ12
Σ =

e2

~

∫
d3k

(2π)3
[(bΣ,1)3 + (bΣ,3)3] . (5.73)

In Figure 5.2 the magnetic field of (5.73) in momentum space is plotted. Finally, using the table on
page 52 we compute,

σ12
Σ =

e2

~

∫
d3k

(2π)3
[(bΣ,1)3 + (bΣ,3)3]

=
e2

~
1

(2π)3

∫ ∞
−∞

dh

∫ 2π

0

dφ

∫ ∞
0

dr[r][(bΣ,1)3(r, h, φ)− (∆k3 → −∆k3)]

=
e2

~
1

(2π)3

∫ ∞
−∞

dh[2π]

∫ ∞
0

dr[r]

×
[
+

1

2

(1− Σ(h,−∆k3))(h+ ∆k3 − (2h+ ∆k3)Σ(h,−∆k3) + h(Σ(h,−∆k3))2)

(r2 + (h+ ∆k3)2 − 2(r2 + h(h+ ∆k3))Σ(h,−∆k3) + (h2 + r2)(Σ(h,−∆k3))2)3/2
− (∆k3 → −∆k3)

]
=
e2

~
1

(2π)2

∫ ∞
−∞

dh

×

[
−1

2

h+ ∆k3 − hΣ(h,−∆k3)√
∆k2

3 + 2h∆k3(1− Σ(h,−∆k3)) + (h2 + r2)(1− Σ(h,−∆k3))2
− (∆k3 → −∆k3)

]∣∣∣∣∣
r=∞

r=0

=
e2

~
1

(2π)2

∫ ∞
−∞

dh

[
0 +

1

2

h+ ∆k3 − hΣ(h,−∆k3)

|h+ ∆k3 − hΣ(h,−∆k3)|
− (∆k3 → −∆k3)

]
=

1

2

e2

~
1

(2π)2

∫ ∞
−∞

dh

[
h+ ∆k3 − hΣ(h,−∆k3)

|h+ ∆k3 − hΣ(h,−∆k3)|
− h−∆k3 − hΣ(h,+∆k3)

|h−∆k3 − hΣ(h,+∆k3)|

]
=

1

2

e2

~
1

(2π)2

∫ ∞
−∞

dh(sign[h+ ∆k3 − hΣ(h,−∆k3)] + sign[(−h) + ∆k3 − (−h)Σ(−h,−∆k3)]).

(5.74)
The last step has to be done numerically and is presented in Figure 5.3.

The different behaviors for M < 0 and M > 0 originate from the fact that in the last line of (5.74)
the arguments in the sign-functions behave different depending on the sign of M . Recall that for a
sign-function it is only important where the argument changes sign, i.e. where the argument equals
zero. In Figure 5.4 we plot the arguments and observe that when M < 0 for small values of ∆k3 the
zero solution, where the function equals zero, becomes very large. This behavior is what causes the
sign functions in the last line of (5.74) to assign a divergent value near ∆k3 = 0. This does not occur
for M > 0. For M > 0 the value of the zero solution goes to zero as ∆k3 goes to zero.
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(c) M = −0.40 (d) M = −0.20 (e) M = 0

(f) M = +0.20 (g) M = +0.40

Figure 5.2: We plotted the Berry curvature of (5.73). Due to cylindrical symmetry we can consider
the following intersection without any generality. The horizontal axes denote k1 and the vertical axes
k3. The value for ∆k3 is 5. Compare this to Figure 5.1. When looking carefully there is a horizontal
line at the height of the upper-singularity in each plot where the vectors behave odd. This behavior is
accounted to a jump in the value of the k1 component. This occurs because the k1 component depends
on the derivative of Σ in k3, which contrary to the other derivatives in (5.71) does not vanish but
makes a jump. Notice that for positive values of M the poles shift toward eachother.
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Figure 5.3: This Figure shows the contributions of the interactions to σ12, when only taking into
account the magnetic field in momentum space. The σ12 is expressed in units of e2/~. The dashed
lines denote the conductivity for the non-interacting system, (A.8). The plateaus are an artifact of the
numerics. The point ∆k3 = 0 is not well-defined. However, for negative values of M the plots seem
divergent near ∆k3.
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(a) M = −0.40 (b) M = +0.40

Figure 5.4: Recall the definition of Σ from (5.72). We plot the behavior for the function (−h) + ∆k3−
(−h)Σ(−h,−∆k3), for small ∆k3. This function is the argument of the sign function in the last line
of (5.74). The function has leading order 1 in h and only real coefficients. Apart from the divergences,
the function only has one real zero, intersection with horizontal axes. This ensures us that outside
this range the function does not become zero. In Figure A.2 in the appendix we plotted how the
sign-function argument works.



Chapter 6

Conclusions, Discussion and Outlook

The goal of this research is to investigate the effect of strong interactions via AdS/CFT on a massive
Dirac spinor and Weyl semimetals. Our main goal is the study of the effect of the anomalous Hall
effect on the conductivity when switching on interactions.

In chapter 2 the massive spinor case was studied. We obtained spectral function (2.102). Non-
trivial behavior of the spectral function is found when using bulk mass M as a parameter for the
holographic self-energy, Figure 2.4 and 2.5. Different features were observed depending on the sign of
M , such as a different distribution. Moreover we added a chemical potential in chapter 3, resulting
in equation (3.33). Using the dynamical exponent z we can break relativistic invariance, Figure 3.1.
For z > 1 the problem still remains that there is a need of a holographic renormalization [8]. Further
research on this model could consist of probing the dependence of the Fermi-surfaces on λ (which we
put to unity in this thesis), M , m, T and µ and construct corresponding phase diagrams. In addition,
it would be interesting to study the spectral functions when −M1 6= M2, such that (2.55) does not
apply to the chiral spinors.

In chapter 4 we developed the model for Weyl semimetals with the possibility to induce a separation
in momentum space between the chiral cones and the possibility to take into account chemical potential.
In chapter 5 we computed the changes in the contribution of the fictitious magnetic field in momentum
space to the conductivity σ when adding the holographic self-energy to the system, (5.74). This
computation of the interacting case is evaluated using an approximation of the on-shell energy using
the solution to the dispersion relation of the non-interacting system (5.45). Switching on interactions
in this approximation we found characteristic changes to the conductivity for M < 0 and M > 0,
Figure 5.3. When M = 0 the self-energy vanishes because the product in the argument of Re[..]
becomes purely imaginary (5.72).

It is possible that the singular behavior for negative values of M is an artifact of the approximated
on-shell energy. The behavior of positive values of M is in line with the common observation in all
related spectral function plots and Figure 5.2 that the separation also depends on M when M is
positive. For further research it is interesting to have a look at the validity of the approximation and
to calculate the actual on-shell energy for the interacting case. In addition it would be important
tot calculate E , the electric field in momentum-space (5.63), which we discarded. This quantity is
meaningful because the total conductivity due to the intrinsic contribution of the anomalous Hall
effect can be computed when including it to the Berry curvature [13]. Another generalization would
be to probe the temperature dependence, the case when T 6= 0.

Although we developed Weyl semimetals taking into account doping (4.8) in chapter 4, we did not
consider this possibility in the calculations of the conductivity for doping. In [16] it is calculated using
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questionable regularizations that for the non-interacting Weyl semimetal the µ = 0 case coincides with
µ 6= 0. This remains to be shown using our adopted integral formalism, developed on page 63 in the
appendix. The interacting case with finite chemical potential would be another extension of what we
did in this thesis. In addition, the effect of letting ∆ω 6= 0 (4.1) shifts the dispersion relations in a
non-trivial way, which could be taken into account. A beginning has been made in [10].

Non-zero chemical potential and finite temperature altogether with taking into account E would be
a promising experimental benchmark since this intrinsic contribution is independent of the scattering
amplitude and impurities and therefore possibly therefore traceable via experiment [15, 14]. Moreover,
for full understanding the diagonal parts of the conductivity should be computed.

There are other ways to compute the conductivity due to the anomalous Hall effect in the interacting
case. A way could be a calculation via Feynman diagrams and Ward-identities [22]. Applying this
approach we get a direct expression for the conductivity in terms of the products of (derivatives of) the
retarded Green’s function. We have an explicit expression for this Green’s functions (4.6). Another
way that could be considered is using the action formalism [10] and the chiral anomaly to compute
the conserved currents and the conductivity tensor. This last approach could also be used to show
that in the non-interacting case µ = 0 coincides with µ 6= 0 by calculating that µ does not couple to
the conserved current of the applied electric field.

In conclusion, the results obtained in this thesis are promising but there is still work to be done.
For instance, how big is the contribution of E and how valid is the approximation of the solution of
the dispersion relation of the interacting case? Furthermore, this thesis illustrates some intriguing
features of a holographic self-energy, such as the effect of the bulk fermion mass M on the theory on
the boundary. Although the results are still far away from verification, the suggested paths for further
study, when comprehended, should be able to produce exciting new predictions.
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Appendix A

Solving Integrals

A.0.3 First step analysis

It turns out to be important, before considering (5.47), to first have a look at the integration order
when we would integrate over the first term of (5.47), after removing some constants,

∫
d3k

[
1

2

(k3 −∆k3)

(k2
1 + k2

2 + (k3 −∆k3))3/2

]
=

∫
dk3dk2dk1

[
1

2

(k3 −∆k3)

(k2
1 + k2

2 + (k3 −∆k3))3/2

]
= (∗). (A.1)

Take a look at where the divergence is in Figure A.1. Now the integral dk1 of the integrand is well-

Figure A.1: The Berry curvature of (A.1) is plotted. Due to cylindrical symmetry we can consider the
following intersection without any generality. The horizontal axes denote k1 and the vertical axes k3.
The value for ∆k3 is 5.

defined, because k2 = 0 and k3 = ∆k3, the only configuration that k1 could hit a pole, the integrand
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vanishes. Thus

(∗) =

∫
dk3dk2

 1

2

k1(k3 −∆k3)

(k2
2 + (k3 −∆k3)2)

√
k2

1 + k2
2 + (k3 −∆k3)2

∣∣∣∣∣
k1=∞

k1=−∞


=

∫
dk3dk2

[
k3 −∆k3

k2
2 + (k3 −∆k3)2

]
=(∗∗)

(A.2)

Now the integral over k2 is well-defined, since for k3 = ∆k3 the integrand vanishes,

(∗∗) =

∫
dk3 arctan

(
k2

k3 −∆k3

)∣∣∣∣k2=∞

k2=−∞

=π

∫ ∞
−∞

dk3
k3 −∆k3

|k3 −∆k3|

=π

∫ ∞
−∞

dk3sign(k3 −∆k3),

(A.3)

and this last integral diverges. Without any loss of generality the order of dk1 and dk2 could have
been swapped. But if if we start with integrating over k3, the situation is different. This turns out to
be essential for calculating (5.47).

Investigating the integration over the divergence in the case of starting with an integration over
k3, requires taking k1 = k2 = 0. This would yield an integrand,

∼ (k3 −∆k3)

(k3 −∆k3)3/2
=

1

(k3 −∆k3)1/2
, (A.4)

which is not integrable over k3. Essentially the same thing would happen when first calculating the
integral over dk1 or dk2 and then dk3. Investigating the pole in this case requires k2 = 0 or k1 = 0,
respectively,∫

dk2

[
1

2

(k3 −∆k3)

(k2
1 + k2

2 + (k3 −∆k3))3/2

]∣∣∣∣
dk1=0

=

∫
dk1

[
1

2

(k3 −∆k3)

(k2
1 + k2

2 + (k3 −∆k3))3/2

]∣∣∣∣
dk2=0

∼ k3 −∆k3

(k3 −∆k3)2

=
1

(k3 −∆k3)
,

(A.5)

which again is not integrable over k3.1 Nothing strange happens here. Whatever way the integral is
integrated it is divergent. In the next subsection we argue how we can handle (5.47).

A.0.4 Solution

What we learned from the last integral is that when solving (5.47) we may not split the integral
blindly, because this action requires all integrals to be finite. Moreover, for ∆k3 6= 0, the integral is

1It looks like this integral can be done using contour integration. This is not possible since for this integrand any
closing contour has problems converging at ∞.
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not absolutely integrable. This means that∫
d3k

(2π)3
abs

[
1

2

(k3 −∆k3)

(k2
1 + k2

2 + (k3 −∆k3))3/2
− 1

2

(k3 + ∆k3)

(k2
1 + k2

2 + (k3 + ∆k3))3/2

]
=∞. (A.6)

Although we do not present a mathematical proof, intuitively it is clear that when taking the absolute
value of an integrand which is the sum of two integrands that diverge separately at different points,
there is nothing canceling the positive valued divergences, since all contributions of the integrand are
positive. Hence the integral of the absolute value of the integrand diverges. Note that this does not
necessarily mean that the regular integral, without taking the absolute value of the integrant, diverges

A result of not being absolutely integrable is that we lose the property of freely interchanging
integrals. This property is normally guaranteed by Fubini’s theorem [25], which is a direct consequence
of being absolutely integrable.

However, we know that this integral has to converge from the calculation involving the action
formalism on page 49. As a consequence of having no Fubini’s theorem to depend on, the Cartesian
volume measure d3k cannot blindly be identified with any combination of iterated integrals, because
some orders of integration do not yield a converging value. We conclude that d3k := dk3dk1dk2 =
dk3dk2dk1, simply because we show that any other combination of measures renders the integral non-
convergent.

We start from the integration order dk3dk2dk1. The following formula may be used,∫
dx

∫
dy(f(x, y) + g(x, y)) =

∫
dx

(∫
dyf(x, y) +

∫
dyg(x, y)

)
, (A.7)

as long as the inner integrals are convergent. This is also why we are allowed to shift away ∆k2 and
δk1. Using (A.7) and the primitives calculated in (A.1), (A.2) and (A.3) on page 62,

σ12 =− e2

~

∫
d3k

(2π)3

[
1

2

(k3 −∆k3)

(k2
1 + k2

2 + (k3 −∆k3)2)3/2
− 1

2

(k3 + ∆k3)

(k2
1 + k2

2 + (k3 + ∆k3)2)3/2

]
=− e2

~

∫
dk3dk2dk1

(2π)3

[
1

2

(k3 −∆k3)

(k2
1 + k2

2 + (k3 −∆k3)2)3/2
− 1

2

(k3 + ∆k3)

(k2
1 + k2

2 + (k3 + ∆k3)2)3/2

]
=− e2

~

∫
dk3dk2

(2π)3

[
k3 −∆k3

k2
2 + (k3 −∆k3)2

− k3 + ∆k3

k2
2 + (k3 + ∆k3)2

]
=− e2

~
π

∫ ∞
−∞

dk3

(2π)3
[sign(k3 −∆k3)− sign(k3 + ∆k3)]

=− e2

~
π

∫ ∆k3

−∆k3

dk3

(2π)3
[−2]

=− e2

~
(− 4π

(2π)3
∆k3) =

e2

~
∆k3

2π2
,

(A.8)

where in the line with the sign functions the finiteness might be more insightful from Figure A.2. When
generalizing the answer for arbitrary σij, as was discussed above equation (5.47), we obtain (5.51),
as desired. Performing the integral starting from dk3dk1dk2 yields the same approach and answer,
because of the symmetry between k1 and k2.

Now we start from the integration over k3. Investigation of the poles requires k1 = k2 = 0. In
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Figure A.2: These graphs show that the difference of sign functions gives us the desired factor of 4∆k3.

contrast to the monopole in (A.1), we now have two poles. The integrand looks like,

∼ [
(k3 −∆k3)

(k2
1 + k2

2 + (k3 −∆k3)2)3/2
− (k3 + ∆k3)

(k2
1 + k2

2 + (k3 + ∆k3)2)3/2
]

∣∣∣∣
k1=k2=0

=

[
(k3 −∆k3)

((k3 −∆k3)2)3/2
− (k3 + ∆k3)

((k3 + ∆k3)2)3/2

]
=

[
1

(k3 −∆k3)2
− 1

(k3 + ∆k3)2

]
.

(A.9)

It is clear that the integrand diverges for k3 near ±∆k3. The last remaining case, is the one where we
first integrate over k1 and then k3. The divergence is investigated by letting k2 = 0. The case of first
integrating k2 is understood due to symmetry. Hence

∼
∫
dk1

[
(k3 −∆k3)

(k2
1 + k2

2 + (k3 −∆k3)2)3/2
− (k3 + ∆k3)

(k2
1 + k2

2 + (k3 + ∆k3)2)3/2

]∣∣∣∣
k2=0

=

[
k3 −∆k3

(k3 −∆k3)2
− k3 + ∆k3

(k3 + ∆k3)2

]
=

[
1

(k3 −∆k3)
− 1

(k3 + ∆k3)

]
,

(A.10)

which is divergent at k3 = ±∆k3.

A.0.5 Change of variables

Along with changing the order of integration, we also have to be careful when changing variables. We
want to use other coordinates because in the next section, when including the self-energy, it turns
out that calculations using cylindrical coordinates are much easier. Hence it is shown why cylindrical
coordinates may be used. En passant it is shown why spherical coordinates are not an allowed choice.

Transforming to cylindrical coordinates implies

k1 → r cos(φ),

k2 → r sin(φ),

k3 → h.

(A.11)

For the measures ∫ ∞
−∞

dk3

∫ ∞
−∞

dk2

∫ ∞
−∞

dk1 →
∫ ∞
−∞

h

∫ 2π

0

dφ

∫ ∞
0

dr[r], (A.12)



65

where [r] denotes the Jacobian. Notice that the order of k1 and k2 with respect to k3 does not change,
also in new coordinates. This new choice of coordinates only “mixes” the k1 and k2, which commute
anyway. We can now conclude that this is an allowed choice of coordinates, as long as we perform the
integral over h as the last one. The integral is independent of φ, as we see,

σ12 =− e2

~
1

(2π)3

∫ ∞
−∞

dh

∫ 2π

0

dφ

∫ ∞
0

dr[r]

[
1

2

h−∆k3

(r2 + (h−∆k3)2)3/2
− 1

2

h+ ∆k3

(r2 + (h+ ∆k3)2)3/2

]
=− e2

~
1

(2π)3

∫ ∞
−∞

dh[2π]

∫ ∞
0

dr[r]

[
1

2

h−∆k3

(r2 + (h−∆k3)2)3/2
− 1

2

h+ ∆k3

(r2 + (h+ ∆k3)2)3/2

]
=− e2

~
1

2

1

(2π)2

∫ ∞
−∞

dh

[
h−∆k3

|h−∆k3|
− h+ ∆k3

|h+ ∆k3|

]
=− e2

~
1

2

1

(2π)2

∫ ∞
−∞

dh[sign(h−∆k3)− sign(h+ ∆k3)]

=− e2

~
1

2

1

(2π)2

∫ ∆k3

−∆k3

dh[−2]

=
e2

~
1

2π2
∆k3.

(A.13)

Hence we find the same result as before,

σij =
e2

~
εij`

1

2π2
∆k`. (A.14)

Now we choose to go to spherical coordinates instead,

k1 → r cos(φ) sin(θ),

k2 → r sin(φ) sin(θ),

k3 → r cos(θ).

(A.15)

For the measures ∫ ∞
−∞

dk3

∫ ∞
−∞

dk2

∫ ∞
−∞

dk1 →
∫ ∞

0

dr

∫ 2π

0

dφ

∫ π

0

dθ[r2 sin(θ)]. (A.16)

We lose any clue of ordering, i.e. we mixed all measures, including k3. It is clear that the integral over
r has to be performed last to yield a converging answer. Because the integrand is independent of φ,
dθ and dφ may switch order.

σ12 =− e2

~
1

(2π)3

∫ ∞
0

dr

∫ 2π

0

dφ

∫ π

0

dθ[r2 sin(θ)]

[
1

2

r cos(θ)−∆k3

(r2 + ∆k2
3 − 2r∆k3 cos(θ))3/2

− (∆k3 → −∆k3)

]
=− e2

~
1

2

1

(2π)2

∫ ∞
0

dr

[
r2

∆k2
3

(
r −∆k3

|r −∆k3|
− r + ∆k3

|r + ∆k3|

)
− (∆k3 → −∆k3)

]
=− e2

~
1

2

1

(2π)2

∫ ∞
0

dr
r2

∆k2
3

2

(
r −∆k3

|r −∆k3|
− r + ∆k3

|r + ∆k3|

)
=− e2

~
1

(2π)2

∫ ∞
0

dr
r2

∆k2
3

(−2θ(∆k3 − r))

=
e2

~
1

2π2

1

3
∆k3.

(A.17)
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Hence,

σij =
e2

~
εij`

1

2π2

1

3
∆k`. (A.18)

The above integral does not provide the right answer, as was expected. This occurs because when we
would trace back the measures, some integration over “k3” already has happened when integrating
over θ and φ, which is not in the right order. Moreover, in the second and third line of (A.17) we see
that if we would discard one of the monopoles, the total integral would still yield a finite value. This
is not in accordance with the fact that we found that it diverges in (A.4) and (A.5). The integral of
(A.17) does exist when taking into account the special ordering of measures, but it is the solution to
an integral inequivalent to (5.47).
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