

The impact of Software Product Lines
from a Product Management

Perspective

an Action Research approach into Software Product Line development

Yuri Sprockel
3363694
Master thesis of Business Informatics
Institute of Information and Computing Sciences
Utrecht University

Supervisors

Dr. Inge van de Weerd
Email: i.vandeweerd@vu.nl

Prof. Dr. Sjaak Brinkkemper
Department of Information and Computing Sciences
Buys Ballot Laboratory, office 582
Princetonplein 5
3584 CC, Utrecht
The Netherlands
Email: s.brinkkemper@uu.nl

Michail Warrink
Product manager Marketing & Sales
CCV Holland B.V.
Westvoorstedijk 55
6827 AT, Arnhem
The Netherlands

mailto:i.vandeweerd@vu.nl
mailto:s.brinkkemper@uu.nl

Abstract
In recent years, software development has grown substantially and its products can be noticed and
used on a global scale. Most organization nowadays, despite in which sector they operate in, use
software products in order to support or excel their business. In addition, some organizations are
founded based on software products (e.g. social media platforms) and business is not possible
without. The main practice that manages the processes of the product software development is
Software Product Development (SPM). It has been proven that in order for the software product to
be successful in the given market(s), SPM should be properly in place. Larger organizations with
global markets with software intensive systems apply a different development approach in order to
be able to serve the market properly and be able to perform this in an organized matter. Such
approach is called Software Product Lines (SPL) development and originates from non-software
industries such as automotive. SPL development requires specific structuring of its process in order
to benefit from its advantages.

In this research, we follow a well validated and already used at numerous Product Software
Companies (PSC) Competence model, the SPM Competence Model and Maturity Matrix. This
Competence model serves as the foundation of SPM for this research. Through an extensive
literature study, we identified the key practices of SPL. These SPL-practices describe product
management activities that are performed in a SPL development environment. In this research we
evaluated the identified SPL-practices through experts active in SPL development and structured
them accordingly through implementation into the SPM maturity matrix, making it the SPLM
(Software Product Line Management) maturity matrix.

Afterwards, we applied the SPLM maturity matrix at a case company that develops SPL’s. We noticed
that PSC that develop SPL has specific capabilities’ differences compared to PSC that do not develop
SPL. This can also be noticed in the application of the SPM and SPLM maturity matrix. In addition to
the capabilities in the matrix, we identified other aspects that are of great importance for the overall
success of a SPL. We defined these aspects as ‘Organizational Supportive Input’ and these mostly
focus on organizational aspects that should be performed to benefit the SPL processes. The key
findings show that a PSC has to make a well-thought decision when deciding to engage in SPL
development; per business functions such as Requirements management or Product planning
specific SPL knowledge is necessary. The architecture of a SPL is vital for its long term success (an
essence of SPL). PSC’s which do not have the SPL architecture well defined upfront, will struggle later
on. Finally, we propose the SPLM maturity matrix as specific version of the SPM maturity matrix for
PSC with SPL.

Acknowledgements
This thesis is the result of the Master Degree of Business Informatics at the Utrecht University in The
Netherlands. Before the start of my thesis, my interest in SPM grew that it led me to do Capital
Selecta regarding Quality Requirements with a PhD. student from Lund University (Sweden). After a
successful completion and a satisfied case company, I was certain that I wanted to pursuit a
graduation assignment in SPM.

During my research I have been challenged by life and I haven’t always to succeed the challenges the
way I thought to. The loss of family members makes things harsh to continue with your daily
routines. However, without the support of both the case company and Utrecht University I would
even had the chance to finish my graduation. Therefore I’d like to show my gratitude:
To the case company, especially Michail my supervisor, I like to thank him for the opportunity for me
to perform my research, his support, countless discussions and meetings and for always being ready
to support my research and involve the necessary colleagues if needed. To Paul, Eric, René, Alfred,
Bert-Jan, Jeroen, Arianne and Guus thank you for being wanting to be involved in my research, your
collaboration and providing me with a proper working place in their office.
To Inge, thank you for your patience, advice and various improvement points during my research.
Your insights have helped me understand the academic world much better. To Sjaak, thank you for
your supervision. To Richard, thank you for your collaboration, it really helped my research.

During this research I can say I learned a lot, both on SPM and academic research as well as how
organizations that develop software works. I certainly will be pursuing a career in SPM and will work
unto the Product Manager function; it just drives me to oversee the processes of thinking of a
product, developing it, bring it to the market and finally phase it out of the market, onto the next
one.

Last but not least, I would like to thank my family and friends who supported me in unthinkable ways
and believed I could finish.

Yuri Sprockel
April, 2013

1

Table of Contents

1 Introduction ... 3

1.1 Research trigger .. 4

1.2 Problem statement.. 5

1.3 Research contribution ... 5

1.4 Terminology ... 6

1.5 Thesis structure ... 6

2 Research approach .. 7

2.1 Research questions ... 7

2.2 Research method .. 8

2.3 Validity ... 16

3 Related literature .. 20

3.1 Software Product Management .. 20

3.2 Software Product Lines ... 28

3.3 Summary ... 45

4 SPL-Capability process ... 47

4.1 Literature analysis ... 47

4.2 The mapping process... 50

4.3 SPL-Capabilities ... 56

5 Expert evaluation .. 62

5.1 Evaluation scope.. 62

5.2 The questionnaire ... 62

5.3 Respondents .. 65

5.4 The results and modifications ... 66

5.5 Summary ... 67

6 Software Product Line Management Maturity Matrix .. 68

6.1 Capabilities revision... 68

6.2 Capabilities positioning ... 73

7 Case study.. 79

7.1 Company profile .. Error! Bookmark not defined.

7.2 Current practices ... Error! Bookmark not defined.

7.3 Desired situation ... Error! Bookmark not defined.

2

7.4 SPLM Maturity Matrix applied .. Error! Bookmark not defined.

7.5 Recommendations .. Error! Bookmark not defined.

7.6 Evaluation .. Error! Bookmark not defined.

8 Conclusion, Discussion and Future research ... 80

8.1 Conclusion ... 80

8.2 Discussion .. 84

8.3 Future research ... 85

8.4 Theoretical implications .. 85

References ... 90

Appendix A: Complete SPL-practices mapping ... 96

Appendix B: SPL-Capabilities (pre-evaluation) .. 105

Appendix C: Evaluation results of SPL-Capabilities. .. 110

Appendix D: Case company situational factors list. .. 115

Appendix E1: Product development interview instrument .. 116

Introductie ... 116

Software Product Management .. 116

Laatste vragen ... 117

Appendix E2: Parallel development interview instrument Error! Bookmark not defined.

Meerstromen-land .. Error! Bookmark not defined.

3

1 Introduction

In the last decade, products from most industries (e.g. telecom, software, automotive) have grown in
functionality, complexity and responsibility (Bosch, 2002; Buhrdorf et al., 2004; Linden, 2002; Maßen,
2004; Northrop & Clements, 1999). This has excellent results for the end-users. It is the
manufacturers who face the great challenges that come along with such development, such as
product management. Software companies face similar situation. The process of developing software
has evolved noticeably in the last 10 years (Vlaanderen et al., 2009a). Nowadays, software
companies that manufacture large systems for large industries often make use of a so-called ‘product
line approach’ like can be observe in other industries such as automotive. Product companies using a
product line approach find that high quantitative improvements can be achieved in for instance
productivity, time-to-market, product quality, and customer satisfaction (Northrop & Clements,
1999). With these great improvements comes great responsibility for the practice of software
product management.

Software product management (SPM) has proven to be of utmost importance for products software
companies. However, it is a challenging research area (Ebert, 2007; Weerd, 2009). The role of the
software product manager has got little support from existing education and literature, yet the
product manager is considered as the “mini-CEO” of the product software company (Bekkers et al.,
2010). The product manager is responsible for a centralized position within the organization that
communicates with all stakeholders and assures that all work towards the same goals according to
defined strategies. Ebert (2007) has also pointed out that the success of software product is coherent
with good product management. This requires a combination of business, technological and
managerial skills that product management should possess. Fortunately, more and more researchers
are becoming active in the SPM domain, based on the number of publications in recent years
compared to before.

In order to have a solid foundation on the knowledge and practice of SPM, The Software Product
Management Competence Model by Bekkers et al. (2010) is used. The SPM Competence Model
represents all the areas that have been researched and identified as important in the SPM domain
(Bekker et al, 2010). Explicitly, how SPM is understood and dealt with in this research is defined by
the SPM Competence model. The SPM Competence model provides product software companies
(PSC) and product managers a complete overview and information on related processes and
stakeholders that are of importance. How these areas, processes and stakeholders relate to each
other is modeled in the SPM Competence model, see Figure 1. Four main business functions are
defined which described the main SPM functions, which are: Portfolio management, Product
planning, Release planning and Requirements management. Each business function has a number of
focus areas (white rectangles) that describes the strongly-related practices (referred to as
capabilities) of that business function. The stakeholders consist of two categories, namely external
stakeholders (e.g. customers) and internal stakeholder (e.g. Marketing or Development department).
Since most PSC have, to a certain degree, software development activities one can expect that such
activities might be modeled in the SPM Competence model. However, the activities of the
development department are considered as a stakeholder that provides input to the business
functions.

Product lifecycle management is one of the focus areas of Portfolio management implying, amongst
others, information gathering and key decision making concerning product life and product
modification across the complete product portfolio (Bekkers et al., 2010a). Product lifecycle also
concerns the origin of products that do and do not result from software product lines (SPL). This is
business function (Portfolio management) is one of the least researched of the model (Weerd, 2009).
This lack of research triggered the original drive for this research.

4

The SPM Competence model corresponds with the SPM Maturity Matrix (Bekkers et al., 2010b) that
is used to determine the current maturity levels of SPM processes of a PSC and provides an
incremental improvement procedure. The SPM Maturity matrix is a matrix representation of the
business functions and focus areas. In this master thesis, we used the SPM Maturity matrix to
determine the current state of SPM processes at a case company with software product lines. What
we are curious to investigate is the applicability of the matrix for organizations running software
product lines, specifically.

Figure 1: The Software Product Management Competence Model (Bekkers et al., 2010a)

1.1 Research trigger
As mentioned previously, four business functions are modeled in the SPM Competence model:
Portfolio management, Product planning, Release planning and Requirements management. Out of
these business functions, Portfolio management is the business function least (extensively)
researched (Weerd, 2009). During modeling of the SPM Competence model, the lower business
functions, especially Requirements management and Release planning, received more research
attention since these provide the fundamentals for the upper business functions. Recently, more
research is focused on the other parts of the SPM Competence model; as this research does.
However, no research on the model has yet focused on the practices of SPM when it concerns
product lines. Corresponding with the upper part of the model, the case company (chapter 7) had
most interest in Portfolio management (Product lifecycle management) as they were experiencing
difficulties, primarily, with new product development. The case company describe this as ‘The
trajectory of a new product entering the concept phase (beginning of the product life cycle) to the
point where requirements has to be gathered in order to build a release of the product to declaring an
end-of-life for the product, needs structuring’. At the moment this is performed according to their
experience and knowledge which is not sufficient to excel at Software Product Management. For
instance, requirements are not managed properly which leads to requirements being left out of
major releases and product roadmapping was never a well-defined process which does not give a
clear aim or planning on future product development.

From a scientific perspective, existing literature on SPL does not elaborately investigate the impact
on SPM processes (see chapter 3) or SPM processes specifically for product lines. This triggered this
research to investigate how the knowledge and practice of the SPM Competence Model compatible

5

is for product lines, i.e. the impact of SPL on SPM processes. In addition, most research on the SPM
Competence model involved organizations with standard software products as well as some with
SPL’s. Evaluation of the model did not focus mostly on the difference of PSC’s with product lines or
PSC’s without product lines. This research aims to evaluate the model for a PSC with software
product lines.

From a practical perspective, the case company has little knowledge and experience in SPM
practices. The current SPM practices grew from departmental best practices and some product
managers have followed a professional course on Software Product Management at the Department
of Information and Computer Science of Utrecht University. Currently, the case company struggles
with software development when it comes to the product management processes, e.g. requirements
identification for new products, requirements selection for next release, product roadmapping and
product life cycle current products. There is enough room for improvement with respect to
structuring and improving SPM processes for the case company.

1.2 Problem statement
Software product lines are getting popular and attractive for organizations with large software-
intensive systems and the benefits are clear: less development and maintenance costs, faster time-
to-market, improved product quality, improved customer satisfaction, reuse of artifacts such as
architecture and more (Northrop, 2002; Bosch, 2002; van der Linden, 2002; Birk et al., 2003).
However, these advantages claim a remarkable amount of effort from a SPM perspective that is
poorly defined. Bekkers et al. (2010) have constructed a competence model (SPM Competence
model) that describes the most important areas in SPM which numerous PSC find substantially
helpful and provides structure in their SPM practices.
Existing literature on SPL suggest little relation to the SPM Competence model or any SPM body of
knowledge for that matter, not forming an association between SPM processes and SPL-practices,
whilst software as a product is still the end-result. Accordingly, the main research question of this
master thesis is:

“How can product software companies structure their software product management processes
according to their product line development approach?”

1.3 Research contribution
The main objectives of this research can be directed towards a scientific and a practical objective,
respectively:

Scientific contribution
The main scientific contribution of this research is the evaluation of the applicability of the SPM
Competence Model for product lines. This implies to what extent the SPM Competence model would
be applicable for PSC with product lines. This research will identify which part of the model, i.e.
business function, focus area, capability and stakeholder, applies for SPL and which part less or not.
In addition, this research will also identify SPL-practices with respect to SPM that are not included in
the SPM Competence model or the maturity matrix. These SPL-practices will be translated to fit in
the maturity matrix and evaluated during this master research. Thus, the SPM Maturity Matrix will be
enriched with specific SPL knowledge, namely specific SPL capabilities. This SPM maturity matrix for
SPL can be used at other PSC with SPL. Furthermore, the relation of SPM with SPL is not extensively
elaborated in scientific literature which makes it rather exciting combination of topics. After this
research, a step is put towards SPM for SPL as the product management processes gets evaluated for
SPL. Finally, this master thesis is another validation of the SPM Competence model and the maturity
matrix (Bekkers et al., 2010a).

6

Practical contribution
The main practical contribution is the knowledge and advice on how to structure SPM processes for
SPL developments for the case company. Under SPM processes we understand the SPM business
functions and focus areas as defined by the SPM Competence model. This knowledge and advice is
given in the form of textual and graphical recommendations with the aim to maintain full control and
execute the processes according to a well-organized structure. As a result of performing the SPM
maturity matrix, the recommendation can be tailored according to the desires of the case company
through incremental improvements.

1.4 Terminology
During this master thesis research, the domain of Software Product Management is central and for
this reason some of the key terms are further explained, beforehand, in this section. The descriptions
and definitions used are most applicable for this research.
Ebert (2007) defined product management as “the discipline and role, which governs a product (or
solution or service) from its inception to the market/customer delivery in order to generate the
biggest possible value to the business”. In a later research Ebert (2009) adds that product
management covers all product life cycle phases.

SPM concerns the process of managing product software in a broad sense, as described above. Xu
and Brinkkemper (2005) defined product software as “a packaged configuration of software
components or a software-based service, with auxiliary materials, which is released for and traded in
a specific market.”

Clements and Northrop (1999) define a software product line as “a set of software-intensive systems
that share a common, managed feature set satisfying a particular market segment’s specific needs or
mission and that are developed from a common set of core assets in a prescribed way”. Both product
software and SPL has a market focus. However, SPL has a strong focus on using core assets to
develop product software. Another deviation is that SPL describes also the ‘way of developing’, i.e.
for instance “.. a common set of core assets in a prescribed way”.

As mentioned before, the SPM Competence model describes business functions, focus areas which
represent a grouped together set of relating capabilities. These are all presented in the SPM Maturity
Matrix. During this master thesis, often ‘SPM Competence model’ and ‘SPM Maturity Matrix’ are
used rather interchangeably, since the SPM Competence model is often the presentation to the
world and the SPM Maturity Matrix more the technical view backing the model up. The SPM
Competence model and SPM Maturity Matrix will be explained in detailed in the literature section.

1.5 Thesis structure
Below, we explained briefly how the structure of this thesis is organized.

Chapter 1 introduces the reader into the domain of SPM and SPL development in order to get
acquainted with the context of this research and the terminology. In chapter 2 we present the
research questions and discuss the methodology applied during this research. We also discuss the
validity issues. The literature study is presented in chapter 3. In chapter 4 we will process the
literature findings into useful concepts such as SPL-practices and SPL-activities. The expert evaluation
of the useful concepts is presented in chapter 5. In chapter 6 we process the feedback of the
evaluation and chapter 7 we present the case study. Chapter 8 we present the conclusion of this
research, the shortcoming and directions for future research.

7

2 Research approach

In this section we elaborate on the research triggers, the sub-research questions supporting the main
research question, the applied research method, and the validation of this research.

2.1 Research questions
Here, we briefly restate the main research question and introduce the sub-research questions:

 “How can product software companies structure their software product management processes
according to their product line development approach?”

Supporting the main research question is five sub-research questions presented below. By answering
these questions enough knowledge will be gained in order to answer the main research question.
Below, the sub-research questions are described and elaborated upon.

2.1.1 SRQ1

Which key practices can be identified in software product line developments, from a Software

Product Management perspective?

The basics of the subject (SPL) must be known in order to understand it. This means identifying the
key practices of SPL development. These practices serve to give proper knowledge on what SPL
actually is and how organizations practice it. Questions such as What is SPL? What is known on SPL
development? How is it performed? How does science describe this phenomenon? What is the
difference with standard product development (non-product line)? will be answered. However, the
focus lies on product management which means that the actual development process of the
software, the writing of the software code and the necessaries, is not included in this researched.

2.1.2 SRQ2

What different Software Product Line development situations can be distinguished that

influence product management processes?

The aim here is to identify the different situations (or contexts) in which SPL developments are
initiated. This can also be interpreted as the approach used to organize the managing processes
concerning development, such as different project types with different purposes (e.g. bug fixes
projects or new features implementation projects). The focus is on the influence that each of the
different development situations has on the product management processes (business functions,
focus areas, capabilities and situational factors).

The main challenge is to research what the circumstances are that triggers these SPL developments.
When does a PSC decide to start developing and Why (what is the motive)? What drives this
development? Is it business cases? Is it regular maintenance or bug fixing? Questions like these are
essential in this sub-question.

The findings of SRQ2 should be mapped to the SPM domain with the aim to present the influence
certain development situations (e.g. project types) have on the SPM/SPL processes. However, these
are less straight-forward compared to the SRQ1 findings, where similar concepts are compared. The
situation findings are expected to be information that represents different grouping of activities
which cannot be compared to any other grouping, since they simply do not exist in the SPM

8

Competence model, i.e. cross business functions groups of capabilities. For instance, with respect to
the Competence model this would imply that particular capabilities from different focus areas and
business functions are grouped. On the other hand the identified SPL development situations can
also be more elaborate than just a grouping of activities, which may lead to a more challenging
mapping task.

2.1.3 SRQ3

How can the obtained knowledge be used to structure Software Product Management for
product line developments?

The aim of this sub-research question is to present and apply the obtained knowledge on SPL, i.e.
SRQ1 findings (and SRQ2 findings), effectively. This means that the SRQ1 findings need to be applied
in such a manner that it can be consulted when structuring is needed, with respect to SPM for
product lines. The purpose of the obtained knowledge is similar to the information of the SPM
Competence Model; mainly to give knowledge on the important processes of product management
for SPL, in a structured manner.

2.1.4 SRQ4

How applicable is the Software Product Management Competence Model for software

product line development?

The aim is to find out to what extent the SPM Competence, and thus the Maturity Matrix, model
applicable is for SPL, since the model is being used as the reference for how we understand and deal
with SPM in this master thesis. Analysis of the SPL practices, i.e. SRQ1 findings, and comparison with
the SPM Competence model points out the possible commonalities and differences. Depending on
the commonalities and the differences and indication can be made on the degree of applicability of
the model for SPL. The greater the amount of the commonalities, the higher the applicability of the
model for SPL will be. In contrast, the greater the differences, the lower the applicability of the
model for SPL will be.

2.1.5 SRQ5

How can Product Software Companies use the gained knowledge to improve their Software

Product Line Development approach?

The aim is to be able use the gained knowledge in this research for other PSC in some way. This
means that while processing information in order to answer the previous sub-research questions,
other PSC has to be considered. The gained knowledge has to be made as common as possible and
less PSC-specific.

2.2 Research method
The methodology followed during this research is depicted in figure 2 in a Process-Deliverable
Diagram (PDD) (Weerd et al., 2009). PDD is used as a meta-modeling technique that is used by
situational method engineering where a process view and a deliverable view are presented. Figure 2
presents the processes as well as the deliverables of the processes performed.

9

Figure 2: The research Process-Deliverable Diagram Figure 2: The research Process-Deliverable Diagram

10

In performing this research, we employ Action Research as a research method. Baskerville (1999,
2004) describes Action Research (AR) as a method that aims to “solve current practical problems
while expanding scientific knowledge”. Henfridsson et al. (2007) adds to Baskerville description,
stating that the rationale of AR is that the researchers should support the practitioners in real-life
problem solving and whilst directly involved in the organizational change should be able to increase
scientific knowledge. This implies that AR strives to, collaboratively, improve understanding of a
phenomenon, improve professional practice, the practitioners and the situation it takes place in; and
whilst doing this to learn from the improvement process.

Participatory action research is distinguished by the additional characteristic involvement of the
practitioners as both subjects and co-researchers (Baskerville, 1999). "It is based on the Lewinian
proposition that causal inferences about the behavior of human beings are more likely to be valid
and enactable when the human beings in question participate in building and testing them" (Argyris
and Schön, 1991). Action science is distinguished by the additional characteristic of a central
emphasis on the spontaneous, tacit theories-in-use that participants bring to practice and research.
Action research aims for an understanding of a complex human process rather than prescribing a
universal social law.

The aim of this research is to engage in a real-world SPL development environment to be able to
understand and improve the practice thereof, from a SPM perspective. Hence, we chose AR to be
able to apply the SPM Maturity Matrix, and thus validate the SPM Competence model, in real-world
SPL situations. In addition, AR is one of the few valid research methods that can legitimately be
employed to study the process and effects of particular system developments approaches in human
organizations (Baskerville and Wood-Harper, 1996). In combination with AR, a case study is an ideal
approach when little theory is known on the subject (SPM for SPL) and the subject is broad and
complex (Dul & Hak, 2008). According to Yin (2009), case studies are relevant in the case of
explaining how certain phenomenon operates which is the case in this research.

When conducting AR, a sequence of steps has to be followed that is referred to as a cyclical process
that is usually guided by a lead-researcher (Baskerville, 1999). The steps that constitute AR can be
seen in figure 3 and these are:

1. Diagnosing
2. Action planning
3. Action taking
4. Evaluation
5. Specifying learning

Only the last step, Specify learning, is performed solely by the researcher. The other steps are
performed in (partial) collaboration with practitioners. In the following sub-sections each step is
elaborated upon.

 Figure 3: Action Research steps (Baskersville, 1999) Figure 3: Action Research steps (Baskersville, 1999)

11

2.2.1 Diagnosing

The Diagnosing step implies the identification of the fundamental issues that drives the
organization’s desire for change. This step entails a self-understanding of the issues the organization
is dealing with in a wholeness manner, i.e. not excluding possible related factors (Baskerville, 1999).

Parallel with the first steps of diagnosis, a literature study on the matters at stake (mostly SPM and
SPL) was initiated. The purpose of the literature study is to give the basic and extended theoretical
foundation necessary to engage in further steps of the research. For this research, the first steps of
diagnosis were the attendance (by the researcher) of certain meetings. The first was a ‘new-product-
development-project’ meeting to witness how the very first steps of a product development project
are taken. This was practically a brainstorm session between upper and lower-management
personnel, i.e. Business Development managers, Product managers and Technical managers. In
addition, the researcher also attended the monthly international product management meetings for
the same purposes, except it is for product development on international level implying a much
wider scope. This was similar for the progress product development meetings. These meetings gave
inside information of the product line development practice and its practitioners and the reasons and
desires for possible changes, as well as details that can be related to the SPM Competence model,
e.g. product roadmapping challenges, release planning not considering mandatory requirements and
issues in requirements organization. Document analysis also formed part of the diagnosis step.
Examples of documents are: presentations of new product developments (software and hardware),
product roadmaps, software budget allocation, international projects development, software
management processes, and more.

With all the information shared, some needed to be further explained by practitioners with specific
knowledge and expertise. The product manager pointed out the necessary experts (3) of whom the
researcher held interview sessions with, inspired by a semi-structured interview, i.e. a list (see
Appendix E1) with pointers grouped by categories on SPM and SPL developments was created that
was discussed during the interview. The interviews were divided into, one regarding software
development from a parallel development perspective, and two regarding software development
from a product development perspective.
The SPM Competence model was globally explained to all the practitioners. As mentioned previously,
some practitioners and product managers followed a professional SPM course; they were familiar
with the model and other could have, partially, related to it in their daily tasks. However, the SPM
Competence model was seen as the ideal situation and that the practitioners and their practice
would have to improve significantly in order to reach most of the competences proposed by the SPM
Competence model.

From the diagnosis step the researcher was able to create the complete product portfolio, generic
system architecture and the developing product lines at the organization. These added to the
fundamental understanding needed. Table 1 gives an overview of the activities performed in the first
step of AR and the deliverables they resulted in.

Table 1: Activities and Deliverables of Diagnosing step of Action Research (Baskerville, 1999)

Activity Deliverable

New product development meetings Complete Product Portfolio, Generic system
architecture, Product Lines overview. International product management meetings

Monthly progress product development meetings

Document analysis

Expert interviews Detailed information on the Custom Parallel
Development and Issues definition

12

Table 2 presents the issues that were identified during the diagnosis step, regarding the
organizational desire for change. Some of these issues are described under the business function
(The SPM Competence Model) which they resemble most. The other types of issues that were also
identified were more project management, organizational or technical –related. These are described
under ‘Diverse’.

Table 2: Identified issues defined.

Business function Issue description

Requirements management Customer requirements are left out from major releases. This point
out that communication of the release definition is not validated
properly, meaning a re-confirmation of the (prioritized)
requirements that will be implemented in the next release.

Requirements management Not all the stakeholders are connected to the requirements
management system (JIRA), i.e. the stakeholders that are responsible
for new functionalities for the products. Stakeholders using the
system, development and maintenance departments, benefit from
more requirements management possibilities, such as requirements
lifecycle management. Hence, communication of requirements is
troubled at times.

Requirements management

Some market requirements are not (properly) translated to product
requirements. This makes it vague for development to understand
what has to be implemented, the purpose of the requirement. In
addition, these vague requirements are included in the planning and
roadmap. By the time it gets to development, they are under-
specified and not feasible.

Release planning Defining the next release, i.e. prioritizing happens poorly and making
a selection which requirements will be implemented in the next
release becomes even more challenging (to reach an agreement).
Due to limited engineering capacity and budget allocation, not all
requirements from all stakeholders can be in the next release. In
addition, usually development finds the release definition difficult to
realize given the time they have to deliver.

Product planning Current roadmaps of the case company give little certainty that the
products will be delivered on the planned time. Currently, the
roadmaps include products that are hardly feasible (time-to-market)
and it should be more transparent (better estimations and
specifications). In addition, if the product planning/roadmapping is
more accurate (it’s clear what features and what product has to be
developed), then requirements management and release planning
are easier performed.

“For instance, when you communicate the roadmap to Account
managers, they have to know when products are coming out with
what features in order to sell, which means the actual product have
to be delivered or customers are not satisfied and that can bring
issues and a bad image for the case company”.

Portfolio management Partnering with the supplier can be better. The case company wants
knowledge on future products that will be brought out by the
supplier. This is beneficial, since the case company can plan
development ahead. At the moment, the case company approach
towards its supplier is quite passive. However, products that the
supplier will no longer develop or support anymore are properly
communicated.

13

Diverse Issue description

Software architecture not structured
efficiently

The software architecture is in such a way currently, that what
should be relatively easy modifications require software code from
multiple modules to be altered. This takes development substantial
amount of extra time. In addition, the architecture also limits
development possibilities.

Release definition cost too much time The cause is that practitioners that are dealing with long term issues
are burden with short-term issues that management finds have
higher priority, at that time. In addition, the long term issues are
postponed and it piles up making it harder to decide on certain
issues. Mostly, this boils down to deciding which requirements to
implement in strategic developments, i.e. major product releases
with the intention to possibly penetrate a new market.

Merging existing products in main
product line

The plan is to have fewer product lines with the different product
variants under it. Merging the ‘loose’ products from each country
(stakeholders) in main product lines is a great challenge, since from
each stakeholder generic software needs to be extracted and
implemented in the main tree without conflicting with other
products from other stakeholders. Next, product-specific software
code needs to be distinguished the products from one another.

2.2.2 Action planning

In the Action planning step, the collaborative work starts between the researcher and the
practitioners in the real-world practice. This step entails specifying actions or activities, on
organizational level, that would be candidate for solving or improving the fundamental issues
(Baskerville, 1999). The specified actions are planned according to the desired future state of the
organization, the target, and according to an approach that fits the organization best.

The collaboration started between the researcher and the product manager of the Marketing & Sales
department. In order to fully comprehend the organization and its way of working, regarding SPM
and SPL development, bi-weekly sessions were held where the researcher and the product manager
discussed the theory (preliminary results of the literature study and document analysis), the current
issues and the pragmatic solution applied by the organization.

As a result, it became clear that the organization employ a self-created development approach, so-
called ‘Parallel Development’, which allows multiple developments to take place in parallel. This
parallel development is something to take into consideration for the SPM Maturity Matrix, since
experts mentioned that each development ‘stream’ has its own characteristics and limitations.
Consequently, the literature study was extended to also include product development situations or
contexts (project types or ‘streams’). These product development situations would have influence on
the structuring of the SPM processes.

The SPM Competence model together with the Maturity Matrix were discussed (real world
examples) with the product manager as an assessment tool to be applied at the organization (the
action). The Maturity Matrix would clarify the current levels of the software management processes,
according to the SPM Competence model. Knowing the current state will act as a starting point for
the desirable organizational change, with respect to structuring and improving the SPM processes.
However, the focus on SPL cannot be excluded. Hence, a proposed course of action of a SPM
Maturity Matrix dedicated on SPL (section 2.2) was confirmed as a plausible solution by the product

14

manager. This SPM Product Line (PL) Maturity Matrix would give expert knowledge on specific SPL
product management practices.

The application of the SPM Maturity Matrix would take place in the form of interviews. In order to
get a total and reliable response, multiple perspectives were needed. The researcher discussed this
with the product manager and came to the solution that the expertise of certain practitioners was
not to be missed. This implied that experts from different departments were involved to complete
the interview with the purpose that all the all the expertise needed were included in the research.
The included departments were:

Table 3: Selected practitioners for interview.

Practitioner Department Function

P1G Marketing & Sales Business development manager: responsible for creating business
with (new) customers

P2M Marketing & Sales Product manager: responsible for creating business with dedicated
focus on product management

P3A Product development Project manager: responsible for product development projects

P4G Product development Product development manager: responsible for specialized products
development projects

P5A Product development Senior architect: responsible for most system architectures and vital
components such as Security.

P6J Maintenance Product quality manager: responsible for product quality aspects and
requirements

P7R Maintenance Product manager: responsible for products’ maintenance and fixing in
the field

P8B Maintenance Product quality manager: responsible for product quality aspects and
requirements

Firstly, the literature results on SPL-practices would need to be inspected to identify practices that
are related to SPM. Secondly, the selection of the identified practices that relate to SPM need to be
mapped to the SPM Competence Model, i.e. business function, focus area and capability. These
practices can then be either a similarity or a difference, in which they are then candidates for
improvement for in the SPM Maturity Matrix. Thirdly, evaluation of the matrix is needed before
applying it at the organization. Once evaluated and the necessary changes has been made, the SPM
Maturity Matrix with SPL-practices can be applied at the organization and the assessment includes
both the original SPM and the SPL specific practices. The results of both assessments can be
compared during analysis and used for recommendation.

Table 3 gives an overview of the activities performed in the Action Planning step of AR in this
research. The meetings introduced in the Diagnosing step, continued in the Action Planning step as
well. However, completely new deliverables were not necessary. Table 3 also gives an overview on
the decided planned activities that have purpose to achieve the desired organizational state.

Table 4: (Planned) Activities and Deliverables of Action Planning step of Action Research (Baskerville, 1999)

Activity Deliverable

Meetings from Diagnosing step -

Literature study SPL-practices and SPL development situations.

Bi-weekly discussion session Feedback, practical information, and discussion and
decision-making on plausible actions for change.

15

Planned activity Deliverable

SPL-practices identification of SPM relation Commonalities and differences with the SPM
Competence Model

SPL-practices mapping SPM Product Line Maturity Matrix

Application of SPM Maturity Matrix Current SPM Maturity profile

Evaluation of SPM PL capabilities Expert evaluated SPM PL capabilities

Application of SPM PL Maturity Matrix SPM PL Maturity profile

2.2.3 Action taking

In this step, the actions planned previously are implemented. The researcher and the involved
practitioners collaborate as needed for this step.

The actions planned are put into action:

 SPL-practices identification of SPM relation
The literature results on SPL-practices are investigated to find possible relation to SPM, since this
is the main focus of the research. The essential actions of each SPL-practice are registered in a
similar way that the SPM Capabilities are so these two can be compared easier. Software product
lines are a broad topic, as can be seen in literature of previous researches. However, in this
research we are interested in the product management related practices of software product
lines. Therefore, we are interested in the SPL-practices that can be related to the SPM. Once the
relation is known, i.e. there is a relation so it can be mapped or no relation is identified (e.g. too
development related) and it cannot be used in this research. See chapter 4 for further
explanation.

 SPL-practices mapping
The identified SPL-practices are mapped as similarities, candidate improvements or neutral.
Similarities are SPL-practices that are similar to the concepts (business function, focus area or
capability) described in the SPM Maturity Matrix. Candidate improvements are SPL-practices that
are product management related with specific link to SPL. Neutral SPL-practices are nor a
convincing similarity nor a convincing candidate improvement. The candidate improvements get
the most interest, since they bring specific product line knowledge into the maturity matrix. See
chapter 4 for further explanation.

 Application of SPM Maturity Matrix
The SPM Maturity Matrix assesses the current SPM maturity at the case company. Practitioners
from 3 different departments are interviewed in order to cover input from all expertise areas. The
result (SPM maturity profile) shows where the case company is excelling in its SPM processes and
where it is performing less. The SPM maturity profile will be compared with the SPM maturity
profile from the SPLM Maturity Matrix. See chapter 6 for further explanation.

 Evaluation of SPLM Maturity Matrix
The mapped SPL-practices have to be evaluated before being implemented in the maturity matrix.
For the evaluation, only the candidate improvements were used, since these are possible
additions to the matrix. The candidate improvements are presented as SPM product line
capabilities in a questionnaire. The questionnaire will be sent to product line experts abroad who
gave their opinion on the usefulness of PL-capabilities. Based on the evaluation feedback, PL-
capabilities were, rewritten, implemented in the SPM Maturity Matrix or discarded. See chapter 4
for further explanation.

 Application of SPLM Maturity Matrix

16

Similar to the way the original SPM Maturity Matrix, the SPLM Maturity Matrix is performed. The
same practitioners from the same departments were interviewed again this time with the
difference of the presence of the PL-capabilities. See chapter 7 for further explanation.

2.2.4 Evaluation

The evaluation step enquires whether the implemented actions were the lone cause for solving the
organizational issues and not regular or routine actions of the organization, i.e. where the implement
actions were successful. Where the implemented action was not successful, notations have to be
made on the corresponding action and issues for the next AR cycle.

The researcher and the practitioners evaluate the results of the actions taken, collaboratively (the
implemented SPL-capabilities). This entails confirming whether the SPL-capabilities would have
impact on the desired organizational changes in a positive manner. Each SPL-capability is discussed
one-on-one between researcher and practitioner. Next to the SPL-capability being implemented or
not, it is discussed whether it would be useful for the case company and in which context. This
follows the expert evaluation of the SPL-capabilities before implementation into the maturity matrix.
Since actual organizational changes cannot be implemented by the researcher, this is the best
possible form of evaluation obtainable on the to-be implemented changes. Recommendations based
on the results of the Maturity matrices will presented to the case company.

2.2.5 Specifying learning

While the five steps of AR have a cyclical nature. The step ‘Specifying learning’ is an ongoing process
(Baskerville, 1999). The researcher takes the evaluation of the previous step and analyzes the data
and content gained.

The analysis involves identifying and marking interesting sections in the data, mainly on the SPM
Maturity matrices and feedback on the SPL-capabilities. Explicit or concealed sections would be
candidate parts to be declared as lessons learnt, focusing on a more general organizational and a
scientific perspective. Whether the actions were successful or not, gained knowledge can be used for
structuring organizational standards, with respect to SPM and SPL. Where the actions were
unsuccessful, the additional knowledge that is gained can be used as input for the Diagnosing step
and further Action planning with more specific focus and aim to be more successful. Unfortunately, a
second AR cycle is not feasible during this research. See chapter 8 for further elaboration.

2.3 Validity

Conducting this research, we considered the four validity threats as described by Wohlin et al.
(2012). The validity threats are applied to the research in general and more specifically on the case
study at an organization. Dul & Hak (2007) defined a case study as ‘a study in which (a) one case
(single case study) or a small number of cases (comparative case study) in their real life context are
selected, and (b) scores obtained from these cases are analyzed in a qualitative manner’. A case study
is used especially when a phenomenon, in this case SPM for product lines, still needs investigation on
the boundaries of the objects of the study and the context of the study. Hence, Action Research is
combined with a case study. Below, we elaborate more on the validity threats.

2.3.1 Conclusion validity

The conclusion validity is concerned with the ability to draw accurate conclusions. A part of
conclusion validity regards statistical aspects which are not relevant for this research. Regarding the

17

interviews sessions, these were conducted in one uninterrupted session between researcher and
practitioner. The occasion was informal in order to prevent any kind of pressure on the practitioner,
however the researcher prevented the focus of the interview to deviate to other less related topics.
In addition, no discussion with a third party was possible that could have influence the interview.
However, it is possible that in between the two interview sessions of the SPM Maturity Matrix and
the interview sessions of the PL Maturity Matrix practitioners discussed their opinion with one
another. This is challenging to prevent.

Measurement validity was covered by the interview instrument, i.e. the maturity matrices. Some of
the posed questions were semi-closed (three optional answers possible), however, the majority was
closed questions with a possibility to give a rationale on the question asked. The instrument ensures
that meaningful data is collected regarding the ideas contained by the practitioners regarding the
corresponding concepts, e.g. focus area or SPM capability.

To ensure understanding and quality of the interview setting and instrument, a pilot was performed
with the product manager responsible for the selection of the subjects. The interview started with an
introduction on what the aim was an example questions were showed where after the actual
questions started. This procedure was completed in the same way with every practitioner. The
location was also kept the same, i.e. the same meeting room was used for all interviews which
alleviates the issue of irrelevancies.

2.3.2 Construct validity

Construct validity is concerned with the relation between theories behind the research and the
observations made during the research.

By using eight different subjects representing 6 different roles, the issue of mono-operation bias was
alleviated. Mono-operation bias is when the research includes only a single independent variable,
case, subject or treatment (Wohlin et al., 2012). This causes the main construct of the research to be
under-represented. However, the issue of mono-method bias remains. The main method used for
measuring was interviews. After the pilot, it was clear that even though questions were (semi)
closed, practitioners will have the need to explain their answer. This possibility was implemented in
the instrument. For every answer, the rationale can be used for cross-checking the answers with
other practitioners.

The introduction of the topic ‘Product Line Architecture’ brought a threat with it. One respondent
mentioned in the questionnaire that he had no experience with the topic and therefore could not
answer the corresponding questions In the second interviews session only 2 (of the 8) practitioners
had good knowledge about and experience with. This implies that Product Line Architecture is the
topic with least evaluation compared to the other capabilities.

The guarantee of complete anonymity alleviates the issue of evaluation apprehension, i.e. their
answers was only going to be accessed by the researcher and not showed or discussed with other
practitioners. It was made clear to the practitioners that their purpose was to give input purely on
their knowledge and experience and to simply mention if they do not know or are not sure about
their answers.

2.3.3 Internal validity

The internal validity threats are related to issues that may affect the causal relationship between
treatment and outcome. The time difference between interviews of the SPM Maturity Matrix and the
SPM PL Maturity Matrix is nine - ten months. A difference in awareness was noticed, namely the
interviewees were more aware of their own responsibility and daily tasks regarding product
management. Within departments some improvements in process structuring was taking place. This

18

rather small change would have not been noticed if the time between the interviews of the maturity
matrices were less, e.g. two – three months.

The interviews were all conducted using the same instrument, i.e. the SPM Maturity Matrix and the
SPM PL Maturity Matrix. The PL version is an extension from the original SPM Maturity Matrix, which
has been used in various organizations (Bekkers & Weerd, 2010), which alleviates the threat of
instrumentation. Both are represented in a Microsoft Excel sheet. The difference is that the PL
maturity matrix has the PL-capabilities. The results of the first interview sessions (SPM Maturity
Matrix) were not discussed with the interviewees in order to prevent unintended learning. The first
interviews session took place in a random order, i.e. as the practitioners were available. For the
second interviews session, we planned to have the same order as the first session. Unfortunately,
due to time limitations and busy schedules of the practitioners this could not happen. In return, the
practitioners were interviewed as they were available. The main reason for this was to prevent
practitioners to inform one another (unintended learning) and have the exact same circumstances as
the first interviews session. However, one subject (interviewee) showed some signs of maturation
threats during the first interviews session; the subject was getting tired. This was covered with a
bathroom and coffee break. Moreover, the second interviews session were kept shorter by focusing
on the PL-capabilities, all under 60 minutes, in order to prevent maturation.

2.3.4 External validity

External validity concerns the ability to generalize the results of the research (Wohlin et al., 2012). In
this case, this is the applicability of the PL Maturity Matrix in organizations other than the case
company. The essence of qualitative research, i.e. more concerned with understanding and
explaining the phenomena at stake, makes it impossible for complete replication since identical
circumstances can hardly be recreated nor there is no population to generalize to. In order to have
more generalizable results, multiple case studies should have been performed in similar context and
circumstances as at the case company. However, some of the triggers of the research are recognized
at other organizations. This is noticed through the PL-capabilities questionnaire that was received
from the expert organizations responsible for the evaluation of the PL-capabilities. Some responses
are very similar to that of the case company. Since the questionnaire is filled in by three experts from
two distinct organizations, it is not enough to adequately apply the results of this research to other
organizations. However, the PL-capabilities are firstly described from multiple existing literatures
covering various researches at various organizations in order to keep the description as general as
possible. After evaluation, some PL-capabilities are rewritten accordingly. In addition, between the
case company and the expert organizations little to some differences can be noted.

As for the interviews for the SPM (PL) Maturity Matrices, different practitioners, covering the
business functions and focus areas, from different departments are selected in order to receive the
proper input based on their expertise and knowledge. The interviews’ setting is identical for each
interviewee.

External validity has a relation with reliability. The reliability of a research refers to the ability of
reproducing the results. Taking the participation aspects of AR into consideration (situational and
context bound), it can be stated that given any organizational situation at a particular time, with its
particular participants having their own individual or shared opinions, may be unique, it cannot be
guaranteed that results can be made richly meaningful to people in other situations (Checkland et al.,
1998). However, by properly describing the recoverability of the results (epistemology), the content
of the research can be more recovered and it will justify the extent of generalization of the results of
AR. This is achieved by stating ‘the epistemology (the set of ideas and the process in which they are
used methodologically) by means of which they will make sense of their research and define in that
matter counts for them as acquired knowledge’ (Checkland et al., 1998). This is covered by the steps
of AR and the documenting thereof. Each step is described how it is performed with its deliverables

19

in this research. Mainly through the last step of AR, Specifying learning, the results regarding
knowledge gaining is covered. The evaluation on the successful and not successful implemented
actions is used as source for acquiring knowledge. Whilst the successful implemented actions will
account for acquired knowledge on an organizational level, i.e. the knowledge can be meaningful for
other organizations, the unsuccessful implemented actions will account for acquired knowledge that
will be needed as input for the Diagnosis and Action planning steps of the next AR cycle, i.e. future
research.

20

3 Related literature

In this section, we elaborate in detail on the results of the literature study mentioned previously as
well as literature relevant to this research. The content of this section is presented in such a way that
the more global subjects are explained first and the more dedicated subjects are explained
thereafter. First, we elaborate on how the literature was gathered and selected before we used it for
the research.

Literature gathering
Literature on SPM forms the foundation for this research as this research takes SPM as described by
the SPM Competence Model. The other part of literature is regarding SPL. Literature on SPL was
gathered through online academic search engines, mainly Google Scholar (also Omega and Citeseer).
The main keywords used for the search were: Software product lines, Software product lines
management, Software product family, Software product family management, Product management
Software product lines, Software product lines life cycle, Product line management, Product family
management, Software product management for product lines, Product management and product
lines, and other combinations. Another topic that was included into this research was on Software
product line development situations. The case company had interest to know how software
development situations can influence SPM processes, e.g. Time-to-Market development projects or
Maintenance development projects.

 A great amount of the keywords yielded the same results. Literature was gathered based on: title,
citations, short description and where it was published. The titles of the most related literature were
equal to the keywords. However, the less related literature had vague titles and not similar to the
keywords searched for. Here, the short description was useful, citing three lines of the literature.
Besides a relevant title, citations show how popular the literature is. Relevant literature was gathered
that had 15 citations or more. Journal, conference and workshop literature had preference in that
order to be gathered. White-papers or literature that was not published were not collected. Based on
these gathering criteria’s a total of 71 papers were gathered.

Literature selection
Once literature was gathered it was time to process it and discard literature that was irrelevant.
Literature was mostly selected based on the Abstract, Introduction and Conclusion of the paper.
These three sections give a sufficient enough overview to assess whether the literature is proper for
the research or not. Papers that were not clear after those three sections were read in more detailed
as needed. A total of 56 papers were selected (15 discarded). Literature that was deviating too much
to embedded systems and design as well as non-information system related products were not
selected. Exceptions were made for SPL Development situations, since this was very difficult to find
purely based on software. Most found literature regarding this topic was too focused on Project
Management and business-related. Literature that was published prior to 1990 was also no selected
for the timespan and evolution of information systems from then to present.

Below, we firstly present literature on SPM as defined by the SPM Competence Model, since this
constitutes the foundation of this research. Secondly, we present literature on SPL. These are the
literature most relevant for this research, with respect to SPM, and common in the literature base as
multiple authors have researched similar topics. Thirdly, we present literature on software
development situations and organizational structures we found most useful.

3.1 Software Product Management
Software product management (SPM) is the main knowledge domain within this research. Weerd et
al. (2006) state that SPM is getting more and more dedication in product software companies,

21

especially with the competitive software markets of nowadays that demand skilled and proficient
product management for a product to be successful, e.g. Microsoft (Cunsumano et al., 1995).
However, traditional product management has been of strong strategic importance for decades,
especially in the manufacturing sector (Kilpi, 1997). SPM has its advantages in contrary to traditional
product management, e.g. software can easily be copied and sold when it comes to manufacturing
and distributing with no extra costs for the product software company (Cunsumano, 2004). On the
other hand, disadvantages also exist, e.g. the requirements management of software is far more
challenging with a higher release frequency for new product versions compared to non-software
products.

In these last decades a shift in the global software market has emerged, i.e. a movement from
customized software products to standardized software products (Weerd et al., 2006). It is because
of this movement that the need for a new function has emerged; the software product manager. In
contradictory to the rising interest and importance of SPM, not enough scientific or reference body
of knowledge, literature or practical guidance exists regarding this subject (Ebert, 2009; Bekkers et
al., 2010a). The consequences of practicing product management inadequately can impact the
organization and business noticeably. Ebert (2009) has identified how poor product management can
result in tangible problems by investigating the root causes. These tangible problems are:

 Wrong content

 Rework

 Delays, overhead

 Scope creep

These problems form a vicious circle: changes that need rework causes delays and challenges
deadlines which in turn put pressure on the scope and so forth. The tangible problems can be
spotted by early development project symptoms (Ebert, 2009):

 Conflicts of interest

 Unexpected dependencies between components

 Unclear cost/benefit

 Incoherent set of requirements.

These early project symptoms originate from root causes such as: vague vision and strategy, not
integrated key stakeholders, unclear needs, not evaluated business case and unknown project
boundaries. Consequences caused by these root causes are that customers are not satisfied with late
products or products not satisfying their needs. This translates to a particular market not being fed
what it needs, which has impact on the business, i.e. late product on the market equals discontent
customers which equals decrease in sales turnover. Ebert (2009) states that these root causes are to
be fixed, instead of trying to resolve the tangible problems or the early project symptoms of poor
product management. Proper product management includes and guides activities such as portfolio
management, product release life cycle and planning, requirements definition, product marketing
and development, etc. These skills and competences adhere to the function of product manager and
when executed properly equal the success of a product. Above all, assuring a winning business case is
one of the most important aspects for the success of a product (Ebert, 2006).

3.1.1 Software Management Competence Model (SPM Competence model)

Software Product Management is a complex discipline and research area (Ebert, 2006; Weerd, 2009;
Bekkers et al, 2010): it involves a great span of activities, immense amount of information to gather,
analyze and make decisions upon, many responsibilities as a product manager and various
stakeholders to take into account. These complexities drew Weerd et al. (2006a) towards the
creation of a reference framework for SPM where the core is based on the software product in a
hierarchical manner. Its purpose is to aid product managers with their daily practices. The reference

22

framework is the outcome of extensive literature studies as well as field studies (interviews and case
studies) with primarily product managers at a major software vendor (Weerd et al, 2006a). This
reference framework for SPM has been evaluated, which led to significant improvements and is
reborn as The SPM Competence Model (Bekkers et al., 2010a).

As mentioned before, the structure of SPM Competence Model is presented in a hierarchical way,
depicted in figure 4. On top, the Product Portfolio of the organization is represented and this is the
complete collection of the products. For small organizations this is might be just one product,
whereas larger organizations typically have multiple products usually due to product derivation. Each
product in the portfolio can have various releases that are results of, for instance, bug fixes, new
features, major architectural changes, etc. At the bottom, each product release consists of a
combination of selected requirements. Each requirement adds to the functional or technical features
of the product. Quality requirements such as performance, reliability or maintainability are also
considered.

According to Dver (2003), adequate SPM is in fact a matter of organizing processes related to
products, releases and requirements appropriately. The SPM Competence model (figure 1) gives an
overview all the important processes areas in the SPM field. These important processes areas, called
Business Functions, are Portfolio management, Product planning, Release planning and
Requirements management. Each business function consists of several ‘smaller’ areas, called Focus
Areas, of which each represents a strongly coherent group of capabilities. Another essential part of
the SPM Competence model is the representation of the stakeholders, internal and external. Internal
stakeholders are: Company board, departments of Sales, Marketing, Research & Innovation,
Development, Support and services. Note that the Development department does not include
development activities. However, Development serves as input for the SPM process areas. The
external stakeholders are: the Market, Customers and Business partners. The arrows in the SPM
Competence model indicate existing interaction between the different stakeholders, strong
interactions between the adjacent business functions and the main flow of information and process
between the focus areas. In the following sections, each business function with its corresponding
focus areas is further explained.

3.1.1.1 Portfolio management

Portfolio management concerns the complete product portfolio of an organization and the strategic
information gathering and decision making process thereof (Bekkers et al., 2010a; Weerd, 2009).
Cooper et al. (2001) define portfolio management as “a dynamic decision process, whereby a
business’s list of active new product (and Research & Developmet) projects is constantly up-dated
and revised; new projects are evaluated, selected and prioritized; existing projects may be
accelerated, killed or de-prioritized; and resources are allocated and reallocated to the active
projects.” In doing so, the risks of possible project failing is spread and projects are less vulnerable.

Figure 4: Artifact hierarchy of product management. Figure 4: Artifact hierarchy of product management.

23

Furthermore, Cooper et al. (2001) explains that the ultimate goal of Portfolio management is to
increase the value of the portfolio as a whole. The long-term success of product-oriented software
organizations is highly dependent on effective portfolio management, i.e. the on-going process of
defining, evaluating and prioritizing the set of existing and future product development activities
(Vähäniitty, 2004). Various methods exist and are used in the industry to assess the current portfolio
and possibilities to improve. However, the most popular portfolio methods yield the poorest results
(Vähäniitty, 2004). For instance, financial methods (Return on Investment, Net Present Value, Break
even, and more) are the most popular portfolio methods in the industry. This is not unexpected,
since financial reasons are most important for proper portfolio management (Vähäniitty, 2004).
However, financial portfolio methods do not yield the best results. As a consequence, organizations
often use multiple portfolio methods in order to yield better, more trustworthy results.

The focus areas identified for Portfolio management are (Bekkers et al., 2010a; Weerd, 2009):

 Market analysis
This focus area gathers market(s) information that is needed to support decision-making on the
product portfolio of the software organization. When performing a market research it is
important to define and focus on what you really want to know by means of a main research
question. This main research question can be split in multiple sub-parts in order to make it
easier to answer and more profound. Market research can be performed through different
techniques. For instance: Industry analysis is dedicated research on a particular market or
industry, Political Economic Social Technological (PEST) analysis is often used in combination
with the SWOT analysis and is used to determine an organization’s environment it operates in,
Value proposition is an offer that presents the benefits a product promises to deliver in terms of
quantity and Product positioning is a technique where products are compared with those of the
competitors in order to know how each product is performing on the competing level.

 Product lifecycle management
Information is gathered regarding products’ life and significant changes. This information serves
as input on key decision-making across the entire product portfolio such as the portfolio
meeting the strategic business goals and needed changes to gain competitive advantage. More
specifically, product lifecycle management deals with key-decision making from the initial
conception of the product till it is phased out and has reached an end-of-life: decisions on which
features to realize, decisions on release of products, modifications and improvements on
products, diversification into new markets and phasing out products. The essence is to manage a
product through its life cycle in order for it to become successful and brings in money for the
organization. The typical life cycle of a product goes through the following stages: Initiate,
Design, Build, Test & Integration, Release, Evolution and Phase out. Note that after the release
of a product the life cycle is not completed. However, the stages Evolution and Phase out
represent the products performance in the field that implies product evolution through various
releases until it reaches a systematic end-of-life, i.e. Phase out stage. Another interesting way to
look at product life cycle is from an economic interpretation, which includes the stages:
Incubation, Growth, Maturity, Decline, End-of-life. This is a typical curve where costs in the first
stage (after Incubation) should be minimized and revenue in the later phases (from Growth on)
should be maximized. Note, this curve can deviate depending on the product and industry.

 Partnering & contracting
The core of this focus area concerns with establishing partnerships, pricing models and
distribution aspects in which the product manager plays a key role. Partnerships can be
established with different types of partners: implementation partners install the software
product by the customers and provide support or eventual trainings, developing partners
develop product components, e.g. add-ons or plug-ins and distribution partners sell the software
product. As a software product is an intangible asset (intellectual property), which consists of
human knowledge, it needs to have a specific legal form for both protection and for the balance
sheet as it is responsible for income. Intellectual property can have the following forms in a

24

software organization: Copyright is the exclusive right of the creator or obtainer to publish and
distribute the work, Trade Secret/Know how concerns crucial knowledge related to business that
can relate to products, processes, customers or way or working in the organization, Trademark
is the exclusive right to utilize an expression of art or science in order to distinguish a character
and establish a reputation and Patents is the exclusive right to exploit an invention and is issued
by the national government authority.

3.1.1.2 Product planning

The core of Product planning is to gather the information for, and, the creation of the product
roadmap, product line and/or its core assets as well as the process to manage all the product
releases. (Bekkers et al, 2010a). Roadmapping, as it is referred to in software organizations, is
traditionally called long-term product planning in the manufacturing industry and has been applied
longer in this industry (Lehtola et al., 2009). However, the concept is less mature and researched in
the software industry. Furthermore, roadmapping can be defined as a flexible technique that
supports strategic and long-term planning and its goal is to investigate and communicate the linkage
of markets, products and technologies over a period of time. Vähäniitty et al. (2002) describes
roadmapping as “a popular metaphor for planning and portraying the use of scientific and
technological resources, elements and their structural relationships over a period of time”. In
addition, the roadmapping process identifies, evaluates and selects strategic decisions to support
achieving goals. The visual representation of roadmapping depicts the development, product release
schedule, the supporting technology and the planned allocated resources (Vähäniitty et al., 2002).
Rautiainen et al. (2006) identified three key values of long-term product planning (roadmapping), all
of which should be addressed equally in order to gain the success of long-term planning: 1)Intent,
supports coordinating complex activities; 2)Clarity, explanation of the direction of the Intent; 3)
Awareness, supports short-term decision making and trade-offs.

The focus areas identified for Product planning are (Bekkers et al., 2010a; Weerd, 2009):

 Roadmap intelligence
This focus area concerns the global information on markets, competitors and technologies,
excluding requirements in Requirements management and in Release planning. The information
should be presented in an abstract manner and is essential to the creation of the roadmap
which supports decision-making by management. A wise starting point to gain intelligence for
the roadmap is a Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis (Weerd &
Brinkkemper, 2010). The focus of a SWOT analysis is to identify connections on the points of
each quadrant what are the best actions to take (Hill, 1997). Other types of intelligence also are
of essence for the roadmap, such as Market intelligence, Society intelligence, Technology
intelligence, Competitor intelligence and Partner intelligence.

 Product roadmapping
Based on the information that is gathered, the actual roadmap is created. The organizations
strategy and the product life cycle also serve as input. Roapmaps can be created for the short-
term, up to two years, or for the long-term, three or more years (Weerd & Brinkkemper, 2010).
According to Phaal et al.(2004), creating roadmaps can range from two extremes, namely
technology push (divergent and looking for opportunities) and market pull (focused on customer
defined product). The essence of the roadmap is to represent some type of a time-based chart,
composed of various layers such as a product, commercial and technological perspective that is
clear for management to make strategic decisions. An example of roadmapping is the
technology roadmap which is serving as a technique to assist the planning and management of
technology in relation to the other perspectives. This is critical since it assist in technological
decision-making for management.

 Core asset roadmapping

25

Core assets are components that are shared by and in multiple products. This is usually the case
with product lines (Northrop, 2002). Core asset roadmapping concerns mainly the planning of
the development of existing core assets as well as future core assets (Bekkers et al, 2010a). Core
assets imply a strong focus on reusability. This means a well-organized and transparent
administration of core assets; systematic identification of core assets throughout the
organizations products and main deliverables, registration and stored in a central location. This
also makes it easier for maintenance of the core assets. In addition, core asset roadmapping can
give insight on make-or-buy decision. Creating core assets roadmaps give insight on existing and
future core assets, how these will evolve in time and provides information on product evolution.
Examples of core assets are: software architecture, software driver, graphical user interface,
business logic modules, test scripts, etc.

3.1.1.3 Release planning

This business function takes care of the process that creates and launches a product release
successfully (Bekkers et al., 2010a). This means that Release planning manages the requirements set
of each release in order to plan and launch the release. Van der Hoek (1997) defined Release
planning as the process “through which software is made available to, and obtained by, its users”. In
market-driven software development, release planning is seen as one of the most critical tasks:
selecting the right subset of requirements for implementation can mean the success of a software
product (Carlshamre, 2002). Having a well-organized release planning process has added value for
the organization. This helps keeping all stakeholders up-to-date on the future release, which implies
an improvement for over all communication (Customers, Business partners, Development, etc.). It
also makes decision-making less complex by communicating the right information to all stakeholders.
The heartbeat principle clarifies the process of defining the release plan by sharing the knowledge
(date and release in advance) of the release company wide and for the stakeholders. A heartbeat
implies that the software organization has an agreed upon frequency on which releases are launched
(Weerd & Brinkkemper, 2010), e.g. twice per year or once a quarter. Jansen & Brinkkemper (2006)
distinguished different types of release updates, called update package. Update packages aims to
improve the customers’ current configuration and differ from updating the configuration intensively
(major update such as bug fixes, new functionalities, architecture) to smaller updates (small updates
such as bug fixes) and combination between those two.

The focus areas identified for Release planning are (Bekkers et al., 2010a; Weerd, 2009):

 Requirements prioritization
Once all requirements are properly managed, the prioritization can start. Prioritizing the
requirements points out candidates requirements that should be realized in the next product
release and this is performed by the product manager and the (some of) other stakeholders.
There are various requirement prioritizing methods, varying in ease-of-use that has as goal to
identify the requirements that are of most value for the product. Organizations refer to this as
the business value of a requirement. Every organization uses the prioritization methods that
suits it best or its best practices. For instance, simple prioritization methods are MoSCoW (Ash,
2007) and Binary search list (Bebense et al., 2010) where requirements are prioritized by being
granted a ‘priority-identifier’ or ranked by which requirements are then sorted or a binary
search tree algorithm is used to rank the requirements, respectively. A more advanced method
is for instance Integer Linear programming (Akker et al., 2005) where the required development
time and/or effort and the estimated revenue of the requirements are considered for
prioritizing. QUPER (Svensson et al., 2011) is an example of a more advanced method for
prioritizing quality requirements by means of a cost-benefit analysis. Organizations often use
some of these methods in combination with others for better results (Carlshsmre, 2002).

 Release definition
The prioritized requirements (previous focus area) are selected, based on the priority they have

26

been assigned, and listed in the Release definition which will be used for implementation. The
Release definition is a document that describes the to-be implemented requirements as well as
the dependencies between those requirements of which the product manager is accountable
for.

 Release definition validation
The Release definition has to be validated before the actual realization is initiated. This is done
by the people who will actually perform the realization; usually this is the Development
department. The company board also has to approve the Release definition, based on existing
product roadmaps and if the needed resources are available.

 Scope change management
Scope changes can occur if for instance requirements are added or dropped, if resources are
limited or new market opportunities present during development of the release. Scope change
management takes care of the process that handles the scope changes that may appear during
the realization of the new release. It serves as a monitoring process of the to-be realized
requirements during development.

 Build validation
Once the new release is realized, by the Development department, it has to be validated before
it is made available to its users/customers. This procedure implies checking if all that was
decided in the Release definition is actually realized.

 Launch preparation
Finally, after the new release is validated it can be launched. This launch has to be
communicated to involved stakeholders. Challenges that the organization has to face are for
instance: communication of new product release features, new release documentation and
necessary preparations for the implementation of the new product release.

3.1.1.4 Requirements management

Requirements management is the business function that is responsible for the complete and
continuous management of requirements that are not yet included in a product release (Bekkers et
al., 2010a). Regnell et al. (2005) state that this is the on-going process of handling the content and
administrative data of each requirement, individually. In terms of activities, this translates to the
gathering, identifying and revising and organizing of incoming requirements, which represents the
focus areas of Requirements management. Whilst performing these activities, consideration needs to
be taken with dependencies, core assets, themes and product lines. The sources where these
requirements might originate are the internal and external stakeholders. The management of
requirements can be complex: some organization can have large amount of requirements to process
that comes from various stakeholders and complex requirement dependencies need to be managed.
Robertson & Robertson (1999) defines a requirement as “a statement on an action that the product
is requested to do or a quality that the product is requested to have“. Furthermore, a distinction can
be made amongst requirements types, i.e. functional requirements and quality requirements. A
functional requirement describes what a product should do in particular situations or a service the
product should provide (Sommerville, 2007). A quality requirement describes a quality (e.g. reaction
time) of a product (part) or service that the product should have (Pohl, 2010).

The focus areas that form requirements management are (Bekker et al., 2010; Weerd et al., 2006):

 Requirements gathering
This concerns the acquisition of requirements from both internal and external stakeholders such
as customers, Sales, Development, Support, Research & Development and the company board.
Techniques used to fulfill this activity are amongst others, Stakeholder interviews, User groups,
techniques based on their advantages depending on the needs and the situation. Once
gathered, the requirements are systematically stored.

 Requirements identification

27

After gathering and storing the raw requirements, the identification can start. Requirements are
firstly separated from potential non-requirements. Next, duplicates are removed and
requirements describing similar features are linked to each other. Usually, requirements
originating from external stakeholders, e.g. customers or market requirements are often vague
and not fully workable with for the organization. The organization at stake translates the market
requirements into Product requirements for further processing. Furthermore, distinction is
made between functional and quality requirements.

 Requirements organizing
The organizing of requirements can occur in multiple ways, e.g. per core asset, per theme, per
release or product for the entire life cycle of a requirement. The dependencies of the product
requirements are substantial to continuously record and managed as necessary. For instance,
some requirements require to be implemented first in order for other requirements to be
implemented.

3.1.2 Software Product Management Maturity Matrix

The Situational Assessment Method for SPM (SAM-SPM) is proposed as an aid to assist product
managers in improving their SPM practices and processes (Bekkers et al, 2010b). The SAM-SPM is
used to assess an organization’s current maturity level, determine possible improvement areas in
order to increase the overall maturity level and evaluation on how to improve the method. In order
to assess the organizations current maturity level, the method uses a maturity model based on the
SPM Competence model structure to determine which capabilities are implemented and which
capabilities should be implemented. By studying and analyzing what is implemented and what needs
to be improved (organization’s desires), gaps can be identified and incremental improvements can be
suggested to the product manager.

Another important part of the SAM is the Situational Factors (SF) list. A Situational Factor can contain
information on either process-level or on an organizational level. In addition, a Situational Factor
describes the situational setting in which the SPM practices are performed and which has to be
considered when improving SPM processes. For an elaborate explanation on the SAM-SPM we refer
to Bekkers et al. (2010a).

The following four components complete the SAM-SPM:

 Knowledge base
This contains the knowledge that will be used to build up the advice towards the product
manager.

 Questionnaire
Consists of two questionnaires: one for the implemented capabilities and one for the situational
factors.

 Calculation
Determines the current maturity, the optimal maturity and areas for improvements.

 Feedback
Evaluation to update the knowledge base.

We focus on the Knowledge base, particularly the maturity matrix, since this is of key importance for
this research. The SPM maturity matrix is important for determining the current state of
organizations. The matrix is a Focus Area Maturity model (Steenbergen et al., 2010). A Focus Area
Maturity Model provides incremental improvements, amongst other benefits. Each focus area has its
own number of specific maturity levels (Bekkers et al., 2010a). Furthermore, the matrix represents
the business functions, focus areas and capabilities in a best practice manner so it serves as a
guideline for software organizations. Another sub-component of Knowledge base is the Situational
Factors (SF). Situational Factors represents information of a process, context of the organization and

28

the organizations itself (Bekkers et al., 2008). Their purpose is to help determining the current
situation of the organization. Regarding the SPM maturity matrix, SF’s explains the situational
context in which the SPM processes occur and would need to be improved as well as in which the
product manager has to operate in. In the SPM Maturity matrix (see table 4), the business functions
and focus areas are represented in the leftmost column of the table. The maturity levels of the focus
areas are represented with the letter A through F (capabilities) and range from maturity level 1 to 10.
The letters (A - F) represents capabilities, e.g. for focus area Requirements gathering, capability A is
defined as Basic registration. The maturity level is determined by the highest level of a capability,
before a capability has not been satisfied by the organization. Table 5 gives an example of how a
capability is defined and its attributes.

Table 5: Software Product Management Maturity Matrix.

 Maturity level
Focus area

0 1 2 3 4 5 6 7 8 9 10

Requirements Management

Requirements gathering A B C D E F

Requirements identification A B C D

Requirements organizing A B C

Release planning

Requirements prioritization A B C D E

Release definition A B C D E

Release definition validation A B C

Scope change management A B C D

Build validation A B C

Launch preparation A B C D E F

Product planning

Roadmap intelligence A B C D E

Core asset roadmapping A B C D

Product roadmapping A B C D E

Portfolio management

Market analysis A B C D E

Partnering & contracting A B C D E

Product lifecycle management A B C D E

Table 6: SPM capability example; Requirements organizing: A.

A Requirements organization

Goal: Increase potential of requirements by identifying value outside of the original
boundaries, and provide insight into the planning concerning the requirement.

Action: Product requirements are organized based on shared aspects (e.g. type, function, or
core asset).

Prerequisite(s): Requirements gathering A

3.2 Software Product Lines
In this section, we discuss the subject of Software Product Lines (SPL). The aim is to present SPL
literature that relates to software product management. Currently, existing literature that describes
SPL which also take SPM into consideration are somewhat limited. Existing literature mostly discuss
more product development related than product management related. First, we elaborate more on
SPL in general. The sub-sections that follow will discuss SPL in-depth, as result from the literature
study.

Software product lines can help a software company excel significantly and in various ways: less
development and maintenance costs, faster time-to-market, improved product quality, improved

29

customer satisfaction, reuse of artifacts such as architecture, drivers, source code, requirements and
more (Northrop, 2002; Bosch, 2002; van der Linden, 2002; Birk et al., 2003; Pohl et al., 2001b,
Clements, 2005; Böckle et al., 2005). However, these advantages claim a remarkable amount of
effort. Bosch (2002) states that companies that are interested in employing SPL need to consciously
and explicitly consider the change of software development to a SPL approach. The maturity of the
company as a whole also plays an important role. The more mature the company is in its
management, domain understanding and project organization, the less effort is needed to adopt a
SPL approach.

Bosch (2002) presented a matrix relating SPL approaches, SPL artifacts and maturity levels and the
organizational structures software organizations can adopt. The columns (table 7) represent the SPL
approaches (SI to PPL). The first nine rows represent maturity levels of the artifacts and the last four
rows represent the organizational models. In the matrix, a ‘+’ or a ‘+/-’ represents combinations that
work well together, sort of best practices.
The absence of a ‘+’ or a ‘+/-’ does not directly mean incompatibility. These combinations require
additional effort and resources to achieve according to the research of Bosch (2002) or are less
common in practice. The matrix is presented below.

Table 7: Relating SPL approaches to SPL artifacts and organizational models (Bosch, 2002)

Artifacts and Organization Product Line Approaches

SI P SPL CPB PP PPL

Under-specified Architecture + + +

Specified Architecture + + +

Enforced Architecture +

Specified Component +/- + +/-

Multiple Component Implementations +/- + + +/-

Configurable Component +/- + +

Architecture Conformance +

Platform-Based Product + + +

Configurable Product Base + +

Development Department + + +

Business Units + + +

Domain-engineering Unit + + + +

Hierarchical Domain-Engineering Units + +

Bosch (2002) identified six SPL-approaches that aim to reuse in an architecture-centric and intra-
organizational manner. These approaches take various forms, i.e. ranging from simple systems
development to more large and comprehensive systems development and are organized in a number
of levels. The maturity development path describes the levels below:

 Standardized infrastructure (SI)
This approach provides the first step towards software artifacts reuse. Namely, it focuses on
standardizing the infrastructure on which the future products will be based on, which consists of
the operating system with the typical commercial components such as a GUI or database
management system.

 Platform (P)
Here, a platform is developed on which the products and applications are based on. This is on
top of a standardized infrastructure. The platform is responsible for the total commonalities of
the products and applications.

 Software product line (SPL)
A platform is extended (e.g. in functionality) to the point that functionalities that are common in
most products are included in the shared artifacts. This is called a Software Product line.
Product(s)-specific functionalities still exist and are part of the product deviation.

30

 Configurable product base (CPB)
This approach is applicable when organizations operate in relatively stable domains with a large
product orders. These organizations prevent developing different products and instead move
towards one configurable product base where the product is configured into the product bought
by the customer, either at the company or at the customer site.

 Program of product lines (PPL)
This is an approach that is made up of a software architecture that is defined for the whole
system and the components that the system is made of. Most of the components configuration
that results in a system is SPL’s. These can practically be configured as the Configurable product
base approach or through SPL-based product derivation.

 Product population (PP)
Product population extends the amounts of products that can be derived from the shared
product line artifacts. This refers to the situation where the existing sets of functionalities are
extended so a more diverse set of products can be derived.

Next to the SPL approaches, three types of SPL artifacts have been identified: SPL architecture,
shared components and products derived from the shared artifacts. For each of these artifacts, three
levels of maturity have been described, similar to the maturity levels described above. These
maturity levels are presented in the matrix (first nine rows).
The primary organizational models that can be applied when implementing a SPL approach are (for a
detail explanation on the both of the maturity levels or the organizational models, consult Bosch
(2001, 2002)):

 Development department
In this model, the employees are considered as a resource that can be assigned to different
project, i.e. domain engineering project or application engineering project. Thus, no specialized
organization model is needed when all development is taken place at one department.

 Business units
A Business unit is dedicated on the type of products. Each business unit is responsible for the
development and evolution of a subset of products or one product in the product line. All the
business units share the reusable assets in the product line.

 Domain-engineering units
Traditional literature suggests this as the organizational model for SPL. The domain-engineering
unit is responsible for developing and evolving new or existing reusable artifacts that were
mentioned earlier.

 Hierarchical domain-engineering units
This typical organizational model is needed where hierarchical products exists. In these cases, a
domain engineering-unit exists to develop reusable assets to be used in another lower domain
engineering-unit that will develop the end product.

Previous work of the Software Engineering Institute (SEI) confirmed that for organizations to succeed
with a SPL approach the organization must be willing to alter its technical and management practices
as well as the working organizational structure, personnel and business approach (Northrop, 2002).
In addition, SEI defined a software product line as:

‘a set of software-intensive systems that share a common, managed feature set satisfying a
particular market segment’s specific needs or mission and that are developed from a common set of
core assets in a prescribed way’.

In practice this comes down to taking applicable components (e.g. architecture, source code,
software modules, drivers, requirements, documents, etc.) from a common, shared asset base, after
which the components are tailored through preplanned variation techniques as needed, any new
components are added if necessary and assembling the final product according to rules of the

31

common, product-line wide architecture. The use of common assets in order to develop products
requires planning, investment and strategic mindset that focus beyond the boundaries of a single
product.

Different organizations worldwide use their own implementation of a SPL approach. Fortunately, SEI
has distilled the global and vital activities of such approaches. At the highest level of abstraction,
three extremely iterative activities can be identified that intertwine technology and business
practices (Northrop, 2002). These activities are Core asset development and Product development
which are guided by technical and organizational Management. Traditionally, the activities Core asset
development and Product development are called Domain Engineering and Application Engineering,
respectively (Böckle et al., 1998; Clements, 1999; Weis et al., 1999; Northrop, 2002; Pohl et al.,
2001b; van der Linden, 2002). These activities are widely accepted in software product line literature
as the core processes necessary for implementing a SPL development approach. These will be
elaborated in-depth in the coming sections.
Given the definition on SPL by Northrop (2002), the aim of Core asset development is to establish
production capability by means of developing core assets. Product development’s aim is to assemble
the products out of the core assets. However, these activities are bi-directional, i.e. new or revised
core assets often evolve from Product development, i.e. existing or completed products (SEI, 1999;
Northrop, 2002).

Böckle (1998) defined Software Product Line Engineering as “a paradigm to develop software-
intensive systems and software products using platforms and mass customization”. In contrary to
standard products (non-individualized products), mass customization aims to supply the demand for
large-scale production of individualized products, implying taking the customers’ requirements into
account and providing the product they want (Böckle, 1998). A platform supports mass
customization by providing, and the ability to develop, common parts that will be needed in the final
product, i.e. a collection of reusable artifacts. Thus a software platform can be defined as

‘a set of software sub-systems (source code, requirements, architecture, test plans, and other
artifacts) that form a common structure from which a set of derivative products can be efficiently
developed” (Meyer et al., 1997)’.

Furthermore, the common parts used to develop multiple products have to be sufficiently versatile in
order to fit the to-be developed systems. This versatility facilitates mass customization (versatile
artifacts are reusable in different systems) and is refer to as Variability in the SPL context (Pohl, et al.,
1998). Variability in reusable artifacts implies the commonalities and especially the differences across
these artifacts. Pohl et al.(1998) state that the systematic combination of a platform and mass
customization as a development approach for software-intensive systems is the core of SPL
engineering. This leads to Domain and Application engineering and thus also Core asset and Product
development as defined by SEI (1999).

Implementing a software product line approach is not a decision made overnight. As a software
company grows its product(s) will enhance and it will desire to provide tailored products at
reasonable costs in order to satisfy the market. However, product management becomes more and
more challenging, yet more important. A SPL approach involves clear changes in product
development and management, organizational structures and management support which are also
not implemented overnight. In the following section we will discuss the most essential SPL-literature
according to most researches with respects to SPM.

32

3.2.1 Domain and Application engineering

Software product line engineering separates two main processes: Domain engineering (hereafter
referred to as DE) & Application engineering (hereafter referred to as AE). Weis et al. (1999)
presented a SPL engineering framework based on the different aspects of the two main processes in
which they are modeled. This framework is presented in figure 5.

Both processes develop artifacts: domain artifacts and application artifacts. The domain artifacts are
reusable and are developed from the sub-processes of domain engineering. These form the platform
of the product line and serves as input for the specific applications development. The application
artifacts represent part of the tailored product line applications. As the product line produce
multiple products, application engineering is responsible to manage the product-specific artifacts for
each product separately. Next to defining the variability of the SPL, DE aims also to define the scope
of the SPL (the products the SPL is destined for) and develop the reusable artifacts that fit the
necessary variability (Böckle et al., 1998). DE consists of the following sub-processes (Pohl et al.,
1998):

 Product Management
This sub-process’s main concern is the management of the product portfolio of the software
organization as it will be expanded by products originating from the SPL. Existing products or
artifacts are listed to be reused for development of the platform. Through scoping techniques,
the scope of the SPL is defined. Top management defines the strategic goals which serve as
input for product management. Product management translates the input into a product
roadmap that determines the key common and variable product features of the future products
as well as their release planning. Product management for single systems differs from SPL
(Böckle et al., 1998). Firstly, the introduction (or elimination) of a platform has a strategic

Figure 5: The Software product line engineering framework (Weis et al., 1999) Figure 5: The Software product line engineering framework (Weis et al., 1999)

33

meaning for the organization, with respect to business success. This gives the organization the
opportunity to provide various product variants at reasonable costs. Secondly, the products in
the portfolio, originating from a platform, closely relates to each other, compared to single
systems that can differentiate immensely from one another. Thirdly, product management pays
close attention to the evolution of the market(s) and technology, customers’ needs, standards,
modifications in legal constraints, product features; all for future products to- be developed.

 Domain Requirements Engineering (DRE)
The identification and documenting of common and variable requirements for the SPL is the
main concern here. The product roadmap of the previous sub-process is the input for this one.
Domain requirements engineering outputs reusable, textual and modeled requirements and
also the variability model of the SPL. The domain variability model defines the variability of the
SPL, i.e. where products vary (variation points), how they will vary (variants) and dependencies
which have to be considered. The requirements are analyzed whether they are common for all
products or specific for products amongst the rest (variability). The abstraction of the variable
requirements is modeled in the variability model of the SPL. Based on the product roadmap, this
sub-process also foresees changes in legal standard, markets, features, technology that
influences requirements for future products or applications. The last three statements are
different when single systems are dealt with (Böckle et al., 1998).

 Domain Design
This sub-process involves all necessary activities that define the SPL reference architecture,
which provides an overall, high-level structure applicable for all the product line applications or
products. The domain requirements and the variability model of the previous sub-process serve
as input for design of the reference architecture. The output consists of the reference SPL
architecture and refinement of the variability model, i.e. including variability that is necessary
for technical reasons (internal variability). In difference with single systems, domain design
incorporates flexibility from the very beginning to support variability of the SPL and the
reference architecture can be modified according to the requirements of the to-be developed
applications. Domain Design indicates both the reusable components that are developed and
tested by DE as the product-specific components developed and tested by AE (Böckle et al.,
1998).

 Domain Realization
This sub-process handles mainly the realization of the reusable software components and with
the detail design, prior to the realization. The SPL reference architecture and a list of the to-be
developed reusable artifacts serve as input. The output includes the detailed design and
implemented artifacts of the reusable components. Compared to single systems, domain
realization delivers components that are loosely coupled and configurable, instead of a running
system. In addition, the components are planned, designed and developed for reuse in the
different products or applications. Domain Realization integrates configuration mechanisms into
the reusable components. This is necessary for the realization of variability in the SPL.

 Domain Testing
Domain Testing validates and verifies the reusable components according to their specification;
the requirements, the reference architecture, design artifacts and the developed components,
which also serve as the input. This sub-process also takes care of reusable test artifacts for
application testing in order to reduce effort. The output is simply the test results as well as
reusable test artifacts. Remarkably, there is no running application to be tested. These would be
available in application testing.

The lower part of figure 3 shows AE and its sub-processes. AE aims to reuse as most as possible when
developing the specific SPL products or applications by exploiting the commonalities and the
variabilities built in by DE. The AE artifacts are documented and related to DE artifacts. This has the
purpose to be able to trace where reusable components get used for. In AE, the variability is used
and bound according to the needs from the DE artifacts (requirements, architecture, components

34

and tests). This variability is of key importance for making a SPL successful, since it gives the ability to
differentiate easily and as needed. AE consists of these sub-processes:

 Application Requirements Engineering (ARE)
This sub-process concerns the needed activities for developing the application requirements
specification. Depending on these requirements, the reuse of the DE artifacts can excel greatly
or not. This is a challenge for application requirements engineering, which have to detect
differences in application requirements and what is available from the platform (DE artifacts).
This implies that the platform would need to cover the needs of application requirements as
much as possible. If not, then AE initiates the development of another reusable component. The
domain requirements and the roadmap with product features corresponding to the product or
application are inputs. Here, specific customer requirements may be added that were not
collected in domain requirements engineering. The output is the specific product or application
requirements specification. Compared to single systems where requirements are usually newly
added, most of the requirements here derived from domain requirements and is based on the
communication of the available commonality and variability (Böckle et al., 1998). During this
sub-process the difference (delta) between domain requirements and application requirements
must be identified and evaluated against the amount of eventual adaption effort needed and
documented properly.

 Application Design
The core focus of application design is the activities needed for the application architecture. For
this the SPL reference architecture, which is the input, is used to instantiate the application
architecture. Particular parts of the SPL reference architecture are selected and configured into
application specific adaptations. Thus, the output exists of the application architecture for the
specific product or application. Binding variability (making choices where the reference
architecture gives variants to do so) makes it possible for the application architecture to get
deducted from the SPL reference architecture, instead of developing a completely new
architecture. When doing this, Application Design has to adhere to the rules of binding the
variability of the reference architecture (variability dependencies). Structural changes that
would require effort equal to developing from scratch must be rejected as adaption effort, with
respect to the deltas.

 Application Realization
This sub-process concerns the development of the particular product or application. Mainly, this
involves the selection and configuration of reusable software components provided by DE.
Application-specific assets are also realized and together with the reusable assets these form
the product or application. As input, the application architecture and the reusable artifacts from
the platform are used. The output is the workable or running product or application with the
detailed design artifacts. When compared to single systems, many of the software assets
(components, requirements, interfaces) are not newly developed. However, they are derived
from the platform by binding variability. Application-specific realization is possible; however it
must fit into the reusable artifacts.

 Application Testing
This sub-process involves the activities needed to validate and verify the product or application
against its specification. The inputs for this are all the application artifacts mentioned before
(requirements, specification, architecture, components, and interfaces), the realized product or
application and the test artifacts provided by domain testing. The output is simply test results of
all the performed tests. The detected defects or necessary changes are documented properly in
problem reports. The used test artifacts are not developed newly; they are derived from the
platform. Additional test are performed in order to test the configurations and that the right
variants have been used.

The table below gives an overview of the sub-processes of DE and AE and their corresponding
artifacts. Domain artifacts constitute the platform of the SPL and are all stored in a central

35

repository. These artifacts are interconnected by traceable connections in order to keep the
specification of the commonality and the variability consistent among the artifacts. Application
artifacts include all development artifacts for a specific product or application and the configured,
tested and running product or application itself. Applications assets are also interconnected by
traceable connections in order to have a correct binding of variability among the artifacts. Many of
the application artifacts are specific instances of the reusable domain artifacts. The traceable
connections are also used for the SPL evolution, i.e. application artifacts that are influenced by
modifications of domain artifacts can be easily determined.

With respect to SPM, it is clear that the product management process coordinates DE which proves
that product management has great responsibility. Some of the artifacts, DE as well as AE, can be
clearly related to the SPM Competence model, e.g. roadmap and requirements specification.
However, artifacts such as reference architecture or variability model are not discussed in the SPM
Competence model, whilst still being part of product management, product management for SPL.
Thus, there are specific product management practices for SPL.

Table 8: Artifacts of Domain and Application Engineering (Pohl et al., 1998).

DE sub-process Domain artifact

 Product management Roadmap (+planning future release dates)

 Domain Requirements Engineering Requirements (textual and modeled) and Variability Model

 Domain Design Reference architecture, refined variability model (including
internal variability)

 Domain Realization Detail design models, implementation artifacts (source codes,
configuration files, make files, etc.)

 Domain Testing Test plans, Domain test cases, domain test scenarios.

AE sub-process Application artifact (application assets)

 Application Requirements Engineering Application Requirements Specification and Application Variability
Model

 Application Design Application Architecture

 Application Realization Detailed design artifacts (component and interface), (configured)
running application or workable product

 Application Testing Application test documentation, problem reports

Core asset development, Product development and Management
As mentioned previously, SEI (Clements, 1999; Northrop 2002) also describes a SPL development
approach based on their research. It is similar to the DE and AE described above, apart from the fact
that SEI has added the process of Management to the approach. This practice's main focus is (also)
on developing core assets (reusable components) and building products from those core assets
under the supervision of Organizational and Technical Management. Core asset development
(Domain Engineering) sets the first step towards establishing the ability to initiate production.
Product development (Application Engineering) turns out products from the core assets. However,
these two processes are highly iterative, between and within. This acts as a feedback loop between
core assets and products; core assets are refined or even newly created as the organization develops
products. Management has great contribution in the success of the SPL and must therefore be
strongly committed. Technical management supervises the activities of core asset and product
development, ensuring that the involved personnel undertake the required activities, follow the
defined processes for the SPL and gather data to trace progress. Organizational management is
responsible for setting up the proper organizational structure that best fits the organization and
ensures the organizational units receive the right amount of resources (e.g. personnel). Both core
asset development and product development has inputs and outputs. For core asset development
these are:

 Product constraints

36

Commonalities and variations among the to-be developed products (of the SPL) and their
features.

 Styles, patterns and frameworks
These are relevant architectural aspects necessary when defining the architecture taking into
concern the product and the production constraints.

 Production constraints
Standards and requirements from different stakeholders that apply to the products in the SPL.

 Production strategy
This is the general approach for realizing the core assets. Either core assets are developed or
from these products or products components are generalized and used to develop core assets.
Usually a combination of both approaches take place.

 Inventory of preexisting assets
Available assets, software or organizational, that can be added to the assets base for reuse.

The output of core asset development also serves as input for Product development with the
addition of individual product requirement (this is equal to application specific requirements):

 Requirements
Individual product requirements.

 Production line scope
Defines the products that the SPL will be capable of developing. This involves the commonality
and variability of each product member of the SPL.

 Core assets
Reusable components that form the basis of the products originating from the SPL sharing an
overall architecture. Next to software components these can also be documentation, test plans,
integration plans and all design components. These are considered as supporting artifacts

 Production plan
Describes how the products are developed from the core assets.

The similarities with DE and AE are clear. The basic idea of developing reusable artifacts and using
these to build the end-product or application is the same. The input for core asset for instance, also
includes product specification, defining architecture for products to adhere to, existing assets that
will be used as input for product development. The core assets are developed according to an overall
architecture and so are additional components such as, test plans, integrations plans and all sorts of
design documentation. Unfortunately, the authors of SEI did not describe the inputs and outputs as
elaborately as the authors of DE and AE. However, these two researches shows the importance of
separating processes that are focused on the core assets and processes that are focused on
developing the products (mainly) using the core assets.

3.2.2 Business, Architecture, Process, and Organization (BAPO)

This practice recognizes the processes of Domain and Application Engineering as the development
approach of for SPL. When implementing a SPL development approach four concerns are taken into
account: Business (B), Architecture (A), Process (P) and Organization (O) (Linden, 2002).
Business deals mainly with the scoping (product line, domain and assets) of the SPL which has great
impact on the business, i.e. earning profit from the products the SPL is able to provide. Architecture
deals mainly with the technical specification of the product line needed for realization, i.e. significant
requirements, reusable components, concepts, design, structure, texture, tests. Important is that the
architecture can deal with commonality as well as variability. Here variability management plays a
vital role. Requirements modeling has a clear link to Requirements management from the SPM
Competence model (Requirements organizing, traceability), i.e. ability to trace requirements through
the sub-processes knowing in which asset they are used. Process deals with the software
development process that reuse assets in order to build products. This is the domain development

37

process (domain analysis, design and implementation) and the application development process
(application requirements, design and coding). These are described merely differently than DE and
AE by Pohl et al. (2005), however the essence is very similar. Organization deals with the
organizational structuring and influence a product family development approach (SPL) has on an
organizational level.

These 4 interdependent concerns (BAPO) are used to provide 4 dimensions of the software product
family evaluation framework. Each concern has evaluation levels that may be applicable for an
organization, which are influence by multiple aspects.
Business’ evaluation levels are: Reactive, Extrapolate and Proactive. These are influenced by the
organizations: Identity, Vision, Objectives and Strategic Planning. With each Business’ evaluation
level the aspects get clearer, more developed and better managed. E.g. at the Reactive level
Requirement Management is mostly ad hoc while it is better planned and managed in the succeeding
levels. Architecture's evaluation levels are: Independent Product Development, Standardized
Infrastructure, Software Platform, Software Product Family and Configurable Product base. These are
influenced by: Product family architecture, Product quality, Reuse level, Domain and Software
Variability Management. With every increasing level the overall architecture aspects evolve into
more specified architecture models, increasing reuse levels, increasing quality and the domain would
be well managed and/or established.
Process' evaluation levels are: Initial, Managed, Defined, Quantitatively managed and Optimizing.
These are influenced by: Predictability, Repeatability and Quantifiability. From the first level through
to the last, development will become more predictable, the development process will become more
repeatable and more data will be available to quantify the development.
Organization's levels are: Unit oriented, Business lines oriented, Business groups/divisions, Inter-
division/companies and Open business. These are influenced by: Structure, Culture and Roles &
Responsibilities. With every level the structure of the organization gets more complex and less
informal, the culture gets more focused, cooperative and competitive and the roles & responsibilities
will become more specialized on product development. A representation of the evaluation
framework would be a target evaluation profile. The authors acknowledge this; however they did not
work that part out (beyond paper scope). A company input profile, including domain type and
business strategy are mentioned as being necessary for the profile. The purpose of the profile is
similar with that for the SPM maturity matrix, with incremental improvement possibilities through
the situational factors.

3.2.3 Variability management

Bosch (2000) states that the dependencies in the various products of a product line makes the
evolution of the SPL more complicated compared to stand alone products. In addition, the possibility
of conflicting requirements between the various products makes things even more challenging.
Variability is described as ‘the ability to change or customize a system’. Improving variability in a
system lets the system adapt easier to changes. By using Feature Graph Notation (Feature Modeling)
variability is identified, as well as commonality, and is clearly presented and modeled. In this work, a
feature is considered as abstraction from related requirements, indicating that specifying
requirements (RM) is vital for the feature graph. The proposed method of managing variability
consists of the following steps:
1. Identification.

The feature graph notation is used to identify where variability exists or must be implemented.
With this diagram, the variation points can be determined.

2. Constraining variability.
In this step detail actions are taken that will constrain the variation points, allowing just enough
flexibility. This is accomplished by activities such as choosing the binding time for variation points,

38

addition of variants, setting variability pattern for variation points and choosing representation of
the variation points.

3. Implementation.
Here a suitable technique needs to be chosen for realization.

4. Managing the variants.
Based on the variation points, variants may be added, manually or automatically by means of
system automatic updates for instance.

With respect to previous sections, Lauenroth et al. (2005) state that variability modeling is used to
model variability of DE artifacts, where variability is firstly defined. In AE variability is exploited
through binding the defined variants. Variability management is a technique that introduce and
manages the flexibility needed in a SPL. The flexibility gets incorporated in artifacts and in turn is
realized through the various products or application that the SPL can turn out. Thus, it is an essential
activity with respect to the steps prior to, and, development.
The strongest relation it has with the SPM Competence model is with Requirements management,
i.e. in the earliest phases of DE, common and variable features of the SPL products are specified. In
the following sub-processes, variability is specified more in details through requirements, design,
realization and tests.

3.2.4 RequiLine

RequiLine is a tool developed to support requirements engineering for SPL (von der Maßen et al.,
2004). The task and challenge of RE for SPL is the elicitation of requirements that are shared by all
products in the product line and requirements that are specific to certain products. These
requirements are usually in great amount, are mandatory or variable, have interactions and
dependency with other requirements and all this has to be managed properly. RequiLine also
supports Feature modeling, since variability (variable requirements) is one of the most essential
characteristics of SPL and needs to be modeled and managed. One requirement for the tool was to
be able to manage requirements as well as their attributes, support information and dependencies
that have been stated for the features. This implies that features can be linked to requirements and
vice versa. This is a clear example of Requirements Identification and Organizing of the SPM
Competence model. Generally, researchers on the topic of SPL often find there is a lack of tool-
support for SPL-development.

3.2.5 Release planning for product lines architecture

Taborda (2004) proposed a release matrix as a mechanism to facilitate the planning, communication
and coordination of incremental releases by combining traditional Requirement Engineering and
Configuration Management principles. The matrix takes two distinct management views into
account: Products and Components. In the x-axis the components are presented while in the y-axis
the products, that use the components, are presented. The matrix records a relationship between
product (Pi) and component (Cj) in the intersecting cell (Rij). When no relationship exists a null entry
is presented in the cell. The content of each cell can be considered as the scheduled dates of the set
of dependent releases. In addition, multiple matrices can be used in order to record different life-
cycle data. Each row of the Release Matrix represents a product's release plan that originated from
and must also be compatible with the component's release that the product is dependent of.
Likewise, each column represents a component's release plan that is based on the total set of the
product requirements that need to be implemented in that release. This practice indicates the use of
release planning in SPL. A clear difference is that not only requirements are planned for future
releases, however requirements are 'bundled' into components and components can form product
features, and these are planned for future releases.

39

3.2.6 Product Line Portfolio Planning using Quality Function Deployment (PPP-QFD)

Product Portfolio Planning (PPP) is closely associated with product development. However, it is a
management activity (Helferich et al., 2005). PPP has the task to produce and manage a portfolio of
products that will optimally satisfy customer demands while restricting the total number of products
offered (Helferich et al., 2005). As for product lines, portfolio planning address topics such as product
line members, commonalities, variations, technology utilization and product line evolution. This
description of Portfolio Planning is similar with that of Portfolio management given by the SPM
Competence model. Quality Function Deployment (QFD), which is used to identify true customer
needs and features, gives a systematic way of communicating between customers and developers in
a yet informal way. The proposed approach of PPP makes extensive use of QFD by means of the best
known instrument for QFD, House of Quality (HoQ). HoQ is a matrix which analyzes customers’
requirements in detail and translates these to developers' understanding. In general, this is done by:
1. Collecting requirements for the product line through existing and potential customers which are

then processed (analyze, sort, prioritize, etc.).
2. Developers, software architects and selected customers are brought together to build the HoQ.
3. Developers and architects evaluate and analyze different possibilities for software architecture

and technologies to be used taking the quality attributes and product functions into account.
4. The result of the previous step is used to build prototypes to present to the customers.

Requirement management, as described by the SPM Competence model, is somewhat similar to this
approach, i.e. when requirements need to be gathered for the product line. This indicates not much
difference between RM of a single product or a product line. The focus areas of Market analysis and
Product Lifecycle management are key points in the PPP. The downside of this approach is that is has
not been validated in the industry yet.

3.2.7 Requirement-based taxonomy for SPL evolution

Similar to most of the SPL-literature presented previously, this one acknowledges two main cycles in
SPL development: Domain and Application Engineering. This SPL practice proposes a taxonomy as
‘means for categorizing requirements changes in a product line context’ (Schmid et al., 2007). The
evolution of requirements in SPL can happen on three levels:

 Requirements level change (changes to individual or small group of requirements)

 Product level change (changes to products)

 Product Line level change (changes to whole product-groups).

In addition, the categorization of the requirements is:

 Commonalities (requirements that are common to all products in the SPL)

 Variabilities (requirements that are not common for all products)

 Product-Specific (requirements that are only relevant to an individual product).

Usually multiple products would include requirements from all three categories. The changes on the
three types of level can bring the following actions:

 Requirements level change
Adding, Deleting or Modifying individual or groups of requirements. These changes can happen on
all three levels described above.

 Product level change
Additions and Deletions of whole products. Modification of individual product is considered to be
changes on requirements level. Adding a product implies specification of variabilities and product-
specific aspects. Deletion implies also the deletion of product-specific aspects.

 Product line level changes: Adding, Removing, Merging and Splitting of a product line.

40

The implications of the different level changes are elaborated together with the influence of the
evolution actions has on traceability information. However, this taxonomy has not been put into
practice. The authors figure that capturing the complete set of possible level changes with the
complete set of actions, that that would be enough.

3.2.8 PuLSE

PuLSE is a methodology that makes the conception and the deployment of SPL within large variety of
enterprise contexts possible. The main elements that compromise PuLSE are phases and
components: Deployments phases, Technical Components and Support Components (Bayer et al.,
1999).
The Deployment phases describe the logical stages and activities performed to set up and deploy the
product line. This is realized by base lining and customizing the methodology according to the
enterprise (Initialization), scoping, modeling and architecting SPL infrastructure (Infrastructure
Construction), using the infrastructure to develop SPL members or components (Infrastructure
Usage) and evolving and managing the SPL over time (Evolution and Management).
The Technical Components provides the technical knowledge that is needed to operationalize the SPL
development. Facets of different Technical Components are used in each of the developments
phases. These are specified for: know-how for the Initialization Phase, know-how for product
scoping, modeling based on product characteristics and architecting the reference PL architecture for
the Construction Phase, know-how for performing the Usage Phase and know-how for configuration
management over time for the Evolution and Management Phase.
The Support Components are the bundles of information or guidelines which provides a better
adaption, deployment and evolution of the SPL. These components are used by the other two
elements: Project Entry Points (customization of PuLSE for major projects), Maturity Scale
(integration and evolution path for the SPL adoption) and Organization Issue (guidelines for the
appropriate organizational structure set-up).
Although PuLSE gives a complete methodology for developing a product line, it pays less attention on
SPM aspects as defined by the SPM Competence model. In the last phase, Usage, customer
requirements are used in order to plan and develop a new product line member. This is a mere
example of the essence of Requirement management and Release planning. However, in the same
phase product line members are specified, instantiated and validated which can be related to
Product Lifecycle Management. Unfortunately, these topics are not addressed elaborately.

3.2.9 Product Derivation framework

This practice also considers a SPL approach to be comprised of a two-staged process: Domain and
Application Engineering. However, this practice focuses on the product derivation process that
occurs during Application Engineering (Deelstra et al., 2004). Deelstra et al. (2004) states that
product families can be classified into two scope dimensions, i.e. Scope of reuse and Domain scope.
Scope of reuse refers to the extent to which the commonalities between related products are
exploited. Domain scope refers to the extent of the domain(s) in which the product family is applied.
The Product Derivation Process is based on the scope of single product family (single product line)
which is used to derive multiple related products (Deelstra et al., 2004). The process consists of two
phases: the initial phase and the iteration phase. On top of these two phases, Requirements
Engineering manages the requirements throughout the entire process of derivation.
In the initial phase a first configuration is created from the assets in the product line. In this phase,
two approaches for deriving the first product configuration can be used: Assembly (assembly of a
subset of shared assets into the first product configuration) and Configuration selection (selecting
the closest matching existing configuration available).
In the iteration phase, the first configuration is modified in a number of subsequent iterations until
the product adheres to the imposed requirements. In this phase, the steps Modification and

41

Validation are central. Modification is applied by selecting architectural components variants,
different components implementations variants or modifying parameters settings. These represent
the three abstraction levels (architecture, component and parameter) on which modification can
happen. In Validation the system is validated in order to assure that it adheres to the requirements
and consistency and correctness of the components configuration is checked. If the initial
configuration properly adheres to the requirements after the initial phase, then the product is
finished. However, if this is not the case, the iteration phase is initiated.

3.2.10 SPL FAST Process

The Family-oriented Abstraction, Specification and Translation (FAST) process can be seen as an
alternative to traditional software development process. Ardis et al. (2000) developed a systematic
process that is applicable when organizations develop multiple versions of a software product that
share significant common attributes such as behavior, interfaces and source code. FAST also
recognizes the two main processes of Domain and Application Engineering as the environment
where SPL development takes place. The common and variable characteristics (features) of the
product family are identified in a Commonality analysis. This analysis is documented in natural
language and also registers (including illustrations) the scope, anticipated issues and terminology of
the product family. In order to distinguish further the differences between the family members it is
common practice (in the FAST process) to make use of example scenarios. Usability scenarios
describe ‘the actions required to perform common user operations’. Variability scenarios emphasize
‘the differences between individual products’. In addition, in some cases a simplified version of a
family member has to be developed in order to analyze certain situations and behavior, i.e. a
prototype.
The document of the commonality analysis is a powerful tool to communicate between key internal
stakeholders: marketing department, senior management and development department. This
communication is important for the right decisions to be made by the right people for the success of
the product family. Ardis et al. (2000) states that since there will be little time to debug every
product variant it is essential to have a well-designed architecture and reusable components to
develop the family members. The generic architecture is of key importance for the success of the
product family, since the architecture decides the future possible family members. According to
Coplien (1999), in object-oriented system development, design patterns focus largely on variability.
This makes design patterns vital for the architecture.
On an economic perspective, the FAST process states that an investment in Domain Engineering is
required prior to the initiation of development. However, the developments costs will stay lower
compared to when Domain Engineering is not invested in.

3.2.11 Integrated SPPL

Rombach (2005) claims that software processes are still not managed in a systematic way similar to
that of SPL engineering, i.e. the effective reuse of software artifacts based on proactive organization
(of similar artifacts) according to similarities and differences. Integrated Software Process & Product
Lines (SPPL) allows such organization that both artifacts and process to be systematically chosen for a
given development project.
As a result of such organization, the processes for a specific project can be tailored according to
similarities and differences (similar to application engineering in SPL). Thus, the vision of Integrated
SPPL is to be able to choose the needed artifacts and processes based on a set of product and
process requirements as well as project constraints. This practice also describes two separate
development processes as main characteristics of SPL, namely Domain and Application Engineering.
Software systems are characterized by their commonalities and variabilities, which are
functionalities that are present in most systems within that domain and functionalities that are
unique to some systems within that domain, respectively. The predefined variability choices

42

(variants) are linked to the corresponding components. From a SPM perspective, this implies that
that features are linked to components which will be used for development. In addition,
Requirements Engineering within Domain Engineering should focus on defining maximum
commonalities and controlled variabilities in order to be address by a stable system architecture on
domain level.

3.2.12 Organizational alternatives

As most researchers focus on the technical and process aspects of SPL engineering, Bosch (2001)
researched the organizational alternatives for organizations employing, or thinking about, a SPL
approach. The organizational structure is vital for the proper execution of SPL engineering. In
extension to the division in Domain and Application Engineering, Bosch (2001) identified and
categorized the following organizational alternatives:

 Development department
This organizational model is focused in one single development departments, i.e. no permanent
organizational structure is imposed on the software engineers and architects involved in the SPL.
All software staff members can be allocated to do work of any type within the product family.
Work that has to be completed is organized in projects that dynamically allocate staff members to
certain groups. The project can be for Domain and Application Engineering, both with their goals
as developing reusable assets and developing a system, respectively. This organizational model
states that both the reusable assets and the finished systems are realized and maintained by one
single development department (a single organizational unit). This model is suitable for smaller
organizations, i.e. not exceeding 30 software staff members.

 Business units
This organizational model lays the complete responsibility of developing and the evolution of one
or more product from the SPL, in one business unit. The reusable assets needed for development
are shared by all business units. The initial developments of these assets are realized through
Domain Engineering projects that consist of members from most or all business units. This model
optimally ranges the business units between 30 – 100 software staff members. With respect to
the evolution of the shared assets, three levels of maturity have been identified (depending on
the staff size for each business unit and the amount of shared versus specific functionalities in
each system):
o Unconstrained model

Any business unit can initiate the extension of the functionalities of any shared asset as long as
it adheres to the specifications. The same business unit is responsible for making the new
version of the asset available in the assets repository and also for the evolution of the asset.

o Asset responsible
An Asset responsible is introduced that verifies the evolution of the asset, based on the best
interest of the organization and not that of one single business unit. The Asset responsible is
not responsible for new requirements implementation.

o Mixed responsibility
Here, each business unit is given the responsibility of one or more shared assets that the
business unit makes most (extensive) use of, next to the product already assigned to the
business unit. Other business units would need to request their interest whenever an
extension is required.

 Domain engineering unit
This organization model separates the concerns of development and evolution of the shared
assets from the development from the end-products. The former is performed by Domain
Engineering unit and the latter by the Application (referred to as System or Product) Engineering
unit. In addition, this model makes it possible to have one single domain engineering unit (for
shared assets) or to have multiple domain engineering units. When it concerns multiple domain
engineering units, one unit is responsible for the software architecture and for each architectural

43

asset (component) a domain engineering unit is assigned that is responsible for the development
and evolution for that asset. This model is applicable for organizations where more than 100
software staff members are working on the SPL.

 Hierarchical domain engineering units
This organizational model creates specialized domain engineering units that are responsible for
developing and the evolution of the reusable assets. However, these assets are used as a subset
for the product in the SPL, i.e. reusable assets are developed that are necessary for other domain
engineering units that will further specify the asset whilst still remaining reusable for specific
product line or products. The reusable assets at the top level are often referred to as a platform,
providing general and share functionality. This model is applicable for (very) large organizations,
software staff numbers in the hundreds, with extensive product families that run long in the
future.

3.2.13 Product development projects I

This study investigated project management methods used during the execution of new product
development projects (Tatikonda & Rosenthal, 1999). The main problematic challenge was to
balance firmness and flexibility in the project execution phase, in contrast to the project planning
phase. First, the influence of project execution methods of formality, project management (PM)
autonomy and resource flexibility on project execution success is researched. Second, the degree of
influence of technology novelty on the relationship of project execution methods and project
execution success is researched. Project execution success is measured by the degree to which the
project achieves its original objectives. For product development projects these objects are technical
performance, product unit-cost and time-to-market for development effort. A project is executed
properly will most likely have a high level of project execution success. However, the product what it
is about can still result in a market failure. One of the suggestions this research gives is that product
features might have been chosen incorrectly. This is where product management would claim its
responsibility.

The results of the research showed that all the methods, i.e. formality, PM autonomy and resource
flexibility positively influence the project execution success. Firmness is achievable through project
management formality which makes it possible for general control and review structure for the
project. Flexibility is achievable through PM autonomy and resource flexibility which provide a
somewhat low-restriction way of working and respond to emerging project uncertainties. This
implies that for product development executions to be effective, flexibility within a structure is
needed; i.e. having a predetermined structure and allowing enough flexibility within that structure as
a way of working. These execution methods work effectively together pointing out that
organizations can balance Firmness and Flexibility. As for Technology Novelty, the research results
show that Technology Novelty has no significant influence on the relationship between execution
methods and execution success. This implies that when organizations are managing a variety of
product development projects, broad and similar project execution methods can be used.

As can be consulted above, unfortunately, this research is not focused on product management
execution or processes. From product development, this research studied the project execution, i.e.
on a project management level. For instance, formality in product development can add
effectiveness through providing rules and reviews on the work process with the effect of structure
and sequence on the work process. This reduces uncertainties for the project member with respect
on what work to do when. This statement is an obvious statement on project management (for new
product development) level and we considered it to be out of scope for this research, since we strive
to focus on SPM and SPL and the fact that Project Management is too broad topic to be included.

44

3.2.14 Product Development projects II

This paper describes mainly the planning and execution of two types of projects within product
family development. The research investigates (Tatikonda, 1999) project characteristics,
development challenges, typical outcomes and success factors. The two types of development
projects identified are: Platform projects and Derivative projects. Platform projects are defined as
projects that initiate a new product family platform. Derivative projects are defined as projects that
are extensions to an existing product family platform. The differences between these two project
types are explained through two theoretical perspectives, namely Product/Process Life Cycle Theory
and Organizational Information Processing Theory. Product/Process Life Cycle Theory explains that
platform projects are more likely to take place early in the product/process life cycle compared to
derivative projects that are more likely to occur later in the life cycle. This has implications for
instance on technological and market uncertainty and project innovation, all of which are greater
during the early phases of the life cycle and decreases later on. Organizational Information
Processing theory explains that organizational tasks can be translated to development projects and
these tasks differ in the level of unpredictability. This implies that tasks with higher unpredictability
require better and more carful (pre-task) planning and these should be executed differently from
tasks with lower unpredictability.

The differences between Platform products and Derivative products that have been identified are:

 P1-Project task characteristics: A significance difference is shown in the degree of new technology
development for platform projects (higher) versus derivative projects (lower). The data also
shows that platform projects have more novel objectives (e.g. performance, costs, time
objectives) than derivative projects.

 P2-Market newness: Platform products are perceived as newer by the customers compared to
derivative products. Platform products are also intended for markets that are newer to the
company and/or industry.

 P3-Project planning: Platform projects have greater commitment from project management in
setting project objectives. These projects are expected to be riskier which require more
dedication and realistic target setting.

 P4-Project execution: No statistically significant difference was found between the two types of
projects when it comes to the approach of project execution. Due to greater levels of
unpredictability, platform projects were expected to have different (more organic fashion) project
execution approach than derivative projects.

 P5-Project success: No significant difference was found on which project is more successful.
Derivative projects were expected to be more successful due to presumed lower technology
novelty, and project complexity.

 P6-Project smoothness: The results show no significant difference between the two project types
when it comes to the smoothness of the project execution. Since platform projects have greater
risks and in turn greater unpredictability, it was posited that platform projects would have lower
project execution smoothness.

A result from this research points out that a single product development process can be employed
for both platform projects as well as derivative projects. However, modest customization of the
development process is needed for the project type, i.e. customize the process as needed for the
corresponding project type which (from this research) result to be relatively little. In practice, both
platform and derivative projects are generally managed in the same way.

As the previous one, this study has a project management perspective on product development,
namely based on Platform and Derivative projects. In addition, main aspects that is of importance
such as project complexity, market newness, project risk, formality, project evaluation of personnel,
engineering tools and trainings, etc. points out that the research is focused on project management

45

(albeit for product development) rather than product management. The identified development
situations (Platform and Derivative) are relevant.
However, not covering details such as product feature/ or functionalities collecting or planning of
product development with respect to functionalities, implies a lack of depth into product
management processes, what we are searching for. Instead, this research covers these development
situations from a project management point of view. Like the previous study, this is out-of-scope for
this research.

3.3 Summary
In this section (chapter 3) the theoretical foundation for this research has been set. The most
essential topics have been discussed in detail:

 Software Product Management, as defined by the SPM Competence Model.

 Software Product Lines, as researched by numerous authors.

 Product development situations, as what was found most relating to this research.

Below, table 8 gives overview of the useful literature, categorized in SPL-Literature and the authors
who recognized the practice as part of SPL engineering.
NOTE: not all consulted literature in the literature base was useful for this research, in other words
within our scope of SPM and SPL. Most of the used SPL-literature refers to Domain and Application
Engineering. This is one of the practices most recognized in SPL engineering next to Variability
management and Architecture.
Despite for being out of scope for this research, the reference (generic) architecture of a product
family is unmistakable, i.e. being technical on a development level is not considered within the scope
of this research. However, literature points out that it is of key essence for the success of a SPL. It is
for this reason we include Architecture in the mapping of the SPL-literature and investigated how
and which part of literature we could map to SPM; our main focus. This is explained in the next
section.

Table 9: SPL-literature overview with corresponding references.

SPL-Literature Reference

Domain Engineering & Application Engineering Pohl, Böckle, Linden(2005)

Core asset development & Product development and
Management

Clements (1999, 2001); Northrop
(2002)

Variability Management Bosch (2000), Svahnberg (2000),
Gurp (2001), Jaring (2002), Halmans
(2003), Czarnecki (2004)

Requiline Maβen & Lichter (2004), Taborda
(2004)

Generalized release planning for SPL Taborda (2004),

Product line Portfolio Planning using Quality Function
Deployment (QFD-PPP)

Helferich, Herzwurm, Schockert
(2005)

Requirements taxonomy Schmid & Eichelberger (2007)

PuLSE Bayer, Flege, Knauber, Laqua,
Muthig, Schmid, Widem, DeBaud
(1999)

Product Derivation Framework Deelstra, Sinnema, Bosch (2003,
2004)

Integrated Software Product & Process Line (SPPL) Rombach (2005)

Family-oriented, Abstraction, Specification and Translation
(FAST) process

Ardis, Daley, Hoffman, Siy, Weiss
(2000)

Business, Architecture, Process and Organization (BAPO) Linden (2002)

46

Organizational alternatives Bosch (2001)

Product Development projects I Tatikonda (1999)

Product Development projects II Tatikonda & Rosenthal (2000)

47

4 SPL-Capability process

The SPL-literature presented in the previous section is represented by, what we call, SPL-practices.
These SPL-practices all have their own definitions, methods, activities, processes and deliverables for
SPL development that have relations to product management which are extracted in order
participate in the mapping process, which we call SPL-Activities. Figure 7 illustrates the relationship
of SPL-literature, SPL-Practice and SPL-Activity. The latter two are elaborated later on.

In the mapping process, comparisons will be made between the literature findings and the SPM
Competence Model. Depending on the degree of commonness, the knowledge of the Competence
model can be applied accordingly to the SPL-Practice. Depending on the degree of differences,
candidates for modifications or improvements can be identified that need to be included in the
Competence model. Since academic research specifically on product management for SPL is limited,
the mapping with the SPM Competence model is beneficial. The benefit is that the knowledge and
practice of a business function, focus area or capability applies for a SPL-practice (or activity) when
the two are similar or even equal. Thus, the mapping implies that the link the SPL-Activity has
towards the specific part of the SPM Competence Model is registered.

To be exact, the actual mapping will occur to the SPM maturity matrix. As mentioned previously, the
SPM maturity matrix is the detailed representation (including capabilities) of the SPM Competence
Mode in the form of a matrix. In order to compare, analyze and properly perform the mapping, SPL-
practices are described on similar level as the SPM Maturity Matrix. During the mapping, a
commonality implies no modifications, whereas a difference implies possible candidate improvement
to the maturity matrix.

4.1 Literature analysis
Once the SPL-literature was selected and studied, it became clear that most literature were (too)
development-focused. At first, these were focused on the actual development processes (technical
processes with the purpose to develop the end-product) of SPL and not directly related to SPM. This
finding led to the categorization of the literature base into: Development and Product Management.
Product management literature was identified by the focus on processes similar to the SPM
Competence Model or processes that surrounded, and was clear input for, development. The
categorization resulted as follows [amount of papers]:

 Development [19]

 Product Management [10]

 Development & Product management [15]

 Development situations [11]

4.1.1 SPL-Practice identification

This categorization revealed that the literature related to product management had the least amount
of papers. This was the category that was firstly used to identify the SPL-practices that would be
relevant for this research. A SPL-Practice describes the customary or habitually actions or process of
a particular topic regarding SPL. This resulted in 5 distinct SPL-practices [papers on topic]:

 Product line Release planning [4]

 BAPO Model [2]

Figure 6: n-to-n relation between SPL-Literature, SPL-Practice and SPL-Activity. Figure 6: n-to-n relation between SPL-Literature, SPL-Practice and SPL-Activity.

48

 Product Portfolio Planning – QFD [2]

 Product Derivation [3]

 Architectural design [6]

The SPL-practices were named after the main content process, a central model or framework. The
SPL-practice ‘Architectural design’ has the exception that it is not related to SPM. However, in the
majority of the product management literature this process was repeatedly mentioned as of vital
importance for the development and success of a product line. Hence, its inclusion. Below we give an
example of a Development and Product management category and their rationale:

Table 10: Example of SPL-literature categorization into Development and Product management

SPL-Practice Development Product
Management

Rationale

Product
Derivation

 X The process consists of two phases: the initial and the iteration
phase, which are managed by Requirements Engineering
throughout the entire process of derivation. Based on
requirement input the initial phase has the responsibility to
create the best fit configuration. In the iteration phase, the
configuration is iterated a number of times until the end-
product adhere to the requirements set up-front by
Requirements Engineering.

PuLSE X PuLSE exists of three main elements: Deployments phases,
Technical and Support Components. Deployment phases
describe the logical stages and activities performed to set up and
use the product line, e.g. scoping and design for the architecture
and development infrastructure. Technical Components
provides the technical know-how that is needed to realize and
operationalize the product line development. The Support
Components are the bundles of information or guidelines which
provides a better adaption, deployment and evolution of the
SPL.

The amount of identified practices by taking the ‘Product management’ category was not
satisfactory; practices discussed familiar concepts such as product feature identification or product
planning, however details were not always clear. This was the reason to also take an in-depth look at
the Development category. The literature gathering process assured that another search would not
result in more new SPM-related literature. However, when a particular topic covered both SPL and
SPM-practices and described possible improvements, this topic was re-searched with the intention to
find more literature on that particular topic. Most of the time, this re-search did not result in more
‘new’ literature. Hence, the Development-related papers were analyzed to filter out the SPM-related
practices. Development processes, models, frameworks, design techniques as described in literature
were studied and the SPM essence of each part was analyzed for relation to the SPM Competence
Model. This resulted into 7 more SPL-practices [papers on topic]:

 Product line Release planning [4]

 BAPO Model [2]

 Product Portfolio Planning – QFD [2]

 Product Derivation [3]

 Architectural design [6]

 Domain & Application Engineering [21]

 Core asset, Product development & Management [7]

 Variability management [17]

 Requirements practices [10]

 PuLSE [2]

 RequiLine [1]

49

 Requirements taxonomy [1]

When taking both Development and Product management categories it became clear that there are
certain SPL-practices that great majority of the literature relates to. These were two practices,
namely, Domain and Application Engineering and Variability management. In addition, most SPL-
practices are mentioned or discussed in multiple papers (figure 7). It can be noted that the last two
practices, RequiLine and Requirements taxonomy, only has 1 paper each. Nevertheless, these
practices have a direct relation to SPM that are candidate improvements.

4.1.2 SPL-Activity identification

The 12 identified SPL-practices were candidate practices that could provide knowledge to be
included in the SPM Maturity Matrix. During the analysis of the literature, each SPL-practice was
further described by its collection of activities (or method or processes description) that forms the
building blocks of that practice, its characteristics. We refer to these as SPL-activities.
The reasoning behind this naming is that when a SPL-practice is broken down into details and its core
essence is analyzed, we looked for the capacity for being useful for a specific purpose (SPL
management) that can be expressed in an action, step or instruction, i.e. activity. A SPL-Activity is
described as similar as possible as the SPL-Practice describes it, i.e. using the same keywords and
terminology. Whilst SPL-activities and SPM-capabilities are described on similar level in order to
create a fair comparison, SPL-activities are not called SPL-capabilities on purpose. The naming of
‘SPL-Capability’ is reserved for a later step in the mapping process.

Every SPL-practice has a bundle of SPL-activities, i.e. one or more activities. However, some SPL-
activities are also part of other SPL-practices, i.e. the activities are not unique for the SPL-Practice.
This creates the n-to-n relationship which is illustrated in figure 7. The naming of these activities is
kept relatively short and usually can be related to The SPM Competence Model. Below, in table 11,
we present the identified SPL-activities with the corresponding SPL-Practice.

For a clear overview, the amount of SPL-activities is shortened in table 11. SPL-practice with more
than five identified SPL-activities is only presented with the five SPL-activities that are most relevant
based on SPL and SPM importance of that practice. The complete table with all the identified SPL-
activities is represented in Appendix A. This will not be at the expense of understandability, since
only less data is presented in one table and the whole table is included in the appendix.

Table 11: Identified SPL-practices and SPL-activities.

SPL-practice SPL-Activity

Domain Engineering (DE) &
Application Engineering (AE)

Creation of roadmap for (common and variable) product features

PM deals directly and firstly with Requirements engineering (RE) (first on domain level
afterwards on product or application level)

RE differentiate between common and variable features

Variability management is dealt with in RE

Architecture design is driven by RE

Core asset, Product development
and Management

(Technical) Management monitors the processes of Core asset (DE) and product
development (AE)

Variability management Variability in SPL is determined by the variable features between the SPL-members

Requirements traceability is needed

Reusable Components represent a set of functionalities of the products

A component in the architecture implements a coherent domain or set of
functionalities.

Identifying variability is often based on analyzing commonalities and differences
between SPL-members

RequiLine RM differentiate between common and variable requirements

Requirements/feature traceability is needed

50

Generalized Release planning for
SPL

Requirements allocation and traceability

Release planning for components

PPP-QFD Requirements identification AND prioritization by customers

RM identifies Product line members

PuLSE Management path SPL future

Product map defines product line scope

Architecture is driven by requirements

Requirements are also used for product validation

Design and coding is validated against the architecture

Product Derivation Framework Requirements traceability is essential

Product configuration is validated against the requirements

Product architecture is derived from the reference architecture

Product roadmapping

Integrated SPPL SPL engineering exists of 2 separate development processes: DE and AE

SPL engineering promotes proactive reuse of pre-designed commonalities and
controlled variabilities within a family of systems

Commonalities and variabilities are implemented through a components architecture

SPL FAST Process The FAST process exists of two phases: DE and AE

During commonality analysis example scenarios are used to explore differences
between SPL-members

Prototyping a SPL-member makes it possible explore differences between the
members

BAPO

RM is input for the architecture design

Traceability of requirements is vital in RM

Business: Identity

Architecture: Reuse levels

Architecture: Product quality

Requirements taxonomy Requirements are categorized in: Commonality, Variability and Product-specific

4.2 The mapping process
The total amount of SPL-activities identified is 84 from the 12 identified SPL-practices (see appendix
A). However, this does not mean all SPL-activities are unique, since various SPL-activities are
identified in more than one SPL-Practice. This implies that some SPL-activities are redundant; 15 SPL-
activities in total. However, this does not have a negative effect since a redundant SPL-Activity only
adds weights of importance to the activity for being identified by multiple SPL-practices.

The purpose of the mapping process from business function-to-focus area-to-capability is to know
exactly to which part of the Maturity Matrix the SPL-activity links to. We want to know this to know
on which level the knowledge improvements can be applied. The following steps are performed
during the mapping process:
1. Comparison with the SPM Maturity Matrix.

A SPL-Activity is compared from a generic level to more a specific level in the Competence Model,
i.e. the activity is compared to the business functions to check where the activity best fit
according to the definition of the business functions in (Bekkers & Weerd, 2010). Next, the activity
is compared to the focus areas of that business function to check where it best fit, also based on
the definition of the focus areas in (Bekkers & Weerd, 2010). Finally, the activity is compared to
the SPM-capabilities of that particular focus area to check which one the activity resembles most,
also according to the description of the capabilities from (Bekkers & Weerd, 2012). The aim is to
compare the activities on an as-most-specific level as possible, i.e. capabilities level. However, if
this is not possible, then the most specific comparison possible is made, e.g. if SPL-Activity x is
compared to the focus area of Requirement Identification and it cannot be related to not one
capability, the linking stays at Requirements Identification. This comparison is registered for every
activity of each SPL-Practice.

51

2. A status is defined.
A status describes the link-type between the SPL-activity and the SPM Maturity matrix. This can
be a Similarity, a Candidate improvement or it can be Neutral. In order to remain clear and
understandable, colors are used for the defining of the statuses. See table 12 for elaboration.

3. A rationale is defined.
A rationale describes the reasoning behind the decision made on the status regarding the link of
the activity and the Competence Model.

4. Architecture or Organizational
As last step, SPL-activities that are related to Architectural design for SPL or related to changes,
processes or structure on an organization level regarding SPL, are registered. These two aspects,
especially Architecture, have been noticed to be essential for the overall success of the SPL.

Table 12: Statuses explained that a SPL-activity can obtain and eventually an Architecture or Organizational focus.

Status Color Criteria

Similarity Green The description of an SPL-activity is similar or equal to the description of the
business function, focus area or capability comparing keywords and
terminology. Verbs such as gather, identify, allocate, planning, etc. and SPM
terms such as requirements, release, validation, roadmap, etc. are compared.

Candidate
improvement

Blue The description of the activity is SPM-related (keywords and terminology),
however it is not described by or incorporated in the Competence Model or
only partially, with respect to SPL. Verbs such as gather, identify, allocate,
product planning, etc. and SPM terms such as requirements, release, build,
validation, roadmap, etc. are compared.

Neutral Grey Not a convincing Similarity nor a convincing Candidate improvement, an in-
between

SPL-Architecture A SPL-Activity that describes input, design process or characteristics of the
product line architecture.

Organizational O SPL-activity that describe processes essential for SPL-engineering on an
organizational level.

After the above mentioned steps 1 through 4 has been completed for a SPL-Activity, a mapping is
created for that activity. Below, we present the SPL-activities presented in table 13 and their
mapping as described above. Note: same as table 11, this table (table 13) has the same limitation on
SPL-activities. However, the same activities are presented as in table 11 in order to clearly present
the mapping process. For a complete overview of the mapping, please see Appendix A.

52

Table 13: SPL-activities mapping to the SPM Maturity Matrix.

SPL-practice SPL-Activity SPMCM-
mapping

Status Rationale

Domain Engineering (DE)
& Application
Engineering (AE)

Creation of roadmap for (common
and variable) product features

Product planning :
PR

 Improvement: creation of product roadmap based on common and variable product
features of the intended SPL-members. No details are given on the timespan of the
roadmap except for "as far as foreseeable". This Roadmap creation is similar with the
focus area Product Planning, except for the product features and timespan information.

PM deals directly and firstly with
Requirements engineering (RE) (first
on domain level afterwards on
product or application level)

Requirements
management

O Neutral: mostly stating Requirements Gathering and Organizing aspects and describe the
process on an organizational level. PM defines the common and variable features of the
SPL and the members and includes these in the roadmap, which serves as the scope for
DRE. Afterwards, PM defines which products should be derived in ARE.

RE differentiate between common
and variable features

Requirements
management: RG

 Improvement: RM should differentiate between common and variable requirements when
identifying product features. Identify more common than variable requirements, as
variable requirements assure more complexity. However variable requirements are
necessary for the essence of the SPL, which is the variability each product or application
will have.

Variability management is dealt with
in RE

Requirements
management: RO

 Improvement: RM should manage the variability, which is identifying, documenting and
modeling the variable requirements. RM explicitly document and model variability
(external variability= visible to customers, possible to choose variants). This entails
variable requirements and modeling (variation points, variants and their relationships) of
this variability. Here the variability diagram is created and presents the differences
between the members.

Architecture design is driven by RE Requirements
Management

A Improvement: RM should implement some practice towards architectural design. For
instance, quality requirements should count for the architectural design or grouping of
requirements according to architectural concerns.
Common and variable requirements and the variability model are passed onto Domain
Design which translates the requirements to technical solutions in the SPL architecture.
Especially quality requirements (performance, security, usability, etc.) are the drivers for
architectural design. The Variation/variability in requirements often results in
variation/variability in the architecture. Component frameworks are used to support the
various types of quality requirements, i.e. frameworks are used to model SPL

requirements in a structured manner into components with their relationships. It also

incorporates, properly, quality requirements such as flexibility, maintainability,
evolvability.

Core asset, Product
development and
Management

(Technical) Management monitors
the processes of Core asset (DE) and
product development (AE)

Overall O Improvement: Get (top) management more involved in the DE & AE processes, e.g. by
monthly reports or management involved, e.g. as a stakeholder for instance at the end of
each Sprint when following agile Scrum. However, it is relevant for the overall success of

53

SPM processes.

Variability management Variability in SPL is determined by
the variable features between the
SPL-members

Requirements
management: RI,
RO

 Improvement: Determine which requirements will differentiate between the SPL-
members. Focus area's RI for identifying the variation in the requirements, RO for
organizing the common and variable features and the modeling there of. The identified
variability has to be modeled by a variability-modeling technique, e.g. Feature Modeling
technique.

Requirements traceability is needed Requirements
management:
RO:B

 Improvement: Register in which (core) asset or component a requirement will be
implemented as extra requirement data. The capability of RO:B logs requirements’ data
expect for in which asset a requirements will be implemented.

Reusable Components represent a
set of functionalities of the products

Requirements
management

 Improvement: Requirements can be organized according to components explicitly. This
statement states a set of functionalities or requirements form a component.

A component in the architecture
implements a coherent domain or
set of functionalities.

Requirements
management: RO

A

Neutral: A component consists of functionalities that are closely related or together form
a solution. Similar to the Requirements organizing focus area.

Identifying variability is often based
on analyzing commonalities and
differences between SPL-members

Requirements
management: RI,
RO

 Improvement: Commonalities and differences identification and analysis should be part of
RM, since it comes down to common or different features and requirements

RequiLine RM differentiate between common
and variable requirements

Requirements
management: RI

 Improvement: RM should differentiate between requirements for all SPL-members
(common) and requirements for specific SPL-member (variable)

Requirements/feature traceability is
needed

Requirements
management:
RO:B

 Improvement: Features should be linked to the SPL-member they are implemented in.
This makes it possible to trace requirements down (history of requirements
implementation) and have the knowledge of how an issue has been solved before.

Generalized Release
planning for SPL

Requirements allocation and
traceability

Requirements
management:
RO:A, B

 Improvement: Bundle requirements that fit together and register where this bundle will
be implemented, organized per SPL-member inclusion. Both components and end-product
are linked in the Release matrix. This implies requirements being allocated to components
and finally the end-products. Traceability too, requirements can easily be traced in which
product they were implemented

Release planning for components Release planning:
RD:B, C

 Improvement: Plan the release of components and products in the Release matrix, as is
needed to meet the release date (the component producer is the one responsible for
requirements prioritization).

PPP-QFD Requirements identification AND
prioritization by customers

Requirements
management:
RG:E – Release
planning: RP:C

 Similarity: Requirements for the SPL are firstly gathered from existing and potential
customers. These requirements are analyzed and sorted. Secondly, the existing and
potential customers are asked to prioritize the requirements.

RM identifies Product line members Requirements
management: RO
– Release
planning: RP

 Improvement: Requirements can be sorted and organized in such a way, that segments
can be extracted. Based on the prioritized requirements, customer segments are derived
using cluster analysis. Each product line member is identified using the rule ‘one product
line member per customer segment’. Experts provides input on a technical level.

PuLSE Management path SPL future Portfolio
management

 Neutral: The product line scope is initiated by business objectives defined by the
stakeholders. Management defines the business objectives that drive the SPL initiation.

54

Product map defines product line
scope

Product planning:
RI

 Improvement: to present requirements with SPL-members together with other valuable
information for the product line, i.e. costs, benefits, market, objectives and competitors in
a product map. A matrix with the SPL-members in the columns and the characteristics in
the rows together with information on the market, costs, competitors and benefits.

Architecture is driven by
requirements

Requirements
management

A Improvement: common, variable and product-specific requirements are used to initiate
the architectural design of the SPL, i.e. concepts are determined and modeled according
to their relation and product line scope. The aim is to define a domain-specific SW
architecture that covers the existing products and future SPL-members

Requirements are also used for
product validation

Release planning:
RBV

 Similarity: validation of the end product is performed to assure product quality according
to the requirements set beforehand.

Design and coding is validated
against the architecture

Release planning Improvement: the reference architecture is used for the validation of the design models
and SW-coding to validate if the limitations and structure of the architecture are met.

Product Derivation
Framework

Requirements traceability is
essential

Requirements
management:
RO:A, B

 Improvement: requirements are also linked to the core asset in which they've been
implemented. Requirements are organized based on shared core assets is a similarity.

Product configuration is validated
against the requirements

Release planning:
RBV

 Similarity: validation of the end-product, to assure product quality, according to the
requirements set beforehand.

Product architecture is derived from
the reference architecture

Architecture A Neutral: The product architecture is derived from the product line reference architecture,
for as much as possible.

Product roadmapping Product planning:
RI, PR

 Similarity: the domain and scope of the SPL as well as its future developments (evolution)
are predicted in combination with a technology scope in a roadmap. However, no
timespan is given.

Integrated SPPL SPL engineering exists of 2 separate
development processes: DE and AE

- O Neutral: One process, DE, is responsible for developing reusable components and set up
the product line development platform. The other process, AE, uses mainly the reusable
components developed by DE to build the end-products, and tailors where this is needed.

SPL engineering promotes proactive
reuse of pre-designed
commonalities and controlled
variabilities within a family of
systems

Requirements
management: RG

 Improvement: pre-designed commonalities and controlled variabilities are common and
variable features between the SPL-members. These should be handled in RM

Commonalities and variabilities are
implemented through a components
architecture

Requirements
management

A Neutral: common and variable features are organized into components. The architecture
describes how components should be implemented and how they relate to each other.

SPL FAST Process The FAST process exists of two
phases: DE and AE

- O Neutral: DE and AE are recognized as the two main processes essential for SPL
engineering. Similar to other SPL-practices.

During commonality analysis
example scenarios are used to
explore differences between SPL-
members

Requirements
management: RI

 Improvement: use these example scenarios (techniques) in order to further analyze
common and variable features when this is needed for certain products.

55

Prototyping a SPL-member makes it
possible explore differences
between the members

Release planning Improvement: Prototyping allows for deeper identification and analysis of variable
features and other aspects between SPL-member when scenarios are not sufficient.

BAPO

RM is input for the architecture
design

Requirements
management

 Improvement: The design for the reference architecture receives input from RM, i.e. the

functional and quality requirements form the design of the reference architecture. Both

commonalities & variability (variation points and variants) should be modeled in the
architecture. The reference architecture defines the components (mandatory, optional,
and alternative), component interrelationships, constraints, and guidelines for use and
evolution in building systems of the SPL.

Traceability of requirements is vital
in RM

Requirements
management:
RO:B

 Improvement: RM should trace requirements to know in which assets they are
implemented, for maintenance reasons and a complete manageable process. Traceability
is connected with configuration and version management for the configurations and
version of the particular assets and components.

Business: Identity Product planning:
CAR

O Neutral: Existing family assets are reused in product development for opportunistic
reasons. Likewise, make/buy/mine/commission SPL assets are only done for opportunistic
reasons. This is information that is not to be missed. However, it is not more than that.

Architecture: Reuse levels Product planning A Neutral: asset sharing is only beneficial when the commonalities are clear to be exploited.
Domain-specific components can be acquired from external sources if this is more
beneficial (less effort) than building them.

Architecture: Product quality - O Neutral: intra-organizational reuse of assets takes place through a platform which
provides domain functionality that is applicable for all products, i.e. commonality. Non-
commonalities are implemented in individual application or product (product derivation)

56

4.3 SPL-Capabilities
In the previous section we presented how and where the identified SPL-activities map to in the SPM
Maturity Matrix. We now know which SPL-activities we can make further use of in order to
incorporate the SPL-knowledge in the Maturity Matrix. From the three types of statuses presented in
table 12, Candidate improvement is most interested for us. This mapping’s purpose is to identify SPL-
knowledge that is not provided by the SPM Maturity Matrix, whilst being applicable to do so. Most
SPL-activities are described on the same detail-level as SPM-capabilities, i.e. describing an action that
has to take place with a specific goal. Usually this goal is represented by the focus area where the
capability is grouped in together with other related capabilities. SPL-activities have been described in
this way in order to compare them with SPM-capabilities. In addition, when a SPL-Activity is mapped
as a Candidate improvement it can thus be rewritten in the same format as the SPM-capabilities or
as a focus area or a business function. By doing this, we can incorporate new knowledge (SPL) into
the SPM Maturity Matrix. The Maturity Matrix would then have extra SPL-specific capabilities, focus
areas or business functions.

The Similarity-mapping has little further implications. When a SPL-Activity is similar or equal to the
business function, focus area or SPM-Capability, i.e. no significant differences are identified in the
descriptions comparison, then it can be stated that the particular SPM-business function, focus area
or capability is applicable for SPL-engineering also. The Neutral-mapping can have different
implications. As explained in table 12, when a SPL-activity is neither a convincing Candidate
improvement nor a convincing Similarity, it is automatically a Neutral. When a SPL-Activity is mapped
as a Candidate improvement or Neutral, the SPL-Activity can also be linked to SPL-Architecture or
Organizational. These SPL-activities are more focused on the architectural or organizational
importance of SPL-engineering. Nevertheless, SPL-literature assured that these two topics were as
essential as the product management ones, especially SPL-Architecture.

Below we present a summary of the mapping process: a summary of all the SPL-activities with their
mapping in the Maturity Matrix. In table 14 we present the same amount of SPL-activities we have
used in the previous section, i.e. table 11. The complete mapping process is included in Appendix A.
Note that the mapping to the Maturity Matrix is presented in abbreviations in the form of: business
function:focus area:capability. For instance, Product planning:Product roadmapping would be PP:PR,
Requirements management:Requirements organizing:capability B would be RM:RO:B.

Table 14: Summary of the SPL-activities mapping process.

SPL-practice SPL-Activity Similarity Candidate Imp. Neutral

Domain Engineering (DE)
& Application Engineering
(AE)

Creation of roadmap for (common and
variable) product features

 PP:PR

O: PM deals directly and firstly with
Requirements engineering (RE) (first on
domain level afterwards on product or
application level)

 RM

RE differentiate between common and
variable features

 RM:RG

Variability management is dealt with in RE RM:RO

A: Architecture design is driven by RE RM

Core asset, Product
development and
Management

O: (Technical) Management monitors the
processes of Core asset (DE) and product
development (AE)

 Overall

Variability management Variability in SPL is determined by the
variable features between the SPL-
members

 RM:RI, RO

Requirements traceability is needed RM:RO:B

Reusable Components represent a set of
functionalities of the products

 RM

57

A: A component in the architecture
implements a coherent domain or set of
functionalities.

 RM:RO

 Identifying variability is often based on
analyzing commonalities and differences
between SPL-members

 RM:RI, RO

RequiLine RM differentiate between common and
variable requirements

 RM:RI

Requirements/feature traceability is
needed

 RM:RO:B

Generalized Release
planning for SPL

Requirements allocation and traceability RM:RO:A, B

Release planning for components RP:RD:B, C

PPP-QFD Requirements identification & prioritization
by customers

RM:RG:E –
RP:RP:C

RM identifies Product line members RM:RO – RP:RP

PuLSE Management path SPL future -

Product map defines product line scope PP:RI

A: Architecture is driven by requirements RM

Requirements are also used for product
validation

RP:RBV

Design and coding is validated against the
architecture

 RP

Product Derivation
Framework

Requirements traceability is essential RM:RO:A, B

Product configuration is validated against
the requirements

RP: RBV

A: Product architecture is derived from the
reference architecture

Product roadmapping PP:RI, PR

Integrated SPPL SPL engineering exists of 2 separate
development processes: DE and AE

SPL engineering promotes proactive reuse
of pre-designed commonalities and
controlled variabilities within a family of
systems

 RM:RG

A: Commonalities and variabilities are
implemented through a components
architecture

 RM

SPL FAST Process O: The FAST process exists of two phases:
DE and AE

During commonality analysis example
scenarios are used to explore differences
between SPL-members

 RM:RI

Prototyping a SPL-member makes it
possible explore differences between the
members

 RP

BAPO

RM is input for the architecture design RM

Traceability of requirements is vital in RM RM:RO:B

O: Business: Identity PP:CAR

A: Architecture: Reuse levels PP

O: Architecture: Product quality

As can be seen in table 14, the column of Candidate improvement is highlighted. These SPL-activities
will contribute in the coding into SPL-capabilities. The process of transforming a SPL-Activity into a
SPL-capability is rather simple: a SPL-Activity that is mapped as candidate improvement will be coded
in the same format as a SPM-capability. After this coding, the SPL-Activity becomes a SPL-Capability.
A SPM-Capability is coded according to the following attributes (Bekkers et al., 2010a):

 Title

58

 Goal
The goal to be achieved by possessing the capability

 Action
The action required by the organization in order to perform the capability.

 Prerequisite(s)
Capabilities that need to be achieved before the capability in question can be achieved

 References
Related literature supporting the organization in the implementation and understanding of the
capability.

We coded the SPL-activities into SPL-capabilities and categorized them hierarchical as this is done in
in the Maturity Matrix, i.e. Business functions having Focus areas having Capabilities. As can be noted
in the mapping process, SPL-activities are not unique, in other words, various SPL-practices identified
similar and even equal SPL-activities. When taking the SPL-Capability coding into consideration, this
implies that multiple activities can contribute to the coding of one SPL-Capability. In Appendix A,
where the full mapping can be seen, each activity has a unique identification number; an ID. The
activities that contribute to each SPL-Capability are noted in brackets behind the title and can be
traced back in the complete mapping table (Appendix A).

The fields of prerequisites and references are filled in a later section, since the SPL-capabilities will be
evaluated by experts before actually being implemented in the Maturity Matrix. Below we present
the Candidate improvements SPL-Activities that are coded into SPL-capabilities. Note, not all the SPL-
capabilities are presented, since this will result in a too large amount of (more) tables. However,
Appendix B presents all the SPL-capabilities. For each business function a selection of SPL-capabilities
has been made based on SPL-essence to present. The SPL-Activities regarding SPL-Architecture and
Organizational aspects have also been coded as SPL-Capabilities. At this point of the research these
are only recognized as SPL-Capabilities, however they do not yet belong to a specific business
function. The reasoning is to get the SPL-capabilities through expert evaluation and to process the
feedback and have more knowledge to place the Architecture and Organizational SPL-capabilities
properly.

Requirements management
Requirements gathering
Title Basic product line scoping (7, 8, 10, 47, 48, 54, 59, 64)

Goal Define product line features to support the scope

Action Requirements management defines Common, Variable and Product-specific product features. A
Common feature is present in all or most products. A Variable feature is present in some products
only. A product-specific feature is present in only one individual product (customer wish). A
product feature is a logical unit of behavior that is specified by a set of functional and quality
requirements, implying a feature is defined by multiple requirements. By defining the different
features, and thus requirements, and in which product they will be present (variable features), the
different product line-members can be identified. The aim is to define more common than variable
requirements, as variable requirements assure more complexity. However variable requirements
are necessary for the overall variability of the SPL.

Requirements organizing
Title Product line features organizing (22,23,24)

Goal Organize features according to (reusable) components

Action Organize features together that serve the same purpose or functionality to form components, i.e.
features that complete a function of a component are grouped together. A (Reusable) component
represents a set of closely related functionalities/features that form a product solution.

59

Title Variable feature management (13,18,41,42,43,44,45)

Goal Manage variable product line features properly.

Action Variability (variable features) is identified and explicitly modeled and documented. This is referred
to as Variability management. Identifying variability is often based on analyzing commonalities and
differences between SPL-members; especially external variability which is visible to end-users and
possible for them to choose variants. This happens while gathering, identifying and defining
product features. The variable features are destined to be implemented in (only) some individual
SPL-members, unlike the common features, which are implemented in all members. The variable
features and the variances are modeled into a Variability diagram with Variation points (decision
points), variants (a decision) and the relation thereof with proper textual documentation. This is
also known as Feature Modeling technique. The purpose is to have a clear view of the variability of
the product line and to be able to manage it, since this is vital for the product line success.

Release planning
Requirements prioritization
Title Product line features prioritization (58)

Goal Product line features prioritization

Action Prioritize the features that will be implemented in end-product from the next release on by
assigning priority to them (prioritization techniques can be used). This prioritization is performed
with the end-product(s) in focus and which component is required to complete the product. This
implies that features would be implemented in components and these components would
complete the end-product. Prioritization is necessary, since not all features can be implemented,
due to costs, resources and market introduction deadlines. Hence, the features with the desired
priority will be included in the particular components.

Release definition
Title Product line release definition (4,58)

Goal A selection of features for implementation based on priority

Action A practical selection of the features is made given the limitations on engineering resources, based
on the priority assigned. The function and essence of the components is also considered when
making the selection. The selection is defined textually which will be necessary for further steps.

Release build validation
Title Architectural release validation (71)

Goal Release validation by architecture – Release quality assurance

Action The design and coding of the SPL-members (the build) is validated through the product line
architecture before the actual release is launched. The design and software code have to adhere
to the limitations and structure of the product line architecture. This validation is performed by
the department(s) who is (are) responsible for developing and maintaining the product line’s
architecture(s). The product line’s architecture is vital for achieving the business goals set up front,
when management decides to engage in a software product line development approach. Hence,
the necessity for validation through architecture.

Product planning
Product roadmapping
Title Product line roadmapping (3,29,46,105)

Goal Define the scope of the software product line through a roadmap.

Action A roadmap is created detailing the anticipated products of the product line, its members, as far as
foreseeable. The members are represented by the components (if possible) of which they are built
off, i.e. multiple features form a component, whereas a feature abstract from requirements. The
product line features, common and variable, should be predicted for a time span of 5 years.
However, other authors (e.g. Svanhberg et al.) believe this is not practical, since a great amount of

60

the future requirements (not technology shifts and/or other development changes) of the product
line cannot be predicted.

Core asset roadmapping
Title Core asset usage (3,29,46,105)

Goal Intra-organizational reuse of core assets – exploiting core assets.

Action Increasing commonalities will need to be managed in order to be exploited properly. The managed
commonalities are developed into fundamental components (core assets). These core assets,
which mostly contain domain functionality, amongst other shared assets, are reused by other
(internal) departments through the product line platform. Features that are shared by sufficient
members are included in the core assets, whereas features shared by only few members are
developed as part as product derivation. This ensures knowledge sharing and more efficient
product development as more reuse is taking place. This is a typical of product lines practice.

Portfolio management
Product lifecycle management
Title Financial Product line scoping (106)

Goal Scope the product line with information on costs and profits.

Action The decision whether a product will or will not be part the product line scope is based on the
expectations of the ROI. If these are beneficial for the organization, the product will be part of the
line, otherwise it will be declined. This can also be applied to features, i.e. features are dropped
according to their expected added value or revenue.

Not coupled to any business functions
Product line architecture
Title Reference architecture construction(14,24,27)

Goal Create product line reference architecture.

Action Create the product line reference architecture. Role of the architecture is to describe the
commonalities and variabilities of the products in the product line and to provide the overall
structure. Common and variable features, represented by the components, are the main drivers
for architectural design together with quality requirements such as performance, security,
usability, etc. These are also represented in the architecture. Component frameworks are used to
support the various types of quality requirements, i.e. frameworks are used to model features in a
structured manner into components with their relationships. The reference architecture has to
solve issues of variability and reusability. In addition it also properly incorporates quality
requirements such as flexibility, maintainability, evolvability. When common and variable features
are considered in a very early stage then more flexibility is assured for the product line. As
features are represented in components, the components in the architecture implement a
particular/coherent domain of functionality, e.g. the network communication domain.

Organizational
Title Domain & Application engineering (6,80,87)

Goal Create a product line environment

Action Create two processes: one process, Domain Engineering, that is focused on developing reusable
artifacts and a product line environment (textual and modeled requirements specification,
architecture, design, variability model, software components, tests plans, and more) which forms
the development platform; and one process, Application Engineering, that focus on developing
sellable end-products that are built from the artifacts developed in Domain Engineering

Title Requirements engineering planning (5,7)

Goal Plan requirements engineering for product line developments.

61

Action Product management controls Requirements engineering directly, first on domain level afterwards
on product (or application) level. Product Management defines the common and variable features
of the product line in the roadmap, which serves as the scope for further requirements
engineering tasks such as detail specification and modeling. Afterwards, Product Management
defines which products or applications should be derived in Application Requirements
Engineering, implying which requirements will be implemented for which product, individually
(variable features)

62

5 Expert evaluation

In this chapter, we present the evaluation of the SPL-capabilities that we discussed in the previous
one. In the Research approach chapter we mentioned that the identified SPL-practices which finally
provided the SPL-capabilities would need to be evaluated before being implemented in the SPM
Maturity Matrix. First, we reflect on the scope of the evaluation. Second, we present the
questionnaire we used and its contents. Finally, we discuss the evaluation results and present the
modifications to the SPL-Capabilities.

5.1 Evaluation scope
The total SPL-capabilities that were defined through the mapping process resulted in 21 capabilities.
In order to make a SPL-Capability as comprehendible as possible for the evaluation it included some
textual explanation. This was included in the Action-attribute of the capability, even though the
Action-attribute is supposed to describe only the action required to achieve that particular capability.
The consequence was that each SPL-Capability was larger in text than was actually needed, in other
words some text was more additional information than described required actions. We added this
additional information to insure the experts would understand what we meant with the capability.
However, this had some uncertainties for the evaluation. The complete SPL-capabilities list turned
out in a larger than expected document (8 pages only capabilities) which can have demotivating
effects on the experts, i.e. large content can demotivate or doing it hastily to finish as quick as
possible and not taking their time to do it properly. This in turn can lead to not getting reliable
results. We considered narrowing the description of the SPL-capabilities for a more motivating effect.
We decided not to do this, since this can make the SPL-Capability less clear and possible the chance
to not be comprehended by the expert or misinterpreted. This can also lead to unreliable results.

In structuring the questionnaire we want to present the questions clearly and not give the impression
that the questions would be presented randomly. The questions were structured accordingly as was
the area where the answer should be inserted (see Questionnaire section). Presenting questions in a
not structured manner can comprise the answers, e.g. not presenting the questions in a logical order.

As mentioned before, the evaluation was done abroad. The researcher had an academic contact that
was willing to find respondents to perform the evaluation. Since this academic contact would
personally contact the respondents we wanted that the questionnaire would be accepted positively
on a professional level. This had the advantage of being evaluated by product line experts in a
different environment not related to the research or the case company. Hence, we made sure the
questionnaire was well-understandable and structured logically.

5.2 The questionnaire
We used a questionnaire for the evaluation for the SPL-capabilities. The questionnaire was intended
for practitioners with enough knowledge on SPM, SPL-engineering and SW-development. For this
reason the questionnaire stated that it was for ’Practitioners in the role of (or similar) Product (line)
manager, Product owner, Product development manager (and/or Project Manager)’.

Next to evaluating the SPL-capabilities, the added value of the evaluation was to see how existing
literature relates to the industry and receive feedback that can be used in addition to the SPL-
literature; an view of the industry. In order to prevent misunderstanding, no abbreviations were used
in the questionnaire. Furthermore, some questions were further explained or given examples to
prevent misinterpretations. The questionnaire consists three sections: General information, Product
characteristics and the SPL-capabilities. Below each section is further elaborated.

63

5.2.1 General information

This section’s purpose was to get more information on the expert’s experience in the current
function and the department. This information will be used for comparison with the case company.
The questions are straightforward and are presented below:

What is your function/position within the organization?
(e.g. product manager, product line manager, product owner, project manager, etc.)

How long have you been working in your latest function?
(number in years)

What is the total number of employees working at the department/business unit?
(expressed in FTE, fulltime-equivalent)

5.2.2 Product characteristics

This section was aimed to get information regarding the product characteristics that the expert’s
organization is developing. This information is necessary in order to understand in which context the
SPL-capabilities are answered and also understand the possible reasoning with respect to the
products. The questions used in this section were mostly copied from the SPM Maturity Matrix. As
explained in chapter 3, a part of the Maturity Matrix is the Situational Factors list. These are
characteristics on aspects such as Business unit, Customers, Market, Product and Stakeholders. As all
these characteristics would have been relevant to know and to use for comparison, not all could have
been included due to a too large (15+ pages) content to present to the respondents. The Product
characteristics were believed to be the most essential ones, since this research is on a product level.
In addition, some questions were added, specified on product lines, instead of just products. This was
done in order to cover all possible areas that are relevant to the case company, i.e. the (product
development) context should be known in order to compare or relate the answers to the case
company.

The first two questions are about the production output in terms of product lines and product line
members. The following two questions regard the responsibility of the expert towards the products.
The more an expert is accountable for, the more overview it has on the management of product
line(s). The following four questions are about the age and lifetime of the product line(s) and the
members. The last three questions regard the requirements and release frequency of products and
the fault tolerance in the products. For instance, we know that the fault tolerance at the case
company is very low. This give an impression on how the company deals with product development,
i.e. the product has to be completely flawless or not. The questions are presented below.

What is the total number (or estimation) of existing product lines?
(this can thus be one to many)

What is the (average) number of products in a product line, i.e. products constituting one product line? (this
can thus be one to many)

How many product lines are you responsible/accountable for?
(number of product lines)

How many products are you responsible/accountable for?
(number of products)

What is the average age of the product lines?

64

(Determined by looking at the number of years passed since the first release of the product line until the
current point in time. It indicates how long the product line already exists.)

What is the (average) age of products in the product line?
(Determined by looking at the number of years passed since the first release of the product until the current
point in time. It indicates how long the product already exists. In this case it can be as old as the product line
or younger.)

What is the lifetime of the product lines?
(Determined by the time period the product line will remain in production starting from the current point in
time. This indicator thus shows the product line’s remaining lifetime, how long the product line already
exists must not be included in the calculation.)

What is the lifetime of the products in the product lines?
(Determined by the time period the product will remain in production starting from the current point in time.
This indicator thus shows the products remaining lifetime, how long the product already exists must not be
included in the calculation.)

What is the release frequency in days?
(Where a release is an update containing functional changes, and not only bugs fixes. For instance, 365
days)

What is the number of new feature request per year from all stakeholders?
(e.g. customers and sales)

What is the tolerance for faults in the products?
(Some products are more sensitive to bugs than others are. If we take for example an application that
handles bank transactions then it cannot allow for any defects at all since it could cause grave economical
and reputational damage to a business. However, a back office application that is ran only once per week
and is non-essential can be non-functioning for a short while without serious consequences.)

5.2.3 SPL-capabilities

This section begins with an introduction text regarding the purpose of the SPL-capabilities. It was
made clear that the product management was the main focused instead of the actual development.
The structure of the presentation of the capabilities, the business functions, was also made clear.
How the capabilities were coded was explained, i.e. a title, a goal and the required action. The last
part of the introduction the expert was explained what was expected of him of each capability.
Below every capability there is a ‘Yes/No’ question whether this is a useful capability or not,
according to the expert’s knowledge and experience. In addition, there was space to give a rationale
(fundamental reason) why the capability was useful or not (short or as detailed as the expert chose,
however it had to be as comprehendible as possible). Below an example of a SPL-Capability is given
as presented in the questionnaire. The SPL-Capabilities were presented as can be seen in Appendix B,
in the same order.

A Basic product line scoping
Goal: Define product line features to support the scope.
Action: Requirements management defines Common, Variable and Product-specific product features.

A Common feature is present in all or most products. A Variable feature is present in some
products only. A product-specific feature is present in only one individual product (customer
wish). A product feature is a logical unit of behavior that is specified by a set of functional and
quality requirements, implying a feature is defined by multiple requirements. By defining the
different features, and thus requirements, and in which product they will be present (variable
features), the different product line-members can be identified. The aim is to define more
common than variable requirements, as variable requirements assure more complexity.
However variable requirements are necessary for the overall variability of the SPL.

65

Is this capability useful?
Yes / No

Rationale:

5.3 Respondents
The researcher performed a research two years ago with a then doctoral student of the Lund
University (Sweden) on quality requirements in SPM (Berntsson et al., 2010, 2011). From this
collaboration an academic relationship was built and used for this research. This academic contact
was willing to find experts with the right prerequisites to fill in the questionnaire. Thus, the
respondents whom filled in the questionnaire are experts who work abroad, i.e. Sweden. Our
prerequisites were that a respondent should possess enough knowledge on SPM and SPL-
engineering by means of their professional experience in the industry. We were interested in the
experience experts have in the industry which can be used to evaluate our findings. Next to existing
literature it is important to also get feedback from what or how organizations act in the domain of
SPM and SPL-Engineering.

Originally, we considered the authors of the SPM Competence Model (Bekkers, W., Weerd, I. van de,
Brinkkemper, S.) for filling out the questionnaire. However, we decided (and trusted) to find our
respondents abroad and experts who would not have direct relations or even know about the SPM
Competence Model. This way, it is not likely their answers will be biased.

Our contact is working at a large mobile organization that has product lines. We requested to find as
much as was possible as this would add reliability to the evaluation. However, this was much more
difficult than expected. The organization was in the middle of a take-over of another organization
and internal re-organizations were taking placing which was keeping all the employees extremely
occupied. From all the experts approached, only two at the contact’s organization reserved free time
to perform the questionnaire. Another respondent at another organization was also willing to
complete the questionnaire. In total three experts was found who filled in the questionnaire we sent
to Sweden. For confidentiality agreements, we will not elaborate on the details of the experts nor the
organizations, since the results can give away sensitive information the organization not wish to be
known publically. However, a brief description can be found below.

Organization A
The case company is a large company operating in a market-driven requirements engineering context
using a product line approach. The case company has two types of releases, a major and
a minor release. A major release focuses on functionality growth and quality improvements of the
product portfolio. Minor releases usually focus on the platform's adaptations to different products.
The company has about 5,000 employees and develops embedded systems for a global market. A
typical project has around 60- 80 newly added features, from which 700-1000 system requirements
are produced. The company has a very large and complex requirements legacy database with
requirements at different abstraction levels in orders of 20,000 requirements, which makes it an
example of a very large-scale requirements engineering context. A typical project at this company
lasts for about 2 years and is implemented by 20-25 teams with about 40-80 developers per team.

Organization B
The company is a global defense company based in Sweden. It has between 5,000 and 15,000
employees and annual sales around 2.7 billion EUR. A typical development project will have several
thousand requirements and have a long life span, e.g. 3-5 years. The products are characterized by
long time to market due to rigorous requirements on public and operational safety. Development is

66

usually done in close cooperation with customers, which are in most cases governments or their
representatives. The expert was a project manager that mainly works as a developer and a tester.
This expert has the most technical experience and knowledge compared to the other two experts
given his function. This can also be noticed in his answers, i.e. mostly from a developer perspective.
This is what we need for the SPL-capabilities on Architecture.

5.4 The results and modifications
The results of the questionnaire are presented according to the sections made in the questionnaire.
We first present the results of the first two sections, i.e. General information and Product
Characteristics as these were answered. Afterwards we present the answers on the SPL-capabilities
separately. In addition, we also state the needed modification based on the results for each
capability. Note that in table 15, Expert A1 and Expert A2 both answered two questions regarding
product characteristics with ‘?’ and ‘Don’t know’. We assume that both answers indicate that they do
not have the knowledge to answer the question properly and disregarded their answer.

Table 15: Questionnaire results on the sections of General information and Product characteristics.

Question Expert A1 Expert A2 Expert B Case study

General information

What is your function/position within the organization? Line
manager

Product
manager

Project
manager
(mainly SW
developer and
tester)

How long have you been working in your latest function? 2 5 2

What is the total number of employees working at the
department/business unit?

18 60 2500

Product characteristics

What is the total number (or estimation) of existing product
lines?

1 1 1

What is the (average) number of products in a product line,
i.e. products constituting one product line?

20 15 10

How many product lines are you responsible/accountable for? 1 1 1

How many products are you responsible/accountable for? 7 4 2

What is the (average) age of the product lines? 3 3 10

What is the (average) age of products in the product line? 3 3 10

What is the lifetime of the product lines? ? Don’t know 20

What is the lifetime of the products in the product lines? 12m 12m 20

What is the release frequency in days? 180 180 190

What is the number of new feature request per year from all
stakeholders?

? Don’t know less than 20

What is the tolerance for faults in the products? Low Low Low

Comparing the expert companies with the case company, we notice that company A also operates in
the embedded systems industry. However, at a much higher requirements engineering scale. On the
products-level there are similarities; the clearest one being that all companies develop products that
have very low fault tolerance. Typically, this implies that these companies must have strong focus on
the quality of the end-product. Activities that involve validations are strictly and organized
performed in order to assure the successful execution of all sub-processes and artifacts. The case
study struggles at this too. The release frequency is a similar aspect. At the moment, the case
company has a release frequency of once per year. However, the desire is to have a release
frequency of twice per year and last year, two releases were performed for the first time.

67

The amounts of product constituting a product line also are nearly equal; differing a maximum of 6 or
a minimum of 1 product compared to the other companies’ business units. However, at the expert
companies, multiple practitioners are responsible for the product line with a practitioner being
accountable for a product group of 7, 4 or 2 products. Another noticeable distinction is the age of the
product lines of the expert companies compared with the case company, making the case company’s
product line about in the middle. Company A has younger product line whilst Company B has much
older one.

Below, we present the evaluation results of two SPL-capabilities as examples. See Appendix C for the
complete list of the evaluation of the capabilities. The SPL-Capability in question is represented only
by its title due to space saving. The complete capabilities are presented in Appendix B. Furthermore,
each capability is presented in the following structure:

 Usefulness: A ‘3/3’ indicates three times a ‘YES’, whilst a ‘1/3’ indicates one time a ‘YES’.

 Rationale summary: This is a summary of what the rationale of the three experts and it supports
the Usefulness.

 Modification: Based on the Usefulness and the Rationale summary the needed modification is
stated. None means implementation in the SPM Maturity Matrix.

Table 16a: Expert evaluation of a SPL-capability of Requirements Management

SPL-Capability Basic product line scoping

Usefulness 3/3

Rationales summary It is important to know if the feature/functionality is variable before development
start. Literature suggests that in order to build in the variability properly, it has to be
known in an early phase.

Modification None

Table 176b: Expert evaluation of a SPL-capability of Requirements Management

SPL-Capability Advanced product line scoping

Usefulness 1/3

Rationales summary It is not useful when fewer and larger variabilities are at stake. This means that it is
useful for many and smaller variabilities. However, it is useful to detect early
hazardous behavior of the system (similar of the focus area Release build
validation).

Modification This capability needs a condition: useful IF variability in the product line is large in
number and it is relatively small variation.

5.5 Summary
The evaluation proved to be helpful, despite the resources limitations. The SPL-capabilities were
evaluated by expert with knowledge and experience regarding SPM and SPL-Engineering. Regarding
the questionnaire, we did not receive critique or negative response. This might have been different if
more than three experts would have completed it. Furthermore, we did not receive signs of
misinterpretation regarding the questions. On two questions we did notice that two expert did not
know the answers to, answering with ‘?’ and ‘Don’t know’. Regarding the capabilities, one expert
clearly specified that he had no experience with product line architectures. Here the answer of the
expert with most technical experience weighted more. In total, out of the 21 SPL-capabilities that
were evaluated, nine (9) did not need modifications, four (4) will be left out and eight (8) needs
modifications.

68

6 Software Product Line Management Maturity Matrix

In this chapter we will implement the SPL-capabilities presented, discussed and evaluated in the
previous chapters, in the SPM Maturity Matrix. The aim of this chapter is to get the Maturity Matrix
‘SPL-ready’ in order to be applied at the case company. Two major steps will ensure this: first, the
SPL-capabilities will be rewritten properly, and second, the SPL-capabilities will be given a maturity,
i.e. a placement in the matrix. After these steps the first version of the Software Product Line
Management Maturity Matrix (SPLM Maturity Matrix) is born.

6.1 Capabilities revision
So far, the SPL-capabilities have been identified from the SPL-practices, mapped to the SPM Maturity
Matrix and evaluated by experts abroad. However, we still do not have a Maturity Matrix with SPL-
capabilities. In this section we will firstly apply the needed modification based on the evaluation
results (section 5.4). We reflect on the attributes Title, Goal and Action and revise where needed.
In addition, we will rewrite each SPL-Capability based on its essence; this implies that the additional
information is separated from the Action-attribute of the capability to the Rationale-attribute (see
section 5.1). Finally, the corresponding references are added. Below we present the capabilities
categorized per business function and focus area.

Requirements management
Requirements gathering
Title Basic product line scoping

Goal Define product line features to support the scope for product line development.

Action Requirements management defines Common, Variable and Product-specific product features. A
Common feature is present in all or most products. A Variable feature is present in some
products only. A product-specific feature is present in only one individual product (customer
wish).

Reference(s) Pohl et al. (2005), Bosch(2002), Taborda (2004), Schmid et al. (2007)

Rationale A product feature is a logical unit of behavior that is specified by a set of functional and quality
requirements, implying a feature is defined by multiple requirements. The aim is to define more
common than variable requirements, as variable requirements assure more complexity. It is
important to know if a feature is variable before development starts (early phase) to ensure the
variability is built in properly.

Requirements identification
Title Advanced product line scoping

Goal In-depth analysis of commonalities and variability

Action Example/real-life scenarios are deployed for further analysis and evaluation of the
commonalities and variabilities. Usability scenarios describe actions required to perform
common user operations. Variability scenarios emphasize the differences between individual
products. In cases where differences are difficult to identify, prototyping makes it possible to
explore profound differences between the members. CONDITION: Implement IF variability in
the product line is large in number and it is relatively small variation

Reference(s) Ardis et al. (2000)

Rationale Prototyping is vital in cases where a product line is developed, specifically for a niche market or
customer.

Requirements organizing
Title Components dependency registration

Goal Record the dependency of the components

Action Determine and register components' dependencies. A dependency exists when a component

69

requires that another components be implemented too (or specific actions) for it to function
properly or in cases of conflicts, for it not to be implemented. Components' dependencies are
described textually and/or modeled. Modeled description offers better communication.
CONDITION: the more products this capability is applied to the greater the benefit will be

Reference(s) Jaring et al. (2002)

Rationale These dependencies are direct input for the architecture. Components' dependencies should be
described when the corresponding features are organized accordingly. This gives great benefits
when the impact of changes on components is being analyzed. However, according to practice
very hard to maintain.

Title Product line requirement life cycle management

Goal Make requirements traceable through detailed information.

Action Register in which member the components will be implemented in. This start with
requirements constituting features, features being bundled into components and components
being developed and (re)used to build the end-product. The registration of the requirements
during the whole trajectory is important. Detailed information such as, requirement submitter,
date, status (new, verified, planned for release x.y, in-progress, tested, completed, etc.),
description, etc. which was not known before, should be added to the requirement, feature or
component.

Reference(s) Linden et al. (2002), von der Maβen et al. (2004), Rombach (2005)

Rationale This is necessary in order to be able to trace requirements down (history of requirements
implementation) and have the knowledge of how an issue has been solved before. It should be
clear which SPL-members should get updated versions of core components when these are
available. The value of this capability is seen when it is time to test/validate the product. This
way the requirements performance is clear.

Release planning
Requirements prioritization
Title Components consideration

Goal Considering components when prioritizing product line features

Action Prioritize the features that will be implemented in end-product from the next release on, with
the intended components in mind. The prioritization is performed with the components in
focus and which features are required. This implies that features would be implemented in the
end-product, through components.

Reference(s) Taborda (2004)

Rationale Prioritization is necessary, since not all features can be implemented, due to resources and
delivery deadlines. Each requirements/feature should have a business value, implementation
costs and architectural implication. The more a feature or component is shared in more
products the higher market value it should get.

Release definition
Title Product line features selection

Goal Selection of features for implementation for the next release.

Action A practical selection of the features is made given the limitations on engineering resources,
based on the priority assigned. The selection is defined textually. The function and essence of
the components is also considered when making the selection. Business priority should not
always be dominant in the selection. Technical benefits and limitations should also be
considered.

Reference(s) Taborda (2004), Pohl et al.(2005)

Rationale The function and essence of the components is also considered when making the selection, i.e.
which features are of importance for the sake of the component. Business priority should not
always be dominant in the selection.

Title Product line release planning

70

Goal Release plan for product line components

Action A release plan is created for the components. Release dates are determined for the
components, supported by detailed information on the features. Usually these are core
components which will be reused through the platform. Do not plan too much ahead, since this
lets the resistance of having variability in the products gets too high.

Reference(s) Taborda (2004), Pohl et al.(2005)

Rationale Prioritized features are organized into components (e.g. sharing same functionality), the release
of the components can be planned. This can be for market introduction and/or for specific
customers. The reason behind this is that, in product lines components are reused for future
product releases (part of maintaining the platform). However, reuse has to have added value in
order to take place. Do not plan limitless reuse.

Release build validation
Title Architectural release validation

Goal Release validation by architecture

Action The design and coding of the SPL-members (the build) is validated through the product line
architecture before the actual release is launched. The design and software code have to
adhere to the limitations and structure of the product line architecture. This validation is
performed by the department(s) who is (are) responsible for developing and maintaining the
product line’s architecture(s).

Reference(s) Taborda (2004), Pohl et al.(2005)

Rationale The product line’s architecture is vital for achieving the business goals set up front, when
management decides to engage in SPL-Engineering. This should be performed during
development, since if a mistake is detected then it rarely happens that a market release will be
delayed because the code is not following internal standards. If the architecture is not followed,
other SW development activities might be affected, e.g. tests modules might not function
properly or certification of the source code will be challenging, because constraints in the
architecture might be invalidated.

Product planning
Product roadmapping
Title Product line roadmap

Goal Roadmap creation to define the product line scope

Action A roadmap is created detailing the anticipated products of the product line, as far as
foreseeable. The components that constitute the members are also presented (if possible), i.e.
multiple features form a component. Product line features should be predicted for
approximately 2 years in the future, including product or component releases.

Reference(s) Svahnberg et al. (2000), Jaring et al. (2002), Linden (2002), Pohl et al. (2005)

Rationale According to some literature, the product line features, common and variable, should be
predicted for a time span of 5 years. However, other authors (e.g. Svanhberg et al.) believe this
is not practical, since a great amount of the future requirements (aside from technology shifts
and/or other development changes) of the product line can hardly be predicted for longer than
1 year into the future (implying that features defined today will not feed the markets or
customers’ needs over a 5 year span).

Core asset roadmapping
Title Infrastructure standardization

Goal Standardize the infrastructure for developing core assets

Action Standardize the development infrastructure where the product line members are created. The
infrastructure ensures certain degree of product quality and usually exists of an operating
system combined with commercial components on top such as database managements
systems, integrated development environment, graphical user interface, etc., all which are
needed to develop and maintain core assets in a SPL environment.

Reference(s) Linden (2002), Böckle et al. (2005)

71

Rationale Increasing commonalities will need to be managed in order to be exploited properly and allow
flexibility. The managed commonalities are developed into fundamental components (core
assets). These core assets mostly contain domain (generic) functionality. This capability is one
of the first steps organizations should take when exploiting commonalities in its products

Title Platform introduction

Goal Intra-organizational reuse of core assets – exploiting core assets.

Action Develop, maintain and evolve a development platform which allows intra-organizational reuse
of core assets. This implies SW-code such as drivers or interfaces, but also documentation or
release notes. Features that are shared by sufficient members are included in the core assets
through the platform, whereas features shared by only few members are developed as part of
product derivation.

Reference(s) Linden (2002) , Böckle et al. (2005)

Rationale In addition to the previous capability, this one ensures knowledge sharing and more efficient
product development as the organization is more involved in development and uses the
platform on an organizational level. The drive management has behind such a platform is the
fact that profit levels can increase if performed correctly, i.e. development costs decrease as
core software is developed only once and reused multiple times. Important to protect and
clearly divide development responsibility here. Make sure that product development (AE) does
not burden core assets development (DE) too much. This can lead to a negative effect on the
core assets development team by constantly switching of context which will lead to a decrease
of productivity.

Roadmap intelligence
Title Visualization of the product line scope

Goal Visualize product line scope for communication with stakeholders

Action The members and their features are represented in a product map, i.e. a matrix with the
members in the columns and the features in the rows as well as information on the market,
costs, competitors and benefits (not date nor schedule is included, not to be mistaken it with
the product roadmap). This product map is communicated with e.g. management, sales,
services, customers, suppliers.

Reference(s) Bayer, et al. (1999)

Rationale The product line scope is presented with all valuable information in one overview. It is possible
that organizations use other ways to visualize the same type of information. This is also a way
to represent traceability; to allocate features to members together with other valuable
information for the product line. Developers are interested in the details such as features and
requirements, whilst product planners are also interested in market information and
competitors.

Portfolio management
Product lifecycle management
Title Financial Product line scoping

Goal Product line scoping with financial information

Action The decision whether a product will or will not be part the product line scope is based on the
expectations of the ROI and other possible financial calculations. Financial information that will
add value to the decision-making is included to clarify the financial impact the products may
have. If these are beneficial for the organization, the product will be part of the line, otherwise
it will be declined. Same goes for features, i.e. dropped according to their expected added value
or revenue.

Reference(s) Linden (2002), Schmid et al. (2007)

Rationale This is useful for features. This also assures a sort of cleaning up in the requirements collection
and code, since requirements are left out or removed if these do not bring financial added
value.

72

Not coupled to any business functions
Product line architecture
Title Basic reference architecture construction

Goal Create product line reference architecture with requirements input

Action This architecture creation is driven by the functional requirements (generic scenarios; which are
similar to commonalities) and/or domain-independent quality aspects (property-related
scenarios; which are similar to variable features with a quality focus). The generic scenarios are
combined with property-related scenarios and rated according to architectural importance.
Iteratively, functional requirements from the generic scenarios are chosen to create the initial
architecture. In each iteration, other property-related scenarios are added to the candidate
architecture to complete it and refine it. These ‘scenarios’ can be seen as guidelines as other
techniques also possible. Mostly, requirements (common, variable and product-specific) are
used to initiate the architectural design of the software product line,

Reference(s) Bayer et al. (1999), Schmid et al. (2007)

Rationale The aim is to define a domain-specific architecture that covers the existing products and future
SPL-members. Concepts are determined and modeled according to their relation and product
line scope for the architecture creation initiation. The property-related scenarios are used to
validate and refine the candidate architecture

Title Reference architecture construction

Goal Create product line reference architecture based on components

Action Create the product line reference architecture. Component frameworks are used to support the
various types of quality requirements, i.e. frameworks are used to model features in a
structured manner into components with their relationships. The reference architecture has to
solve issues of variability and reusability. It also properly incorporates quality requirements
such as flexibility, maintainability and evolvability at an early phase.

Reference(s) Svahnberg et al. (2000), Bosch (2000), Pohl et al. (2005)

Rationale Role of the architecture is to describe the features of the products in the product line and to
provide the overall structure. Common and variable features, represented by the components,
are the main drivers for architectural design together with quality requirements such as
performance, security, usability, etc. The earlier common and variable features are considered,
the more flexibility is assured for the product line. As features are represented in components,
the components in the architecture implement a particular/coherent domain of functionality,
e.g. the network communication domain.

Title Advanced reference architecture construction based

Goal Product line architecture development driven by requirements management

Action Commonalities and variability are modeled in the architecture. Variability in the requirements is
modeled through variation points and variants. The architecture defines the components,
mandatory, optional, and alternative, component interrelationships, constraints, and guidelines
for use and evolution in building the product line. Quality predictions need to be considered
early on. The most important architectures issues that have to be addressed properly are:
Significant architecture requirements (functional requirements & quality requirements),
Concepts (the architecture concepts clarifies the architecture organization), Texture (standard
solutions for implementation problems) and Structure (internal organization of the products).

Reference(s) Linden (2002), Schmid et al. (2007)

Rationale The design for the reference architecture for the product line receives input from Requirements
Management. The architecture should relate all design decisions made, to the requirements.
Variability modeling supports quality predictions. The risk if variability is not considered is that
the usefulness of the architecture might be significantly lower than desired. It will limit the
number of possible variants and products and increase modification costs.

73

Organizational
Title Requirements engineering planning

Goal Plan requirements engineering for product line developments

Action Product management controls Requirements engineering directly, first on domain level
afterwards on product (or application) level. Common and variable features of the product line
are defined in the roadmap, which serves as the scope for further requirements engineering
tasks such as detail specification and modeling. Afterwards, Product Management defines
which products or applications, implying which requirements will be implemented for which
product, individually (variable features)

Reference(s) Ardis et al. (2000), Deelstra et al. (2003, 2004), Pohl et al. (2005), Schmid et al. (2007)

Rationale It is important in order to know what to implement in which product and you need to plan this
instead of letting everyone implement what he thinks is important.

Title (Upper) Management Involvement

Goal Proper execution of product line processes

Action (Upper) Management is actively involved and monitors the processes of SPL-development that
concerns delivering reusable core assets and the quality thereof. Furthermore, management is
also responsible for focusing on the best fit organizational structure for the organization.

Reference(s) Northrop et al. (2000)

Rationale This is for guidance on keeping the processes on track and not to drift away from the business
goals. (Upper) Management is more involved in the above mentioned processes to keep, e.g. by
monthly reports or management involved, as a stakeholder, at the end of each Sprint when
following agile Scrum. However, this capability is relevant for the overall success of SPM
processes.

6.2 Capabilities positioning
In this section we will implement the SPL-capabilities in the SPM Maturity Matrix. This implies that
the capabilities presented in the previous section will be positioned appropriately. When performing
this positioning, each SPM-Capability is analyzed and compared to the SPL-Capability to assess
whether the SPL-Capability is positioned best given the business function and focus area determined
in previous sections. The reasoning supporting the SPL-Capability position (the given maturity) is
given in the field ‘Rationale’. SPM-capabilities that are not mentioned are automatically applicable
for product lines. Unfortunately, due to time limitations, we did not get to evaluate the SPL-
capabilities positioning. This would have been of added value, since now the positioning is done
based on the researcher’s knowledge and experience. The expert evaluation gives a helping hand in
this. The result of the positioning will be presented in an overview of the complete SPLM Maturity
Matrix.

Given the definition of the Product planning business function by Bekkers et al. (2010), we decided to
add a focus area to this business function, i.e. the Product line architecture focus area since it will be
a group of coherent architecture capabilities. ‘Product planning is concentrated around the gathering
of information for, and creation of a roadmap for a product or product line, and its core assets’,
implies that information for and the creation of a roadmap is central. However, this is not completely
the case for Product line architecture. For Product line architecture the roadmap is essential for the
reason that in a SPL-environment the roadmap would include specifics on common and variable
features of the product line. These specifics features are direct input needed for the creation of the
architecture. In addition, the other three business functions do not give a better placement for
Product line architecture focus area. Requirements management is concentrated on the
requirements themselves not regarding a release or more. Release planning is focused on creating
and launching a release successfully, which is not on a product line level. Portfolio management is
concentrated on the strategic information gathering for decision making across the entire product
portfolio. The focus area Product lifecycle management mentions product lines, however this is a

74

capability on a portfolio level which is ‘higher’ than product line architecture. If performed properly,
according to literature, a link can be made; when the SPM product line capability (PLM:E) is
implemented, at least one Product line architecture capability should be implemented too.

Most SPL-capabilities are an extension of a SPM-Capability, i.e. the SPL-Capability requires somewhat
extra actions or aspects to be considered. Below, we present the SPLM Maturity Matrix and after
that the positioning elaboration for each SPL-Capability. Note, a SPL-Capability is presented in blue.
A ‘*’ behind a letter indicates a SPM-Capability with an increase in letter (however with its original
maturity). This is to prevent capabilities to have same letters for one focus area. A SPM-Capability
that is moved (increased) to another maturity is presented in green. In this case, a SPL-Capability is
given slight priority over the SPM-Capability. A green ‘*’ indicates a SPM-Capability that has both an
increase in letter (e.g. from ‘D’ to ‘E’) and an increase in maturity (e.g. from ‘5’ to ‘6’). Usually, these
come after a SPL-Capability.
For instance, capability B of Requirements gathering is a SPL-capability. Since this capability is
positioned in front of the other SPM-capabilities, the other SPM-capabilities are ‘pushed’ one letter
further to prevent having capabilities with the equal letters.
Capability C* of Release definition had to be re-positioned to a greater maturity in order to make
place for the SPL-capability of B (in front of Release definition:C). Hence, the capability is green. The
same capability also has a ‘*’, for it had to be ‘pushed’ a letter further also to prevent capabilities
with equal letters.

Requirements management
Requirements gathering B
Title Basic product line scoping

Maturity B2

Prerequisite(s) Requirements gathering A

Position
Rationale

No prerequisites. This is the most basic and the first capability an organization should
implement in order to handle requirements/features properly for product line development
at a very early phase. As soon as requirements are gathered this capability can take place.

 Maturity

Process
0 1 2 3 4 5 6 7 8 9 10

Requirements management

Requirements gathering A B C* D* E* F* G*

Requirements identification A B C* D* E*

Requirements organizing A B C D* E

Release planning

Requirements prioritization A B C* D* E* F*

Release definition A B C* D E* F* G*

Release definition validation A B C

Scope change management A B C D

Build validation A B C D*

Launch preparation A B C D E F

Product planning

Roadmap intelligence A B C D E F*

Core asset roadmapping A B C* D* E F*

Product roadmapping A B C D* E* F*

Product l ine architecture A B C

Portfolio management

Market analysis A B C D E

Partnering & contracting A B C D E

Product l ifecycle management A B C D* E* F*

Figure 2: The Software Product Line Management (SPLM) Maturity Matrix. Figure 2: The Software Product Line Management (SPLM) Maturity Matrix.

75

Requirements identification B
Title Advanced product line scoping

Maturity B3

Prerequisite(s) Requirement gathering B, Requirements identification A

Position
Rationale

Due to prerequisites it can't be 1 nor 2. The further identification of commonalities and
differences is needed if uniformity of requirements (RI:A) was not successful in achieving this.
Commonalities and differences are a vital focus point for SPL.

Requirements organizing C
Title Product line requirement life cycle management

Maturity C6

Prerequisite(s) Requirements gathering B

Position
Rationale

This capability is similar to that of SPMCM RO:B5. However, for product lines the focus lies
more on the trajectory of requirements forming features, and features forming (core)
components, and (core) components being built in order to be used during product
development. Within this trajectory, traceability is of great importance. It is directly placed
after RO:B, since it is an extension of the actions performed in RO:B.

Requirements organizing E
Title Components dependency registration

Maturity E8

Prerequisite(s) Requirements organizing C

Position
Rationale

This capability is an extension of the SPMCM RO:C7(RO:D7). The focus for product lines lies
not on the requirements level. It lies on the components level. Hence the prerequisite.
Component dependency has also been pointed out to be important for product lines in
literature, e.g. for product line architecture

Release planning
Requirements prioritization B
Title Components consideration

Maturity B3

Prerequisite(s) Requirements gathering A

Position
Rationale

Some consideration of product line components have to take place before this capability can
be implemented. Hence the prerequisite. Right after prioritization took place with internal
stakeholder, product line components should be considered.

Release definition B
Title Product line features selection

Maturity B3

Prerequisite(s) -

Position
Rationale

This capability is similar to the SPMCM RD:A. However, it is more advance since components
need to be considered (or are mandatory) when making the selection of the features for
product lines. As a consequence of the capability positioning, the SPM-capabilities of
RD:Standardization and RD:Internal communication had to be moved one maturity greater
respectively.

Release definition D
Title Product line release planning

Maturity D5

Prerequisite(s) Requirements prioritization B

Position
Rationale

This capability fits when a release definition has been made and needs further specification
on components. Release dates can be easier determined when features selection is known.
This release plan has to be created before being internally communicated.

76

Release build validation C
Title Architectural release validation

Maturity C8

Prerequisite(s) Product line architecture A

Position
Rationale

The prerequisite indicates that a SPL-architecture needs to be in place. Before the Build goes
through external validation (RBV:Certification), it has to be validated internally by the
architecture. SPL-members have to adhere fully to the architecture in order to be successful.
Validation through the architecture ensures that the members are built the way they were
intended to with regards to components dependency, constraints, interfaces, variabilities,
etc.

Product planning
Product roadmapping C
Title Product line roadmap

Maturity C4

Prerequisite(s) Release definition B

Position
Rationale

With the selection of features and components known, the roadmap can be created
(prerequisite). For product lines commonalities, variabilities and components are included in
the roadmap. Due to the rapid changes in technology nowadays and the knowledge of the
SPM-capabilities we decided to put this to 2 years.

Core asset roadmapping B
Title Infrastructure standardization

Maturity B5

Prerequisite(s) -

Position
Rationale

After the SPM-Capability of registering and storing all core assets, this capability provides the
ideal development and management infrastructure for core assets. This allows a more
efficient way of developing and provides the possibility for the organization maintain quality
of the assets. In addition, this capability also support the other SPM-capabilities such as ‘Core
asset identification’ and ‘Make or buy decision’, since through the infrastructure core asset
information is easily obtained and managed.

Core asset roadmapping E
Title Platform introduction

Maturity E9

Prerequisite(s) Core asset roadmapping B

Position
Rationale

This capability further extends Core asset roadmapping B onto a more organizational level.
Before being able to construct roadmap for core assets, this capability gives more certainty
(input) on the development (evolution) of core assets and their future use. Once this
certainty is accepted, roadmaps of core assets are more reliable.

Roadmap intelligence E
Title Visualization of the product line scope

Maturity E9

Prerequisite(s) Roadmap intelligence A, (B & C) Roadmap intelligence D

Position
Rationale

This capability is placed right after its prerequisites and right before the most mature
capability of this focus area ‘Partner roadmap’. It is mainly a combination of the capabilities in
the prerequisites, in one overview. The positioning has the consequence that the capability
‘Partner roadmap’ moves to F10.

Product line architecture A
Title Basic reference architecture construction

Maturity A3

Prerequisite(s) Requirements gathering B

77

Position
Rationale

As soon as common, variable and product-specific features are known, a start of the product
line architecture can start. These and quality requirements are the main input necessary for
the construction of the architecture.

Product line architecture B
Title Reference architecture construction

Maturity B7

Prerequisite(s) Product line architecture A, Requirement organizing C

Position
Rationale

This capability requires a more understanding and structure in requirements in order to take
place. Once the requirements have been organized, (future) components are known this
capability can be implemented

Product line architecture C
Title Advanced reference architecture construction based

Maturity C9

Prerequisite(s) Product line architecture A, Requirements organizing E

Position
Rationale

At a more advanced stage in architecture construction, all possible information on the
functionalities, quality requirements, commonalities, variabilities, components, dependencies
is required to construct the reference architecture properly. Due to the prerequisite this
capability has the maturity of C9.

Portfolio management
Product lifecycle management C
Title Financial Product line scoping

Maturity C7

Prerequisite(s) -

Position
Rationale

Before the capability of ‘Portfolio scoping analysis’ this capability provides a financial scoping
for product line members and/or features. The results of the scoping provide more
information and better decision-making on the capabilities that follows, i.e. both on product
level as on feature level.

Organizational supportive input
The organizational capabilities presented in the previous section, i.e. Requirements engineering
planning and (Upper) Management involvement are not included in the maturity matrix. We decided
not to position these with the capabilities due to that they are less detailed capabilities for product
lines with respect to SPM-practices compared to the other capabilities. In addition, these two
capabilities are more applicable on an organizational level, i.e. their actions are performed in order
to organize and create structure for the product management practices. However, their importance
shall not go unnoticed. Therefore, we decided to name these as Organizational supportive input that
are not included in the SPML Maturity matrix, however they have to be acknowledged.

Requirements engineering planning mainly points out that one department should be responsible for
the coordination of product management. This is important for making key-decisions, a controllable
process and an environment where practitioners can function effectively and efficiently. If this is not
clear within an organization, product management cannot be exploited since there is less structure
and support for practitioners and decisions will have to be made ad hoc without proper preparation
or proper information.

(Upper) Management involvement has no direct implication on product management practices.
Usually, it is the decision of upper management to engage in product line development. The same
management is expected to be involved with product management in order to monitor the greater
milestones and deliverables with the purpose not to deviate from the business goals.

78

Title Requirements engineering planning

Goal Plan requirements engineering for product line developments

Action Product management controls Requirements engineering directly, first on domain level
afterwards on product (or application) level. Common and variable features of the product line
are defined in the roadmap, which serves as the scope for further requirements engineering
tasks such as detail specification and modeling. Afterwards, Product Management defines
which products or applications, implying which requirements will be implemented for which
product, individually (variable features).

Reference(s) Ardis et al. (2000), Deelstra et al. (2003, 2004), Pohl et al. (2005), Schmid et al. (2007)

Rationale It is important in order to know what to implement in which product and you need to plan this
instead of letting everyone implement what he thinks is important.

Title (Upper) Management Involvement

Goal Proper execution of product line processes

Action (Upper) Management is actively involved and monitors the processes of SPL-development that
concerns delivering reusable core assets and the quality thereof. Furthermore, management is
also responsible for focusing on the best fit organizational structure for the organization.

Reference(s) Northrop et al. (2000)

Rationale This is for guidance on keeping the processes on track and not to drift away from the business
goals. (Upper) Management is more involved in the above mentioned processes to keep, e.g. by
monthly reports or management involved, as a stakeholder, at the end of each Sprint when
following agile Scrum. However, this capability is relevant for the overall success of SPM
processes.

79

7 Case study

CASE STUDY REMOVED FOR

CONFIDENTIALITY REASONS

80

8 Conclusion, Discussion and Future research

In this chapter we will present the conclusion of this research, the limitations and possible future
research directions. For the conclusion we will use the research findings and results to answer the
research question presented in chapter 2. Next, we will discuss the limitations of this research
through the applied methodology and results. Finally, we will also present future research directions
leading from this research.

8.1 Conclusion
The conclusion of this research is drawn by answering the research questions presented in chapter 2.
Below, we restate the main research question:

“How can product software companies structure their software product management processes
according to their product line development approach?”

For answering this question, first the topic of Software Product Lines had to be studied in order to
know the characteristics of this field of practice. This study identified several SPL-practices that are
essential and have influence on SPM processes. For SPM we used a known, validated and already
applied in several product software companies competence model for the fundamental knowledge
of SPM; the Software Product Management Competence Model and corresponding Maturity Matrix
(Bekker et al., 2010). The SPL-practices were processed to an equal level of the maturity matrix and
through validation the essences of the SPL-practices were implemented in the maturity matrix,
making it into the Software Product Line Management Maturity Matrix (SPLM Maturity Matrix). The
SPLM Matrix is a useful assessment instrument for product software companies that develop
according to a product line approach. It presents the most important SPM-processes in a structured
and hierarchical manner and, in addition it also presents the specifics that are essential for software
product lines. The answer to the main research question is possible through answering the sub-
research questions which will further explain, and are presented below.

1. Which key practices can be identified in software product line developments, from a Software

Product Management perspective?

The answer to this question is presented in section 4.1. In particular, table 11 gives an overview of
the 12 identified SPL-practices, below we restate the practices:

 Domain & Application Engineering

 Core asset, Product development & Management

 Variability management

 RequiLine

 Product line Release planning

 Product Portfolio Planning – QFD

 PuLSE

 Product Derivation Framework

 Integrated SPPL

 SPL FAST Process

 BAPO

 BAPO Evaluation Model

These identified SPL-practices are the result of an extensive literature study (see chapter 3). In
performing this literature study, we came across various SPL related literature from which the

81

SPL-practices were identified, i.e. some SPL-practices were identified in multiple literature and
vice versa. We used the SPM Competence model (Bekkers et al., 2010) as our SPM foundation in
order to recognize when a SPL-practice is related to product management. Some SPL-practices
were clearly related while others were at first not (enough) related to SPM. Hence, the
distinction was made between SPL-practices of ‘Product Management’ and ‘Development’. In
addition, we further analyzed these product line key practices to identify the activities that
combined form each practice; these are SPL-activities. From the 12 SPL-practices, 84 SPL-
activities were identified. The SPM Competence model was also used to distinguish which SPL-
activity was SPM related and which not. In table 11 we present a shorten version of the SPL-
activities. See Appendix A for the complete overview of the identified SPL-activities with the
corresponding SPL-practice.

2. What different Software Product Line development situations can be distinguished that influence

product management processes?

From our literature study, we struggled to find relevant researches regarding the influence of
different product line development situations on SPM processes; most researches were directly
too project management related or too business management related. One research covered
development projects on a product line level (platform project) and on a product variance level
(derivative project) what is similar with CCV. Unfortunately, this research further focused on
project management; project task characteristics, project planning, project execution and success.

The intention of this sub research question was to identify probable situations when development
will be initiated and how these situations are best organized from a SPM perspective. No
limitations were made on these development situations (e.g. only ‘projects’), i.e. it was not
obliged to organize the SPM processes for a development situation, context or cycle according to
and naming it a ‘project’.

3. How can the obtained knowledge be used to structure Software Product Management for product

line developments?

To answer this research question we used the results of the first sub research question and the
SPM Competence model. The SPM Competence model and maturity matrix is primarily used to
determine the maturity of a PSC by assessing the essential business functions of the SPM practice
through in-groups-defined capabilities (focus area’s). Secondarily, the maturity matrix is used to
give improvement recommendations through incremental steps. By adapting the SPM
Competence model or following its recommendations, a PSC organizes its processes according to
the structure maintained by the competence model (see section 3.1), for instance, following the
four main processes Requirements management, Release planning, Product planning and
Portfolio management.

Sub research question 1 resulted in identified key practices of SPL developments with respect to
product management. The results were further analyzed to identify the activities performed that
characterize each practice. By joining this knowledge accordingly into SPM maturity matrix, the
overall SPM knowledge is enhanced with product lines specifics and a validated structure is
maintained. In other words, the gain SPL knowledge is presented in a structured manner (that of
the SPM Maturity matrix).

Joining the SPL knowledge in the SPM maturity matrix was performed in the mapping process
(chapter 4). The identified SPL-activities were analyzed and compared with the SPM-capabilities of

82

the SPM maturity matrix. A mapping implies a defined status for the comparison with the SPM
maturity matrix; a Similarity, Neutral or a Candidate improvement. In addition, a mapping
registers to which part of the matrix the SPL-activity is most related to, i.e. business function,
focus area, and/or SPM-capability. Candidate Improvement means that the SPL-activity adds SPL
specific information to the matrix at that particular area (i.e. following the hierarchical structure,
particular business function, focus area and/or SPM-capability).

Next, the Candidate Improvements (SPL-activities) are re-defined according to the same structure
as of the SPM-capabilities. This structure implies that, inter alia, a title, a goal, an action and
references must be defined for the SPL-activity. Once a SPL-Activity is re-defined in this structure,
it becomes a SPL-Capability (see section 4.3).

4. How applicable is the Software Product Management Competence Model for software product
line development?

The answer to this question lies, partially, in the results of the mapping process. From the 84
identified SPL-activities, five were similarities, 11 were neutral-organizational, 12 were neutral-
architecture, 18 were neutral and 38 were candidate improvements. As can be seen, only five SPL-
activities could be declared similar (practically equal) to the SPM maturity matrix. The largest
majority of SPL-activities, 41, are neutral. These neutral SPL-activities do not often describe
information that can directly be related to the maturity matrix, e.g. most neutrals describe SPL-
activities on an architectural and/or organizational level, which are essential for SPL development.
However, these SPL-activities (neutral) do not indicate a positive applicability towards the SPM
maturity matrix since both architectural and organizational activities are not included in the
matrix. In fact, it is these neutral SPL-activities that did not resulted in any business function of the
SPM maturity matrix after they have been defined as SPL-capabilities. Eventually, three SPL-
capabilities (architecture) were formed and successfully implemented into the maturity matrix
from 6 of the 41 neutral SPL-activities. The organizational SPL-activities did not result in any SPL-
capability, however we defined two of the most important activities as ‘organizational supportive
input’ from a SPL development perspective (see section 6.2). For the SPL-activities regarding
product line architecture and organization, the SPM maturity matrix resulted to be less applicable
as for SPL-activities that were similarities and/or candidate improvements.

In the mapping process, the positioning of the SPL-capabilities in the SPL maturity matrix is
determined. This positioning implies giving the SPL-capabilities a maturity within the matrix. Most
of the SPL-capabilities did not replace the maturity of a SPM-capability. Only the focus area’s
‘Release definition’ and ‘Roadmap intelligence’ required SPM-capabilities (3 from 68) to be
replaced, i.e. increase of ‘1’ in maturity. This has no further impact. The other SPL-capabilities
were successfully implemented in ‘empty’ cells of a maturity in a focus area.

From a SPL-capability essential perspective, the expert evaluation resulted in 4 SPL-capabilities
being left out and 8 needing modifications. This indicates that 16 of 21 SPL-capabilities have
enough essence (valuable knowledge) according to the experts from the industry to be applicable
in real life. Furthermore, no significant difference was identified or mentioned during the second
interview sessions where the SPL-capabilities were discussed other than the subjects of the
discussions. This is an indication that the implemented SPL-capabilities in the maturity matrix
were experienced in similar as the SPM-capabilities.

We conclude that the SPM maturity matrix (and competence model) is applicable for SPL
development; on the same granular level we can state that it is 68 (total SPM-capabilities) / (68
(SPM)+16 (SPL)) * 100% = 81% applicable for SPL development, i.e. the SPM-capabilities can be
applied to SPL development without it being completely irrelevant and thus waste time. The other

83

19% is pure SPL specific information that has been implemented in the matrix in order to apply
better to SPL development.

5. How can Product Software Companies use the gained knowledge to improve their Software

Product Line Development approach?

The gained knowledge after this research is mostly presented in the SPLM maturity matrix,
through the SPL-capabilities. Not all gained knowledge of this research is implemented in the
matrix; however, some of which still is useful for SPL development. Below, we state the gained
knowledge and elaborate how it can be used for improvements:

SPLM Maturity Matrix
The essence of the SPLM maturity matrix still remains as an assessment method of SPM
processes. It has been specified for PSC’s that have a SPL development approach. PSC’s can use
the SPLM maturity matrix to assess and know the maturity of their SPM processes in their SPL
environment. Furthermore, the SPLM maturity matrix provides incremental improvements,
depending on the business strategy of the PSC.

Organizational Supportive Input
Some of the SPL-capabilities that were not implemented into the matrix, are capabilities on a
more organizational level of product management. The actions of these capabilities have the
purpose to benefit the organization of the SPM processes in particular.
Firstly, Requirements engineering planning should be primarily and mainly controlled by Product
Management (see section 6.2). This is important for an overall controllable process and an
environment where requirements are dealt with accordingly to SPL development; Product
management is responsible for this. Secondly, (Upper) Management is expected to be involved in
the SPL development through the monitoring of milestones, main deliverables and keep
development towards the business goals. We have noticed that where management involvement
is low, SPL success is less probable.

Communication
From the performed case study, we have learnt that communication of the right information is of
great importance in SPM and product line development (see section 7.5). Stakeholders of the
product management processes should share information gained regarding their given
responsibility. Particular information can be notes, official documents, agreements, presentations,
roadmaps, planning, budget statement, test results, release definitions, requirements selection,
product feature groups, etc. This should work from practitioners responsible for the product
portfolio to the practitioners responsible for coding the software.

Product Line Architecture
Another great aspect of importance we learnt from the case study is product line architecture.
When performed properly, SPL development adheres to the reference architecture. This
reference architecture should be sustainable for the expected life time of the product line and
expandable to certain degree. In developing this architecture, PSC’s should pay extra dedication
on implementation of common and variable features, quality requirements and development
platform support (see section 7.5) in the reference architecture.

84

8.2 Discussion
The main artifact that his research has delivered is the SPLM maturity matrix. Limitations exist in the
implementation of SPL knowledge into the SPM maturity matrix. Firstly, the SPL-capabilities need
validation from the SPM Competence experts. The SPL-activities have been defined as SPL-
capabilities by the researcher, exactly according to the standards of SPM-capabilities. However, since
the researcher is not an original author of the SPM Competence model, it adds value to the defined
SPL-capabilities if experts of the SPM Competence model could validate them. For instance, some
SPL-capabilities have a too elaborated Action description. It is not simple to shorten such description
without losing the essence of the SPL-capability. Similar is the case for Product Line Architecture. The
newly introduced Product Line Architecture (PLA) focus area has three SPL-capabilities regarding
product line architecture development. However, these capabilities have a rather different ‘Action’
description compared to all other capabilities. Product Line Architecture has been implemented in
the maturity matrix, since most business functions have direct or indirect input for development of
the architecture, such as common and variable product features, core assets planning, roadmapping
and product lifecycle management. The PLA capabilities need to be validated if they are optimally
implemented in the SPM maturity matrix.

Secondly, the positioning of the SPL-capabilities has not been validated. The original positioning of
the SPM-capabilities has been performed through multiple case studies. The positioning of the SPL-
capabilities has been performed through comparison and analysis with the SPM-capabilities. We
tried to avoid replacing SPM-capabilities, giving them another maturity, since we did not have much
evidence to base our SPL-capability maturity on. The 3 of the 68 SPM-capabilities that were replaced
happened for the reason that a SPL-capability had to be performed prior to that SPM-capability and
thus ‘pushes’ the latter one into a more greater maturity. However, compared to the positioning of
the SPM-capabilities more research was performed to indicate the maturities; and the SPL-
capabilities should be validated.

One of the SPL-capabilities that were left out due to the expert evaluation was Architectural Product
Derivation. However, this capability is implemented at the case company and according to planning it
will be a capability for the coming years. Unfortunately, due to the expert evaluation the capability
has not been further processed.

The expert evaluation of the SPL-capabilities was performed by three practitioners of whom 2 were
from the same organization. This number is lower than we were expecting. The expert evaluation
gives reliability of the essence to the SPL-capabilities. However, the greater the number of experts
are the greater the reliability. In addition, more information was wanted from the situational factors
of the expert Companies. The Situational factors regarding the Market and Customer characteristics
would have given a better understanding of the context of the expert companies. This would have
also benefited the comparison with the case company regarding similarities and differences. The
stronger the similarities between the case company and the expert companies, the better the expert
evaluation also apply for the case company; this implies that SPL-capabilities are more reliable.
Differenced indicates a low coherency; this implies that the evaluation did not make the SPL-
capabilities more reliable

Applying the SPLM maturity matrix at the case company involved the three departments most
involved with SPM. One of the departments, Marketing & Sales, was represented by only one
practitioner. This underrepresentation does not help in making the averaged results more ‘average’
since the other two departments have three practitioners.

The case study at CCV was useful in order to study an organization with product lines and to research
SPL implementations for the maturity matrix. However, the SPL development environment and the
implemented SPM processes were experienced as emerging. This implies that much maintained

85

processes of SPM and SPL development were relatively new and some were being experimented
with still. This can be seen in the results of the maturity matrices where more matured capabilities
are implemented while less matured ones are missing. A case study which was more mature in its
processes would have had more substantive input for this research. However, one of the advantages
of this case study was the chance to see an organization go through changes and reacting to what
works and what not.

Applying the SPM maturity matrix at CCV is yet another validation of this assessment method for
SPM processes. The case study of this research contributes to the validation of the SPM Competence
model. In addition, the case study enhanced the applicability of the model and matrix for SPL
development.

8.3 Future research
In this section, future research triggers raised from the research will be presented. In the previous
section we discussed the shortcomings of this research and pointed out the issues that still remain.
Some of these shortcomings we present as future research directions.

Firstly, the applicability of the SPLM Maturity Matrix in product line development environment needs
future research. The matrix has been applied only at one case company and the SPL implementations
needs to be validated thoroughly. It might be possible that the SPL-capabilities do not apply
completely or cover all aspects in another SPL development environment. In particular, the Product
Line Architecture focus area should get more attention to research if the PLA-capabilities are clear
and applicable for architectural purposes at other organizations. In order to become more reliable,
the matrix needs to be (additionally) validated at various PSC’s with a SPL development environment.

In addition to the first future research direction, the organizational aspects (Organizational
Supportive Input, section 6.2) need further research. The Organizational Supportive Input is
identified as essential to the overall SPL success. Future research can look at the possibilities of
incorporating e.g. organizational capabilities into the SPLM Maturity Matrix or as a supportive
concept for the product management processes.

Thirdly, the role of ‘Supplier’ as an external stakeholder in the SPM Competence model should
receive more research attention. In the related literature (of the Competence model) no reference is
made to the Supplier role, in general. However, during our case study, CCV shortly identified the
absence of the ‘Supplier’, since they feel the need for improvements in this area. In our literature
study, we found that organizations with product lines often have at least one regular supplier
indicating this is a function to be considered seriously and its possible influence on the processes;
different relations kept with Supplier compared to Customers, (business) Partners or the market.

Finally, research should be performed on Situational Factors that are specific for SPL development
and what the impact of these factors is on the processes. During the case study and the literature
study, it was noticed that customer, market and product characteristics differ from organizations
with SPL and organizations without. It should be clear if this difference has any impact on the SPM
processes and to which extent.

8.4 Theoretical implications
In this section we discuss the implications this research has on existing researches, i.e. we present
the contributions this research has on existing literature, namely that of SPM and SPL development
(see chapter three).

86

The SPM Competence model and maturity matrix
As mentioned previously, we followed the SPM Competence model and corresponding maturity
matrix by Bekkers & Weerd (2010) as the foundation of SPM for this research and how we deal with
SPM. Regarding SPL, the authors of the SPMCM do not discuss the subject of SPL explicitly in their
studies. There was no distinction made of the organizations that participated in the research and/or
evaluation of the SPM Competence model or maturity matrix which develop SPL. Most of the
organizations were likely to develop standard software product or was in a transformation from
specific to standard software product. As a capability of the Product lifecycle management focus
area, Product lines is defined and has the purpose to maximize reuse of resources and simplify the
development of new product. However, when studying SPL from a product management perspective
we identify several key practices that influence the SPM processes described by the SPM
Competence model. This indicates that the development of SPL needs to be treated differently and
its influence is wider than the Product lifecycle management focus area (Bekkers et al., 2010).

Concluding, the SPM Competence model and Maturity Matrix miss dedicated content needed that
apply better to organizations with SPL. In our research, we explicitly studied research of
organizations that develop SPL. We do not state that the SPM Competence model and Maturity
Matrix do not apply to organizations that develop SPL. In contrary, based on our research we can
state that the SPM Competence model and Maturity Matrix do apply (mostly) to at least one
organization developing SPL. However, both the SPM Competence model and Maturity Matrix need
further SPL specification in order to fit a SPL development environment properly.

Figure 14 illustrates the SPM Competence model with the enhancements proposed after this
research (see previous chapters). We identified the absence of a Supplier role which was added as an
external stakeholder which SPL organizations tend to have at least one of. Product line architecture is
an added focus area in Product planning. The product line architecture has been identified of great
importance for the product line and should be initiated as soon as the product line is being planned.

Figure 14: The Software Competence Model with proposed enhancements for product lines. Figure 14: The Software Competence Model with proposed enhancements for product lines.

87

Bekkers & Weerd (2010, technical report) indicate that not all capabilities are relevant to every type
of organization. In studying organizations that develop SPL, we noticed that specific capabilities were
missing in the SPM maturity matrix. In addition, our research shows that an organization that
explicitly develop SPL indicated that they have a great need for a SPM model which give them
structure in their processes and makes improvement possible of already implemented processes; an
indication that the SPM Competence model and Maturity Matrix do apply to SPL organizations with
respect to the general SPM processes. With respect to this research, no capabilities were indicated as
not being applicable for the organization. However, the additions of the SPL-capabilities were
experienced as deeper awareness on the SPM processes, i.e. a product line focus. In addition to the
SPM maturity matrix, the SPLM maturity matrix (see chapter six) provides capabilities that are
product line focused; the enhanced product line version of the matrix, with the 16 identified SPL-
capabilities. Furthermore, we identified capabilities on an organizational level which are important
for the overall success of the product line. These are described in section 6.2 and have not been
included in the SPM Competence model nor the SPLM maturity matrix. For the reason that they do
not adhere to the principles to be added, i.e. the focus is on supporting the SPL development from an
organizational perspective and not product management. Ebert (2007) also describes the importance
of organizational structures for SPL organizations, e.g. a product core team.

Software Product Lines
Poor SPM can result in tangible issues such as incorrect content, rework, delays and scope creep
(Ebert, 2009). These issues often form a vicious circle: modifications or changes causes unexpected
rework which in turn causes delays in the time-to-market which in turn pressures the scope to be
reduced, possibly leaving out product features. This is exactly what we noticed at the case company
(see sections 7.1 – 7.4). In addition, the root causes (as project symptoms) of these issues identified
by Ebert (2009) can be also identified at the case company. However, Ebert (2009) does not explicitly
focus on product lines, except the SPM best practices which he presents, can be applied to product
lines. The issues identified by Ebert (2009) are recognizable at the case organization. This implies that
issues as a result from poor SPM are rather software development wide and not in particular for
standard software product or product line, i.e. the development approach.

The distinction starts when looking into the product management processes for a SPL organization. In
an earlier study, Ebert (2007) researched SW projects in the telecom industry and in particular
embedded systems (similar to the case company). The development approach was product line
driven; the challenge was to provide platform products that would have the basic functionalities
(common product features, Pohl et al., 1998; Clements, 199) and the customer products which
would be tailored (variable product features). Ebert (2007) identified a few ‘best practices’ which
positively impact product management, such as product release should be supported by a strong
business goal and vision instead of simply collected requirements. Here, requirements, releases,
roadmaps, markets are analyzed, discussed and defined for the long(er) term. In addition, product
(line) features should be traceable, i.e. planned, communicated, prioritized and monitored especially
when involved in core components. On an organizational perspective, Ebert (2007) strongly
recommends the introduction of a product core team to enhance stakeholder involvement and
commitment. This is important for the overall performance of the SPL.

Although the issues symptoms identified by Ebert (2009) do not distinguish product lines, product
lines require specific product management processes when taking the SPM Competence model as
our foundation.

Product line architecture

88

The architecture, often referred to as the reference architecture, of a SPL is of major importance for
the development success and achieving the long term advantages (Bosch, 2001, 2002; Böckle et al.,
1998; Clements, 1999; Linden, 2002; Northrop, 2002). The input for the architecture is mainly the
common and variable product line features (basic functionalities and pre-defined enhanced
functionalities) along with quality features. Based on this input, possible framework solutions
implementation and development of core assets will be initiated. Furthermore, the authors state
that the architecture development should start at an early phase since it is necessary to for product
instantiation and will be used as reference for future product line variances. Bosch (2002) presented
a matrix relating six different SPL development approaches with SPL artifacts in which the
architecture important was in all approaches, i.e. it defines how the product line members are
generally decomposed into the core assets. However, none of these authors defined specifically what
the needed actions are to gain this input and it was not treated as a product management practice;
more development.

The input activities for the SPL architecture are product management related, for these activities
ensure the collection of essential information for the creation of the (reference) architecture and
decision making. When considering SPL organizations the process of the architecture should be
incorporated in product management practices. In this research, we recognized this absence in the
SPM Competence model and maturity matrix and therefore defined a new focus area: Product line
architecture. This focus area has three capabilities, incremental steps, which are meant to be
performed to gain information for the architecture and guide the architecture design. In addition, we
recommend authors studying SPL from a product management perspective to pay sufficient
attention to the processes which are needed as input for the product line architecture. For instance,
Northop & Clements (1999) include the SPL architecture throughout their description of Core asset
and Product development. They explain the importance of the architecture at each step when it’s
needed; however they do not elaborate on the activities which provide input needed for the
architecture creation.

Domain & Application engineering
Weis et al. (1999) present a SPL engineering approach through a framework which separates to main
processes, Domain engineering & Application engineering (DE & AE). Both processes consist of sub-
processes which deliver artifacts needed to develop the product line members (see section 3.2). The
domain artifacts are reusable and form the platform of the product line and serves as input (reusable
artifacts) for the specific applications (or product) development. The application artifacts represent
part of the tailored product line applications (product line members) and AE is responsible to manage
the product-specific artifacts for each product separately.
Northrop (2002) and Clements (1999) both based their own SPL engineering framework and activities
on DE and AE engineering. In their framework, they refer to as Core asset development and Product
development. Many other authors (Bayer et al., 1999; Bosch, 2000; Böckle et al., 1998; Linden, 2002;
Rombach, 2005; Schmid et al., 2007 and more) who study SPL engineering often refer to these
frameworks as the way of executing product line development properly.

However, we experienced otherwise at our case company. At the case company, product line
development approach has been introduced these last years and is still being modified to fit the
organizations needs best. At the case company, core assets are in very few numbers (not more than
10) and development is not heavily based on the reuse of artifacts. When presented the framework
of Weis et al. (1999), the case company stated that it would not be strategically beneficial to focus on
the separation of the two processes. Core asset development does take place, however on a rather
small scale when compared to the framework of Weis et al. (1999).
It appears that large organizations (e.g. more than 2500 employees such as case company) with large
international markets benefit and need a DE & AE clear separation framework due to product

89

development being more intensively based on (re-)usage of developed core assets to complete the
end product (assembling). Weis et al. (1999) use the automotive industry as an example.

For the case company, developing product lines and planning to continue, the much proposed way to
execute SPL engineering by existing literature (e.g. Weis et al. (1999) and Northtop (2002)) was too
‘product line intensive’. In contrary, the SPLM maturity matrix incorporates the essence of SPL
development from a more product management perspective than development. For the case
company it was more applicable whilst providing what is needed: structure for the processes that are
most important.

90

References

Akker, J. van de, Brinkkemper, S., Diepen, G., Versendaal, J. (2005). Determination of the next release
of a software product: an approach using integer linear programming. Proceeding of the Eleventh
International Workshop on Requirements Engineering: Foundation for Software Quality REFSQ’05, 10,
pp. 247–262.

Alves, V., Matos Jr, P., Cole, L., Borba, P., & Ramalho, G. (2005). Extracting and evolving mobile games
product lines. In Software Product Lines, pp. 70-81. Springer Berlin Heidelberg.

Ardis, M., Daley, N., Hoffman, D., Siy, H., & Weiss, D. (2000). Software product lines: a case
study. Software-Practice and Experience, 30(7), 825-47.

Argyris, C., & Schön, D. (1991). Participatory action research and action science compared.
Participatory action research. WF Whyte.

Baskerville, R. L. (1999). Investigating information systems with action research. Communications of
the AIS, 2(3es), 4.

Baskerville, R. L., & Wood-Harper, A. T. (1996). A critical perspective on action research as a method
for information systems research. Journal of Information Technology, 11(3), 235-246.

Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., ... & DeBaud, J. M. (1999, May).
PuLSE: a methodology to develop software product lines. Proceedings of the 1999 symposium on
Software reusability, pp. 122-131. ACM.

Bekkers, W., & van de Weed, I. (2010). SPM maturity matrix. Utrecht University.

Bekkers, W., Weerd, I. van de, Brinkkemper, S. & Mahieu, A. (2008a). The Influence of Situational
Factors in Software Product Management: An Empirical Study, Proceedings of the 2008 Second
International Workshop on Software Product Management, pp. 41-48.

Bekkers, W., Weerd, I. van de, Brinkkemper, S. & Mahieu, A. (2008b). “Situational Process Improvement in
Software Product Management”, Thesis report: INF/SCR-08-09. The Netherlands: University Utrecht.

Bekkers, W., Weerd, I. van de, Brinkkemper, S. & Mahieu, A. (2008c). “The Relevance of Situational Factors in
Software Product Management”, Technical report: UU-CS-2008-016. The Netherlands: University Utrecht.

Bekkers, W., van de Weerd, I., Spruit, M. & Brinkkemper, S. (2010). A Framework for Process
Improvement in Software Product Management. In Riel, A., O‟Connor, R., Tichkiewitch, S. &
Messnarz, R. (Eds.), Communications in Computer and Information Science: Vol. 99. Systems,
Software and Services Process Improvement, pp. 1-12. Berlin-Heidelberg, Germany: Springer-Verlag.

Berntsson-Svensson, R (2011). Supporting Release Planning of Quality Requirements: the Quality
Performance Model. (Doctoral dissertation). Department of Computer Science, Lund University.

Birk, A., Heller, G., John, I., Schmid, K., von der Maßen, T., & Muller, K. (2003). Product line
engineering, the state of the practice. Software, IEEE,20(6), pp. 52-60.

Bonner, J. M., Ruekert, R. W., & Walker, O. C. (2002). Upper management control of new product
development projects and project performance. Journal of Product Innovation Management, 19(3),
pp. 233-245.

http://scholar.google.com/scholar?cluster=11385630518601526980&hl=en&oi=scholarr
http://scholar.google.com/scholar?cluster=11385630518601526980&hl=en&oi=scholarr

91

Bosch, J. (1999, May). Product-line architectures in industry: a case study. Proceedings of the 21st
international conference on Software engineering, pp. 544-554. ACM.

Bosch, J. (2001, July). Software product lines: organizational alternatives. Proceedings of the 23rd
International Conference on Software Engineering, pp. 91-100. IEEE Computer Society.

Bosch, J. (2002). Maturity and evolution in software product lines: Approaches, artifacts and
organization. In Software Product Lines, pp. 257-271.

Bosch, J. (2005). Software product families in Nokia. Software Product Lines pp. 2-6. Springer Berlin
Heidelberg.

Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, J. H., & Pohl, K. (2002). Variability issues in
software product lines. Software Product-Family Engineering pp. 13-21. Springer Berlin Heidelberg.

Böckle, G., Clements, P., McGregor, J. D., Muthig, D., & Schmid, K. (2004). A cost model for software
product lines. Software Product-Family Engineering, pp. 310-316. Springer Berlin Heidelberg.

Brinkkemper, S., Weerd, I. van de, Saeki, M. & Versendaal, J. (2008). Process improvement in requirements
management: A method engineering approach. Lecture Notes in Computer Science, Volume 5025, pp. 6-22.

Brown, S. L., & Eisenhardt, K. M. (1995). Product development: past research, present findings, and
future directions. Academy of management review, 343-378.

Buhrdorf, R., Churchett, D., & Krueger, C. W. (2004). Salion’s experience with a reactive software
product line approach. In Software Product-Family Engineering (pp. 317-322). Springer Berlin
Heidelberg.

Carlshamre, P. (2002b). Release Planning in Market-Driven Software Product Development Provoking
and Understanding, Requirements Engineering, 7(3), pp. 139-151.

Checkland, P., & Holwell, S. (1997). Information, systems and information systems: making sense of
the field.

Chen, L., Ali Babar, M., & Ali, N. (2009, August). Variability management in software product lines: a
systematic review. Proceedings of the 13th International Software Product Line Conference pp. 81-90.
Carnegie Mellon University.

Christiansen, J. K., Hansen, A., Varnes, C. J., & Mikkola, J. H. (2005). Competence strategies in
organizing product development. Creativity and Innovation Management, 14(4), 384-392.

Clements, P. C., Jones, L. G., Northrop, L. M., & McGregor, J. D. (2005). Project management in a
software product line organization. IEEE Software, 22(5), pp. 54-62.

Clements, P., & Northrop, L. (1999). A framework for software product line practice. SEI
Interactive, 2(3).

Clements, P., & Northrop, L. (2002). Software product lines. Boston: Addison-Wesley.

Cooper, R., Edgett, S. J., & Kleinschmidt, E. J. (2001). Portfolio management for new product
development: Results of an industry practices study. R&D Management, 31(4), pp. 361-380.

92

Cooper, R. & Edgett, S. (2010). Developing a Product Innovation and Technology Strategy for Your
Business. Research-Technology Management, Volume 53, pp. 33-40(8).

Czarnecki, K., Helsen, S., & Eisenecker, U. (2004). Staged configuration using feature models.
Software Product Lines, pp. 266-283. Springer Berlin Heidelberg.

Danilovic, M., & Browning, T. R. (2007). Managing complex product development projects with
design structure matrices and domain mapping matrices. International Journal of Project
Management, 25(3), 300-314.

Deelstra, S., Sinnema, M., & Bosch, J. (2004). Experiences in software product families: Problems and
issues during product derivation. Software Product Lines, pp. 165-182. Springer Berlin Heidelberg.

Deelstra, S., Sinnema, M., & Bosch, J. (2004). A Product Derivation Framework for Software Product
Families. Software Product-Family Engineering, pp. 473-484. Springer Berlin Heidelberg.

Dul, J. & Hak, T. (2008). Case Study Methodology in Business Research. Oxford: Elsevier.

Ebert, C. (2007). The impacts of software product management. Journal of Systems and Software, 80(6), pp.
850-861.

Ebert, C. (2009). Software Product Management. CrossTalk - The Journal of Defense Software Engineering,

22(1), pp. 15-19.

Ebert, C., & Smouts, M. (2003, May). Tricks and traps of initiating a product line concept in existing
products. In Proceedings of the 25th International Conference on Software Engineering (pp. 520-525).
IEEE Computer Society.

Ernst, H. (2002). Success factors of new product development: a review of the empirical
literature. International Journal of Management Reviews, 4(1), 1-40.

Fritsch, C., & Hahn, R. (2004). Product line potential analysis. Software Product Lines, pp. 228-237.
Springer Berlin Heidelberg.

Funk, J. L. (2004). The product life cycle theory and product line management: the case of mobile
phones. Engineering Management, IEEE Transactions ,51(2), 142-152.

Harter, D. E., Krishnan, M. S., & Slaughter, S. A. (2000). Effects of process maturity on quality, cycle
time, and effort in software product development. Management Science, 46(4), 451-466.

Halmans, G., & Pohl, K. (2003). Communicating the variability of a software-product family to
customers. Software and Systems Modeling, 2(1), 15-36.

Helferich, A., Schmid, K., & Herzwurm, G. (2006). Product management for software product lines: An
unsolved problem? Communications of the ACM, Volume 49 (12), pp 66-67.

Helferich, A., Herzwurm, G., & Schockert, S. (2005). Qfd-ppp: Product line portfolio planning using
quality function deployment. Software Product Lines, pp. 162-173.

Helferich, A., Herzwurm, G., Jesse, S., & Mikusz, M. (2007). Software product lines, service-oriented
architecture and frameworks: worlds apart or ideal partners? Trends in Enterprise Application
Architecture, pp. 187-201.

http://www.ingentaconnect.com/content/iri/rtm;jsessionid=fjcua82nr9gs.victoria

93

Henfridsson, O., & Lindgren, R. (2007). Action research in new product development. Information
Systems Action Research pp. 193-216. Springer US.

Jaring, M., & Bosch, J. (2002). Representing variability in software product lines: A case study.
Software Product Lines, pp. 15-36. Springer Berlin Heidelberg.

Karlsson, J., & Ryan, K. (1997). A cost-value approach for prioritizing requirements. IEEE Software, 14 (5), pp.
67-74.

Krishnan, V., & Ulrich, K. T. (2001). Product development decisions: A review of the
literature. Management science, 47(1), 1-21.

Krueger, C. W. (2002). Variation management for software production lines. InSoftware Product
Lines (pp. 37-48). Springer Berlin Heidelberg.

Larson, E. W., & Gobeli, D. H. (1988). Organizing for product development projects. Journal of
Product Innovation Management, 5(3), 180-190.

Lehtola, L., Kauppinen, M., & h niitty, . (2007). Strengthening the link between business decisions
and RE: Long-term product planning in software product companies. Proceedings - 15th IEEE
International Requirements Engineering Conference, 4384178, pp. 153-162.

Lindkvist, L., Soderlund, J., & Tell, F. (1998). Managing product development projects: on the
significance of fountains and deadlines. Organization studies,19(6), 931-951.

McGregor, J. D., Northrop, L. M., Jarrad, S., & Pohl, K. (2002). Initiating software product lines. IEEE
Software, 19(4), 24-27.

Metzger, A., & Pohl, K. (2007, May). Variability management in software product line engineering.
Companion to the proceedings of the 29th International Conference on Software Engineering pp. 186-
187. IEEE Computer Society.

Muthig, D., & Atkinson, C. (2002). Model-driven product line architectures. Software product
lines, pp. 110-129. Springer Berlin Heidelberg.

Nebut, C., Fleurey, F., Le Traon, Y., & Jézéquel, J. M. (2004). A requirement-based approach to test
product families. Software Product-Family Engineering, pp. 198-210. Springer Berlin Heidelberg.

Northrop, L. M. (2002). SEI's software product line tenets. Software, IEEE,19(4), 32-40.

Phaal, R., Farrukh, C., Mitchell, R., & Probert, D. (2003). Starting up roadmapping fast. Research-
Technology Management, 46 (2), pp. 27-59.

Phaal, R., Farrukh, C., Mitchel,l R., & Probert, D. (2004). Technology roadmapping - A planning framework for
evolution and revolution. Technological Forecasting and Social Change, 71(1-2), pp. 5-26.

Pohl, K., Böckle, G., & Linden. F. J. v. (2005). Software Product Line Engineering: Foundations, Principles and
Techniques. New York: Springer.

Robertson, S., & Robertson, J. (1999). Mastering the requirements process. Harlow, UK: AddisonWesley.

Rombach, D. (2006). Integrated software process and product lines. Unifying the Software Process
Spectrum, pp. 83-90. Springer Berlin Heidelberg.

94

Schmid, K., & Eichelberger, H. (2008). A requirements-based taxonomy of software product line
evolution. Electronic Communications of the EASST, 8.

Svahnberg, M., & Bosch, J. (2000). Issues concerning variability in software product lines. Software
Architectures for Product Families pp. 146-157. Springer Berlin Heidelberg.

Svensson, R. B., Sprockel, Y., Regnell, B., & Brinkkemper, S. (2012). Setting quality targets for coming
releases with QUPER: an industrial case study. Requirements Engineering, 17(4), 283-298.

Sinnema, M., Deelstra, S., Nijhuis, J., & Bosch, J. (2004). Covamof: A framework for modeling
variability in software product families. Software Product Lines pp. 197-213. Springer Berlin
Heidelberg.

Sochos, P., Philippow, I., & Riebisch, M. (2004). Feature-oriented development of software product
lines: mapping feature models to the architecture. Object-Oriented and Internet-Based
Technologies, pp. 138-152. Springer Berlin Heidelberg.

Taborda, L. J. (2004). Generalized release planning for product line architectures. Software Product
Lines (pp. 238-254). Springer Berlin Heidelberg.

Taborda, L. J. (2004). Planning and managing product line evolution. Software Product-Family
Engineering, pp. 296-309. Springer Berlin Heidelberg.

Tatikonda, M. V. (1999). An empirical study of platform and derivative product development
projects. Journal of Product Innovation Management, 16(1), 3-26.

Tatikonda, M. V., & Rosenthal, S. R. (2000). Successful execution of product development projects:
Balancing firmness and flexibility in the innovation process. Journal of Operations
Management, 18(4), 401-425.

Van der Linden, F. (2002). Software product families in Europe: the Esaps & Cafe projects. Software,
IEEE, 19(4), 41-49.

Van Ommering, R., & Bosch, J. (2002). Widening the scope of software product lines—from variation
to composition. Software product lines, pp. 328-347. Springer Berlin Heidelberg.

van Steenbergen, M., Bos, R., Brinkkemper, S., van de Weerd, I., & Bekkers, W. (2010). The design of
focus area maturity models. Global Perspectives on Design Science Research, pp. 317-332. Springer
Berlin Heidelberg.

Vähäniitty, J., Lassenius, C., Rautiainen, K. (2002). An approach to product roadmapping in small software
product businesses. Quality Connection - 7th European Conference on Software Quality (ECSQ2), pp. 12-13.

Vähäniitty, J. (2004). Product Portfolio Management in Small Software Product Businesses - a Tentative
Research Agenda. Proceedings of the 6th International Workshop on Economic-Driven Software Engineering
Research (EDSER-6).

Vähäniitty, J., & Rautiainen, K. (2005). Towards an Approach for Development Portfolio Management in Small
Product-Oriented Software Companies. Proceedings of the 38th Hawaii International Conference on System
Sciences (HICSS-38), pp. 25-28.

95

Vlaanderen, K., Brinkkemper, S., Cheng, T., & Jansen, S. (2009). Case Study Report: Agile Product
Management at Planon. Technical Report UUCS-2009-005, Department of Information and
Computing Science, Utrecht University.

Vlaanderen, K., Jansen, S., Brinkkemper, S., & Jaspers, E. (2011). The agile requirements refinery:
Applying SCRUM principles to software product management. Information and Software
Technology, 53(1), 58-70.

von der Maßen, T., & Lichter, H. (2004). Requiline: A requirements engineering tool for software
product lines. Software Product-Family Engineering pp. 168-180. Springer Berlin Heidelberg.
Van Der Linden, F., Bosch, J., Kamsties, E., Känsälä, K., & Obbink, H. (2004). Software product family
evaluation. Software Product Lines pp. 110-129. Springer Berlin Heidelberg.

Weerd, I. van de (2009). Advancing in Software Product Management: An Incremental Method
Engineering Approach. (Doctoral dissertation). SIKS Disseration Series (2009-34).

Weerd, I. v., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., & Bijlsma, L. (2006a). On the Creation
of a Reference Framework for Software Product Management: Validation and Tool Support.
Proceedings of the 1st International Workshop on Product Management, Minneapolis/St. Paul,
Minnesota, USA, pp. 312-315

Weerd, I. v., Versendaal, J., & Brinkkemper, S. (2006b). A product software knowledge infrastructure
for situational capability maturation: Vision and case studies in product management. Twelfth
Working Conference on Requirements Engineering: Foundation for Software Quality, Luxembourg,
pp. 97-112.

Weerd, I. van de & Brinkkemper, S. (2007). Meta-modeling for situational analysis and design
methods. Handbook of Research on Modern Systems Analysis and Design Technologies and
Applications, Idea Group Publishing, USA: Hershey.

Weerd, I. van d & Brinkkemper, S. (2010). Lecture notes on Software Product Management. Utrecht
University.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation
in software engineering. Springer.

Yin, R. (2003). Case study research: Design and methods (Vol. 3rd). Beverly Hills, California, United States of
America: Sage Publishing.

Zhang, H., & Jarzabek, S. (2004). XVCL: a mechanism for handling variants in software product
lines. Science of Computer Programming, 53(3), 381-407

96

Appendix A: Complete SPL-practices mapping
SPL-practice ID SPL-Activity SPMCM-mapping Status Rationale

Domain Engineering
(DE) & Application
Engineering (AE) 3

Creation of roadmap for (common
and variable) product features

Product planning: PR Improvement: creation of product roadmap based on common and
variable product features of the intended SPL-members. No details are
given on the timespan of the roadmap except for "as far as foreseeable".
This Roadmap creation is similar with the focus area Product Planning,
except for the product features and timespan information.

4

Product management (PM) defines
the release planning (dates) of the
SPL-members or specific product or
application, based on common &
variable features, through the
roadmap.

Release Planning: LP Improvement: Roadmap includes release dates and SPL-members
features. Product management is responsible for defining the release
schedules of the various SPL-members (marketable products) which is
presented in the roadmap with their features. This can be for market
introduction or for specific customers. The roadmap is defines the scope
of the SPL through the features.

5

PM deals directly and firstly with
Requirements engineering (RE) (first
on domain level afterwards on
product or application level)

Requirements management O Neutral: mostly stating Requirements Gathering and Organizing aspects
and describe the process on an organizational level. PM defines the
common and variable features of the SPL and the members and includes
these in the roadmap, which serves as the scope for DRE. Afterwards,
PM defines which products should be derived in ARE.

6

DE provides reusable artifacts to
form the first “bricks” for the
platform

- O Neutral: DE is responsible for providing reusable artifacts such as
requirements specification (textual and modeled), architecture,
variability model, SW components, tests, and more which are the
essence of the platform that AE will need to perform.

7

PM defines common and variable
features of the SPL-members

Requirements management: RG Improvement: Requirements management has to consider common and
variable product features, when defining them for a SPL. This means that
requirements can be organized in these two categories. Common =
present in all products, variable = present in individual products.
Essential are the two sub-processes, DRE and ARE, of which each is
responsible for further specification of the requirements focused on
reusability (DRE) and on variability of the domain requirements (ARE).

8

RE differentiate between common
and variable features

Requirements management: RG Improvement: RM should differentiate between common and variable
requirements when identifying product features. Identify more common
than variable requirements, as variable requirements assure more
complexity. However variable requirements are necessary for the
essence of the SPL, which is the variability each product or application
will have.

9
DRE provides (reusable)
requirements specification for the

Requirements management O Improvement: Requirements management for DE is focused on
delivering reusable requirements artifacts. This indicates that one

97

next sub-processes: Design,
Realization and Testing

process has to be focused on providing reusable assets (DE) and another
process in exploiting these reusable assets for producing products or
applications (AE).

10

PM defines the products or
applications that will be derived
from the SPL by defining the
different features of the particular
products or applications

Requirements management Improvement: By defining the difference of the features (variable
requirements), the different SPL-members are recognized. Product
management defines which product or application should be derived in
ARE by prescribing the features of the product, i.e. which product should
have which common and variable features. Specific customer-
requirements are added in this sub-process.

11
ARE provides requirements artifacts
for specific product or application

Requirements management O Improvement: Requirements management for AE is focused on
requirement artifacts for individual products or applications.

12
DRE and ARE communicates back to
PM for additional or altering
features

Requirements management O Requirements management for DE and AE report back to Product
management if requirements (common, reusable or specific to a
product) need to be altered or added; forming a feedback-loop.

13

Variability management is dealt with
in RE

Requirements management: RO Improvement: RM should manage the variability, which is identifying,
documenting and modeling the variable requirements. RM explicitly
document and model variability (external variability= visible to
customers, possible to choose variants). This entails variable
requirements and modeling (variation points, variants and their
relationships) of this variability. Here the variability diagram is created
and presents the differences between the members.

14

Architecture design is driven by RE Requirements Management A Improvement: RM should implement some practice towards
architectural design. For instance, quality requirements should count for
the architectural design or grouping of requirements according to
architectural concerns.
Common and variable requirements and the variability model are passed
onto Domain Design which translates the requirements to technical
solutions in the SPL architecture. Especially quality requirements
(performance, security, usability, etc) are the drivers for architectural
design. The Variation/variability in requirements often results in
variation/variability in the architecture. Component frameworks are
used to support the various types of quality requirements, i.e.
frameworks are used to model SPL requirements in a structured manner

into components with their relationships. It also incorporates, properly,

quality requirements such as flexibility, maintainability, evolvability.
Core asset, Product
development and
Management

16

(Technical) Management monitors
the processes of Core asset (DE) and
product development (AE)

Overall O Improvement: Get (top) management more involved in the DE & AE
processes, e.g. by monthly reports or management involved, e.g. as a
stakeholder for instance at the end of each Sprint when following agile
Scrum. However, it is relevant for the overall success of SPM processes.

Variability 18 Variability in SPL is determined by Requirements management: RI, RO Improvement: Determine which requirements will differentiate between

98

management the variable features between the
SPL-members

the SPL-members. Focus area's RI for identifying the variation in the
requirements, RO for organizing the common and variable features and
the modeling there of. The identified variability has to be modeled by a
variability-modeling technique, e.g. Feature Modeling technique.

19

Requirements traceability is needed Requirements management:
RO:B

 Improvement: Register in which (core) asset or component a
requirement will be implemented as extra requirement data. The
capability of RO:B logs requirements’ data expect for in which asset a
requirements will be implemented.

20
Variability management is part of
RM

Requirements management Improvement: Variability management is an activity that occurs in
Requirements management, i.e. when identifying common and variable
features.

22
Reusable Components represent a
set of functionalities of the products

Requirements management Improvement: Requirements can be organized according to
components explicitly. This statement states a set of functionalities or
requirements form a component.

23
Components can be reused for a
number of products or applications

Product planning: CAR

Neutral: Components are assets that are used for building SPL-members.
In SPL engineering component-development needs to be planned, i.e.
through the roadmap.

24

A component in the architecture
implements a particular/coherent
domain or set of functionalities
(requirements)

Requirements management: RO A

Neutral: A component consists of functionalities that are closely related
or together form a solution. Similar to the Requirements organizing
focus area.

25
Components are stored in a
component repository for product
development

- Neutral: Components (core assets) that product development will need
to develop the end products are stored in a component repository.

26

SPL architecture is a generic
architecture consisting of
components, connectors and
additional constraints

- A Neutral: The SPL-architecture is generic for all SPL-members, referred to
as reference architecture. The reference architecture consists of
components, connectors and constraints.

27

Role of the architecture is to
describe the commonalities and
variabilities of the products in the
SPL, and to provide the overall
structure.

Requirement management A Improvement: The commonalities and variabilities should be identified
and organized in requirements management. In addition, requirements
management is direct input for the architectural design

28
SPL-members are instantiations of
the reference architecture and
components in the architecture

- A Neutral: The reference architecture is used to derive the architecture for
each SPL-member. The product architecture presents the components
necessary to build the product.

29
Features of the SPL products should
be predicted in a time span of 5
years in the future.

Product roadmapping In the roadmap the vision of product development is presented for the
coming years. For SPL this is also detailed into features that will be
expected in the next 5 years in the SPL

30 Variability occurs in different levels - Variability in the design phase can have impact on different levels.

99

in the design

31 Product line level Variations between SPL-members, different components

32 Product level Architecture and components selection for a particular product

33 Component level New implementations of interfaces and evolution thereof

34 Sub-component level Features selection to create a component

35 Code level Where variability actually takes place, is implemented

37
SPL architecture has to support
planned changes

- A Neutral: The SPL-architecture has to support the planned changes, which
is variability

38

SPL architecture records
components dependencies

- A Neutral: The SPL-architecture records the components’ dependencies in
order take into consideration during development.

39

Properly adapting architecture - A Neutral: Properly adapting the architecture demands proper
documentation, methods, techniques and guidelines for handling
variability with all stakeholders customers, development, management,
etc.

40

Product derivation from an
architectural point of view

- A Neutral: The architecture supports all features, HW and SW, and
disabling certain features create the particular products (maximalist
approach)

41

Identifying variability is often based
on analyzing commonalities and
differences between SPL-members

Requirements management: RI, RO Improvement: Commonalities and differences identification and analysis
should be part of RM, since it comes down to common or different
features and requirements

43

Variability is generally expressed
through variation points.

- Neutral: Variation points and variants are a technique to model and
represent variability and the variations, referred to as Feature Graph
Modeling. A variation point refers to a delayed design decision, i.e. it
indicates a specific point in development or deployment phase of a SW
system.

45

Differences between SPL-members
are well documented

- Neutral: The differences between SPL-members are exclusively
documented, this is referred to as variability. These differences can be
modeled in variation points and variants in a Feature model.

46

A feature is a logical unit of behavior
that is specified by a set of
functional and quality requirements.

Requirements management Improvement: The identification of features, functional and quality
requirements are part of requirements management; requirements can
be organized according to features and in turn, features into
components. Features are abstract from requirements. A component
has features and a feature has requirements

49

Product instantiation in SPL - Neutral: Change before product instantiation (anticipated) relies on the
reuse infrastructure (DE), whereas change after
instantiation(unanticipated) relies on non-reusable code(AE)

50

Optimal phases to introduce and
bind variation points

- Neutral: Selecting the optimal phases to introduce and bind variation
points in the SW life cycle has considerable impact on flexibility
(variability rate) of the system as well as the development and

100

maintenance costs. Bind a variation point too early, flexibility is less than
required. Bind a variation point too early, flexibility is less than required

RequiLine
54

RM differentiate between common
and variable requirements

Requirements management: RI Improvement: RM should differentiate between requirements for all
SPL-members (common) and requirements for specific SPL-member
(variable)

55

Requirements/feature traceability is
needed

Requirements management: RO:B Improvement: Features should be linked to the SPL-member they are
implemented in. This makes it possible to trace requirements down
(history of requirements implementation) and have the knowledge of
how an issue has been solved before.

Generalized Release
planning for SPL

57

Requirements allocation and
traceability

Requirements management: RO:A,
B

 Improvement: Bundle requirements that fit together and register where
this bundle will be implemented, organized per SPL-member inclusion.
Both components and end-product are linked in the Release matrix. This
implies requirements being allocated to components and finally the end-
products. Traceability too, requirements can easily be traced in which
product they were implemented

58

Release planning for components Release planning: RD:B, C Improvement: Plan the release of components and products in the
Release matrix, as is needed to meet the release date (the component
producer is the one responsible for requirements prioritization).

59

Requirements management
differentiate between shared and
variable components

Requirements management Improvement: Requirements management categorizes requirements in
shared domain components (common) and product-specific components
(variable)

PPP-QFD

61

Requirements identification AND
prioritization by customers

Requirements management: RG:E
– Release planning: RP:C

 Similarity: Requirements for the SPL are firstly gathered from existing
and potential customers. These requirements are analyzed and sorted.
Secondly, the existing and potential customers are asked to prioritize the
requirements.

62

RM identifies Product line members Requirements management: RO –
Release planning: RP

 Improvement: Requirements can be sorted and organized in such a way,
that segments can be extracted. Based on the prioritized requirements,
customer segments are derived using cluster analysis. Each product line
member is identified using the rule ‘one product line member per
customer segment’. Experts provide input on a technical level.

PuLSE
66

Management path SPL future Portfolio management Neutral: The product line scope is initiated by business objectives
defined by the stakeholders. Management defines the business
objectives that drive the SPL initiation.

67

Product map defines product line
scope

Product planning: RI Improvement: to present requirements with SPL-members together with
other valuable information for the product line, i.e. costs, benefits,
market, objectives and competitors in a product map. A matrix with the
SPL-members in the columns and the characteristics in the rows
together with information on the market, costs, competitors and
benefits.

 68 Modeling input for Architecture - A Neutral: Information on the product line is elicited and modeled in

101

different views such as workflow diagrams, sequence charts and data
models. The Decision model, where SPL-member specification can be
derived, contains a structured set of decisions of which each
corresponds with a variability in concepts, requirements, features, etc.
of the SPL. The Decision Model makes it possible to derive product
variants and is similar to the Variability Model/diagram mentioned in
other diagrams.

69

Architecture is driven by
requirements

Requirements management A Improvement: common, variable and product-specific requirements are
used to initiate the architectural design of the SPL, i.e. concepts are
determined and modeled according to their relation and product line
scope. The aim is to define a domain-specific SW architecture that
covers the existing products and future SPL-members

70

Requirements are also used for
product validation

Release planning: RBV Similarity: validation of the end product is performed to assure product
quality according to the requirements set beforehand.

71

Design and coding is validated
against the architecture

Release planning Improvement: the reference architecture is used for the validation of
the design models and SW-coding to validate if the limitations and
structure of the architecture are met.

Product Derivation
Framework 73

Requirements traceability is
essential

Requirements management: RO:A,
B

 Improvement: requirements are also linked to the core asset in which
they've been implemented. Requirements are organized based on
shared core assets is a similarity.

74

Product configuration is validated
against the requirements

Release planning: RBV Similarity: validation of the end-product, to assure product quality,
according to the requirements set beforehand.

75

Requirements drive Product
Derivation

Requirements management Neutral: SPL-products are mostly configured or assembled from existing
SPL-assets and some tailoring. Based on the requirements management
provides, the necessary assets can be chosen for the initial
configuration. RM has the responsibility to update requirements when
(and during) these are chosen for configuration or included in pre-
implementation processes (e.g. when customers wishes changes).
Usually, the initial configuration is iterated until it is proper (re-
architecture, re-components and re-parameters) and the end-product is
declared ready. Requirements that are not known by RM, i.e.
represented by core assets, and have to be included in the end-product
can only be included through adaption in architecture and components
if this cannot be tailored in the end-product (depending on the impact of
the requirement).

76

Product architecture is derived from
the reference architecture

Architecture A Neutral: The product architecture is derived from the product line
reference architecture, for as much as possible.

77

Product roadmapping Product planning: RI, PR Similarity: the domain and scope of the SPL as well as its future
developments (evolution) are predicted in combination with a
technology scope in a roadmap. However, no timespan is given.

102

Integrated SPPL
79

SPL engineering approach reduces
TTM projects

- O Neutral: This is an interesting statement for the case company.

80

SPL engineering exists of 2 separate
development processes: DE and AE

- O Neutral: One process, DE, is responsible for developing reusable
components and set up the product line development platform. The
other process, AE, uses mainly the reusable components developed by
DE to build the end-products, and tailors where this is needed.

81

SPL engineering promotes proactive
reuse of pre-designed commonalities
and controlled variabilities within a
family of systems

Requirements management: RG Improvement: pre-designed commonalities and controlled variabilities
are common and variable features between the SPL-members. These
should be handled in RM

82

Commonalities and variabilities are
implemented through a components
architecture

Requirements management A Neutral: common and variable features are organized into components.
The architecture describes how components should be implemented
and how they relate to each other.

83

Reusable artifacts (DE), are kept in
artifact repository

 Neutral: The reusable artifacts, from requirements to test cases, that is
needed during product development are stored in an artifact repository.

84

(predefined) Variability choices
(variants) are linked to
corresponding components

Requirements management: RO Improvement: Features (common or variable for SPL-members) are
linked to the corresponding component that should be implemented in
order to realize the features.

85

Requirements engineering process is
fundamental in DE process in order
to achieve SPL advantages

Requirements management O Improvement: Requirements management should receive proper
attention and should not be underestimated during SPL engineering. The
highest focus lies with handling (identification, organizing, analysis,
modeling, documentation) commonalities and variabilities.

SPL FAST Process
87

The FAST process exists of two
phases: DE and AE

- O Neutral: DE and AE are recognized as the two main processes essential
for SPL engineering. Similar to other SPL-practices.

88

FAST process - O Neutral: FAST is applicable as a SW development process when
organizations create multiple versions of a product with significant
common attributes: behavior, interfaces, code.

89

A process called Commonality
Analysis

Requirements management Improvement: The common and variable characteristics (features) of a
product family are identified and analyzed and documented in a
primarily natural language document (text) document.

90

Commonality analysis document as
communication tool

Release planning: RD Similarity: The commonality analysis document is a powerful
communication tool between Marketing, senior Management and
developers.

91

During commonality analysis
example scenarios are used to
explore differences between SPL-
members

Requirements management: RI Improvement: Use these example scenarios (techniques) in order to
further analyze common and variable features when this is needed for
certain products.

92

Usability scenarios Requirements management: RI Improvement: Describes actions required to perform common user
operations

103

 93 Variability scenarios Requirements management: RI Improvement: Emphasize the differences between individual products

94

Prototyping a SPL-member makes it
possible explore (deeper) differences
between the members by using
scenarios

Release planning Improvement: Prototyping allows for deeper identification and analysis
of variable features and other aspects between SPL-member when
scenarios are not sufficient.

95

Design patters in SPL - Neutral: Design patterns in SPL-engineering mostly focus on variability.
This in turn is important for the product line architecture.

96

Binding in SPL - Neutral: Binding times and values of the variability are essential and
should be done carefully, since the variability depends on this.

 98

SPL development requires more
effort than single product
development

- Neutral: This is an interesting statement to show the difference between
single product development and product line development

BAPO

100

RM is input for the architecture
design

Requirements management Improvement: The design for the reference architecture receives input
from RM, i.e. the functional and quality requirements form the design of

the reference architecture. Both commonalities & variability (variation

points and variants) should be modeled in the architecture. The
reference architecture defines the components (mandatory, optional,
and alternative), component interrelationships, constraints, and
guidelines for use and evolution in building systems of the SPL.

101

Traceability of requirements is vital
in RM

Requirements management: RO:B Improvement: RM should trace requirements to know in which assets
they are implemented, for maintenance reasons and a complete
manageable process. Traceability is connected with configuration and
version management for the configurations and version of the particular
assets and components.

 BAPO evaluation

104

Business: Identity Product planning: CAR O Neutral: Existing family assets are reused in product development for
opportunistic reasons. Likewise, make/buy/mine/commission SPL assets
are only done for opportunistic reasons. This is information that is not to
be missed. However, it is not more than that.

105

Business: Vision - O Neutral: Product line scoping is based on expected future products and
which product will not be produced. The marketing of these future
products are also discussed. Roadmapping plans the development of the
SPL and decides on make/buy/mine/ commission assets.

106

Business: Strategic planning -overall O Neutral: The strategic planning of the SPL includes SPM activities such as
SPL requirements definition. The product portfolio is evaluated and
cheap products are pushed while expensive ones are dropped.
Furthermore, product line scoping is based on the expected ROI of the
entire SPL. The roadmaps are based on intra-company agreements, TTM
and profit estimations. The SPL is marketed as a whole and the
marketing is aligned with product development.

104

108

Architecture: Reuse level Product planning A Neutral: asset sharing is only beneficial when the commonalities are
clear to be exploited. Domain-specific components can be acquired from
external sources if this is more beneficial (less effort) than building
them.

109

Architecture: Product quality - O Neutral: intra-organizational reuse of assets takes place through a
platform which provides domain functionality that is applicable for all
products, i.e. commonality. Non-commonalities are implemented in
individual application or product (product derivation)

110

Architecture: Product family
architecture

- A Neutral: Increase of general functionalities that are applicable for most
products are introduced through the product line platform. This should
be supported by the architecture. Specific functionalities that are
present for one or few products takes place through product derivation.

105

Appendix B: SPL-Capabilities (pre-evaluation)

Requirements management
Requirements gathering
Title Basic product line scoping (7, 8, 10, 47, 48, 54, 59, 64)

Goal Define product line features to support the scope.

Action Requirements management defines Common, Variable and Product-specific product features. A
Common feature is present in all or most products. A Variable feature is present in some products
only. A product-specific feature is present in only one individual product (customer wish). A
product feature is a logical unit of behavior that is specified by a set of functional and quality
requirements, implying a feature is defined by multiple requirements. By defining the different
features, and thus requirements, and in which product they will be present (variable features), the
different product line-members can be identified. The aim is to define more common than variable
requirements, as variable requirements assure more complexity. However variable requirements
are necessary for the overall variability of the SPL.

Requirements identification
Title Advanced product line scoping (91,92,93,94)

Goal In-depth analysis of product features.

Action After commonalities and variabilities have been identified, example scenarios/real-life scenarios
are deployed for further analysis and evaluation of the commonalities and differences. Usability
scenarios describe actions required to perform common user operations. Variability scenarios
emphasize the differences between individual products. In some cases, differences are difficult to
identify and/or evaluate. Prototyping a product line-member makes it possible to explore
profound differences between the members. Prototyping is vital in cases where a product line is
developed, specifically for a niche market or customer.

Requirements organizing
Title Product line features organizing (22,23,24)

Goal Organize features according to (reusable) components

Action Organize features together that serve the same purpose or functionality to form components, i.e.
features that complete a function of a component are grouped together. A (Reusable) component
represents a set of closely related functionalities/features that form a product solution.

Title Components dependency registration (38)

Goal Record the dependency of the components

Action Determine and register components' dependencies. Components can depend on other
components in order to function properly or conflicts may occur. These dependencies are direct
input for the architecture. Components' dependencies should be described when the
corresponding features are organized accordingly. This can be done textually and/or modeled (the
latter one often communicates easier).

Title Product line requirement life cycle management (55,57,84,101)

Goal Make requirements traceable - Requirements can easily be traced in which product(s) they were
implemented.

Action Register in which product line-member the components, and thus features, are implemented in.
This is necessary in order to be able to trace requirements down (history of requirements
implementation) and have the knowledge of how an issue has been solved before and can be
done again (reuse) and for an overall manageable process. This start with requirements
constituting features, features being bundled into components and components being developed

106

and (re)used to build the end-product; the traceability of the requirements during the whole
trajectory is important, e.g. it should be clear which SPL-members should get updated versions of
core components when these are available.

Title Variable feature management (13,18,41,42,43,44,45)

Goal Manage variable product line features properly.

Action Variability (variable features) is identified and explicitly modeled and documented. This is referred
to as Variability management. Identifying variability is often based on analyzing commonalities and
differences between SPL-members; especially external variability which is visible to end-users and
possible for them to choose variants. This happens while gathering, identifying and defining
product features. The variable features are destined to be implemented in (only) some individual
SPL-members, unlike the common features, which are implemented in all members. The variable
features and the variances are modeled into a Variability diagram with Variation points (decision
points), variants (a decision) and the relation thereof with proper textual documentation. This is
also known as Feature Modeling technique. The purpose is to have a clear view of the variability of
the product line and to be able to manage it, since this is vital for the product line success.

Release planning
Requirements prioritization
Title Components consideration (58)

Goal Product line features prioritization

Action Prioritize the features that will be implemented in end-product from the next release on by
assigning priority to them (prioritization techniques can be used). This prioritization is performed
with the end-product(s) in focus and which component is required to complete the product. This
implies that features would be implemented in components and these components would
complete the end-product. Prioritization is necessary, since not all features can be implemented,
due to costs, resources and market introduction deadlines. Hence, the features with the desired
priority will be included in the particular components.

Release definition
Title Product line release definition (4,58)

Goal A selection of features for implementation based on priority

Action A practical selection of the features is made given the limitations on engineering resources, based
on the priority assigned. The function and essence of the components is also considered when
making the selection. The selection is defined textually which will be necessary for further steps.

Title Product line release planning (4,58)

Goal Release plan for the product line members

Action After the prioritized features are formed into components (sharing same functionality, same core
asset, same member, etc.), the release can be planned. A release plan is created based on the
product line roadmap, i.e. release dates are determined for the product line members (end-
products), supported by detailed information on the components, common and variable features
they are composed of, from the next release on. This can be for market introduction and for
specific customers. The rationale behind this is that components can be reused for future releases
and products. This is part of maintaining the development platform for the product line.

Release build validation
Title Architectural release validation (71)

Goal Release validation by architecture – Release quality assurance

Action The design and coding of the SPL-members (the build) is validated through the product line
architecture before the actual release is launched. The design and software code have to adhere
to the limitations and structure of the product line architecture. This validation is performed by
the department(s) who is (are) responsible for developing and maintaining the product line’s

107

architecture(s). The product line’s architecture is vital for achieving the business goals set up front,
when management decides to engage in a software product line development approach. Hence,
the necessity for validation through architecture.

Product planning
Product roadmapping
Title Product line roadmapping (3,29,46,105)

Goal Define the scope of the software product line through a roadmap.

Action A roadmap is created detailing the anticipated products of the product line, its members, as far as
foreseeable. The members are represented by the components (if possible) of which they are built
off, i.e. multiple features form a component, whereas a feature abstract from requirements. The
product line features, common and variable, should be predicted for a time span of 5 years.
However, other authors (e.g. Svanhberg et al.) believe this is not practical, since a great amount of
the future requirements (not technology shifts and/or other development changes) of the product
line cannot be predicted.

Core asset roadmapping
Title Core asset usage (3,29,46,105)

Goal Intra-organizational reuse of core assets – exploiting core assets.

Action Increasing commonalities will need to be managed in order to be exploited properly. The managed
commonalities are developed into fundamental components (core assets). These core assets,
which mostly contain domain functionality, amongst other shared assets, are reused by other
(internal) departments through the product line platform. Features that are shared by sufficient
members are included in the core assets, whereas features shared by only few members are
developed as part as product derivation. This ensures knowledge sharing and more efficient
product development as more reuse is taking place. This is a typical of product lines practice.

Roadmap intelligence
Title Visualization of the product line scope (67)

Goal Visualize product line scope information to clearly communicate with stakeholders,
e.g. other departments, customers, suppliers.

Action The members and their features are represented in a product map, i.e. a matrix with the members
in the columns and the features in the rows together with information on the market, costs,
competitors and benefit (not date nor schedule is included, not to be mistaken it with product
roadmap). This is also a way to represent traceability; to allocate features to members together
with other valuable information for the product line.
The above mentioned example is a way to visualize the product line scope. It is possible that
software organizations use other ways to visualize the same type of information.

Portfolio management
Product lifecycle management
Title Financial Product line scoping (106)

Goal Scope the product line with information on costs and profits.

Action The decision whether a product will or will not be part the product line scope is based on the
expectations of the ROI. If these are beneficial for the organization, the product will be part of the
line, otherwise it will be declined. This can also be applied to features, i.e. features are dropped
according to their expected added value or revenue.

Title Architectural product derivation (40)

Goal Derive products from the product line reference architecture (maximalist approach).

Action The reference architecture implements all features (hardware & software). Product derivation
from an architectural point of view implies disabling certain features, minimalizing the amount of
features, and creating the particular SPL-members with those selected features (Generally, the

108

reference architecture is used as basis to further specify as needed for each SPL-member).

Not coupled to any business functions
Product line architecture
Title Reference architecture construction(14,24,27)

Goal Create product line reference architecture.

Action Create the product line reference architecture. Role of the architecture is to describe the
commonalities and variabilities of the products in the product line and to provide the overall
structure. Common and variable features, represented by the components, are the main drivers
for architectural design together with quality requirements such as performance, security,
usability, etc. These are also represented in the architecture. Component frameworks are used to
support the various types of quality requirements, i.e. frameworks are used to model features in a
structured manner into components with their relationships. The reference architecture has to
solve issues of variability and reusability. In addition it also properly incorporates quality
requirements such as flexibility, maintainability, evolvability. When common and variable features
are considered in a very early stage then more flexibility is assured for the product line. As
features are represented in components, the components in the architecture implement a
particular/coherent domain of functionality, e.g. the network communication domain.

Title Reference architecture construction based on scenarios (69)

Goal Create product line architecture with requirements input.

Action The aim is to define a domain-specific software-architecture that covers the existing products and
future SPL-members. This is driven by the functional requirements (generic scenarios; which are
similar to commonalities) or domain-independent quality aspects (property-related scenarios;
which are similar to variable features with a quality focus). The generic scenarios are combined
with property-related scenarios and rated according to architectural importance. Iteratively,
functional requirements from the generic scenarios are chosen to create the initial architecture. In
each iteration, other generic scenarios are added to the candidate architecture to complete it and
refine it, which may result in multiple architectures. The property-related scenarios are used to
validate and refine the candidate architecture. Requirements (common, variable and product-
specific) are used to initiate the architectural design of the software product line, i.e. concepts are
determined and modeled according to their relation and product line scope.

Title Reference architecture construction based on variability(100)

Goal Product line architecture development driven by requirements management.

Action The design for the reference architecture for the product line receives input from Requirements
Management, i.e. the functional and quality requirements form the design of the reference
architecture. The architecture should relate all design decisions made, to the requirements
(functional + quality). Both commonalities and variability are modeled in the architecture.
Variability in the requirements is modeled through variation points and variants, i.e. where
members may vary from each another. The reference architecture defines the components
(mandatory, optional, and alternative), component interrelationships, constraints, and guidelines
for use and evolution in building systems of the software product line. Later, the reference
architecture is used to create an instance and further specify it for a particular (new) member.
When designing the architecture, quality predictions of all products have to be taken into account,
which makes it a difficult issue. Hence, having the right description and mechanisms to do so,
eases the architecture modeling, e.g. variability modeling. The most important architectures issues
that have to be addressed properly are: significant architecture requirements (functional
requirements & quality requirements that are significant for the SPL architecture), Concepts (the
architecture concepts clarifies the architecture organization), Texture (standard solutions for
implementation problems) and Structure (internal

109

Organizational
Title Domain & Application engineering (6,80,87)

Goal Create a product line environment

Action Create two processes: one process, Domain Engineering, that is focused on developing reusable
artifacts and a product line environment (textual and modeled requirements specification,
architecture, design, variability model, software components, tests plans, and more) which forms
the development platform; and one process, Application Engineering, that focus on developing
sellable end-products that are built from the artifacts developed in Domain Engineering

Title Requirements engineering planning (5,7)

Goal Plan requirements engineering for product line developments.

Action Product management controls Requirements engineering directly, first on domain level afterwards
on product (or application) level. Product Management defines the common and variable features
of the product line in the roadmap, which serves as the scope for further requirements
engineering tasks such as detail specification and modeling. Afterwards, Product Management
defines which products or applications should be derived in Application Requirements
Engineering, implying which requirements will be implemented for which product, individually
(variable features)

Title (Upper) Management Involvement (16)

Goal Proper execution of product line processes.

Action (Upper) Management is actively involved and monitors the process of Domain Engineering and
Application Engineering. This is for guidance on keeping the processes and sub-processes on track
and not to drift away from the business goals. Technical management focuses on Domain &
Application Engineering, whilst Organizational management focuses on the best fit organizational
structure for the organization. (Upper) Management is more involved in the above mentioned
processes to keep, e.g. by monthly reports or management involved, as a stakeholder, at the end
of each Sprint when following agile Scrum. However, this capability is relevant for the overall
success of SPM processes.

110

Appendix C: Evaluation results of SPL-Capabilities.

Requirements management

SPL-Capability Basic product line scoping

Usefulness 3/3

Rationales summary It is important to know if the feature/functionality is variable before development
start. Literature suggests that in order to build in the variability properly, it has to be
known in an early phase.

Modification None

SPL-Capability Advanced product line scoping

Usefulness 1/3

Rationales summary It is not useful when fewer and larger variabilities are at stake. This means that it is
useful for many and smaller variabilities. However, it is useful to detect early
hazardous behavior of the system (similar of the focus area Release build
validation).

Modification This capability needs a condition: useful IF variability in the product line is large in
number and it is relatively small variation.

SPL-Capability Product line features organization

Usefulness 1/3

Rationales summary Hard to know in advanced which components will be core assets, i.e. reused. This is
for an organizations where variability information and requirements tends to
appear very late in the product development lifecycle (2 experts). Organizing
features according to components improves requirements tracing. The
dependencies (interdependencies), i.e. links between features might improves

Modification This capability will be left out. It seems too large of a challenge for organizations to
know this in an early phase.

SPL-Capability Components dependency registration

Usefulness 3/3

Rationales summary This is useful and gives great benefits when the impact of changes on components is
being analyzed. It is very hard to maintain updated; easy for the easy ones and very
hard for the hard ones. In order to really benefit from this capability you need to
include many product from your product line (per installation variant maybe too).

Modification This capability needs a condition: the more products this is applied to the greater
the benefit will be. This goes out for all products.

SPL-Capability Product line requirement life cycle management

Usefulness 3/3

Rationales summary The value of this capability is seen when it is time to test/validate the product. This
way it is clear which requirements are performing how. Nevertheless, mapping
requirements to SW-code is usually very hard.

Modification None

SPL-Capability Variable feature management

Usefulness 2/3

Rationales summary The visibility this capability will provide is beneficial. However, by dividing common
development and tuning or configuring a specific product you want to increase
scalability. However, what you end up with is a situation where one practitioner has
the domain knowledge (and product knowledge because that person has

111

investigated the detail requirements for the product and is responsible for
implementation in the common or variable components) then a third person is
expected to be able to configure and understand the requirements and
configuration language without hardly any domain knowledge. In theory this seems
more feasible than in practice, considering it might requires quite heavy information
transferring and tool support to make this work smoothly. From a developer
perspective it is only relevant that a feature is included in the product or not; and
not whether it is variable or not.

Modification They capability will be left out. Besides being useful, expert find it not practical in
real life and too farfetched.

Release planning

SPL-Capability Product line features prioritization

Usefulness 3/3

Rationales summary It is important to prioritize requirements, since not all can be implemented at once.
As long as each requirements/feature have a business value, implementation costs
and architectural implication. If the feature or components is reused in many
components it should get a higher market value

Modification None. However this capability is described on a focus area level (Requirements
prioritization). The emphasis of this capability needs to be put on components
consideration when prioritizing.

SPL-Capability Product line release definition

Usefulness 3/3

Rationales summary This is the following step after prioritizing the requirements and the focus should go
according to importance. Sometimes the focus is too much on business priority and
too little on technical benefits and limitations, when making the selection for
development.

Modification None

SPL-Capability Product line release planning

Usefulness 3/3

Rationales summary Yes, such a plan is beneficial. However, reuse needs to take place where and when it
is beneficial (where it makes sense) and not all the time (100%). This capability is
also useful for verification or validation of the end-product, since this would be a
specific configuration of features and components. Be careful with forcing as much
reuse as possible (100%) with the common components. This might form situations
where all products will share the risk with each other. E.g. If a low priority feature is
delayed or causing instability, this might stop multiple if not all release of the other
products in the product line. Also, too much upfront planning lets the resistance of
having great amount of differences in the products gets too high, meaning it will be
more difficult to have a lot of variabilities between products.

Modification Information will be added on control of the upfront planning and to apply reuse
only when and where it makes sense. Do not apply limitless reuse.

SPL-Capability Architectural release validation

Usefulness 3/3

Rationales summary Beneficial, however it might be better to do this during development, since if a
mistake is detected then it rarely happens that a market release will be delayed
because the code is not following internal standards (1 expert). By not following the
PL architecture, other SW development activities might be affected, e.g. tests
modules might not function properly or certification of the source code will be
challenging, because constraints in the architecture might be invalidated.

112

Modification None

Product planning

SPL-Capability Product line roadmapping

Usefulness 3/3

Rationales summary Good to have that kind of plan. It might be useful to predict upcoming products and
what type of feature or components they will contain. This can then be used to
minimized component dependencies and design for change in the PL-architecture.

Modification None

SPL-Capability Core asset usage

Usefulness 3/3

Rationales summary Useful, however it is important to protect and clearly divide development
responsibility here. Some 'reuse agreement' which enables flexibility, will need to
assure that the team responsible for product development (AE) do not burden the
team responsible for core assets (DE) too much. This can lead to a negative effect
on the core assets development team by constantly switching of context which will
lead to a decrease of productivity. In addition, sharing product development
knowledge benefits development in general, i.e. more efficient and effective.

Modification This capability needs to be split up into two separate capabilities for a smoother
implementation. One capability needs to standardize the infrastructure and the
necessities for core asset development (reuse). The other capability would extend
the first one to allow internal use of the core assets as well as evolution of the
infrastructure/platform.

SPL-Capability Visualization of the product line scope

Usefulness 2/3

Rationales summary Very useful to note that the difference in detail/abstraction level between SW
developers and product planners. Developers are interested in the details such as
features and requirements, whilst product planners are also interested in market
information and competitors. It is difficult to map this information automatically in
practice. From a SW developer perspective it is on too high level.

Modification None. Note it might be a capability that is difficult to realize.

Portfolio management

SPL-Capability Financial Product line scoping

Usefulness 1/2

Rationales summary This is very useful, especially for features. This also assures a sort of cleaning up in
your pile of requirements and code, since requirements are left out or removed if
these do not bring financial added value. These estimates are impossible to do that
early in the process and therefore not reliable. From a SW developer perspective it
is on a too high level (ignored).

Modification This capability will need to be more ‘flexible’ with the financial calculations, i.e. any
financial information that will add value to the decision-making should be included.
More emphasis on the features too.

SPL-Capability Architectural product derivation

Usefulness 0/3

Rationales summary It is not useful if you want to have a good TTM; all products share the risk of the
'total/super' product and will need to wait till everything is done. It will make
everything less efficient and slower, since extra dependencies might be created and

113

other teams have to wait till the architecture is fully done. It
seems that this would be a very static environment that only allows subsets
of the 'total/super' product.

Modification This capability will be left out.

Product line architecture
 (The answers of the expert with more technical knowledge weight more)

SPL-Capability Reference architecture construction

Usefulness 1/2 (one expert had no experience on this)

Rationales summary It is useful to guide the design of the architecture or SW system and to identify the
weak points. One expert indicates that not including quality requirements that early
on makes them save time. Literature (Pohl, 2005) states that quality requirements
should be considered at an early stage.

Modification Emphasis should be put on early quality requirements consideration.

SPL-Capability Reference architecture construction based on scenarios

Usefulness 1/2 (one expert had no experience on this)

Rationales summary It is good practice to design the architecture using requirements, although other
techniques than scenarios might be possible or better. One expert says they have
no time for this.

Modification Emphasis should be put on the input of requirements. The scenarios can be seen as
guidelines to develop the reference architecture.

SPL-Capability Reference architecture construction based on variability

Usefulness 1/2 (one expert had no experience on this)

Rationales summary The risk if variability is not considered is that the usefulness of the architecture
might be significantly lower than desired. It will limit the number of possible
variants and products and increase modification costs. One expert says they have
no time for this.

Modification None

Organizational

SPL-Capability Domain & Application engineering

Usefulness 0/2 (one expert had no experience on this)

Rationales summary Does not make sense and the division into domain and application engineering does
not seem feasible in practice. However, some sort of separation of developments
concerns is advisable.

Modification This capability will be left out. Despite being widely recognized in literature.

SPL-Capability Requirements engineering planning

Usefulness 3/3

Rationales summary It is important in order to know what to implement in which product and you need
to plan this instead of letting everyone implement what he thinks is important.
From a SW developer perspective, it is good to know that product management is
planning what has to be done and not on gut feeling.

Modification None.

SPL-Capability (Upper) Management Involvement

Usefulness 1/2 (one expert had no experience on this)

Rationales summary From a SW developer perspective, it is positive to feel the interest from upper

114

management. However, they shouldn't concern themselves with keeping
timetables only, instead they should also concern with the deliverables of the
processes and their quality. Upper management does not know what is important
and how to deal with it in a proper way. Hence, the task remains by project and
product managers and they report to upper management. (The essence is to get
upper management to be involved more, pro-active.)

Modification Since the SPL-Capability of Domain & Application Engineering has been left out, this
capability would need to be left out too for the reason it mainly focused around the
Domain & Application Engineering capability. However, it will be rewritten with the
experts input. Emphasis should be put on the deliverables and the quality thereof.
Literature supports this, despite one expert stating that this should not happen.

115

Appendix D: Case company situational factors list.

REMOVED FOR CONFIDENTIALITY REASONS

116

Appendix E1: Product development interview instrument

Introductie
 Product portfolio

Welke producten (software) worden door CCV Systems ontwikkelt voor:

o CCV Holland

o Internationaal (BE en CH)

o (DE)

Kan deze producten gecategoriseerd worden? Zo ja, in welke categorieën?

Zijn deze producten totaal verschillend (nieuwe ontwikkeling) voor elk land of worden bestaande producten van
een bepaalde land aangepast/gewijzigd voor een ander land?

Zijn er momenteel producten die ontwikkelt zijn voor een bepaald land maar die ook gebruikt worden in een
andere land?

Software Product Management
 Algemeen Software ontwikkeling process

o Kunt u de algemene software ontwikkel process die CCV Systems hanteert beschrijven (bijv. opdracht

type, opdrachtgever, functioneel + technisch rapport,

enz.)?

o Hoe ging het bij vorige projecten, bijvoorbeeld de laatste software release?

o Worden er bepaalde software ontwikkelings methodes gebruikt, bijv. Waterval methode?

o Kunt u de software architectuur (in het kort) beschrijven?

Is er één architectuur voor alle software?

Hoe is de software architectuur gedurende de afgelopen jaren geëvolueerd?

o In hoeverre wordt er rekening gehouden met internationale producten (product dat ‘inzetbaar’ is in elk
land) bij het ontwikkelen (architectuur, herbruikbare software, enz.)?

 Details SPM processen (SPMCM)

o Requirements management

 identificeren

 verzamelen

 organiseren

o Release planning

 prioritiseren

 release definiëring en validatie

 Scope change management

 Build validatie

 launch voorbereiding

o Product planning

 product roadmapping

 (core assets roadmapping)

 (roadmap intellegentie)

o Portfolio management

 markt analyse

 product life cycle

 partnering

 Implicaties/betrekkingen van software ontwikkeling én software management processen op het meerstromen-

land

o Main tree

o TTM

o S&I

117

Laatste vragen
 Wat loopt volgens u goed bij software ontwikkeling én software management processen?

o Wat is makkelijk/wat kost minimale inzet?
o Wat heeft verbetering nodig?

 Wat loopt volgens u slecht bij software ontwikkeling én software management processen
o Wat is moeilijk/wat kost (te) veel inzet?
o Wat mis u?

