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Abstract

The technique presented in this report alters the appearance of objects in
video by substituting the original material for another, synthetic, material. In-
spired by methods of Khan et al. and Karsch et al., the object is tracked and
re-rendered using global illumination data obtained from the input video, as-
sisted by a brief user annotation. A model of the environment is constructed
geometrically, onto which textures from the input sequence are projected. This
leads to an approximate environment that provides indirect lighting.

A major part of this system is identical to inserting objects into video. An
implementation is shown that allows physically correct interaction of the in-
serted object with its environment; the object is shaded from the correct direc-
tions, casts shadows onto the environment and can even block out light sources,
reducing the overall brightness of the result.

The result is a system for synthetic object insertion or replacement into
video, requiring no access to the physical scene, which works on low-quality
recorded footage. Additionally, a contribution is presented on the subject of
Additive Differential Rendering, a technique composing rendered objects into
original footage, where the render time can be drastically decreased. Another
contribution is shown on the subject of Exemplar-Based Image Inpainting, en-
abling the use of more image content to fill a region.
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Chapter 1

Introduction

Material Editing in real-life video footage is an attractive problem in the Com-
puter Vision field. The goal is to plausibly alter the material of a given object in
a digitized visual scene. It enables us to create videos that would be expensive,
unfeasible or even impossible using real objects. For a long time, this required
either labor-intensive manual modeling of the virtual environment or physical
access to the scene to capture illumination data. The ideal automatic program
automatically gets a good idea on the shape of the target object and the ap-
pearance of the surrounding environment. Having acquired this information,
the object can be re-rendered using different material properties.

An image is the simple representation of a scene, but complex things happen
when we record one. Light is emitted from a light source and interacts with
the scene. Some of the light is reflected towards the camera and hits a light-
sensitive area, where it is absorbed. After possibly some adjustments by the
camera, the image is recorded. When we look at the image, our brain forms
a mental reconstruction of the scene. In this application of computer vision
however, we usually do not have the scene description available, all we have
is the visualization. We try to reverse these complex events proceeding image
formation, to again form a reconstruction of the scene. Or we can interpret the
image in a way that is similar to how the brain interprets images. In practice,
we must apply a combination of these two approaches if we want to reconstruct
the scene, which makes it a versatile challenge.

1.1 Summary

This report contains the theoretical information, implementation details and
evaluation on the topic of Video-Based Material Editing. An MSc project was
performed as an educational assignment for Game and Media Technology, a
master program at Utrecht University, in the field of Computer Vision.

In computer vision we continually aim to improve the ability of the computer
to “see” in the sense that it interprets visual scenes and extracts meaningful in-
formation. With the advance of computing power over the years, more and more
techniques, some of which have been developed decades ago, become feasible to
execute and give astonishing results. The ultimate goal of computer vision is
not only to emulate human vision, but to go beyond. And researchers worldwide
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are progressing.
One of the techniques is Image-Based Material Editing. With very little

information about the scene, the software recognizes the shape of an object and
the details of the surroundings in a single image, only to change the material
of the object with a completely different material or range of materials. In
the process, information about the scene is used to create a plausible image,
computing reflections and even plausible transparency. An experimentation
project has previously been performed to investigate this technique.

The goal of this project is to extend this method to a video-based version:
to alter the appearance of a target object in a video stream, while keeping the
number of required input parameters to a minimum. To my knowledge, such a
technique does not exist yet.

1.2 Report outline

The outline of this report is as follows: in Chapter 2, a quick overview is given
on the work previously done in this field. The problem is defined in Chapter 3,
where a pipeline and brief overview of the proposed technique is given. The
planned steps of the project are also laid out, detailing the steps planned to
progress the project, of which the execution is described in Chapters 4 and 5.
Finally, Chapter 6 concludes by reflecting on the project.

1.3 Contributions

The main contribution of this project is an implementation of a video-based
version of the technique described in [KHFH11], which renders synthetic ob-
jects into images. This results in a system where synthetic objects are inserted
into video, requiring no access to the scene, one single LDR video input, and
relatively little user experience. Furthermore, there is no need of specialized
equipment. For example, all but the first videos shown in Appendix A were
recorded with a cellphone camera and are quite shaky.

More in-depth to this specific technique, a contribution has been made to
drastically reduce render time making the image-based render technique of
Karsch et al. feasible on consumer-grade hardware and opening the way for
video rendering. This is achieved by carefully observing the object composition
method and adjusting the characteristics of the renderer accordingly. Details
are shown in Section 5.1.4. To give a rough indication of the impact: render-
ing a 200-frame video takes about 30 hours on a consumer CPU, which would
have been well over a month without this change. Furthermore, the theory be-
hind this contribution is applicable to other techniques that use the Additive
Differential Rendering method of Debevec.[Deb98]

In the field of image inpainting, a change has been made to the technique
of [CPT04] that allows the use of image patches from the entire image, instead
of only patches that are located near the region that is being inpainted. The
details of this change are explained in Section 4.3.4.
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Chapter 2

Related work

Rendering objects using real-world reflection data began with Blinn and Newell
[BN76] showing how texture maps could be used not only to texture an object,
but also to use them as illumination data suitable for reflections. This essentially
lead to an approach that provides global illumination data to a synthetic object
using a single texture map. This map is specific to a certain point in space,
however errors in the reflection go unnoticed up to a certain degree.[OCS05]
Debevec[Deb98, Deb02] uses a light probe to capture all global illumination in
one photograph by placing a mirror-like ball into the scene and photographing
it, leading to the technique called Image-Based Lighting. This reduces graphics
artists’ work but obviously needs physical access to the scene. Furthermore,
the photograph of the probe should be captured with High-Dynamic Range
(HDR)[DM97] to prevent intensity information loss due to tone mapping. By
allowing an approximation of the illumination map, the technique of Khan et
al.[KRFB06] does not need physical access to the scene. The illumination is
taken from the input photograph by mapping the center region of the image onto
two hemispheres. Karsch et al.[KHFH11] model the environment geometrically
and project the input photograph onto the model. They alleviate the need for
HDR photography and also allow light sources to be out of view, requiring a
brief user annotation of the scene.

One of the prime inspirations for this project is Image-Based Material Edit-
ing by Khan et al.[KRFB06]: a technique that plausibly alters the appearance
of an existing object in the scene. From only the HDR input photograph and
a mask of the object, the shape is automatically detected using Shape from
Shading[Hor70]. Ambiguities in the depth aspect of the shape are allowed be-
cause the camera angle does not change. Using a combination of image inpaint-
ing and basic environment mapping, the appearance of the object can be altered
even to having transparent or reflective materials. Finally, the 3D representa-
tion of the object is re-rendered in the location of the original object, using
image-based lighting.

2.1 Relevant concepts

Below, some relevant concepts to computer graphics are explained. Firstly, the
pinhole camera model is widely used as a simple basis for 3D to 2D projection.

3



Figure 2.1: The pinhole camera model in a nutshell. We call the distance
between the pinhole and the image plane the focal length f .

Secondly, commonly used coordinate systems and the relations between them
are illustrated.

2.1.1 The pinhole camera model

Image theory typically features the pinhole camera model for the purpose of
explaining projection of the scene onto the image plane. This is a simple model
in which the light of a scene passes through a tiny (infinitesimal) hole and falls
onto the image plane inverted, where it is recorded as intensity, shown in Fig-
ure 2.1.1. Instead of working with this inverted image, for convenience we often
imagine a virtual projection plane in front of the camera which is not inverted,
as shown in Figure 2.2(d). It should be noted that the pinhole camera model
differs from actual cameras which have lenses and larger apertures. However,
the pinhole camera model leads to simple coordinate system transformations
which makes its use attractive.

The world coordinates of a certain point in the scene are called ~Xw =
[Xw, Yw, Zw]

T , and the image plane coordinates of the corresponding point
~xc = [xc, yc]

T :

~xc =

[

xc

yc

]

=
f

Zw

[

Xw

Yw

]

(2.1)

with f being the camera’s focal length. This manner of projection is called
perspective projection [Hor86], as distances between points on the image plane
become relatively smaller for scene points with a z-coordinate far from the
observer.

2.1.2 Coordinate systems

Detailed below is an outline of the coordinate systems used in my programs.
There are five different coordinate systems with corresponding transformations,
accounting for 3D geometry modeling and viewing. Refer to Figure 2.2 for each
of the coordinate systems.

Model Every scene model renders itself locally in R
3. The axes follow the

right-handed system convention.1 This system is rotation, translation and

1Point the fingers of your right hand in the direction from x to y and stretch your thumb
out; the thumb now points in the z direction. So when x points right and y points up, z points
toward the viewer.
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(a) Model

x
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z

(b) World

Camera

x

y

z

(c) Camera

projection
plane

x

y

(d) Image plane

image

x

y

(e) Image

Figure 2.2: (a) The model coordinate system in which the model is defined inde-
pendently of scene dimensions. (b) The world coordinate system with two mod-
els inserted having different scale, rotation and translation parameters. (c) A
camera is added to the scene and the scene contents are transformed into the
camera coordinate system. (d) The image plane contains the projections of
the camera coordinate system. This is a perspective projection towards the
camera’s optical center. (e) The image coordinate system in which the final
representation of the scene will be.
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scale invariant; scene objects are placed into the world coordinate system
by scaling, rotating and translating them according to object properties.
This is commonly referred to as the model transformation.

The transformation from model ( ~Xm = [Xm, Ym, Zm]T ) to world ( ~Xw =
[Xw, Yw, Zw]

T ) is as follows:

~Xw = tRS ~Xm = [R|t]S ~Xm (2.2)

or in matrix form, using homogeneous coordinates:








r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

















Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

















Xm

Ym

Zm

1









=









Xw

Yw

Zw

1









(2.3)

where t is the translation matrix, R is the rotation matrix and S is the
scaling matrix. Coordinates are handled as homogeneous coordinates.2

While the implemented software exclusively use right-handed coordinate
systems, this convention is not universally used. For example, OpenGL
used a left-handed coordinate system to specify models. Simply inverting
one axis (I invert z) with a scaling operation circumvents this problem.

World The world coordinate system (R3) is essential in the sense that it enables
us to perform computations involving multiple models, light sources and
the camera, such as rendering the entire scene or performing other global
calculations. When the camera moves, we do not need to recalculate every
object’s position in the world. Every scene object, which is an instance
of a model, is placed into the scene by transforming it according to the
rotation, translation and scale parameters of that object. Cameras also
have rotation and translation parameters to place them into the scene,
usually obtained by performing external camera calibration.

Camera The camera coordinate system (R3), also known as eye space, has the
x axis pointing right, the y axis pointing down and the z axis pointing
into the scene.3

Imagine we would place the camera into world coordinates. We would
apply the model transformation using the camera’s translation and rota-
tion properties. However, since we want to view the scene through the
camera, we must transform the entire scene into a system with the ori-
gin at the camera and oriented however the camera is oriented. To do
this, we do not apply the model transformation to the camera but rather
apply its inverse to the scene. This is commonly referred to as the view
transformation. The transformation from ( ~Xw = [Xw, Yw, Zw]

T ) world to

( ~Xc = [Xc, Yc, Zc]
T ) camera thus becomes:

~Xc = [R|t]−1 ~Xw = R−1t−1 ~Xw (2.4)

2When we want to transform a 3-dimensional point ~X = [x, y, z]T , we add a fourth coordi-

nate: ~X′ = [x, y, z, 1]T . This enables us to perform translations through matrix multiplication,
which would be impossible otherwise.

3Multiple implementations exist for right-handed camera coordinate systems. The other
usual implementation is to point x right, y up and positive z away from the viewing direction.
The image plane then lies at z = −f instead of z = f where f is the camera’s focal distance.
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where t is the translation of the camera center and R is the camera rota-
tion, together called the extrinsic camera parameters. Or in matrix form,
using homogeneous coordinates:









r′11 r′12 r′13 t′x
r′21 r′22 r′23 t′y
r′31 r′32 r′33 t′z
0 0 0 1

















Xw

Yw

Zw

1









=









Xc

Yc

Zc

1









(2.5)

In the program, R is determined by aligning the axes of the world co-
ordinate system to the scene geometry; the x and y axes are aligned to
two vanishing lines while constraining them to being perpendicular. z is
then perpendicular to x and y by means of the cross product, following
the right-handed convention. The vanishing points alignment is further
described in Section 5.1.1.

Image plane The image plane is identical to the camera coordinate system,
with the exception that every point is projected onto the plane z = f ,
the camera’s focal distance. Therefore this system is conceptually in R

2,
although the transformation below results in a three-dimensional point
with z = f .

To transform a point from the camera ( ~Xc = [Xc, Yc, Zc]
T ) to the image

plane (~xc = [xc, yc, zc]
T ):

~xc = f ·
~Xc

Zc

(2.6)

or in matrix form using homogeneous coordinates:









f 0 0 0
0 f 0 0
0 0 f 0
0 0 1 0

















Xc

Yc

Zc

1









=









fXc

fYc

fZc

Zc









∝









xc

yc
f
1









(2.7)

This transformation is a direct consequence of using the pinhole camera
model. It is commonly referred to as the projection transformation. The
division by Zc to homogenize the resulting coordinate leads to the per-
spective property of the result, where points that are far away appear
relatively closer to each other than points near the camera.

Image The image coordinate system is used to discretize the image plane into
pixels. We start counting from the top left, meaning that x counts to the
right and y counts downward. The image is in [0 . . . w−1][0 . . . h−1] ⊂ N

2

where (w, h) are the dimensions of the image.

To transform the image plane (~xc = [xc, yc]
T ) to the image (~xim =

[xim, yim]T ):

~xim = S~xc + ~P (2.8)

or in matrix form, using homogeneous coordinates:





Sx 0 Px

0 Sy Py

0 0 1









xc

yc
1



 =





xim

yim
1



 (2.9)
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where ~P is the center of projection in pixel coordinates and S is a scaling
matrix multiplying the x coordinate with wim/wc and the y coordinate
with him/hc (the ratio between visible image plane dimensions and image
dimensions). This is commonly referred to as the viewport transformation.
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Chapter 3

Project description

The main problem in material editing is re-rendering an object from the scene
using different material properties. There are several sub-problems to be solved
to successfully achieve this. To be able to re-render an object, we need to know
the shape of the object for accurate shading and the appearance of the envi-
ronment for accurate reflections and transparency. Therefore, two important
sub-problems are shape recovery and environment mapping. Furthermore, we
need an inpainting method to remove the object from the scene prior to map-
ping the environment, and we need object boundary tracking to be able to locate
the target object in subsequent frames. The basic pipeline is as follows:

Figure 3.1: The pipeline for the proposed Video-Based Material Editing tech-
nique, which will be explained further in Chapter 4.

Note that the inputs to the system are few: the object mask in the first
frame, the desired material and of course the video data. The focus will lie on
off-line processing, i.e. all data is known at the start of the process.
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3.1 Project description

The proposed technique will be designed and implemented as part of the mas-
ter’s project for the Game and Media Technology master’s program at Utrecht
University. The 45 ECTS project, resulting in a master thesis, is required to
graduate. The project is supervised by dr. R. T. Tan, who specializes in physics-
based computer vision and machine learning.

To solve the sub-problems of this technique, existing techniques and/or soft-
ware will be used if available, or new methods of obtaining the desired results
will be explored otherwise.

The first step is to create a pipeline with all components, providing outputs
for all sub-problems and consequently for the main problem. These results will
be very basic as the first implementation of components will be rudimentary.
After creating this first version, sub-problems that require additional attention
will be chosen and improved by using different techniques or improving current
techniques.

The project will be concluded with a thesis document describing all aspects
of the project, and a final presentation.

3.2 Goals

Step Goal
1 General pipeline with rudimentary components
1.1 Research knowledge for components
1.2 Create implementations for component
2 Improvement of component(s)
2.1 Choose component that needs improvement
2.2 Research knowledge for that component
2.3 Refine implementation
3 Thesis
4 Final presentation

10



Chapter 4

Basic implementation of the

program

For the first implementation of the pipeline, a lot of components will be imple-
mented in a basic form. Therefore a certain number of assumptions are made on
the input to the program. Most notably the tracking stage and shape recovery
stage are primitive. The basic descriptions of the stages are as follows:

Tracking Input: A video and a mask of the object in the first frame. The
target object is assumed to be of uniform and easily distinguishable color.
Furthermore, it should be shaped as a sphere, for the tracking phase will
track a disk on the video. Output: A mask of the tracked object per
frame, i.e. the foreground mask.

Shape recovery Input: The input video along with a mask of the object
for each frame. In conjunction with the assumption in the tracking stage,
the resulting shape will always be a perfect sphere on the tracked position.
The target object should not be obstructed. The additional input, original
video data, can later be used for more elaborate shape recovery techniques,
such as Shape from Shading or Structure from Motion. Output: a depth
map per frame which denotes the surface elevation of the object for each
pixel within the object mask.

Image inpainting Input: The input video along with a mask per frame of
the area that needs to be removed and replaced with inpainted data. The
object mask will be used here to remove the object. Output: A video
from which the object has been removed, i.e. the background.

Environment mapping Input: A video in which the environment is visible.
The result from the image inpainting stage will be used. During render-
ing of a certain frame, the background for that frame will be used in a
simple image-based lighting technique. Output: An environment object
in which directions can be queried to collect irradiance.

Rendering Input: A video containing shape data, a backgrounds video and
an environment object. The shape and environment are everything needed
to re-render the object with a new appearance. The backgrounds are used
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to insert the synthetic object into. Output: The final video in which the
apparent material of the object has been altered.

The idea for the general pipeline of Video-Based Material Editing stems from
my experience with Image-Based Material Editing. I previously performed an
experimentation project on the subject, following [KRFB06] as the main tech-
nique to study. As for the various stages in this pipeline: the implementations
of the image inpainting, environment mapping and rendering stages are follow-
ing various papers on these subjects. The tracking and shape recovery stages
are simpler and have a “homebrew” implementation. The separate stages are
further explained in the sections below.
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(a) Raw color histogram
tracking

(b) Refined with post process-
ing

(c) Refined with post process-
ing and disk fitting

Figure 4.1: Visualization of the tracking result. (a): the color histogram values
are used in the calculation of f which is then thresholded. (b): post processing
is applied to remove outliers and fill in holes. (c): the disk fitting procedure
uses a disk-shaped template to refine the result.

4.1 Tracking

The implemented tracking method evaluates pixels according to their by color
features. Per frame the pixels are given a value f ranging from 0 to 1, denoting
how likely that pixel is to belong to the foreground, i.e. the object to track.
When f reaches a value over a threshold T , the pixel is determined to belong to
the foreground and is added to the object mask used in the rest of the pipeline.
The value T = 0.5 was empirically chosen.

The tracking result and effect of post processing and disk fitting, as explained
in the following sections, are shown in Figure 4.1.

4.1.1 Color features

To keep track of color features, two histograms are constructed, Hfg for fore-
ground pixels and Hbg for background pixels. These histograms are two-dimen-
sional, each bin addressed by hue and saturation. The histograms are populated
with pixel values from the first frame, then scaled to have the highest value in
the histograms equal to 1.

f is determined as follows:

f = 0 if hfg = 0 and hbg = 0

f = hfg/(hfg + hbg) otherwise (4.1)

where hfg is the value of Hfg in the hue-saturation bin corresponding to the
pixel in question, and hbg is defined similarly. The resulting value of f will
range from 0 to 1.

From the use of this method, the need arises to assume easily distinguishable
object color. If the object color is sufficiently different from the background,
this method will produce acceptable results. Note that highlights (meaning fully
saturated, or white pixels) can cause problems.
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4.1.2 Post processing

The mask generated constructed is far from optimal. The post processing phase
refines it by applying several basic image processing techniques to remove small
artifacts. We use two morphological operations: opening and closing which are
defined as erosion followed by dilation for opening, and the same operations but
in reverse for closing.[Ser82] Erosion and dilation take a binary image and a
structuring element1 as inputs. Erosion “shrinks” the mask in such a way that
a mask pixel is erased when we overlay the structuring element and notice that
the pixels under the structuring element are not all part of the masked pixels.
Dilation is the dual operation: a non-mask pixel is added to the mask when we
overlay the structuring element and notice that there is a masked pixel within
the structuring element.

To give a more formal definition of erosion:

A⊖B = {z ∈ E|Bz ⊆ A}
with Bz = {b+ z|b ∈ B}, ∀z ∈ E (4.2)

where A is the input image, B is the structuring element and E is the euclidean
space. The structuring element B is translated through E by translation vector
z, resulting in Bz. For all translations where Bz is a not a subset of A, we
exclude the pixel z from the output image.

The dilation operation can be defined as the Minkowski Sum:

A⊕B = {a+ b|a ∈ A, b ∈ B} (4.3)

Finally, we define opening and closing, respectively:

A ◦B = (A⊖B)⊕B and

A •B = (A⊕B)⊖B (4.4)

During post processing of the computed mask, opening is used to remove
any small mask artifacts, while closing is used to fill in small holes in the mask
and irregularities in the mask’s boundary. After these operations, a flood-fill
operation is performed on the mask to fill in any remaining interior holes larger
than the structuring element. The flood-fill operation is done on the pixel (0, 0)
in the image, so it is assumed that the object is not present there. It will fill
all areas that are on the exterior of the mask, so negating it will give us only
the interior holes. The interior holes are then added to the mask by means of a
union.

4.1.3 Disk fitting

Finally we improve the mask by assuming that the tracked object is a sphere.
This is a procedure trying to estimate the optimal position of a template, in our
case a disk, in the mask. After the post processing step, we take the median
of x and y values of mask pixels to use as the center of our initial disk. The
diameter of that disk is the average of the initial width and height, which are
computed as

w = max
(x,y)∈ mask

x− min
(x,y)∈ mask

x (4.5)

1I used a 9× 9 square for opening and a 13× 13 square for closing.
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(a) Mask with visible “dent” (b) Mask enhanced by disk fitting

Figure 4.2: Visualization of the disk fitting result. (a): the mask before disk
fitting. (b): the mask after disk fitting. The disk was found by hill climbing from
the initial guess until we encountered a (local) optimum. The disk is optimal in
the sense that most disk-pixels belong to the original mask and most non-disk
pixels lie outside of the original mask.

and the height similarly.
After constructing the initial disk, we perform a hill-climbing method to

improve the fit. At each iteration, we explore six alternatives: x± 1, y ± 1 and
r±1, keeping the alternative that provides us with the highest quality measure.
When we arrive at a (local) optimum, we stop.

To calculate the quality of a disk, we count how many pixels of the mask are
inside the disk and how many are erroneously outside:

quality(pixel p) = 1 if p ∈ mask and p ∈ disk

quality(pixel p) = 1 if p /∈ mask and p /∈ disk

quality(pixel p) = −1 if p ∈ mask and p /∈ disk

quality(pixel p) = −1 if p /∈ mask and p ∈ disk

quality(disk) =
∑

p∈ image

quality(p) (4.6)

This method gives good results even when we have considerable “dents” or
“tails” in the mask, the effect is shown in Figure 4.2.
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Figure 4.3: An example of the depth map for a sphere.

4.2 Shape recovery

With the assumption that the target object is a sphere, this stage is exception-
ally simple. For portability reasons, the disk-fitting procedure is executed again
on the object mask, resulting in a center ~c = [xc, yc]

T and a radius r.

Since x2 + y2 + z2 = r2 for spheres, we derive z =
√

r2 − x2 − y2. In the
depth map we set the pixel to the value:

[x+ xc, y + yc]
T = 255 ∗ z

r
(4.7)

This yields a maximum value (a white pixel) for the part of the sphere closest
to the observer and a minimum value (a black pixel) for parts that have the most
distance or are not part of the object. The values that are not part of the object
have no meaning in the depth map and will be ignored because they are not
within the object mask.

Shape look-up is the process of retrieving the three-dimensional surface nor-
mal ~n for a certain pixel ~x = [x, y]T . The normal is constructed from the
gradients in x and y direction. The reason we do not simply return the surface
normal from a mathematical sphere is because the depth map may encode other
shapes as well.

Let p =
∂zx,y

∂x
and q =

∂zx,y

∂y
be the first partial derivatives of the surface,

with respect to x and y respectively. In discrete terms, as our values are stored
in pixels, this means: p = zx,y − zx−1,y and p = zx,y − zx,y−1. Then the vectors
~rx = [1, 0, p]T and ~ry = [0, 1, q]T are both parallel to the tangent plane at ~x.
The normal vector thus becomes:

~n = ~rx × ~ry = [−p,−q, 1]T (4.8)

We then normalize this vector to obtain the unit normal.[Hor86]
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Figure 4.4: A photograph where a sphere has been removed and the resulting gap
inpainted using the implemented technique of exemplar-based image inpainting.

4.3 Image inpainting

While techniques exist for video inpainting, I feel that an image-based approach
is sufficient for the purpose of this project. Inpainted imagery will only be used
for an environment map as the basis for reflections. As [OCS05] have shown,
the human visual system is quite generous with errors in illumination. Fur-
thermore, image-based inpainting technique shown in this section was already
implemented, interfacing with the data structures used in this project.

Image inpainting is the process of filling in an unknown region of an image
by substituting that region with plausible content. The technique is used to
erase an object in an image, after which the created gap is filled in with data
that is supposed to be the background texture behind the object. Various
techniques have been published, and exemplar-based methods which fill the
region by taking small patches from elsewhere in the image, have been gaining
popularity lately.[KSW10] Therefore, we will explore one of these techniques
which fills in large regions of an image, focusing on correctly propagating texture
in the region.

4.3.1 Theory

This particular technique, called Exemplar-based image inpainting and pub-
lished in [CPT04], is based on two separate classes of problems: “texture syn-
thesis” algorithms that generate large textures based on sample textures, and
“inpainting” techniques that fill small gaps in images. The presented algorithm
takes advantages from both these approaches in order to propagate structure
along large gaps in the image.

An important aspect of their approach is the preservation of structure in
the image. Structured texture in the known region of the image are propagated
into the unknown region by assigning a structure score to areas of the image.
Structured areas are more likely to be filled in before unstructured areas. The
authors note that the resulting filling order is important for the quality of the
result. Along with this structure score, image areas are also assigned a confi-
dence score; the confidence of every pixel is maintained, representing how sure
we are that the data in that pixel is correct. This confidence gradually shrinks
as we propagate pixels into the unknown region, and possibly propagate those
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pixel values over and over again.
In the algorithm, the aforementioned image areas are square patches of pix-

els. The size of these patches is an input parameter, and can generally be larger
for coarser textures. As the algorithm copies texture patch-by-patch, larger
patches result in lower running time as texture is propagated in larger amounts,
reducing the amount of checks that need to be done in between this copy process.
The algorithm is outlined in Procedure 1.

Procedure 1 Outline of the image inpainting algorithm.

Input: Image I, target region Ω
Output: The image formed by completing I to the extent that Ω has been
completely filled.
while Ω 6= ∅ do
Identify the fill front δΩt

Compute priorities P (p), ∀p ∈ δΩt

Ψp̂ ← patch around point p̂, where p̂ has the highest priority.
Find exemplar Ψq̂ ∈ {I \ Ω} that minimizes the distance d(Ψp̂,Ψq̂)
Copy image data from Ψq̂ to Ψp̂ ∩ Ω
Update confidence values C(p), ∀p ∈ Ψp̂ ∩ Ω

end while

The priority of a patch is the multiplication of the confidence term and the
data term:

P (p) = C(p)D(p) (4.9)

The confidence term C(p) is measured at a certain point p. In the calculation
for this value, we look at the patch Ψp, the patch centered at p. The more we
know about this patch, the higher the confidence term becomes. This makes
it easy to fill in patches that are already largely known. Out confidence in the
patch points also plays a role. The value of this term is simply the sum of all
confidence values of pixels inside Ψp, divided by the area of the patch:

C(p) =

∑

q∈Ψp∩(I\Ω) C(q)

|Ψp|
(4.10)

Where C(q) is the confidence stored in point q, as a result of either initialization,
or because q was previously filled in by the algorithm. After we fill in a patch,
we store the confidence of all filled pixels to the confidence C(p) calculated with
this formula. Confidence values of all p ∈ (I \Ω) are initialized to 1, while those
of p ∈ Ω are initialized to 0.

The data term D(p) is used to increase the priority of structured patches.
Therefore, this term will be higher when there is a stronger structure present
at the point p. Any gradients present in the patch influence in this term. The
term is defined as follows, clarified by Figure 4.3.1:

D(p) =
|∇I⊥p · ~np|

α
(4.11)

where α is a normalization factor, set to 255 for typical images.
The important notion here is that structure is propagated up to the point

that we are not really confident about the validity of those pixels anymore, in
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Figure 4.5: Notation diagram from [CPT04]. ~np is the normal to the contour of
δΩ. ∇I⊥p is the image isophote (the “direction” and intensity of the gradient)
at point p.

which case we continue filling in less-structured patches. This is different from
previous approaches such as e.g. the Onion Peel algorithm, which fills the image
in a clockwise order instead of determining priority values.

4.3.2 Data term

In the computation of the data term, the factors ∇I⊥p and ~np are used. We will
look into how these factors are computed.

The image isophote, ∇I⊥p , is the direction perpendicular to the strongest
gradient in the patch. Or in other words: the direction of the most dominant
line in the patch. We should aim for this direction to have a large angle, per-
pendicular at best, with the fill-front normal in that patch, so we know that
this patch contains structure that we can easily propagate.

Procedure 2 Obtain the most dominant direction in a given patch.

Input: Image intensities I(x, y), patch center [xcp , ycp ]
T , patch radius R

Output: Image isophote ∇I⊥p for patch p
m̂2 ← −1
for all [x, y]T ∈ [xcp ±R/3]× [ycp ±R/3] do
Ix ← I(x, y)− I(x− 1, y)
Iy ← I(x, y)− I(x, y − 1)
m2 ← I2x + I2y
if m2 > m̂2 then

m̂2 ← m2

Îx ← Ix
Îy ← Iy

end if

end for

∇I⊥p ← [−Îy, Îx]T

In the implementation, shown in Procedure 2, only the center region of the
patch is inspected in order to prevent strong structure far from the center from
influencing the data term. Also, this saves computation time slightly. For each
pixel in the examined area, the horizontal and vertical gradients are computed
in a trivial fashion, and combined into a gradient vector. The magnitude of
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that vector is registered. After examining all pixels, we take the gradient vector
with the largest magnitude. This gradient vector is then rotated 90 degrees so
we can use it in the data term computation.

As for the fill-front normal ~np, we construct this term by adding together a
number of vectors obtained from pixels in the patch, as shown in Procedure 3.
As we work with filled and unfilled space, we can now look at the patch as being
a binary image. Assume that unfilled pixels are 0 and filled pixels are 1. Call
this value fx,y. We know that the center of the patch that we are working with
lies on the fill-front, as we only compute priorities for those patches. Therefore,
we could simply add up every vector from the center of the patch to all unfilled
pixels, normalize it, and we obtain a fill-front normal vector.

Procedure 3 Determine the fill-front normal for a patch containing binary
pixels.

Input: Information about filled pixels fx,y, patch center [xcp , ycp ]
T , patch

radius R
Output: Fill-front normal ~np for patch p
~n← [0, 0]T

for all [x, y]T ∈ [xcp ±R]× [ycp ±R] do
if fx,y = 0 then

~n← ~n+ [x− xcp , y − ycp ]
T

end if

end for

~np = ~n/|~n|

4.3.3 Patch matching

Patch matching is the process of determining how similar two patches are. For
this, we employ a distance metric that compares the colors of the two patches.
For simplicity, we simply take the L2 distance between the two patches, as if
each patch is a large vector with 3N2 values; 3 color channels for N pixels. We
use this operation for matching an exemplar patch to a query patch, so naturally
the query patch contains unfilled pixels. The distance for those unfilled pixels
is set to zero.

The authors of [CPT04] use almost the same approach: they take the sum of
squared differences of all corresponding pixel pairs. However, they do not use the
RGB color model but the CIE Lab color model, as this model respects perceptual
uniformity. This remains a possible improvement to the implementation.

4.3.4 Patch look-up

In the original algorithm, the authors look in the neighborhood of the query
patch for suitable exemplars. Looking in the whole image would be too time
consuming, as this step is performed a lot of times throughout the execution of
the program. There are however data structures that can facilitate the look-
up procedure of patches to be able to use the entire image data as exemplar
patches. In [KZN08], several candidate structures are explored, each being
based on a binary space partitioning tree such as the kd-Tree. The problem
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Figure 4.6: A visualization of a vp-Tree containing two-dimensional points. Each
circle partitions the points belonging to that sub tree into two subsets. Image
from [KZN08]

of finding similar patches can be formulated as finding nearest neighbors in a
high-dimensional space.2 The advantages of such binary space partitions are
weighed in the paper, and the vp-Tree, or vantage point tree, is suited for this
task. Additional information on this data structure can be found in [Yia93].

The vp-Tree partitions a space into two subspaces: point near the pivot and
points far from the pivot. The pivot is chosen randomly from the input set.
Then, a threshold distance is calculated, being the median of all distances of
points in the space to the pivot. By taking the median, we get a balanced tree, as
we toughly split the set in half each step. After the split, we recursively partition
the two subsets. The construction method is illustrated in Procedure 4.

Procedure 4 Constructing the vp-Tree.

Input: Point collection P
Output: A vp-Tree T containing the points in P
T.root← random point in P
T.µ← median of d(p, T.root), ∀p ∈ {P \ T.root}
T.left← new vp-Tree with points {p ∈ {P \ T.root}|0 < d(p, T.root) < T.µ}
T.right← new vp-Tree with points {p ∈ {P \ T.root}|d(p, T.root) ≥ T.µ}
T.low ← minp∈{P\T.root} d(p, T.root)
T.high← maxp∈{P\T.root} d(p, T.root)

The 0 < d(p, T.root) constraint removes identical patches from the tree,
which can save a lot of space and computation time when working with synthetic
images.

The query method looks in both sub trees, but prunes them before recursion.
When we are querying a patch and our best found match so far has a distance
of τ to the query point. With the information stored in the tree nodes, we
can prove that recursion into certain sub trees is futile, as we cannot find a
distance closer to τ , so we can prune those sub trees. The search is explained
in Procedure 5.

The vp-Tree takes some time to construct, but it gives us the advantage of
being able to inspect the entire image contents when looking for candidates.
However, there is a fundamental problem with patch look-up data structures

2If we take 9x9 patches for example, we get 3 · 92 = 243-dimensional points.
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Procedure 5 Searching the vp-Tree.

Input: vp-Tree T , query point q, best match T̂ so far and its distance τ
Output: The vp-Tree T̂ which has a root that is closest to q, and its distance
τ
if T is empty then

return (T̂ , τ)
else

d← d(q, T.root)
if d < τ then

τ ← d
T̂ ← T

end if

if T.left.low − τ < d < T.left.high+ τ then

(T̂ , τ)← Search(T.left, q, T̂ , τ)
end if

if T.right.low − τ < d < T.right.high+ τ then

(T̂ , τ)← Search(T.right, q, T̂ , τ)
end if

return (T̂ , τ)
end if

that was only identified after the implementation, and which is also explained
in [KSW10]: the query point q contains unknown values. Or in other words: q
has a variable dimensionality. This makes use of the data structure less optimal
as we cannot prune the tree anymore without getting answers that are very
far from the optimal answer. As a workaround, the query patch is first auto-
completed by fixing the gradient in unknown pixels at zero. Then, the first
100 matches are obtained from the tree, after which the best is selected by
computing distances to the unmodified q which contains the unknown pixels.

The result in Figure 4.7(b) is generated using a look-up method facilitated
by the vp-Tree data structure. One of the advantages of this method is that
we can have every possible patch in the image as an exemplar patch, instead
of only the immediate neighborhood. Therefore, the three disks can be made
round. Should we only consider nearby patches as candidate exemplars, the
disks would turn into droplet shapes such as in Figure 4.7(c).
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(a) Input image (b) Result image with
vp-Tree

(c) Result image with-
out vp-Tree

Figure 4.7: The results of inpainting on a triangle which is completed by the
algorithm. (b) shows the improved result over (c), which is similar to that of
the original authors.

4.4 Environment mapping

As the input to our program is limited, we have limited knowledge about the
environment around the scene. We have the intensity values of the pixels in
the image to work with. How do we use this information to construct a useful
environment map, responsible for plausible reflections of the scene? [KRFB06]
use a very simple method that produces decent results without requiring any
additional input.

The general idea, illustrated in Figure 4.4, is to construct a unit sphere
shell by taking a large disk from the input image and protruding it to form a
hemisphere. We simply protrude this disk in two directions, toward and away
from the viewer, to obtain two hemispheres; together they form a full spherical
environment mapping.

We choose the center of the disk to be the center of the image [xc, yc]
T ,

and the radius to be R = min(w, h)/2. This ensures that we take the disk as
large as possible. For each pixel [x, y]T in the disk, we construct a normalized
coordinate pair:

[

xn

yn

]

=
1

R

([

x
y

]

−
[

xc

yc

])

(4.12)

Any pixel on the disk can then be mapped onto a direction in the hemisphere
by the following equation:

~d =





xn

yn
1−

√

x2
n + y2n



 (4.13)

to which any incident light will be related as ωi in Equation 4.15 in the next
section. If we invert these equations, we get a function that maps a direction
[xn, yn, zn]

T onto a pixel in the background image.:

[

x
y

]

= R

[

xn

yn

]

+

[

xc

yc

]

(4.14)
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(a) Background image (b) The disk cut from
the image

(c) The disk placed in a 3D envi-
ronment

(d) The disk is protruded to form
a hemisphere

Figure 4.8: The construction of the environment map explained in four steps.
Note that the result in (d) will be duplicated in the opposite direction to form
the whole spherical environment. Images from [KRFB06].
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Figure 4.9: A cylindrical map projection of the environment. The dark part in
the center of the image is the part of the environment in front of the viewer.
The other dark part is situated behind the viewer.

Bi-linear filtering can be applied to improve the quality of the result, which
is only useful for specular surfaces. From the last equation we can easily see that
this is an orthographic projection. Other spherical projections may be utilized
that do not distort the environment. However, the distortion of the environment
is hardly noticeable; the authors note that the results will be plausible when
observed indirectly.

It should be noted that there has been an improvement to the image-based il-
lumination modeling techniques since this implementation was made. See [LE10]
for more information on creating location-dependent spherical illumination mod-
eling from a single image.
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(a) Copper (b) Gold (c) Mirror

Figure 4.10: Render results using the Cook-Torrance shader. In addition to
the image-based reflections, a light source was added to the environment in a
plausible direction. The used material parameters are guessed, therefore they
do not look too realistic. The influence of the roughness parameter is apparent
between (a) where it is high and (c) where it is low.

4.5 Rendering

To obtain the results of Image-Based Material Editing, we need a rendering
system. This system needs to take care of multiple aspects which together
should yield a plausibly realistic result.3 Firstly, we will explore a rendering
equation that determines shading on surface points using a physical approach.
Secondly we will see how to model material appearance by looking into the
empirical Phong model and the physically inspired Cook-Torrance model.

4.5.1 The rendering equation

The rendering equation models how a point on a surface radiates light and re-
flects incident light, therefore it defines how we should render the surface.[Kaj86]
Each surface point receives incident light from all directions in the hemisphere
around the surface normal. Light coming from a direction nearly perpendicular
to the surface leads to a larger irradiance than light coming from nearly paral-
lel to the surface. Therefore, we should attenuate the intensity by taking into
account the angle under which it hits the surface. This leads to a cos θi factor.
We can render the object by evaluating the rendering equation for every pixel
where the surface is visible:

L(x, y) = Le +

∫

Ω

fr(ωi, ωo)Li(ωi) cos θidωi (4.15)

In this equation, L(x, y) is the synthesized radiance and consequently the in-
tensity in pixel [x, y]T . Le is the light emitted by the material, which is set
to 0 in the program, but can be set to any ambient intensity value if desired.
Ω denotes the hemisphere around the surface normal visible in the pixel. ωi

and ωo are directions of incident and reflected light respectively, parametrized

3The words “plausibly realistic” are used, as a perfectly realistic result is impossible to
obtain. For example: we cannot accurately know about all light sources in the scene, so
we should model light sources according to some user parameters. Also, we have limited
knowledge about the environment in the input image, so we utilize an approximation of the
environment that looks plausible, but is far from physically correct.
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as ω = (φ, θ). fr is the BRDF (see Section 4.5.2) of a certain material that
is selected for rendering. Li(ωi) is the light intensity from the given direction,
which is attenuated using its cosine due to the angle of incident light.

In the program, the hemisphere around the surface normal is simply sampled
with a set number of sampling points; Li comes from an approximation of the
environment. fr, the BRDF, is dependent on the material that we would like
to render.

4.5.2 Material properties

If we want to render realistic looking objects, we need to know how to accurately
render it using its material properties. In particular, we need to know how the
material interacts with light. This is modeled in a function known as the Bi-
directional Reflectance Distribution Function or BRDF[Nic65], and is directly
used in the rendering equation. It is closely related to a reflectance map.

The BRDF is a four-dimensional function with parameters incoming and
outgoing direction ωi = (φi, θi) and ωo = (φo, θo). The function returns the
fraction of light from the incoming direction that can be observed from the
outgoing direction:

fr(ωi, ωo) =
dLr(ωo)

dEi(ωi)
=

dLr(ωo)

Li(ωi) cos θidωi

(4.16)

in which L is radiance and E is irradiance. Physical BRDFs have the following
three properties:

positivity: fr(ωi, ωo) ≥ 0

obeying Helmholtz reciprocity: fr(ωi, ωo) = fr(ωo, ωi)

conservation of energy: ∀ωi,
∫

Ω
fr(ωi, ωo) cos θodωo ≤ 1

The BRDF reflects natural properties of materials and therefore helps us ren-
der objects that look plausible. We can render materials with special reflective
properties such as feathers or certain kinds of crystals, giving us an advantage
over simpler shading models such as the Phong shading model. To obtain phys-
ically correct results, accurately recorded or well modeled BRDFs can be used.
The recording of a BRDF usually happens by holding a surface of the material
in a stand, lighting and recording it from different angles using an illuminant
and camera respectively. By recording a sphere, many data points can be cap-
tured in a single image. The recorded data may be used directly, or converted
into a mathematical model that approximates the recorded data.[GCG+05]

4.5.3 Renderer implementation

The renderer takes as arguments an Image, a Shader and a Shape. Its task is to
render the Shape, using the Shader, onto the background Image. The location
and dimensions of the Shape are known, and the Shape can be queried for any
surface point and returns the surface normal in that point. The steps taken are
described in Procedure 6.

The program iterates all pixels in which the given shape is visible. The
surface normal is known from the Shape object. The normal should point
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Procedure 6 Rendering a shape into an image.

Input: Image, Shape, Shader
Output: A visual representation of Shape rendered on Image using Shader
for all [x, y]T ∈ Shape do

~N ← Shape.getNormal(x, y)

if ~N points towards viewer then
[xim, yim]T ← [x, y]T + Shape.position
~V ← [xim − wim/2, yim − him/2,−z]T
I ← Shader.shadeP ixel( ~N, ~V )
Fill the pixel at [xim, yim]T with color I

end if

end for

towards the viewer (i.e. z < 0) otherwise it is ignored, as a form of “back face
culling”.

A viewer direction vector ~V is constructed, assuming that the viewer position
is in the center of the image and with a certain z value as a distance to the image
plane. wim and him denote the width and height of the image, respectively. V
contains the direction from the image point at [xim, yim]T towards the viewer.

The actual coloring of the pixel is delegated to the given Shader object,
which accepts a normal and viewer direction and returns a color.

4.5.4 Shader implementation

There are multiple ways to implement a shader. Therefore, the Shader class is
an interface to multiple specific implementations. Each of the implementations
have the interface in common, which means that they have a method called
shadeP ixel which takes a surface normal and viewer direction, and returns a
color. The shader collection currently consists of the LightShader, AreaLight-
Shader, ImageShader and CombinationShader.

The LightShader (Procedure 7) is a simple shader that takes a light source
and a BRDF to do its calculations. It uses colored light at infinite distance to
illuminate the surface.

Procedure 7 LightShader

Input: BRDF , light source direction ~L, light source color ~IL, surface normal
~N , viewer direction ~V
Output: The color of the surface, illuminated from ~L and seen from ~V
Ib ← BRDF.evaluate(~L, ~V , ~N)

I ← max( ~N · ~L, 0)(IL,rIB,r, IL,gIB,g, IL,bIB,b)
return I

The AreaLightShader (Procedure 8) is an improved version of the Light-
Shader, adding the property of spread to the light source. Where the Light-
Shader uses a point light source, the AreaLightShader has area, giving both a
more natural and a softer, more pleasing look to the result. It discretely sam-
ples points on a unit sphere, which are treated as incoming light directions. We
sample φ from 0 to 2π in 47 steps and we sample z from −1 to 1 in 23 steps,
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although these numbers vary depending on the roughness of the used material;
shinier surfaces need higher sampling density. We construct the incoming light
vector ~L as [cosφ

√
1− z2, sinφ

√
1− z2, z]T . When the dot product of ~L and

~L0 ( ~L0 being the vector pointing to the center of the light source) is higher

than a certain value corresponding to the spread of the light source, then ~L
apparently lies close enough in the direction of light source and we consider ~L
a contributing light direction.

Procedure 8 AreaLightShader

Input: BRDF , light source direction ~L0, light source spread s, light source
color ~IL, surface normal ~N , viewer direction ~V
Output: The color of the surface, illuminated from the light source at ~L0

and seen from ~V
I ← black
nsamp ← 0
for φ = 0→ 2π do

for z = −1→ 1 do

[x, y]T ← [cosφ
√
1− z2, sinφ

√
1− z2]T

~L← [x, y, z]T

if ~L · ~L0 ≥ (1− s) then
nsamp ← nsamp + 1

if ~L · ~N > 0 then

IB ← BRDF.evaluate(~L, ~V , ~N)

I ← I + ( ~N · ~L)(IL,rIB,r, IL,gIB,g, IL,bIB,b)
end if

end if

end for

end for

return I/nsamp

The ImageShader (Procedure 9) is different from the previous shaders in
the respect that is does not take a light source as an input, but rather uses
the image values around the object as light sources. An Environment object is
constructed using the method described in Section 4.4. The shader evaluates
Kajiya’s rendering equation. (Equation 4.15) The sampling of directions in the
unit sphere is done in a similar fashion as is the case with the AreaLightShader;
we sample φ from 0 to 2π and we sample z from −1 to 1. The incoming light
vector ~L = [cosφ

√
1− z2, sinφ

√
1− z2, z]T should lie in the hemisphere of all

incoming light directions (we simply check ~L · ~N > 0), then we consider this a

direction from which light illuminates our surface. The function env.color(~L) is
a reference to Equation 4.14, performing the texture look-up for the direction
vector ~L. The rest of the rendering equation can be solved trivially:

Lastly, the CombinationShader (Procedure 10) is a meta-shader. It takes
multiple Shader objects as parameters, each with an associated weight. When
evaluating this Shader, it evaluates all registered Shaders and returns a weighted
average of the result. Using this Shader, we can render an object using the
image-based environment with the ImageShader, while also taking into account
a light source such as the sun with the LightShader.
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Procedure 9 ImageShader

Input: BRDF , Environment env, surface normal ~N , viewer direction ~V
Output: The color of the surface, illuminated by env and seen from ~V
I ← black
nsamp ← 0
for φ = 0→ 2π do

for z = −1→ 1 do

[x, y]T ← [cosφ
√
1− z2, sinφ

√
1− z2]T

~L← [x, y, z]T

if ~L · ~N > 0 then

IL ← env.color(~L)

IB ← BRDF.evaluate(~L, ~V , ~N)

I ← I + ( ~N · ~L)(IL,rIB,r, IL,gIB,g, IL,bIB,b)
nsamp ← nsamp + 1

end if

end for

end for

return I/nsamp

Procedure 10 CombinationShader

Input: Shaders S, weights ~W = {w1 . . . wn}, surface normal ~N , viewer di-

rection ~V
Output: The color of the surface seen from ~V
I ← black
for all s ∈ S do

Is ← s.shadeP ixel( ~N, ~V )
I ← I + wsIs

end for

return I

30



4.5.5 BRDF implementation

As with the shaders, the implementation also supports different implementations
of the BRDF, adhering to a standard interface. The BRDFs all have a method
evaluate which takes the vectors ~L, ~V and ~N and returns a color corresponding
to the surface illuminated from ~L and observed from ~V . In this respect it differs
slightly from the BRDFs as explained in Section 4.5.2, where the BRDF is a
function fr(ωi, ωo) with only two parameters. ωi and ωo are similar to ~L and
~V , only in a local coordinate frame with the surface (and thus ~N) in a fixed

position. Instead of doing this coordinate transformation, ~N is given as a third
parameter to the BRDF. There are three BRDFs implemented:

The PhongBRDF uses the Phong illumination model, which is an empirical
model. Depending on the material properties, the color value is the sum of
several terms. The first term is the ambient term, which denotes light that
radiates from the object. The second term is the diffuse term, which uses
incoming light direction and surface normal. The third term is the specular
term which depends on incoming light direction, surface normal and viewer
direction. It generates specular highlights onto the surface. This type of BRDF
is given a Material object in addition to the parameters it receives from the
Shader.

The formula used to determine color values is:

Ip = kaia +
∑

m∈lights

(kd(~Lm · ~N)im,d + ks(~Rm · ~V )αim,s) (4.17)

in which ka, kd and ks are respectively the ambient, diffuse and specular weight
constants. ia is the static ambient color value of the material, whereas im,d and
im,s are the colors of the material while illuminated by light m, which can be
different for diffuse and specular reflection. α is the shininess constant, meaning
highlights become smaller when this value is larger. ~Lm is the direction from the
surface point towards light source m, ~Rm is the reflection of ~Lm in the surface
normal ~N . (~Rm = 2(~Lm · ~N) ~N − ~Lm)

The second implemented BRDF, the Cook-Torrance reflectance model pre-
sented in [CT81], is a more physically correct model. It is primarily intended for
use with metallic materials, although non-metals may also be rendered. Rough-
ness or shininess can be adjusted in the material properties, and the model even
accounts for color shift near the edge of highlights by realistically incorporating
reflectance curves of materials. Without going into too much detail—the model
is trivial to implement, especially with the help of [EHK+07]—I will describe
the terms that together make up the model.

The model is based around the notion that metallic surfaces consist of micro
facets. The roughness of the material determines how these facets are oriented
in the model; a smooth surface has flat facets which are aligned, while a rough
surface has standing facets that form a sawtooth shape. The geometric term
attenuates the reflected light as facets partially mask and shadow each other.
Parts of the surface of the facets receive no light because of self-shadowing, and
parts of the reflected light does not reach the observer as the path is blocked by
other facets.
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The roughness term determines the spread of reflection of a light ray. A
rough surface will produce a wider spread than a smooth surface, while a perfect
mirror reflects a light ray in only one direction. The Beckmann distribution
[BS63] can be used to model a wide range of materials. It is unfortunately
complex and therefore costly to evaluate, leading to an approximation in the
implementation.

The Fresnel term accounts for the fact that reflected light has no constant
color. The exact color of the reflection is dependent on the reflection direction.
Ideally, we would have a reflectance curve of every material available, which
tells us exactly the relation between incoming light wavelength, viewer angle
and reflected light wavelength. For simplicity, we compute this reflectance using
an approximation presented by [Sch94].

Finally, the MatteBRDF is the simplest. This BRDF returns a constant
value under all conditions, representing perfect Lambertian surfaces. The con-
stant can be given in addition to the parameters that the BRDF receives from
the Shader.
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(a) t = 0 (b) t = 20 (c) t = 40 (d) t = 60

(e) t = 80 (f) t = 100 (g) t = 120 (h) t = 140

Figure 4.11: Results of the described pipeline. The original orange ball has been
replaced by a synthetic sphere.

4.6 Results

Figure 4.11 shows the results on a short video sequence. The Phong BRDF was
used for its simplicity which results in fast computation. An estimated area
light source was added to the left of the scene with a fixed direction relative to
the camera. The used Shaders are AreaLightShader and ImageShader. Because
the light source is located in a fixed direction, the AreaLightShader contribution
is more or less constant, only varying with the dimension and position of the
sphere. The ImageShader also varies little as the scene is overall rather dull.
When inspecting the render closely we can recognize faint influences from the
carpet and wooden floor, this would be more apparent with different material
properties.

This result on a ten second video was generated in roughly six minutes on
a 2.8GHz dual-core machine. A breakdown of processing time into different
sub-components:

Component Time

Tracking 47s
Shape Recovery 7s
Inpainting 4s
Rendering4 5m9s

Do note that optimizations have not been focused on, therefore the program
could be significantly faster. Possible optimizations include:

4Includes environment mapping as the computations on the environment are done during
look-up by the ImageShader.
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Multi-threading The implementation is completely single-threaded for sim-
plicity. However, most components of the pipeline operate on a single
frame which makes the application very suitable for parallel processing.
Also by far the most time-consuming process is rendering, which in itself
is suitable for parallelization. For best results the GPU should be used.

Data management Intermediate results are stored on the hard disk, the rea-
son being that all stages are executed one after another and each stage
processes every frame of the video. With different processing order, such
as a sequence of stages per frame, the intermediate data size would be
O(1) and could be stored in memory, avoiding expensive disk operations.

Micro optimizations Using a profiling tool such as callgrind can give detailed
insights into time consumption per part of the program. It can report
processor operations and estimated time consumption per method or even
per line of code. The most obvious time consumers were optimized (for
example by function inlining and changing y ← x3 to y ← x · x · x) but
there is still room for improvement. Optimal cache usage is also a subject
which was only barely explored. Most image data access is performed in
the same order as it is stored, but cache usage analysis (with tools such
as cachegrind) could lead to more optimization.

While the drawbacks of a fixed lighting direction may not be apparent in
a sequence of still images, it is more noticeable in a video result. Therefore
the environment mapping (including more accurate modeling of light sources)
would be an obvious improvement to the pipeline.
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Chapter 5

Improvement of the

environment and rendering

system

The environment mapping subsystem was chosen to be improved because the
simplistic image-based lighting approach is insufficient. Image-based lighting
works best using high-dynamic range (HDR) images, for the simple reason that
some information is lost during tone-mapping of low-dynamic range (LDR) im-
ages, especially in the important bright areas. To make the system work with
LDR images and still produce a pleasing result, a directional light source was
added with a direction relative to the camera instead of the scene. In moving
video, the resulting error is easily noticeable.

This calls for a more elaborate scene model in which camera motion can be
expressed as motion relative to the scene. The goal is to model light sources
in the scene so that we can have accurate scene lighting independent of camera
motion. Karsch et al. [KHFH11] provide a method that models the environment
without requiring physical access to the scene. The presented implementation
is based on this technique. As an added benefit, the rendering system will be
greatly improved, enabling us to render detailed models with various materials.

The input to this image-based system consists of a single LDR image and
an annotation of the camera orientation in the form of two vanishing points.
Furthermore the position and size of the room, which is modeled as a box, are
entered, and light sources are annotated by drawing polygons onto the image.
After processing stages to determine room albedo and light parameters, the
model of the scene is used to create a new render containing a synthetic object.
Finally, the render of the synthetic object and its environmental interaction is
composited back into the input image.

The first section describes the image-based approach. In the second section
the transition to a video-based application will be explained.
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Figure 5.1: The pipeline for the environment system.

5.1 Rendering Synthetic Objects

into Legacy Photographs

To achieve our goal of inserting an object into a photograph, we will create a
synthetic render from which we take the object and its environmental interac-
tion such as shadows and reflections, and composite them back into the original
photograph. To create such a render, generally four things are required: a cam-
era, scene geometry, material properties and light sources. The stages for this
program are shown in Figure 5.1. An annotation stage will lead to the camera
properties, scene geometry and light source locations, while an albedo decom-
position method constructs a diffuse texture map to use as an approximation of
the scene materials. An additional stage estimates the light source parameters
such as power, giving everything needed to render the scene.

However, the scene will look far from realistic for the reason that we use a
lot of approximations. Therefore, we use a composition stage. Not shown in
the pipeline overview is the fact that we create two renders: one with and one
without the object. The difference between these images is what we would like
to transfer onto the original. We also create an object mask that indicates pixels
where the synthetic object is present. This is needed because object pixels need
to be copied directly from the object render, while for non-object pixels we copy
the difference between the renders.

There are a few differences between this implementation and the original.
First of all, the albedo decomposition is simplistic: this implementation just
performs the Retinex[LM+71] algorithm to obtain the texture maps, while the
original implementation computes an irradiance map based on textures and
scene geometry, and uses that to estimate the scene albedo based on the Lam-
bertian assumption.1

Second, the original implementation supports multiple types of geometry:

1This approach was tried, as explained in Section 5.1.2, but it would take extremely long
to obtain a noise-free irradiance map. This is based on an experimental implementation of an
irradiance shader in the simplistic rendering system described in Section 4.5.3.
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Figure 5.2: User annotation. Red and green lines are sets of vanishing lines,
leading to vanishing points used for camera orientation and focal length. Blue
polygons are light sources. The white dashed wireframe box is the model of the
room. The user positioned and scaled the box using the keyboard.

the room, the synthetic object(s) and any number of protruding surfaces or
occluding models. A protruding surface is a 2D planar polygon parallel to
the floor of the room, with an added height vector to make it a 3D object.
For simplicity only the room and inserted objects are supported. Protruding
surfaces and occluding models would add additional complexity to the video-
based approach and were not implemented for that reason. While inserting
(non-occluded) objects into images, the results are quite satisfactory although
the objects would have to be supported by a protruding surface.

Another difference from the original implementation is the light parameter
estimation. It uses a similar approach, namely to render the scene and ad-
just light parameters to minimize an objective function, but it uses a different
objective function.

Finally, the logic behind the composition stage is exploited to greatly im-
prove rendering time. While the original authors rendered their images as 500 to
1000 samples per pixel, this number has been brought down to 32 or sometimes
fewer. This makes it feasible to use the software on consumer-grade hardware
with reasonable rendering times. This is made possible by a small change, for
which the reason is explained in Section 5.1.4.

5.1.1 Scene annotation

The technique assumes an interior scene which is roughly shaped like a box.
Although the technique performs well on scenes that totally do not fit this
description, a textured, box-shaped room is the internal representation of the
scene. The user annotation consists of camera orientation and focal length,
translation, room size and the position of light sources. These are entered via a
user annotation interface shown in Figure 5.2.

To know the orientation of the box with respect to the camera, the user anno-
tates two vanishing points. The points should be chosen such that the respective
vanishing lines leading to them are perpendicular in three-dimensional space.
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Figure 5.3: Irradiance map. At every pixel of the room, the irradiance is com-
puted by sampling the hemisphere around that point in three dimensional space.
This gives a representation of the amount of indirect light received by the point
visible at that pixel. For example, the floor receives most light from the walls,
yielding white, while the lower part of the walls are more red because of the
carpet. The noise can be reduced by increasing render time.

Using this assumption, we obtain the camera’s focal length and subsequently
the orientation of the camera. The used technique is detailed in [GMMB00].

Once the camera has been oriented properly, the user manipulates the posi-
tion and scale of the box using the keyboard. Six keys are assigned to position
and six keys to scale. Once the preview of the box lines up with the input image
visually, the annotation of the camera and box are complete.

Finally, the user draws polygons onto the image that denote the light sources.
The polygons are then projected onto the box, leading to a simplification that
light sources are flat and situated onto the walls. The pixels inside the polygons
are inspected to give light sources their color. It should be noted that this can
be erroneous because the input is LDR and therefore tone-mapped.

5.1.2 Texture mapping

To obtain a reasonable representation of the scene albedo from the input image,
the Retinex algorithm is performed. This algorithm works on an image and
also returns an image. The original authors construct the albedo map not by
using Retinex, but by using knowledge of the scene geometry. They create
an irradiance map measuring the amount of indirect light at every scene point.
Using the irradiance map together with the assumption that the room materials
are Lambertian, they obtain a better estimate for the albedo. This method was
implemented, for which the results are shown in Figure 5.3, but it is too intensive
to compute the irradiance map on the used hardware2, therefore the approach
was discarded and replaced with Retinex.

Once we have a good estimation of the albedo of the room, we need to
prepare it for re-rendering. The goal is to construct texture maps that can be

2The implementation is single-threaded and was executed on a 2.8GHz CPU.
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Figure 5.4: Incorrect texture mapping obtained by using the input image di-
rectly as a uv-map. Note: the colors in this image are inaccurate, because of
an unrelated problem with texture gamma at the time, which is explained in
Section 5.1.4.

used as uv-maps in the rendering pipeline. My initial idea was to project the
corners of the box onto the image plane to get their uv parameters, and use the
input image directly as a texture map. The result is apparent in Figure 5.4.

The issue with this approach is that the texture map should be a frontal
orthographic view of the surface. There are two workarounds for this problem:
to divide the polygons into a large number of smaller triangles, or to use a
different kind of texture mapping interpolation.

The preferable solution to this problem is to rectify the texture of each face
of the box separately, then use the rectangular texture maps during rendering.
To rectify an image, The four corners of the box face are obtained in image co-
ordinates and applied an homography to map them to (0, 0), (w, 0), (0, h), (w, h)
respectively. w and h are chosen to be 1000 pixels which is sufficient for the
application. The result is shown in Figure 5.5.

5.1.3 Light parameter estimation

In order to obtain plausible illumination for the scene, light parameters must
be estimated. The most influential property of light sources is light power, as
a very dark or very bright render will not integrate into the photograph well,
especially when the rendered objects are transparent or reflective. The reason
for this is that synthetic object pixels are copied directly onto the input by the
compositor, as explained in the next section. To a lesser extent, parameters
such as light location and color could be optimized, but those are kept at their
initial values in the current implementation.

Light power is estimated using a hill-climbing approach. The power is in-
creased or decreased to match the average render intensity to intensity of the
input image. In every iteration, the light power is multiplied by an inverse
sigmoid factor obtained from the error in the intensity:
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Figure 5.5: The texture maps for each side of the box. From left to right, top
to bottom: left wall, floor, wall at the back, right wall, ceiling, wall behind the
camera. The last one results in an inverted view of the scene because the points
are behind the camera, but still projected onto the image plane by dividing by
their depth. Black parts in the texture maps are regions outside of the input
image, causing problems with reflections. An inpainting method could be used
to fill them in.
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Figure 5.6: Visualization of Equation 5.1: the adjustment factor for light power,
as a function of average intensity error.

P ′ = P · 2 ·
(

1− 1

1 + e−error·15

)

(5.1)

in which error is the difference in average intensity of the render and the
original image, which is between −1 and 1. The optimization stops when the
absolute error is below a threshold (0.001) or when a maximum number of
iterations (5) has been reached. These limits, as well as the coefficient in the
exponent, are chosen empirically. All lights in the scene are simultaneously
affected by this operation.

To speed up computation, the renders for this procedure are produced on
a lower resolution as the final image. Also, the number of samples per pixel is
lowered and inter-reflections are not computed, yielding only direct light.

5.1.4 Rendering

The rendering stage makes use of the open-source LuxRender3 software. While
the original authors generate LuxRender scene files for the artist to insert objects
into, this implementation uses the LuxRender 0.9 C++ API. This led to some
implementation difficulties, but it allows to integrate LuxRender work into the
pipeline in order to perform video processing without user intervention. A
small number of adjustments to the source code were required, such as a query
method to check whether the system has initialized and whether rendering has
been finished. Also several tweaks had to be made to the build files in order to
build on the used Linux distribution.

With the camera properties, scene geometry, materials and lights known, all
data is present for rendering. Some renders are shown in Figure 5.7. During the
composition stage, explained later, we focus on extracting the rendered objects
and inserting them into the original photograph, greatly enhancing the quality
of the result.

Implementation details

To render an image, we create a render instance and post a render job to it. We
assign one thread to the render so it will render in the background while the
pipeline handles other tasks. The various LuxRender settings are as follows:

3http://www.luxrender.net/
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Figure 5.7: Outputs of the rendering stage.

Renderer is set to sampler, which renders using the CPU only.

Sampler is set to lowdiscrepancy. The sampler chooses how and where to pick
a pixel to render. It is required to use a “dumb” sampler, i.e. one that
samples each pixel reliably, as opposed to prioritizing certain pixels based
on the scene contents. When using a “smart” sampler, we will run into
problems during composition. Using this sampler also ensures predictable
running times.

VolumeIntegrator is set to multi for scenes requiring volumetric effects. This
is only enabled when one or more models in the scene have a transparent
or translucent material.

SurfaceIntegrator is set to exphotonmap. The SurfaceIntegrator computes
the irradiance of a point by interacting with light sources and materials.
This setting is very influential on the quality of the result, especially when
using reflecting or refracting materials. This particular integrator pro-
duces very smooth results while bidirectional, which is commonly used,
produces noisy reflections and refractions when rendering only a low num-
ber of samples.

PixelFilter is set to gaussian. A pixelfilter is needed to collect sampled points
on the image plane and assign values to individual pixels. A sample is
typically assigned to the pixel it lies in, but it can also influence neigh-
boring pixels. The gaussian filter applies a gaussian kernel to produce a
smooth result, at the cost of slightly more computation time. The radius
is the gaussian kernel is 2 pixels.

Accelerator is set to qbvh. This applies a data structure to the scene geometry
in order to accelerate look-up.

Film is set to fleximage. An important setting of the film is haltspp, instruct-
ing the renderer to stop after reaching a certain number of samples per
pixel. 32 was used in this implementation. Another notable setting is
tone-mapping: we need to apply identical tone-mapping to our renders
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if we want to render movies. The tone-mapping kernel is set to linear
with parameters sensitivity 320, f-stop 2.8 and gamma 2.2. Furthermore,
outlierrejection is used with k = 5 to avoid “fireflies”, i.e. very bright
artifacts on the render.

As for the textures of the room, each face of the bounding box is assigned
one of the rectified textures. It should be noted that the LuxRender manual
ensures a default gamma of 2.2, but this is not respected. Therefore, the gamma
of the texture maps (using the imagemap texture) should be manually set to
2.2. Omitting this setting will result in “washed out” texture maps.

Compositing

After the image has been rendered, call it Iobj , the rendered object needs to
be composited into the original photograph, Iinput. A mask M is generated
with value 1 where a synthetic object is present, value 0 where no object is
present, and a value in between for pixels where the object is partially visible,
in order to achieve sub-pixel accuracy. The mask is obtained by projecting the
object geometry onto the image plane, storing the projection to an image with
high resolution as a means of super-sampling, then downscaling to the original
resolution. The chosen resolution is 8 times the original resolution in both
dimensions, yielding 64 times the number of pixels. Lower might suffice, but the
operation is very fast compared to the actual rendering. The object projection
is implemented in a SimpleRenderer, which was already implemented to obtain
debug images that do not warrant the use of more sophisticated software such
as OpenGL or LuxRender. Without regard to depth, every object triangle is
transformed to image plane space and the pixels contained in the triangles are
set to 1.

Apart from the object, we also want to composite the influence that the
object has on its environment. To make this possible, we create an additional
high-quality render of the scene, but without the synthetic object. We call it
InoObj . The difference Iobj − InoObj represents the environmental effect and can
be composited by simple addition. This approach is called additive differential
rendering by [Deb98]:

Iresult = M ⊙ Iobj + (1−M)⊙ (Iinput + Iobj − InoObj) (5.2)

where ⊙ is the Hadamard product. See Figure 5.8 for sample images.
This method has one vulnerability which leads to a dramatic impact on

the result: noise. LuxRender samples points randomly during rendering, which
introduces noise in the rendered image. The noise pattern between Iobj and
InoObj is different, which leads to a noise pattern in Iobj−InoObj with potentially
twice the amplitude of its components, all across the image. Karsch et al.
work around this problem by increasing the number of samples per pixel, which
naturally increases render time. They used between 500 and 1000 samples per
pixel and rendered the images using a render server cluster. Using current
consumer-grade hardware, this approach leads to render times of approximately
five to ten hours.

By making a slight adjustment, the number of samples per pixel can be
brought down to 32, making it feasible to run on lower-end hardware and also

43



(a) Iinput (b) Iobj

(c) InoObj (d) M

(e) Iresult (f) Closeup of Iresult

Figure 5.8: Sample images involved in the compositing stage.
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Figure 5.9: Comparison of Iresult for inconsistent and consistent noise patterns.
In the top row no attention is given to the distribution of samples by the ren-
derer. The end result is noisy even in areas where no object (red figure) is
present. In the bottom row the noise pattern is consistent between Iobj and
Inoobj , which is canceled out in the subtraction. The images were rendered at
32 samples per pixel.

making it feasible to render video later in the project. Instead of letting LuxRen-
der choose the seed for its random number generator, the seed should be set
to the same value for the renders of Iobj and InoObj . This ensures a consistent
noise pattern for the renders, leading to noise cancellation in Iobj−InoObj . This
increase in quality enables us to render far fewer samples per pixel. A static
seed also ensures that we have a consistent noise pattern between frames in a
rendered video: a desirable feature in animation rendering. The result is shown
in Figure 5.9.

This adjustment imposes one practical constraint however: we can only ren-
der an image using one thread. That means that hardware, multi-core and
network rendering is out of the question. The reason for this is presumably a
bugged or incomplete implementation of pseudo random number distribution
over multiple concurrent processes. This might be solved by changing the way
LuxRender chooses its samples or distributes the random numbers in a multi-
threaded rendering situation. This might have been changed in newer versions
of LuxRender. However, by executing the render jobs for Iobj and InoObj on
separate concurrent threads, we can still take advantage of a dual-core proces-
sor. Rendering is well parallelizable in the case of animation rendering; each
frame in the animation can be rendered using up to two threads.
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5.1.5 Results

Figure 5.10 shows results of the pipeline discussed in this section.
The images were rendered on a desktop PC with a 2.8GHz AMD Athlon

dual-core processor. Rendering an image, 603 by 804 pixels, containing two
glass models from input to end result takes about 20 minutes, at 32 samples
per pixel. When using materials that do not require volumetric rendering, the
render time is about 15 minutes.

The models used in this project are taken from the Stanford 3D Scanning
Repository4. Particular publications from which the used models were made
available are [TL94] and [CL96]. The Thai Statue was provided by XYZ RGB
Inc.

4http://graphics.stanford.edu/data/3Dscanrep/
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(a) Matte bunny, 69,451 faces (b) Glass dragon, 871,414 faces

(c) Ice bunny. The index of
refraction is lower, leading to
fewer specular highlights than
is the case with glass.

(d) Large matte dragon. Note
that the shadow on the left
wall follows the original light-
ing. The light in the back casts
shadows, but the light in the
front eliminates them.

(e) Matte angel, 525,814 faces (f) Matte angel

Figure 5.10: Results of rendering synthetic objects into legacy photographs.
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5.2 Integration into the video-based pipeline

In order to convert the aforementioned rendering pipeline to render synthetic
objects into video, an additional piece of information is needed: accurate knowl-
edge of camera parameters over time. The inserted object has a fixed position
in the virtual world; it should also appear to have a fixed position in the end
result. Inaccurate camera tracking will have a big impact on the plausibility of
the result when we expect the object to have a fixed position.

This section will detail the transition from image to animation rendering
by explaining the consequences for environment mapping and camera tracking.
The section will be concluded by showing the results and a qualitative evaluation
thereof.

5.2.1 Environment Mapping

The first frame of the input video is presented to the user to annotate the
environment. This frame does not necessarily have to be in the final result;
the user can determine a range of frames to process. This makes it convenient
to start a video from a convenient position in the environment, before possibly
filming parts of the environment that would be very difficult to annotate in just
one frame.

As is the case with the image-based approach, the user annotation results
in, among other data, the camera’s focal length. It is assumed that the focal
length of the camera remains constant throughout the video. Theoretically this
constraint is not very strong, but practically the focal length of the camera is
used to guide the camera tracking system, which can handle a variable focal
length, in order to obtain more accurate results.

While the environment of the scene remains constant, and therefore in theory
also our model of the environment, illumination conditions can change through-
out the video. For example, illumination from outside can change due to clouds,
or the camera’s auto-exposure setting can change depending on the brightness of
the image. While this should theoretically not influence the decomposed albedo
maps, in practice the result is improved by recalculating the texture maps (as
detailed in Section 5.1.2) in every frame. This gives a visually consistent result
for transparent and reflective objects5, even without recomputing light source
power or virtual camera exposure. The difference in albedo maps is illustrated
in Figure 5.11.

The problem of changing illumination conditions opens up the idea of im-
proved albedo decomposition by solving for every available frame. Another
possible improvement to the environment mapping, left for a follow-up project,
is to fill in unknown areas of the texture maps with data obtained from past or
future frames. This would improve the quality of rendered reflective objects, as
the part behind the camera is always unknown in the current implementation.

5Recall that environmental influence of the object’s presence, such as shadows, are com-
posed into the original image differentially, yielding a good result in most illumination con-
ditions. However, object pixels are directly copied onto the original image. This means that
when rendering for example a glass object, it is very important that the virtual world behind
the object, visible through the glass, appears consistent with the input image.
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Figure 5.11: The albedo maps in two different frames. Obtained by perform-
ing the Retinex algorithm separately on a frame-by-frame basis. While albedo
should ideally remain constant for a particular scene, differences can be large,
e.g. on the left wall and on the floor.

5.2.2 Camera Tracking

Beginning to work on the topic of camera tracking, also known as extrinsic
camera calibration, several different approaches were tried that seemed sim-
ple, logical and hypothetically correct. The very first try was a homebrew
approach, detecting key points with SIFT[Low04], projecting them onto the
virtual world in the first frame, and optimizing camera orientation and transla-
tion to minimize the re-projection error every in subsequent frames. Problems
soon started to become apparent, for example when the camera would move
away onto other parts of the scene. The second approach tried to amend this
by minimizing re-projection error based on key points from the previous frame.
This approach, along with hybrid mixes, suffered from cumulative errors. Fur-
thermore, overall the results would contain high-frequency errors, resulting in
a very shaky camera while it should in fact be smooth. An approach using
cvFindExtrinsicCameraParams2 from the OpenCV library also did not prove
useful, presumably because it needs planar data. Other tried approaches in-
clude decomposing the essential matrix6 into a rotation matrix and translation
direction, according to [Har92], [ATLB04]. However, the results were also not
satisfactory, partly because they depended on a primitive matching of SIFT key
points.

The problem of camera tracking in the pipeline has finally been solved by
using Automatic Camera Tracking System (ACTS).[ZQA+06] This software can
extract the wanted camera extrinsics, along with other data such as focal length,
camera intrinsics, interesting key points and even dense depth recovery. It does
so while typically needing little to no user-defined parameters. It detects either
SIFT[Low04] or KLT[LK+81, TK91] features (based on user preference) in every
frame, filters them based on an epipolar constraint, then chains nearby features
in neighboring frames together. Such a chain corresponds to a 3D point. The
length of the chains is thresholded to determine whether the chain is used in
camera motion reconstruction.

In the experiments it became apparent that the calculation can in some
cases yield unreasonable results or even become stuck indefinitely. Upon closer

6The essential matrix, closely related to the fundamental matrix, contains the relation
between two different views of the same scene
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inspection this happens when not constraining the camera focal length, in which
case the software tries to determine it automatically. Since we know the cam-
era focal length in advance, by means of user annotation of the scene, we can
constrain the focal length to this constant value, giving a higher chance of a
successful tracking result.

While the program is free to use for academic purposes, the source code is
not released and the executable is available for Windows only. Therefore it was
not tightly integrated into the rest of the program. The user must therefore
perform camera tracking using ACTS, then copy some generated output files
over and load them into the pipeline.

To use the detected extrinsic camera parameters, a conversion must be made.
While the rotation matrix can be used directly, the translation is only correct
up to a scale factor. Ideally, this factor is constant for every point in the scene.
It is computed by taking 2D features from ACTS, projecting them back onto
the virtual scene, measuring the depth and dividing that by the corresponding
reported depth of the 3D ACTS point:

s =
1

N

N
∑

i=1

‖backproject(featurei2D )‖
‖featurei3D‖

(5.3)

s can then be used to multiply the translation vectors. The complete camera
transformation thus becomes:

T = [Racts|s · ~tacts] ·T0 (5.4)

with T0 representing the initial camera pose obtained from the annotation
stage.

5.2.3 Evaluation and discussion

A qualitative evaluation was performed in the form of an on-line survey. The
participants were presented six rendered videos which are shown in Appendix A
in the given order. For each video, the participant was asked to give three
grades from 1 to 10: one for overall realism/plausibility, one for lighting accuracy
and one for object placement accuracy. The goal of this distinction is to gain
separate ratings for lighting interactions and camera tracking. Optionally the
participants could also leave comments for each video. In total, 19 people filled
out the survey. The average grades are shown below.

Video Overall Lighting Placement

Angel in synthetic room 7.00 7.79 7.16
Dragon in corridor 7.42 7.58 6.95
Bunny in room 7.37 7.79 6.89
Dragon in room 7.74 8.16 7.32
Thai statue in corridor 6.11 6.74 5.53
Thai statue in hall 6.37 6.89 5.89
Average 7.00 7.49 6.62

For the first video, Angel in synthetic room, the most common comment
is that shadows seem to be missing. Indeed, the intensity difference caused
by the shadow is very small, and the shadow falls mostly onto the dark blue
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floor tile. Very notable is that the camera tracking on this scene is practically
perfect, and the object indeed appears to remain in place constantly. However,
the average grade given for placement is only 7.16, suggesting that the wording
of the placement question was poorly chosen. None of the comments mention
object instability.

The Dragon in corridor video received relatively little feedback. One com-
ment says that the position is off a bit, another comment says that the material
of the dragon (dark red matte) is unrealistic.

On the contrary, Bunny in room received largely negative feedback on the
stability of the bunny in the scene; participants correctly commented that the
bunny hovers above the ground.

Dragon in room received the highest grades overall. Only one participant
commented on the hover problem, while the camera parameters were the same
as those used for the previous video. Presumably the error is less noticeable for
larger objects. Two comments said that the dark part of the dragon looks too
dark, which is true because there is no synthetic light source there while the real
scene has a large window on that side. Two comments said that the insertion
is practically indistinguishable from reality.

As for Thai statue in corridor and Thai statue in hall, complaints were
mainly about instability of the object placement. These videos were recorded
with quite some shaking which impacted the quality of the camera tracking
results.
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Chapter 6

Conclusion

The implementation of a rudimentary pipeline to perform Video-Based Material
Editing is shown, which served as a motivation for the more widely applicable
improvement made in artificial object rendering into video. The resulting sys-
tem is physics-based and requires little input which can have low quality. The
integration of the rendering improvement into the VBME pipeline is trivial.

The system inserting objects into video can perform really well depending
on the circumstances. As the user survey has shown, some viewers were fooled
by the realism of the results, however, certain results were less convincing. This
is mainly dependent on the accuracy of camera tracking and the conversion of
extrinsic camera parameters into the scene model. A significant reduction in
render time has been achieved by carefully choosing which samples to evaluate
during rendering. This reduced the render time by a factor 32.

6.1 Future work

The next suggested improvement for the VBME pipeline is automatic 3D shape
recovery to obtain the target object’s shape. The VideoTrace technique could
be used, in which an object is interactively modeled from a video sequence with
the help of user annotation.[vdHDT+07] The dense depth recovery from ACTS
could also be used for this. This technique could be extended to obtain the
shape of the environment as well, which has been done previously in [ZQA+06].

One vulnerability of the current implementation is the accuracy of the cam-
era tracking which is essential for a plausible animation. While ACTS performs
reasonably well, the integration of camera tracking results into the rest of the
pipeline could be improved. As it stands right now, the annotator must be very
careful to annotate the floor correctly; modeling the floor too high or too low
will appear to “sway” the object as the camera translates perpendicular to the
view axis. Furthermore the calculation of the scale factor in Equation 5.3 could
use work. Perhaps it is worth looking into proper weights or the selection of
certain features to use in the calculation.

Currently the environment out of view is not taken into account; during each
frame a new texture map is computed and projected onto the scene. Reuse of
texture data from previous and future frames could prove helpful, along with
auto-completion of regions of the box that never appear in view. If a larger
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Figure 6.1: Light shafts are handled in the image-based technique with the help
of relatively little user annotation. This allows for more complex interaction
between the environment and the synthetic object. Image from [KHFH11].

portion of the box is textured, rendering of reflecting materials would be more
realistic. Another suggestion for future projects is to exploit all available video
data for the albedo decomposition, so that we obtain a more accurate model of
the materials in the scene.

Light shafts in the video are not taken into account as they are in the image-
based approach of Karsch et al. The addition of a video-based version of this
technique would increase realism in the case that the synthetic object is placed
into a shaft of light with a possibly complex shape. An example is shown in
Figure 6.1.
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Appendix A

Evaluated videos

These videos, all approximately ten seconds long, were used in the qualitative
evaluation detailed in Section 5.2.3.

t = 1 t = 26 t = 51

t = 76 t = 101 t = 126

t = 151 t = 176 t = 201

Figure A.1: Angel statue inserted into synthetic scene, recorded in the game
Minecraft.
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t = 1 t = 25 t = 49

t = 73 t = 97 t = 121

t = 145 t = 169 t = 192

Figure A.2: Dragon statue inserted into corridor.
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t = 1 t = 27 t = 53

t = 79 t = 105 t = 131

t = 157 t = 183 t = 209

Figure A.3: Bunny statue inserted into room.
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t = 1 t = 27 t = 53

t = 79 t = 105 t = 131

t = 157 t = 183 t = 209

Figure A.4: Dragon inserted into room. The used footage and camera parame-
ters were equal to those of the previous result.
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t = 1 t = 19 t = 37

t = 55 t = 73 t = 91

t = 109 t = 127 t = 145

Figure A.5: Thai statue inserted into corridor.
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t = 1 t = 20 t = 39

t = 58 t = 77 t = 96

t = 115 t = 134 t = 153

Figure A.6: Thai statue inserted into hall.
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