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Chapter

Introduction

1.1 A Computational Approach to Natural Language

In Artificial Intelligence one of the main topics is natural language processing. A key issue is the
balance between expressivity and complexity. We would like to formalise natural language for use
by computers, in such a way that the system is expressive enough and not too complex. The right
trade-off between the two is itself a delicate field of study.

The more expressive a language is, the more sentences can be formulated with it. This is a rough
interpretation: in formal language we look at the different syntactic patterns that can be expressed.
We must keep in mind though that the more expressive a language is, the more difficult it can be
to understand it. If we want to add extra expressivity to a language, we will eventually need to
add more complexity. This is the essential trade-off between expressivity and complexity.

So what do we know about the complexity of natural language? The general consensus is that
natural language should be polynomially parsable. Parsing a sentence should not possibly take
extremely long, relative to the length of the sentence. A model for natural language should adhere
to this restriction to be feasible, in accordance with psychological research of human language use.
In 1956, Noam Chomsky introduced a hierarchy of formal languages [I]. This hierarchy orders
formal languages by their computational complexity. Starting at regular languages and growing
all the way to the recursively enumerable languages, the Chomsky hierarchy has been expanded
on for more than 50 years now. We will look for the computational complexity of natural language
in this hierarchy.

In this thesis we show a logical approximation of language and a system that can work with it.
The approximation is a calculus with certain rules: the Lambek-Grishin calculus. The system is
a theorem prover: a program that can prove whether the calculus accepts a certain ’sentence’.
By building a prover for the calculus we show that this is an approximation we can actually use.
We introduce the calculus in a hierarchy of complexity. We then show the theory underlying the
theorem prover. Finally in the appendix we give the entire source code of the prover, which can
also be found at https://github.com/deosjr/Scriptiel
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1.2 The Chomsky Hierarchy

First we take a look at formal languages and their relation to natural language. Instead of looking
at individual languages we look at several classes of languages. All languages in such a class are
of equal computational complexity. We start by looking at context-free languages, followed by
context-sensitive languages. Both are defined in [I]. After concluding that natural language is not
best described by either, we look at an intermediate area in the hierarchy. The aim is to find a class
of language that corresponds closely to natural language in terms of expressivity and computational
complexity. The structure of this overview very roughly corresponds to the chronological order of
research in this field. See [6] for an extended overview.

1.2.1 Context-free languages

The first area of the hierarchy to be considered is the context-free (CF) area. Context-free lan-
guages can describe many syntactic patterns found in natural language. They can be described
using context-free grammars (CFGs) that are easily definable. When crossing dependencies were
identified in some natural languages it became apparent that CFGs are not powerful enough to
capture the entirety of natural language. These crossing dependencies, found in Dutch but most
convincingly shown in Swiss German [15], can be shown to be beyond CFG.

...das met d’chind em Hans es huus  16nd hélfe aastriiche
...that we the children Hans the house let  help paint
‘...that we let the children help Hans paint the house.’

Since CSG’s can’t describe these dependencies, natural language is shown to be more expressive
than CFG’s can ever be. We have to search higher up in the Chomsky hierarchy.

1.2.2 Context-sensitive languages

The next step in the hierarchy as originally stated is that of the context-sensitive (CS) languages.
Whilst crossing dependencies can be analysed with context-sensitive grammars (CSGs), some struc-
tures definable using CSGs have convincingly been shown to be beyond natural language. For
example, the language {a®"|n € N} defines a pattern that grows exponentially, which is something
we have not found in natural language. CS is therefore too expressive to approximate natural
language with. Context-sensitive languages are also not all polynomially parsable. This means CS
is too complex as well and definately not a good approximation.

We have found that context-free grammars are too weak to model natural language with, and
context-sensitive grammars are too strong. The next logical step is to define an area in between;
a class of languages that is stronger than context-free but weaker than context-sensitive.

1.2.3 Mildly context-sensitive languages

In 1985 Aravind Joshi characterised a class of languages between context-free and context-sensitive,
calling it mildly context-sensitive (MCS). [5]. It is defined as follows (taken from [6]):
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Definition 1.1 M:ild context-sensitivity

1. A set L of languages is mildly context-sensitive iff

(a) L contains all context-free languages

(b) L can describe cross-serial dependencies:
There is an n > 2 such that {w*|lw € T*} € L for all k < n.

(c) The languages in L are polynomially parsable, i.e., L C PTIME.
(d) The languages in L have the constant growth property.

2. A formalism F is mildly context-sensitive iff the set {L|L = L(G) for some G € F} is mildly
context-sensitive.

The first constraint (a) tells us that the class of mildly context-sensitive languages includes that
of the context-free languages. The second shows what we want to capture beyond context-free:
crossing dependencies. Note that crossing dependencies can only be captured up to a certain
degree: not all dependencies can be motivated from the study of natural languages. The third
constraint captures our intuition that natural languages should not be too hard to parse. This also
places mild context-sensitive languages in a subclass of the context-sensitive, since the decidability
problem for CSGs is PSPACE complete. For a language to have the bounded growth property
means the length of words in the language grows linearly, when ordered by length.

As we can see mild context-sensitivity is precisely defined as the area in which we expect to find
natural language. The hypothesis is that the MCS class would be appropriate for the analysis
of the syntactic patterns occurring in natural language. Mildly context-sensitive languages are
expressive enough (a,b) and not too complex (¢,d). Formalisms in MCS include Tree-adjoining
grammar (TAG), Multiple Context-free grammar (MCFG) and Combinatorial Categorial grammar
(CCG).

1.3 Typelogical Grammar

In this thesis we study a formalism with a lower bound in the mildly context-sensitive area, Lambek-
Grishin calculus (LG). It is a categorial grammar in the typelogical framework. The typelogical
perspective allows us to import techniques from logical proof theory, notably proof nets. The
Curry-Howard correspondence gives us an interface between syntax and semantics. A theorem
prover for Lambek-Grishin calculus had not yet been implemented, to our knowledge. In 2002
Richard Moot introduced Grail, a prover in Prolog for multimodal Lambek calculus. An extension
for LG was given in [I3], but was not implemented. For more on this interactive parser, see [L].
In this thesis we give an implementation in Python for graphical LG.

We illustrate a typical categorial grammar by comparison with a context-free grammar, which is
a rewrite grammar. A context-free grammar G is defined as the set {N, T, P,S}. N and T are
its non-terminal and terminal symbols, respectively. We will call its terminal symbols 'words’ and
series of words ’sentences’. This might seem confusing as we usually use the term 'word’ for what
we now call a sentence. We try to be consistent in our term usage and will use the above terms
more intuitively in later discussion. The set P gives us rules to rewrite a non-terminal symbol. S
is a special non-terminal, the start symbol. Given a sentence x : {x = wy,ws ... w, with w; €T},
the grammar will accept = if and only if S =* x. That is, a sentence = is only accepted by the
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grammar if there is a series of rules in P that rewrites S to x. A categorial grammar G’ gives us
a lexicon L and inference rules R. It accepts the same sentence x if and only if A1, As... A, F s
is provable in natural deduction using inference rules given in R. Here A; is the type given to w;
by L and s is the type of a sentence. In general categorial grammar can prove sequents of the
form Ay, As... A, b By,B>...B,,. This means that given a categorial framework, providing a
grammar for a certain language is only a matter of formulating the correct lexicon.

1.3.1 Lambek systems

The Lambek calculus [7] defines its types using the following atomic types and operators:

Types: A, B:=p| A®B| A/B| B\A

where A and B are (possibly complex) types and p is atomic. Intuitively the operators are defined
as follows: A/B is of type A if a type B can be found to the right of it. Similarly, B\ A is of
type A given a type B directly to its right. The ® operator indicates concatenation of types, al-
lowing types to be found next to each other to satisfy conditions for the previously named operators.

Lambek calculus provides us with the first link between categorial grammars and the Chomsky
hierarchy: it is equivalent to context-free grammar. This equivalence is easily proven from CFG
to Lambek grammar; equivalence in opposite direction is known as the Chomsky conjecture [2],
proven by Pentus in [I4]. Since Lambek-Grishin calculus is an extension of the Lambek calculus,
its expressivity must be at least context-free.

LG essentially adds another set of operators which mirror the original operators of Lambek calculus.
These operators adhere to the same kind of rules the originals adhere to, and the intuition for using
them is the same. That is, A/B is of type A given that we find a type B concatenated with ® to
the right of it. B © A is of type A if a type B is concatenated via & to its left.

Types: A, B:=p| AQB|A/B|B\A|A®&B|AoB|BoA

The extra expressivity comes from its extra inference rules (besides those that are dual to the orig-
inal rules). These so-called linear distributivity principles or interaction rules translate between
the two sets of operators. We have several options to present LG’s full rule system. Natural deduc-
tion is not a good option since it is not suited for automation. To use the calculus for automatic
inference, we choose a sequent calculus approach, since it can be read purely top-down. Sequent
calculus’ decidability makes it a better choice for automatic proving.

We present LG’s inference rules using the notation of [9]. It gives LG in a display logic style
(calling it sLG), divided in structural and logical rules (Figures 1.1 and 1.2). These rules will be
the foundation of our graphical calculus as well: graphical LG is mostly a translation of these rules
to graphs. A translation embedding Tree-adjoining grammars (TAGs) in LG has been shown by
Richard Moot in [I2]. Since TAG is a mild context-sensitive formalism this places LG’s lower bound
in our area of interest, instead of at the context-free hierarchy. The upper bound for expressivity
of LG is still unknown. For discussion see [§].
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Figure 1.1: Logical rules for LG
X=>A A=Y
A:AAX X=Y Cut
X=Z./Y V-0 Z=X
p drp
X-®-Y:>er Z:>Y~€B~Xd
Y=X-\-Z Z- 0 x=vy P
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Z-9-X=W-/.Y Yo W=X-\-Z
X~®-Y:>Z-69-WG2 X-®~Y:>Z-69-WG4
70 Y=X\-W X-0oW=2/Y

Figure 1.2: Structural rules for LG

1.4 Spurious Ambiguity

This concludes the introduction. The next chapter handles graphical calculus for LG, which is the
main subject of this thesis. Switching from sequent to graphical calculus has various reasons. How-
ever, we have just motivated the use of sequent calculus instead of natural deduction. Although
sequent calculus is indeed easier to use for automation, it does not have a feature natural deduction
has: a single derivation per interpretation of a sequent. This means that sequent calculus can al-
low multiple derivations for a single interpretation of a sequent. This is called spurious ambiguity.
Compare Figures 1.3 and 1.4. Graphical calculus seeks to solve these problems by giving a method
of derivation that rewrites graphs and is free of spurious ambiguity. See Figure 1.5 for an example.

np/nknp/n Az nkn }4;
Ay TP\S)/mpE (np\s)/np (np/n) @ nt-np /B
nptnp 7 ((np\s)/np) ® ((np/n) @ n) F np\s

w0 ® ((0p\a)/np) ® (np/m) @ m)) F 5 =

Figure 1.3: Natural deduction proof for np ® (((np\s)/np) ® ((np/n) @n)) - s



CHAPTER 1. INTRODUCTION
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(np\s)/np = (np-\-5) - /- ((np/m) ® 1) )
((np\s)/np) - ® - ((np/n) ®n) = np-\ - s oL
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np - ® - (((np\s)/np) @ ((np/n) ®n)) = s oL
np @ (((np\s)/np) ® ((np/n) ®@n)) = s
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((np\s)/np) @ - np=np-\-s
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((np\s)/np) - @ - ((np/n) @n) = np-\ - s L
((np\s)/np) @ ((np/n) @n) = np-\ -s p
np - @ (((np\s)/np) @ ((np/n) ®@n)) = s o

np @ (((np\s)/np) @ ((np/n) @n)) = s

/L
Tp

Figure 1.4: Two sequent derivations for np ® (((np\s)/np) ® ((np/n) @ n)) = s

np/n n

(np\s)/np -

v

S

np

Figure 1.5: np ® (((np\s)/np) ® ((np/n) ®n)) = s
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A Graphical Calculus

2.1 Introduction

Graphical calculus for typelogical grammars is based on so-called proof nets. Proof nets have been
developed to hide a lot of structural rules and to bring back focus on the derivation(s) natural
deduction allows for the sequent. They first appeared in 1987 when Jean-Yves Girard introduced
proof nets for linear logic [4]. In [13] Richard Moot gives a great overview of extended Lambek
calculus in both sequent and graphical form. This system was adapted for Lambek-Grishin calculus
in 2012 by Michael Moortgat and Richard Moot [I0], in which they add semantics as well. This
chapter shows the translation from sequent to graphical calculus. It mostly reiterates from [10],
but is essential for understanding the following chapters. First we define the building blocks of our
graphs and then we introduce rules for rewriting them.

2.2 Graphs

Proof nets allow us to use graph theory to produce sequent proofs. In order to do so our lexicon
cannot just assign types to words but needs to assign graphs. Once words are graphs we can treat
them in a graph-theoretical manner and ’compile away’ most of the abstract rewriting found in
sequent calculus. We start by translating our inference rules to graphs. Logical rules for our oper-
ators will define the translation of the operators themselves. Note that we use hypergraphs, graphs
with edges that can connect multiple vertices. To be specific, our proof nets will be 3-hypergraphs,
in which all edges connect exactly three vertices. Direction is of importance in our graphs, making
them harder to draw on the Euclidean plane. For a discussion on drawing these graphs see [3].

The vertices will be labeled with formulas and have two points of connection: up and down. Rel-
ative positioning has the following meaning between connected structures A and B: If A is above
B, then A is a hypothesis of B. Likewise, if A is below B, then A is a conclusion of B. Although
edges simply connect vertices we talk about hypotheses and conclusions of the edge, since it is
central in our translation. A vertex that is not the conclusion of anything is called a hypothesis;
a vertex that is not the hypothesis of anything is called a conclusion. A vertex connected on both
sides is an internal node and has no formula decoration.
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Edges are drawn as big circles, which are not to be confused with vertices. They are a direct
translation of the logical rules of LG. We distinguish between rules with one premise and rules
with two premises. The first are called cotensors and are filled in black. The second are called
tensors and are left white. We will sometimes use the term tensor link instead of edge. Note that
for Grishin’s operators we reverse the premises and conclusions, leading to tensors with one and
cotensors with two hypotheses.

Lambek tensor Lambek cotensor Grishin tensor Grishin cotensor

Figure 2.1: Edge layout

Using the graphs in Figure 2.3 we translate types to graphs by 'unfolding’ them. We identify the
main operator and pick the corresponding edge (depending on whether the formula is a hypothesis
or a conclusion). The edge is connected to vertices labeled as in Figure 2.3. A and B are respectively
the formulas left and right of the main operator. If A and/or B are complex, we now recursively
unfold them. The resulting structure is connected to the main formula via the first edge. The total
will therefore always be a connected structure.

S

ﬁ\ s s/ (np\S/)K
E%)

np\s

S
\(S/® s) © np P \{
np s

Figure 2.2: Lexical unfolding

We start without a garantee that the sequent is provable. In this case we talk about a proof
structure or candidate proof net. We define the proof structure now and leave the definition for
the proof net for later. Assume for now that a proof net is a proof structure corresponding to a
provable sequent.

Definition 2.1 Proof Structure

1. A proof structure is a 3-hypergraph (V, E) such that V is a non-empty set of vertices which
can at most once be the hypothesis and at most once be the conclusion of an edge, and E is
a set of non-empty subsets of V' called edges, as described in Figure 2.3.

2. A structure with hypotheses Hy, ..., Hy, and conclusions C1,...,C, is a proof structure of
Hy,....H,, = C’l,...,C'n.
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Lambek connectives — hypothesis
[L/] (L&) [LA]

A/B B A® B B B\A
A A B A

Lambek connectives — conclusion

[R/] [R®)] [R\]
A A B A
A/B B A®B B B\A
Grishin connectives — hypothesis
[Lo] [Le] [LO]
Ao B B Ao B B Bo A
A A B A

Grishin connectives — conclusion

[RO] [R&] [RO)
A A B A
Ao B B A® B B Bo A

Figure 2.3: Graphical translation of LG’s logical rules

Definition 2.2 Module
A module is a proof structure that is the direct result of lexical unfolding of a single formula.

We start proving a sequent by unfolding all formulas. If we consider the set of modules correspond-
ing to all formulas in a sequent as a (non-connected) proof structure, we see that this is not yet a
proof structure of the sequent. This can easily be verified by looking at Figure 2.3. We need to
identify atomic formulas to get a correctly corresponding proof structure. This is done by linking
an atomic hypothesis to an atomic conclusion with the same formula decoration. When repeated
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until no atomic formulas remain the result will be a proof structure of the given sequent. Note
that sometimes multiple linkings are possible. In this case each is a candidate proof net.

2.3 Correctness

So far we have only partially made the switch to graphical calculus. We need more than just
the logical rules. To complete the translation, we have the following rules, which dictate ways of
rewriting the graph. These rules are instrumental in actually proving a sequent. They allow us to
rewrite proof structures to proof nets. We now define a proof net, in terms of rules to be explained
immediately afterwards.

Definition 2.3 Proof Net

A proof net is a proof structure that can be contracted to an acyclic, connected structure (a tree)
containing no cotensors, using only the rules of contraction and interaction as described below.

Note that we can omit the labeling of internal vertices. In such a case we have an abstract proof
structure. All rules work on abstract proof structures. Contracting a proof structure and thereby
showing it is a proof net equals a correct derivation. Proof of this fundamental principle in the
graphical calculus for LG (stated in Theorem 2.4) can be found in [12].

Theorem 2.4 A proof structure P is a proof net — that is, P converts to a tree T — iff there is a

sequent proof of T.

(s@s)@np (s@s)Onp

o
Uy

np\s np\s np\s np\S)

Figure 2.4: (s © s) © np = s/(np\s)
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2.3.1 Contraction

First we will introduce a set of rules for removing cotensors from our proof structure. These rules
are the contraction rules. They are abstract proof structures that can contract to a single vertex.
These structures can be generalized and can contract even when found as part of a larger structure.
In Figure 2.5, showing all six of these structures, the nets are labeled with H and C. These are not
necessarily formula labelings: they are possibly structures (so a vertex labeled H in this figure is
either internal or a hypothesis). When one of these structures can be identified it can immediately
contract to a single vertex labeled H and C. This way the cotensor is removed. The final goal is
of course to remove all cotensors, so that we can show the proof structure to be a proof net.

H H H
C o C
R/] L] [R\]

H H H
C o C
[Lo] R (L)

Figure 2.5: Contraction rules

2.3.2 Interaction

The interaction rules are ways of rewriting the graph, corresponding to Grishin’s interaction prin-
ciples indicated in Figure 1.2 as G1 through G4. These rules make it possible to remove cotensors
(through contraction) when none of the applicable structures can be found. We rewrite the struc-
ture shown in the middle of Figure 2.6 to one of four structures as shown by the arrows. Note that
this is a nondeterministic procedure: any four of these structures can be the result of rewriting
the same starting structure. The hope is that through (reiterated) rewriting we find a structure
on which we can apply contraction. We can generalise the use of interaction and contraction to
generalised contraction principles, allowing for any number of tensors between the cotensor and
tensor of the structure. After interaction we can always find a contracting configuration in those
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X Y

\ﬁ/\y/\ﬁ/
o A e /&

Figure 2.6: Interaction rules

cases. These generalised contractions are not shown but are elaborated upon in 4.5.2.

2.4 Example derivations

We give an example of a derivation using graphical calculus in Figure 2.4. We start with two
modules as shown in Figure 2.2. These can be connected in two ways (the np in one way, the s in
two, giving a total of two possibilities). The leftmost structure corresponds to the modules after
binding in such a way that the derivation will succeed. Now reading from left to right, we apply
interaction and contraction until we find a proof net. The first step is an interaction rule (G1),
since we have no configurations for contraction. After applying this rule, we find two configura-
tions to apply contraction on. We first apply [LO] and then [R/], giving us a single point. This is
trivially a proof net since it contains no cotensors and is connected and acyclic.

Now that we have seen all that there is to it, let’s take another example. This time, we would like
to illustrate graphical calculus’ approach to spurious ambiguity. We take the example found in
Figure 1.4 and give its accompanying proof net in Figure 1.5. It is quite trivially a cotensor-free
tree. The ambiguity found in 1.4 is gone: this is the only proof net for the sequent in question. It
seems that spurious ambiguity is solved. We must note, however, that our theorem prover allows
another net for this sequent. This is because word order in a sentence is not preserved (see chapter
4). The net in Figure 1.5 is the only net for the sequent with order preserved.



Chapter

Nets and their interpretation

3.1 Relation to sequent proof

Let us revisit the problem of spurious ambiguity. We use the example sentence ”FEveryone finds
a mudshark”, combined with a lexicon that assigns the following types to the constituent words
respectively: (np/n) @ n, (np\s)/np, np/n and n. A sentence such as this has multiple proofs
in sLG, the unfocused sequent approach. The proof net approach of chapter 2 allows for a single
derivation of the sequent (np/n) ®@n, (np\s)/np, np/n, n = s. However, we would like to see two
derivations, explaining the scope difference of the two interpretations of this sentence. Is there a
single mudshark that is found by everyone, or has everyone individually found a mudshark of their

own?

Everyone mudshark

a
finds \(

A
Y oY

S

(1) e (2350 1 (a(det | (y-(tv 1 ((\a)/y))/noun)) /2)))
o (2 (det 1 (fiy-{a’ 1 iz (o 1 ((2\) /y))/2))/nown))

Figure 3.1: Everyone finds a mudshark

14
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In Figure 3.1 we show a proof net (the single net for the above sequent) and the two proof terms
associated with it. Figure 3.1 is an example of the output we would like to see from a theorem
prover. To avoid confusion between a as a variable and as a determiner, we use the more general
”subj tv det noun” in the proof term. These proof terms are compatible with focused proof search
for LG, or fLLG. They are an encoding of proofs in fLG (which has less of a many-to-one attitude
to proofs than sLG). We introduce these terms from a graphical point of view; instead of justifying
them from fLG’s inference rules, we extend our graphs so we can read these proof terms in a
graph-based way.

3.1.1 Types and terms

The term language for our graphs is the same as that for {LG as found in [10]. We distinguish
three different types of terms. These are commands, contexts and values. The full term language
differentiates not only between input (represented as variables z,y,z,...) and output formulas
(represented as covariables «, 3,7, .. .), but also between these three types. Figure 3.1 gives the full
term language in Backus-Naur Form, where commands are labeled ¢, C, values v,V and contexts
e, E.

vi=pa.C |V, Vi=s | Quz|voe|edu
e:x=px.C | E; E::=a|el@eg|v\e|e/v

ci=(x1E) | (V]a); c) o2 CIByCI c|*E |

Figure 3.2: Term language

In graphical terms, we define these types as follows.
Definition 3.1 Value, context, command

1. A value is either:

(a) The hypothesis of a tensor
(b) The positive main formula of a tensor

(c) A starting formula as found in the sequent
2. A context is either:

(a) The conclusion of a tensor

(b) The negative main formula of a tensor
3. A command is either:

(a) The result of cutting a value against a context

(b) An extension of a command with a cotensor link

We consider A ® B,A@ B and B © A to be positive while A ® B, A/B and B\ A are negative.
Atomic formulas have arbitrary polarity: their polarity can be chosen at will, though once deter-
mined we must stick with our choice for the entire derivation. A different choice for atom polarity
leads to different derivations, although the derivability of a sequent does not depend on this choice.
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3.2 Focused proof nets

We extend our graphical calculus in such a way that we can read the corresponding proof term(s)
by traversal. Polarity must be defined in our lexicon for our atomic formulas. Complex formulas
have a polarity based on their main connective. All we need to do is change the net according to
the term language. We don’t really change our previous approach: we only add more information
to our graph.

3.2.1 Composition Graph

Since proof terms only make sense when associated with proof nets (instead of the more general
proof structures), we can assume that a translation will be made from proof nets (not structures)
to new nets. Proof terms are computed by a traversal on such a new net, or composition graph.
The precise translation is defined below (see [10]).

Definition 3.2 Composition Graph

Given a proof net P, the associated composition graph cg(P) is obtained as follows.

1. All vertices of P with formula label A are expanded into polarised axiom links: edges con-
necting two vertices with formula label A; all links are replaced by the corresponding links of
Figure 3.6.

2. All vertices labeled with simple formula are assigned atomic terms of the correct type (variable
or covariable) and all others are given a term derived from these assignments.

3. All axiom links connecting terms of the same type (value or context) are collapsed.

We talk about an initial composition graph before and about a reduced composition graph after
step 3. An example composition graph for a small proof net can be found in Figure 3.4.

Command Focus ~
v T « px.c
« e pa.c T
(v]a) (x1e) Ja.c fx.c

Figure 3.3: Axiom links

Before we explain the actual traversal, we define several parts of the composition graph to be able
to refer to them separately. We divide axiom links in four different categories, two of which will
be collapsed in step 3 as described above. The interesting cases are those that do not collapse:
They link a value to a context or vice-versa. We say the one is a command link, the other a focus
link (see Figure 3.3). The direction of the link is determined by polarity: an arrow from value to
context indicates a positive link, the other way around needs a negative formula to function.
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Figure 3.4: Example of producing a composition graph.

Definition 3.3 Component

Given a proof net P, a component C' of P is a maximal subnet of P containing no cotensors.

From its definition, we can easily see how to obtain a composition graph’s components: we simply
remove all cotensors. All remaining connected parts are the components of the graph. We have
now defined all parts needed to understand term traversal.

3.2.2 Traversal

To read proof terms from focused proof nets we need a structured method of traversing the graph.
The following algorithm for term traversal in focused proof nets for LG can be found in [I0]. It
produces a term given the composition graph cg(P) of a proof net P.

1. Compute all components of cg(P), consisting of a set of tensor links with a single main
formula. Mark all these links as visited.

2. While ¢g(P) contains unvisited tensor links do the following:
(a) Follow an unvisited command link attached to a previously calculated maximal subnet,

forming a correct command subnet.

(b) For each cotensor that is doubly connected to the current command subnet, form a new
command net including this cotensor. Repeat until no such cotensors can be found.

(c) Follow a u or fi [focus] link to a new vertex, forming a larger value or context subnet.

This algorithm produces a series of links visited, written as ¢; — 1, ... etc. These can be applied
to create proof terms.

3.2.3 Problems

In encoding this algorithm for use in the theorem prover we have encountered several difficulties,
which we will describe below. All problems described here have been encountered whilst imple-
menting the previously described algorithm. They vary from small remarks on clarity to notes on
incompleteness.

First of all, once we have chosen a subnet to start with, we must stick to that subnet for all further
steps. This means that the maximal subnet in step 2a can only once be chosen: we must stick with
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our chosen subnet for the rest of the traversal. This restriction is small but crucial: not adhering
to it leads to nonsensical terms. The algorithm also makes no mention of polarity. We can only
follow a command or focus link if the polarity of the formula linked is correct. This restriction is
needed to bound the number of possible terms.

Furthermore, the algorithm gives us the impression that term traversal is a sequential process,
whilst it is actually parallel. As stated just before the original definition of the algorithm, [...]
instead of seeing p [the reduction from proof structure to net] as a sequence of reductions, we can
see it as a rooted tree of reductions [...] [I0]. In its current state the algorithm does not tell us
how to deal with a parallel situation. The algorithm should therefore be adjusted to allow this
parallellism to be handled correctly. Figure 3.5 is an example: its associated proof term is of the
form A® B, where A is (a/b) and B is (c\d). We know there is a proof term, for it is a tautology.
Also, we can easily see a series of contractions that result in a proof tree. Still, whichever compo-
nent we choose to start with, out current algorithm cannot produce the term.

Figure 8.5: Parallellism: (a/b) ® (c\d) = (a/b) ® (c\d)

Unfortunately fixing the entire traversal algorithm is beyond the scope of this thesis. The encoding
of the algorithm is therefore not complete. Specifically, it cannot handle parallellism in building
the proof term. The version encoded is a modified version of the algorithm above.

1. Compute all components of cg(P), consisting of a set of tensor links with a single main
formula. Mark all these links as visited. Choose a component S to start from.

2. While ¢g(P) contains unvisited tensor links do the following:

(a) Follow an unvisited command link ¢ attached to S, forming a correct command subnet.
This can only be done if the ¢’s arrow is outgoing with respect to S. We enlarge S with
the subnet attached to it via c.

(b) For each cotensor that is doubly connected to S, including this cotensor in S. Repeat
until no such cotensors can be found.

(c) Follow a u or fi [focus] link just as in step (a), forming a larger subnet S.
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If any of these steps (that is, (a) and (c¢)) cannot be taken but unvisited links remain, the
traversal was unsuccesful. If traversal is unsuccesful for all possible starting .S, there is no
proof term.

Using this updated algorithm, we can compute a proof term methodically for many (but not all)
proof nets.

Everyone

a
/K c3 T mudshark
1 T : finds y

CzT T#3

%

l H1
S
Figure 3.6: Composition graph for Fveryone finds a mudshark

3.3 Example derivation

Let us see where the two proof terms of Figure 3.1 actually come from. The composition graph
of the the proof net shown therein is given in Figure 3.5. We immediately see that there is only
one component that is a feasible choice as a starting point: all other components have no outgoing
focus links. Therefore we start in this case by choosing the (unique) component consisting of two
tensors. Now we repeat part 2 of the algorithm until all links have been visited. We follow an
outgoing command link, check for cotensors and follow an outgoing focus link.

At first we have no choice: the only outgoing command link is ¢;. But then we have three focus
links to choose from. Link g7 is not an option, since the resulting subnet has no outgoing commands
links. We can choose either ps or ps. In this composition graph, this choice determines the rest
of the traversal. The endresult is two possible orders of traversal: co — us, ¢z — p2, ¢ — p1 and
Co — M2, €1 — H3, C3 — 1.

We obtain a proof term by applying function application and abstraction in such an order. Each
possible order of traversal therefore encodes a (distinct) proof term.
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Theorem Prover

4.1 Building the Theorem Prover

This chapter deals with the actual code of the theorem prover. It is written in Python 2.7 and
can be found in full in the appendix. The code implements several algorithms, each of which is a
part of proving a sequent in graphical calculus. Some parts we have adapted from [10], others are
original work. Proving a sequent A = B is done by calling python LGprover.py "A=>B", with
several possible extra options. These can be found using the --help command.

Before we describe the prover itself, a quick word on its performance. We have tested the prover
only up to a certain extent. Automatic testing of tautologies A = A with increasing complexity
of A has so far returned only positive results. However, we note one major issue. When deriving
a sequent Ay, As... A, F By,B>...B,,, order is not preserved. Instead, each formula is unfolded
and then the linking of input and output axioms between any and all modules is considered.
This may lead to, for example, sentences like ”"subj tv det noun” to be derivable as ”det noun tv
subj”, that is, we have a confusion between subject and object. The prover is insensitive to this
distinction: once terms are unfolded all sentence structure is lost. Since both subject and object
(determiner plus noun) are noun phrases, the prover cannot distinguish the two. This behaviour
is not a bug: it is an actual feature of the prover implemented. Of course, for use with natural
language, extra constraints should be considered. Note also that, since we have implemented a
brute force approach, performance is definately not optimal.

4.2 Files and Classes

The most important files are LGprover.py, which is the main program, and classes_linear.py, con-
taining all classes. Since we work with hypergraphs, implemented classes for graphs would need to
be partially rewritten. Therefore we have built a simple class system from scratch.

We have ProofStructures which most importantly contain a list of Tensors. Proof nets are struc-
tures as well, since they are simply structures that can be rewritten to a tensor tree. The Tensor
class is split up in OneHypothesis and TwoHypotheses classes. Furthermore we have the Vertex
class for vertices and the Link class for links between vertices. Note that these Links are not

20
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Tensors. The file table.py contains a small class which is used in combinatorics. The graph.py file
is only used when the argument '--term’ is used.

4.3 Unfolding

Unfolding is a recursive process. Each step is completely defined by the main connective of the given
formula (if any). The code for lexical unfolding and indeed this whole project is an adaptation
from code found in [3]. We unfold a single vertex at a time, since the vertex is labeled with a
formula. The formula defines the (co)tensor as per Figure 2.3, which is first further unfolded, and
then joined to the first vertex in question.

4.4 Pruning

For each possible way of linking the atoms of our modules, we need to consider whether the resulting
structure is a proof net. This brute force approach leads to quite the computational overhead. If
we can disqualify some possible linkings beforehand, we prune our search space. We prune only
very simple configurations which are not derivable. If the number of input and output atoms do
not match, we can forget a derivation. Linking a tensor to itself is also not a very good idea. The
more possible linkings can be pruned, the less work we need to do afterwards. There are many
more pruning checks that can be done.

4.5 Combinatorics

Pruning can still leave a number of possible atom linkings to be tried. We must try to rewrite
each of these proof structures to a proof net. Each correct proof net we find is a derivation of a
different sequent. In chapter 5.1 we explain why we sometimes have more than one proof net.

4.5.1 Shallow/Deep copy

To show that a proof structure is a proof net we simply take the structure and continuously apply
(generalized) contraction. If we cannot apply a rule anymore we are done, and check whether we
have a proof net. We have already modified our set of modules (the result of unfolding our sequent)
by atom linking to form the structure. Our rewriting will modify it even more. If we want to con-
sider the next possible linking (because the previous has been proved to be (in)correct), we need
the set of modules to start from. The simple solution would be to take a copy of the set of mod-
ules before considering a possible binding and work on this copy. This raises the following problem.

If we take a shallow copy, the problem is not solved. The result of contraction is a linking between
the surrounding parts. These parts are the vertices in our structure which are not copied individ-
ually. Our modules will have remembered the previous method, which is unacceptable. On the
other hand, making a deep copy of our modules requires a lot of work. In fact, it might be easier
to just unfold our set of formulas again. This is exactly what we do for each new possible atom
linking that we consider.
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4.5.2 Repeated generalised contraction

Contraction is a method of ProofStructures. For each cotensor in the net, we try to contract. If
this is possible for a single cotensor, we rewrite the net as per contraction, close the loop, and
call the method again. We stop calling the method once none of the cotensors can contract. This
way, either all cotensors have contracted, or a cotensor remains that cannot be contracted. The
existence of this last cotensor would prove we do not have a proof net. Actually checking whether
contraction is possible is a simple case of pattern matching of contraction configurations and parts
of the structure.

4.6 Proof net

If none of the rewriting rules can be applied, we check for any remaining cotensors, cycles or
unconnected parts. Remaining cotensors are easily detected; connectedness and acyclicity are
determined by a traversal of the structure.

4.7 Proof term

We need more information in our nets to do term traversal. Instead of translating the nets (a
costly procedure), we stick all extra information onto our classes when creating a structure. This
means all proof structures come with a composition graph, even when --term is not called. This
causes only limited computational overhead.

4.7.1 Traversing the Composition Graph

In order to traverse the graph, we create an abstract representation of it in terms of a simpler
graph. Nodes correspond with components and edges with links. Actual traversal order is only
calculated on these graphs. Once we have determined the possible orders of traversal, we switch
back to the composition graph to calculate the proof terms, since they hold the actual information
needed (such as types and variable assignment to formulas).
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Conclusion

5.1 Further research

As described in the previous chapter, the prover does not preserve order of formulas. The prover
needs to be adjusted for order to be taken into account. In creating the prover we have not encoun-
tered a satisfying method of doing so. Adjusting the prover thusly would make for an interesting
extension. There are a lot of pruning strategies that can drastically improve the performance of
the prover. Only very simple pruning strategies have been implemented.

The algorithms the theorem prover relies upon are in some cases in need of further specification.
These algorithms, especially that for term traversal, have so far been incompletely described. Their
full description is an ideal subject for further research.

5.2 Conclusion

The theorem prover created for this thesis is given in Appendices A through G. It is based on
solid work on proof nets, most of which is implemented. Its correctness is directly derivable from
the correctness of this work. In implementing, some of the underlying theory was found to be
not concrete enough. Where possible we have worked around such problems, but some features
(such as term traversal) are incomplete due to the lack of theory to draw from. Whether this
has hampered the prover, we cannot say for sure. So far testing gives positive results, but we can
only accept the prover as correct when proven that its algorithms correspond precisely to the theory.

By building a theorem prover for Lambek-Grishin calculus based on graphical calculus, we have
shown that an implementation is indeed possible. More importantly, we hope that it will be used
in further research on graphical LG and its characteristics.
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Appendix

LGprover

#!/usr/bin/env python

LIRa refers to:

http://www. phil .uu.nl/ " moortgat/lmnlp /2012/Docs/contributionLIRA . pdf
Proofs nets and the categorial flow of information

Michael Moortgat and Richard Moot

Algorithm :
1) Unfolding
2) Pruning
3) Combinatorics
4) Soundness
) Proof Term

Fde e Fe I FIFRI

from helper_functions import x*
import classes_linear as classes
import argparser

from table import Table

import graph as g

import term

import os, sys
import platform
import itertools

# By default the formula appears in hypothesis position.
def unfold_-formula (formula, raw, hypothesis):
vertex = classes.Vertex(formula, hypothesis)
structure = classes.ProofStructure(formula, vertex)
vertex.is_value = True
vertex.term = term.Atomic_Term (raw)
if simple_formula (formula):
structure.add_atom (vertex , hypothesis)
else:
vertex .unfold (formula, hypothesis, structure) # Recursively

to_remove = []
for 1 in structure.links:
if l.contract():
to_remove.append (1)
for 1 in to_remove:
structure.links.remove(1l)

# Toggle whole formula

p = argparser. Parser ()
args = p.get_arguments ()
if args.main:
vertex .main =" |texttt {{{0}}} .format(args.main)
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return structure

def unfold-all(sequentlist , raw):

classes.vertices = {}

classes .removed = 0

classes .next_alpha = 0

hypotheses = [unfold_-formula(x, y, True) for (x,y) in zip(sequentlist[0], raw[O0]) ]
conclusions = [unfold_formula(x, y, False) for (x,y) in zip(sequentlist[1], raw[1])]
modules = hypotheses 4+ conclusions

return modules

def create_composition_graph (sequent, raw, possible_binding):
# Unfolding (again)
modules = unfold_all (sequent, raw)

components = []
for m in modules:
components.extend (m. get_.components ())

components = [x for x in components if not x = []]

# Creating the composition graph
composition_graph = modules[0]
for m in modules [1:]:
composition_graph.join (m)
for b in possible_binding:
link = classes.Link(b[1],b[0])
if not link.contract():
composition_graph.add_link (link)

command = [1 for 1 in composition_graph.links if 1.is_.command ()]
mu_comu = [l for | in composition_graph.links if not l.is_.command()]

return composition_graph , components, command, mu-comu

def main():

p = argparser. Parser ()

args = p.get_arguments ()

if len(args.sequent) != 1:
p.print_help ()
sys.exit ()

raw_sequent = args.sequent [0]
lexicon = []
if args.lexicon:
lexicon , classes.polarity = build_-lexicon (args.lexicon)

# Parsing the sequent
raw_sequent = [map(lambda x : x.strip(), y) for y in
[z.split(”,”) for z in raw_sequent.split (7=>")]]

if len(raw_sequent) != 2:
syntax_error ()

sequent = raw_sequent
if lexicon:
sequent = [map(lambda y : lookup(y, lexicon), x) for x in raw_sequent]

# 1) Unfolding

# Links added as either command or mu/comu
modules = unfold_all(sequent, raw_sequent)

# 2) Pruning
# Checks: atom bijection

atom_hypotheses = []
atom_conclusions = []
for m in modules:

atom_hypotheses += m. hypotheses
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atom_conclusions 4= m. conclusions
125
# Van Benthem count / Count Invariance
127 if sorted ([h.main for h in atom_hypotheses]) != sorted ([c.main for c¢ in
atom_conclusions]) :
no._solutions ()
129
# Chart of possible atom unification
131
chart = {}
133 for h in atom_hypotheses:
if h.main not in chart:
135 chart [h.main] = Table(h)
else:
137 chart [h.main]. add_hypothesis (h)
for ¢ in atom_conclusions:
139 chart [c.main]. add_conclusion (c)
141 for t in chart.values():
t.create_table ()
143
# Checks: (simple) acyclicity
145 t.prune_acyclicity ()
147 # TODO: Checks: (simple) connectedness
#t .prune_connectedness ()
149
# Checks: Co—tensor will never contract
151 t.prune_cotensor ()
153 # TODO: Checks: focusing, mu / comu
155 # 3) Combinatorics
# Creating all possible derivation trees
157 for t in chart.values():
t.combine ()
159
tables = [t.atom_bindings for t in chart.values()]
161 possible_bindings = []
table_product = list (itertools.product(xtables))
163 for product in table_product:
binding = []
165 for b in product:
binding += b
167 possible_bindings += [binding]
169 # For each possible binding, create a proof net
# Shallow / Deep copy problem: unfold every time
171 # This is cost—intensive but the easiest way (7)
# This requires bindings to refer to indices
173 # instead of Vertex objects (these are destroyed each unfolding)
175 no_solution = True
# Erase file
177 if args.tex:
f = open(’formula.tex’, 'w’)
179 f.close ()
181 for i in range(0,len(possible_bindings)):
# Copy problem
183 if i > 0:
modules = unfold_all(sequent, raw_sequent)
185
proof_net = modules[0]
187 for m in modules [1:]:
proof_net. join (m)
189 for b in possible_bindings|[i]:
link = classes.Link(b[1],b[0])
191 if not link.contract():
proof_net.add_link (link)
193
# Checks: (mu / comu) —— command bijection
195 if not proof_net.bijection ():
continue
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if

# 4) Soundness
# Collapse all links, not needed anymore

for 1 in proof_net.links:
l.collapse_link ()
proof_net.links = []

# Try to contract
proof_net.contract ()

# If there are cotensors left , this is not a solution
if [x for x in proof_net.tensors if x.is_cotensor()]:
print "not a solution”
continue

# Check: Connectedness of the whole structure
# Traversal , checking total connectedness and acyclicity
# NOTE: Can only be checked on contracted net

if proof_net.tensors:
if not proof_net.connected_acyclic():
continue

# Print to TeX
if args.tex:
proof_net.toTeX(no_solution)

no_solution = False

# 5) Proof term

# TODO: Compostion Graph Traversal

# NOTE: Can only be done on non—contracted net

if args.term:

composition_graph , components, command, mu-comu = create_composition_graph (
sequent , raw_sequent, possible_bindings[i])

# Step 1: create matchings
# TODO: Working assumptions (see graph.py)

# Create traversal graph
cotensors = [x for x in composition_graph.tensors if x.is_cotensor ()]
graph = g.Graph(components, cotensors, mu-comu, command)

# Step 2: Calculate term in order of matching
matching = graph.match ()

# Step 3: Write to TeX
graph.to_TeX (matching, composition_graph)

# For debugging
# proof_net.print_debug ()

if args.tex and not no_solution:
# End of document

f = open(’formula.tex’, ’a’)

f.write(’\end{document} ")

f.close ()

os.system (’pdflatex formula.tex’)

if platform.system () == ’Windows :
os.system (’start formula.pdf’)

elif platform.system () == ’Linux’
os.system (’pdfopen ——file formula.pdf’)

# Mac OS X 7

if no_solution:
no_solutions ()

_-name_. == ’__main__":
main ()

28

Code/LGprover.py
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Appendix

Classes

from helper_functions import x*
import argparser

import sys

import pyparsing

import term

drawn = []
texlist = []
vertices = {}
removed = 0

polarity = {}

class ProofStructure(object):

def __init__(self, formula, vertex):
self.formula = formula
self .main = vertex
self.tensors = []

self.links = []
self.order = [0]
self . hypotheses = []
self.conclusions = []

def print_.debug(self):
print 77

print [x.alpha for x in self.tensors]

print self.order
print [(x.top.alpha,x.bottom.alpha)

def add_tensor(self, tensor):
self.tensors.append(tensor)

for x

tensor.index = len(self.tensors) — 1

tensor.alpha = len(self.tensors)

def add_-link(self, link):
self.links .append(link)

def add-atom(self, atom, hypo):
if hypo:
self.conclusions .append (atom)
else:
self.hypotheses.append (atom)

def bijection(self):
count = 0
for link in self.links:
if link.is_.command():
count += 1

29
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else:
count —= 1
return count =— 0

def join (self, module):
# Temporary fix on order for printing
if module.tensors:
higher_order = [x + len(self.order) for x in module.order]
for t in module. tensors:
t.alpha += len(self.order)
self.order += higher_order
self.tensors 4= module. tensors
self.links 4= module.links

del module

def contract(self):
contracted = False

for t in self.tensors:
if t.is_cotensor():

(complement, c_main, t_top, s) = t.contractions(self)
if complement is not None:

# Simple contraction, Lx and R(x*)

link = None
if not s:
if t_top:
link = Link(t.arrow, c_main.alpha)
else:
link = Link(c-main.alpha, t.arrow)

# Generalized contraction, R/, R\, L(/) and L(\)
else:
link2 = None
if t_top:
link = Link(t.arrow, t.bottom.alpha)

link2 = Link(complement.top.alpha, c_main.alpha)

else:
link = Link(t.top.alpha, t.arrow)

link2 = Link(c_.main.alpha, complement.bottom.alpha)

link2 . collapse_link ()
link . collapse_link ()

# Removing the tensor
a = complement. alpha
self.tensors.remove(complement)
del complement
if a in self.order:

self.order.remove(a)

for i in range(len(self.order)):

if self.order[i] > a:
self.order[i] = self.order[i] — 1

# Removing the cotensor
a = t.alpha
self.tensors.remove(t)
del t
if a in self.order:

self.order.remove(a)

for i in range(len(self.order)):

if self.order[i] > a:
self.order[i] = self.order[i] — 1

contracted = True
break

if contracted:
self.contract ()

def connected_acyclic(self):
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list = []
for t in self.tensors:
list .append(t)
checklist = [(list [0], None)]
connected_and_acyclic = True

while checklist:

(tensor, previous) = checklist [0]
checklist .pop(0)
n = tensor.neighbors ()

if previous is not None:

test = len(n)

n = [x for x in n if x is not previous]

if test != (len(n) + 1):
# Cycle found
connected_and_acyclic = False
break

if tensor not in list:
# Cycle found
connected_and_acyclic = False
break

list .remove(tensor)

for t in n:
checklist .append ((t, tensor))

if list:
# Disconnected part remains
connected_and_acyclic = False

return connected_and_acyclic

# Determining the components (maximal subgraphs)
def get_components(self):

tens = [[x] for x in self.tensors if not x.is_cotensor ()]

if len(tens) < 2:
return tens

trial = True
while trial:
trial = False

x = tens [0][0]
for y in tens [1:]:
if shortest_path(self ,x,y[0]) is not None:
tens [0].append(y[0])
tens.remove(y)
trial = True
if len(tens) < 2:
return tens

return tens

def toTeX(self, first):
global texlist , drawn
drawn = []
texlist = []

# Write to formula.tex

# Header

f = open(’formula.tex’, ’a’)
rotate = "7

if not first:
f.write(”\n”)

else:
f.write(’\documentclass[tikz]{standalone}\n\n’)
f.write(’\usepackage{tikz—qtree}\n’)
f.write( \usepackage{stmaryrd}\n’)
f.write( \usepackage{scalefnt}\n")
f.write(’\usepackage{amssymb}\n\n")
f.write(’\\begin{document}\n\n")
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32

f.write(’\\tikzstyle{mybox} = [draw=red, fill=blue!20, very thick ,rectangle

rounded corners, inner sep=10pt, inner ysep=20pt]\n\n’)

# Toggle rotation

p = argparser. Parser ()

args = p.get_arguments ()

if args.rotate:

rotate = "rotate=270,”

# Tikzpicture
f.write(’\\begin{tikzpicture}[")
f.write(rotate)
f.write(’scale=.8,")
f.write( cotensor /.style={minimum size=2pt, fill ,draw, circle },\n")
f.write(’tensor/.style={minimum size=2pt, fill=none,draw,circle},”)
f.write(’sibling distance=1.5cm, level distance=lcm,auto]\n\n")
x =0
y =0

if not self.tensors:
#f.write(self .main.toTeX(x, y, self.main.main, self))
f.write(”\\node at (0,0) [”)
if self.main. hypothesis is not None:

f.write(”label=above:${0}$”.format (operators_.to.TeX (self.main.hypothesis)

))

if self.main.hypothesis is not None and self.main.conclusion is
f.write(”, 7)
if self.main.conclusion is not None:

not None:

f.write(”label=below:3{0}8”.format (operators_to_.TeX (self.main.conclusion)

))
f.owrite(”] {.};\n”)

else:
# Shuffle self.tensors according to order
# Trimming order to size instead of
# losing myself in LaTeX—printing details

self.order = [x for x in self.order if x < len(self.tensors)]
self.tensors = map(lambda x: self.tensors[x],self.order)
previous_tensor = None

for tensor in self.tensors:

if previous_tensor is not None:

(x-adj,y-adj) = adjust_xy (previous_tensor , tensor)
x += x-ad]j
y += y-adj

f.owrite ({0} at ({1},{2}) {{}};\n’ .format(tensor.toTeX () ,x,y))
f.write(tensor.hypotheses_to_-TeX (x, y))
f.write(tensor.conclusions_to_-TeX (x, y))

y —= 3

previous_tensor = tensor

for line in texlist:
f.write(line)

for 1 in self.links:
f.write(l.draw_line ())

f.write( ’\n\end{tikzpicture}\n\n’)
f.close ()

def adjust_xy (previous, current):

if

isinstance (previous, OneHypothesis):
if previous.bottomLeft.conclusion is current:
if isinstance (current, OneHypothesis):
if current.top.hypothesis is previous:
return (—1,1)
else:
if current.topRight.hypothesis is previous:
return (—2,1)
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elif previous.bottomRight.conclusion is current:
if isinstance (current, OneHypothesis):
if current.top.hypothesis is previous:
return (1,1)
else:
if current.topLeft.hypothesis is previous:
return (2,1)

else:

retu

if previous.bottom.conclusion is current:
if isinstance (current, TwoHypotheses):
if current.topLeft.hypothesis is previous:
return (1,1)
elif current.topRight.hypothesis is previous:
return (—1,1)
rn (0,0)

class Vertex(object):

def

def

def

__init__(self, formula=None, hypo=None):
global vertices , removed

self .term = None
self.set_hypothesis (None)
self.set_conclusion (None)

self.alpha = len(vertices) + removed
self.is_value = True # if False then is_context
vertices [self.alpha] = self
if formula is not None:
self .main = formula

self.attach(formula, hypo)

set_hypothesis(self, hypo):
self . hypothesis = hypo

set_conclusion (self , con):
self.conclusion = con

toTeX (self, x, y, tensor, struc):
global texlist , drawn
co = "7
if tensor is not self.main:
if tensor.is_cotensor () and tensor.arrow is self.alpha:
co =" [=>]
line = "\draw{0} ({1}) — ({2});\n”.format(co,”t"+
str(tensor.alpha),”v’+str (self.alpha))
# TODO: curved links are broken, self.hypo can be a Link
#if self.internal() and self.conclusion is tensor:

# if struc.order.index(tensor.index) != struc.order.index(self.hypothesis.
index) + 1:
# line = self.curved_-tentacle(tensor, self.hypothesis)

texlist .append(line)
if self.alpha in drawn:

return 77
drawn .append(self.alpha)
label = operators_to_.TeX (self.main)

tex = 7\\node g{g}i)dt ({1} .{2}) {{${3}$}};\n”.format ("v’+str(self.alpha),
x, y, labe
return tex

curved_tentacle(self, tensor, prev_tensor):

ED

co =
if tensor.is_cotensor () and tensor.arrow is self.alpha:
co = 7-,[7 »
start = "\draw{0} ({1}) ..controls ”.format(co, ”"t”’+str(tensor.alpha))
direction = ”west”

if isinstance (tensor, TwoHypotheses):
if tensor.topRight is self:
direction = "east”
elif isinstance(prev_tensor, OneHypothesis):
if prev_tensor.bottomRight is self:

direction = "east”
controls = 7+4(north {0}:4) and +(south {0}:4.0)”.format(direction)
end = 7 .. ({0});\n”.format(”v’+str(self.alpha))

line = start 4+ controls 4+ end
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def

def

def

return line

internal (self):

return ((isinstance(self.hypothesis, Tensor) or
isinstance(self.hypothesis, Link)) and
(isinstance (self.conclusion, Tensor) or
isinstance(self.conclusion, Link)))

is_hypothesis(self):
return (isinstance(self.hypothesis, str) or (self.hypothesis is None))

is_.conclusion (self):
return (isinstance(self.conclusion, str) or (self.conclusion is None))

is_lexical_item (self):
return (self.is_hypothesis() and self.is_conclusion ())

attach (self , label, hypo):
if hypo:
self.set_hypothesis(label)
else:
self.set_conclusion (label)

# Important: use of hypo

# 1.
# 1.

def

top.get_term (False)

bottom . get_term (True)

get_term (self , hypo):

if isinstance(self.term, term.Connective-Term):

tensor = None
if hypo:

tensor = self.conclusion
else:

tensor = self.hypothesis

if isinstance(tensor, Link) or isinstance(tensor, str) or tensor.is_cotensor

self.term = term.Atomic_-Term ()
return self.term

# Now we can assume self.term is a Term object
left = tensor.left.get_term(tensor.left.hypothesis is tensor)
right = tensor.right.get_term (tensor.right.hypothesis is tensor)

self .term = term.Complex_-Term(left , self.term, right)

return self.term

# This is the source of the recursion

def

unfold (self , formula, hypo, structure, i=None):
try:

[left , connective, right] = parse(formula)
except pyparsing.ParseException:

syntax_error ()

vertex = Vertex(formula)
if i is not None:

self.term = term.Connective_Term (connective)
vertex.term = term.Connective-Term (connective)
self.polarity = con_pol(connective)
vertex.polarity = self.polarity
if hypo:

link = Link(self.alpha,vertex.alpha)
else:

link = Link(vertex.alpha, self.alpha)
(premises , geometry, term_geo) = tensor_table[(connective ,hypo)]
if premises =— 1:

t = (OneHypothesis(left , right, geometry, vertex, structure, hypo, 1))
else:

t = (TwoHypotheses(left , right, geometry, vertex, structure, hypo, i))
t.term = term_geo
t.set_left_and_right ()
structure.add_link (link)

class Tensor(object):
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416 def __init__(self):
print ”error”

def toTeX(self):

120 co = 7

if self.is_cotensor ():

122 co = ’'co’

return ’\\node [{O}tensor] ({1})’.format(co,”t”+str(self.alpha))

def parse_geometry (self , geometry, vertex):
426 index = geometry.find (7<”)

if index > —1:

128 self.arrow = vertex.alpha

geometry = geometry.replace (7<”, 77)
430 return geometry

132 def get_lookup(self, left, right, vertex):
lookup = {

434 "f’:(Tensor.attach,vertex),
’17:(Tensor.eval_formula ,left),

136 ‘r’:(Tensor.eval_formula ,right),
v’ :True,

)

138 e’ : False
440 return lookup

142 def set_structure (self, struc, hypo, origin_index):

if origin_index is not None:

144 new = len(struc.order)

origin_index = struc.order.index(origin_index)
146 if hypo:

struc.order.insert (origin_index + 1,new)
148 else:

struc.order.insert (origin_index ,new)

450 struc.add_tensor (self)

self .structure = struc

def is_cotensor (self):
454 return hasattr(self , ’arrow’)

156 def attach(self, vertex, hypo, is_value, main=True):
vertex .attach(self , not hypo)

158 vertex.is_value = is_value

if main:

160 self . main = vertex

return vertex

162
def eval_formula(self, part, hypo, is_value):
464 global polarity

if simple_formula (part):

166 atom = Vertex(part, hypo)
self.structure.add_atom (atom, not hypo)

468 atom.term = term.Atomic_-Term ()
if part in polarity:
170 atom. polarity = polarity [part]
else:
472 atom. polarity = '—’
return self.attach(atom, hypo, is_value, False)
474 else:
vertex = Vertex ()

176 self.attach(vertex, hypo, is_value, False)
part = part[l:—1]

478 vertex .unfold (part, not hypo, self.structure, self.index)
# Toggle abstract
180 p = argparser. Parser ()
args = p.get_arguments ()
182 if args.abstract:
vertex .main = 7.7
184 else:
vertex . main = part
186 return vertex

488 def get_term(self):
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def

def

# term has never been evaluated before
if isinstance(self.term, str):
tl = self.left.get_term(self.left.hypothesis is self)
t2 = self.right.get_term(self.right.hypothesis is self)
self .term = term.Cotensor_-Term(tl, t2, self.main.get_term (self.main.
hypothesis is self))
return self.term

neighbors(self):
n —=
for h in self.get_hypotheses():
if isinstance (h.hypothesis, Tensor):
n.append (h. hypothesis)
for ¢ in self.get_conclusions():
if isinstance(c.conclusion, Tensor):
n.append(c.conclusion)
return n

non_main_connections(self):
n =[]
for h in self.get_hypotheses():
if not h is self.main:
if isinstance(h.hypothesis, Tensor) or isinstance (h.hypothesis, Link):
n.append(h. hypothesis)
for ¢ in self.get_conclusions():
if not ¢ is self.main:
if isinstance(c.conclusion, Tensor) or isinstance(c.conclusion, Link):
n.append(c.conclusion)
return n

class OneHypothesis(Tensor):

def

def

def

def

def

def

def

def

_-init__(self, left, right, geometry, vertex, struc, hypo, i):
Tensor.set_structure (self , struc, hypo, i)

geometry = Tensor.parse_geometry (self , geometry, vertex)
lookup = Tensor.get_lookup (self, left, right, vertex)
(function ,arg) = lookup [geometry [0]]

self .top = function(self, arg, 1, lookup[geometry[3]])
(function ,arg) = lookup [geometry [1]]

self.bottomLeft = function (self, arg, 0, lookup[geometry [4]])
(function ,arg) = lookup [geometry [2]]

self.bottomRight = function(self, arg, 0, lookup[geometry[5]])

get_hypotheses(self):
return [self.top]

get_conclusions (self):
return [self.bottomLeft, self.bottomRight]

num-_hyp(self):
return 1

num_con(self):
return 2

hypotheses_to_TeX (self , x, y):
return self.top.toTeX(x, y + 1, self, self.structure)

conclusions_to_-TeX (self, x, y):

sl = self.bottomLeft.toTeX(x — 1, y — 1, self, self.structure)
s2 = self.bottomRight.toTeX(x + 1, y — 1, self, self.structure)
return sl + s2

replace(self , replace, vertex):

global vertices , removed

if self.left is replace:
self.left = vertex

if self.right is replace:
self.tight = vertex

if self.is_cotensor () and self.arrow == replace.alpha:
self.arrow = vertex.alpha

if self.top is replace:
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self.top = vertex
elif self.bottomLeft is replace:
self.bottomLeft = vertex

elif self.bottomRight is replace:
self . bottomRight = vertex

del vertices[replace.alpha]

removed += 1

# Can this cotensor contract?
# If so, return the tensor it contracts with
def contractions(self, net):
if isinstance(self.bottomLeft.conclusion, TwoHypotheses):
t = self.bottomLeft.conclusion
if not t.is_cotensor():
if self.bottomLeft is t.topLeft:
if self.bottomRight.conclusion is t:
# Lx
return (t, t.bottom, True, [])

s = shortest_path (net, self, t)
if only_grishin_tensors(s):
#R\
return (t, t.topRight, False, s)

if isinstance(self.bottomRight.conclusion, TwoHypotheses):
t = self.bottomRight.conclusion
if not t.is_cotensor():
if self.bottomRight is t.topRight:
s = shortest_path (net, self, t)
if only_grishin_tensors(s):
#R/
return (t, t.topLeft, False, s)

return (None, None, None, None)

def set_left_and_right (self):

if self.term[0] is ’'1°7:
self.left = self.bottomLeft

if self.term[0] is ’'r’:
self.left = self.bottomRight

if self.term[0] is 't :
self.left = self.top

if self.term[1] is ’17:
self .right = self.bottomLeft

if self.term[1] is ’'r’:
self.right = self.bottomRight

if self.term[1] is 't :
self.right = self.top

class TwoHypotheses(Tensor):

def __init__(self, left, right, geometry, vertex, struc, hypo,
Tensor.set_structure (self , struc, hypo, i)
geometry = Tensor.parse_geometry (self , geometry, vertex)
lookup = Tensor.get_lookup (self , left, right, vertex)
(function ,arg) = lookup [geometry [0]]
self.topLeft = function(self, arg, 1, lookup[geometry[3]])
(function ,arg) = lookup [geometry [1]]
self.topRight = function (self, arg, 1, lookup|[geometry [4]])
(function ,arg) = lookup [geometry [2]]
self.bottom = function(self, arg, 0, lookup[geometry[5]])

def get_hypotheses(self):
return [self.topLeft, self.topRight]

def get_conclusions(self):
return [self.bottom]

def num_hyp(self):
return 2

def num_con(self):
return 1

i):
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def hypotheses_to_TeX (self, x, y):

sl = self.topLeft.toTeX(x — 1, y + 1, self, self.structure)
s2 = self.topRight.toTeX(x + 1, y + 1, self, self.structure)

return sl + s2

def conclusions_to_-TeX (self, x, y):
return self.bottom.toTeX(x, y — 1, self,

def replace(self, replace, vertex):

global vertices , removed

if self.left is replace:
self.left = vertex

if self.right is replace:
self.tight = vertex

if self.is_cotensor () and self.arrow ==
self.arrow = vertex.alpha

if self.topLeft is replace:
self.topLeft = vertex

elif self.topRight is replace:
self.topRight = vertex

elif self.bottom is replace:
self.bottom = vertex

del vertices[replace.alpha]

removed 4= 1

# Can this cotensor contract?
# If so, return the tensor it contracts with
def contractions(self, net):

self.structure)

replace.alpha:

if isinstance(self.topLeft.hypothesis, OneHypothesis):

t = self.topLeft.hypothesis
if not t.is_cotensor():
if self.topLeft is t.bottomLeft:
if self.topRight.hypothesis
# R(x)
return (t, t.top, False,

s = shortest_path (net, self,
if only.lambek_tensors(s):
# L(\)
return (t, t.bottomRight

if isinstance(self.topRight.hypothesis,
t = self.topRight.hypothesis
if not t.is_cotensor():

is t:
[
t)

, True, s)

OneHypothesis) :

if self.topRight is t.bottomRight:

s = shortest_path (net, self,
if only_lambek_tensors(s):

# L(/)
return (t, t.bottomLeft,

return (None, None, None, None)

def set_left_and_right(self):
if self.term[0] is ’1°7:
self.left = self.topLeft
if self.term[0] is ’'r’ :
self.left = self.topRight
if self.term[0] is 'b’:
self.left = self.bottom
if self.term[1] is ’1°7:
self.right = self.topLeft
if self.term[1] is ’'r’:
self.right = self.topRight
if self.term[1] is ’'b’:
self.right = self.bottom

class Link(object):

def __init__(self, top, bottom):
global vertices
self.top = vertices [top]
self .bottom = vertices [bottom]

t)

True, s)
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self.top.set_conclusion (self)
self .bottom.set_hypothesis(self)

def contract(self):
if self.top.is_value == self.bottom.is_value:
self.collapse_link ()
return True
return False

def collapse_link (self):

global vertices , removed

self .top.set_conclusion (self.bottom.conclusion)

if not isinstance(self.bottom.conclusion, Tensor):
self.top.term = self.bottom.term
del vertices[self.bottom.alpha]
removed += 1

else:
self.bottom.term = self.top.term
self.bottom.conclusion.replace(self.bottom, self.top)

def is_command(self):
if self.top.is_value:
return True
return False

# Meaning whether the atomic formula is
# positive (True) or negative (False)
def positive(self):
if self.top.polarity is '+ :
return True
return False

def draw_line(self):

if (self.top.alpha in drawn) and (self.bottom.alpha in drawn):

top = "v” 4 str(self.top.alpha)
bottom = "v” 4 str(self.bottom.alpha)
line = 7\draw[dotted] ({0}) — ({1});\n”.format (top,
return line
else:
return 77

# Dijkstra’s algorithm
def shortest_path (proofnet, source, target):

dist = {}
previous = {}
a= [

for t in proofnet.tensors:
# set distance to functional infinity
dist [t] = len(proofnet.tensors)
previous[t] = None
q.append (t)

dist [source] = 0
while q:
u = q[0]

for t in q[1:]:
if dist[t] < dist[u]:
u==t
q.remove (u)
if u is target:
break

# This means there are tensors left
# that are unreachable from source

if dist[u] == len(proofnet.tensors):
return None
break

n = u.neighbors ()
if u is source and target in n:
n.remove(target)

bottom)
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def

def

for v in n:
if not v in q:
continue
alt = dist[u] + 1
if alt < dist[v]:
dist [v] = alt
previous[v] = u

s =[]

u = previous[target]

while u in previous:
if u is not source:
s.insert (0,u)
u = previous[u]

return s

only_grishin_tensors (path):
only_grishin = True
for t in path:
if t.is_cotensor () or isinstance(t,
only_grishin = False
break
return only_grishin

only_lambek_tensors (path):
only_lambek = True
for t in path:
if t.is_cotensor () or isinstance(t,
only_-lambek = False
break
return only_lambek

TwoHypotheses) :

OneHypothesis) :

40
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Appendix

Helper functions

import re
2| import sys
import pyparsing as p

6| lexicon = {}

def parse(formula):
10 atom = p.Word(p.alphas + 7 7[{}$")
operator = p.oneOf(”\\ g  (\\) (/) (=)7)

12 bracket = p.oneOf(”( )”
f = p.OneOrMore(atom | operator | bracket)
14 formula = f.parseString (formula)
check = [len(formula) for i in range(0, len(formula))]
6| eperators = [M\\7, "/7, "7, (V)T ()7, 7 ()]
symmetry = 0
18 for i,c in enumerate(formula):

if ¢ is 7(7:
20 symmetry 4+= 1
elif ¢ is 7)7:

22 symmetry —= 1
if symmetry < 0:
24 syntax_error ()
if ¢ in operators:
26 check[i] = symmetry
main = check.index (min(check))
28 return [””.join (formula [:main]) ,formula[main],””.join (formula[main+1:]) ]

30|# This returns True if the formula contains no connectives.
def simple_formula (formula):

connectives = re.compile (r” (\+[\\]/[\(\+\) [\ (/\) [N(\\\V))™)
search = connectives.search (formula)

34 return search is None

def operators_to_.TeX (string):

38 string = string.replace(”\\”, 7\\backslash )
string = string.replace(”(*)”, "\oplus 7)

10 string = string.replace(”*”, "\otimes )
string = string.replace(”(/)”, "\oslash )

42 string = string.replace(” (\\backslash )”, ”\obslash ”)
string = string.replace(”|”, "\\”)

14 return string

def no_solutions ():
18 print "\nThere are no solutions”
sys.exit (1)
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def syntax_error ():
print ”\nSyntax error in formula”
sys.exit (1)

def lookup (label, lexicon):
if label in lexicon:
# Returns first value found for label in lexicon
# Multiple entries are not supported
return lexicon [label][0]
else:
return label

def build_lexicon (pathfile):
lex = {}
pol = {}
f = open(pathfile)
for line in f:
if line[0] != '#’ and line[0] != ’\n’:

if =’ in line:
entry = line.split(”=")
label = entry [0].strip ()
polarity = entry [1].strip ()
pol[label] = polarity
else:
entry line.split (”::7)
label entry [0].strip ()
atomic_value = entry[1]
match = re.search(r’["\ ]J\n$’, line)
if match:
atomic_.value = atomic_value[: —1]
if label in lex:
lex[label] += atomic_value.strip ()
else:
lex [label] = [atomic_value.strip ()]

f.close ()
return lex, pol

tensor_table = {
# LIRa figure 14
# (con ,hypo):(# premises ,geometry ,term)
# geometry:(()f)ormula,(l)eft ,(r)ight, (<)arrow to previous,
# (v)alue, (e)context
# term: (t)op, (b)ottom, (l)eft, (r)ight
# 7 1r” with 2 premises meaning that the
# entire term is topleft — connective — topright
# Fusion connectives — hypothesis
(7a/~,7 71) :(2 7 frleve” ,”br”) ,
(7)*77 71) :(1 P E<lrvvv T ,? lr”) ,
(u\\w 71) :(2 7 1frvee” ’nlbn) ,
# Fusion connectives — conclusion

(7/7,0):(1,71f<reev” 7 tr”),

(n*w 70) :(2 o Arfvvv? )? 11”77) ,

(7)\\77 70) :(1 7:7 rif <eve” ’7) lt”) ,

# Fission connectives — hypothesis
(/)7 ,1):(2,”f<rlvev” ,”br”),

(7 (%)7,1):(1,” flreee” ,” 117,

(7; (\\)a: 71) :(2 V1 <revv” ,”lb”) ,

# Fission connectives — conclusion

(/)7 ,0) (1,7 Ifrvve” [V tr”),
(%)7,0):(2,”Irf<eee” ,”1r7),

(\\)7,0):(1,"rlfvev” 7 1t7)

def con_pol(connective):
c =

LR
. )
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return c[connective]

»

-
—~—

def term2tex(x):

translation = {
?mu” 7 \\mu” ,
?comu” :?\\ tilde {\\mu}”
? /17 :”\\upharpoonleft” ,
7| <7 :”\\upharpoonright”,
7<”:”\\langle”,
»>7:7\\rangle” ,
"\\7:7\\ backslash”,
7 (%) :"\oplus”,
7x” 7\ otimes” ,
” ”7:7\oslash”,

»(\\)”:"\obslash”
}

if x in translation:
return translation [x]
return x

def substitute_term (subs,
for x in subs:
if x in part:
insertion = [’'(’] + term + [’)]
index = part.index(x)
part = part [:index] 4 insertion 4+ part[index+1:]
break # Because more than one substitution is
return part

part , term):

not possible |

right?

43
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Table

7|# hypotheses

# np 1 2 3
# 4 T T F
# 5 F T T
# 6 T T T

# (np2,np6) is table[2][1]
on x—axis

# conclusions on y—axis

import classes_linear as classes
class Table(object):
def __init__(self, atom):
self.hypotheses = [atom]
self.conclusions = []
self.table = []
self .atom_bindings = []

def add_-hypothesis(self, atom):
self.hypotheses.append (atom)

def add_conclusion(self , atom):
self.conclusions.append (atom)

def create_table(self):
n len(self.hypotheses)
self.table [[True]*n for i

= in

both bound
leads to

# Linking two atoms
# to the same tensor
# acyclicity

def prune_acyclicity (self):
for x in range (0,
for y in range (0, len(self.
h = self.hypotheses[x]
¢ = self.conclusions[y]
if

hypothesis:
self.table [x][y]

def prune_connectedness(self):
for x in range (0,

for y in range (0,

print ”TODO”

len(self.

# A cotensor will contract
# if both of its non—main bindings
# are bound to another tensor

only

isinstance (h.conclusion ,

range (n) |

len(self.hypotheses)):

conclusions)):

classes.Tensor) and h.conclusion is

False

len(self.hypotheses)):

conclusions)):

44
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19 def prune_cotensor(self):

for x in range(0, len(self.hypotheses)):

51 for y in range(0, len(self.conclusions)):
h = self.hypotheses[x]

53 ¢ = self.conclusions|[y]
cH = c.hypothesis
55 hC = h.conclusion
if h.is_lexical_item () and isinstance (cH, classes.Tensor):
57 if cH.is_cotensor () and cH.arrow != c.alpha:
self.table[x][y] = False
59 elif c.is_lexical_item () and isinstance (hC, classes.Tensor):
if hC.is_cotensor () and hC.arrow != h.alpha:
61 self.table[x][y] = False

63 def combine(self):
self . atom_bindings = self.dfs (0 ,[],[])

# Depth—first search, exhaustive
67 def dfs(self, x, explored, combination):

if x == len(self.hypotheses):
69 return [combination]
answers = []
7 for y in range(len(self.conclusions)):

if y not in explored and self.table[x][y]:
73 combo = (self.hypotheses[x].alpha, self.conclusions[y].alpha)
¢ = self.dfs(x+1, explored + [y], combination + [combo])
if ¢ != None:
answers +—= c¢
77 return answers

o

Code/table.py



-

~

19

Appendix

Graph

# Working assumptions
# 1 — All components are connected by mu/comu—links
# 2 — All components have a single command link attached (not true)

import classes_linear as classes

from helper_functions import x*
import term

class Graph(object):

def __init__(self, components, cotensors, mu.comu, command):
self.components = components
self.cotensors = cotensors
self .mu_comu = mu_comu
self .command = command
self.component_nodes = [None for x in components]
self.cotensor_nodes = [None for x in cotensors|]
self.mu_comu_edges = [None for x in mu-comu]
self.command_edges = [None for x in command]

for ¢ in components:

self.add-component_-node(c, components.index(c))
for co in cotensors:

self.add_cotensor_node(co, cotensors.index(co))
for m in mu_comu:

self.add-mu_comu_edge (m, mu_comu.index (m))
for comm in command:

self.add-command_edge (comm, command.index (comm))

for co in self.cotensor_nodes:
co.get_attached ()

def add-component_node(self, ¢, i):
component_-node = Component(self, c, i)
self.component_nodes[i] = component_node

def add_cotensor_node(self, c, i):
cotensor_node = Cotensor(self, ¢, i)
self.cotensor_nodes[i] = cotensor_node

def add-mu_comu_edge(self, m, i):
mu_comu_edge = Mu_Comu(self, m, i)
self.mu_comu_edges[i] = mu_comu_edge

def add_-command_edge(self, ¢, i):
command_edge = Command(self , ¢, i)

self.command_edges[i] = command_edge

def get_starting_point (self, mu_vis):
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def

def

def

return [x for x in self.component_nodes if x.get_outgoing(mu_vis)]

match(self):
return self.recursive_match ([],{},[].[].[],[])

recursive_match (self , match, subs, comp-vis, cot_vis, comm_vis, mu._vis):

if [x for x in self.mu_comu.edges if not x in mu_vis]:

comp = self.get_starting_point (mu.vis)
if not comp:

comp = [x for x in self.component_nodes if not x in comp_vis]
temp_match = []

for ¢ in comp:
y = self.match_body(c, match, subs, comp_vis, cot_vis, comm_vis, mu_vis)
if y:
temp_match.extend (y)
return temp_match
return [match]

match_body (self , comp, match, subs, comp_vis, cot_vis, comm_vis, mu-_vis):

c_match = match [:]
compvis = comp-_vis [:]
cotvis = cot_vis [:]
commvis = comm_vis [ :]
muvis = mu.vis [:]

# Temporary hack, should not be allowed
if not hasattr (comp, ’‘command’):
return [match]

comm = comp .command
if comp in compvis:
comm = subs [comp ].command
compvis.append (subs [comp])
else:

compvis.append (comp)

if comm in commvis:
return []

c_match.append (comm.command)
commvis . append (comm)

for ¢ in [x for x in self.cotensor_nodes if not x in cotvis]:
if c.attachable(compvis 4+ cotvis + commvis + muvis):
c_match.append(c.cotensor)
cotvis.append(c)

m = ]
outgoing = False
if comp.get_outgoing (muvis):
m = comp.get_outgoing (muvis)
outgoing = True
else:
leftover.mu = [x for x in self.mu_comu_edges if not x in muvis]

for mu in leftover_mu:
if mu.origin in compvis + cotvis:
m. append (mu)
elif mu.destination in compvis + cotvis:
m. append (mu)

if not m:
return []

temp_match = []

for mu in m:
x = c-match + [mu.mu_comu]
mvis = muvis + [mu]
s = {}

for k,v in subs.items():
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s[k] = v
if outgoing:
s [comp] = mu. destination
y = self.recursive_match(x, s, compvis, cotvis, commvis, mvis)

ifoy:
temp_match.extend (y)

return temp-match

to_.TeX(self, matching, cgraph):

f = open(’formula.tex’, ’a’

f.write(”{\\scalefont {0.7}\n”)
f.write(”\\begin{tikzpicture}\n”)

f.write(”\\node [mybox] (box){\n”)
f.write(”\\begin{minipage }{0.70\\ textwidth}\n”)
f.write(”\\begin{center}\n”)

non_empty_-match = [x for x in matching if not x = []]

if not non_empty_match:
f.write(’$’ + operators_to_-TeX (cgraph.main. hypothesis) + ’§7)

for m in non_empty-match:

term = self.linear_term (m)

f.write(”87)

for x in term:
f.write(term2tex(x))
f.write(” 7)

f.write(”$\n\n”)

f.write(”\\vspace{5mm}\n”)

.write (”\end{center }\n”)
.write (”\end{minipage}\n\n};\n”)

o=k mh R

.write (”\end{tikzpicture}}\n”)
.close ()

linear_term (self , m):

term = []

subs = []

while m:
# Command
comlink = m.pop(0)
left = comlink.top.get_term (False).term2list ()
right = comlink.bottom.get_term (True).term2list ()
harpoon = [’ /| ’]
if comlink. positive ():

harpoon = [’]¢ 7]
# TODO: substitutions (method of Term object?)
left = substitute_term (subs, left , term)
else:

right = substitute_term (subs, right, term)
term = [’'<’] + left + harpoon + right + [’>7]

# (Possible) Cotensor(s)

while isinstance(m[0], classes.Tensor):
cotensor = m.pop (0)
term = cotensor.get_term ().term2list() + [’ . ] + term

# Mu / Comu
mulink = m.pop (0)
mu = []
source = None
target = None
if mulink. positive ():
mu = [”comu” ]
source = mulink.bottom.get_term (True)
target = mulink.top.get_term (False)
else:

48




199

207

209

235

239

269

)
~

APPENDIX E. GRAPH

mu = ["mu” |
source = mulink.top.get_term (False)
target = mulink.bottom. get_term (True)

term = mu + source.term2list() + [’. ] + term
subs.extend (target.term2list ())
return term
class Node(object):
def __init__(self):

print "error”

class Component (Node) :

def __init__(self, g, component, index):
self.index = index
self .graph = g
self.component = component
self .outgoing-mu_comu = []

def set_command(self , command) :
self.command = command

def add-outgoing_-mu_comu(self , m):
self.outgoing-mu_comu.append (m)

def get_outgoing(self, mu_vis):
return [x for x in self.outgoing.mu_comu if not x in mu_vis]

class Cotensor(Node):

def __init__(self, g, cotensor, index):
self.index = index
self.graph = g
self.cotensor = cotensor

self.attached

(1l

def get_attached(self):

[t1, t2] = self.cotensor.non_main_connections ()
il = t1
i2 = t2

for ¢ in self.graph.components:
if t1 in c:

il = self.graph.component_nodes[self.graph.components.index(c)]
if t2 in c:
i2 = self.graph.component_nodes[self.graph.components.index (c)]
attach = [il, i2]

for x,i in enumerate(attach):
if isinstance (i, classes.Link):
if i.is_.command():
attach [x] = self.graph.command_edges|[self.graph.command.index (i)]
else:
attach [x] = self.graph.mu_comu_edges|[self.graph.mu_comu.index(i)]

self.attached = attach
def attachable(self, visited):
if not [x for x in self.attached if not x in visited]:

return True
return False

class Edge(object):

def __init__(self):
print 7error”

def set_origin_and_destination (self, 1):
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origin = None
destination = None
t = 1l.top
b = 1.bottom
if isinstance(t.hypothesis, classes.Tensor):
for ¢ in self.graph.components:
if t.hypothesis in c:

t = self.graph.components.index(c)
break
else: # t is a cotensor

t = t.hypothesis
if isinstance(b.conclusion, classes.Tensor):
for c- in self.graph.components:
if b.conclusion in c_:
b = self.graph.components.index(c.)
break
else: # b is a cotensor
b = b.conclusion

if 1.positive():

origin = b
destination = t
else:
origin =t
destination = b
if 1.is_.command():
temp = origin
origin = destination
destination = temp
self.origin = origin
self.destination = destination
if isinstance(origin, classes.Tensor):
self.origin = self.graph.cotensor_nodes|[self.graph.cotensors.index(origin)]
if isinstance(destination, classes.Tensor):
self.destination = self.graph.cotensor_nodes[self.graph.cotensors.index (
destination)]
if isinstance(origin, int): # component
self.origin = self.graph.component_nodes|[origin]
if isinstance(destination, int): # component
self.destination = self.graph.component_nodes|[destination ]

class Mu_Comu(Edge) :

def __init__(self, g, mucomu, index):
self.index = index
self.graph = g
self . mu_.comu = mu_comu

self.set_origin_and_destination (mu_comu)

# Working assumption 1
if isinstance(self.origin, Component) and isinstance(self.destination, Component)

self.origin.add_outgoing_mu_comu(self)

class Command(Edge) :

def __init__(self, g, command, index):
self.index = index
self.graph = g
self .command = command

self.set_origin_and_destination (command)

# Working assumption 2
self .graph.component_nodes[index ].set_.command(self)

Code/graph.py
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Term

# Proof terms as objects

next_alpha = 1

class Term(object):
def __init__(self):
print ”error”
class Atomic_Term (Term) :

def __init__(self, atom=None):
global next_alpha

self.text = False
if atom:
self.atom = atom
self.text = True
else:
self.atom = None

def term2list(self):

global next_-alpha

if self.text:
return [ ’\\textrm{’ + self.atom +

if not self.atom:
self.atom = chr (96 4+ next_-alpha)
next_alpha += 1

return [self.atom]

class Connective_.Term (Term) :

def __init__(self, con):
self.connective = con

def term2list(self):
return [self.connective]
class Complex_Term (Term) :
def __init__(self, left, middle, right):
self . middle = middle
self.left = left
self.right = right

def term2list (self):

o1

%

]
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left = self.left.term2list ()
right = self.right.term2list ()

if isinstance (left , Complex_-Term):

left = ["(7] + left + [7)7]

if isinstance(
[7

ight , Complex_-Term):
right = 7]

(7] + right + [7)’]

return left 4+ self.middle.term2list () + right

class Cotensor_Term (Complex_Term) :

def

__init__(self, left, right, bottom):
self.left = left

self.right = right

self .bottom = bottom

term2list (self):
t1 self.left.term2list ()

t2 self.right.term2list ()
bottom = self.bottom.term2list ()

return [’\\frac{’'] + t1 + t2 4+ ["}{’] + bottom + [’} ]

52
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Argparser

import argparse
import textwrap

class Parser(object):

def __init__(self):
self.p = argparse.ArgumentParser (
formatter_class=argparse. RawDescriptionHelpFormatter ,
description = textwrap.dedent(’’’\
Theorem prover for LG
Formula language:
A,B ::= p
AxB | B\A
A(«)B | A
=

atoms (use alphanum)
| product
A(\)B coproduct

inference

| A/B
(/)B |

To use LaTeX commands as atoms, use |.
For example: |phi will be translated to \phi
Example call: LGprover.py ”"np/n , n => np”’’’),
usage = 'LGprover.py [options] sequent’)
self.p.add_argument ( "sequent ’, metavar="F’, type=str, nargs='+,
help="a formula in LG to unfold’)
self .p.add-argument (’—lexicon’, ’—1’, action = ’store’,
help='"filepath to lexicon’)
self.p.add-argument ('—tex’, '—t’, action = ’store_true’,
help = ’print result to LaTeX’)
self .p.add-argument (’——abstract’, ’'—a’, action = ’store_true’,
help = ’hide internal node decoration’)
self.p.add-argument ( ’——main’, ’—m’,
help = ’'hide main formula as argument given’)
self.p.add_argument ('—term’, action = ’'store_true’,
help = ’show term(s) accordingly’)
self .p.add-argument ( ’—rotate’, ’—r’, action = ’'store_true’,
help = ’rotate structure 90 degrees counterclockwise’)
self.arguments = self.p.parse_args ()

def get_arguments(self):
return self.arguments

Code/argparser.py
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Sample lexicon

#

# Sample Lexicon
#

# Polarity for atomic formulas
# Given in a different format
# Default is negative

np = +

n = +

s = —

de :: np/n

man :: n

slaapt np\s

test (a/b)=(c\d)

# Double entries don’t raise errors but are not
man :: X

# LIRA Figure 5

from :: (s(/)s)(\)np

to i s/(np\s)

# LIRA Figure 18

subj :: (np/n)*n

tv i (np\s)/np

det np/n

noun :: n

# Time flies like an arrow
time np

flies :: np\s

like i ((np\s)\(np\s))/np

an :: np/n

arrow :: 1n

# Embedded

mary :: np

thinks :: (np\s)/s
john :: np

likes (np\s)/np
nobody (s(/)s)(\)np

considered

(yet)

Code/lexicon.txt
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