
Partitioning of Domains
Embedded in a Regular Grid

Author:

Nick Verheul

Supervisor:

Prof. dr. Rob H. Bisseling

Second Reader:

Dr. Paul A. Zegeling

M.Sc. Thesis

February 28, 2013

Abstract

In this thesis we present a partitioning algorithm aimed at partitioning

domains embedded in a regular grid. Inspired by the multilevel philoso-

phy of the Mondriaan algorithm, we manage to improve Mondriaan’s run

time up to a factor of approximately 2 for certain test cases, while also

constructing a better quality partitioning. While we significantly optimize

both the coarsening and the initial partitioning phase of said multilevel

method, we do not see comparable improvements in the uncoarsening

phase. This means that the overhead of the general partitioner Mondri-

aan for a grid-embedded domain is limited.

1

Acknowledgments

I would like to give my thanks to the following people, who all allowed me to
be able to write this thesis: Rob Bisseling, for his guidance on and surrounding
this thesis, Peter Arbenz, for providing suggestions and the practical application
which inspired the work in this thesis, and Thijs Alkemade, for the useful talks
we had. Finally, I would like to thank my parents Marco and Mieke for their
ongoing support and understanding.

Contents

1 Introduction 3

1.1 Communication Costs . 5
1.2 Load Balance . 6
1.3 RCB . 7
1.4 Mondriaan . 9
1.5 Goals . 11

2 Methods 13

2.1 Coarsening . 13
2.1.1 Definition of cluster structure 13
2.1.2 Merge operation . 14
2.1.3 Merge cycle . 17

2.2 Initial partitioning . 18
2.2.1 Karmarkar–Karp . 19
2.2.2 Expanding neighbours . 19
2.2.3 Net split . 21

2.3 KLFM and uncoarsening . 21
2.3.1 Kernighan–Lin . 21
2.3.2 Fiduccia-Mattheyses . 22
2.3.3 Uncoarsening . 24

3 Results 26

3.1 Coarsening . 26
3.1.1 Threshold for terminating the merge process 26

3.2 Initial Partitioning . 29
3.3 Uncoarsening and the algorithm as a whole 32

4 Conclusion 36

4.1 Future Work . 37

2

1 Introduction

It is often the case in computational science that computational domains are
generated by imaging devices such as CT scanners. These imaging devices scan
three-dimensional objects layer-wise and stack the two-dimensional images (lay-
ers) to create a three-dimensional representation of the structure. The resulting
images can be viewed as domains consisting of voxels, i.e. three-dimensional pix-
els. Since all voxels have the same shape and size, this domain can be considered
to be embedded in a regular grid.

Recent advances in imaging capabilities have provided new ideas and tech-
nologies in the field of osteology, the study of bones. In particular, these techno-
logical advancements significantly aid the analysis and diagnosis of various bone
diseases, e.g. osteoporosis. High resolution imaging devices construct extremely
detailed three-dimensional models of bone structures. The voxel mapping of
the bone structure can be interpreted as a three-dimensional bitmap, each voxel
storing whether bone is present at its location. An example of such a high res-
olution image is shown in Figure 1.1. An important factor for assessing bone
strength is bone density, which can be easily estimated from a voxel representa-
tion of the bone structure. However, it has been shown that assessing fracture
risk based on bone density alone can prove to be very inaccurate [12]. Other
factors that contribute significantly to bone strength, such as bone geometry
and bone microarchitecture, are not incorporated in the bone density estimate.

By combining the voxel domains and finite element modelling one can sim-
ulate the behaviour of bone structures when subjected to external stress; these
simulations can lead to accurate estimations of the bone strength and fracture
risk by using linear elasticity theory. In order to accurately model the bone mi-
croarchitecture, the resolution of the voxel models will be extremely high, lead-
ing to millions or even billions of voxels in the domain, e.g. a 1024×1024×1024
domain. Usually, the voxel model is translated to a finite element model with a
direct voxel-to-element transformation, resulting in a finite element model with
billions of degrees of freedom.

The discretization of the linear elasticity equation leads to a very large,
sparse and symmetric linear system [1]

Au = f. (1.1)

A good candidate for solving this linear system is the preconditioned conju-
gate gradient (PCG) algorithm. PCG works similar to the standard conjugate
gradient (CG) algorithm, as proposed by Hestenes and Stiefel in [9], but uses
a preconditioning matrix B to improve the spectral properties of the operating
matrix and thus the convergence rate of CG, for a more detailed exposition see
e.g. [2, 8]. The specific PCG implementation is not appropriate for the goals of
this thesis, more details regarding this implementation and the bone strength
analysis can be found in [3].

The key operation in CG is a matrix-vector product with matrix A that oc-
curs at every step in the algorithm; because the matrix A is both very large and
sparse, performing parallel matrix-vector multiplication is an obvious solution
to keep the simulations scalable. Of great importance in parallel matrix-vector
multiplication is the partitioning algorithm used to distribute the matrix and
vector elements to the available processors. The quality of such a partitioning

3

Figure 1.1: Voxel representation of a bone structure. This domain will later be
defined as cube064.

is determined by both the communication that is necessary between the proces-
sors and the load balance of the distribution; a good partitioning requires little
communication and each processor possesses approximately the same number
of elements (or voxels). The partitioning heuristics that are usually applied
to these large sparse linear systems are (hyper)graph partitioning methods. In
such a hypergraph formulation each sparse matrix defines a graph and each
voxel defines a vertex in the graph. Each row in the sparse matrix represents
a vertex and the entries in that row define the adjacency list of this vertex,
i.e. the nonzeroes in the row define the adjacent vertices. By translating the
partitioning problem to a hypergraph partitioning problem one simplifies the
partitioning process; rows in the sparse matrix that are cut, i.e. divided over
several processors (or equivalently: adjacent vertices that are distributed to dif-
ferent processors), indicate a need for communication between processors. This
is instinctively clear when we note that the dot-product for each row is calcu-
lated in the matrix-vector multiplication, so a row that is divided over several
processors implies necessary communication.

4

However, hypergraph partitioning methods usually have no additional knowl-
edge of the structure of the domain. Our domain is given to be embedded in a
regular grid, which indicates that there likely is room for optimization when ap-
plying hypergraph methods to this problem. In this thesis we will be defining a
variant of one such hypergraph partitioning method, the Mondriaan algorithm;
however, this version will be specifically designed for the fact that our domain
is embedded in a regular grid.

1.1 Communication Costs

Let us first define how the communication costs of a partition are defined on the
grid. Each non empty voxel (a filled voxel) on the grid represents an element
that needs to be distributed to one of the processors. Each filled voxel also
defines a net, a collection of filled voxels in the domain. More specifically, a
net consists of the filled voxel generating the net and all filled voxels that are
adjacent to that voxel. Adjacency between filled voxels is determined by the
conditions of the embedding grid; for the purposes of this paper, grid points will
be considered to be adjacent if and only if they are direct neighbours on the
grid. More precisely, two grid points (ax, ay, az) and (bx, by, bz) are adjacent if
and only if ai = bi, aj = bj and ak = bk ± 1 for i, j, k ∈ {x, y, z} and i, j, k all
different. The adjacency of grid points is illustrated in Figure 1.2.

Figure 1.2: A grid point (blue) at coordinates (x, y, z) and its six adjacent grid
points (orange).

When all filled voxels on a net are distributed to the same processor, that
net is called intact ; a net is called cut otherwise. A net ni generated by a filled
voxel vi can instinctively be interpreted as all outgoing communication of vi.
Communication becomes necessary on ni when one or more of its filled voxels
are distributed to different processors, i.e. once the net is cut. An important
subtlety is introduced in that filled voxels never have more than one outgoing
communication to any given processor, i.e. when ni contains more than one filled
voxel that is distributed to processor pj, with pj 6= pi (pi being the processor vi

is partitioned to), only one outgoing communication is necessary to these filled
voxels. This subtlety is illustrated in Figure 1.3, where part a) describes all
outgoing communication of voxel vi on processor pi on a net containing voxels

5

that are all distributed to different processors, while in part b) the net contains
two voxels distributed to the same processor pj, with pj 6= pi.

Figure 1.3: All outgoing communication for a voxel vi on a net ni in the case
that the net contains only voxels distributed to different processors (a) and in
the case that several voxels on the net are distributed to the same processor (b).

1.2 Load Balance

The partitioning methods discussed in this paper distribute the filled voxels on
the domain D over p processors. The sets of filled voxels for the processors are
S0, S1, . . . , Sp−1, where Si denotes the set of filled voxels distributed to processor
i. Because Section 1.1 directly implies that the optimal strategy to minimise the
total communication costs is to distribute all filled voxels to the same processor,
the partitioning methods are also restricted by an important constraint on the
load balance of the resulting partitioning, i.e. approximately the same number
of filled voxels should be distributed to each processor. Given that each filled
voxel needs to be distributed to precisely one of the processors, this goal can
be formulated formally as minimizing the value of equation (1.2), where w(Si)
denotes the number of filled voxels distributed to set Si, the weight of the set,

max
0≤i<p

w(Si). (1.2)

In the best possible situation, the weight of each set in the partition would
equal w(D)/p, where w(D) denotes the weight of the domain, i.e. the number
of filled voxels in the domain. The partitioning algorithms are however not
expected to achieve this optimal situation, as it leaves little freedom for the
heuristics. Although it is not feasible to expect the partitioning algorithms to
achieve the optimal load balance, it does provide a good measure for the quality
of the load balance of a given partitioning. The restriction that is applied to all
the partitioning algorithms discussed in this paper is shown in equation (1.3)

max
0≤i<p

w(Si) ≤ (1 + ǫ)
w(D)

p
. (1.3)

This restriction essentially provides a margin for the load balance to differ
from the optimal situation; if the maximum of the weights satisfies the restric-
tion, all of the weights satisfy the margin. The value of ǫ denotes the imbalance
of the load corresponding to the partitioning, i.e. the percentage that the load

6

balance differs from the best possible load balance. Unless otherwise specified,
the value of ǫ is chosen to be 3%. An example of an 8-way partitioning is shown
in Figure 1.4; the difference between the minimum and maximum number of
filled voxels per processor is relatively large, but the constraint in equation
(1.3) is satisfied.

p0 p1 p2 p4p3 p5 p7p6

#voxels

w(D)/p

w(D)/p*(1.03)

Figure 1.4: Illustration of an 8-way partitioning satisfying the load balance
constraints in equation (1.3).

1.3 RCB

A straightforward algorithm applicable to the partitioning of domains embedded
in a regular grid is RCB, or recursive coordinate bisection, as presented by
Berger and Bokhari in [4]. In general, the RCB algorithm recursively divides the
domain in a predetermined number of subdomains. The distribution heuristic
used by RCB is constructed in such a way that filled voxels in the domain are
evenly distributed over the subdomains, i.e. the RCB algorithm always achieves
optimal load balance by design. For the purposes of this paper, each recursive
call of RCB bipartitions its allocated subdomain.

As suggested by the name, the partitioning method used by RCB is solely
based on the coordinates of the filled voxels in its domain. The domains handled
in this paper are given to be embedded in a regular grid; this grid defines an
order on the coordinates of the filled voxels. The distance between filled voxels
in the domain can be determined by their coordinates alone. Each bipartitioning
step performed by RCB splits its assigned domain in half relative to one of its
coordinate directions d. In the first subdomain each filled voxel’s d-coordinate is
less than or equal to the median of all the domain’s d-coordinates, in the second
subdomain greater than or equal to the median for each filled voxel. This simple
process is illustrated in Figure 1.5.

As illustrated in Figure 1.6, the coordinate direction over which RCB per-
forms its split can be an important factor in the resulting communication costs.
The method that RCB uses to select this direction is based on the span of each
coordinate direction, i.e. the difference between the maximum and minimum
coordinates of the dimensions in its allocated domain. In particular, in an at-
tempt to minimize the number of adjacent filled voxels on opposite sides of the
cut, the split performed by the RCB algorithm cuts over the coordinate direc-
tion with the largest span. The motivation behind this strategy is illustrated
in the simple two-dimensional example in Figure 1.6, which shows a domain

7

p=1

cut

p=4

Figure 1.5: Illustration of the partitioning process of the RCB algorithm. The
RCB algorithm bipartitions its allocated subdomain in each of the steps. In the
first step the blue domain is split, after that the blue and orange domains both
divide their respective subdomains, resulting in a 4-way partitioning.

embedded in a 2 × 4 grid and the two different ways to split this domain, over
the x- and y-direction in Figure 1.6a) and 1.6b) respectively. This strategy
automatically results in relatively square subdomains; one can instinctively see
how the RCB method as described will minimize the total communication costs
quite adequately, as neighbouring filled voxels are implicitly often distributed
to the same subdomain.

a) b)

x

y

x

y

Figure 1.6: Illustration of the two different ways (with equivalent load balance)
RCB could split a subdomain, either with respect to the x- or the y-axis in case
a) and b) respectively. The different splits result in very different communication
costs, 12 in case a) and 4 in case b). In an attempt to reduce the implied total
communication costs, RCB always splits with respect to the dimension with the
largest span, therefore case b) would be chosen in this example.

The span of each direction of a certain subdomain can simply be determined
by finding the maximum and minimum coordinate over all filled voxels in the
subdomain for each direction and subtracting them. After finding the direction
with the largest span, the RCB algorithm uses the quicksort algorithm to sort
all the filled voxels in the subdomain with respect to the chosen dimension.
Since the subdomain is sorted, the median can be directly chosen as the filled

8

voxel in the middle of the sorted list, this median will then serve as the pivot
for the cut operation. Pseudo-code for this RCB implementation can be found
in Figure 1.3.

Since all operations in RCB are very computationally efficient, the total
computation time of partitioning a domain with RCB will be very low. Because
each RCB split evenly divides the filled voxels in that particular subdomain,
the load balance will be optimal by definition. The communication costs, how-
ever, are only minimized in the sense that often the cutting operation implicitly
distributes neighbouring filled voxels to the same subdomain.

input : x : vector of x-coordinates of length n, numbered from 0 to n − 1,
where n is the number of filled voxels in the set.
y : vector of y-coordinates, length n.
z : vector of z-coordinates, length n.
p : vector of assigned processors of length n, initialized at 0.
c : counter for the number of parts in the current partition.
g : goal for number of parts in the final partition,
note that g equals a power of two for this implementation.

output : p : vector of assigned processors of length n, i.e: the final partition.
function call : rcb(x,y, z,p, c, g).

/* The number of current parts has to be smaller than the target number */
if c < g then

/* Calculate the span of each dimension */
∆x = max(x) - min(x)
∆y = max(y) - min(y)
∆z = max(z) - min(z)
Quicksort(x,y, z,p) w.r.t. the dimension with the largest span.

/* Define the pivot and assign new processor values */
pivot = ⌊n+1

2
⌋

for i := pivot to n − 1 do

p(i) = p(i) + c
endfor

/* Recursion calls */
rcb(x(0, pivot − 1),y(0, pivot − 1), z(0, pivot − 1),p(0, pivot − 1), 2c, g)
rcb(x(pivot, n − 1),y(pivot, n − 1), z(pivot, n − 1),p(pivot, n − 1), 2c, g)

endif

Figure 1.7: Pseudo-code for the rcb implementation.

1.4 Mondriaan

A sophisticated partitioning of a domain embedded in a regular grid can be ob-
tained with the Mondriaan distribution, as presented by Vastenhouw and Bis-
seling in [13]. Mondriaan uses the underlying structure of the sparsity pattern
of the input matrix corresponding to the grid to generate a good partitioning.

9

The first process in the Mondriaan algorithm is to translate the domain par-
titioning problem to a hypergraph bipartitioning problem; in order to do this,
the n× n× n input grid with k filed voxels is translated to a k3 × k3 Laplacian
matrix, with each column storing information from the adjacency list of each
filled voxel. Each filled voxel is now represented by a column in the Laplacian
matrix, or vertex in the hypergraph bipartitioning problem.

After translating the problem to a hypergraph bipartitioning problem, Mon-
driaan uses the multilevel method, a method specifically designed for (hy-
per)graph partitioning problems. The multilevel method consists of the fol-
lowing three phases: the coarsening phase, in which the problem is reduced by
merging similar vertices, the initial partitioning, in which the reduced problem
is partitioned, and finally the uncoarsening, in which the initial partitioning is
translated back into a partitioning for the original problem and refined in the
process.

The similarity between sparsity patterns of the vertices can be analysed
in the coarsening phase with help from the input matrix; a measure for this
similarity is obtained by choosing all nonzero entries in the matrix to equal 1
and calculating the inner product of the columns of two vertices. The coarsening
phase traverses a certain number of merging cycles in which vertices are merged
in order to reduce the size of the domain. Each merging cycle halves the amount
of vertices in the domain by pairwise merging the most similar vertices, where
vertices with a larger inner product between their columns are more similar.
The coarsening phase is automatically stopped once a certain empirically chosen
number of vertices remain, this threshold is usually chosen around a couple of
hundred vertices.

The uncoarsening phase translates the partitioning obtained from the coars-
ening stepwise back into a partitioning of the original domain. After undoing
one of the merge cycles, the uncoarsening process also attempts to refine the
obtained partitioning for the larger problem with an iterative algorithm known
as the Kernighan-Lin heuristic [11], using the implementation by Fiduccia and
Mattheyses suggested in [7]. Each cycle of this heuristic repeatedly chooses a
vertex to move to the other set in the respective bipartition, where no vertex is
allowed to be moved more than once. The beauty of the Kernighan-Lin heuris-
tic however lies in that the chosen vertex is always the vertex that provides the
highest gain in the current state. In other words, the vertex that once switched
in the current state would reduce the communication costs of the entire domain
the most; note that this reduction does not need to be positive, allowing the
Kernighan-Lin heuristic to escape local minima. The best partitioning state
observed in a Kernighan-Lin cycle is stored and used as initial state for the next
cycle.

The operations used to obtain a Mondriaan distribution are quite computa-
tionally expensive, therefore, the required computation time to obtain a Mon-
driaan distribution will be significantly higher than the required computation
time for, e.g., RCB. However, the resulting partitioning will presumably imply
significantly less communication costs when compared to RCB.

Since the Mondriaan package is readily available at [6], the implementation
details are not of great interest for the purposes of this paper. Further details
on the Mondriaan distribution can be found in [5].

10

1.5 Goals

In order for us to compare the RCB algorithm and the established Mondriaan
algorithm1, the performance of both algorithms is tested for a few test grids,
namely: cube064, a 64 × 64 × 64 grid (or 643) with 17919 filled voxels that
is shown in Figure 1.1, cube083 (833, 60482 filled voxels) and cube128 (1283,
242694 filled voxels); these test cases were all provided by Peter Arbenz2. Note
that both the computational time required to obtain the partitioning and the
communication costs accompanied by that partitioning are shown.

Table 1.1: Results of both RCB and Mondriaan for the cube064 test grid.
proc. (p) RCB time (in s) Mond. time (in s) RCB comm. Mond. comm.

2 0.010 0.627 654 111
4 0.013 1.272 1243 267
8 0.016 1.915 1781 562

16 0.018 2.646 2891 1031
32 0.021 3.453 4449 1618
64 0.038 4.385 6658 2712

Table 1.2: Results of both RCB and Mondriaan for the cube083 test grid.
proc. (p) RCB time (in s) Mond. time (in s) RCB comm. Mond. comm.

2 0.035 1.897 970 376
4 0.047 3.722 1873 797
8 0.059 5.318 3303 1646

16 0.067 6.964 5940 2264
32 0.077 9.263 11748 3931
64 0.087 11.187 16023 6293

Table 1.3: Results of both RCB and Mondriaan for the cube128 test grid.
proc. (p) RCB time (in s) Mond. time (in s) RCB comm. Mond. comm.

2 0.148 7.170 5407 961
4 0.210 15.581 11525 2001
8 0.263 23.354 15296 3825

16 0.306 31.731 22291 5325
32 0.350 39.607 32276 9306
64 0.388 51.461 45944 14076

As the results were expected to show, Tables 1.1, 1.2 and 1.3 indicate that
the RCB algorithm is significantly faster than the Mondriaan algorithm. More
importantly however, the partitions resulting from the RCB algorithm imply
significantly more communication costs.

The goal of this thesis is to combine aspects of RCB and Mondriaan to
develop a partitioning algorithm that has a computational complexity that is

1Note that Mondriaan was executed in its 1D-mode, i.e. every column of the matrix is
assigned to a processor

2Computer Science Department, ETH Zurich

11

relatively close to RCB, but whose heuristic also results in implied communica-
tion costs comparable to those of Mondriaan. This appears to be an achievable
goal, because RCB is not concerned with lowering communication costs in the
slightest, but still implicitly minimizes the communication costs reasonably well.
Also, it must be noted again that the Mondriaan algorithm is purposed for gen-
eral hypergraph partitioning problems and is not able to use the knowledge
that the domain is embedded in a regular grid, knowledge that our designed
algorithm will be able to use to simplify several aspects of the heuristic.

12

2 Methods

Inspired by the Mondriaan algorithm [13], the partitioning algorithm presented
in this thesis uses the multilevel approach. However, unlike the Mondriaan
algorithm, the algorithm presented here will be able to use the assumption
that the domain is embedded in a regular grid, which, for example, allows for
a more specialized coarsening method for equivalent computational costs. By
recursively bipartitioning the domain using the multilevel method, a partitioning
into 2q parts is obtained for a certain desired q ∈ N.

Each multilevel cycle starts with the coarsening of the domain as described
in Section 2.1; the coarsening step lowers both the resolution of the bipartition-
ing problem and the partition’s expected implied communication costs. Next,
the coarsened structures resulting from the coarsening are bipartitioned as de-
scribed in Section 2.2 to form the initial partitioning. Before the uncoarsening
phase starts, the KLFM algorithm (Kernighan–Lin algorithm as implemented
by Fiduccia and Mattheyses), as described in Section 2.3, is applied a certain
number of times to the initial partitioning. The KLFM algorithm is also ap-
plied in the different steps of the uncoarsening process to iteratively improve
the quality of the bipartitioning.

The recursive bipartitioning algorithm using the multilevel method is illus-
trated in Figure 2.1, where a 4-way partition for a given grid domain is obtained
by traversing the multilevel V three times. Note that where the first multilevel
cycle considers the whole grid and bipartitions the whole grid, the second (blue)
and third (orange) multilevel cycles only consider their respective parts and only
bipartition these respective parts. So even though the number of multilevel cy-
cles required to go from a bipartition to a 4-way partition is double the amount
of cycles required to obtain the bipartition, each of these multilevel cycles con-
siders an approximately halved domain.

2.1 Coarsening

Where the Mondriaan algorithm evaluates similarity in sparsity patterns to
merge nodes in the input domain, i.e. columns in the input matrix, the algorithm
presented in this paper uses the underlying grid of the input domain to more
efficiently merge nodes in the input domain, i.e. filled voxels on the grid.

The input for the domain in an embedded grid problem can be seen as an
array with binary entries; a nonzero entry in the input array indicates that the
filled voxel stored in that entry is active. Therefore, the partitioning problem
can be viewed as a partitioning of a certain number of filled voxels. Goals of the
partitioning of a domain embedded in a regular grid could now be formulated as:
optimizing the load balance and minimizing the communication costs implied
by the partitioning, where communication costs arise when two adjacent filled
voxels are in different parts of the partition.

2.1.1 Definition of cluster structure

In order to lower the resolution of the grid partitioning problem, filled voxels
can be merged into clusters. Intuitively, clusters can be viewed as a collection
of adjacent filled voxels; the precise definition of the data structure is listed
in Table 2.1. All data stored per cluster can be efficiently deduced from the

13

coarsening uncoarsening

initial partitioning

p=1 p=2

p=4

coarsening

coarsening

uncoarsening

uncoarsening

initial partitioning

initial partitioning

Figure 2.1: Illustration of an application of the recursive multi-level method,
resulting in a 4-way partition of the domain grid. In the initial phase, all filled
voxels are distributed to the blue set. The blue set traverses the multilevel
method and the grid is bipartitioned to a blue and orange set, both of which
call the multilevel method.

underlying grid of the domain. The coarsening step of the multilevel algorithm
can now be described as multiple so called merge cycles; in each merge cycle,
clusters are pairwise merged until no more merge operations can be performed,
under the restriction that clusters can only be merged once per cycle. In the
ideal situation, each merge cycle halves the number of clusters in the domain;
even though this reduction is far from a realistic goal, each merge cycle will
significantly lower the resolution of our domain.

In preparation for the merge cycles, the clusters need to be initialized. The
initial state describes the state where there is a cluster for each filled voxel.
The initialization of the clusters is very cost-efficient because of the underlying
properties of the grid; to identify each adjacent filled voxel, precisely six sets of
coordinates need to be considered.

2.1.2 Merge operation

The aforementioned pairwise merge operations are based on the implied com-
munication costs between the pairs of clusters. More precisely, the implied
communication costs should the two clusters be distributed to different parts in
the partitioning. As described in Section 2.1, communication costs arise when
adjacent filled voxels are not distributed to the same part in the partition. Note
however that a filled voxel does not need to send its data to the same part
more than once, so a filled voxel sends its data once to all adjacent parts. This
subtlety is illustrated in Figure 2.2c), where the blue filled voxel is adjacent to
two orange filled voxels that are member of the same cluster. For the purposes

14

of the coarsening phase, clusters are considered to be distributed as a whole, so
the two orange filled voxels adjacent to the blue filled voxel will be distributed
to the same part and the blue filled voxel only sends its data once.

Figure 2.2: Illustration of the communication costs between different pairs of
adjacent clusters should they be distributed to different parts. a) shows the
relation between cluster 0 and 2, b) shows the relation between cluster 1 and 2
and c) shows the result of merging clusters 0 and 1 to obtain the merged cluster
3. Note how merging these two clusters results in a reduction of communication
costs, because cluster 0 and cluster 1 share an adjacent filled voxel in cluster 2.
So by merging the two clusters, 2 only has to send its data once.

Even though the exact implied communication costs of a partitioning can
only be calculated when the entire partitioning is known, the pairwise costs are
efficiently calculated from the cluster initialization described in Section 2.1.1.
After the initialization, each cluster contains only one filled voxel. The pairwise
costs between adjacent clusters always equal 2 after initialization, as adjacency
between clusters in this phase is equivalent to adjacency between filled voxels
and adjacent filled voxels that are not distributed to the same part have 2 mutual
communications, as illustrated in Figure 2.2a). Note that adjacency between
clusters in general is satisfied when at least one filled voxel from one cluster is
adjacent to a filled voxel in the other cluster.

When analysing the mutual communication costs between adjacent clusters,
one also has to consider the halo points of the clusters. Once at least one multi-
level cycle has been performed and individual parts start performing multilevel
cycles on the clusters that they have been assigned, these halo points no longer
are a negligible factor in computing the communication costs. Halo points are
defined as filled voxels that are not distributed to the part performing the mul-
tilevel cycle but are adjacent to at least one filled voxel that is distributed to the
part performing the multilevel cycle. Figure 2.3 illustrates the influence that
halo points may have on the implied communication costs of a partitioning;
Figure 2.3 shows two clusters and an adjacent halo point and the two possi-
ble following scenario’s, either the clusters are merged or they are not merged.
From Figure 2.2b) one would expect that the mutual communication costs be-
tween cluster 0 and 1 would equal 2, but since the halo point is adjacent to both
clusters of the blue part the communication can be further reduced than that
by merging cluster 0 and 1 and the mutual communication is actually 3. This
statement is confirmed by comparing Figure 2.3a) and 2.3b), where a difference
of 3 in communication is clear.

When merging two clusters c0 and c1, all data as listed in Table 2.1 need to be
calculated for the new merged cluster cm. The various ID lists, e.g. the member

15

Figure 2.3: Illustration of the influence of halo points on the total communica-
tion costs. The blue part performs the coarsening and arrives at the situation
with two clusters remaining and a halo point on the green part. a) shows the
case where cluster 0 and 1 are not merged, b) shows the case where they have
been merged; not only have the communications between cluster 0 and cluster
1 disappeared, but the halo point no longer has to send its data twice, resulting
in a reduction of communication costs of 3 instead of 2.

filled voxels and the adjacent clusters, can all be constructed by determining the
overlap of those lists as stored in the structures of c0 and c1. As each of these
arrays lists various kinds of IDs, e.g. cluster IDs, filled voxel IDs or halo point
IDs, each of these lists has an upper bound on their entries, i.e. the number of
clusters, filled voxels or halo points respectively; because of this upper bound
the overlap of the lists from c0 and c1 can be found extremely efficiently. By
iterating the desired list of c0 and storing a true boolean for each ID on the
list in a checklist array one can evaluate whether a given ID in c1’s list is also
present in c0’s list by checking the boolean stored at the respective ID in the
checklist array. Note that constructing and using such a checklist array is only
possible because the values in c0’s and c1’s list are bounded.

The most complicated field of the cluster structure that needs to be com-
puted for the new cluster cm is the list with the communication costs with
respect to each adjacent cluster cadj. If the respective adjacent cluster is only
adjacent to c0, the communication costs between cm and cadj are given by

costs(cm, cadj) = costs(c0, cadj) + #(halopoints(c1) ∩ halopoints(cadj)), (2.1)

and analogously if the respective adjacent cluster is only adjacent to c1. If the
adjacent cluster is adjacent to both c0 and c1 then the communication costs
with respect to cm are given by

costs(cm, cadj) = costs(c0, cadj) + costs(c1, cadj)−

#(adjfilledvoxels(c0, cadj) ∩ adjfilledvoxels(c1, cadj)). (2.2)

A merge procedure on a small grid that describes both of these equations is
shown in Figure 2.4. The course of action is elaborated upon below:

• This merge procedure is initialized on a 3 × 2 grid consisting of 5 filled
voxels and 1 halo point, shown in Figure 2.4a); note that costs(ca, cb) = 2
for each combination (ca, cb).

16

Table 2.1: Definition of the cluster data structure.
Type Name Description
int flag Flag to keep track of whether this cluster has

already been merged in the current merge cycle
int nfilledvoxels The number of filled voxels that are joined in

this cluster structure
int nadjclusters The number of clusters adjacent to this cluster
int nadjhalopoints The number of halo points adjacent to this cluster
int[] nadjfilledvoxels The number of adjacent filled voxels per adja-

cent cluster
int[] filledvoxels The ID of each filled voxel that is a member of

this cluster
int[] adjclusterids The ID of each cluster adjacent to this cluster
int[] adjhalopointids The ID of each halo point adjacent to this cluster
int[] costs For each adjacent cluster: the communication

costs implied were this cluster and the adjacent
cluster not to be merged

int[][] adjfilledvoxelids The ID of each filled voxel adjacent to this clus-
ter per adjacent cluster

• Figure 2.4b) shows the situation after c0 and c1 have been merged into c′0.
Because of the merge operation the values of costs(c′0, c2) and costs(c′0, c3)
need to be calculated. Equation (2.1) can be used for both, as neither
of c2 and c3 are adjacent to both c0 and c1. In order for us to calculate
costs(c′0, c3), we must note that c0 and c3 share precisely one halo point; us-
ing equation (2.1) we get costs(c′0, c3) = 3, exactly as illustrated in Figure
2.3. Calculating costs(c′0, c2) = 2 can be done a lot more straightforward
because c0 and c2 have no common adjacent halo points.

• Figure 2.4c) shows the situation after c2 and c4 have been merged into
a new c′2. Because of this merge operation, the values of costs(c′2, c3)
and costs(c′2, c

′
0) need to be calculated. Because neither of c′0 and c3 is

adjacent to both c2 and c4, equation (2.1) needs to be applied for both of
these calculations. Since c′2 shares no adjacent halo points with c3, this
results straightforwardly in costs(c′2, c3) = 2 and costs(c′2, c

′
0) = 2, which

mirrors the example in 2.2b)

• Figure 2.4d) shows the final situation after c′0 and c′2 have been merged
into c′′0 - after which only costs(c′′0 , c3) needs to be updated. Because c3

is adjacent to both c′0 and c′2, equation (2.2) needs to be applied for this
calculation, which results in costs(c′′0 , c3) = costs(c′2, c3) + costs(c′0, c3) −
#(adjfilledvoxels(c′0, c3) ∩ adjfilledvoxels(c′2, c3)) = 2 + 3 − 1 = 4. Note
how equations (2.1) and (2.2) have ensured that the potential gain in
communication caused by h0 is considered just one time, i.e. the first
time it becomes a factor in step b).

2.1.3 Merge cycle

A merge cycle iterates over all clusters and merges each cluster c with its adja-
cent cluster with the highest costs relative to c, given that cluster c has adjacent
clusters and at least one of those was not yet merged in that merge cycle. The
coarsening phase ends when either of two conditions has been met: a certain

17

a)

c(1)

c(3) c(4)

c(0) c(2)

b)

c(3) c(4)

c(0)' c(2)

c)

c(3)

c(2)'

c(0)'

d)

c(3)

c(0)''

Figure 2.4: Illustration of a merge procedure between 5 filled voxels on a 3 × 2
grid with 1 halo point.

preset number of merge cycles has been performed or a sufficiently low number
of clusters is remaining in the domain.

The merging process is designed to implicitly minimize the partitioning’s
implied communication costs as clusters will be greedily merged with the neigh-
bouring cluster that at that point in the process appears to be most effective in
reducing the total communication costs.

2.2 Initial partitioning

After completing the coarsening phase, the multilevel method starts the par-
titioning process by obtaining an initial partitioning. Where the coarsening
attempts to minimize the communication costs of the partitioning, the initial
partitioning focuses on optimizing the initial load balance. Three strategies for
the initial partitioning are to be compared, the first being solely focused on op-
timizing the initial load balance, the second trying to use simple data resulting
from the coarsening to minimize the communication costs of the initial parti-
tioning to some extent and the third trying to use the net structure constructed
by Kernighan–Lin to significantly lower the communication costs.

Since the first two initial partitioning algorithms are not concerned much
with minimizing the communication costs, similar to Mondriaan’s initial parti-
tioning method, no guarantees regarding the quality of the resulting partition-
ing can be given. However, initial partitioning algorithms are designed to be
computationally quick, so building in a certain randomness allows each part
traversing the initial partitioning phase to generate several different versions of
the initial partitioning cheaply and choose the best one to enter the uncoarsen-
ing phase. The quality of the partitionings can be compared relatively cheaply,
since the only filled voxels necessary to compare the quality are the filled voxels
distributed to the part performing this multilevel cycle and their halo points,
similar to the description in Section 2.1.2. The way this is implemented will
later be explained in detail in Section 2.3.2; essentially, the net structure of

18

the coarsened grid defining the communication costs as described in Section 1.1
needs to be constructed in its entirety for the Kernighan–Lin cycles over the
initial partitioning. Fortunately, this structure can be created ahead of time;
by using the net structure of the coarsened grid, one can cheaply determine the
relative quality of each provided initial partitioning (we say cheaply because this
net structure is later used for the Kernighan–Lin cycles, so very few unnecessary
calculations are performed).

2.2.1 Karmarkar–Karp

Omitting concerns regarding the communication costs allows for the use of a fast
and simple bipartitioning method known as the differencing method, introduced
by Karmarkar and Karp [10].

The differencing method repeatedly removes the two clusters with largest
weights w0 and w1 (with w0 ≥ w1) from the set and replaces them with a
dummy cluster with weight w0−w1. Once only one dummy cluster remains, the
differencing method traverses back over the sequence of differencing operations
to obtain the actual bipartition. This back traversal is based on repeatedly
applying the operations in (2.3), where a 2-way partition (A′, B′) is translated
to a 2-way partition (A, B) of equal weight difference, meaning that the weight
of the dummy cluster starting the back traversal equals the total difference in
weight in the final bipartitioning,

A = A′ − {|a − b|} + {a}, B = B′ + {b}, if a > b and (a − b) ∈ A′. (2.3)

In the current implementation, the clusters are stored in a singly linked list,
storing each cluster’s weight and parent clusters, two parents if it is a dummy
cluster, zero otherwise. By using quicksort to initialize the list as a list sorted
in descending order, the two clusters with the largest weight can repeatedly be
chosen in linear time as the front two clusters. Since a singly linked list has no
efficient random access, inserting the dummy node so that the list maintains
its sorting is relatively slow, i.e. each insert operation has complexity O(nc),
with nc being the number of clusters. Once a dummy node with a weight
that is already present in the list is inserted back into the list, the default
(deterministic) strategy is to add the respective dummy node before other nodes
with equal weight; a random element can be added by giving the dummy node
a certain probability rk to skip each of the nodes with equal weight (starting at
the first), which over multiple runs likely results in different partitionings with
equal load balance. Since the algorithm is guaranteed to generate nc−1 dummy
clusters, it has to perform nc − 1 insert operations, meaning that the current
implementation of the algorithm is O(n2

c). An example of the Karmarkar–Karp
algorithm for a simple problem is given in Figure 2.5.

For further improvements to the Karmarkar–Karp algorithm, a heap im-
plementation can be attempted. This should bring the algorithm’s complexity
down to O(nc log nc).

2.2.2 Expanding neighbours

Unlike the Karmarkar–Karp algorithm, the expanding neighbours algorithm at-
tempts to implicitly reduce the implied communication costs of the resulting

19

Figure 2.5: Illustration of the Karmarkar–Karp algorithm. On the left side the
two largest clusters are repeatedly replaced by a dummy node of their difference.
Dummy nodes are denoted by yellow nodes, which store their b and a parent
clusters in order for the algorithm to easily traverse back by repeatedly applying
equation (2.3) on the right side.

initial partitioning. To accomplish this, it uses the results from the coarsening,
as the coarsening phase calculates all data from Table 2.1 for each cluster and
Karmarkar–Karp uses none of this information. The expanding neighbours al-
gorithm performs cheap operations by using the number of adjacent clusters as
an indication of which clusters to distribute to the same part in the partitioning.

The expanding neighbours algorithm starts with all its clusters partitioned
to the same part. Next, it finds the cluster with the fewest adjacent clusters,
switches this cluster to the other part and starts expanding from there. The
algorithm does not allow clusters to be switched more than once and it maintains
a candidate list of adjacent clusters (of already switched clusters) that have not
yet been switched. After switching the first cluster, the expanding neighbours
algorithm operates according to a simple priority list: if the candidate list is
not empty, choose the candidate with the fewest neighbours; if the candidate
list is empty, choose the remaining cluster with the fewest adjacent clusters on
the domain. Once the balance constraints are satisfied, the algorithm continues
switching candidates until the load balance no longer improves; it then chooses
the best encountered load balance and stops the partitioning algorithm. Note
that an ultimate load balance is not guaranteed, but the load balance will be
sufficient to start the uncoarsening phase.

By continuously adding clusters with few adjacent clusters to the other part,
the expanding neighbours algorithm attempts to minimize the number of adja-
cent clusters not distributed to the same part after finishing the initial partition-
ing phase. When encountering several clusters with the same minimal number
of adjacent clusters, a choice is made with a random variable re, similar to the
strategy in the previous section. Thus, several runs of the expanding neighbours
algorithm will likely result in several different initial partitionings and the best
can be chosen to start the uncoarsening phase.

20

2.2.3 Net split

Given that both the Karmarkar–Karp and the expanding neighbours algorithm
use at most a rough measure for minimizing the communication costs, let us
now define an initial partitioning method that is more focused on minimizing
the communication costs implied by the bipartitioning. Given that communi-
cation costs are defined in terms of nets (Section 1.1), this method is called the
net split algorithm. Net split starts with all clusters from the coarsened grid
distributed to the same processor, similar to the expanding neighbours algo-
rithm (Section 2.2.2). Next, it switches clusters to the other processor until the
balance constraints are satisfied.

Inspired by Mondriaan’s coarsening method, which evaluates the sparsity
pattern of the filled voxels, the net structure of the coarsened grid is used to
list the total number of times each pair of clusters is present on the same net.
The net split method then sorts the neighbour list of each cluster w.r.t. the
number of paired occurrences on the nets using the quicksort algorithm. While
constructing these paired occurrences lists, the pair of clusters with the most
paired occurrences is stored and switched to initialize the algorithm. After
listing all neighbours of these two initial clusters as possible candidates, the
remaining calculations can be described in the form of a simple priority list like
in the expanding neighbours algorithm: if any candidates remain, switch the
candidate cluster with the highest total number of paired occurrences with all
previously added clusters. If no candidate remains, choose the pair of unadded
clusters with the most paired occurrences and switch them both. If no pair
can be added because of the balance constraints, switch a single cluster if and
only if it improves the load balance. Add the unadded neighbours of the newly
added cluster(s) to the candidate list and repeat until the balance constraints
are satisfied.

Note that, given that the coarsening ensures very few clusters, these calcula-
tions are very cheap. Because this initial partitioning is likely to be very efficient,
we have opted to not build any randomness into it; instead, the net split algo-
rithm is executed several times, each time initialized with another unique pair
of clusters occurring on the nets (netsplit(c0, c1) = netsplit(c1, c0) is guaranteed
for any two clusters c0, c1, because the net split algorithm is deterministic).

2.3 KLFM and uncoarsening

2.3.1 Kernighan–Lin

The communication costs of the partitioning are initially lowered in the coarsen-
ing phase; the initial partitioning phase, however, is not specialized in lowering
the communication costs, but rather in finding a good load balance. After ob-
taining the initial partitioning, the multilevel method attempts to improve the
communication costs both before and during the uncoarsening phase. By trans-
lating the original problem to a graph partitioning problem, the Kernighan–Lin
heuristic [11] can be applied to iteratively improve the initial partitioning.

The Kernighan–Lin heuristic is an iterative algorithm for improving graph
partitions. Let us define the gain of a cluster in a bipartition as the (possi-
bly negative) gain in total communication costs should this cluster be assigned
to the other part in the bipartition. The Kernighan–Lin heuristic performs a
certain number of cycles over the clusters, where in each cycle it iteratively

21

moves the cluster with the highest gain, prevents that cluster from being moved
again that cycle and stores the bipartitioning with the lowest communication
costs encountered during that cycle. The move of a cluster is only allowed if
it satisfies all balance constraints, otherwise the optimal communication costs
would obviously be obtained by moving all clusters to one part. Note that the
Kernighan–Lin heuristic chooses the best possible move at each step in the cy-
cle, but also allows for this gain to be negative, thus enabling the algorithm to
escape local minima.

Determining the optimal move at each step is not a trivial task however; nor
are the required computations occurring after a cluster has been successfully
moved and the gains for the affected clusters need to be updated. An incredibly
delicate and efficient implementation was introduced by Fiduccia and Matthey-
ses [7]; this implementation manages to perform each cycle in linear time.

2.3.2 Fiduccia-Mattheyses

The Kernighan–Lin implementation by Fiduccia-Mattheyses (KLFM) is a fa-
mous iterative mincut heuristic for partitioning networks that can be readily
applied to the graph partitioning problem described in Section 2.3.1. As proved
in [7], the KLFM implementation is linear in the size of the graph, i.e. the
number of nets; let us discuss how to apply the KLFM implementation to the
graph partitioning problem.

Let the set of cells described in KLFM be defined as the clusters obtained
from the coarsening. Each cell then defines a net as the collection of that cell
and its directly neighbouring cells. For each cell, a doubly linked list is created
storing the nets it appears on (the CELL lists) and for each net a doubly linked
list is created storing each cell that appears on it (the NET lists).

The main idea of the KLFM implementation is that by defining the graph
bipartition problem in terms of cells and nets, both calculating and updating the
cell gains can be done by incrementing and decrementing the cell gains a small
number of times. The increment and decrement operations are determined by
iterating over the aforementioned CELL lists and checking simple conditions as
described in great detail in [7]. A major efficiency trick is to maintain and store
the cell gains in a bucket array from index −pmax to pmax (pmax denoting the
maximum gain possible), storing for each index a doubly linked list of each cell
with cell gain equal to that index; two BUCKET lists are stored, one for each
of the parts in the bipartition.

The process of selecting the next cell to move, the base cell, can be described
as follows: first the candidates from both of the parts in the bipartition are
selected, i.e. the cells with the highest gain. Then the algorithm checks whether
moving the candidates would violate the balance constraints; if no move satisfies
the balance constraints, the current cycle will terminate and no further moves
will be attempted. If both moves satisfy the balance constraints, the move
resulting in the best balance is chosen. Since the bucket arrays maintain the
index of the highest non-empty bucket, the selection of each part’s candidate
costs only O(1) operations, as a cell in the highest non-empty bucket for one of
the parts is by definition a cell with maximum gain for that part.

Once a cell has been moved, it is removed from its bucket and placed on a
free cell list, which is used to reinitialize the BUCKET lists when a new cycle
starts. While updating the cell gains, the algorithm iterates over all nets and

22

selects the cells on these nets that have not yet been moved, i.e. cells that are
free.

After the KLFM run chooses which cell to move, this cell must be locked, as
it is not allowed to move again for the remainder of this KLFM run. There is no
explicit description of how to allow the KLFM algorithm to efficiently maintain
which cells on the nets are free in [7]; in our implementation, each cell stores
pointers to each of its occurrences on the NET lists as depicted in Figure 2.6.
Once a cell has been moved, the pointers to all the cell’s occurrences on the
NET lists are used to move the occurrence of this cell to the end of that NET
list and to mark them as locked. By moving each locked cell to the end of the
NET list, we allow the net iteration to stop once the first locked cell has been
considered, as all following cells will also be locked. Since pointers to the cell’s
occurrences and pointers to the end of the NET lists are given, each move costs
only O(1) operations.

NET list

Cell A

Free

Cell D

Free

Cell C

Free

Cell B

Locked

Cell A

Free

Cell C

Free

BUCKET list

-pmax pmax

maxgain

Cell C

...

net 1:

net 2:

net n:

Figure 2.6: Illustration of the structure of the BUCKET and NET doubly linked
lists, where each cell on the BUCKET lists has pointers (each arrow represents
a pointer) to all of that cell’s occurrences on the NET lists.

After moving a cell, the gain of each neighbouring free cell needs to be
updated, meaning that cells might need to be moved to other buckets. Similar
to the pointers to each cell’s occurrence on the NET lists, in our implementation
of the KLFM algorithm each cell also stores a pointer to its position on either
the free cell list or on one of the bucket lists as illustrated in Figure 2.7. Now,
for each cell gain update a pointer to the cell on the bucket lists is given and
that cell can be moved to the front of the destination bucket, so each cell move
between buckets again costs only O(1) operations.

These data structures may appear to be overly complicated, but they allow
all of the steps within a Kernighan–Lin cycle to have complexity O(1).

23

CELL list

Net ANet DNet CNet B

Net ANet C

BUCKET list

-pmaxpmax

maxgain

Cell 2

...

Cell 1

Cell 2

Cell n

FREE CELL list Cell n

Figure 2.7: Illustration of the structure of the BUCKET, FREECELL and
CELL doubly linked lists, where each cell on the CELL list has a pointer (each
arrow represents a pointer) to either that cell’s occurrence on the FREECELL
list or its occurrence on the BUCKET list.

2.3.3 Uncoarsening

After the initial partitioning is chosen, the multilevel approach will be continued
by starting the uncoarsening phase; the uncoarsening phase essentially does the
exact opposite of the coarsening phase, i.e. the partitioning of the lowest reso-
lution grid (the largest clusters) will iteratively be translated to a distribution
of the highest resolution grid. Each time a distribution of the clusters of merge
cycle m is directly translated to a distribution of the clusters of merge cycle
m − 1, the KLFM algorithm is applied once to the higher resolution grid, to
enhance the obtained partitioning further.

Since the uncoarsening phase travels back along the steps from the coarsen-
ing phase, the KLFM algorithm should be able to parse all resolutions of the
grid that occurred during the coarsening phase. While it might be possible to
initialize the KLFM algorithm for all resolutions that passed during the coars-
ening phase using the corresponding cluster structure from that merge cycle and
the adjacency lists from the clusters, for the purposes of this thesis, the cells will
be equal to the clusters, so that moving a cell will equal moving a cluster, but
the adjacencies will be determined by the filled voxel adjacencies on the highest
resolution. This could be accomplished by saving copies of all cluster structures
over all the merge cycles, but this would be very costly. A more efficient way
would be to save a copy of the initial cluster structure, before the merge cycles
started, and to store a hash list for every merge cycle, storing per filled voxel
what cluster it was a member of in that merge cycle. Thus, the net structures
can be initialized by the initial cluster structure and only need to be initialized
once. Then, the uncoarsening step corresponding to a certain coarsening step

24

can use a copy of this net structure, use the hash list to filter all duplicate values
from the NET lists, i.e. two separate filled voxels that are member of the same
cluster will become equivalent entries in the NET lists. The initialized NET
lists can then be used to construct the CELL lists. An example of the difference
between CELL and NET lists for different resolution levels is given in Figure
2.8, wherein a simple 2 × 2 grid is distributed to one part and the CELL and
NET lists are initialized for 0 and 1 performed merge cycles respectively.

Cell 0

Free

Cell 1

Free

Cell 2

Free

Cell 1

Free

Cell 0

Free

net 0:

net 1:

cluster 0 cluster 1

cluster 2 cluster 3

Cell 3

Free

Cell 2

Free

Cell 0

Free

Cell 3

Free

Cell 3

Free

Cell 1

Free

net 2:

net 3:
Cell 2

Free

CELL list

N�� �N�� �N�� �

N�� �N�� �

cell 0

cell 1N�� �

N�� �N�� �N�� �

N�� �N�� �

cell 2

cell 3N�� �

Cell 0

Free

Cell 1

Free

Cell 1

Free

Cell 0

Free

net 0:

net 1:

cluster 0

cluster 1

Cell 1

Free

Cell 0

Free

Cell 0

Free

Cell 1

Free

net 2:

net 3:

CELL list

N�� �N�� �N�� �

N�� �N�� �

cell 0

cell 1N�� �

N�� �

N�� �

Figure 2.8: Illustration of the initialization of the KLFM algorithm for two
different resolutions of the grid, the left part of the figure represents the highest
resolution of the grid, the right part of the grid is clustered after 1 merge cycle.

This approach has as consequence that the NET lists only need to be ini-
tialized once for an entire uncoarsening phase; also, the average length of the
NET lists will be significantly shorter because filled voxels are now clustered, the
amount of NET lists, however, will not decrease when compared to the highest
resolution representation of the grid. The amount of CELL lists will also de-
crease significantly, the length of each CELL list, however, will increase, because
cells now represent multiple filled voxels and are therefore part of more nets.
Overall, the clustering will still result in a significantly more efficient KLFM
run.

25

3 Results

3.1 Coarsening

In order to reduce the grid resolution (the problem size), the suggested multilevel
bipartitioning algorithm traverses the coarsening phase; in the coarsening phase
the filled voxels are merged to form cluster structures. These merge operations
are based on the implied communication costs between the clusters, which are
deduced from knowledge of the finest grid level as described in detail in Section
2.1.2. Lowering the grid resolution results in a significantly faster initial par-
titioning and uncoarsening phase, as both of their complexities depend on the
number of clusters on the coarsened grid. By taking pairwise communication
costs between clusters into account in the merge operations, the coarsening also
aims to implicitly minimize the communication costs of the resulting biparti-
tioning.

3.1.1 Threshold for terminating the merge process

An important parameter determining the effectiveness of the coarsening phase is
the number of clusters at which to stop the merging process. Obviously, would
the entire grid be connected, the process could continue until only one cluster
remains.

Reducing the number of clusters to near single digits poses several problems
however. The number of adjacent clusters per cluster decreases significantly
near the end of the merge process; this has as effect that clusters might be
picked as merge candidate because of a lack of options, not because of their
significant contribution to the quality of the partitioning. An effective way to
prevent this from happening is to simply stop the merge process if the number of
clusters does not decrease significantly over an entire cycle; this strategy is also
used in the Mondriaan algorithm. The coarsening in Mondriaan is terminated
if the number of clusters does not decrease more than 5% over the course of
an entire merge cycle. In our experiments we have seen equivalent quality by
choosing 10% as this reduction ratio; however, taking this ratio results in an
overall speed-up of up to 8%. For all of the tests discussed in this section we
therefore take 10% as the minimal reduction ratio.

When realizing that the merge operation essentially approximates a gain
in communication costs by merging clusters, it becomes clear that one of the
risks of reducing the cluster number too much is that performing merge cycles
results in a loss of information about the highest resolution grid. As mentioned
before, the number of clusters contributes to the success of the later phases in
the multilevel method; finding an initial partitioning that satisfies the balance
constraints might even prove to be impossible for an extremely low number of
clusters. Finally, even though Kernighan–Lin’s run time will benefit greatly from
a smaller number of clusters, its ability to incrementally improve the quality of
the partitioning will likely be hindered by the rough estimations at lower grid
resolutions.

Notable histogram samples from the first entire coarsening phase of a single
bipartitioning of test matrix cube064 are shown in Figures 3.1 through 3.5. In
Figure 3.1, one can see how the clusters are initialized, i.e. each filled voxel
is its own cluster. Figure 3.2 indicates that indeed almost all of the clusters

26

have quadrupled their size by the time they could have merged twice, with only
a few falling behind. Figure 3.3 is the point at which Mondriaan would stop,
around 200 remaining clusters; one can see how the clusters are spread out very
unevenly over the different cluster sizes, with most clusters hovering around the
125 mark. Figures 3.4 and 3.5 show what happens with the clusters when the
coarsening cycle continues, showing 50 and 3 remaining clusters respectively.
These two histograms indicate that clusters are much more evenly spread over
the different cluster sizes once the coarsening phase nears its end.

0 1 2
0

0.5

1

1.5

2
x 10

4 mergecycle 0

size of clusters

#c
lu

st
er

s
w

ith
 th

is
 s

iz
e

Figure 3.1: The cluster sizes before per-
forming any merge cycles in the coarsen-
ing phase of the first bipartitioning per-
formed for the test grid cube064, 17919
clusters.

1 2 3 4
0

1000

2000

3000

4000

5000
mergecycle 2

size of clusters

#c
lu

st
er

s
w

ith
 th

is
 s

iz
e

Figure 3.2: The varying cluster sizes
after two merge cycles in the coarsen-
ing phase of the first bipartitioning per-
formed for the test grid cube064, 4616
clusters.

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

16
mergecycle 7

size of clusters

#c
lu

st
er

s
w

ith
 th

is
 s

iz
e

Figure 3.3: The varying cluster sizes after 7 merge cycles in the coarsening phase
of the first bipartitioning performed for the test grid cube064, 168 clusters.

From our experiments, the coarsening appears to provide better overall re-
sults for the partitioning when it is terminated after reaching 50 clusters, as
opposed to Mondriaan where the coarsening is stopped after reaching 200 clus-
ters. A sample of these experiments are shown in Table 3.1 and Table 3.2 where
the run time and implied communication costs are shown for all the test matri-
ces using the threshold of 200 and 50 respectively. These tests were run with

27

50 100 150 200 250 300 350 400 450 500 550
0

1

2

3

4
mergecycle 9

size of clusters

#c
lu

st
er

s
w

ith
 th

is
 s

iz
e

Figure 3.4: The varying cluster sizes after 9 merge cycles in the coarsening phase
of the first bipartitioning performed for the test grid cube064, 50 clusters

4500 5000 5500 6000 6500 7000 7500 8000 8500
0

1

2
mergecycle 27

size of clusters

#c
lu

st
er

s
w

ith
 th

is
 s

iz
e

Figure 3.5: The varying cluster sizes after 27 merge cycles in the coarsening
phase of the first bipartitioning performed for the test grid cube064, 3 clusters

28

the same set of parameters3 and appear to indicate that for our test matrices
the threshold of 50 provides an overall speedup of up to 15%, with improved
scaling for larger grids and greater number of processors. The costs implied by
the resulting partitionings in the tables also suggest that choosing the threshold
to equal 50 provides better communication costs.

time (in s) communication
proc. (p) cube064 cube083 cube128 cube064 cube083 cube128

8 1.135 5.077 24.365 543 1573 4310
64 2.949 11.674 79.49 3521 8355 14697

Table 3.1: Quality of the partitioning when the coarsening is stopped after
reaching 200 clusters.

time (in s) communication
proc. (p) cube064 cube083 cube128 cube064 cube083 cube128

8 1.042 4.751 23.041 511 1446 3438
64 3.103 11.266 67.43 3323 7367 14337

Table 3.2: Quality of the partitioning when the coarsening is stopped after
reaching 50 clusters.

Concluding, the coarsening phase is terminated when either of the equations
in (3.1) and (3.2) are satisfied,

#(clusters(m)) ≤ 50 (3.1)

#(clusters(m)) > #(clusters(m − 1)) · 0.9, (3.2)

where m defines the number of the merge cycle.

3.2 Initial Partitioning

As described in Section 2.2, once the merge operations in the coarsening phase
have constructed the cluster structures, the initial partitioning phase provides a
bipartitioning of these clusters. The initial partitioning serves as a starting point
for the uncoarsening phase, in which the merge operations are back traversed
to obtain a partitioning for the considered filled voxels. While the uncoars-
ening process iteratively improves the initial partitioning, a better quality of
the initial partitioning generally translates to a better bipartitioning resulting
from the uncoarsening phase. Let us therefore compare the implied communi-
cation costs of each of the initial partitioning strategies discussed in 2.2 and the
computational time required to obtain these partitionings.

Just as in Section 1.5, the three test grids will be denoted by cube064,
cube083 and cube128, in ascending order of grid dimensions. By evaluating
the partitioning quality right after performing the individual initial partitioning
methods, the quality of the raw initial partitioning methods can be compared

3Merge reduction ratio of 0.9, initial partitioning generated with netsplit, Kernighan–Lin
on the initial partitioning until no more improvements are found, 1 Kernighan–Lin cycle in
each step of the uncoarsening, ǫ = 0.03.

29

quite well. While we should not expect a high-quality partitioning, disabling
all Kernighan–Lin cycles, in both the initial partitioning and the uncoarsening
phase, allows us to discern which method is most beneficial to our algorithm.

Each of the initial partitioning methods will be initialized with the same
coarsening phase, i.e. with the parameter values as defined in Section 3.1.1. The
test results for the Karmarkar–Karp initial partitioning algorithm, as described
in Section 2.2.1, are shown in Table 3.3.

time (in s) communication
proc. (p) cube064 cube083 cube128 cube064 cube083 cube128

2 0.009 0.025 0.093 1196 4476 14592
4 0.019 0.053 0.202 2873 9300 23648
8 0.033 0.083 0.263 5032 13059 32347
16 0.049 0.117 0.394 7958 19707 44932
32 0.072 0.156 0.592 12511 27764 65159
64 0.111 0.210 0.636 18213 39248 88113

Table 3.3: Run time and implied communication costs of the Karmarkar–Karp
initial partitioning algorithm. Note that the coarsening phase is excluded from
the run times and no Kernighan–Lin refinement is performed.

In order to give the Karmarkar–Karp algorithm a higher chance of success,
the algorithm is called 50 times with rk = 50%, as described in Section 2.2.1;
this variable is chosen relatively high as the number of times that (dummy)
clusters on the stack have equal weight will not be very high. After performing
these 50 runs, the best initial partitioning observed is chosen as the definitive
initial partitioning. While the algorithm is extremely fast, when taking into
account that these times include 50 individual runs for each bipartitioning, the
resulting partitionings are quite poor. Even the RCB runs listed in Tables 1.1
through 1.3 provide significantly better partitionings in comparable times. Even
though this method was designed with speed in mind, in an attempt to let the
coarsening and uncoarsening minimize the communication costs, Kernighan–
Lin can not be expected to make up for a factor of up to 3 between the implied
communication costs of Karmarkar–Karp and RCB.

time (in s) communication
proc. (p) cube064 cube083 cube128 cube064 cube083 cube128

2 0.009 0.026 0.089 1343 3956 12614
4 0.018 0.053 0.182 2629 8244 20510
8 0.029 0.084 0.348 4034 10666 30662
16 0.047 0.114 0.384 6341 16566 37620
32 0.074 0.154 0.506 9450 23684 56485
64 0.118 0.205 0.632 13780 32941 75245

Table 3.4: Run time and implied communication costs of the expanding neigh-
bours initial partitioning algorithm. Note that the coarsening phase is excluded
from the run times and no Kernighan–Lin refinement is performed.

Next, the test results for the expanding neighbour algorithm, as described
in Section 2.2.2, are shown in Table 3.4. Similar to Karmarkar–Karp, in an at-
tempt to boost the chances of success for the expanding neighbours algorithm,

30

the algorithm is applied 50 times. The random variable re (Section 2.2.2) for the
expanding neighbours is chosen lower than Karmarkar–Karp’s random variable,
at 30%. This value is chosen to account for the fact that the situation where
clusters with equal amount of neighbours are considered will occur quite often.
By comparing Tables 3.3 and 3.4 one can easily observe that the Karmarkar–
Karp and the expanding neighbours algorithm have equivalent run times. But,
whereas Karmarkar–Karp essentially bipartitions randomly w.r.t. the commu-
nication costs, the expanding neighbour algorithm uses a fairly effective measure
for the communication costs, which allows it to minimize the communication
costs somewhat. Table 3.4 appears to confirm this statement, because the ex-
panding neighbours method is up to 20% more effective in minimizing commu-
nication costs than Karmarkar–Karp.

time (in s) communication
proc. (p) cube064 cube083 cube128 cube064 cube083 cube128

2 0.006 0.015 0.056 385 1003 2809
4 0.013 0.032 0.114 730 2598 7617
8 0.023 0.047 0.178 1245 4461 10981
16 0.035 0.062 0.316 2230 7825 18542
32 0.050 0.082 0.339 3288 12083 28645
64 0.074 0.107 0.387 5402 19163 41099

Table 3.5: Run time and implied communication costs of the net split initial
partitioning algorithm. Note that the coarsening phase is excluded from the run
times and no Kernighan–Lin refinement is performed.

Finally, the test results for the net split algorithm, as described in Section
2.2.3, are shown in Table 3.5. Whereas the Karmarkar–Karp and expanding
neighbours algorithm are performed randomly for a certain random variable,
the net split algorithm is deterministic; however, the net split method is per-
formed with each unique cluster as its starting cluster and the best resulting
partitioning is picked as the final initial partitioning. The fact that our thresh-
old for stopping the coarsening phase lies at a relatively low number of clusters,
significantly improves the run time of this algorithm, as is shown in Table 3.5.
Compared to the other two initial partitioning algorithms, the net split algo-
rithm is clearly the fastest, registering times that are up to twice as fast. More
importantly, the communication costs resulting from the net split algorithm are
also significantly better than those of the other two algorithms. The commu-
nication costs resulting from the net split method are up to a factor 4 lower, a
factor that does not appear to scale very well. While the improvement factor
for low numbers of processors can climb upwards of 4, the factor for p = 32
and p = 64 lies closer to 2. This can most likely be explained by the fact that
the net split operations, much like those in Kernighan–Lin, are aimed at op-
timizing the communication costs between the two processors involved in the
current partitioning. By increasing the number of processors, more levels of
optimization are introduced before reaching the lowest level, where final parts
are distributed between processors. This increasing gap between the first and
last bipartitionings means that the first few optimization rounds are much less
relevant to the final partitioning.

Nevertheless, the net split is faster than the Karmarkar–Karp and expand-

31

ing neighbours algorithms and generates initial partitionings with significantly
better implied communication costs. All further tests will therefore make use of
the net split initial partitioning method, which synergizes extremely well with
the choice made in Section 3.1.1 to aim for a relatively low number of clusters
going into the initial partitioning.

3.3 Uncoarsening and the algorithm as a whole

Let us now evaluate the influence of Kernighan–Lin on our final partitioning.
The partitioning results for the coarsening phase plus the initial partitioning al-
gorithms, not including the Kernighan–Lin run, were already shown in Section
3.2; as these describe our entire algorithm without Kernighan–Lin, they will
provide a good comparison. The test results for the entire algorithm, including
Kernighan–Lin, are listed in Table 3.6. The cases use mainly the same set of pa-
rameters4, the main difference being that one Kernighan–Lin cycle is performed
at each uncoarsening step for cube083 and cube128, where two cycles are done
for cube064, because this improves the quality of the partitioning moderately,
while adding no significant computation time.

time (in s) communication
proc. (p) cube064 cube083 cube128 cube064 cube083 cube128

2 0.382 1.532 6.982 158 360 859
4 0.828 2.980 13.914 257 991 1862
8 1.315 4.037 22.595 500 1446 3438
16 1.610 6.218 30.619 935 2747 5582
32 1.986 7.632 42.393 1576 4474 9611
64 3.141 11.232 58.780 3197 7367 14337

Table 3.6: Run times and resulting communication costs of our complete sug-
gested algorithm for all test grids.

Table 3.5 together with Table 3.6 illustrate the importance of Kernighan–Lin
nicely. The uncoarsening phase and initial partitioning refinement improve the
quality of the partitioning by a factor ranging from 2 to 3, even spiking at 4.
The refinement does not come without a price, however, as the run times of the
algorithm become significantly longer.

Figure 3.6 illustrates the effect that Kernighan–Lin has on the run time
of the algorithm, executed with the same set of variables for each run5. The
coarsening and uncoarsening phases make up the bulk of the run time. How-
ever, the coarsening phase, as shown here, is severely faster than Mondriaan’s
coarsening phase, which determines at least half of its run time for large grids.
While Figure 3.6 indicates that each phase scales rather well for an increased
processor number, it also appears to indicate that the uncoarsening phase scales
rather badly when the grid size is increased; the uncoarsening phase accounts

4The cluster threshold equals 50, net split is used as initial partitioning algorithm,
Kernighan–Lin is applied to the initial partitioning until no further improvement is found
(2-3 cycles on average), ǫ = 0.03.

5The cluster threshold equals 50, net split is used as initial partitioning algorithm,
Kernighan–Lin is applied to the initial partitioning until no further improvement is found
(2-3 cycles on average), 1 cycle of Kernighan–Lin in the uncoarsening phase for cube083 and
cube 128, 2 cycles for cube064, ǫ = 0.03.

32

for approximately 55% of the run time for cube064, around 71% for cube083
and 80% for cube 128. Note that this very clearly illustrates the negative effect
of using the net structure of the highest resolution grid for the initialization
of Kernighan–Lin, as Mondriaan’s uncoarsening phase scales much better; in
Mondriaan the coarsening phase takes up the bulk of the computational time
for large grids.

c064−8 c064−64 c083−8 c083−64 c128−8 c128−64
0

10

20

30

40

50

60

70
run time of different phases in the multilevel method

test grid

ru
n

tim
e

(in
 s

)

coarsening
initial partitioning
KL initial partitioning
KL uncoarsening

Figure 3.6: The run time of a sample of tests on our test grids cube064, cube083
and cube128 divided up into the different parts of the algorithm.

Let us now compare the scaling of our algorithm to the scaling properties
of Mondriaan. The run times of each of these algorithms for each of the test
grids are shown in the graph in Figure 3.7. While Tables 1.1 through 1.3 clearly
indicate that RCB scales sublinearly in the number of processors, Figure 3.7
seems to indicate that both our algorithm and Mondriaan scale sublinearly as
well. For cube064, our algorithm seems to scale a lot better than Mondriaan,
but upon increasing the grid size our algorithm appears to scale only marginally
better than Mondriaan, it even appears to spike near the end of our processor
range, a spike that gets more distinct for larger grid sizes.

Unfortunately, Figure 3.7 and Table 3.6 together with the tables for RCB and
Mondriaan, i.e. Table 1.1, 1.2 and 1.3, suggest that our suggested algorithm
is not a significant improvement upon the Mondriaan algorithm. Somewhat
significant improvements were made for the test grid cube064, where the run-
time was approximately halved and the implied communication costs were also
improved, albeit less significantly. The run time is still of the order of that of
Mondriaan, however, and not comparable to RCB’s run times, as hoped. For the
test grids cube083 and cube128, our algorithm seems to be somewhat equivalent

33

2 4 8 16 32 64
0

10

20

30

40

50

60
run times of our algorithm vs. Mondriaan

p

ru
n

tim
e

(in
 s

)

our cube064
our cube083
our cube128
Mond. cube064
Mond. cube083
Mond. cube128

Figure 3.7: The run times for our algorithm compared to those of Mondriaan
for each of the testgrids.

to Mondriaan and marginally better, respectively; this assessment is especially
true for relatively low number of processors, where our algorithm improves in
both run time and communication costs. However, for a relatively high number
of processors (p = 64) our algorithm appears to be inferior to Mondriaan.

Finally, to illustrate the results of our suggested algorithm, let us take the
graphic representation of cube064 as shown in Figure 1.1 and partition the grid
into 8 parts with our algorithm; the result of this partitioning is visualized in
Figure 3.8. This figure is quite interesting, as even from this simple illustration
one can make out the workings of our suggested algorithm and how it manages to
minimize the communication costs: all thin pieces of bone are used to transition
from one processor to another and most major chunks of bone are distributed
in their entirety to the same processor.

34

Figure 3.8: Voxel representation of an 8-way partitioning of the test grid cube064
using our suggested algorithm.

35

4 Conclusion

In this thesis we presented a designed partitioning method for domains embed-
ded in a regular grid; these partitioning problems have applications in the field
of osteology. The main condition of these partitionings is that each processor
should be assigned approximately the same number of elements on the domain,
with a small permitted imbalance. Each partitioning also implies a certain com-
munication cost, based on neighbouring elements on the domain (in the case of
an embedding grid, these can be seen as filled voxels on the grid) that are not
distributed to the same processor. The goal of such a partitioning method is to
minimize the communication cost resulting from its partitioning.

Two established partitioning algorithms are found in RCB, which generates
its partitioning very quickly, but minimizes its communication only to a certain
degree, and Mondriaan, which takes a relatively long time generating its par-
titioning, but minimizes its communication costs very well. Taking cues from
partitioning algorithms such as RCB and Mondriaan, the goal of the new par-
titioning method presented in this thesis was to use the added knowledge, that
the grid provides, to improve the Mondriaan algorithm in such a way that the
run time would be of the order of that of RCB, while also providing implied
communication costs that were comparable to Mondriaan’s.

Our main strategy was to use the same philosophy as Mondriaan, i.e. to
use the multi-level method, a method specifically designed for (hyper)graph
partitioning problems. The multi-level method consists of three phases: the
coarsening phase, in which the given domain size is reduced, the initial parti-
tioning, in which the reduced domain is bipartitioned, and finally the uncoars-
ening phase, in which the coarsening phase is back traversed to translate the
initial partitioning iteratively into a partitioning of the original domain.

The strategy we used to optimize the coarsening phase was to merge filled
voxels into so called cluster structures based on the communication costs in-
volved should they not be distributed to the same processor. These cluster
structures maintain very specific data about their neighbours to ensure that
merging these cluster structures can be executed efficiently. Initializing these
cluster structures can be done extremely efficiently as the grid guarantees that
each filled voxel has at most six neighbouring filled voxels.

For the initial partitioning phase we tested three different algorithms, each
with a different speed-quality trade-off. One of these initial partitioning algo-
rithms is known as Karmarkar–Karp, the other two were designed by us, the
expanding neighbours and net split algorithms, with an increasing effort in min-
imizing communication costs. From the test results obtained by each of these
initial partitioning methods, we could conclude that the net split method is su-
perior in every way. By letting the coarsening phase continue until only about
50 clusters remain, net split was able to profit greatly from the low cluster count,
once called; net split attempts each of its possible resolutions and chooses the
best initial partitioning.

For the uncoarsening phase we used a similar, but slightly optimized, method
as Mondriaan, i.e. applying the iterative refinement algorithm known as Kernighan–
Lin as implemented by Fiduccia–Mattheyses (KLFM) at each step in the un-
coarsening. The uncoarsening constructs the data structures necessary to ex-
ecute KLFM by using the net structure of the highest resolution grid and the
clusters of the grid in the latest uncoarsening step.

36

Our implemented coarsening method improves significantly upon Mondri-
aan’s coarsening in computational time; where Mondriaan’s coarsening phase
determines at least half of the total computational time for large grids, our
coarsening phase only accounts for around a sixth of the total computational
time.

The net split algorithm suggested in this thesis can also be seen as a sig-
nificant improvement on Mondriaan’s initial partitioning method, which almost
exclusively considers load balance, because net split severely reduces the com-
munication costs of the initial partitioning with almost no added overhead.

The communication costs resulting from our partitionings are relatively
good, improving upon Mondriaan in most cases, but failing to improve Mondri-
aan’s costs for the highest tested number of processor.

Unfortunately, the proposed partitioning algorithm as a whole does not im-
prove Mondriaan as significantly as we aimed for. While for cube064 (a 643

grid), our suggested algorithm improved Mondriaan up to a factor of approx-
imately 2 in run time, for the larger grid sizes (cube083 and cube128, being
833 and 1283 grids, respectively) our algorithm was only marginally faster than
Mondriaan, if at all. For cube064 our suggested algorithm’s run time scales sig-
nificantly better than Mondriaan, but for cube083 and cube128 our suggested
algorithm’s run time scales only marginally better than Mondriaan. These re-
sults can most likely be attributed to the fact that our implementation of the
uncoarsening has to use the net structure of the highest resolution grid and thus
scales worse than Mondriaan’s uncoarsening implementation, which uses the net
structure of the lowest resolution grid.

4.1 Future Work

A possible reason that our algorithm is unable to improve Mondriaan more
significantly is that we essentially tried to rebuild Mondriaan in such a way
that it used the added knowledge, that our embedding grid provides, to try
and improve Mondriaan; we could instead focus more on entirely different (un-
coarsening) strategies in the future. I would however be mostly interested in
attempting to implement KLFM in such a way that the net structure of the
lowest resolution grid level is used instead of the net structure of the highest
resolution grid level. This should provide a very significant speed up to our
algorithm.

37

References

[1] P. Arbenz, S.D. Margenov, and Y. Vutov. Parallel MIC(0) preconditioning
of 3D elliptic problems discretized by Rannacher-Turek finite elements.
Computers and Mathematics with Applications, 55(10):2197–2211, 2008.

[2] R. Barrett et al. Templates for the solution of linear systems: building
blocks for iterative methods. Society for Industrial Mathematics, 1987. No.
43.

[3] C. Bekas, A. Curioni, P. Arbenz, C. Flaig, G.H. van Lenthe, R. Muller,
and A.J. Wirth. Massively parallel graph partitioning: A case in human
bone simulations. In Combinatorial Scientific Computing, pages 407–425.
Chapman & Hall/CRC Press, 2012.

[4] M.J. Berger and S.H. Bokhari. A partitioning strategy for nonuniform
problems on multiprocessors. IEEE Transactions on Computers, 100:570–
580, 1987.

[5] R.H. Bisseling. Parallel Scientific Computation, A structured approach us-
ing BSP and MPI. Oxford University Press, 2004.

[6] R.H. Bisseling. Mondriaan package 3.11:
http://www.staff.science.uu.nl/ bisse101/mondriaan/mondriaan v3.11.tar.gz,
June 2012.

[7] C.M. Fiduccia and R.M. Mattheyses. A linear-time heuristic for improving
network partitions. In Proceedings of the 19th IEEE Design Automation
Conference, pages 175–181. IEEE Press, Los Alamitos, CA, 1982.

[8] G.H. Golub and C. F. van Loan. Matrix Computations. The John Hopkins
University Press, 4th edition, 2013.

[9] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving
linear systems. Journal of Research of the National Bureau of Standards,
49:409–436, 1952.

[10] N. Karmarkar and R.M. Karp. An efficient approximation scheme for the
one-dimensional bin-packing problem. 23rd Annual Symposium on Foun-
dations of Computer Science, pages 312–320, 1982.

[11] B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. Bell System Technical Journal, 49:291–307, 1970.

[12] L.J. Melton et al. Contribution of in vivo structural measurements and
load/strength ratios to the determination of forearm fracture risk in post-
menopausal women. Journal of Bone and Minderal Research, 22(9):1442–
1448, 2007.

[13] B. Vastenhouw and R. Bisseling. A two-dimensional data distribution
method for parallel sparse matrix-vector multiplication. SIAM review,
47:67–95, 2005.

38

