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Introduction

In 1911, the first superconducting material was discovered by Kamerlingh Onnes. In the years
after his discovery, many other superconducting materials were found. These materials only
became superconducting below a certain critical temperature Tc, which was very low, in the
order of 15 K. The mechanism behind these so-called low-Tc superconductors is very well
explained by the theory of Bardeen, Cooper and Schrieffer (BCS theory). However, because
of the low critical temperature, their discovery was nice, but not really useful for practical
applications.
In 1986, materials were discovered that became superconducting at higher temperatures, in the
order of 100−150 K. This lead to great excitement among physicists. However, 26 years later
it is still unclear how these materials become superconducting and how their many strange
properties should be explained. There are over 100.000 papers written on the subject, but there
is still no satisfying theory for these high-Tc superconductors. Nevertheless, their discovery
has given us hope that one day, we will be able to find materials that become superconducting
around room-temperature. To find out how we should do this, we first need to fully understand
the mechanism behind high-Tc superconductors. In this thesis, I will try to make clear at what
point in the history of superconductivity we are, what we already know and especially what
we do not know and what we hope the future will teach us.

This thesis consists of two parts. In the first part, which consists of the first two chapters, I will
explain and derive the BCS theory, which is used to describe low-Tc superconductors. To do
this, I need the principle of second quantization, which will be explained in chapter 1.
The second part of my thesis will be covered in chapter 3. Here, I will discuss the doping
versus T phase diagram of high-Tc superconductors and the different phases that arise upon
varying these paramters. The strangest of all phases is perhaps the pseudogap phase. I will try
to give an overview of the different theories proposed to explain this phase.
Finally, I will make a connection between the two different parts of my thesis. I will do this
based on a paper written by the group of Yazdani, in which a parallel is being made between
low-Tc and high-Tc superconductors.
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Chapter 1

Second quantization

Quantization in general is the process of going from a classical to a quantum theory. For exam-
ple, canonical (or first) quantization transforms classical mechanics into quantum mechanics.
In first quantization, particles are treated as quantum wave functions, while the fields are still
treated classically.
However, when treating many-particle systems it is necessary to quantize the fields as well.
The classical fields are replaced by the quantum-mechanical creation and destruction opera-
tors. Also, instead of using the single-particle states as a basis, a basis describing the number of
particles occupying each state in a complete set of single-particle states is used. This procedure
is called second quantization [1].
An example of second quantization can be found in the interaction between electrons. An
electron interacts with a phonon, the phonon travels to another electron and causes an indirect
interaction between the two electrons. Thus, this interaction between the electrons is quantized
(because the number of phonons is discrete).

1.1 Occupation-number representation
For the mathematical derivations in this section, I have used refs. [2], [3].
Let {|ν1〉, |ν2〉, ...} denote an ordered and complete single-particle basis of the N-particle
Hilbert space. Actually, it is only important how many particles there are in each state |νi〉,
thus there must be a simpler way of representing the space, namely by just listing how many
particles are present in each state. The new basis consists of elements of the form |nν1,nν2, ...〉
with the constraint that ∑i nνi = N, where nνi denotes the amount of particles in state νi. Fur-
thermore, the basis elements are properly symmetrized or anti-symmetrized when dealing with
respectively bosons or fermions. Thus we have N-particle basis states instead of the one-particle
basis states from first quantization. This method is called occupation-number representation.
It now seems natural to define occupation-number operators n̂νi ,

n̂νi|nνi〉= nνi|nνi〉. (1.1)

For bosons, nνi ∈ N≥0, while for fermions nνi ∈ {0,1} because of the Fermi exclusion
principle.
The occupation number basis spans a space, namely the so-called Fock space F . It is defined
as F = F0⊕F1⊕F2⊕+... where FN = span{|nν1,nν2, ...〉 : ∑i nνi = N}.
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Now that we have a space where the number of particles is not fixed, it makes sense to
introduce a creation operator, that raises the occupation number of a state by one, and a
destruction operator, that lowers the occupation number of a state by one. Because of
normalization and the different properties of fermions and bosons, it turns out that these
operators work as follows. For a more convenient notation, we changed the subscripts from νi
to λ.
For bosons,

a†
λ
|...,nλ, ...〉=

√
nλ +1|...,nλ +1, ...〉,

aλ|...,nλ, ...〉=
√

nλ|...,nλ−1, ...〉,

and for fermions,

a†
λ
|...,0, ...〉= |...,1, ...〉, a†

λ
|...,1, ...〉= 0,

aλ|...,1, ...〉= |...,0, ...〉, aλ|...,0, ...〉= 0.

It can be shown that the creation and destruction operator satisfy certain relations. For bosons,
they satisfy the commutation relations,

[aλ,a
†
λ′ ] = δλλ′,

[aλ,aλ′ ] = [a†
λ
,a†

λ′] = 0.

For fermions, they satisfy anti-commutation relations,

{aλ,a
†
λ′}= δλλ′ ,

{aλ,aλ′}= {a†
λ
,a†

λ′}= 0,

due to the antisymmetric properties of fermions. All these relations are easy to show using how
a†

λ′ and aλ′ work on a state.
It is now clear that any state can be written using creation operators on the vacuum state |0〉=
|0, ...,0, ...,0〉,

|n1,n2, ...〉= ∏
λ

(a†
λ
)nλ

√
nλ!
|0〉. (1.2)

Furthermore, it is easy to see that the number operator defined in (1.1) can also be written in
terms of the creation and destruction operator, namely n̂λ = a†

λ
aλ. In general, every operator can

be written as a linear combination of products of creation and destruction operators, weighed
by the matrix elements of the operator calculated in first quantization. The general form for
one- and two-particle operators in second quantization is

Ttot = ∑
i, j

Ti ja
†
i a j, (1.3)

Vtot =
1
2 ∑

i jlm
Vlmi ja

†
ja

†
malai. (1.4)
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These expressions are derived in Appendix A. They hold for both fermions and bosons and for
any number of particles. By using the (anti)commutation rules of a and a† the symmetry of the
particles is taken care of.
It is very important to put all creation operators to the left and the destruction operators to the
right. This importance can be clearly illustrated with an example.
Consider a state with just one boson in state α: a†

α|0〉. Then Vtot should always be zero because
there cannot be particle-particle interaction with only one particle in the system. However,
if we interchange a†

m and al and consider l = α and i = k then Vtot has a term of the form
1
2 ∑m j Vαmm ja

†
jama†

maαa†
α|0〉 = 1

2 ∑m j Vαmm ja
†
j |0〉 6= 0. We conclude that this term must be the

particle interacting with itself. This is not particle-particle interaction, therefore we do not want
this to be a part of Vtot . If the correct expression is used, we see 1

2 ∑i jlmVlmi ja
†
ja

†
malaia

†
α|0〉= 0

always holds, because there are two particles destructed after each other while there is only one
in the system. Therefore this expression gives the desired result.

1.2 From first to second quantization
For this section, the refs. [1], [3], [4] have been used.
To introduce the concept of creation and destruction operators for particles, we first consider
indestructible point-like bosons. Consider the Lagrangian density

L = i~ψ
†
ψ̇− ~2

2m
∇ψ

† ·∇ψ−U(r, t)ψ†
ψ. (1.5)

The wave function ψ contains a real and imaginary part. It is possible to treat these parts as
different variables. However, we will do something else namely treat ψ and ψ† as different
variables. Then we obtain the following,

∂L
∂ψ

=−U(r, t)ψ†,

∂L
∂ψx

=− ~2

2m
ψ

†
x ,

∂L
∂ψ̇

= i~ψ
†,

where ψx denotes ∇ψ. Plugging the above equations into the generalized Lagrange equation
yields

∂L
∂ψ
−∇

∂L
∂ψx
− ∂

∂t
∂L
∂ψ̇

=−U(r, t)ψ† +
~2

2m
∇

2
ψ

†− i~ψ̇
† = 0.

This is exactly the Hermitian conjugate of the Schrödinger equation for a particle in a potential
U(r),

i~ψ̇(r) = Hψ(r) =
[
−~2∇2

2m
+U(r)

]
ψ(r).
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The conjugate momentum is given by

π =
∂L
∂ψ̇

= i~ψ
†(r). (1.6)

Now the Hamiltonian density can be obtained,

H =
~2

2m
∇ψ

† ·∇ψ+U(r, t)ψ†
ψ, (1.7)

by using H = πψ̇−L. To obtain the Hamiltonian, we integrate over all volume using partial
integration (the boundary term vanishes),

H =
∫

d3r H =
~2

2m

(
0−

∫
d3r ψ

†
∇

2
ψ

)
+
∫

d3r Uψ
†
ψ=

∫
d3r ψ

†
(
− ~2

2m
∇

2 +U
)

ψ=
∫

d3r ψ
†H0ψ.

(1.8)

In the equation above, H0 denotes the one-particle Hamiltonian.
As usual, [ψ(r, t),π(r′, t)] = i~δ(r− r′), or using equation (1.6):[

ψ(r, t),ψ†(r′, t)
]
= δ(r− r′). (1.9)

A commutation relation like the one above is the fundamental basis of second quantization. It
is actually a postulate, although the reasoning above makes intuitively clear why this is a good
choice.
Let the one-particle Hamiltonian have the following eigenvalues and eigenstates,

H0φλ = ελφλ.

These eigenfunctions form a basis, hence it is possible to expand ψ and ψ† in terms of this set,

ψ(r) = ∑
λ

aλ(t)φλ(r), (1.10)

ψ
†(r) = ∑

λ

a†
λ
(t)φ∗

λ
(r). (1.11)

Equation (1.9) is satisfied if the operators a and a† satisfy the exact same commutation relations
stated in Section 1.1. Here, a and a† turn out to be respectively the destruction and creation
operators considered in the previous section. Now, let us substitute equations (1.10) and (1.11)
in (1.8). This yields the following:

H =
∫

d3r ∑
λ,λ′

a†
λ
(t)φ∗

λ
(r) H0 aλ′(t)φλ′(r) = ∑

λ,λ′
a†

λ
aλ′

∫
d3r φ

∗
λ
(r) H0 φλ(r)

= ∑
λ,λ′

a†
λ
aλ′

∫
d3r φ

∗
λ
(r) ελ′ φλ′(r) = ∑

λ,λ′
a†

λ
aλ′ελ′

∫
d3r φ

∗
λ
(r)φλ′(r)

= ∑
λ,λ′

a†
λ
aλ′ελ′ δλλ′

= ∑
λ

ελa†
λ
aλ.

(1.12)
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Hence, the Hamiltonian can be written in a simple way by using the creation and destruction
operators. It consists of a set of harmonic oscillators, one for each state λ. Note that a†

λ
aλ is

exactly the number operator defined in Section 1.1. The Hamiltonian can always be written
using these operators. In general, H = H0 +Hint , where H0 denotes the sum of one-particle
terms and Hint the two-body interaction. Then, the second quantized form of H is given by

H =
∫

dr ψ
†(r)H0(r)ψ(r)+

∫
drdr′ ψ†(r)ψ†(r′)Hintψ(r′)ψ(r). (1.13)
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Chapter 2

BCS theory

BCS theory, or Bardeen, Cooper and Schrieffer theory, is a theory which describes supercon-
ductivity in a microscopic way. Before this theory was established, there were only theories
that used a macroscopic approach. In the first section of this chapter, these theories will be
briefly treated, after which the BCS theory will be worked out in detail in the second section.

2.1 Historic background

For this entire section I have used ref. [5].
The history of superconductivity starts with the experiments on liquid helium of Kamerlingh
Onnes in 1908. In 1911, he discovered that the resistance of mercury disappeared when he
lowered the temperature below 4.19 K. He decided to call this new state “superconductivity”.
Furthermore, he found that the superconductivity disappeared when applying a certain critical
magnetic field or above a certain critical current.
In 1933, Meissner and Ochsenfield discovered that a superconductor is an ideal diamagnetic,
meaning that the magnetic induction B vanishes inside the superconductor. This effect is called
the Meissner effect.
In the last century, several physicists tried to find explanations for the phenomenon of super-
conductivity. First, explanations were found using macroscopic theories. A thermodynamical
theory using the concept of a non-measurable “order paramater” was found by Landau in 1937
and in 1935 an electrodynamical theory was established by the brothers Fritz and Heinz Lon-
don. Their findings will be described in the following subsection.

2.1.1 London theory

As mentioned above, the Meissner effect states that for temperatures below the critical tem-
perature Tc we have that B = 0 inside the superconductor. This indicates that a magnetic field
applied to a superconducting material in the normal phase is expelled to outside the material
when the temperature is lowered below Tc. The Meissner effect only occurs for sufficiently low
magnetic fields. Above a certain critical magnetic field Hc, the material leaves the supercon-
ducting state again.
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The Londons described this effect quantitatively with their so-called London equation,

∇
2B− 1

λ2
L

B = 0, λ
2
L =

mc2

4πnse2

where λL is called the London penetration depth. To derive this equation, they primarily used
electrodynamical properties of superconductors. In fact, they postulated that the left-hand side
of their equation equals zero, while they only derived that it should be constant with time.
Besides the London penetration depth, there is also another characteristic length for supercon-
ductivity, namely the coherence length ξ. In microscopic theory, it describes the domain where
the velocity of two electrons is correlated. Therefore, it represents the characteristic length of
spatial fluctuations in a superconductor.
Using these two length scales, we can distinguish between type I and type II superconductors.
For type I, we have λL � ξ and for type II λL � ξ. The difference between these two types
is the transition from the superconducting to the normal phase under application of a magnetic
field. For type I, the superconducting phase is abruptly destroyed when the magnetic field ex-
ceeds Hc via a first-order phase transition. For type II, there are two critical fields Hc1 and Hc2
and the phase transition is of second order. The Meissner effect is total only for H < Hc1. For
H >Hc2 we are in the normal phase again. However, for Hc1 <H <Hc2 there is an intermediate
phase called the vortex phase or Shubnikov phase. In this vortex phase, the flux of the magnetic
field penetrates the material as a lattice of flux tubes. Each flux tube (or vortex) carries one flux
quantum Φ0 = hc/2e. When increasing the magnetic field, the number of vortices increases.
Superconductors also have thermodynamical properties. In the absence of a magnetic field, the
phase transition between the normal and superconducting state is of second order, meaning that
there is a discontinuity in the specific heat. Furthermore, the superconducting phase represents
a thermodynamical system in equilibrium with lower entropy than the normal phase.
London theory does not provide a complete macroscopic description of superconductivity. For
example, only samples that are completely superconducting or completely normal can be de-
scribed.

2.1.2 Ginzburg-Landau theory
It wasn’t until 1950 that the most complete phenomenological theory was established by
Ginzburg and Landau. They used the order parameter introduced by Landau in 1937.
Landau noticed that the mean field behaviour of the system in the neighbourhood of the phase
transition is completely determined by the expansion of the free energy in terms of this order
parameter. Well below Tc this expansion is no longer valid.
They also established the Ginzburg-Landau equations by minimizing the Gibbs potential. This
gives

1
2m∗

(
~
i

∇− e∗

c
A
)2

ψ+αψ+β|ψ|2ψ = 0,

c
4π

∇×B =
e∗~

2m∗i
(ψ∗∇ψ−ψ∇ψ

∗)− e∗2

m∗c
|ψ|2A,

where ψ is the order parameter and α and β are expansion coefficients of the free energy. There
is no general solution to these equations.
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Similar to London theory, there are also two important length scales in Ginzburg-Landau theory,
namely the Ginzburg-Landau coherence length,

ξ
2(T ) :=

~2

2m∗|α|
,

and the penetration depth,

λ
2 :=

m∗c2

4πe∗2n∗s
.

There is also a third parameter, namely the Ginzburg parameter, given by κ := λ

ξ
.

Using Ginzburg-Landau theory, the theory of type I and type II superconductors mentioned in
Subsection 2.1.1 can be further developed. We look at samples consisting of superconducting
and normal parts. We assume that there is a separation surface between these parts. To under-
stand the behaviour of a superconductor as a function of ξ and λ, the energy σns associated to
this separation surface is studied.
Furthermore, by analyzing three different regimes, namely κ� 1, κ� 1 and κ = κc we finally
arrive at the Abrikosov classification of superconductors:

Type I: κ <
1√
2
, σns > 0

Type II: κ >
1√
2
, σns < 0

London already put forward the idea of flux quantization, but in the framework of Ginzburg-
Landau theory it follows in a more natural way. Based on this theory, Abrikosov predicted in
1957 that a vortex lattice should appear in the superconducting material in the presence of a
magnetic field.
After all this, there was still no theory that described superconductivity in a microscopic way.
There were a few important experimental observations that led to the formulation of such a
theory. First, the observation of an energy gap in the electronic spectrum and second, the
discovery of the isotope effect (which means that the critical temperature at which supercon-
ductivity occurs depends on the mass of the atom). Because of the isotope effect, Frölich
proposed in 1950 that electron-phonon interactions are responsible for superconductivity. In
1957, Bardeen, Cooper and Schrieffer used this proposal to establish their BCS theory, which
is described in the next section.

2.2 BCS theory
In this section I have followed the derivation in ref. [6] and worked it out further.
John Bardeen, Leon Neil Cooper and John Robert Schrieffer proposed their theory in 1957. As
mentioned at the beginning of this chapter, it is the first microscopic theory of superconductiv-
ity. An N-electron system is studied, which is a complicated problem in quantum mechanics.
There are some correspondences to Bose-Einstein Condensation, but now fermions are treated,
therefore we have to deal with the Fermi exclusion principle. In order to realize condensation
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in our system, it is necessary that the electrons form so-called Cooper pairs. Then the state be-
comes boson-like. The electron-electron interaction (induced by phonons) causes an attractive
potential. This potential is too weak to actually bind two electrons. Instead we get a particular
collective state with N electrons (and not a more condensed state with N/2 pairs). In the pres-
ence of this attraction a new ground state arises, with a lower energy. As we shall see, there is
an energy gap between this ground state and the first excited states. In what follows we shall
determine this energy gap.
Our starting point is the following Hamiltonian,

H =− ~2

2m

N

∑
j=1

∇
2
j +

1
2

N

∑
j 6=i

V (~ri−~r j),

where we consider V to be a two-body potential independent of spin. Now we need to rewrite
this Hamiltonian into its second quantized form (that is, in terms of creation and destruction
operators).
To do this, we use equations (A.1) and (A.5) from appendix A. Then, our Hamiltonian becomes

H = T +V2

= ∑
k,σ

|k|2

2m
a†

kσ
akσ +

1
2L3 ∑

k,k′,q
σ,σ′

Ṽ2(q)a†
k+qσ

a†
k′−qσ′ak′σ′akσ

= ∑
k,σ

εka†
kσ

akσ +
1

2L3 ∑
σ1,σ2

∑
k,k′,q

Ṽ2(q)a†
k+q,σ1

a†
k′−q,σ2

ak′σ2akσ1 ,

(2.1)

where εk =
~2k2

2m and

Ṽ2(q) =
∫

d3r̃ e−iq·r̃V2(r̃).

Now it is time to introduce the so-called “BCS-choice”, namely: single-particle states are ar-
ranged in pairs (~k,↑) and (−~k,↓), which are simultaneously occupied or not occupied. The total
spin and momentum are zero. These pairs are called Cooper pairs, because they were suggested
by Cooper in 1956.
The attraction between electrons is caused by moving ions. It is legitimate to restricts its action
to −~ωD ≤ ξk ≤ ~ωD. Here, ωD is the maximal frequency of a phonon (the Debye frequency),
hence ~ωD is the maximal energy of a phonon. We take as an assumption that the potential has
the following form:

V2(q) =
{
−V for|ξk| ≤ ~ωD
0 otherwise

Using these assumptions, we can rewrite our Hamiltonian (using N = ∑k,σ a†
kσ

akσ and defining
ξk := εk−µ),

H−µN = ∑
k,σ

ξka†
kσ

akσ−
V

2L3 ∑
σ1,σ2

∑
k,k′

a†
kσ1

a†
−kσ2

a−k′σ2ak′σ1

= ∑
k,σ

ξka†
kσ

akσ−
V

2L3 ∑
k,k′

(
a†

k↑a
†
−k↓a−k′↓ak′↑+a†

k↓a
†
−k↑a−k′↑ak′↓

)
= ∑

k,σ
ξka†

kσ
akσ−

V
L3 ∑

k,k′
a†

k↑a
†
−k↓a−k′↓ak′↑.

(2.2)
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For the last step, we see that the two terms yield the same after summation, because in the
second term we can let k→−k and k′→−k′ and interchange the two creation operators with
each other and also the two destruction operators (this is possible because they commute).
In equation (2.2), µ denotes the chemical potential. It is fixed by minimizing the free energy.
In first approximation, µ equals the Fermi energy EF . The free energy is defined as

Ω =−1
β

logZ,

where β := 1
kBT and Z = Tre−β(H−µN). Z cannot be calculated exactly. Therefore, we will use

a mean field approximation. For this, we use the Bogoliubov inequality:

Ω≤Ωm + 〈H−Hm〉m := Ω̃, (2.3)

where Hm is the mean field Hamiltonian. Now we are going to work out the second part of
our Hamiltonian in terms of mean fields ∆ and fluctuations (denoted with a prime). Then we
obtain:

∑
k,k′

a†
k↑a

†
−k↓a−k′↓ak′↑ =

= ∑
k,k′

(
〈a†

k↑a
†
−k↓〉+a†′

k↑a
†′
−k↓

)(
〈a−k′↓ak′↑〉+a

′
−k′↓a

′
k′↑

)
'∑

k,k′

(
∆+a†′

k↑a
†′
−k↓

)(
∆+a

′
−k′↓a

′
k′↑

)
= ∑

k,k′
∆

2 +∆

(
a†′

k↑a
†′
−k↓+a

′
−k′↓a

′
k′↑

)
+
(

a†′
k↑a

†′
−k↓

)(
a
′
−k′↓a

′
k′↑

)
'∑

k,k′
∆

2 +∆

(
a†′

k↑a
†′
−k↓+a

′
−k′↓a

′
k′↑

)
= ∑

k
−∆

2 +∆

(
a†

k↑a
†
−k↓+a−k↓ak↑

)
,

where in the last step we plugged back in the original operators (because fluctuations are equal
to the original operators minus ∆). The term ∆2 gives us just a shift in the total energy, thus we
leave it out. Our mean field Hamiltonian becomes

Hm−µN = ∑
k,σ

ξka†
kσ

akσ−
V
L3 ∑

k
∆

(
a†

k↑a
†
−k↓+a−k↓ak↑

)
= ∑

k,σ
ξka†

kσ
akσ−∆∑

k

(
a†

k↑a
†
−k↓+a−k↓ak↑

)
,

where we used V/L3 = 1. We can also rewrite the first term of the Hamiltonian as follows,

∑
k,σ

ξka†
kσ

akσ =∑
k

ξka†
k↑ak↑+ξka†

k↓ak↓=∑
k

ξka†
k↑ak↑+ξ−ka†

−k↓a−k↓=∑
k

ξka†
k↑ak↑+ξk

(
1−a−k↓a

†
−k↓

)
This finally gives the following mean field Hamiltonian:

Hm−µN = ∑
k

ξk

(
a†

k↑ak↑+1−a−k↓a
†
−k↓

)
−∆∑

k

(
a†

k↑a
†
−k↓+a−k↓ak↑

)
. (2.4)
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It is clear that the first term of this Hamiltonian is diagonal. The second term however, is not.
We want to diagonalize it and to do this, we use the Bogoliubov transformation,

ak↑ = cosθkαk↑+ sinθkα
†
−k↓

a†
−k↓ =−sinθkαk↑+ cosθkα

†
−k↓

which is actually a rotation. Because it is a canonical transformation, it satisfies the same anti-
commutation relations as akσ and a†

kσ
. Plugging these transformation into the Hamiltonian

(2.4) and rewriting yields:

Hm−µN =∑
k

ξk

((
cos2

θk− sin2
θk
)(

α
†
k↑αk↑−α−k↓α

†
−k↓

)
+2sinθk cosθk

(
α

†
k↑α

†
−k↓+αk↑α−k↓

)
+1
)

−∆

((
cos2

θk− sin2
θk
)(

α
†
k↑α

†
−k↓+αk↑α−k↓

)
−2sinθk cosθk

(
αk↑α

†
k↑−α−k↓α

†
−k↓

))
=∑

k
ξk

(
cos2θk

(
α

†
k↑αk↑−α−k↓α

†
−k↓

)
+ sin2θk

(
α

†
k↑α

†
−k↓+αk↑α−k↓

)
+1
)

−∆

(
cos2θk

(
α

†
k↑α

†
−k↓+αk↑α−k↓

)
− sin2θk

(
αk↑α

†
k↑−α−k↓α

†
−k↓

))
=∑

k
(ξk cos2θk +∆sin2θk)

(
α

†
k↑αk↑−α−k↓α

†
−k↓

)
+ξk +(ξk sin2θk−∆cos2θk)

(
α

†
k↑α

†
−k↓+αk↑α−k↓

)
.

For this expression to be diagonal, we need ξk sin2θk−∆cos2θk = 0, thus tan2θk =
∆

ξk
. Then

the second term in the Hamiltonian vanishes.
Now choose −π

4 ≤ θk ≤ π

4 such that cos2θk =
|ξk|√
ξ2

k+∆2
and sin2θk = sgn(ξk)

∆√
ξ2

k+∆2
. Using

this the Hamiltonian can be rewritten:

Hm−µN = ∑
k

ξk
|ξk|√

ξ2
k +∆2

+∆sgn(ξk)
∆√

ξ2
k +∆2

(α
†
k↑αk↑−α−k↓α

†
−k↓

)
+ξk

= ∑
k

ξk + sgn(ξk)
ξ2

k +∆2√
ξ2

k +∆2

(
α

†
k↑αk↑−

(
1−α

†
−k↓α−k↓

))
= ∑

k
ξk + sgn(ξk)

√
ξ2

k +∆2
(

α
†
k↑αk↑+α

†
k↓αk↓−1

)
= ∑

k

(
ξk−Ek +∑

σ

Ekα
†
kσ

αkσ

)
,

(2.5)

where Ek := sgn(ξk)
√

ξ2
k +∆2 is the energy spectrum and in the second step we let −k→ k

because Ek = E−k. From the energy spectrum it becomes clear that the values between −∆ and
∆ cannot be reached. Therefore, there is a forbidden band Eg = 2∆ in the region of the Fermi
energy. This band gap suggests a phase transition in which there was a kind of condensation that
looks like Bose-Einstein condensation, but because of the Pauli exclusion principle electrons
alone cannot condense into the same energy level. An explanation could be that the Cooper
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pairs behave like bosons.
Using the Hamiltonian from equation (2.5), we calculate the partition function Zm:

Zm = Tr e−β(Hm−µN)

= Tr e−β∑k,σ

(
1
2 (ξk−Ek)+Ekα

†
kσ

αkσ

)
= Tr ∏

k,σ

(
e−

β

2 (ξk−Ek)e−βEkα
†
kσ

αkσ

)
= ∏

k,σ

(
e−

β

2 (ξk−Ek)
(

1+ e−βEk
))

,

and then also the Gibbs free energy Ωm:

Ωm =−1
β

logZm

=−1
β

∑
k,σ

(
−β

2
(ξk−Ek)+ log

(
1+ e−βEk

))
= ∑

k,σ

(
1
2
(ξk−Ek)−

1
β

log
(

1+ e−βEk
)) (2.6)

Now, to use equation (2.3), we calculate 〈H−Hm〉 using the Hamiltonians from equations (2.4)
and (2.2),

〈H−Hm〉m =− V
L3 ∑

k,k′
〈a†

k↑a
†
−k↓a−k′↓ak′↑〉m +∆∑

k
〈a†

k↑a
†
−k↓+a−k↓ak↑〉m.

Now we use the Bogoliubov transformation on the second term:

〈a†
k↑a

†
−k↓+a−k↓ak↑〉m = 〈

(
cos2

θk− sin2
θk
)(

α
†
k↑α

†
−k↓+α−k↓αk↑

)
−2sinθk cosθk

(
α

†
k↑αk↑−α−k↓α

†
−k↓

)
〉m

= 〈cos2θk

(
α

†
k↑α

†
−k↓+αk↑α−k↓

)
− sin2θk

(
α

†
k↑αk↑−α−k↓α

†
−k↓

)
〉m

=−sin2θk〈α†
k↑αk↑−α−k↓α

†
−k↓〉m

=−sin2θk〈−1+α
†
k↑αk↑+α

†
k↓αk↓〉m

where the first term vanished because of the diagonalization of the Hamiltonian. We want to
rewrite this further. To do this, we first prove the following,

−1
β

∂

∂Ek
logZm = 〈−1+α

†
k↑αk↑+α

†
k↓αk↓〉m,

13



by working out the left hand side,

−1
β

∂

∂Ek′
logZm =−1

β

1
Zm

∂Zm

∂Ek′
=−1

β

1
Zm

∂

∂Ek′
Tre−β

(
∑k ξk−Ek+∑σ Ekα

†
kσ

αkσ

)

=−1
β

1
Zm
·−βTr

(
−1+∑

σ

α
†
k′σαk′σ

)
e−β(Hm−µN)

=
1

Zm
Tr
(
−1+α

†
k′↑αk′↑+α

†
k′↓αk′↓

)
e−β(Hm−µN)

= 〈−1+α
†
k′↑αk′↑+α

†
k′↓αk′↓〉= 〈−1+α

†
k↑αk↑+α

†
k↓αk↓〉.

Now, we work out the left hand side again, but this time using the expression for the Gibbs free
energy (2.6),

−1
β

∂

∂Ek
logZm =∑

σ

−1
2
− 1

β

−βe−βEk

1+ e−βEk
=∑

σ

−1
2
+

1
1+ eβEk

=−1+
2

1+ eβEk
=−(1−2 fk),

where we defined fk := 1
1+eβEk

. From this we finally obtain

〈a†
k↑a

†
−k↓+a−k↓ak↑〉m = sin2θk(1−2 fk).

What is left is to work out the first term of 〈H −Hm〉m, using Wick’s theorem (〈ABCD〉 =
〈AB〉〈CD〉 − 〈AC〉〈BD〉+ 〈AD〉〈BC〉 where A, B, C, D are operators). We again plug in the
Bogoliubov transformations. Doing this yields

a†
k↑a

†
−k↓ = cos2(θk)α

†
k↑α−k↓− sin2(θk)α−k↓αk↑− sin(θk)cos(θk)

(
α

†
k↑αk↑−α−k↓α

†
−k↓

)
= cos2(θk)

(
α

†
k↑α−k↓

)
− sin2(θk)

(
α−k↓αk↑

)
− 1

2
sin(2θk)

(
−1+α

†
k↑αk↑+α

†
k↓αk↓

)
,

a−k′↓ak′↑ = cos2(θk′)α−k′↓αk′↑− sin2(θk′)α
†
k′↑α

†
−k′↓− sin(θk′)cos(θk′)

(
α

†
k′↑αk′↑−α−k′↓α

†
−k′↓

)
= cos2(θk′)

(
α−k′↓αk′↑

)
− sin2(θk′)

(
α

†
k′↑α

†
−k′↓

)
− 1

2
sin(2θk′)

(
−1+α

†
k′↑αk′↑+α

†
k′↓αk′↓

)
.

Note that we could let −k→ k because in the end we are summing over all k. Then we used
the anti-commutating relations. Then:

〈a†
k↑a

†
−k↓a−k′↓ak′↑〉m = cos2(θk)cos2(θk′)〈α†

k↑α−k↓〉m〈α−k′↓αk′↑〉m
+ sin2(θk)sin2(θk′)〈α−k↓αk↑〉m〈α†

k′↑α
†
−k′↓〉m

+
1
4

sin(2θk)sin(2θk′)
(
〈α†

k↑αk↑〉m〈α†
k′↑αk′↑〉m + 〈α†

k↑αk′↑〉m〈αk↑α
†
k′↑〉m

+ 〈α†
k↑αk↑〉m〈α†

k′↓αk′↓〉m−〈α†
k↑αk↑〉m + 〈α†

k↓αk↓〉m〈α†
k′↑αk′↑〉m

+ 〈α†
k↓αk↓〉m〈α†

k′↓αk′↓〉m + 〈α†
k↓αk′↓〉m〈αk↓α

†
k′↓〉m−〈α

†
k↓αk↓〉m

−〈α†
k′↑αk′↑〉m−〈α†

k′↓αk′↓〉m +1
)
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= cos2(θk)cos2(θk′) fk fk′δkk′+ sin2(θk)sin2(θk′)(1− fk)(1− fk′)δkk′

+
1
4

sin(2θk)sin(2θk′)( fk fk′+ fk(1− fk′)δkk′+ fk fk′− fk + fk fk′

+ fk fk′+ fk(1− fk′)δkk′− fk− fk′− fk′+1)

= cos2(θk)cos2(θk′) fk fk′δkk′+ sin2(θk)sin2(θk′)(1− fk)(1− fk′)δkk′

+
1
4

sin(2θk)sin(2θk′)(2 fk(1− fk′)δkk′+(2 fk−1)(2 fk′−1)) ,

(2.7)

where we used 〈α†
k↓αk′↓〉m = 〈α†

k↑αk′↑〉m = fk. Note that all terms that have a different amount
of creation and destruction operators vanish because the number of particles is conserved (it
can be easily seen that N = ∑k,σ α

†
kσ

αkσ commutes with the Hamiltonian Hm−µN). The terms
where spin is not conserved also vanish. We repeatedly used Wick’s theorem as stated above.
The terms proportional to δkk′ vanish in the thermodynamical limit thus we obtain:

〈a†
k↑a

†
−k↓a−k′↓ak′↑〉m =

1
4

sin(2θk)sin(2θk′)(2 fk−1)(2 fk′−1).

Plugging our results into 〈H−Hm〉m yields

〈H−Hm〉m =− V
L3 ∑

k,k′
〈a†

k↑a
†
−k↓a−k′↓ak′↑〉m +∆∑

k
〈a†

k↑a
†
−k↓+a−k↓ak↑〉m

=− V
L3 ∑

k,k′

1
4

sin2θk sin2θk′(1−2 fk)(1−2 fk′)+∆∑
k

sin2θk(1−2 fk)

=− V
L3

(
1
2 ∑

k
sin2θk(1−2 fk)

)2

+∆∑
k

sin2θk(1−2 fk).

Furthermore, 1−2 fk =
eβEk+1−2

eβEk+1
= e

1
2 βEk−e−

1
2 βEk

e
1
2 βEk+e−

1
2 βEk

= tanh(1
2βEk). Using this, it follows from the

Bogoliubov inequality that

Ω̃ = Ωm + 〈H−Hm〉m = ∑
k

(
ξk−Ek−

2
β

log
(

1+ e−βEk
))

+∆∑
k

sin2θk tanh
(

1
2

βEk

)

− V
L3

(
1
2 ∑

k
sin2θk tanh(

1
2

βEk)

)2

= ∑
k

(
ξk−Ek−

2
β

log
(

1+ e−βEk
)
+

∆2

Ek
tanh

(
1
2

βEk

))

− V
L3

(
1
2 ∑

k

∆

Ek
tanh

(
1
2

βEk

))2

,

where we used sin2θk =
∆

sgn(ξk)
√

ξ2
k+∆2

= ∆

Ek
.

To determine the gap or effective field ∆ we minimize Ω̃. Note that

dEk

d∆
= sgn(ξk)

2∆

2
√

ξ2
k +∆2

=
∆

Ek
.
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Subsequently, define f (∆) := ∑k
tanh( 1

2 βEk)
Ek

. Then taking the derivative yields:

dΩ

d∆
=

d
d∆

∑
k

(
ξk−Ek−

2
β

log
(

1+ e−βEk
))

+∆
2 f (∆)− V

L3

(
1
2

∆ f (∆)
)2

= ∑
k
− ∆

Ek

(
1− 2e−βEk

1+ e−βEk

)
+2∆ f (∆)+∆

2 f ′(∆)− V
2L3 ∆ f 2(∆)− V

2L3 ∆
2 f (∆) f ′(∆)

= ∑
k
− ∆

Ek
tanh(

1
2

βEk)+2∆ f (∆)+∆
2 f ′(∆)− V

2L3 ∆ f 2(∆)− V
2L3 ∆

2 f (∆) f ′(∆)

= ∆ f (∆)+∆
2 f ′(∆)− V

2L3 ∆ f 2(∆)− V
2L3 ∆

2 f (∆) f ′(∆)

=

(
∆− V

2L3 ∆ f (∆)
)(

f (∆)+∆ f ′(∆)
)
.

To minimize Ω̃ we set this to zero. The second term is always larger than zero thus the first
term must be zero. The gap equation becomes

∆ =
V

2L3 ∑
k

∆

Ek
tanh

(
1
2

βEk

)
, (2.8)

where we plugged back in the definition for f (∆). One solution for this equation is obviously
∆ = 0. This solution corresponds to the normal metal. Other solutions of the gap equation can
be found using some approximations.
Assume ∆ 6= 0. Then we can divide both sides of the gap equation by ∆. We transform the sum
into an integral; 1

L3 ∑k→
∫ d3k

(2π)3 . This gives:

2 =V
∫ d3k

(2π)3
1
Ek

tanh
(

1
2

βEk

)
=V

∫ d3k
(2π)3

sgn(ξk)√
ξ2

k +∆2
tanh

(
β

2

√
ξ2

k +∆2 sgn(ξk)

)

=V
∫ 4πk2dk

8π3
1√

ξ2
k +∆2

tanh
(

β

2

√
ξ2

k +∆2
)

=V
1

2π2

∫
dk k2 1√

ξ2
k +∆2

tanh
(

β

2

√
ξ2

k +∆2
)

=V
1

2π2

∫
dξ

dk
dξ

∣∣∣∣
ξ=0

k2 1√
ξ2

k +∆2
tanh

(
β

2

√
ξ2

k +∆2
)

=V N(EF)
∫ ~ωD

0
dξ

1√
ξ2

k +∆2
tanh

(
β

2

√
ξ2

k +∆2
)
,

where N(EF) =
1

2π2 k2 dk
dξ

∣∣∣
ξ=0

is the density of states. We now have a non-linear equation for

∆. The right hand side decreases as a function of T and ∆. Consequently, ∆ becomes smaller
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when T increases until Tc. For T = 0 we have β→ ∞ thus the hyperbolic tangent goes to one.
We obtain:

2 =V N(EF)
∫ ~ωD

0
dξ

1√
ξ2

k +∆2

=
V N(EF)

∆

∫ ~ωD

0
dξ

1√
1+
(

ξ

∆

)2

=V N(EF)
∫ ~ωD

∆

0
dx

1√
1+ x2

=V N(EF)sinh−1
(
~ωD

∆

)
.

Rewriting this gives:

∆(0) =
~ωD

sinh
(

2
V N(EF )

)
= 2~ωD

1

e
2

V N(EF ) − e−
2

V N(EF )

' 2~ωDe−
2

V N(EF ) ,

where in the last step we assumed V N(EF)� 1.
Now we take the limit T → Tc. Then ∆→ 0, thus

2'V N(EF)
∫ ~ωD

0
dξ

1
ξ

tanh
(

1
2

βcξ

)
Consequently,

2
V N(EF)

=
∫ 1

2 βc~ωD

0
dx

βc

2x
2
βc

tanhx

=
∫ 1

2 βc~ωD

0
dx

tanhx
x

= logx tanhx
∣∣ 1

2 βc~ωD
0 −

∫ 1
2 βc~ωD

0
dx

logx
cosh2 x

' log
(

1
2

βc~ωD

)
+ log4

eγ

π

= log
(

2βc~ωD
eγ

π

)
,

where we assumed that 1
2βc~ωD is large thus the hyperbolic tangent is approximately equal to

one. Furthermore, eγ ' 1.781. From this it follows that

kBTc ' 2~ωD
eγ

π
e−

2
V N(EF ) . (2.9)
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Define Eg = 2∆(0). Then:

Eg

kBTc
=

4~ωDe−
2

V N(EF )

2 eγ

π
~ωDe−

2
V N(EF )

=
2π

eγ
' 3.52790 (2.10)

This is an universal result and it has a surprisingly good agreement with experiments. This can
be seen in the following table, where Eg is obtained by measuring Hc(0) and the specific heat.

Supra Eg/kBTc Supra Eg/kBTc
Al 3.53 Nb 3.65
Cd 3.44 Pb 3.95
Ga 3.5 Sn 3.6
Hg 3.95 Ta 3.63
In 3.65 Tl 3.63
La 3.72 Zn 3.44
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Chapter 3

High-temperature superconductors

The theory we have discussed so far gives a good description of superconductors with critical
temperatures Tc up to 30 K. However, in 1986 a superconductor with Tc ≈ 35 K was discovered
by K.A. Müller and J.G. Bednorz, for which they were awarded with the Nobel Prize in Physics
a year later. Surprisingly, they were not looking at metals, but at insulating materials (copper
oxides).
These kind of superconductors are called high-Tc superconductors. Critical temperatures up to
138 K have been measured. The first high-Tc superconductors, called “cuprates” all contained
copper and oxygen atoms. Later, also high-temperature superconductors containing iron or
arsenic (called “pnictides”) were discovered. For all these newly discovered superconductors,
BCS theory did not give an appropriate description. It is still unknown how this new kind of
superconductivity works.
In the first section of this chapter, I will start with a discussion of the cuprates. In the next two
sections, I will discuss the different phases of the cuprates and describe the theories proposed
to explain them. This chapter is mainly based on ref. [7]. Other references will be given in the
text.

3.1 Cuprates
As mentioned above, cuprates contain copper and oxygen atoms, and also atoms like Ba, Tl
and La. The copper and oxygen atoms form CuO2 planes separated by layers of these other
atoms. These layers are often seen as charge reservoirs, because they supply charge carriers
to the CuO2 planes. The copper and oxygen atoms are arranged in a so-called Lieb lattice,
see figure 3.1 below. The blue dots denote copper atoms and the green dots oxygen atoms.
However, we study the simplified lattice where the oxygen atoms are not taken into account.
All cuprates are antiferromagnetic insulators. They only become superconducting when a cer-
tain amount of dopant is added. Depending on the kind of dopant, two things can happen. The
material can become hole-doped, if there are fewer electrons donated to the CuO2 planes, or
electron-doped, if there are more electrons donated to the CuO2 planes. In both cases, a super-
conducting region is formed. This is why it is believed that superconductivity takes places in
the CuO2 planes.
To make this more clear, I will now give an example, namely LSCO (La2SrCuO4). LSCO
consists of single CuO2 planes, seperated by two LaO layers. The electron configuration of the
different atoms is as follows: Cu: [Ar](3d)10(4s); La: [Xe](5d)(6s)2 and O: [He](2s)2(2p)4.
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Figure 3.1: Lieb lattice

In the crystal, oxygen takes up two electrons such that it becomes [He](2s)2(2p)6 and lan-
thanum loses three electrons such that is becomes [Xe]. To guarantee charge neutrality, this
means that copper has a 2+ charge, such that its electronic configuration is [Ar](3d)9. Thus,
there is a hole in the d-shells of the copper atoms. These holes can have spin up or down and
they arrange themselves antiferromagnetically (below the Néel temperature, because above it
the material becomes paramagnetic). There is exactly one hole per copper site; this is called
half-filling.
Upon doping with Sr (with electron configuration [Kr](5s)2), some of the La3+ are replaced by
Sr2+, such that we have La2−xSrxCuO4, where x denotes the amount of added dopant. In gen-
eral x is very small. This means that there are fewer electrons donated to the CuO2 planes, such
that oxygen changes its configuration from O2− to O−. This results in a hole in the p-shell of
oxygen. Nevertheless, in an effective description one considers a hole in the Cu lattice because
we ignored the oxygen atoms. This means that we go from a square lattice with spin 1

2 on every
site to a square lattice where a few sites have spin zero in a background of spin s = 1

2 . The
sites where s = 0 contain a spin singlet of one electron with spin up and one electron with spin
down, called a Zhang-Rice singlet. They are also called holes and function as charge carriers.
When the dopant is added, the system first goes through a spin glass phase and then it exhibits
a superconducting phase, which has a dome slope. When Tc is increasing, the system is called
underdoped and when it is decreasing it is called overdoped. The amount of doping for which
Tc is maximal is called optimally doped.
If we increase the temperature sufficiently when in the superconducting state, a phase transi-
tion to the normal state occurs. This normal state is actually not so normal, since it has many
unusual properties, part of which cannot be described by Fermi liquid theory. I will discuss this
further in section 3.3.
Another hole-doped cuprate is YBCO, YBa2Cu3O7−x. In this material, there are CuO chains in
the charge reservoir, at which oxygen atoms are added as dopant. Furthermore, YBCO has two
CuO2 planes instead of one, and also a relatively high critical temperature of approximately
92 K. This suggests that more CuO2 layers result in a higher Tc. However, it turns out that this
only holds up to three layers. Together with BiSCCO (Bi2Sr2CaCu2O8+x), LSCO and YBCO
are the most studied hole-doped cuprates.
Electron-doped materials, such as Nd2−xCexCuO4, have a more robust antiferromagnetic phase,
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a smaller superconducting dome and often a lower critical temperature compared to hole-doped
materials. Because of this, we will not discuss electron-doped materials any further.

3.2 The superconducting state

3.2.1 Validity of BCS
There have been many attempts to find a way to explain high-Tc superconductivity within the
framework of BCS theory. For example, the spin singlets (holes) could be seen as something
equivalent to the Cooper pairs. Furthermore, BCS theory describes superconductors through
a retarded phonon mediated interaction between the electrons. This kind of interaction is not
able to explain the high critical temperatures found in the cuprates. Namely, BCS theory incor-
porates the isotope effect, which is an experimentally confirmed effect saying that the critical
temperature is inversely proportional to the mass of the isotope used in the superconducting
material. However, in cuprates there is a negligible change in Tc when an isotope is substituted.
Because of this, people started searching for a different interaction, mediated by something
else than phonons. Other quasiparticles such as excitons and polarons were considered, but the
most popular view was an interaction mediated by spin fluctuations.
Subsequently, for BCS theory to work we need the normal phase to be a Fermi liquid. A Fermi
liquid is basically a system of strongly interacting particles, that can also be described by an
equivalent system of non- or weakly interacting quasiparticles. This theory was established by
Landau. It is necessary to have a Fermi liquid because we need an instability within the Fermi
surface for BCS to work. However, it seems that the normal state of a cuprate is only a Fermi
liquid at high dopings, but not for small and intermediate dopings at high temperatures.

3.2.2 More differences between conventional and high-Tc superconduc-
tors

Besides the differences between conventional and high-Tc superconductors mentioned above,
there are some other important differences. A few of them are listed below and shortly dis-
cussed.

• The coherence length ξ of cuprates is much smaller, resulting in a lower superfluid stiff-
ness (ξ represents the characteristic length of spatial fluctuations). Furthermore, the in-
plane coherence length is larger than the coherence length orthogonal to the plane.

• Retardation effects in cuprates are very small.

• Lattice properties are less important. For example: in a conventional superconductor, ap-
plication of an external pressure leads to a stiffening of the lattice and thus a lowering of
Tc. In high-Tc superconductors different effects occur in different materials if an external
pressure is applied.

• The symmetry of the order parameter of cuprates is dx2−y2 (this is found using SQUID
magnetometry), which means that the pairing wave function changes sign four times as
a function of angle. The pairing wave function is roughly equal to the superconducting
gap ∆(k) = 〈a†

k↑a
†
−k↓〉. Therefore, ∆(k) vanishes for certain direction in k-space. This
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results in the existence of nodal lines, i.e. quasiparticle excitations in these directions
cost no energy. Actually it turns out that the system is not truly d-wave, but it is d-wave
like. Conventional superconductors are s-wave, which means that the gap function has
no nodes and is independent of momentum.

• The main component of a cuprate is a Mott insulator, and not a conducting metal. Be-
cause of this, we should perhaps treat cuprates as doped Mott insulators and not as
strongly interacting metals.

3.3 The normal state
In the phase diagram of a cuprate, the Mott insulating phase is very close to the superconduct-
ing phase. This makes the normal (non-superconducting) state of a cuprate very difficult to
describe. Actually, we have to distinguish between the under- and overdoped regions and the
region around optimal doping. When doing this, one can differentiate several phases, that can
be seen in figure 3.2 below. However, the distinction between different regions in the phase di-
agram is not always well-defined. Thus, some transitions should be seen merely as cross-overs.
Far in the overdoped regime, the cuprate can be described as an ordinary Fermi liquid. Close to
the optimally doped regime, we have the strange metal phase and in the underdoped regime we
have the so-called pseudogap phase. Around zero doping, the system behaves as an insulating
antiferromagnet. In the next subsections, I will briefly discuss the pseudogap phase and the
strange metal phase.

Figure 3.2: Phase diagram of the cuprates [8]
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3.3.1 Strange metal

In the regime between the pseudogap phase and the Fermi liquid, we have a phase called strange
metal, or also marginal Fermi liquid. In the overdoped regime at low temperatures, the system
behaves as a Fermi liquid. There are only quasiparticles, resulting in an in-plane resistivity
ρ ∼ T 2. Upon raising the temperature, phonons become more important and for high T we
would expect the resistance to be independent of T because it only depends on the vibration
of the electrons. However, it turns out that this is not the case. Around the optimally doped
regime, ρ ∼ T . Furthermore, it turns out that the Hall coefficient in the strange metal phase is
strongly temperature dependent, while we would expect it to be independent of T . All these
strange properties lead to the conclusion that this phase cannot be described as a Fermi liquid.
An explanation of these properties could be given by quantum criticality. Some physicists
propose the existence of a quantum critical point (QCP) in the phase diagram of a cuprate,
also indicated in figure 3.2. At a QCP a phase transition takes place at T = 0. Conventional
phase transitions are driven by critical fluctuations, that are limited to a small region around the
phase transition. However, when looking at quantum phase transitions, the fluctuations have a
quantum mechanical nature. These fluctuations can still be felt in a wide range of temperatures
above the QCP, thus quantum criticality has important effects even if T = 0 is never reached.
In the region above a quantum critical point a universal behaviour is observed. On average, the
system looks the same regardless of the length- and time scale on which it is observed. Because
the current is carried by those quantum fluctuations, the linear resistivity can be explained.
However, it is unclear whether the quantum critical point actually exists in this case. Because
the QCP should be within the superconducting region, its appearance may be obscured and
difficult to locate experimentally. However, there have been transport experiments at which a
large magnetic field was applied to suppress superconductivity. These experiments suggested
that a phase transition between an insulating state for x < xc and a metallic state for x > xc
indeed takes place at zero temperature [9].

3.3.2 Pseudogap phase

The pseudogap phase is the region bordered by the antiferromagnetic phase on the left and the
strange metal and superconducting phase on the right. This is probably the most complicated
and unexplained part of the phase diagram. Lots of experiments have been done in this region,
but they all suggests a different explanation for the behaviour of the system in the pseudogap
phase. As the name says, in the pseudogap phase there exist certain pseudogaps. When there is
a gap in the energy range, this means that there is a certain range where no states are allowed.
Subsequently, the presence of a pseudogap indicates that there is an energy range that contains
only a small amount of states. A gap should indicate an insulating state. However, when look-
ing at a pseudogap, it turns out that only electrons travelling in the direction of the Cu-O bonds
are affected by its presence. Electrons moving in a direction 45 degrees to this bond can move
freely through the crystal. In the superconducting region, there is a gap everywhere except at
the nodal points (due to the d-wave nature of the cuprates). Upon raising the temperature above
Tc, in momentum space these points grow into so-called Fermi arcs. When the temperature is
raised even further, finally the four arcs meet and form a connected Fermi surface. Only on
these arcs the spectrum is gapless, and outside the arcs the pseudogap exists. Thus, this system
does not have a well-defined Fermi surface. Some experiments point out that there are actually
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two pseudogaps, one at low temperatures and one at slightly higher temperatures.
So far, there is no theory that describes systems without a well-defined Fermi surface. There
are several theories that try to give a description of the pseudogap phase, but none of them has
been fully accepted by all physicists. In what follows I will describe two theories that are quite
popular.

3.3.2.1 Competing orders

One of these theories proposes that in the pseudogap phase there are all kinds of different orders
present, consisting for example of charge segregations (stripes and quantum liquid crystals)
but also of hidden orders such as spontaneous diamagnetic currents. There is experimental
evidence for many of those types of order, indicating that they might compete and even coexist
with each other. It is still unclear whether these types of order are promoting or competing
against superconductivity. I will discuss two of these orders, namely stripes and spontaneous
diamagnetic current phases (staggered π-flux phase and Varma phase).

Stripes In section 3.1 we explained that upon adding dopant to a cuprate, holes appear in the
lattice. The dynamics of these holes in an antiferromagnetic background were studied by Jan
Zaanen and Olle Gunnarsson in 1989. In their study, they also took into account the previously
ignored oxygen atoms in the CuO2 planes. They proposed that the holes in the doped cuprate
do not distribute themselves homogeneously in the antiferromagnetic background, but form
lines. This proposal is based on their solution of the three-band Hubbard model close to half-
filling (s = 1

2 on every site) at zero temperature. The formed lines are called stripes. There
are several explanations for their existence. For example, they can be explained to arise as
a competition between a short-range effective attractive interaction, which makes the system
split into two phases (a hole-rich phase and an antiferromagnetic phase) in order to break as few
antiferromagnetic bonds as possible and the holes distributing themselves homogeneously due
to long-range Coulomb repulsion. The stripes can also be explained, because they minimize
the kinetic energy by making sure that the spins in the antiferromagnetic phase do not misalign.
In this way, the stripes act as domain walls between different Mott insulating domains. When
such a domain wall is crossed, the magnetization changes by π.
Most stripes found in doped cuprates are dynamical, i.e. they fluctuate. There are also static
stripes in some of the cuprates, for example in LSCO after it is co-doped with Nd. Static
stripes were also found in some non-superconductors, suggesting that they do not stimulate
superconductivity and maybe even compete with it. However, if the stripes are not too static,
the Yamada plot suggests that they could promote superconductivity, because it seems that Tc
increases when the stripes move closer together.
The presence of dynamical stripes could now give a possible explanation for the development of
superconductivity in cuprates, namely: when doping the cuprate when in the antiferromagnetic
phase, holes start to appear. Upon adding more dopant, more holes appear and order themselves
in dynamical stripes, partially destroying the antiferromagnetic phase. When more stripes are
formed, they start filling the entire CuO2 planes and become phase coherent. Finally, when
stripes from different planes couple to each other, we have true long range superconductivity.
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Spontaneous diamagnetic current phases When Affleck and Marston were solving the one-
band Hubbard model in mean-field treatment, they proposed that the hopping parameter in the
Hamiltonian should be complex. If this is indeed true, it means that there is a vector potential
that should be taken into account. Consequently, there will be staggered currents on the cop-
per lattice, i.e there is an alternation between a clockwise and a counter-clockwise current on
neighbouring lattice sites. As a result, time reversal symmetry and lattice translational sym-
metry are broken (the primitive lattice site becomes twice as large). This phase is called the
staggered π-flux phase.
Chandra Varma proposed a theory similar to the one described above, except that he thought
that the oxygen atoms of the CuO2 planes cannot be neglected. He proposed a phase where the
currents are not flowing around a lattice site as in the π-flux phase. Instead, the current flows
from copper to oxygen and again to oxygen and then back to the first copper in a little triangle.
There are two such triangles per lattice site and the currents flow in different directions in each
of them such that the total current per plaquette is zero. There are many different types of this
so-called Varma phase, but they all have the property that each lattice site is the same. This
means that the lattice translation symmetry is not broken. However, time reversal symmetry
remains broken. Recent experiments have pointed out that in the pseudogap phase time reversal
symmetry is indeed broken and the overall measurements were more consistent with the Varma
phase than with the π-flux phase.

3.3.2.2 Non simultaneous phase coherence and pair creation

An important experimental investigation of the pseudogap phase was performed by the group
of Yazdani in Princeton. In this section I will discuss their article, ref. [10].
As mentioned above, in high temperature superconductors there is a partial gap in the density
of states for a range of temperatures above Tc. The main questions that Yazdani et al. are
trying to answer are whether this gap is associated with pairing and what is determining the
temperature at which pairs start to form. To answer these questions, they were the first that did
spatially resolved measurements on gap formation in the cuprate BiSCCO, with doping levels
in the range 0.12− 0.22, using STM (scanning tunnelling microscopy, see appendix B). For
their experiments, they used a specially designed variable temperature ultrahigh-vacuum STM
to be able to track specific areas of the sample on the atomic scale as a function of T .

First, they looked at a specific site in the most overdoped sample (OV65, where OV
stands for overdoped and 65 for the critical temperature in Kelvin), with a doping level of
x = 0.22. They measured spectra over a range of temperatures close to Tc, from which they
deduced the maximal value of the local gap and the temperature Tp at which the gap is no
longer measurable. Subsequently, this measurement was repeated on many other sites, result-
ing in spectroscopic mapping measurements over areas ∼ 300 Å. From these measurements,
they deduced that upon increasing T , there is a rapid increase of ungapped regions. However,
even above Tc there still remain some gapped regions. Furthermore, Yazdani et al. extracted a
relation between a given gap ∆ below Tc and the temperature Tp at which it collapses. They
did this by first computing the percentage of the sample that is still gapped at a certain T and
then compute the probability P(< ∆) that the size of a gap is less than a given local ∆. Then
they stated that a linear relationship between ∆ and Tp requires that the x-axes of these two
computations are related by a simple ratio. Indeed, they found the ratio 2∆/kBTp = 7.8±0.3.
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Subsequently, the article treats optimally doped samples. Experiments were done on the
sample OP93 (where OP stands for optimally doped). For this sample, at T < Tc, the
experiments point out that there indeed is a d-wave pairing gap (similar to the overdoped
samples). However, the sample is still entirely gapped 10 K above Tc (unlike the overdoped
samples), thus the loss of phase coherence when increasing the temperature above Tc does not
affect the presence of the gap; the distribution of gaps just above and below Tc is very similar.
When the temperature is increased further, there finally is an inhomogeneous collapse of gaps
similar to the collapse in overdoped samples.
The Tp−∆ ratio found in overdoped samples is then tested for various dopings. It turns out
that all measured overdoped and optimally doped samples satisfy this ratio. Note that the ratio
looks like the ratio found in BCS theory (see 2.2), namely 2∆/kBTc = 3.52. This is an argument
to interpret the gaps in the pseudogap phase as indeed being due to pairing. However, the rate
is larger than the rate for BCS, thus indicating that the gap is more robust.

Finally, underdoped samples were examined. Unfortunately, it turns out that these sam-
ples do not satisfy the same ratio as overdoped and optimally doped samples. The reason is
probably that there are now two energy scales that should be taken into account, of which
there is only one related to pairing. Namely, over 30% of the measured spectra for T � Tc
show strange ‘kinks’, from which we should probably conclude that there is a lower energy
scale that is important. Further research is necessary to find out how things work exactly in the
underdoped regime.

To summarize, Yazdani et al. concluded that phase coherence and formation of Cooper
pairs do not occur at the same time, in contrast to conventional superconductors. Instead, first
the Cooper pairs are formed (below a temperature Tp), which results in the development of
small islands of gapped regions (i.e. the pseudogap phase). Upon lowering the temperature
below Tc, the gapped islands merge, phase coherence takes place and the material becomes
superconducting. For overdoped and optimally doped samples, the local pairing criterion
2∆/kBTp = 7.9±0.5 is found. This criterion indicates that the gap is more robust than the one
in BCS theory. Pairing occurs at Tp and the T ∗ line (see Fig. 3.2) is controlled by the largest
pairing gaps (Tp,max). In underdoped samples, there are two energy scales. Consequently, these
samples do not satisfy the local pairing criterion. The T ∗ line is controlled by the largest of the
two energy scales and seems to be unrelated to pairing. Thus, the Tp,max line probably lies well
below T ∗ in the underdoped region. It remains unknown what exactly happens in this region.
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Conclusions and outlook

In this thesis, I have made an attempt to give an overview of superconductors in general.
Hereby, I have started with low-temperature superconductors, which we saw are well-explained
by BCS theory. Subsequently, I have treated high-temperature superconductors and especially
cuprates, for which it became clear that ordinary BCS theory does not give an appropriate
description. There is no theory that fully describes the high-temperature superconductors and
explains how they work.
Our dream is to find materials that become superconducting around room-temperature. How-
ever, the realization of this dream still seems to be far away. To make progress we first need to
understand the mechanism behind high-Tc superconductivity. To do this, it is especially impor-
tant to improve the experimental techniques such as ARPES, STM and neutron scattering and
to keep searching for new classes of materials that might turn out to be high-Tc superconductors.

The three most studied types of high-Tc superconductors are LSCO, YBCO and
BiSCCO. The biggest problem is that the different experimental techniques used on
these superconductors all yield results on different time scales, which makes them very
difficult to be compared. Because of this, there are many properties of which we do not know
if they are universal or specific of a certain material. For example, for LSCO, it is easy to make
large samples, which are good for neutron scattering measurements (which yields information
in k-space), but its surface is not very flat and the material is dirty, which makes it difficult to
do STM and ARPES measurements (which yield information in real space). For BiSCCO,
it is exactly the opposite. The surface is very flat, which makes it easy to do STM and
ARPES measurements. However, the samples are very small which makes neutron scattering
impossible. Then we also have YBCO, where there is an additional complication, namely the
presence of Cu-O chains in the material. Because of this, these three high-Tc superconductors
are difficult to compare.

As mentioned before, there is no satisfactory theory that explains all properties of the
cuprates. Nevertheless, a great step forward seems to have been made by the Yazdani group
[10] when they found a relation between the superconducting energy gap and the temperature
Tp at which the gap is no longer measurable. This is called the local pairing criterion and
it has the form 2∆/kBTp = 7.9± 0.5. This criterion is very similar to the criterion found in
BCS theory, namely 2∆/kBTc = 3.52. Maybe this discovery could lead to a theory for high-Tc
superconductors which is an adjusted form of BCS theory. Such a theory would have to
explain the robustness of this local pairing criterion (i.e. the factor 7.9 which is much larger
than 3.5) and also the other properties of high-Tc superconductors, for example the shape of
the phase diagram and the mechanism that lies beneath the formation of gapped islands in the
pseudogap phase.
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I conclude this thesis by saying that I think there certainly is hope that somewhere in
the future, we will be able to give an appropriate description of high-temperature superconduc-
tivity. Furthermore, I think that when we have done so, we will be able to say whether or not
it is possible to create room-temperature superconductors. Nevertheless, a long road probably
lies ahead of us.
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Appendix A

Derivation of second quantized operators

To derive the general form of observables in second quantization, we first derive two special
cases, namely the kinetic energy T and the two-body interaction V . This derivation is based on
ref. [3].
We start with the kinetic energy, T = ∑

N
i=1

p2
i

2m . Now we want to derive the form of this operator
in terms of akσ and a†

kσ
. We expect

T = ∑
k,σ

|k|2

2m
a†

kσ
akσ, (A.1)

because a†
kσ

akσ is the number of particles in the state |k,σ〉= |k〉. Note that we have set ~= 1.
We know that T acts on an N-particle state as

T |k1, . . . ,kN〉± =

(
N

∑
i=1

|ki|2

2m

)
|k1, . . . ,kN〉± =

(
N

∑
i=1

|ki|2

2m

)
a†

k1
· · · a†

kN
|0〉,

where the ±-sign denotes the symmetry of the state, + or symmetric for bosons and − or
antisymmetric for fermions. To prove that equation (A.1) is correct we need to prove that it
acts in the same way as above. Using the commutation relations, we obtain

(a†
kak)a

†
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|0〉= a†

k(δkk1 + εa†
k1
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†
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where we repeated this process until we can use ak|0〉= 0 and ε =±1, + for bosons and − for
fermions. After the third equality we used εa†

ka†
k1
= a†

k1
a†

k in the second term. Then we obtain(
∑
k

|k|2

2m
a†

kσ
akσ

)
a†

k1
· · · a†

kN
|0〉=

(
∑
k

N

∑
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2m
δkki

)
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kN
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∑
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2m

)
a†
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kN
|0〉,

which completes the proof. Now, we rewrite T in the |x〉= |r,σ〉-basis, using

a†
kσ

=
1

V
1
2

∫
V

dr eik·r
ψ

†
σ(r)

akσ =
1

V
1
2

∫
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dr e−ik·r
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such that

T = ∑
σ

1
V

∫
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dr
∫
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where we used

1
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〈
r
∣∣∣∣ p2
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Thus, we now have an expression for the kinetic energy in second quantization in the |r,σ〉-
basis. From this, the general form of one-body observables A in second quantization can be
deduced. Namely,

A = ∑
i, j
〈φi|A|φ j〉a†

i a j = ∑
i

αia
†
i ai, (A.2)

where the second equality only holds if A is diagonal (with A|φi〉= αi|φi〉).
Now we turn to the two-body interaction. Assume that it is spin independent. It acts as follows:

V2|x1, . . . ,xN〉± =
1
2 ∑

i 6= j
V2(ri,r j)|x1, . . . ,xN〉± (A.3)

We claim that the second quantized expression is

V2 =
1
2

∫
dx

∫
dx′ V2(x,x′)ψ†(x)ψ†(x′)ψ(x′)ψ(x), (A.4)

thus we have to prove that this expression acts on a state in the same way as equation (A.3).
The idea is again to bring ψ(x′)ψ(x) on |0〉 using the commutation relations and then use that
ψ(x′)ψ(x)|0〉= 0. For simplicity, we first consider N = 2. Then we have

ψ(x)ψ†(x1)ψ
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†(x2)+ εψ
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2
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†(x1)ψ
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and therefore
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Applying this state on the vacuum |0〉 gives
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Then, recalling that ε2 = 1, we obtain
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where in the last step we exchanged particles in the second term, which yielded another ε. Now
we multiply by V2(x,x′) and integrate over x and x′. This yields∫

dx
∫
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where in the last step we used that the potential is symmetric in x1 and x2. This proves equation
(A.4) for two particles. The N-particle case can be done in a similar way.
We go to momentum space by plugging in the Fourier transforms given by

ψ
†(r) =

1

V
1
2
∑
k

e−ikra†
kσ
,

ψ(r) =
1

V
1
2
∑
k

eikrakσ.

This yields

V2 =
1
2 ∑

k1,k2,k3,k4
σ1,σ2,σ3,σ4

a†
k1σ1

a†
k2σ2

ak3σ3ak4σ4〈k1,σ1;k2,σ2|V2|k4,σ4;k3,σ3〉,
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where

〈k1,σ1;k2,σ2|V2|k4,σ4;k3,σ3〉=
1
L6 ∑

σ,σ′

∫
V

dr
∫

V
dr′ e−ik1·rδσ1σe−ik2·r′δσ2σ′

V2(r,σ;r′,σ′)eik4·rδσ4σeik3·rδσ3σ′

=
1
L6 ∑

σ,σ′
δσ1σδσ2σ′δσ4σδσ3σ′

∫
V

dr
∫

V
dr′ V2(r− r′)ei(k4−k1)·rei(k3−k2)·r′

=
1
L6 δσ1σ4δσ2σ3

∫
V

dr′ ei(k3−k2)·r′
∫

V
dr̃ ei(k4−k1)·(r′+r̃)V2(r̃)

=
1
L6 δσ1σ4δσ2σ3

∫
V

dr′ ei(k3+k4−k1−k2)·r′
∫

V
dr̃ V2(r̃)ei(k4−k1)·r̃

=
1
L3 δσ1σ4δσ2σ3δk3+k4,k1+k2Ṽ2(k1−k4),

assuming that V2(x,x′) =V2(r− r′) such that we could explicitly do the summation over σ,σ′.
Then

V2 =
1

2L3 ∑
k1,k2,k3,k4
σ1,σ2,σ3,σ4

a†
k1σ1

a†
k2σ2

ak3σ3ak4σ4δσ1σ4δσ2σ3δk3+k4,k1+k2Ṽ2(k1−k4)

=
1

2L3 ∑
k1,k2,k3,k4

σ,σ′

a†
k1σ

a†
k2σ′ak3σ′ak4σδk3+k4,k1+k2Ṽ2(k1−k4)

=
1

2L3 ∑
k,k′,q
σ,σ′

Ṽ2(q)a†
k+qσ

a†
k′−qσ′ak′σ′akσ

(A.5)

where we defined Ṽ2(q) :=
∫

V dr V2(r)e−iq·r and set σ1 = σ4 =: σ and σ2 = σ3 =: σ′ and
k1−k4 = q, k4 = k and k3 = k′ by using the Kronecker delta’s.
From this we can deduce the general form for two-body observables in second quantization,
namely

V2 =
1
2 ∑

i, j,k,l
Vi j;kla

†
i a†

jalak,

where Vi j;kl = 〈φi⊗φ j|V |φk⊗φl〉.
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Appendix B

Scanning Tunneling Microscopy (STM)

STS, or Scanning Tunneling Spectroscopy, is an experimental technique with which we can
obtain information about the atomic and electronic structure of materials. STM, which is a
specific branch of STS, is for instance used for measurements on the high-Tc superconductor
BiSCCO. In this appendix, I will briefly discuss this technique. Hereby I have mainly used ref.
[11].

Consider two electrodes, separated by an insulating barrier. Then, if the wave functions
of the electrons overlap, they can tunnel through this barrier. The number of electrons that will
go through is dependent on the electronic structure of the electrodes and the distance between
them. If you measure the tunneling current, it is thus possible to obtain information on the
electronic structure and topography of the electrodes. This is the principle on which STS is
based.
In 1961, Ivar Giaever was the first one to apply quasi-particle tunneling as a method of
scanning. As electrodes, he used an aluminium and a lead sheet and as insulating barrier, he
used an aluminium-oxide plane with width∼ Å. He varied the bias-voltage over the two sheets.
Subsequently, he could measure the differential tunneling conductance dI/dV . Furthermore,
he could control whether lead was in the normal or superconducting state upon applying a
magnetic field. With these experiments, Giaever confirmed the BCS theory.
However, with this method of scanning, it is not possible to indicate from which site of the
sample or probe the tunneling electron that produced the current originated. In 1981, Rohrer
and Binnig invented the Scanning Tunneling Microscope with which this was possible. This
discovery was a great revolution because it was the first time that we could actually see
individual atoms. The microscope uses an electrode with atomic width (like a very thin needle)
instead of a sheet electrode. This probe comes so close to the sample that the wave functions
overlap, such that, when a voltage difference is applied between the probe and the sample,
electrons can tunnel through the space between the sample and the probe. Consequently, a
current starts flowing. This current is strongly dependent on the precise distance between
the probe and the sample, thus it can be changed by moving the probe. With this method it
was possible for the first time to acquire electronic and atomic information of specific sites of
the sample. The microscope can measure displacements ∼ 10−12 m and energy differences
∼ 600 µV , thus it is very precise. However, there is also a downside. Namely, the preciseness
makes the microscope also very sensitive to external influences, which complicates the
measurements. To make the measurements as precise as possible, the space between the probe
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and the sample should be a perfect vacuum, but this is difficult to realize.
To make a three-dimensional image of a sample, there are two methods that can be used.
For both of these methods we need the electrons to be homogeneously arranged through the
sample, i.e. the local (electron) density of states (LDOS) must be homogeneous. The first
method, Constant Current Imaging, consists of letting the probe move over the sample in such
a way that the tunneling current is always constant. For the second method, Constant Height
Imaging, the height is kept constant. This method is remarkably easier and faster, but there is a
risk that the probe breaks because it hits an irregularity in the sample.
It turns out that there is a direct relation between dI/dV and the spectral function and therefore
the local density of states. Then dI/dV can be measured by changing the bias voltage while
holding the probe at a fixed position.

In order to do STM measurements on BiSCCO, the used samples cannot contain too
many irregularities (because then the probe will probably break). It is possible to make
samples that are flat enough by cutting the crystal precisely between two BiO planes. We
can do this because the bonds between two BiO planes are weaker than the other bonds in
the BiSCCO crystal. Furthermore, because the movement of the electrons is restricted to the
CuO2 planes (see 3.3.2), we neglect the BiO and SrO planes completely and suppose that what
we are probing when looking at the BiO plane are actually the electrons in the CuO2 plane
beneath. But we cannot be sure that this is indeed the case.
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