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Abstract  
European regions are currently implementing smart specialisation strategies trough the capitalisation of 
their knowledge assets to drive innovation in promising sectors, fields or technologies . However, there 
is a lack of understanding behind the knowledge development process of smart specialisation strategies 
targeting  renewable energy technologies. Especially so in the creation of complex knowledge, which is 
more difficult to replicate and it therefore provides a greater competitive advantage. This research aims 
to fill that gap by exploring the patterns of complex knowledge production in six renewable energy 
technologies. By making use of quantitative methods and building upon the theoretical foundations of 
Evolutionary Economic Geography and the Smart Specialisation literature, this research attempts to test 
the relationship between the ability of a region to create complex knowledge and four mechanisms of 
path and place dependency linked to the knowledge creation process. Scientific publications cited in 
patents are used as an indicator for regional knowledge production to capture the role that scientific 
knowledge plays in technological development. A set of quantitative analysis revealed that scientific 
relatedness is the most important driver for the creation of complex knowledge. That is the extent to 
which a region’s scientific profile is related to the knowledge base of a given technology. Contrary to 
what was expected, the results showed that the infrastructural and technological carbon lock-in of fossil 
fuel technologies either constraint or encourage the creation of complex knowledge. Moreover, it was 
found that the ability of a region to create complex knowledge does not depend on its ability to 
accumulate scientific knowledge, being solar PV technology the exception, possibly due to the high level 
of analyticity of its knowledge base. Unexpectedly, the access to complementary knowledge trough 
interregional linkages does not have a strong impact in the creation of complex knowledge. Instead, it 
is possible that complex knowledge is more likely to be geographically bounded. This is supported by 
the spatial distribution of complexity scores, in which high-score regions tend to cluster next to each 
other. To conclude, the findings of this research suggest that European regions implementing smart 
specialisation strategies targeting renewable energy technologies are more likely to be successful when 
they diversify into scientific or technological fields that are related to their scientific profile, regardless of 
their capacity to contribute to the knowledge stock or the knowledge and specialised skills accumulated 
in fossil fuel technologies.  
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1. Introduction 
Climate change is among the main drivers of the European energy transition (Gielen et al., 2019) and 
the European Commission has established an ambitious target to reduce greenhouse gas emissions by 
40% and increase the share of renewable energy by 32% by 2030. (European Commission, 2017). 
Within this context, the European Union introduced the smart specialisation policy framework to support 
sustainable transitions (S4+) by prioritising promising sectors, fields or technologies. Currently, 
renewable energy is one of the main priorities for many regions and two-thirds already have a clean 
energy-related priority (European Commission, 2018; Steen et al., 2018). Regions are therefore playing 
a more important role in fostering renewable energy, translating into a direct contribution towards the 
climate and energy European targets (European Commission, 2018). Within the smart specialisation 
policy framework both a region’s knowledge assets and its local capabilities are considered to be the 
building blocks to drive innovation (Foray et al., 2011). Consequently, there is an important societal need 
to understand the dynamics behind the knowledge development process that supports sustainable 
energy innovations (Steen et al., 2018), and more specifically for the creation of complex knowledge, 
as it is more difficult to replicate and, therefore, provides a greater competitive advantage (Pintar & 
Scherngell, 2018). Even tough numerous studies have explored the regional knowledge creation 
process, it is not clear whether their findings can be extended to specific sectors or to technological 
fields. Therefore, further research is needed to explore the patterns of knowledge production of 
renewable energy technologies (Steen et al., 2018).  

Previous research has demonstrated that knowledge production has different patterns in the 
geographical space; and it depends to a greater extent in the scientific and technological capabilities 
available. Since the knowledge development process is differentiated across locations, knowledge tends 
to remain unevenly distributed in space (Balland & Rigby, 2016; Heimeriks et al.,2019; Pintar & 
Scherngell, 2018); and some regions struggle to replicate the levels of productivity and innovativeness 
achieved in leading regions (Heimeriks & Balland, 2016). In terms of diversification opportunities, 
previous research suggests that regions are more likely to diversify into activities related to their existing 
scientific profile, discouraging efforts on activities unrelated to their knowledge assets (Boschma et al., 
2014a; Heimeriks et al., 2019). From the perspective of knowledge complexity, Balland et al. (2018) 
found that regions are more likely to diversify into new complex technologies when they tend to build 
upon their local capabilities. For the case of renewable energy technologies, Li (2020) also found that 
the scientific profile of countries facilitates the early adoption of breakthrough innovations in solar 
photolytic and wind power technologies. At the same time, the ability of a region or country to participate 
in the development on a renewable energy technology, depends not only on the locally available 
knowledge and capabilities, but also on the characteristics of a given technology’s knowledge base (Li, 
2020; Persoon et al., 2021). Lastly, different types of carbon lock-ins are likely to limit the knowledge 
development in renewable energy technologies (Seto et al, 2016.)  

Overall, scholars have demonstrated that complex knowledge creation is a geographically differentiated 
phenomenon, partially constrained by regional capabilities. Their contributions are important 
steppingstones towards understanding the implications of the knowledge creation process for place-
based innovation policies. However, no studies as to date have explored the regional patterns of 
complex knowledge production in renewable energy technologies. Moreover, it is not clear the extent 
that the infrastructural and technological carbon lock-in hamper the knowledge creation process around 
sustainable energy technologies. Therefore, it remains unclear whether the findings of previous 
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research can be generalised in the field of renewable energy. Especially, empirical evidence is required 
to determine whether the diversity and uniqueness of a region’s scientific portfolio influences its capacity 
to develop complex knowledge in renewables energy technologies. This is highly relevant for the smart 
specialisation policy framework, whose rationale lies on the assumption that regions need to focus on 
their local capabilities to realise the scaling potential of new domains (Foray et al., 2011). In addressing 
the previous research gaps, the core question that motivates this research is the following: 

• What are the regional patterns of complex knowledge production in renewable energy 
technologies? 

From a spatial and evolutionary perspective, this question aims to find specific trends as European 
regions engage in the knowledge development process within the renewable energy field. More 
particularly, this research attempts to answer the following sub questions: 

• To what extent does the scientific portfolio of a region influence its further capacity to produce 
unique and diversified knowledge in renewable energy technologies?  

This question aims to prove whether local capabilities depicted by the scientific specialisation of a region 
determine its capacity to produce more unique and diversified knowledge.  

• To what extent does the capacity of a region to contribute to the knowledge stock facilitate the 
further development of complex knowledge? 

This question aims to find whether the knowledge accumulated in a region influences its capabilities to 
produce unique and diversified knowledge.  

• To what extent does the carbon-emitting energy infrastructure constrain the production of 
complex knowledge in renewable energy technologies? 

The aim of this question is to resolve whether the specialised skills and knowledge accumulated within 
carbon-emitting energy infrastructure in a region somehow affects its capacity to produce unique and 
diversified knowledge in renewable energy technologies. 

• To what extent are regions with access to complementary knowledge trough interregional 
networks more likely to develop complex knowledge in renewable energy technologies? 

This question intends to evaluate whether access to complementary knowledge available in other 
locations influences the capacity of a given region to develop unique and diversified knowledge. 

In answering those questions, this research makes use of quantitative methods and bridges theoretical 
concepts from the Evolutionary economic geography and smart specialisation literature. Scientific 
publications cited in patents are used as an indicator for regional knowledge production to capture the 
role that scientific knowledge plays in technological development. By gathering scientific publications 
cited on patents, an original methodological approach is introduced to calculate a knowledge complexity 
index for European regions within the cognitive limits of renewable energy technologies. Other energy 
indicators are collected from the Eurostat database to test the relationship of knowledge complexity with 
mechanisms of path and place dependency within the knowledge production process. Overall, this 
study, offers an innovative analytical and methodological approach to study the regional patterns of 
knowledge production in renewable energy technologies.  
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This study follows a recent research stream measuring knowledge complexity from an evolutionary 
perspective, focusing on the regional level of analysis and taking the case of renewable energy 
technologies. By exploring the determinants of knowledge complexity from an evolutionary perspective, 
this research attempts to contribute to the body of knowledge of Evolutionary economic geography. In 
doing so, this research aims to bring new insights regarding the constraints and opportunities imposed 
by the current scientific and technological trajectories in the field of renewable energy. Moreover, new 
insights into the potential constraints of the technological and infrastructural carbon lock-in of 
established fossil-fuel technologies in the knowledge production process are expected to emerge. This 
research also aims to bring new evidence between the relationship of knowledge accumulation in certain 
locations and their factual capacity to develop complex knowledge. Furthermore, an attempt is made to 
bridge the gap regarding the potential and positive externalities that the access to complementary and 
external knowledge might have over the production of complex knowledge. Ultimately, this research 
attempts to bring new insights into the implications of smart specialisation strategies for decarbonising 
the energy systems while creating competitive advantages for European regions.  

A better understanding of the regional patterns of knowledge production in renewable energy 
technologies has important implications for the design and implementation of smart specialisation 
policies in Europe targeting clean energy-related priorities.  As an ex-ante condition for receiving 
European Structural and Investment Funds the European Commission has encouraged regions to 
implement smart specialisation strategies (Steen et al., 2019). To unfold those strategies, smart 
specialisation policies have been deployed so as to support the energy system transformation (Steen 
et al., 2019). This transformation requires the creation and diffusion of scientific and technical knowledge 
to drive innovation (Gallagher et al., 2012). Thus, it is necessary to acknowledge the process behind 
‘what a region does best in terms of its scientific and technological endowments’ (Morisson & Pattison, 
2020).  Because smart specialisation is fundamentally a place-based innovation policy concept, a better 
understanding of the territorial diversity and the best opportunities for further knowledge development 
at different locations is required (Heimeriks et al., 2019). Furthermore, recognising the place-specificity 
in developing clean technologies is crucial for formulating better energy transition pathways for individual 
locations (Li, 2020). Overall, a better understanding of the knowledge creation process may allow policy 
makers to make better choices when it comes to the design and implementation of smart specialisation 
strategies targeting renewable energy technologies.  
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2. Theoretical framework 
The basic concern from Evolutionary economic geography lies within the mechanisms by which the 
economic landscape is transformed over time; being the development of knowledge the underlying 
driver of economic evolution (Boschma & Martin, 2010). The importance of knowledge in the economic 
transformation is recognised by the smart specialisation strategy policy concept, which aims to generate 
knowledge around a region’s new domain of potential diversification with growth potential (Foray et al., 
2011). In the following sections, a further elaboration of theoretical framework is provided. To begin with, 
a conceptualisation and a typology of the different types of knowledge base is presented. Afterwards, 
an interplay between smart specialisation and knowledge complexity is introduced. Lastly, four 
mechanisms of path and place dependency in the process of regional knowledge production with a 
focus on the energy field are described.  

 

2.1 The knowledge base 

The knowledge base concept has been mainly used to classify industries in terms of the ideal prototype 
of knowledge underlying the innovation process (Davids & Frenken, 2017). However, it has also been 
applied to regions (Asheim & Coenen, 2005), organizations (Davids & Frenken, 2017) and technologies 
(Persoon et al., 2021). In this research, this concept is used to describe the collection of scientific 
publications attributed to a given technology, while the term of ‘scientific portfolio’ is used to describe 
the share of a region’s scientific publications within the knowledge base of a given technology. 
Additionally, the classification of Persoon et al. (2021) is used to describe the type of knowledge base 
of renewable energy technologies. Thus, it is possible to distinguish between two types of knowledge 
base: an analytical one and a synthetic one. In an analytical knowledge base, scientific knowledge is 
highly important, and knowledge creation is often based on cognitive and rational processes. This type 
of knowledge base is often associated with basic research and codified knowledge (Persoon et al., 
2021), which is usually documented in reports, electronic files or patent descriptions (Asheim & Cohen, 
2005). A typical example of a technology that relies on an analytical knowledge base is solar 
photovoltaics (Persoon et al., 2021). On the other hand, in a synthetic knowledge base, innovation takes 
place mainly through the application of existing knowledge or trough new combinations of existing 
knowledge. This type of knowledge base is usually associated with applied research and tacit 
knowledge (Persoon et al., 2021). Wind power, solar thermal, geothermal and hydropower represent 
examples of technologies that rely on a synthetic knowledge base (Persoon et al., 2021). This 
classification is useful to differentiate the type of knowledge that can be used in smart specialisation 
strategies. The body of scientific and codified knowledge of scientific publications cited in patents is 
used to construct the knowledge base of the technologies analysed.  

 

2.2 Smart specialisation and knowledge complexity  

Smart specialisation strategy is a place-based innovation policy concept to support regional prioritisation 
in innovative sectors, fields or technologies (Foray et al., 2011). This policy concept highlights the role 
of the entrepreneurial knowledge, which is a combination of knowledge about science, technology an 
engineering with knowledge of market potential, customers, and the whole set of inputs and services for 
launching a new activity. The entrepreneurial knowledge is used in the entrepreneurial discovery 
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process to reveal what a region does best in terms of its scientific and technological endowments 
(Morrison & Pattison, 2020). In this research, the interest lies in the knowledge about science, 
technology and innovation, which is linked to the transformation of the economic structure toward a 
desirable trajectory of regional growth (Pinto et al., 2019). For this policy concept, promoting knowledge 
production in certain domains of future specialisation is considered a key driver for diversification (Foray 
et al., 2011). Every region has its own unique, scientific profile (Heimeriks et al., 2019), which determines 
their ability to develop new sectors or new market niches (Boschma & Martin, 2010). Therefore, the 
regions’ scientific existing portfolios offer opportunities for related diversification and discourage the 
creation of knowledge in scientific fields unrelated to the local knowledge base (Heimeriks et al., 2019). 
In principle, the more complex the knowledge is produced, the more capabilities regions possess to 
easily diversify into new topics and fields (Heimeriks et al., 2019).  

The notion of knowledge complexity has come into use as an attempt to measure quality of knowledge 
in terms of its uniqueness and its replicability. The central assumption is that more complex knowledge 
is more difficult to replicate, and therefore, provides a higher competitive advantage (Pintar & 
Scherngell, 2018). The variety of knowledge that a region possesses, but also the extent to which it is 
able to combine this knowledge, strongly determines the number of capabilities within that region 
(Hausmann et al., 2013). Regions that combine their capabilities in an efficient and unique way are able 
to develop new knowledge with greater complexity than that of other regions which are not capable to 
do so (Hidalgo & Hausmann, 2009). In other words, knowledge complexity can be explained by two 
dimensions - diversity and ubiquity - where diversity refers to the capabilities of regions with a diverse 
range of technologies; and ubiquity suggests whether the regions are capable to develop unique 
technologies. High diversity and low ubiquity contribute to a more complex knowledge structure of the 
region (Balland et al., 2018). Knowledge complexity provides a qualitative measure to inform smart 
specialisation strategies about which scientific areas or technologies are more worthy of prioritisation. 
More particularly, this qualitative measure is especially relevant for renewable energy technologies, 
which are considered complex technologies which require a greater variety of knowledge inputs and 
unique combinations of knowledge, in comparison to other technologies (Barbieri et al., 2020). 

2.3 Regional knowledge production 

From an evolutionary perspective, the knowledge production process can be fundamentally 
characterised as a path and place-dependent phenomena. Although path-dependency and place-
dependency refer to two distinct mechanisms, they interact with each other in the knowledge production 
process (Li, 2020). Regions differ markedly in economic structure, institutions and connections to other 
regions; so the nature and degree of path dependency in the knowledge production vary from region to 
region, which makes path dependency a place-dependent process. (Martin & Sunley, 2006). In the 
following sections, a conceptual definition and some specific mechanisms of path and place dependency 
are introduced in more detail.  

 

 

2.3.1 Path dependency 

The core assumption of path dependency is that the continuous accumulation of knowledge leads to 
the formation of a technological trajectory, which defines the technological opportunities for further 
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development (Dosi, 1982; Nelson & Winter, 1982). Innovative activities are strongly selective and actors 
that innovate will seek to improve and to diversify their technology by searching in zones that enable 
them to use and build upon the existing technological knowledge base (Dosi, 1988). From a smart 
specialisation perspective, it means that regions tend to diversify into new related activities based on 
the characteristics of their scientific profile (Boschma et al., 2014a). Given the high barriers of radical 
innovations of energy systems (Simmi et al.,2014), both the scientific profile of a region and the 
knowledge and skills accumulated with established fossil fuel technologies (Foxon, 2002; Seto et al., 
2016; Unruh, 2000), represent important mechanisms of path-dependency while diversifying into new 
renewable energy technologies. Those two mechanisms of path dependency are explained in more 
detail below.  

 

2.3.1.1 Scientific relatedness 

Scientific relatedness can be conceptualised as a special case of path-dependence measured from a 
scientific knowledge production perspective. The relatedness concepts rests on the idea that the 
knowledge accumulated has an architecture that is based upon similarities and differences in a way that 
various types of knowledge can be used; when knowledge subsets are close to each other or demand 
similar sets of cognitive capabilities and skills for their use, they are related or proximate to each other 
in some form of knowledge “space” (Balland et al., 2018). Thus, the development of new scientific 
knowledge within a region reflects the existing collective capacity of the scientific community to build 
upon the accumulated knowledge, which in turn, is delimited by specific technological trajectories. In 
that sense, scientific relatedness is driven by the scientific specialisation of regions in specific 
technological trajectories. Since the scientific profile of a region determines their capacity to develop 
new knowledge in a specific scientific subfield (Heimeriks & Balland, 2016) and countries diversify 
toward green technologies that are related to their existing competences (Perruchas et al., 2020); it is 
therefore expected that the production of knowledge is driven by the scientific specializations of regions 
among specific technological trajectories. In particular, it is easier for regions to diversify into new 
complex technologies when they build on their local capabilities and the knowledge accumulated within 
their own scientific profile. This reasoning leads to the following hypothesis:  

H1. Regions are more likely to produce complex knowledge in renewable energy technologies that are 
related to their scientific profiles.  

 

2.3.1.2 Technological and infrastructural carbon lock-in 

Carbon lock-in is a special case of path-dependency driven by the inertia of mutually reinforcing 
technologies, institutions and behavioural norms that limit the transformation rate of the global energy 
system due to increasing returns of scale (Seto et al., 2016). Without neglecting the importance of 
institutions and behavioural norms, this research focuses on a type of carbon lock-in associated with 
the technologies and infrastructure that shape energy supply and indirectly or directly emit CO2 (Seto et 
al., 2016).  The infrastructural and technological carbon lock-in concept derives from the assumption 
that the long life of physical infrastructure may lock societies into carbon-intensive emission pathways 
that are difficult to change due to differences in capital and operating costs, in comparison to low-carbon 
energy technologies (Klitkou et al., 2015; Seto et al., 2016). Thus, the adoption of low-carbon 
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technologies is not economically favourable until capital and operating costs are less than those of 
incumbent fossil fuel–burning technology; which is unlikely to happen during their normal lifetime (Seto 
et al., 2016). Moreover, increasing returns of learning effects reduce the cost of research activities 
because of the specialised skills and knowledge accumulated trough production and market experience; 
which in turn, facilitate the development of higher quality products and the improvement of processes 
by incremental innovation (Antonelli, 2010; Klitkou et al., 2015). Therefore, it is expected that specialised 
skills and knowledge accumulated in carbon-emitting energy infrastructure may constrain regions to 
diversify and produce complex knowledge in renewable energy technologies. This reasoning leads to 
the next hypothesis: 

H3: Regions located in countries that have historically relied on carbon-emitting energy infrastructure 
are less likely to develop a portfolio of complex knowledge in renewable energy technologies.  

 

 

2.3.2 Place dependency 

The main argument behind place dependency is that knowledge production is differentiated among 
locations (Heimeriks & Boschma, 2014). From a smart specialisation perspective, regions differ in terms 
of their capacities to create new knowledge depending on the strength of their institutional contexts 
(Morisson & Pattinson, 2020). Because the creation of new knowledge depends on the production and 
use of tacit knowledge, which is difficult to exchange over long distances (Asheim & Gertler, 2005); 
knowledge remains unevenly distributed in space (Heimeriks and Balland, 2015; Strambach 2010) and 
some regions tend to concentrate the production of complex knowledge (Balland et al., 2020). Moreover, 
regions differ markedly in the number of extra-regional linkages, and consequently they have a different 
degree of access to complementary knowledge (Balland & Boschma, 2021). In the following sections, 
these two mechanisms of place dependency in the knowledge production process are introduced in 
more detail.   

 

2.3.2.1 Knowledge accumulation 

It is widely recognized that the accumulation of knowledge is central to innovation and economic 
performance (Heimeriks & Balland, 2016). However, knowledge production and accumulation remain 
unevenly distributed across locations (Heimeriks et al., 2019). Likewise, the emergence and growth of 
renewable energy technologies is strongly shaped by the dynamics of knowledge creation in the 
geographical space (Kraft et al., 2014). Knowledge development of renewable energy technologies does 
not occur simultaneously in all countries (Sousa et al., 2014).  Typically, some countries lead the 
production of knew knowledge; while others adopt the technology when it is already being diffused, 
avoiding the costs associated with early knowledge development and experimentation. Since the 
production of complex knowledge is unevenly distributed across regions (Pintar and Scherngell, 2018) 
and the accumulation of tacit knowledge provides an intangible asset that is difficult to copy by non-local 
agents (Heimeriks et al., 2019), it is expected that the accumulation of knowledge in renewable energy 
technologies is unevenly distributed as well. In that sense, the capacity of a region to accumulate 
knowledge provides more opportunities to diversify into more complex technologies (Heimeriks & 
Balland, 2016). It is therefore expected that the extent to which a region contributes to the knowledge 
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stock of a given technology, will determine the possibilities it has to further develop complex knowledge. 
This proposition leads to the following hypothesis: 

H2. Regions with more accumulated knowledge are more likely to develop a portfolio of complex 
knowledge in renewable energy technologies. 

 

2.3.2.1 Access to complementary knowledge 

Interregional linkages are considered to give regions access to external knowledge that can tackle or 
avoid the tendency of regions to get locked-in (Balland & Boschma, 2021). The ability of regions to 
capture and re-use external knowledge is regarded as a fundamental element to sustain and refine the 
local scientific profile of specialisation and competitiveness (Ascani et al., 2020). In fact, trans-local 
networks can provide regions with diverse and related information sources and opportunities to develop 
novel trajectories of specialisation by combining internal and external knowledge resources (Boschma 
and Iammarino, 2009; Owen-Smith and Powell, 2004). From the innovation systems literature, it is well 
known that knowledge diffused trough networks has a positive impact on the knowledge creation 
process (Hekkert et al., 2007). Knowledge diffused trough networks is especially relevant in renewable 
energy technologies that rely on an analytical knowledge base. In those technologies, knowledge is 
more likely to be codified and transmitted beyond regional and national borders (Binz & Truffer, 2017). 
On the other hand, in technologies relying on a synthetic knowledge base, knowledge tends to be 
spatially sticky, and its transmission remains more limited (Binz & Truffer, 2017). Overall, access to non-
local capabilities is important for regional diversification when relevant capabilities are missing (Balland 
& Boschma, 2021) and regions having more interregional linkages are more likely to access a greater 
diversity of complementary knowledge. Since knowledge complexity is defined by its high diversity and 
low ubiquity (Hidalgo & Hausmann, 2009), the following hypothesis is introduced: 

 

H4. Regions that access a greater diversity of complementary knowledge trough interregional networks 
are more likely to develop complex knowledge in renewable energy technologies; and to a greater extent 
in technologies relying on a synthetic knowledge base.  
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3. Methodology 
3.1 Research design 

This study is based on a repeated quantitative cross sectional research design to explore patterns of 
complex knowledge production. Various indicators were constructed as a means to operationalise the 
theoretical framework. By constructing a dataset of relevant indicators, the relationship between 
knowledge complexity and mechanisms of path and place-dependency was tested by estimating a 
multiple regression analysis. European regions are the unit of analysis and data was collected for six 
renewable energy technologies in two non-overlapping periods. Having presented an overview of the 
data by means of histograms and scatterplots, a multiple regression analysis was estimated. All analysis 
were conducted using the statistical software R.  

 

3.2 Case description 

The European Union represents a relevant case of a region committed to increasing the share of 
renewable energy trough investment in research and innovation. For this purpose, the European 
Commission introduced the smart specialisation policy framework to support regional prioritisation in 
innovative sectors, fields or technologies and more recently to support place-based innovation policies 
linked to sustainability (S4+). Within this new policy approach, the European Commission intends that 
smart specialisation strategies contribute to the decarbonisation of energy systems (European 
Commission, 2019a). In such context, clean energy has become one of the main priorities and two thirds 
of all regions have given priority to the regional innovation capacities and potential linked to energy 
transition actions, signifying a direct effect in such decarbonisation (European Commission, 2018). 
Furthermore, smart specialisation strategies targeting renewable energy technologies are important in 
Europe for the discovery and usage of localised energy sources, for mobilisation of heterogeneous actor 
networks around regional ‘sustainable energy’ visions, and for capitalising on place-based innovation 
and technology development processes (Steen et al., 2018). In sum, the European Union is an 
interesting case to study the regional patterns of knowledge production due the more prominent role 
that place-based innovation policies are having. Especially, smart specialisation policies targeting 
renewable energy technologies, which can potentially impact the European climate and energy policy 
targets.  

Renewable energy technologies comprise those technologies based on the conversion of energy 
sources that are regenerative or inexhaustible like solar energy, wind energy, hydropower, geothermal, 
biomass, tidal and wave energy. Exploring the patterns of complex knowledge production in renewable 
energy technologies is a very interesting case to look at for a couple of reasons. First, renewable energy 
technologies are considered more complex and novel than non-green technologies (Barbieri et al., 
2020). Second, renewable energy technologies draw knowledge in a greater extent from related 
technologies (Nemet, 2012) which are more likely to be recombined when they are strongly present in 
the same region (Boschma, 2017). This means that scientific and technological relatedness plays an 
important role in facilitating the learning process and creating opportunities to combine related 
technologies (Li, 2020). In fact, countries move along cumulative paths of specialisation towards more 
complex technologies (Perruchas et al., 2020). All in all, the unique characteristics of knowledge 
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production in renewable energy technologies makes them an appropriate instance to answer the 
research questions that motivate this thesis research.  

Following the proposed classification of the IEA (2006) scientific publications are collected for renewable 
energy technologies with different levels of technological maturity. Accordingly, the IEA classifies 
renewable energy technologies based on both their maturity (IEA, 2006) and their readiness level (IEA, 
2020). By combining these classifications, it follows that first-generation technologies have already 
reached maturity and their growth is more predictable, as is the case of hydropower and geothermal 
power. Second-generation technologies are undergoing rapid development and they are in commercial 
operation and some of them need to be integrated at scale, such as solar photovoltaics and wind power. 
Lastly, third-generation technologies, like concentrated solar power and ocean energy, are presently in 
different developmental stages: ranging from the outlining of basic scientific principles to the initial 
stages of building the first commercial demonstrations.  

Even though there is not a clear-cut starting point of a single global energy transition, Markard (2018) 
proposes two phases, in which technologies reach different levels of maturity and diffusion. This 
distinction is consistent with the IEA technology classification (2006) as it can be seen in Table 1. The 
beginning of the first phase can be established in 1991, when the first feed-in tariff policy was 
implemented in Germany. This phase is characterized by the emergence of solar and wind technologies 
(second-generation technologies). A second phase started to emerge by 2000 depicted by the 
accelerated diffusion of wind and solar technologies. Following this distinction, scientific publications are 
collected for the second phase (2000-2019) of the global energy transition. This phase is divided in two 
non-overlapping periods: 2000-2009 and 2010-2019, in order to capture two different stages of the 
scientific progress reached by technologies with different levels of maturity.  

Table 1. Renewable energy technologies per phase and maturity 

Phases of the energy 
transition 

Renewable energy technologies  IEA technological 
maturity classification 

Pre-transition (from the 
industrial revolution to the 
end of 19th century)  

Hydropower 

Geothermal power 

First-generation 

First phase (1991-1999) 

 

Solar photovoltaics (PV) 

Wind power 

Second-generation 

Second phase (2000-
ongoing) 

Concentrated solar power (CSP) 

Ocean energy (tidal and wave) 

Third-generation  

 

 

3.3 Data collection strategy 

Considering that energy is an extensive and multidisciplinary domain of research (Archambault et al., 
2009), establishing cognitive boundaries for each technology represents a currently underdeveloped 
methodological approach. Therefore, two different approaches were combined in order to retrieve the 
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most relevant scientific publications embedded in the knowledge base of a given renewable energy 
technology. In this section, those methodologies are introduced in more detail.  

In this research, scientific publications are used as an indicator for regional knowledge production. While 
these represent merely a part of the codified knowledge base of a region, they do provide a rich source 
of information about the local knowledge base that cannot be easily obtained from other sources 
(Heimeriks & Balland, 2016). More particularly, scientific publications included in patents, serve as an 
indicator that links the production of knowledge to the technological development (Tijssen et al., 2001). 
While the references of patents to other patents show the technological context of an invention, literature 
references reveal the other types of scientific knowledge that were used to either come to the invention 
or to contextualize the invention (Yang, 2016).  

Those references are usually called non-patent literature references which can be either scientific 
publications, technical standards, conference proceedings, clinical trials, books, manuals, technical or 
research reports, or any other technical scientific material. They differ from regular academic 
publications because they do not have an academic purpose, such as supporting a claim, contrasting 
rival explanations or acknowledging previous research. Instead, these references aim to expose what 
has already been published and disseminated about the invention in order to justify its novelty (Velayos-
Ortega & López-Carreño, 2021). In this thesis, we refer to them as scientific publications, which mainly 
include journal articles, reviews and proceeding papers (≈ 95% of the sample). The data collection 
strategy included the following five steps: 

1) Applying the Y02 patent classification system to retrieve scientific publications.  

The Y02 patent classification system is a tagging scheme developed by experienced examiners, which 
provides additional classification next to the European Patent Classification (ECLA) and the International 
Patent Classification (IPC) of patent documents related to climate change mitigation technologies. 
Among the four subgroups of the Y02 scheme, the Y02E comprises the six renewable energy 
technologies examined in this research. The Table 1 shows the six technology tags, which correspond 
to each renewable energy technology. By applying a matching string technique, scientific publications 
were retrieved from the EPO (European Patent Office) Worldwide Patent Statistical Database 
(PATSTAT) available in the Centre for Science and Technology Studies (CTWS) institute. This database 
matches scientific publications cited in patents with scientific publications available in the Web of 
Sciences database. Accordingly, scientific publications were retrieved for each technology for the two 
non-overlapping periods (t1 and t2).  

Table 2 Y02 Scheme 

Technology CPC - Y02 

Hydro YO2E 10/20 

Geothermal YO2E 10/10 

Solar photovoltaics (PV) YO2E 10/50 

Wind (offshore and onshore) YO2E 10/70 

Solar thermal YO2E 10/40 
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Tidal wave ocean YO2E 10/30 

 

2) Clustering scientific publications.  

The retrieved scientific publications were clustered according to a classification of research areas 
developed by Waltman & van Eck (2012), in which publications are clustered based on citations’ 
relations. Each publication is assigned to a single research area and research areas are organized in 
hierarchical structure. In this thesis, the lowest level of such classification was used, which entails 4,013 
micro clusters comprising all publications in the international scientific literature in a time period that 
goes from the year 2000 to date. The knowledge base of a given renewable energy technology was 
captured by taking all the publications classified under its respective code in the Y02 scheme. The 
clusters of the publications were visualized in the VoS viewer software developed at the CTWS (see 
Appendix A). VoS viewer crates maps of clusters based on network data in terms of co-citation links. 
The closer two clusters are located to each other, the stronger their relatedness. The size of the clusters 
(depicted by circles in the maps) determines its weight, which is given by the number of publications it 
contains. In order to capture the impact that a given publication has in the knowledge base of a given 
cluster, its relative weight was calculated by taking the total number of times it was cited by other 
publications. Appendix A includes the visualization of the clusters that comprise the publications 
attributed to the knowledge bases of the six technologies.   

3) Analysing and filtering clusters  

Clusters that only contain one publication were excluded from the sample, as they are not meant to 
contribute to the knowledge development of the research area.  At the most aggregate level of the 
CTWS classification, publications were clustered in five main fields: social sciences and humanities; 
biomedical and health sciences; physical sciences and engineering; life and earth sciences; and 
mathematics and computer sciences. After clustering the scientific publications most of them belonged 
to both the field of physical sciences and engineering (61%) and the field mathematics and computer 
sciences (15%). In total, those fields represent 76% out of the total of publications in the six technologies. 
Exceptionally, some technologies also had a larger share of publications within the field of biomedical 
and health sciences. However, after manually reviewing the title and abstracts of some publications in 
such fields, they were not found to directly contribute to the knowledge bases of the technologies. 
Therefore, those publications were not included in the sample. Lastly, publications from the field of social 
sciences and humanities were also excluded since their contribution was minimal (0,6%), which 
supports the assumption that scientific publications cited in patents are more likely to be linked to 
technological development.  

4) Expanding the sample 

Even tough, scientific publications cited in patents are understood to contribute to the knowledge 
development of a given technology, they represent a relative share of the entire scientific knowledge 
stock. In addition to that, some technologies rely more on an analytical knowledge base than on a 
synthetic knowledge base, such as hydropower or geothermal energy. For that reason, the sample size 
of those technologies was very small, and a limited number of European regions fall into the sample. 
For that reason, a relatedness method based on direct citations was followed to increase the number of 
publications. It was assumed that such method provided a stronger indication of the relatedness of 
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publications than co-citations or bibliographic coupling (Waltman and van Eck, 2012). By following this 
technique, publications that either cited or were cited by the sample were included in the final sample.  

5) Selecting publications within European regions for two non-overlapping periods (t1 and 
t2). 

After the sample was increased, publications were attributed to European regions as units of 
geographical analysis. Each publication contains one or more institutional addresses that enabled me 
to specify the location of the institutions to which the authors were affiliated. Publications were attributed 
to each author location and no fractional counting was applied. Lastly, publications were subset in two 
non-overlapping periods (t1 and t2) within a timespan of ten years each (2000-2009 and 2010-2019). By 
attributing publications to each EU region, it was possible to construct a data frame of regions, clusters, 
and publications for each technology.  

 

3.4 Operationalisation 

In this section, the operationalisation of the theoretical framework is presented. The dependent variable 
corresponds to the knowledge complexity index calculated for each region in the subfields previously 
defined for each technology. The indicators designated for each independent variable aim to reflect both 
path and place dependency of the knowledge production process. Likewise, control variables have a 
designated indicator as it can be seen in Table 2.  

 

3.4.1 Dependent variable 

Knowledge complexity  

Usually, patent data is used to calculate a knowledge complexity index (Balland et al., 2018; Balland & 
Rigby, 2016; Hidalgo & Hausmann, 2009); however, scientific publications cited in the front-page of 
patents represent an important source of scientific knowledge that is relevant to the knowledge 
presented in the patent (Tijssen et al., 2000). In fact, science contributes to the technology development 
as a source of new knowledge which bring ideas for new technological possibilities, engineering design 
tools and instrumentation (Brooks, 1994). The more scientific papers are cited in patents, the higher 
their market value (Cassiman et al., 2008; Poege et al., 2019). In this research, scientific publications 
are used to calculate the complexity of a region’s scientific profile in a given technology following the 
method of reflections proposed by Hidalgo & Hausmann (2009). The calculations of such method were 
computed with the assistance of the EconGeo package in R (Balland, 2017). Such calculations are 
explained in more detail in this section.  

The KCI is based on the diversity and ubiquity of a region’s scientific profile. The scientific profile of a 
region is depicted by the clusters in which it has a Revealed Comparative Advantage (RCA), that is to 
say, the clusters in which a region specializes in. Clusters represent specific scientific subfields of a 
technology, which in turn, aggregate related publications based on the CTWS classification of science. 
The knowledge base of a given technology is comprised by a set of clusters that represent different 
scientific subfields of aggerated publications. To construct the KNI for European regions, the regions 
are considered as the producers of the scientific publications that each cluster contains.  
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The first step to construct the KNI was to generate an incidence matrix (I) based upon which regions 
have an RCA in a given cluster of publications, which determines the specialization of regions in the 
scientific area that represents the cluster. If the share of publications counts of region r in a given cluster 
c is higher than the share of publications in the entire European Union, such region has an RCA. 
Mathematically, that condition can be expressed by introducing Src		as the share that a region r has in 
the European stock of clusters c and Tc  as the total share of clusters within the European regions. The 
RCA was calculated as a binary variable, where a value of 1 indicates that a region r has a greater share 
of publications in clusters c than the average of the European regions. Using this notation, RCA can be 
written as follows: 

 

𝑅𝐶𝐴!" = 𝑆!" ∕ 𝑇"          (1) 

𝑇" = ∑ 𝑆!"!               (2) 

Having calculated the RCA of every region in every cluster, a region-cluster bipartite network (denoted 
by M) was constructed connecting regions to the clusters in which they have RTA, in which c represents 
the clusters and r the regions. By definition, a bipartite network is a set of nodes and links in which nodes 
can be separated into two groups – regions and clusters in our case – in such a way that links only 
connect nodes in different partitions. Following Balland and Rigby (2017) we might refer to such bipartite 
network as the European region-knowledge network of a given technology, which represents the 
positions of European regions in the knowledge space reflecting the clusters in which they have an 
RCA. The degree centrality of each region was calculated (Kr,0) as the number of clusters that a region 
has an RCA in (3), and the degree centrality of each cluster (Kc,0) is presented as the aggregative 
numbers of regions that have RTA in such cluster (4).  

 

𝐾!,$ = ∑𝑐	𝑀!,"        (3) 

𝐾",$ = ∑𝑟	𝑀!,"        (4) 

 

Following the method developed by Hidalgo & Hausmann (2009), the calculation of the KNI scores was 
achieved by a technique called method of reflections, which combines measures of diversity and 
ubiquity. This method can be generalized by choosing different values for Kr and Kc and iterating over. 
Thus, departing from (3) and (4), it follows that the average ubiquity of a region is given by Kr,1 (5), which 
denotes the average ubiquity of the scientific profile in which a region has an RCA. In other words, it 
represents how common the scientific subfields in which a region is specialised. In (6) it is expressed 
Kc,1, which denotes the diversity of a region that has RCA in a particular cluster.   

 

𝐾!,% =
%
&!,#

∑ 𝑀!,"	𝐾",$	! 	        (5) 

𝐾",% =
%
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∑ 𝑀!,"	𝐾!,$"           (6) 
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Proceeding with the method of reflections, the next layer Kr,2 (7) stands for the average ubiquity of the 
scientific profile in which a region has an RCA. The higher the ubiquity, the greater the number of regions 
that contribute to the knowledge development of a given scientific subfield. In the same layer, (8) Kc,2 

stands for the ubiquity of a region that has an RCA in a specific cluster. In sum, the more diversified and 
the less obliquitous a region’s scientific profile, the higher its complexity (Hidalgo & Hausman, 2009). 
Therefore, the KCI of the regions was computed by dividing the average diversity (5) by the average 
ubiquity (7) of their scientific profiles, as expressed in (9).  The higher the diversity and the lower the 
ubiquity, the higher the complexity score of a regions’ scientific profile. 

 

𝐾!,( =
%
&!,#

∑ 𝑀!,"	𝐾",%"           (7) 

𝐾",( =
%
&$,#

∑ 𝑀!,"	𝐾!,%!           (8) 

𝐾𝐶𝐼!)*+,- =
&!,%
&!,&

                (9) 

 

3.4.2 Independent variables 

3.4.2.1 Path dependency mechanisms 

Scientific relatedness 

Scientific relatedness serves as an indicator to measure the degree to which a region’s scientific profile 
either restrains or facilitates the scientific development of a given technology. We follow the method 
proposed by Boschma et al. (2014a) in order to capture the scientific relatedness between the scientific 
profile of a region and the knowledge base of a renewable energy technology. The knowledge base of 
a technology is given by a collection of clusters that contain a set of related publications, whereas the 
scientific profile of a region is given by the clusters in which it has an RCA. Likewise, clusters of 
publications are assumed to represent specific scientific subfields that integrate the knowledge base of 
a given technology. The steps taken to calculate a region’s scientific relatedness are explained in more 
detail as follows. The calculations of this indicator were computed using the EconGeo package in R 
(Balland, 2017). 

First, it is required to measure the scientific relatedness between the subfields, building upon the matrix 
(I) which contains the scientific specialization of regions. The matrix (I) was transposed (IT) and multiplied 
by itself (𝐴 = 𝐼 ∗ 𝐼. ). The output resulted in an adjacency matrix (A) in which both the rows and the 
columns correspond to the scientific subfields. By setting its diagonal to zero, the matrix (A) displayed 
the frequency with which each pair of clusters is part of the scientific profile of a region at the same time. 
Nonetheless, those frequencies cannot straightforwardly be interpreted as giving measure of 
relatedness due to the so-called size-effect, which means that some subfields co-occur more often with 
others for the simple reason that these subfields have more occurrences in the first place (Steijn, 2020). 

Therefore, the next step was to normalise the co-occurrences following the approach of Steijn (2020). 
This method is an adapted version of the association strength of van Eck and Waltman (2009) that 
avoids the overestimation of relatedness between pairs (Steijn, 2020). The formula is expressed in 
equation (10), where 𝜑 I,j denotes the total number of times i and j co-occur in the same scientific profile 
of a region. With T being the total number of occurrences of i and j respectively, and n being the total 
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number of subfields in 𝑇 = ∑ 𝑜𝑐𝑐+-
+/% ; it follows that m (𝑚 = ∑ ,""'

(
')%
(

) is half of T, as each co-occurrence 

involves 2 pairs. Accordingly, occ i and occ j denote the total number of occurrences of clusters i and j, 
where i ≠ j. After normalizing the relatedness values, they were binarized following the same approach 
to calculate the RTA. A value of 0 indicates that two clusters co-occur less frequently than the average 
and are not considered to be related; whereas a value of 1 indicates that two clusters co-occur more 
frequently than the average and are therefore considered to be related. 
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45
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The last step consisted in calculating the relatedness density scores combining the scientific 
specialization of regions in matrix (I) and the relatedness between scientific subfields in matrix 𝜑 i,j. By 
following the method applied by Boschma et al. (2010) and Boschma et al. (2014), the relatedness 
density (11) was computed by summing up the scientific relatedness of subfield I to all the subfields 
found in the scientific profile of the region r, divided by the sum of the scientific relatedness of subfield i 
to all other subfield and multiplied by 100 to obtain a percentage lying between 0% and 100%. The 
relatedness density scores can be interpreted as the percentage of relatedness between a given 
scientific subfield to all the subfields in which the region has an RCA. A value close to 0% indicates that 
a given subfield is not related to a region’s scientific profile, whereas a value close to 100% indicates a 
strong relatedness of such subfield to the region’s scientific profile. The relatedness density score 
attributed to a region (mean) r was calculated by taking the average of the scores in all scientific 
subfields. The higher the relatedness density score, the more possibilities that a region specializes in 
such given technology (Boschma et al., 2010; Boschma et al., 2014). 

𝑅𝐷+,! =	
∑ 6'**∈!,*/'
∑ 6'**/'

	× 	100        (11) 

 

 

Technological and infrastructural carbon lock-in 

The carbon lock-in effects are measured by considering the physical dimension of the infrastructure 
required to produce electricity from fossil fuels. Thus, this variable is measured by obtaining the average 
gigawatts/hours of electricity generated per year by power plants that use fossil fuels. Data was collected 
in Eurostat based on the simplified energy balance model (European Commission, 2019b) taking the 
values of the Gross Electricity Production to account for electricity as the primary form of energy. 
Eurostat uses the Standard International Energy Product Classification (SIEC), which categorises fuels 
in nine groups, out of which six come from fossil sources (see Appendix H for complete list). Since no 
regional data was available for the whole-time scope of this research, data was collected annually at 
the national level and expressed in gigawatts/hour (GWh). To compute the average’ share of electricity 
generated from fossil fuels, data was subset in two periods (2000-2009; 2000-2009). Accordingly, the 
average values of each fuel were summed to obtain the total average electricity produced. The share of 
electricity produced from fossil fuels was computed considering the total electricity produced from all 
types of fuels.  The value obtained for each country c was equally attributed to all its regions r.  
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3.4.2.2 Place dependency mechanisms 

Knowledge accumulation 

The knowledge accumulated in each region was computed taking into account the frequency of a given 
scientific publication being cited in the front-page of patents (aggregative accounts). By taking the 
frequency of citations, I was able to capture the scientific impact that a given publication has in the 
knowledge development of a given technology. For example, if a scientific publication attributed to a 
given cluster was cited 10 times in the front-page of patents, that was the value considered to compute 
the weight of the cluster.  It was therefore assumed that a publication’s citation frequency correlates 
positively with its scientific impact (Hirsch, 2005). When a publication contained more than one 
institutional address, no fractional counting was applied; instead, publications were attributed to multiple 
European regions. For example, if a scientific publication had two institutional addresses, within two or 
more different regions, belonging to either the same or another country, the frequency of such 
publication was equally allotted to each region. Publications were subset in two non-overlapping periods 
within a timespan of ten years each (2000-2009 and 2010-2019). The final value attributed to each 
region r was computed by taking the frequency of all publications attributed to such region being cited 
in the sample of the technology in question.   

 

Access to complementary knowledge 

Following the approach of Balland and Boschma (2021), access to complementary knowledge is 
interpreted as a measure of the potential complementary knowledge that a given region has access to. 
Linkages that give access to additional capabilities, related to existing local ones, are meant to have a 
strong impact on regional diversification (Balland and Boschma, 2021), and on knowledge complexity 
(Balland et al., 2018; Hausmann et al., 2013; Heimeriks et al., 2019; Hidalgo & Hausmann, 2009). 
Following the approach of Balland and Boschma (2021), this indicator was calculated building upon two 
variables previously constructed: the scientific specialization of regions (matrix I) and the relatedness 
density (𝑅𝐷+,!). The score of the variable access to complementary knowledge trough interregional 
linkages gives a measure of the relatedness density that can be added in those scientific subfields in 
which a given region is not specialized. The more co-citation links a region has with other regions, the 
more relevant the complementary capabilities from those other regions. The four steps taken to compute 
this indicator are described as follows.  

The first step was to determine which scientific subfields j are missing in region r. The second step 
entailed determining which regions s are specialized in these scientific subfields j (RCA >1) that are 
missing in region r. The third step was to sum all relatedness density scores around a scientific subfield 
j for all regions that have a specialization in scientific subfields j (RCA >1), in which region r is not 
specialized. This is called relatedness density added, which measures the amount of relatedness 
density that can potentially be added by other regions. The fourth step was to determine the number of 
co-citation links a region r has with the other regions and multiply it by the relatedness density added. 
The value obtained in this step represents the total score of access to complementary knowledge for 
region r in technology. The lower its relatedness density and the more a region is connected to other 
regions, the higher the score of access to complementary knowledge. Therefore, a score of 0 is given 
when region r has a maximum of relatedness density in all scientific subfields i (so no need to connect 



 

Page 22 of 96 

 

 

 

to other regions), and when it has no interregional ties with regions that could potentially add relatedness 
density to region r. 

 

3.4.3 Control variables  

In the previous section, the operationalisation of the dependent and independent variables was 
described. However, there are also other factors that are known to have an impact on the production of 
complex knowledge. These factors will serve as our control variables and will be discussed in this 
section.  

Level of economic development 

Hidalgo & Hausmann (2009) demonstrated that a country’s income, measured by Gross Domestic 
Product (GDP) per capita, is positively correlated with the knowledge embedded in economic 
complexity. Following this finding, GDP per capita is used as a control variable to account for the effects 
of level of economic development in each region. Data was collected from Eurostat and the indicator 
selected was “Real GDP per capita”. This indicator is calculated as the ratio of real GDP to the average 
production of a specific year, and it is expressed in euros per inhabitant. Since no regional data was 
available for the timespan of the research, annual data was collected per country. Data was subset in 
two periods (2000-2009; 2010-2019) and the average of each period was calculated. The value 
computed for a country c was equally assigned to all its regions r.  

 

Population 

By exploring the spatial concentration of economic activities in US metropolitan areas, Balland et al. 
(2020) found that complex economic activities concentrate disproportionately in large cities, compared 
to less complex activities. More particularly, they found a positive and strong linear relationship between 
the urban concentration and the knowledge complexity of scientific fields. The effects of the urban 
concentration throughout the regions are thus controlled by including the number of inhabitants. Data 
was collected from Eurostat at the regional NUTS-2 level for each European region. Demographic data 
was subset in two periods (2000-2009; 2010-2019) and it the average of each period was calculated. 
The computed value in each period was attributed to the corresponding region r.  

 

Renewable energy market 

Li et al. (2020) found that low and middle-income countries benefit from domestic markets for 
renewables in absorbing and utilising international knowledge spillovers so as to develop renewable 
energy technologies. Likewise, Sousa et al. (2014) found a positive linear relationship between the 
cumulative number of publications and the cumulative installed capacity of wind power technology 
worldwide since the early 1990s. Thus, the effects of the technology upscaling in the knowledge 
production were controlled by the installed capacity of renewable energy technologies.  Data was 
collected annually from Eurostat using the indicator ‘Electricity production capacity by main fuel groups 
and operator’. This indicator reports the national capacities of power plants in megawatts (MW) and it is 
broken down by type of technology based on the SIEC classification (see Appendix H for complete list). 
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This classification allows to gather specific values for the six types of technologies analysed in this 
research. Data was collected in two periods and the value of each period corresponds to the arithmetic 
average. The share of the installed capacity of a given renewable energy technology was calculated 
taking into account the total capacities from all other sources. The value obtained for a country c was 
equally assigned to all its regions r. 

 

Table 2. Operationalization of the theoretical framework 

Category Concept measured Indicator Description Database 

Dependent 
variable 

Knowledge 
complexity  

Knowledge complexity 
index (KNI) (scores) 

The diverse and unique 
knowledge that a region 
possesses  

WoS  

Independent 
variables : 
path 
dependency 

 

Scientific relatedness  Relatedness density 
(scores) 

The degree to which 
subfields are related to a 
region’s scientific profile.  

Technological and 
infrastructural carbon 
lock-in 

Electricity generated 
from fossil fuels (GWh) 

A country’s share of GWh of 
electricity generated from 
fossil fuel-based power 
plants. 

Eurostat 

Independent 
variables: 
place 
dependency 

 

Knowledge 
accumulation 

Frequency of citations 
in patents 

The number of times a 
scientific publication 
attributed to a given region 
was cited in patents. 

WoS 

Access to 
complementary 
knowledge 

 

Complementary 
relatedness density 
multiplied by the 
number of interregional 
linkages (Scores) 

The complementary 
relatedness density that can 
be potentially transmitted 
through interregional linkages 

Control 
variables  

Level of economic 
development  

GDP per capita (euros) A country’s GDP divided by 
its population  

Eurostat 

  
Population Number of inhabitants The number of inhabitants of 

each region 

Renewable energy 
market 

Installed capacity (MW) A country’ share of installed 
capacity of power plants 
based on the technology 
analysed 
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3.5 Data overview 

This section aims to introduce the data structure as well as some basic association between the 
variables that are further explored in the results section. A region within the European Union (plus 
Iceland, Norway, The United Kingdom and Turkey) is the unit of analysis in this study, which represents 
a territorial entity based on the NUTS-2 classification. Variables were calculated for six technologies 
and their values were attributed to each unit of analysis (region). Both the response and three 
independent variables (scientific relatedness, knowledge accumulation, and access to complementary 
knowledge) were constructed using publication data. As expected, the number of publications gathered 
per technology was highly skewed due to the different levels of scientific cumulativeness. Table 3 
includes the number of clusters as well as the number of publications (citations) included in the final 
sample. After combining the variables constructed with publication data with the remaining variables, 
the number of regions analysed decreased. Table 2 also shows the final number of regional units 
analysed per technology in each period.  

Table 3 Number of publications and clusters collected per technology 

2000-2009 

Technology Hydropower Geothermal 
power 

Solar PV Wind power CSP Ocean 
energy 

Clusters  32 11 644 168 153 34 

Publications  6,254 4,609 6,252,527 118,387 79,243 11,946 

2010-2019 

Clusters  32 14 649 173 157 36 

Publications  19,159 10,712 27,768,584 584,099 294,851 53,384 

 

Table 4 NUTS-2 regions covered 

 

Technology Hydropower 

 

Geothermal 
power 

Solar PV Wind power CSP Ocean 
energy 

2000-2009 100 67 218 187 188 134 

2010-2019 161 122 223 213 214 174 

 

The values calculated for each indicator are continuous, which makes a multiple regression analysis the 
best fit to test the relationship between the dependent and independent variables (Rubinfeld, 2000). 
Appendix D includes scatter plots displaying the relationship of the dependent and independent 
variables. By looking at that those plots, it was possible to infer that some variables, such as scientific 
relatedness, were more likely to have a linear relationship than others. For other variables, the 
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relationship was more likely to be logarithmic. That was the case for the predictors: knowledge 
accumulation and complementary interregional linkages. 

As a means to detect if multicollinearity was present among the variables, a Pearson correlation 
coefficient was calculated for each dataset (see Appendix E). As a rule of thumb, a value higher than 
0,8 is considered as a sign of multicollinearity between two variables.  Having calculated the Pearson 
correlation coefficient for each pair of variables, multicollinearity was detected between knowledge 
accumulation and complementary interregional linkages. The strong positive linear relationship between 
those variables suggests that regions that are more connected to others, are those producing a relatively 
larger number of publications in the scientific subfields of renewable energy technologies. Because 
those variables measured different concepts, they were not excluded from the data analysis. Apart from 
this, no strong signs of strong multicollinearity were found in the remaining variables.  

In order to get more useful insights about the data characteristics, histograms showing the distribution 
of the dependent, independent and control variables were generated (see Appendix C). As expected, 
some variables showed a relatively higher level of skewness than others. By computing their skewness 
coefficient, it was possible to estimate a specific value and direction of skew (see Appendix B). As a rule 
of thumb, if skewness is less than -1 or greater than 1, the distribution is highlight skewed. That was the 
case for almost all variables, apart from the relatedness density, electricity from fossil fuels and GDP. 
For this reason, a logarithmic transformation was applied to high skewed variables, as it is further 
explained in the following section.  

 

3.6 Regression model 

This section aims to introduce the multiple regression model and the data transformations achieved to 
improve its fit. By performing a multiple regression analysis, it was expected to answer the research 
questions of this study; aiming to identify to extent to which the development of complex knowledge in 
renewable energy technologies is either constrained or stimulated by mechanisms of path and place-
dependency. A multiple regression analysis was the best fit to test the research questions since all the 
variables have continuous values. To empirically test the research question, I depart from the 
parameters of the following regression equation:  

 

𝐾𝑁𝐼),!,7 =	𝛽, +	𝛽%𝑅𝐷),!,7 +	𝛽(𝐶𝐿",7 +	+𝛽8𝐾),!,7 +	𝛽9𝐶𝐾",7 + 𝛽:𝐺𝐷𝑃",7 + 𝛽;𝑃!,7 + 𝛽<𝑀),",7 + 𝜀         (12) 

 

where KNI is the score of the knowledge complexity in a given technology e attributed to a region r in 
time e. 𝛽, is the constant term and 𝛽- is the estimated coefficient measuring how the KNI responds, on 
average, to a change in the corresponding predictor, holding all other variables constant. The first 
predictor of the model is RD, which denotes the scientific relatedness density in a particular technology 
e attributed to a region r in time t. Following the same notation parameters, CL is the infrastructural and 
technological carbon lock-in depicted by the share of electricity generated from fossil fuels in a country 
c in time t. K represents the knowledge accumulation a given technology e by region r  in time t. CK 
denotes the complementary knowledge that can be potentially transmitted through interregional linkages 
in a region r of a given technology e in time t. GDP is the gross domestic product per capita in a country 
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c in time t. P is the number of inhabitants of a region r in time t. M is the share of installed capacity 
available of technology e in a country c in time t. Lastly, 𝜀 represents the error term. 

As mentioned in the previous section, some variables included in the regression equation were highly 
skewed. Thus, having determined their level of skewness, those variables with a coefficient lower than 
-1 or greater than 1 (at least in 10 cases out 12) were log transformed (see Appendix B). A logarithmic 
transformation was employed both to simplify the relationship between the dependent and independent 
variables; and make the distribution of highly skewed variables close to normal (Cohen et al., 2003). By 
applying this logarithmic transformation, the effect size of skewed variable was overcome (Rodríguez-
Barranco et al., 2017).  In such transformation, a small constant (+1) was added to those variables 
containing zeros, in order avoid undefined values (Cohen et al., 2003). However, the values of the 
variables are still expressed in indifferent units. Therefore, their standard scores were computed with 
the aim of having comparable coefficients in the regression model. Departing from equation (12) the 
multiple regression equation containing the transformed variables is the following:  

 

ln	(𝐾𝑁𝐼)),!,7 =	𝛽, +	𝛽%𝑅𝐷),!,7 +	𝛽(𝐶𝐿",7 + 𝛽8ln	(𝐾),!,7) +	𝛽9ln	(𝐶𝐾",7 + 1) + 𝛽:𝐺𝐷𝑃",7 + 𝛽;ln	(𝑃!,7) +
𝑙𝑛𝛽<ln	(𝑀),",7 + 1) + 𝜀         (13)  
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4. Knowledge complexity of European regions in renewable energy 
technologies 

The knowledge complexity index (KNI) of European regions is given by the degree of diversification and 
ubiquity of its scientific profile within the knowledge base of a given technology. As an example of a 
technology having the larger number of observations (218) in the first period of analysis (2000-2009), 
Figure 1 shows the negative correlation between the ubiquity and diversity of a region’s scientific profile. 
This relationship is in line with the findings of Hidalgo & Hausmann (2009), who demonstrated that 
regions with higher complexity are those having the higher level of diversity and the lower level of 
ubiquity. Figure 1 also displays four quadrants that divides regions in terms of their average ubiquity 
and diversity. Regions with the higher diversity and lower ubiquity are displayed in the left-upper 
quadrant, whereas regions with lower diversity and higher ubiquity are represented by the light blue dots 
in the right-lower quadrant. Having calculated the KNI across European regions, the following section 
introduce the scores obtained, as well as some general characteristic of the knowledge base of each 
technology. Furthermore, some associations between the KNI scores and the availability of renewable 
energy sources are given from a spatial perspective.  

 

Figure 1 Quadrants of KNI scores  
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4.1 Knowledge complexity in hydropower technology 

Even tough hydropower is a well-established and mature technology (IEA, 2006), the number of 
scientific publications cited in patents was relatively low compared to other technologies (see Table 2). 
A possible reason for this is the strong path dependency and high barriers for radical innovations of 
large technical systems, such as hydropower (Markard & Truffer, 2006). Likewise, Appendix A shows 
that the knowledge base of hydropower remains relatively stable during the two periods, which possibly 
explains the relatively low scientific activity of this technology. The sample of publications collected 
belongs in its majority to both of the fields of physical sciences and engineering (49%), as well as 
mathematics and computer sciences (19%).  Due to the low number of publications, the KNI score was 
calculated for only 100 and 161 regions in the first and second period of analysis, respectively.  

Figure 2 KNI scores in hydropower technology in Europe  

 

Figure 2 displays the geographical distribution of the KNI scores. The agglomeration of high-scored 
regions next to each other is noteworthy. This pattern is more visible in the second period, mainly in the 
north of France, northeast of Italy and west of Germany, possibly due to geographical proximity, which 
eases the transfer of complex knowledge (Boschma & Martin, 2010). Table 4 shows the top 5 regions 
with the higher complexity scores. Except for London, it is notorious that top regions are not necessarily 
large metropolitan areas, instead a combination of small and medium regions can be found as Pintar & 
Scherngell (2018) also noticed using patent data. Another interesting finding is that top regions do not 
belong to countries with the largest share of hydropower to produce electricity, such as Norway or 
Iceland (see Appendix F), which suggests that the development of complex knowledge in hydropower 
is not related to the availability of resources.  
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Table 5 KNI scores of top five regions in hydropower technology 

 2000-2009 2010-2019 

# NUT Region  Score NUT Region  Score 

1 SE33 Övre Norrland 1.00 UKI7 Outer London - West and North 
West 

0.58 

2 DE25 Mittelfranken 0.81 UKJ4 Kent 0.47 

3 UKH3 Essex 0.81 FRF2 Champagne-Ardenne 0.38 

4 ES70 Canarias 0.69 SE32 Mellersta Norrland 0.36 

5 DEB3 Rheinhessen-Pfalz 0.56 SE22 Sydsverige 0.28 

 

4.2 Knowledge complexity in geothermal technology 

Geothermal power is considered a mature and reliable technology operating since the beginning of the 
XX century (IRENA, 2017). Despite its long history, the number of publications linked to patents is 
relatively low in comparison to other technologies (see Table 2). A possible explanation might be that, 
large technical systems, like geothermal ones, are characterised by significant barriers for the 
development and diffusion of radical innovations (Markard & Truffer, 2006). From the cluster analysis, 
it follows that the knowledge base of geothermal energy is mostly based on publications from the fields 
of physical sciences and engineering (49%), as well as life and earth sciences (19%). Based on the 
publications sample, the KNI score was calculated for 68 and 156 regions in the first and second period 
of analysis, respectively. 

Figure 3 KNI scores in geothermal energy technology in Europe  
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Remarkably, geothermal resources are unevenly distributed in Europe (IEA, 2006) and only a few 
countries can exploit those resources to produce electricity, mainly Iceland, Italy, Turkey and Portugal 
(see Appendix F); nonetheless, it is possible to observe in Figure 3, that the spatial distribution of 
complex knowledge includes not only include regions from countries producing electricity, but from other 
countries as well. This suggests that, like in the case of hydropower, the availability of geothermal 
resources does not guarantee the ability of a given region to develop complex knowledge. Also, similar 
to hydropower, a spatial arrangement of high-scored regions close to each other can be seen, which 
possibly suggests the existence of spatial spillovers (Pintar & Scherngell, 2018).  More specifically, 
Table 5 displays the top five regions with the highest scores, which include small and medium-size 
regions.  

Table 6 KNI scores of top five regions in geothermal energy technology 

 2000-2009 2010-2019 
# NUT Region  Score NUT Region  Score 
1 SE12 Östra Mellansverige 0.50 LT01 Sostines regionas 0.56 

2 DEA4 Detmold 0.32 LT02 Vidurio ir vakaru Lietuvos 
regionas 

0.56 

3 ES11 Galicia 0.32 CZ08 Moravskoslezsko 0.50 
4 CZ01 Praha 0.23 PL52 Opolskie 0.50 
5 DE71 Darmstadt 0.23 DEA3 Münster 0.23 

 

4.3 Knowledge complexity in solar photovoltaic (PV) technology 

The deployment of solar PV technology started in the early 2000s and after years of technological 
progress, it is now considered a mature technology (Markard, 2018). Solar PV has, by far, the largest 
number of publications and clusters (see Table 2). This might confirm that solar PV is an example of a 
technology that relies on an analytical knowledge base (Huenteler et al., 2016 as cited in Binz & Truffer, 
2017) driven by a learning-by-searching mode of knowledge creation (Hekkert et al., 2007). Therefore, 
the ability of regions to diversify their scientific profile and produce knowledge in non-ubiquitous scientific 
subfields might be even more relevant for the case of the solar PV technology. Especially in a technology 
that relies on an analytical knowledge base from a great variety of scientific subfields (clusters) as it can 
be seen in Appendix (A). The knowledge base of solar PV technology belongs in its greatest part to the 
field of physical sciences and engineering (87%). Due to the large number of publications, it was 
possible to compute the KNI scores for 218 and 232 regions for the first and second period respectively.   

Figure 4 shows that most high-scored regions are localised in Western and Northern Europe. Either 
being large metropolitan areas or smaller regions, they tend to cluster together. For example, in both 
maps, high-scored regions in the south of France, in the north of Italy and in the south of the United 
Kingdom are cluster together. It is noteworthy that high-score regions belong to countries with different 
shares of installed capacity, which suggests again that the installed capacity of solar PV technology 
does not impact in the development of complex knowledge and more predominantly so in high-income 
countries (Li et al., 2020). For example, The Netherlands includes mostly high-score regions even 
though the installed capacity of this country is relatively lower than that of other countries, such as 
Germany or Spain (see Appendix F).  
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Figure 4 KNI scores in solar PV technology in Europe 

 

Table 7 KNI scores of top five regions in solar PV technology 

 2000-2009 2010-2019 

# NUT Region  Score NUT Region  Score 

1 NL12 Friesland (NL) 6.43 UKJ1 Berkshire, Buckinghamshire and 
Oxfordshire 

2.74 

2 DE93 Lüneburg 5.28 UKH1 East Anglia 2.70 

3 BE34 Prov. Luxembourg (BE) 5.00 NL33 Zuid-Holland 2.64 

4 HU31 Észak-Magyarország 4.00 FR10 Île de France 2.64 

5 UKK2 Dorset and Somerset 3.32 FRK2 Rhône-Alpes 2.59 

 

4.4 Knowledge complexity in wind power technology 

Together with solar PV, wind power technology has been rapidly deployed since the early 2000s and 
has reached a certain level of technological maturity as well (Markard, 2018). Despite wind power is 
considered a technology that relies on a synthetic knowledge base, in which the knowledge embodied 
is partially codified (Asheim et al., 2011), it has the second largest number of scientific publications. The 
knowledge base of wind power technology relies on publications from the fields of physical sciences 
and engineering (53%), as well as mathematics and computer sciences (39%). The sample size of this 
technology allowed me to compute the KNI scores for 187 and 212 regions in the first and second period 
respectively.  
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Figure 5 KNI scores in wind power technology in Europe 

 

Figure 5 shows the distribution of knowledge complexity in Europe, which is mostly concentrated in 
Northern and Western countries. Moreover, high-score regions tend to cluster close to each other, 
suggesting the presence of spatial knowledge spillovers (Pintar & Scherngell, 2018). Similar to solar PV 
technology, regions belonging to the countries with the largest share of installed capacity, such as 
Denmark or Spain (see Appendix F), are not necessarily those having the largest scores. Table 7 shows 
in more detail the top five regions in each period. Whereas in the first period, British and Dutch regions 
lead the ranking; in the second period, other regions from Poland, France and Hungary catch up.  

 

Table 8 KNI scores of top five regions in solar PV technology 

 2000-2009 2010-2019 

# NUT Region  Score NUT Region  Score 

1 UKH3 Essex 2.73 PL62 Warminsko-Mazurskie 1.47 

2 NL13 Drenthe 1.90 FRI2 Limousin 1.27 

3 NL23 Flevoland 1.83 HU12 Pest 1.21 

4 NO07 Nord-Norge 1.61 NL23 Flevoland 0.95 

5 UKK4 Devon 1.58 HU31 Észak-Magyarország 0.78 

 

4.5 Knowledge complexity in concentrated solar power (CSP) technology 

Concentrated solar power technology is considered a technology still under development and its 
deployment is more feasible in arid or semi-arid climate, limiting its usefulness to southern Europe (IEA, 
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2006).  Similar to solar PV technology, most of the publications that shape the knowledge base of CSP 
technology belong to the field of physical sciences an engineering (74%). CPS technology has a 
relatively large share of publications considering that it is still a technology under development. I was 
therefore able to calculate the KNI for 153 and 157 regions.  

Figure 6 KNI scores in concentrated solar power (CSP) technology in Europe 

 

Figure 6 shows the distribution of KNI scores, which is highly conglomerated in some specific areas of 
Western and Northern Europe. To illustrate, the second maps shows an agglomerating of high-score 
regions in the north of Italy and east of Germany. Again, regions with the highest score are either 
localised in countries with the different shares of installed capacity (see Appendix F). More specifically, 
Table 9 includes the top five regions, which are either large metropolitan areas, such as Île de France 
and Madrid, or other territories relatively less populated. Similar to previous cases, regions leading in 
the first period of analysis are not the same of those leading in the second period.  

Table 9 KNI scores of top regions in concentrated solar power (CSP) technology 

 2000-2009 2010-2019 

# NUT Region  Score NUT Region  Score 

1 PT18 Alentejo 2.29 SE32 Mellersta Norrland 0.87 

2 UKJ4 Kent 2.14 FR10 Île de France 0.78 

3 DE22 Niederbayern 1.25 ES30 Comunidad de Madrid 0.76 

4 UKH3 Essex 1.21 HU31 Észak-Magyarország 0.73 

5 UKM5 North Eastern Scotland 1.11 UKK3 Cornwall and Isles of Scilly 0.73 
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4.6 Knowledge complexity in ocean energy technology 

Compared to other renewable sources, ocean energy is considered a technology still under 
development. However, the number of publications of this technology is even larger than well-
established technologies, like hydropower and geothermal power. This is reflected on the relatively low 
number of publications. The knowledge base of ocean energy technology is based on publications from 
the field of physical sciences and engineering (56%) as well as from biomedical and health sciences 
(19%).  Based on publications sample, it was possible to calculate the KNI for 134 and 174 regions in 
the first and second periods respectively. Over the past ten years, several scale projects have been 
tested in Europe (European Commission, 2021); however, only a few countries have put them in 
operation; these being only France, Spain and Portugal. By looking at the second map in Figure 7 and 
at the top regions of Table 9, it is noteworthy that France holds most of the highest-rated regions. This 
suggests that regions belonging to countries producing electricity from ocean energy are more likely to 
develop complex knowledge.  

Figure 7 KNI scores in ocean energy technology in Europe 

 

Table 10 KNI scores of top regions in ocean energy technology 

 2000-2009 2010-2019 

# NUT Region  Score NUT Region  Score 

1 ITF5 Basilicata 0.67 BE33 Prov. Liège 0.72 

2 FRI2 Limousin 0.49 FRC2 Franche-Comté 0.59 

3 FRL0 Provence-Alpes-Côte d'Azur 0.48 SI04 Zahodna Slovenija 0.54 

4 EE00 Eesti 0.45 AT31 Oberösterreich 0.38 

5 NL22 Gelderland 0.42 DE22 Niederbayern 0.38 
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5. Patterns of complex knowledge production 
5.1 Results of the regression analysis  

In this section the results of the regression analysis are introduced. The analysis was conducted in six 
renewable energy technologies in order to identify different patterns of complex knowledge production. 
The analysis was performed in two non-overlapping periods: 2000-2009 and 2010-2019 to account for 
the different stages of scientific progress. Since the models include logarithmic transformations, the 
relationship between the predictors and the independent variables should be interpreted differently. 
Thus, an absolute variation in the logarithm equals a relative variation in the original variable (Cohen et 
al.,2003). For example, an increase of one unit in the logarithmically transformed variable is equivalent 
to multiplying the original variable by the base of its natural logarithm. The following tables show the 
results of the regression models. The first table (Table 11) includes the results for the first period of 
analysis and the second table (Table 12) include the results for the second period. Note that the 
coefficients of the predictor variables can be comparable to each other since the data was previously 
standardised.   

Table 11 Regression results for period 1 (2000-2009) 
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Table 12 Regression results for period 2 (2010-2019) 

 

 

As expected, and apart from hydropower, the coefficient of scientific relatedness is significantly positive 
in all technologies (models 2 to 6), both in the first and second periods of analysis. This suggests that 
the larger the extent to which the scientific profile of a region is related to the knowledge base of a given 
technology, the more capabilities a region possesses to develop complex knowledge in renewable 
energy technologies. For the cases of wind power and the concentrated solar power technologies, 
scientific relatedness becomes even more significant in the second period of analysis, possibly due to 
improvements in the scientific specializations of regions in these technologies. These findings indicate 
that relatedness is an important driver for the knowledge production in renewable energy technologies; 
(Li, 2020) and regions tend to diversify into new scientific activities that are related to their existing 
capacities (Balland & Boschma, 2021; Corsatea, 2014). Therefore, the core assumption of path 
dependency is valid in the case of renewable technologies, which supports hypothesis H1 of this 
research, probing that European regions are more likely to develop complex knowledge in technologies 
related to their scientific profiles.   
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The coefficient of the predictor knowledge accumulation is significantly negative in model 2 of the first 
period and in model 4 of the second period. This finding suggests that leading regions in the production 
of scientific knowledge of geothermal and wind power technologies do not necessarily contribute to the 
development of complex knowledge (see appendix G for leading regions). Nonetheless, another pattern 
was found in the case of solar PV technology. The significantly positive coefficient (of model 3) in both 
periods suggests that regions contributing the most in the accumulation of knowledge are more likely to 
develop a portfolio of complex knowledge. It is very likely that the accumulation of knowledge in solar 
PV is given by its an analytical knowledge base, which depends on the accumulation of knowledge from 
a great variety of scientific disciplines (Huenteler et al., 2016 as cited in Binz & Truffer, 2017). This is 
supported by the relatively large number of publications and clusters from different scientific subfields 
that were collected during the data collection strategy. Contrary to this, wind power represents an 
example of a technology that relies on a synthetic knowledge base, in which the knowledge embodied 
is partially codified (Asheim et al., 2011). Therefore, it is possible that the publications embedded in its 
knowledge base do not rely on the knowledge accumulated by scientific publications as much as solar 
PV technology. For the rest of the technologies, this predictor was not significant, therefore, hypothesis 
H2 cannot be entirely accepted since knowledge accumulation cannot be generalised as a driver in the 
development of complex knowledge in renewable energy technologies.  

The effects of the infrastructural and technological carbon lock-in as a path dependency mechanism 
were operationalised as the share of electricity from fossil fuels. Table 12 shows that the coefficient of 
such indicator is significantly positive for geothermal (model 2) and wind power (model 4) technologies 
only in the first period, whereas they are no longer significant in the second period. On the contrary, the 
effects of carbon lock-in for solar PV technology (model 3) were only positive and significant in the 
second period. A different pattern was found in hydropower (model 1) and ocean energy technologies 
(model 6) during the second period. The significantly negative coefficient indicates that, despite being 
localised in countries with a greater share of electricity from fossil fuels, regions are able to increase 
their knowledge complexity in renewable energy technologies. In general, the results show that the 
constrains of carbon-emitting energy infrastructure have different effects depending on the technology 
and the period of study. Consequently, they initial hypothesis H3 cannot be entirely accepted, since it 
not possible to generalise that, regions located in countries that have historically relied on carbon-
emitting energy infrastructure are less likely to develop a portfolio of complex knowledge in renewable 
energy technologies. 

Contrary to what was expected, access to complementary knowledge trough interregional linkages has 
a positive and significant effect for the development of complex knowledge only in geothermal (model 2 
of period 1) and wind power (model 4 of period 2) technologies. Another pattern is found in the cases of 
hydropower (model 1 of period 1) and ocean power (model 6 of period 2) technologies, in which the 
significant and negative coefficient of such indicator shows that access to complementary knowledge 
decreases the score of KNI within the regions. As it is not possible to find a positive and significant effect 
in the majority of the technologies analysed, hypothesis H4 cannot be accepted for all technologies and 
therefore it is not possible to generalise that regions that access to a greater diversity of complementary 
knowledge trough interregional networks are more likely to develop complex knowledge in renewable 
energy technologies. 

In terms of explanatory power, the adjusted R2 gives a percentage of variation explained by the 
independent variables that affect the dependent variable. By comparing the R2 value of the models in 
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the first period, models 3 and 2 have the best fit, which might indicate that the development of complex 
knowledge in solar PV and geothermal energy technologies, is strongly shaped by changes in the 
predictor variables. Especially, those variables having the largest coefficients. For the case of 
geothermal energy (model 2), knowledge accumulation, scientific relatedness are the variables that 
contribute the most to the model fit. For solar PV technology (model 3), access to complementary 
knowledge, scientific relatedness and knowledge accumulation are the variables with the largest 
coefficient. In the second period, models 3 and 5 have the best fit. For solar PV technology (model 3) 
knowledge accumulation and scientific relatedness contribute the most to the fit: whereas in the case of 
concentrated solar power technology, scientific relatedness explains most of the changes.  

 

6. Discussion 
In this section, the previous results are interpreted in the context of the theoretical approach of this 
research. Furthermore, the contributions, limitations and recommendations for future research are 
given. To conclude, I discuss the policy implications of this research in the context of the smart 
specialisation strategy policy framework.  

6.1 Theoretical implications  

This research explored the patterns of complex knowledge production in the context of the European 
energy transition. Building upon the theoretical foundations of Evolutionary Economic Geography and 
Smart Specialisation literature, the development of complex knowledge was analysed bringing a 
regional and temporal perspective. This study was conducted during the so-called second phase of the 
energy transition, which was split in two non-overlapping periods: 2000-2009 and 2010-2019. The 
knowledge development in renewable energy technologies was an interesting  case to look at, as green 
technologies are clean energy has become one of the main prairies of European regions implementing 
smart specialisation strategies.  

By visualising the spatial arrangement of KNI scores, a highly heterogenous distribution across Europe 
was found, in which only a few regions, mainly from the West and North, produce the most complex 
knowledge, in line with the findings of Heimeriks et al. (2019). This finding is also consistent with the 
work of Balland & Rigby (2016), which suggests that complex knowledge is more sticky and spatially 
concentrated than more ubiquitous knowledge. In addition to that, it is very likely that the agglomeration 
of high-scored regions next to each other suggests the existence of spatial spillovers, as Pintar & 
Scherngell (2018) suggest. This supports the notion of geographical proximity as a driver for innovation 
and effective learning, which requires face-to-face interactions (Boschma & Frenken, 2010). In that 
regard, Glükler (2010) suggests that the more complex knowledge becomes in a particular industry, the 
more industries do agglomerate. Similarly, Steen et al. (2019) found that region-specific clusters are 
important for the development of renewable energy technologies and industrial capacity. Besides that, 
and consistent with the results of Pintar & Scherngell (2018), the highest KNI scores are dispersed 
across a mixture of small, medium and large regions. This possibly suggests that European regions 
follow a pattern different from that of cities in the United States, where only a few large metropolitan 
areas produce the most complex technologies (Balland & Rigby, 2016). Whereas the European ranking 
tends to be more dynamic and heterogenous, Balland & Rigby (2016) found a more considerable rank 
stability among large cities in the United States. Overall, a different pattern of spatial and temporal 
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distribution was found in European regions in comparison to other studies exploring the patterns of 
knowledge production in the United States.  

With the exception of hydropower, scientific relatedness was found to be the most important driver in 
the process of complex knowledge production.  It is therefore possible to assume that path dependency 
has a strong impact on the scientific specialization of European regions among renewable energy 
technologies. This is consistent with previous studies (Boschma et al., 2014a; Boschma et al., 2014b; 
Balland et al., 2017; Heimeriks et al., 2019; Li, 2020), which demonstrate that regions are more likely to 
diversify into more complex technologies if they rely on their existing local related capabilities. Thus, this 
finding demonstrates that path dependency is still a relevant theoretical concept to explain the formation 
of technological trajectories driven by the specialization of regions within a set of scientific subfields or 
technologies. Furthermore, it is possible to confirm that the existing portfolio of regions offers 
opportunities for related diversification and discourages the creation of knowledge in scientific subfields 
unrelated to the local knowledge base (Heimeriks et al., 2019). Especially for renewable energy 
technologies, which are considered complex technologies that require knowledge from a diverse range 
of scientific disciplines (Barbieri et al., 2020). Overall, these findings demonstrate that path dependency 
is a relevant theoretical concept to explain the formation of technological trajectories driven by the ability 
of regions to diversify into new complex technologies.  

Regarding the effects of the carbon lock-in, the results suggest that the infrastructure built around fossil 
fuel technologies, partially limits the development of complex knowledge in three technologies: 
geothermal, wind power and solar PV. This was not the case, however, for the remaining technologies, 
in which the regression coefficient was either significantly negative or not significant et all. The 
significantly negative effects might suggest that the past knowledge accumulated in fossil fuels has a 
minor impact on current innovation activities in renewable energy technologies as Noally & Smeets 
(2013) found. Regarding the insignificant effects, Seto et al. (2016) suggest that the ability to break out 
the infrastructural and technological lock-in depends on the anticipated technological and economic 
viability and lifetimes of the systems and the costs of moving away from those systems. In that sense, 
it is very likely that European countries have been able to escape the infrastructural and technological 
lock-in trough aggressive policies that shift the balance toward new low-carbon technologies assuring 
its technological an economic viability. Nonetheless, the specific contexts and policies that have possibly 
opened up new paths for the knowledge deployment of low-carbon technologies go beyond the scope 
of this research. Overall, it seems that infrastructure and knowledge accumulated around fossil-fuelled 
technologies does not necessarily generate a lock-in when it comes to the complex knowledge 
production in renewable energy technologies.  

The findings show that for the most part of the technologies, the development of complex knowledge is 
not highly correlated with knowledge accumulation. This pattern is consistent with the work of Pintar & 
Scherngell (2018), who found a negative correlation between the rate of patenting and complex 
knowledge production in European regions. Interestingly, previous studies have found a different pattern 
in urban areas of the United States. To illustrate, Balland et al. (2020) found that the spatial 
concentration of productive activities in large metropolitan areas of the United States increases with 
their complexity. In this research, this pattern was found only for solar PV technology, suggesting that 
the larger the number of scientific publications with which a region contributes, the more complex the 
knowledge that is produced. This finding, however, is consistent with Persoon et al. (2021) who found 
that solar PV technology has a high analytical knowledge base in comparison to other renewable energy 
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technologies by counting the number of scientific references in patents as well as the number of patents 
filled by universities. Because the accumulation of scientific knowledge is important for solar PV 
technology, the findings suggest that regions producing more scientific publications are more likely to 
develop complex knowledge in such specific technology, in line with the findings of Persoon et al., 2021.  

The last predictor, access to complementary knowledge trough interregional linkages, revealed a 
significantly positive relationship only for the case of geothermal technology and wind power. However, 
for the rest of the technologies it was either negatively significant or not significant et all. This might 
indicate that the development of complex knowledge in renewable energy technologies relies more on 
local capabilities than on external resources. This finding is in line with Glücker (2010), who suggests 
that while the transmission of complex knowledge entails more problems of accurate interpretation; 
spatial proximities ease transfer and lock out remote actors from the knowledge flows. Thus, for the 
case of renewable energy technologies, it is very likely that geographical proximity plays a more 
important role in the knowledge development process than the access to external knowledge and 
capabilities. In addition, this finding suggests that complex knowledge in the domain of renewable 
energy technologies has a higher degree of tacitness associated with its value and quality in terms of 
accessibility and mobility in the geographical space (Pintar & Scherngell, 2018).  

 

6.2 Contributions, limitations, and recommendations for future research  

Methodologically speaking, the contributions of this research are twofold. First, previous studies (Balland 
et al., 2019; Pinar & Scherngell, 2018; Vlčková et al., 2018) have usually operationalised the knowledge 
complexity concept (Hidalgo and Hausmann, 2009) from a comprehensive perspective (considering all 
the scientific or technological domains); however, this thesis represents an initial approach to construct 
a KNI targeting the knowledge base of specific technologies. For this purpose, an innovative 
methodological approach was developed to obtain a representation of the body of knowledge of a given 
technology by following the Y02 patent classification scheme and building upon a micro cluster 
classification developed at CTWS. This methodological approach allowed to establish the cognitive 
limits of the knowledge base of a technology, avoiding the selection of keywords on a discretional 
manner. Secondly, this research represents a first attempt to provide a measure of knowledge 
complexity based on micro clusters of publications cited in patents. By collecting scientific publications 
cited in patents, it was possible to obtain a better representation of applied knowledge linked to 
technological innovations. Overall, this methodology facilitated the construction of a KNI based on large 
data sets, so that it remained as valid and reliable as possible, as a measure of diversity and uniqueness.  

In terms of theoretical contributions, this research provided further empirical evidence for the theoretical 
framework and brought new insights into it. To start with, this thesis proved that path dependency is an 
important theoretical concept to understand knowledge the production process at regional level. The 
findings of this research demonstrated that scientific relatedness, as a special case of path dependency, 
is an important driver to produce complex knowledge in renewable energy technologies. In doing so, it 
was demonstrated that core assumption of relatedness can be extrapolated to other scientific, 
technological and economic sectors. This research also constitutes an initial attempt to operationalise 
the effects of the infrastructural and technological carbon lock-in on the knowledge development 
process. Even tough, more empirical evidence is needed and as well as the institutional and behavioural 
lock-in should be taken into consideration (Seto et al., 2016), this study demonstrates that carbon lock-
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in is no longer a factor limiting the complex knowledge development in renewable energy technologies 
in Europe. Second, this thesis found new insights into the role that place dependency mechanisms play 
in knowledge production. It was expected that the accumulation of knowledge, as a special case of 
place dependency, strongly correlates with the capacity of a region to generate complex knowledge. 
However, in this study it was found that such correlation is technology-specific. It was found that the 
accumulation of knowledge is only relevant for technologies with a high degree of analyticity, such as 
solar PV. Another case of place dependency that was operationalised was the access of regions to 
intraregional linkages. Previous research states that regions can benefit from them as they are more 
likely to access to complementary knowledge. However, in this research we found a different pattern. 
Apparently, the more complex the knowledge, the more geographically-constrained and the less 
relevant extra regional linkages become. Yet more empirical evidence is required, this finding was 
supported by the spatial agglomeration of high-score regions next to each other. Lastly, this thesis also 
contributes to the Smart Specialisation literature by proving empirical evidence of the importance of 
related diversification. This research demonstrated that European regions are more likely to be 
successful when diversified into new sectors, activities or technologies related to their local capabilities.  

While conducting this research, some limitations emerged. First, the delineation of the knowledge base 
of the technologies was constructed using scientific publications cited in patents, nonetheless, it might 
be the case that other relevant scientific publications not cited in patents are left outside the sample. 
Therefore, the set of gathered publications does not necessarily represent the entire knowledge base 
of the technologies analysed. Especially, for those technologies with a relatively lower rate of patenting, 
such as hydropower and geothermal energy technology. Another limitation has to do with the level of 
aggregation in the Eurostat databases. Energy statistics are usually reported at country level; therefore, 
it was not possible to get a more detailed overview of the regional energy context. Similarly, GDP was 
available at regional level only for the second period of the study, thus, national indicator was chosen 
for both periods. For this reason, the values obtained at national level were evenly assigned to each 
region. 

Additionally, this research did not look at the role of formal and informal institutions that shape the 
knowledge creation process at regional level. Weak institutions, such as low quality of governance or 
bonding social impact could have a negative influence on the diversification opportunities of regions 
(Cortinovis et al., 2017; Rodríguez-Pose & Di Cataldo, 2015). On the contrary, strong institutions foster 
open knowledge architecture, absorptive capacity and connection to pools of knowledge generated 
elsewhere (Asheim & Coenen 2005; Bathelt et al., 2004; Cohen & Levinthal 1990). Therefore, even 
when this study demonstrates that the regional scientific capabilities matter for the creation of complex 
knowledge, there might be other institutional drivers of great relevance.  In the same line of thought, 
institutions, and behavioural norms, along with technologies and supporting infrastructure, also 
contribute to the carbon lock-in (Seto et al., 2016) and possibly have implications for innovative activities 
in low-carbon energy technologies, that were not taken into account in this research.  

With these limitations in mind, this study opens up opportunities for future research. First, a lack of 
understanding of the regional institutional context has been identified as a common issue that regions 
face when drafting their regional innovation strategies (Morisson & Pattinson, 2020). Because smart 
specialisation strategies are applied in different regional contexts, it is important to understand what 
specific institutional features might influence the success of smart specialisation strategies (Grillitsch, 
2015). Especially, when smart specialisation strategies are implemented in the context of rigid sectors 
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such as energy, where there are often strong vested interests of the industry and of political actors that 
seek to influence the institutional environment (Seto et al., 2016; Steen et al., 2019). Likewise, smart 
specialisation strategies are also likely to be influenced by national institutional frameworks, such as 
centrality of government, levels of regional autonomy or regional endowments (Steen et al., 2019). Thus, 
future research could focus on the influence of both regional and national institutional frameworks, as it 
is still unclear to the extent to which they do influence the design and implementation of individual smart 
specialisation strategies targeting clean energy technologies.  

Although this research showed that the technological and infrastructural carbon lock-in does not have 
significant effects in the knowledge production of renewable energy technologies; an open question still 
remains regarding the effects of the institutional and behavioural carbon lock-in when developing 
knowledge in clean energy technologies. Even though a few studies have conducted research in such 
regard, they show different results. On the one hand, Santoallha & Boschma (2021) found that the 
presence of ‘dirty’ technologies hampers the development of new green technological specialisation. 
On the other hand, Noailly & Smeets (2013) found that the past accumulated knowledge stock in fossil-
fuel technologies has a positive, yet minor, impact on current innovation in renewable energy 
technologies. This existing paradox in carbon lock-in literature requires more research to find out the 
extent to which the specialisation of a region in fossil fuel technologies inhibits its innovative activities in 
clean energy technologies. In particular, this topic is relevant for smart specialisation strategies aiming 
to foster structural change in making energy systems more sustainable.  

 

6.3 Policy implications  

Over the last years, most regions of Europe have developed smart specialisation strategies with the 
ultimate goal of boosting economic growth and creating jobs and more recently achieving mission-
oriented goals, mainly, sustainability and inclusive growth (McCann & Soete, 2020). This shift in policy 
creates a window of opportunity for smart specialisation in renewable energy technologies. Within this 
context, this research has some policy implications for this new shift in the rationale of the smart 
specialisation policy framework. 

To start with, this study demonstrates that knowledge complexity can be used as a methodological tool 
to reveal the strengths and capabilities of a region’s scientific profile in terms of their uniqueness and 
diversity within the knowledge base of a given technology.  More particularly, by constructing a measure 
of knowledge complexity using scientific publications cited in patents, it is possible to capture the role 
that scientific knowledge plays in technological development. Because patents that cite a larger number 
of scientific publications are more likely to generate more economic value (Cassiman et al., 2008; Poege 
et al., 2019), this complexity measure is relevant for smart specialisation strategies aiming to generate 
knowledge about the future economic value of a structural change, such as the sustainable energy 
transition (Foray et al., 2011). Thus, this approach can be used to inform policy makers about which the 
most promising knowledge domains are, in terms of their intrinsic market potential. Indeed, other studies 
also suggest that knowledge complexity could be used as a methodological tool for selecting prospective 
industries in smart specialisation strategies (Vlčková et al., 2018). 

Secondly, the concept of relatedness is being increasingly highly regarded as relevant for smart 
specialisation strategies (Boschma, 2017). This concept is supported by previous studies which 
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demonstrate that regions are more likely to diversify into new activities related to their existing scientific 
profile. (Boschma, 2017). 2019; Heimeriks et al., 2019). Similarly, Santhoalla & Boschma (2020) found 
that relatedness determines the ability of regions to diversify into green technologies. Consistent with 
those studies, this research provides further empirical evidence of the importance of related 
diversification as a key driver for smart specialisation targeting renewable energy technologies. Indeed, 
it has been demonstrated that diversifying into more complex technologies is difficult for many regions, 
although it is easier when they are closely related to the existing scientific profile (Balland et al., 2019). 
In practical terms, this implies that stakeholders need to reflect on the strengths and potentials of a 
region’s knowledge assets during the entrepreneurial discovery process. For instance, a mapping 
exercise of the scientific and technological profile of a region could be helpful to identify potential 
domains of prioritisation. 
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7. Conclusions  
Building upon the theoretical foundations of Evolutionary Economic Geography and Smart 
Specialisation literature, the aim of this research was to determine the extent to which mechanism of 
path and place dependency influence the capacity of European regions in developing complex 
knowledge around renewable energy technologies. Thus, this research attempted to answer the 
following core research question: What are the regional patterns of complex knowledge production in 
renewable energy technologies? 

In order to answer this question, a knowledge complexity index was built based on scientific publications 
cited in patents of renewable energy technologies. For this purpose, scientific publications were 
gathered to delineate the knowledge base of the technologies. In doing so, solar PV was found to be by 
far the technology with the larger number of publications; possibly due to the high level of analyticity of 
its knowledge base. On the contrary, for well-established and mature technologies, like geothermal and 
hydropower, the number of publications was surprisingly low; suggesting a low level of analyticity. Once 
computed, KNI scores were visualised to obtain a perspective on their spatial distribution in Europe. 
Accordingly, it was found that for the most part of the technologies, high-score regions tend to cluster 
next to each other, suggesting the importance of geographical proximity as a relevant driver for 
developing and sharing complex knowledge. Another interesting finding is that high scores are 
distributed across small-to-large metropolitan areas, suggesting that, regardless of their demographic 
characteristics, European regions are able to develop high-quality knowledge.  

As a second step, a multiple regression analysis was estimated to test the relationship between 
knowledge complexity and four mechanisms of path and place dependency in the knowledge production 
process. The results revealed that scientific relatedness, as a mechanism of path-dependency, is the 
most important driver for the creation of complex knowledge in five out of six models. Based on this 
finding, it was possible to accept hypothesis H1, which holds that that the likelihood of a region to 
produce complex knowledge relies, to a great extent, on the relatedness between their scientific profile 
and the knowledge base of the technology in question.  

On the other hand, the results indicated that hypotheses H2, H3 and H4 can be neither entirely accepted 
nor rejected; suggesting that the effects of path and place-dependency mechanisms in the knowledge 
production process are technology-specific. Thus, hypothesis 2 was accepted only for solar PV 
technology, stressing the importance of scientific knowledge for technologies relying on an analytical 
knowledge base. Hypothesis 3 was rejected in almost all the technologies, meaning that specialised 
skills and knowledge accumulated around fossil fuel technologies apparently do not hamper the creation 
of complex knowledge. Similarly, hypothesis 4 was rejected in almost all cases, demonstrating that 
access to complementary knowledge does not necessarily mean that regions are more likely to diversify 
their scientific profile and develop more complex knowledge; instead, it appears that geographical 
proximity plays a more important role in the creation and diffusion of knowledge.  

From a smart specialisation perspective, these findings confirm the importance of relatedness as a 
driver for regional diversification. It was proved that diversifying into related activities yields better results 
than diversifying into non-related activities, as regions are more likely to develop knowledge with more 
complexity, which is more valuable and provides a greater competitive advantage. Thus, both 
knowledge complexity and relatedness can be regarded as useful methodological tools for selecting 
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promising activities. Especially, the use of scientific publications cited in patents allows to capture the 
future market value of specific technologies.  

Overall, it can be concluded that European regions implementing smart specialisation strategies 
targeting renewable energy technologies, must build upon the scientific areas in which they are most 
competitive. As regions diversify into related fields or activities, they become more likely to develop more 
complex knowledge around renewable energy technologies, regardless of their capacity to contribute to 
the knowledge stock or the knowledge and specialised skills accumulated in fossil technologies. By 
prioritising related activities, regions are more likely to accelerate the uptake of renewable energy 
technologies, while contributing to the climate and energy goals of the European Union. 
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8. Appendices 
Appendix A. Knowledge bases of renewable energy technologies  

A.1 Hydropower 

2000-2009 

 

2010-2019 
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A.2 Geothermal power  

2000-2009 

 

2010-2019 
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A.3 Solar photovoltaics (PV) 

2000-2009 

2010-2019 
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A.4 Wind power technology 
2000-2009 

 
 

2010-2019 
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A. 5 Concentrated solar power (CSP) 
2000-2009 

 
 

2010-2019 
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A. 6 Ocean energy 

2000-2009 

 

2010-2019 
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Appendix B. Skewness degree of the data   
 Variable Indicator  
KNI Knowledge complexity  KNI (scores) 
RD Scientific relatedness  Relatedness density (scores) 
C Technological and infrastructural carbon lock-in Electricity generated from fossil fuels (GWh) 
K Knowledge accumulation Frequency of citations in patents 
CL Access to complementary knowledge Complementary relatedness density multiplied 

by the number of interregional linkages (scores) 
GDP Level of economic development  GDP per capita (euros) 
P Population Number of inhabitants  
M Renewable energy markets Installed capacity (MW) 

 

Period I: 2000 – 2009 

Variable Hydropower 

 

Geothermal Solar PV Wind power CSP  Ocean 
energy 

KNI 2,6 2,6 3 2 2,9 1,2 

RD 0,9 1,3 0,9 1,2 1,2 0,9 

CL -0,5 -0,5 -0,4 -0,4 -0,4 -0,4 

K 4,8 4,3 2,9 3,3 2,9 3,2 

CK 2,1 1,5 1,8 2,6 2 1,9 

GDP 1,9 0,6 0,4 -0,1 0,3 -0,3 

P 1,9 1,7 2,4 2,3 2,3 2 

M 1,5 1,8 1,2 0,5 2,7 1,9 

 

Period II: 2010– 2019  

Variable Hydropower 

 

Geothermal Solar PV Wind power CSP  Ocean 
energy 

KNI 2 4,1 -0,6 2 0 4,1 

RD 0,7 1,2 0,3 0,9 0,5 0,9 

CL -0,2 -0,1 -0,1 -0,1 -0,1 -0,2 

K 5,3 3,4 2,5 4,5 3,1 2,7 

CK 2,5 2,4 2 2,1 2 3,1 

GDP 0,6 -0,1 0,5 0,6 0,4 0,6 

P 2,3 2,1 2,5 2,5 2,5 2,4 

M 1,8 9,9 0,7 0,3 2,8 2,1 
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Appendix C. Distribution of the data   

C.1 Hydropower technology (2000-2009; 2010-2019) 
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C.2 Geothermal energy technology (2000-2009; 2010-2019) 
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C.3 Solar PV technology  (2000-2009; 2010-2019) 
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C.4 Wind power technology (2000-2009; 2010-2019) 
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C.5 Concentrated solar power (CSP) technology (2000-2009; 2010-2019) 
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C.6 Ocean energy technology (2000-2009; 2010-2019) 
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Appendix D. Scatter plots  

D.1 KNI and scientific relatedness (2000-2009; 2010-2019) 
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D.2 KNI and technological and infrastructural carbon lock-in (2000-2009; 2010-2019) 
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D.3 Knowledge accumulation (2000-2009; 2010-2019) 

 



 

Page 70 of 96 

 

 

 

 
  



 

Page 71 of 96 

 

 

 

D.4 KNI and access to complementary knowledge  (2000-2009; 2010-2019) 
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D.5 KNI and GDP (2000-2009; 2010-2019) 
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D.6 KNI and population (2000-2009; 2010-2019) 

 



 

Page 76 of 96 

 

 

 

 
  



 

Page 77 of 96 

 

 

 

D.7 KNI and renewable energy market (2000-2009; 2010-2019) 
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Appendix E. Correlation matrices  
E.1 Hydropower 

2000-
2009 

KNI RD K C CL GDP P M 

KNI 1.00 -0.14 -0.05 -0.09 -0.02 -0.02 -0.10 0.04 
RD -0.14 1.00 0.23 0.15 0.43 0.09 0.29 -0.14 
K -0.05 0.23 1.00 -0.23 0.56 0.03 0.56 0.10 
C -0.09 0.15 -0.23 1.00 -0.01 -0.22 0.01 -0.51 
CL -0.02 0.43 0.56 -0.01 1.00 0.09 0.24 -0.06 
GDP -0.02 0.09 0.03 -0.22 0.09 1.00 -0.14 0.36 
P -0.10 0.29 0.56 0.01 0.24 -0.14 1.00 -0.07 
M 0.04 -0.14 0.10 -0.51 -0.06 0.36 -0.07 1.00 

 
2010-
2019 

KNI RD K C CL GDP P M 

KNI 1.00 -0.06 0.05 -0.16 -0.07 0.06 0.01 0.06 
RD -0.06 1.00 0.21 -0.01 0.35 0.13 0.36 -0.12 
K 0.05 0.21 1.00 -0.20 0.70 0.13 0.42 0.06 
C -0.16 -0.01 -0.20 1.00 -0.10 -0.40 0.07 -0.43 
CL -0.07 0.35 0.70 -0.10 1.00 0.26 0.26 -0.03 
GDP 0.06 0.13 0.13 -0.40 0.26 1.00 -0.21 -0.04 
P 0.01 0.36 0.42 0.07 0.26 -0.21 1.00 0.02 
M 0.06 -0.12 0.06 -0.43 -0.03 -0.04 0.02 1.00 

 
 
E.2 Geothermal 

2000-
2009 

KNI RD K C CL GDP P M 

KNI 1.00 0.03 0.24 0.00 0.17 0.27 0.09 -0.11 
RD 0.03 1.00 0.71 -0.26 0.40 -0.08 0.77 -0.09 
K 0.24 0.71 1.00 -0.28 0.39 0.05 0.67 -0.06 
C 0.00 -0.26 -0.28 1.00 -0.20 -0.36 -0.18 0.27 
CL 0.17 0.40 0.39 -0.20 1.00 0.08 0.45 -0.17 
GDP 0.27 -0.08 0.05 -0.36 0.08 1.00 -0.21 -0.10 
P 0.09 0.77 0.67 -0.18 0.45 -0.21 1.00 0.07 
M -0.11 -0.09 -0.06 0.27 -0.17 -0.10 0.07 1.00 

 
2010-
2019 

KNI RD K C CL GDP P M 

KNI 1.00 -0.05 -0.04 0.11 -0.15 -0.22 -0.05 -0.05 
RD -0.05 1.00 0.29 -0.01 0.19 0.19 0.28 -0.07 
K -0.04 0.29 1.00 0.00 0.20 -0.02 0.59 -0.02 
C 0.11 -0.01 0.00 1.00 -0.16 -0.47 0.04 -0.09 
CL -0.15 0.19 0.20 -0.16 1.00 0.13 0.25 -0.04 
GDP -0.22 0.19 -0.02 -0.47 0.13 1.00 -0.19 -0.05 
P -0.05 0.28 0.59 0.04 0.25 -0.19 1.00 -0.04 
M -0.05 -0.07 -0.02 -0.09 -0.04 -0.05 -0.04 1.00 
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E.3 Solar photovoltaics 
2000-
2009 

KNI RD K C CL GDP P M 

KNI 1.00 0.29 0.36 -0.01 0.37 0.23 0.25 0.12 
RD 0.29 1.00 0.51 -0.04 0.78 0.14 0.72 0.19 
K 0.36 0.51 1.00 -0.01 0.86 0.18 0.52 0.15 
C -0.01 -0.04 -0.01 1.00 -0.05 -0.29 0.03 0.13 
CL 0.37 0.78 0.86 -0.05 1.00 0.17 0.64 0.25 
GDP 0.23 0.14 0.18 -0.29 0.17 1.00 -0.09 0.08 
P 0.25 0.72 0.52 0.03 0.64 -0.09 1.00 0.16 
M 0.12 0.19 0.15 0.13 0.25 0.08 0.16 1.00 

 
 KNI RD K C CL GDP P M 
KNI 1.00 0.74 0.61 -0.03 0.70 0.33 0.45 0.19 
RD 0.74 1.00 0.51 -0.09 0.67 0.16 0.58 0.19 
K 0.61 0.51 1.00 -0.02 0.94 0.15 0.56 0.23 
C -0.03 -0.09 -0.02 1.00 -0.06 -0.39 0.09 0.15 
CL 0.70 0.67 0.94 -0.06 1.00 0.21 0.56 0.27 
GDP 0.33 0.16 0.15 -0.39 0.21 1.00 -0.15 0.12 
P 0.45 0.58 0.56 0.09 0.56 -0.15 1.00 0.15 
M 0.19 0.19 0.23 0.15 0.27 0.12 0.15 1.00 

 
 
E.4 Wind power 

2000-
2009 

KNI RD K C CL GDP P M 

KNI 1.00 0.10 0.10 0.07 0.06 0.22 0.10 -0.09 
RD 0.10 1.00 0.54 -0.04 0.77 0.22 0.63 0.16 
K 0.10 0.54 1.00 -0.06 0.78 0.06 0.65 0.11 
C 0.07 -0.04 -0.06 1.00 -0.07 -0.35 0.02 0.14 
CL 0.06 0.77 0.78 -0.07 1.00 0.19 0.64 0.16 
GDP 0.22 0.22 0.06 -0.35 0.19 1.00 -0.08 0.06 
P 0.10 0.63 0.65 0.02 0.64 -0.08 1.00 0.12 
M -0.09 0.16 0.11 0.14 0.16 0.06 0.12 1.00 

 
2010-
2019 

KNI RD K C CL GDP P M 

KNI 1.00 0.33 0.24 -0.03 0.28 0.11 0.21 0.11 
RD 0.33 1.00 0.47 -0.05 0.69 0.23 0.57 0.21 
K 0.24 0.47 1.00 -0.05 0.90 0.16 0.46 0.35 
C -0.03 -0.05 -0.05 1.00 -0.05 -0.41 0.10 0.07 
CL 0.28 0.69 0.90 -0.05 1.00 0.24 0.48 0.40 
GDP 0.11 0.23 0.16 -0.41 0.24 1.00 -0.16 0.34 
P 0.21 0.57 0.46 0.10 0.48 -0.16 1.00 0.01 
M 0.11 0.21 0.35 0.07 0.40 0.34 0.01 1.00 

 
 
 



 

Page 81 of 96 

 

 

 

E.5 Concentrated solar power  
 KNI RD K C CL GDP P M 
KNI 1.00 0.15 0.16 0.01 0.15 0.09 0.14 0.03 
RD 0.15 1.00 0.60 0.00 0.76 0.14 0.68 0.04 
K 0.16 0.60 1.00 0.00 0.86 0.11 0.60 0.05 
C 0.01 0.00 0.00 1.00 -0.02 -0.25 0.03 0.03 
CL 0.15 0.76 0.86 -0.02 1.00 0.18 0.60 0.01 
GDP 0.09 0.14 0.11 -0.25 0.18 1.00 -0.08 -0.13 
P 0.14 0.68 0.60 0.03 0.60 -0.08 1.00 0.13 
M 0.03 0.04 0.05 0.03 0.01 -0.13 0.13 1.00 

 
2010-
2019 

KNI RD K C CL GDP P M 

KNI 1.00 0.57 0.50 -0.11 0.54 0.18 0.34 -0.01 
RD 0.57 1.00 0.66 -0.05 0.77 0.19 0.60 0.01 
K 0.50 0.66 1.00 -0.09 0.93 0.10 0.64 0.23 
C -0.11 -0.05 -0.09 1.00 -0.11 -0.39 0.08 -0.07 
CL 0.54 0.77 0.93 -0.11 1.00 0.20 0.59 0.14 
GDP 0.18 0.19 0.10 -0.39 0.20 1.00 -0.15 -0.09 
P 0.34 0.60 0.64 0.08 0.59 -0.15 1.00 0.11 
M -0.01 0.01 0.23 -0.07 0.14 -0.09 0.11 1.00 

 
 
E.6 Ocean energy 

2000-
2009 

KNI RD K C CL GDP P M 

KNI 1.00 -0.02 0.03 0.05 0.09 -0.10 0.02 0.06 
RD -0.02 1.00 0.44 -0.08 0.46 0.19 0.29 0.03 
K 0.03 0.44 1.00 -0.26 0.75 0.20 0.40 0.31 
C 0.05 -0.08 -0.26 1.00 -0.19 -0.30 0.02 -0.65 
CL 0.09 0.46 0.75 -0.19 1.00 0.18 0.19 0.22 
GDP -0.10 0.19 0.20 -0.30 0.18 1.00 -0.14 0.08 
P 0.02 0.29 0.40 0.02 0.19 -0.14 1.00 0.20 
M 0.06 0.03 0.31 -0.65 0.22 0.08 0.20 1.00 

 
2010-
2019 

KNI RD K C CL GDP P M 

KNI 1.00 0.00 0.01 -0.24 -0.03 0.04 0.06 0.18 
RD 0.00 1.00 0.35 -0.02 0.41 0.21 0.42 -0.01 
K 0.01 0.35 1.00 -0.10 0.78 0.17 0.37 0.11 
C -0.24 -0.02 -0.10 1.00 0.06 -0.36 0.07 -0.62 
CL -0.03 0.41 0.78 0.06 1.00 0.27 0.23 0.01 
GDP 0.04 0.21 0.17 -0.36 0.27 1.00 -0.19 0.12 
P 0.06 0.42 0.37 0.07 0.23 -0.19 1.00 0.16 
M 0.18 -0.01 0.11 -0.62 0.01 0.12 0.16 1.00 
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Appendix F. Installed capacities 
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Appendix G. Knowledge accumulation 
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Appendix H. Standard International Energy Product Classification (SIEC)  

Based on the simplified energy balance  

Main group # Energy fuel Eurostat’s 
database code  

 

 

 

Fossil fuels 

1 Solid fossil fuels C0000X0350-0370  

2 Manufactured gases C0350-0370  

3 Peat and peat products P1000  

4 Oil shale and oil sands S2000  

5 Oil and petroleum products (excluding biofuel portion) O4000XBIO  

6 Natural gas G3000  

Renewables  7 Renewables and biofuels RA000  

Non-renewable waste 8 Non-renewables waste C0000X0350-0370  

Nuclear 9 Nuclear heat  N900H 

 

 

Based on the complete energy balance for ‘Renewables and biofuels’ only 

Main group # Energy fuel Eurostat’s 
database code  

Renewables  7.1 Hydropower RA100 

7.2 Geothermal RA200  

7.3 Wind power RA300 

7.4 Solar photovoltaic RA420 

7.5 Solar thermal RA410  

7.6 Tidal wave  RA500  
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