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Abstract

Ask-Elle is a programming tutor that allows students to learn Haskell at their
own pace, without a teacher’s direct supervision. To enable this, the tutor
requires model solutions to be specified up front by a teacher, after which the
tutor is able to guide the student towards one of these solutions. However,
should the student deviate from the model solutions too much, the tutor can no
longer give assistance. In an attempt to still provide the student with feedback
once that happens, we propose using both QuickCheck and contracts to locate
potential bugs in the student’s program. Since we, in general, do not know
anything about the structure of a student’s solution, we propose and implement
a method for inferring contracts for the student’s program.



Chapter 1

Introduction

Last year’s (mandatory) bachelor level course in Functional Programming at
Utrecht University had over 200 bachelor students attending lectures and lab
sessions. While a great turn-up by itself, it is unfortunately practically impos-
sible to answer every student’s questions during such busy lab sessions. Once
the lab sessions come to an end, the students that did not get to ask all their
questions won’t be able to ask them until the next lab sessions. While the
teachers and assistants in the functional programming course had their hands
full with supporting all of the enrolled students, the number they had to deal
with pales in comparison with the numbers achieved in a relatively new phe-
nomenon, called MOOCs: Massive Open On-line Courses. In a single MOOC
instance, several tens of thousands of students from all over the world can take
part at the same time, usually free of charge.

As one can image, no single one teacher can assist that many students at the
same time, even with a small army of student assistants. So, instead of being
constantly guided by a professor or a teaching assistant, students need to be
able to study independently. While even in small courses, independent studying
is strongly encouraged, small courses have the advantage that students can ask
teachers and assistants for help when they get stuck. When classes reach the
size of the functional programming course at Utrecht University, or when they
reach a MOOC-level number of students, this gets significantly more difficult.
One solution may be to encourage students to do peer-reviews of the exercises
and help each other out when stuck. In practice, however, social barriers and
variable availability of fellow students may limit the amount of useful feedback
a student can receive. Automated teaching tools, also known as tutors, can
provide a solution to this problem. These tutors allow students to work at home
at their own pace, and provide consistent feedback on the student’s progress.

Gerdes et al. [11] have developed a tutor, called Ask-Elle, that assists stu-
dents in doing exercises for a bachelor-level functional programming course. In
this course, students learn the basics of functional programming in Haskell [18].
Students can choose from several exercises, taken from the “H-99: Ninety-Nine
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Haskell Problems” exercise set1. After selecting an exercise, students are pre-
sented with a short problem description and the type signature of the function
they should implement. For example, if a student selects the insertion-sort
exercise, he may be presented with a description similar to the following:

Write a function that sorts a list: sort : Ord a ⇒ [a ] → [a ]. For
example:

Data.List> sort [3,2,6,8,1]

[1,2,3,6,8]

An empty text field is presented and the student can start working on the
exercise. If the student finds himself truly stuck, he can ask the tutor for a hint.
Should the student still be stuck after receiving the hint, he can ask the tutor
to give a tiny snippet of code to help him work towards a solution. Finally, the
student arrives at a solution, either with or without help from the tutor.

Of course, the situation described above is an ideal situation where the
student implements a known solution to the problem at hand. In practice,
guiding a student towards a solution is quite a bit trickier. Before the tutor can
give hints, or tell the student that he has successfully completed the exercises
(or not), the tutor needs to know what constitutes a solution to that specific
exercise. Since the tutor cannot come up with programs by itself, a teacher will
need to input one or more so-called model solutions beforehand. The tutor can
then parse the model solutions and device strategies [12, 9] for working towards
these solutions. When a student requests a hint, the tutor parses the student’s
program, and tries to match it against the known model solutions, or variations
thereof.

Unfortunately, there are limits to the tutor’s abilities to detect whether a
student’s program is a variation of one of the model solutions. Once a student
deviates too much from all known model solutions, the tutor cannot assist the
student further. While it very well might be that the student has implemented a
correct program, the tutor cannot verify this any more. It is this situation that
this thesis will focus on. Can we still provide the student with useful feedback,
even when he has significantly deviated from the model solutions? Can we do
this even when their programs might not be completely implemented yet? If a
student has a bug in his program, can we find the bug’s location and point the
student to it?

As it turns out, we can do so, to some extent. In this thesis, we develop a
method for inferring contracts (for an introduction to contracts, see Section 2.2)
for functions and their sub-expressions. These contracts can be used to approx-
imately locate a bug. Combined with QuickCheck [3], we can automatically
generate input that triggers a contract violation. Specifically, this thesis makes
the following contributions:

1http://www.haskell.org/haskellwiki/99 Haskell exercises
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• We extend the Ask-Elle tutor to fall back on QuickCheck when strategies
and model solutions fall short, even when programs still contain holes.

• We infer contracts for a function and all its sub-expressions.

• Using counter-examples from QuickCheck, contract inference, and pro-
gram transformations, we locate the position of bugs in a program.

We introduce our solution in the following chapters: Chapter 2 provides the
reader with background information on the various concepts used in this thesis,
describes the problem we have attempted to solve, and motivates our proposed
solution. Chapter 3 then continues with a formal and technical description of
our solution, after which Chapter 4 concludes with a discussion of the results
and future work.
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Chapter 2

Background

In this chapter we provide the reader with some background-information on
the various concepts that are used throughout this thesis, and we clarify the
problems that we have attempted to solve.

2.1 Ask-Elle, strategies, and QuickCheck

As mentioned in the introduction, the work we present here is motivated by the
Ask-Elle programming tutor; a programming tutor that allows students to work
on Haskell programming exercises at their own pace, without direct supervision
of a teacher, while still being able to receive feedback on their progress. Enabling
students to work by themselves in this way is more challenging than it may
sound. Not only does the tutor need to be sophisticated enough to know when
the student has finished an exercise, it also needs to be able to give the student
feedback when he gets stuck. Enabling this in Ask-Elle is done by introducing
strategies [9, 11, 10]. When creating an exercise, all a teacher has to do is enter
one or more model solutions, which, in their simplest form, are just Haskell
implementations of possible solutions to the exercise in question. These model
solutions are parsed by the tutor and compiled into strategies. Using these
strategies, the tutor can identify whether a student is working towards one of
the model solutions, even if the variable names are different from the model
solution, or if the program structure is different.

Despite the fact that the tutor’s strategy system is sophisticated enough to
recognise programs that deviate from a model solution, there are limits to this
ability. Another situation where the use of strategies may fall short is when
not all possible model solutions have been provided by the teacher, so the tutor
cannot guide the student towards potentially good solutions. Practically, it is
also impossible to come up with all possible model solutions, unless the exercise
is trivial.

Rather than forcing a teacher to spend all his time trying to input all possible
model solutions, we propose a different solution, which we have implemented
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in the tutor. In addition to specifying model solutions, we ask the teacher to
also provide properties for the exercise. These properties are then used with
QuickCheck [3] to use property-based testing on the submitted exercise. For
example, for a sorting function, sort , we may define the following property:

prop Sort : Ord a ⇒ [a ]→ Bool
prop Sort xs = isNonDesc (sort xs) ∧ isPermutation xs (sort xs)

where isPermutation xs ys = xs ∈ permutations ys
isNonDesc (x :: y :: ys) = x 6 y ∧ isNonDesc (y :: ys)
isNonDesc = True

QuickCheck then proceeds to generate random lists and applies the prop-
erty function to them. After n (by default 100) successful tests, QuickCheck
terminates and reports that, for these 100 random lists, sort adheres to the
prop Sort property. Should the sort function have a bug which causes it to
violate the property, QuickCheck will produce a counter-example. It does by
taking the randomly generated values and shrinking them. For example, sup-
pose QuickCheck generates a list [2, 0, 1], which causes the property to fail. It
will then try to to see if the property still fails with the smaller list [2, 0]. If it
does, it will try again with the even smaller list1 [ ]. Should that succeed, it will
return the counter-example [2, 0] and show it to the user.

Using QuickCheck, we can give the student some feedback, even though the
tutor is no longer able to use strategies to give exact feedback. If all tests
succeed, the tutor can inform the student that, even though it is not entirely
certain2 that the implementation is correct, it certainly looks like the student
is doing the right thing. Should the property fail, then the student is presented
with a concrete counter-example, helping him to manually debug the program
code.

While the addition of QuickCheck is certainly an improvement over having
no feedback at all, it is still a sub-ideal way to give the student feedback. After
all, the only lead a student has to find out where the bug in his program is,
is the counter-example. Can we do better? It turns out that we can, by using
contracts, which will be introduced in the next section.

2.1.1 Holes

Before continuing with a section about contracts, we need to answer one more
question. Ask-Elle has the ability to analyse a student’s incomplete program and
provide feedback on the student’s progress, allowing the student to incrementally
develop his program. For this to work, the student needs to explicitly indicate
the holes in the program. To incrementally implement map, for example, we
might go through the following steps, in which ? indicates a hole:

1In reality, QuickCheck generates several other intermediate lists, but we omit them for
brevity.

2There is always the chance that a counter-example is found with the n + 1th randomly
generated value. Strictly speaking this also holds true for finite data structures, because
QuickCheck does not guarantee that all permutations are tested.
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map = ?

map f xs = ?

map f [ ] = ?
map f (x :: xs) = ?

map f [ ] = [ ]
map f (x :: xs) = ? :: ?

map f [ ] = [ ]
map f (x :: xs) = f x :: map f xs

But what happens if we want to run QuickCheck on the second-last case?
Clearly it is incomplete. QuickCheck supports a special discard exception since
version 2.5. If this exception is thrown by the property under test, QuickCheck
simply discards the test case and continues with a new one, until the given
number of test cases has been reached. In the programming tutor we replace
all holes with these discard exceptions, allowing us to QuickCheck students’
programs, even if they are incomplete. For our specific example, this means
that QuickCheck will need to generate n empty lists before the test succeeds.

2.2 Contracts

Contracts and the “design by contract” paradigm go back to at least Bertrand
Meyer [16, 1], who coined the term in the 1980s in the context of his Eiffel [15]
programming language. A contract specifies restrictions and gives guarantees
for functions, much like a contract does so in real life between two parties. For
example, a contract may specify that a function requires a natural number as
argument, and that, provided a natural number is passed to the function, a
natural number is returned as a result.

If a contract is violated, an exception is thrown which can include the lo-
cation of the contract violation, and an indication as to which function is to
blame for the contract violation. Adding contracts to programs therefore makes
it easier to debug them, and incorporates tests in the program’s code.

Contracts have been implemented in many imperative programming lan-
guages. Some languages, such as Eiffel, incorporate contracts as a language
feature, while many of today’s popular imperative programming languages sup-
port contracts as a library.

Contracts for functional programming languages are less widely applied.
Nevertheless, contracts in functional languages are an active field of research.
Findler and Felleisen [8] were the first to propose contracts for higher-order
functions in Scheme [20]. Later, in 2006, Xu [22] introduced a static contract
system, in which contracts can be written in Haskell and checked, using sym-
bolic computation, at compile-time. Static contract systems like this share
traits with dependently typed programming languages and theorem provers.
Xu’s work was followed by another paper in 2009, together with Peyton-Jones
and Claessen [23]. An upcoming paper by Vytiniotis et al. [21] takes static
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contract checking a step further by translating contracts into first-order logic
formulae and using an off-the-shelf theorem prover, to prove these formulae,
rather than writing a custom contract system from scratch. On the other end
of the spectrum, there is dynamic contract checking, which checks contracts at
runtime. Hinze et al. [13] presented a library for dynamic contract checking in
2006 which was completely implemented in Haskell, without the need for mod-
ifications in the Haskell compiler. Based on the work by Hinze et al., Chitil [2]
presents a newer library for typed lazy contracts, also implemented as a library
in Haskell, which is claimed to preserve a program’s lazy semantics, as opposed
to the library by Hinze et al.

For this thesis we make use of the library by Hinze et al., called typed-contracts,
whenever we need a concrete implementation of contracts. We chose this library
mainly because we did not know of Chitil’s work until after we had started im-
plementing our ideas with the typed-contracts library. Concepts in this thesis
should be portable to other libraries, and likely also to static contract systems.
Our choice for a dynamic contract system is motivated by the desire to apply
contracted functions to QuickCheck counter-examples, which can only be ob-
tained at run-time, and by the fact that the dynamic contract systems are, at
the moment of writing, readily usable after simply installing them, while the
current static systems require installing experimental branches of GHC.

2.2.1 Asserting and implementing contracts

Contracts in the typed-contracts library have the same shape as the type of
the function for which they are defined. For example, a contract for a function
that goes from natural numbers to natural numbers is defined as follows:

nat _ nat

In order to assert a contract for a given function, the contract needs to be at-
tached to, or wrapped around, the function first, which is done by the assert
function. We borrow Hinze et al.’s example of a contracted definition of head ,
but change their naming convention to match our goals. When writing a con-
tracted version of a function f , we rename the original function to f ′ and call
the contracted version f .

head : [a ]→ a
head = assert (nonempty _ true) (λxs → head ′ xs)

Since head is a partial function that is undefined for empty lists, we require
the input list to be non-empty, which is ensured by the nonempty contract.
From the type signature, we can see that the contracted head can be used as a
drop-in replacement for the original head . Given the type-signature of assert ,
this is not surprising:

assert : Contract a → (a → a)
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Given a contract, assert acts as a partial identity. It is partial, because the
assertion raises an exception if the contract is violated. In the original paper by
Hinze et al., the Contract type was implemented as a follows (using Generalised
Algebraic Data Types; GADTs):

data Contract a where
Prop : (a → Bool)→ Contract a
Function : Contract a → (a → Contract b)→ Contract (a _ b)
Pair : Contract a → (a → Contract b)→ Contract (a, b)
List : Contract a → Contract [a ]
And : Contract a → Contract a → Contract a

The Prop constructor takes a predicate and lifts it into a Contract , and the
And constructor represents the conjunction of two contracts. The meaning of
the remaining constructors is straight-forward. Note that both Function and
Pair take a function as section argument, rather than simply a Contract b. This
allows you to model dependent function contracts which allow you to use values
from function arguments in the Definition of the contract. Section 3.5 discusses
dependent contracts in the context of our work. For this thesis, we have added
two new constructors for functors (types of kind ∗ → ∗) and bifunctors3 (types
of kind ∗ → ∗ → ∗) to the Contract GADT, which allow us to abstract over the
Pair and List constructors:

data Contract a where
Prop : (a → Bool)→ Contract a
Function : Contract a → (a → Contract b)→ Contract (a _ b)
Pair : Contract a → (a → Contract b)→ Contract (a, b)
List : Contract a → Contract [a ]
Functor : Functor f ⇒ Contract a → Contract (f a)
Bifunctor : Bifunctor f ⇒ Contract a → Contract b → Contract (f a b)
And : Contract a → Contract a → Contract a

In its simplest form, assert ’s implementation is straight-forward and follows
the Contract GADT closely:

assert : Contract a → (a → a)
assert (Prop p) a = if p a then a else error "contract failed"

assert (Function c1 c2) f = (λx ′ → (assert (c2 x ′) · f ) x ′) · assert c1
assert (Pair c1 c2) (a1, a2) = (λa ′

1 → (a ′
1, assert (c2 a ′

1) a2)) (assert c1 a1)
assert (List c) as = map (assert c) as
assert (Functor c) as = fmap (assert c) as
assert (Bifunctor c1 c2) as = bimap (assert c1) (assert c2) as
assert (And c1 c2) a = (assert c2 · assert c1) a

3Haskell’s base packages do not provide the Bifunctor type class. Instead, we use the
class found in the Data.Bifunctor module in the bifunctors package found on Hackage. This
choice is rather arbitrary, and other bifunctor implementations are easily used instead.
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Asserting a Prop p simply applies the predicate p to the value a. If the
predicate holds, assert acts as identity. If not, it raises an exception, signalling
that the contract is violated. In case of a Function contract, we build up a new
function in which the contract assertions are inlined. When this new function
is applied to some argument, the contract for the function’s domain is first
asserted. Provided the first contract succeeds, the result value is used for the
assertion of the co-domain contract. A Pair contract is similar in this respect,
as it first asserts the contract for the left element, after which the left element’s
value is passed on to the right element’s contract. Asserting List , Functor ,
and Bifunctor is straight-forward, as it just involves applying the corresponding
homomorphisms. Lastly, the And contract requires that both contracts hold for
the same value.

As Hinze et al. already indicate, and what the implementation also shows, is
that the contracts for Pair and List follow a similar pattern. This observation
is strengthened by the way assert is implemented for Functor and Bifunctor .
Repeating what Hinze et al. already note in their paper, for some arbitrary
container type T , we can define an assertion

assert (T c1 . . . cn) = mapT (assert c1) . . . (assert cn)

for some mapping function mapT for that specific type T .
assert ’s actual implementation is a bit more involved, as it needs to cope with

proper blame-assignment in which the correct function is identified as violating
a contract. For a more detailed discussion about blame assignment, see the
original paper. The simplified implementation above suffices for this thesis.

To make defining contracts more intuitive, the contract library exposes sev-
eral convenience functions:

c1 _ c2 = Function c1 (const c2)

c1
d7−→ c2 = Function c1 c2

(&) = And
c1 <@> c2 = c1 & Functor c2
c1 <@@> (c2, c3) = c1 & Bifunctor c2 c3

Of these convenience functions, the last two are the most interesting. Instead
of being a simple wrapper for the Functor and Bifunctor contracts, they are
a conjunction of the (bi)functor contracts and some other contract c1. As an
intuitive example of why this should be necessary, consider a list of integers.
We could define a List contract that ensures that the list contains only natural
numbers. However, knowing that a list contains only natural numbers does not
say anything about the list as a whole. After all, we might want to require that
the list be sorted, which can only be checked on the complete list. Our last
two convenience functions combine the outer contract c1, with which properties
such as sorting can be captured, and inner contract(s), with which properties
like natural numbers can be captured. Capturing both outer and inner contracts
at the same time is easy enough when defining contracts by hand, so having a
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convenience function available might not be a big improvement. However, as
we will see in Chapter 3, these abstraction become very useful when inferring
contracts.

With the Contract type and the convenience functions, we can define con-
crete contracts, the most extreme of which are the true and false contracts.
The true contract always succeeds, while the false contract never succeeds and
always raises an exception. An example where both are used is the const func-
tion, which always returns its first argument and always discards its second
argument. Its contract can be defined as follows:

true _ false _ true

However, since true always succeeds, a perfectly valid, albeit less precice, con-
tract for const is

true _ true _ true

and even just

true

in which case the true contract will just accept the const function as a whole.
We can also specify higher-order contracts, and using the (bi)functor con-

tracts, we can also write contracts that closely follow the function’s type. For
example, for

map : (a → b)→ [a ]→ [b ]

we can define a contract

(c1 _ c2) _ (c3 <@> c1) _ (c4 <@> c2)

for some contracts c1, c2, c3 and c4. Since lists are functors, we choose to use the
functor function here. The resulting contract looks very similar to map’s type.
Contracts for universally quantified type variables behave very much like the
type variables; the same type variable gets the same inner contract. However,
we cannot, in general, say anything about the relationship between the two lists,
so we assign them (potentially) different outer contracts.

2.2.2 Contracts in Ask-Elle

As mentioned in Section 2.1, QuickCheck is only able to give us a counter-
example, and cannot tell us where in the program the property is being vi-
olated. Contracts, on the other hand, are ideally suited to locate the source
of a property-violation, since they can be added to every single function in a
program. In the context of Ask-Elle, however, we cannot expect the student to
manually annotate the program with contracts, and since we are working in the
situation where strategies can no longer help us, we cannot rely on strategies to
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annotate the program with contracts either. Luckily, all is not lost. What we
do know is which function the student is currently trying to implement, even
though we do not know how the student is implementing it. Since we know
which function the student is implementing, we can, at the very least, specify
a contract for the top-level function. Together with this top-level contract, we
can then try to infer contracts for the rest of the program, much in the same
way as types are being inferred by a compiler’s type-checker in the presence of
an explicit type signature. How this process works is detailed in Chapter 3.
With a fully contracted program, and a QuickCheck counter-example, we are
in a very good position to find the location of a bug. After all, we know for
a fact that the counter-example is an input for which the function’s property
fails. Therefore, if a function is completely covered with contracts, applying it
to the counter-example should lead us to the location of the bug.

We are not the first to propose inferring contracts. Dynamically inferring
program invariants in imperative programming languages goes back to at least
Ernst’s dissertation [7] in 2000. Static invariant analysis goes back even further,
to work by Cousot and Cousot [4] in 1977. One can even argue that Hoare’s
work on axiomatising computer programming [14] can be seen as one of the first
forms of static contract inferencing. More recently, Cousot et al. [5] describe a
method for inferring contracts for extracted methods in imperative languages.
In between Hoare’s original publication and Cousot’s latest publication, a vast
collection of work on deducing contracts for imperative programs is available,
which mostly focusses on use-cases in C or Java. Contract inference for func-
tional programs is significantly less well explored, however. To our knowledge,
this thesis is the first to describe contract inferencing for (modern) functional
languages.
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Chapter 3

Contract inferencing

Contract inferencing is the process of automatically deducing contracts from a
program’s implementation. In many ways contract inferencing is similar, and in
some places identical, to type inferencing as described by Damas and Milner [6],
both conceptually and practically.

In contract inferencing, we want to achieve the following goals:

• Infer a well-typed contract for every function in a program

• Inferred contracts must allow a (non-strict) subset of the values allowed
by the types

• The most general inferred contract must never fail an assertion

We have developed a contract system and an inferencing algorithm that is
heavily based on Milner’s Algorithm W [17], Damas and Milner’s extension of
this algorithm, and, like Damas and Milner’s work, uses Robinson’s unification
algorithm [19]. Our contracting system and our inferencing algorithm, called
Algorithm CW, will be discussed in Section 3.4. The inferencing has some
shortcomings, which will be discussed in Chapter 4.

3.1 The λc language

In order to explore the problem of contract inferencing, and develop our con-
tract inferencing algorithm, we have created a small, simple let-polymorphic
expression language called λc, presented in Figure 3.1. While this language is
in no way suited for day-to-day programming, it features the main concepts of
full-fledged functional programming languages, such as Haskell, hence we expect
that the results from this thesis carry over to more mature languages.

In addition to the usual lambda calculus expressions, let-blocks, and case-
blocks, the language has support for constants, built-in support for several data-
types, such as lists, Maybe, pairs, and Either , and binary operations. To sim-
ulate the programming tutor, the language also supports holes, denoted by a
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expr ::= x -- Variable
| λexpr → expr -- Lambda abstraction
| expr expr -- Application
| let expr = expr in expr -- Let binding
| case expr of -- Case block
{expr → expr (; expr → expr)∗}

| const -- Constants
| expr :: expr -- List cons constructor
| [ ] -- List nil constructor
| Just expr -- Maybe Just constructor
| Nothing -- Maybe Nothing constructor
| (expr , expr) -- Pair
| Left expr -- Either left constructor
| Right expr -- Either right constructor
| expr ⊕ expr -- Binary operation
| ? -- Holes

const ::= n -- Integers
| b -- Booleans
| c -- Characters
| s -- Strings

Figure 3.1: Grammar for the expression language

question mark. With its basis in the lambda calculus, and due to its declarative
nature, it is not hard to imagine that we can apply Algorithm W to infer types
in this language. Section 3.4 will confirm that we can also infer contracts for
this language.

3.2 Formalising the contract language

We define a contract language that is agnostic of a specific contract library. The
grammar of this language is formalised in Figure 3.2. Since our implementation
uses the contract library by Hinze et al. [13], the language is inspired by their
notation and the notation of our additions to the library. Contracts for specific
libraries can be generated from our language. In this thesis, we generate con-
tracts for the library by Hinze et al., but we can also generate code for other
libraries, such as the library by Chitil [2].

A contract is a user-defined concrete contract, a true contract which never
fails, a false contract which always fails, a contract for functions, which goes
from a contract to a contract, or a contract for (bi)functors. We also explicitly
add terminals for constants and data types, which serve as default contracts for
the corresponding types. Lastly, we have contract schemes, with which we can
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-- Contracts
c ::= ρα -- User-defined concrete contract
| trueα -- true contract
| falseα -- false contract
| cα _ cβ -- Function contracts
| cα <@> cβ -- Functor contracts
| cα <@@> (cβ , cγ) -- Bifunctor contracts
| intα -- Succeeds for all integers, and only for integers
| boolα -- Succeeds for all booleans, and only for all booleans
| charα -- Succeeds for all characters, and only for all characters
| stringα -- Succeeds for all strings, and only for all strings
| listα -- Succeeds for all lists, and only for all lists
| eitherα -- Succeeds for all Eithers, and only for all Eithers
| maybeα -- Succeeds for all Maybes, and only for all Maybes
| pairα -- Succeeds for all pairs, and only for all pairs

-- Contract schemes
σ ::= c -- Contract
| ∀trueα.σ -- Universal quantification for contract indices

Figure 3.2: Grammar for the contract language

universally quantify over true contracts. We will see that these contracts can
be refined by unifying with more specific contracts.

Contracts for true, false, and the data types have an index α in order to
distinguish between two instances of the same contract. We will omit the indices
in our examples when doing so does not lead to ambiguity. Why we need indices
will be discussed in Section 3.4.2. For now it suffices to know when two contracts
are different, or stated otherwise, when they are equivalent:

Definition 1 (Equivalency of contracts). ci ≡ dj iff c ≡ d and i ≡ j.

3.3 Contract relations

In Haskell, a function’s type statically guarantees that a function will be applied
to a value of that type. Haskell’s type system guarantees that a function f of
type Int → Int is only applied to an integer in the range [−229, 229 − 1] on
a 32 bit machine, and that it returns an integer in the same range as result.
Any contract we infer for f must allow a subset of integers in that range as
well. Since we know from the types that f ranges over integers, we can infer the
contract

int1 _ int2
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for it. If possible, however, we still want to refine this contract, since by itself it
does not offer more guarantees than Haskell’s type system; it always succeeds.
We want to be able to make the contract more specific and allow a smaller
subset of Haskell values. By making a contract more specific than the types,
we enable it to fail assertion. For example, suppose we know that f does not
range over all integers, but only over the natural numbers. We want to be able
to make f ’s contract more specific and replace it with the contract

nat1 _ nat2

In order to know when we can make a contract more specific, we need to define
relations between contracts. By regarding contracts as sets of Haskell values,
we can do so. We formalise this idea in Definition 2.

Definition 2 (Semantics of contracts). The semantics of a contract c, written
JcK, is defined as the set of Haskell values for which it never fails assertion.

From Definition 2 follows that JtrueK is the set of all Haskell values, since
assertion never fails, and JfalseK is the empty set, since assertion always fails.
The semantics of any contract is therefore a subset of JtrueK and a superset of
JfalseK. We formalise this thought in Proposition 1.

Proposition 1 (Contract relations with true and false). For all contracts c,
JfalseK ⊆ JcK ⊆ JtrueK

Proof. This follows from the definition of JfalseK, JtrueK and ⊆.

Using these subset relations, we can refine contracts and make them more
specific, increasing the chances that a contract assertion will fail, thereby locat-
ing a potential bug in the program. If Jc1K ⊆ Jc2K, then we can substitute Jc1K
for Jc2K during refinement. With the subset relation we keep the property that
if an assertion fails for c2, it will also fail for c1 (Proposition 2), and conversely
that if assertion succeeds for c1, it will also succeed for c2 (Proposition 3).

Proposition 2 (Assertion fails for subset). For all contracts c1, c2, if Jc1K ⊆
Jc2K and assert c2 e = blame, then assert c1 e = blame.

Proof. By Definition 2 we can restate this in terms of sets: for all contracts c1,
c2, if Jc1K ⊆ Jc2K and e /∈ Jc2K, then e /∈ Jc1K. This follows from the set-theoretic
definitions of ⊆ and /∈.

Proposition 3 (Assertion succeeds for superset). For all contracts c1, c2, if
Jc1K ⊆ Jc2K and assert c1 e = e, then assert c2 e = e.

Proof. By Definition 2 we can restate this in terms of sets: for all contracts c1,
c2, if Jc1K ⊆ Jc2K and e ∈ Jc1K, then e ∈ Jc2K. This follows from the set-theoretic
definitions of ⊆ and ∈.
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The semantics of function contracts also adheres to the subset relation. For
example,

true1 _ true2

is the contract of all functions. Using Proposition 1, we can order it as follows

JfalseK ⊆ Jtrue1 _ true2K ⊆ Jtrue3K

Since not all Haskell values are functions and Jtrue1 _ true2K is not empty, we
can even make this a strict subset relation:

JfalseK ⊂ Jtrue1 _ true2K ⊂ Jtrue3K

Intuitively, it seems likely that we can use the subset relation for two function
contracts as well. For example, if we have two contracts nat and int, for which
holds that JnatK ⊆ JintK (which follows from the conventional mathematical
subset relation between natural numbers and integers), we can imagine that

Jnat _ nat K ⊆ Jint _ intK

holds as well. We show that this is indeed the case in Proposition 4.

Proposition 4 (Superset relation for function contract semantics). For all con-
tracts c1, c2, c3, c4, if Jc1K ⊆ Jc2K and Jc3K ⊆ Jc4K, then Jc1 _ c3K ⊆ Jc2 _ c4K.

Proof. By Proposition 3, we can reason that if assert (c1 _ c3) f = f implies
assert (c2 _ c4) f = f , then Jc1 _ c3K ⊆ Jc2 _ c4K. We show this by equational
reasoning.

H1 Jc1K ⊆ Jc2K

H2 Jc3K ⊆ Jc4K

assert (c1 _ c3) f = f
≡ { Definition of (_) and assert }

λx ′ → (assert (const c3 x ′) ◦ f ) x ′ ◦ assert c1 = f
≡ { Definition of const }

λx ′ → (assert c3 ◦ f ) x ′ ◦ assert c1 = f
⇒ { Apply H1 by Proposition 3 }
λx ′ → (assert c3 ◦ f ) x ′ ◦ assert c2 = f

⇒ { Apply H2 by Proposition 3 }
λx ′ → (assert c4 ◦ f ) x ′ ◦ assert c2 = f

≡ { Definition of const }
λx ′ → (assert (const c4 x ′) ◦ f ) x ′ ◦ assert c2 = f

≡ { Definition of assert and (_) }
assert (c2 _ c4) f = f

16



A variation of the proof of Proposition 4 can be given by using Proposition 2
instead and by starting with assert (c2 _ c4) f = blame. For our example, we
can now use Proposition 4 to refine the function contract

int1 _ int2

to

nat1 _ nat2

3.4 The contract system

This section describes a contracting system with which we can infer contracts
from expressions. In this system, Γ represents a contract environment that maps
variables to contracts and is defined as

Γ ::= [ ] |Γ1[x 7→ c]

where Γ is either the empty environment, or some environment Γ1 extended
by a mapping from some variable x to some contract c. We write Γ(x) = c if
the right-most binding for x in Γ maps x to c. For a contracting relation, we
write Γ ` e : c to denote that in environment Γ, expression e has contract c. We
write fc(σ) for the set of true contracts that appear free in contract scheme σ,
and fc(Γ) for the set of true contracts that appear free in codomain of Γ. In
addition, we define two support functions, shown in Figure 3.3.

gen : Environment → ContractScheme → ContractScheme
gen Γ c = ∀truei. . . .∀truen.c

where {truei, . . . , truen} = fc(c) \ fc(Γ)

inst : ContractScheme → ContractScheme
inst (∀truei, . . . ,∀truen . c) = [truei 7→ truei′ ] . . . [truen 7→ truen′ ]c

where truei′ , . . . , truen′are fresh

Figure 3.3: Generalization and instantiation functions

Starting from the top, gen generalises a contract by introducing universally
quantified true contracts. Any true contract that occurs free in the contract and
is not bound in the environment is quantified over. Instantiation, implemented
by inst , removes the quantifiers and replaces all previously-bound true contracts
with fresh ones. Both gen and inst are essentially the same as in Damas-Milner
type inference, except we quantify over indexed true contracts, rather than type
variables. Finally, we present the contracting rules in Figure 3.4.
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Γ(x) = c
C-Var

Γ ` x : inst (c)

Γ[x 7→ c1] ` e : c2
C-Lam

Γ ` λx → e : c1 _ c2

Γ ` e1 : c2 _ c Γ ` e2 : c2
C-App

Γ ` e1 e2 : c

fresh(i)
C-True

Γ ` e : truei

Γ[x 7→ c1] ` e1 : c1 Γ[x 7→ genΓ(c1)] ` e2 : c
C-Let

Γ ` let x = e1 in e2 : c

Γ ` x : c Γ ` xs : list <@> c
C-Cons

Γ ` (x :: xs) : list <@> c
fresh (i , j )

C-Nil
Γ ` [ ] : listi <@> truej

Γ ` x : c fresh (i)
C-Just

Γ ` Just x :maybei <@> c

fresh (i , j )
C-Nothing

Γ ` Nothing :maybei <@> truej

Γ ` x : c1 Γ ` y : c2 fresh (i)
C-Pair

Γ ` (x , y) : pairi <@@> (c1, c2)

Γ ` x : c1 fresh (i , j )
C-EitherL

Γ ` Left x : eitheri <@@> (c1, truej )

Γ ` x : c2 fresh (i , j )
C-EitherR

Γ ` Right x : eitheri <@@> (truej , c2)

fresh (i)
C-Hole

Γ ` ? : truei

n is an integer fresh (i)
C-Integer

Γ ` n : inti

b is a boolean fresh (i)
C-Boolean

Γ ` b : booli

c is a character fresh (i)
C-Character

Γ ` c : chari

s is a string fresh (i)
C-String

Γ ` s : stringi

Γ ` m : c1 ∀i ∈ [0 . . . n]Γ ` pi : c1 ∀i ∈ [0 . . . n]Γ ` ei : c2
C-Case

Γ ` case m of {p0 → e0; . . .; pn → en } : c2

Γ ` e1 : c1 Γ ` e2 : c2 Γ ` ⊕:c1 _ c2 _ c3
C-BinOp

Γ ` e1 ⊕ e2 :: c3

Figure 3.4: Contracting rules

We will not discuss the rules for C-Var, C-Lam and C-App, because they
are the same as in Damas and Milner’s work. Not explicitly described by Damas
and Milner, however, is our treatment of data types. After all, a data type can be
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converted into a lambda expression, after which the rules for the lambda calculus
apply again. Our explicit modelling of functors and bifunctors in the contract
language also requires us to explicitly specify contract rules for these contracts.
In addition to the data types, the following paragraph will also expand on the
rule for C-True and the rules for case blocks and binary operators.

Starting with C-True, we see that at any time we can create a true contract
for an expression. After all, the true contract succeeds for all Haskell values,
including functions. Continuing with with the case for C-Nil, we get a list
functor contract with fresh indices. Since we know nothing about the contract
of either the inner, or the outer contract, both contracts need to be fresh. The
same holds for C-Nothing. In the case for C-Cons, we do know the contract
for the element in the list. This element needs to have the same contract as
the inner contract of the tail of the list in the same way that elements of a list
need to have the same type. Hence, given that the element on top of the list
has the same contract as the inner contract of the tail of the list, we can give
it the same contract as for the tail of the list. For C-Just, we already know
the contract for the variable inside the Just , but we need a fresh just contract
for the outer contract. C-Pair, although it being a bifunctor, works similarly
to C-Just, with the difference that it has two inner elements. The cases for
C-EitherL and C-EitherR are more interesting. For either constructor, we
can only know one of the inner contracts: either the left, or the right one. As
a result, we need a fresh true contract for one of the inner contracts. Next, we
have a case for a hole in a program, C-Hole. Since we cannot say anything
about the contract of the hole, we just create a single fresh true contract. For
each of the constants, such as integers, strings, characters, and booleans, we
give a fresh type-specific contract. C-Case describes contract inference for case
blocks with an arbitrary number of cases. Lastly, C-BinOp describes how we
deal with binary operators.

3.4.1 Applying the contract rules

We present three examples to intuitively show how we can use our contracting
rules from Figure 3.4 to deduce contracts from expressions. To save horizontal
space on the page, we write t for the true contract.

const

Γ[x 7→ t1, y 7→ t2](x) = t1

Γ[x 7→ t1, y 7→ t2] ` x : t1

Γ[x 7→ t1] ` λy → x : t2 _ t1
Γ ` λx → λy → x : t1 _ t2 _ t1
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fix

left subtree

Γ[fix 7→ genΓ ((t _ t) _ t)](fix) = (t _ t) _ t

Γ[fix 7→ genΓ ((t _ t) _ t)] ` fix : (t _ t) _ t

Γ ` let fix = λf → f (fix f ) in fix : (t _ t) _ t

left left subtree
Γ[fix 7→ (t _ t) _ t, f 7→ t _ t ] ` f (fix f ) : t

Γ[fix 7→ (t _ t) _ t] ` λf → f (fix f ) : (t _ t) _ t

left subtree

Γ[fix 7→ (t _ t) _ t, f 7→ t _ t ](f) = t _ t

Γ[fix 7→ (t _ t) _ t, f 7→ t _ t ] ` f : t _ t

right subtree

Γ[fix 7→ (t _ t) _ t, f 7→ t _ t ] ` fix f : t

Γ[fix 7→ (t _ t) _ t, f 7→ t _ t ] ` f (fix f ) : t

left left subtree

Γ[fix 7→ (t _ t) _ t, f 7→ t _ t ](fix) = (t _ t) _ t

Γ[fix 7→ (t _ t) _ t, f 7→ t _ t ] ` fix : (t _ t) _ t right right subtree

Γ[fix 7→ (t _ t) _ t, f 7→ t _ t ] ` fix f : t

right subtree

Γ[fix 7→ (t _ t) _ t, f 7→ t _ t ](f) = t _ t

Γ[fix 7→ (t _ t) _ t, f 7→ t _ t ] ` f : t _ t

right right subtree

null

left subtree right subtree

Γ[xs 7→ list1 <@> t2 ] ` case xs of { [ ]→ True; (y :: ys)→ False } : bool3

Γ ` λxs → case xs of { [ ]→ True; (y :: ys)→ False } : list1 <@> t2 _ bool3

Γ[xs 7→ list1 <@> t2](xs) = list1 <@> t2

Γ[xs 7→ list1 <@> t2] ` xs : list1 <@> t2

fresh (1, 2)

Γ[xs 7→ list1 <@> t2] ` [ ] : list1 <@> t2
left subtree

fresh (3)

Γ[xs 7→ list1 <@> t2 ] ` True : bool3

fresh (3)

Γ[xs 7→ list1 <@> t2 , y 7→ t2, ys 7→ list1 <@> t2 ] ` False : bool3
right subtree
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3.4.2 Unification and substitutions

As in Algorithm W, we use Robinson’s unification algorithm to generate sub-
stitutions during inferencing. For completeness, Figure 3.5 shows the grammar
for substitutions, while Figure 3.6 shows the unification rules for contracts.

θ ::= Id -- Identity substitution
| θ1 ◦ θ2 -- Substitution composition
| [c1 7→ c2 ] -- Substitution for c1 with a contract c2

Figure 3.5: Grammar for substitutions

U : (Contract ,Contract)→ Substitution
U (c, c) = Id
U (c1, c2) = [c1 7→ c2 ] (iff c1 /∈ fc(c2) ∧ Jc2K ⊆ Jc1K)
U (c1, c2) = [c2 7→ c1 ] (iff c2 /∈ fc(c1) ∧ Jc1K ⊆ Jc2K)
U (c1 _ c2, c3 _ c4) =

let θ1 = U (c1, c3)
θ2 = U (θ1 c2, θ1 c4)

in θ2 ◦ θ1

U (c1 <@> c2) (c3 <@> c4) =
let θ1 = U (c1, c3)

θ2 = U (θ1 c2, θ1 c4)
in θ2 ◦ θ1

U (c1 <@@> (c2, c3), c4 <@@> (c5, c6)) =
let θ1 = U (c1, c4)

θ2 = U (θ1 c2, θ1 c5)
θ3 = U (θ2 θ1 c3, θ2 θ1 c6)

in θ3 ◦ θ2 ◦ θ1

U ( , ) = ⊥

Figure 3.6: Unification rules for contracts

Unification for two identical contracts and for contract arrows is identical
to the way one would unify types. We add two special cases for functors and
bifunctors. These extra cases are similar to the case for contract arrows. First,
we unify the outer contracts, after which we unify the inner contracts, apply
substitutions, and finally return the composition of the new substitutions. More
interesting are the two cases for unifying two different contracts. These cases
are the same as in Algorithm W, except for one extra condition. In order for c1
to be unified with c2, we require c1 to be a subset of c2, or the other way around.
Using this condition, we can refine contracts upon unification. For example
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U (int, nat)

would generate a substitution

[int 7→ nat ]

since JnatK ⊆ JintK.
We need to take care to generate the correct substitutions when unifying.

In types, unification is straight-forward. Unifying a → b and c → d will cor-
rectly generate substitutions ([a 7→ c] ◦ [b 7→ d ]), because type variables can
be distinguished by name. With contracts, unification is harder, because in-
stead of fresh type variables, we assign concrete contracts. Why this is harder
is illustrated by the following example:

U (true _ true, int _ nat)

Unification in this example would proceed as follows. First, we U (true, int)
giving a substitution [true 7→ int ], which is then applied to both the second
true and nat, replacing the second true with int. Next, we U (int, nat), which
would give us a substitution [int 7→ nat ]. Applying these substitutions to the
left-hand contract would give the following result:

([int 7→ nat ] ◦ [true 7→ int ]) (true _ true) = nat _ nat

In the situation where we see the true _ true contract analogous to a → a
in types, the unification result is actually the desired outcome. However, if we
wanted the true _ true contract to be analogous to a → b in types, we would
want the following contract as a result of the unification:

int _ nat

For this to be possible, we need to be able to distinguish between the same con-
crete contracts, e.g., between the one true contract and another true contract.
This is exactly what Definition 1 allows us to do by adding indices to contracts.
If instead of true _ true, we have true1 _ true2, unification would proceed
differently:

U (true1 _ true2, int3 _ nat4) = [true1 7→ int3 ] ◦ [true2 7→ nat4 ]

and applying the substitution would give us a different answer:

([true1 7→ int3 ] ◦ [true2 7→ nat4 ]) (true1 _ true2) = int3 _ nat4

3.4.3 Algorithm CW
Combining the inference rules and the unification algorithm described in the
previous subsection, we can now define an inferencing algorithm which when
given a λc expression, infers a contract of that expression. Since the algorithm
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is heavily based on Algorithm W, we call it Algorithm CW. We present it in
Figure 3.7, but we omit the case blocks and binary operations, because they do
not add anything new.

Our Algorithm CW differs from Algorithm W in several ways. Firstly,
CW explicitly implements inference for data types and holes. Secondly, it ex-
plicitly implements let as a recursive let, whereas the implementation for let
by Damas and Milner is non-recursive. Their argument for omitting a recursive
let was that adding it is simple and they wanted to keep their language in the
paper minimal. We choose to explicitly model a recursive let, because Haskell’s
let is also recursive and we want the step to implementing contract inference for
Haskell to be as small as possible. Lastly, rather than generating fresh variables,
we generate fresh indexed true contracts, which can be refined by unification.
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CW : Environment → Expression → (Substitution,Contract)
CW Γ x = if x ∈ dom (Γ)

then (Id , inst Γ (x ))
else ⊥

CW Γ (λx → e) = let i be fresh
(θ, c) = CW (Γ [x 7→ truei ]) e

in (θ, θ truei _ c)
CW Γ (e1 e2) = let i be fresh

(θ1, c1 _ c) = CW Γ e1

(θ2, c2) = CW (θ1 Γ) e2

θ3 = U (θ2 c1 _ c, c2 _ truei)
in (θ3 ◦ θ2 ◦ θ1, θ3 truei)

CW Γ (let x = e1 in e2) = let i be fresh
(θ1, c1) = CW (Γ [x 7→ truei ]) e1

θ2 = U (θ1 truei , c1)
(θ3, c) = CW (θ2 ◦ θ1 Γ [x 7→ gen (θ2 ◦ θ1 Γ) θ2 c1 ]) e2

in (θ3 ◦ θ2 ◦ θ1, c)
CW Γ [ ] = let i , j be fresh

in (Id , listi <@> truej )
CW Γ (x :: xs) = let (θ1, c) = CW Γ x

(θ2, listi <@> c) = CW Γ xs
in (θ2 ◦ θ1, listi <@> c)

CW Γ Nothing = let i , j be fresh
in (Id ,maybei <@> truej )

CW Γ (Just x ) = let i be fresh
(θ, c) = CW Γ x

in (θ,maybei <@> c)
CW Γ (x , y) = let i be fresh

(θ1, c1) = CW Γ x
(θ2, c2) = CW Γ y

in (θ2 ◦ θ1, pairi <@@> (c1, c2))
CW Γ (Left x ) = let i , j be fresh

(θ, c) = CW Γ x
in (θ, eitheri <@@> (c, truej ))

CW Γ (Right x ) = let i , j be fresh
(θ, c) = CW Γ x

in (θ, eitheri <@@> (truej , c))
CW Γ ? = let i be fresh

in (Id , truei)

Figure 3.7: Algorithm CW

We show that Algorithm CW is sound with respect to contracting rules in
Figure 3.4 in Proposition 5.
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Proposition 5 (Soundness of inference). If CW Γ e = (θ, c), then Γ ` e : c.

Proof. Proof by induction on e. The full proof is given in Appendix A.1.

Asserting inferred contracts

Algorithm CW infers contracts in our intermediate contract language. Before
these contracts can be asserted, they need to be translated to executable pro-
gram code for a particular contract library. Since our work is based on the
work by Hinze et al. and our contract language is inspired by their notation,
the translation between the contract language and the contract library types is
easy. Contracts for true, false, int, bool, list, either, etc. are translated into an
executable form, maintaining their semantics. The contract arrow, functor and
bifunctor contracts have a direct translation to the contract library. Contract
schemes are instantiated first, before being translated into executable code.

Once inferred contracts have been translated into an executable form, we can
show in Proposition 6 that if Algorithm CW infers a contract for an expression
e, the inferred contract will never fail assertion for that expression. In other
words, applying the assert function to the inferred contract will give the identity
function for expression e.

Proposition 6 (Asserting inferred contract is identity). If CW Γ e = (θ, c),
then assert c e = e.

Proof. Proof by induction on e. The full proof is given in Appendix A.2. Con-
version to an executable contract is left implicit.

Not only is asserting the inferred contract the identity, the inferred contract
is also the most specific contract. I.e., the semantics of the inferred contract is
a subset of any other contract that can be described in the contract system. We
formulate this in Conjecture 1. Intuitively, this seems true, because CW will
infer contracts specific to certain types. E.g., it will infer a functor contract
with a list outer contract for lists. However, this is not the only valid contract
for a list in the contract system. We can also replace the functor contract with
a true contract. While this is less specific, it will still be a valid contract for a
list, since Jlist <@> trueK ⊆ JtrueK. A formal proof for this conjecture is left for
future work.

Conjecture 1 (An inferred contract is the most specific). If CW Γ e = (θ, c)
and Γ ` e : c, then for all Γ ` e : c′, JcK ⊆ Jc′K.

3.5 Dependent contracts

So far, we have only dealt with contracts in the form of

c1 _ c2
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However, such contracts cannot capture all properties of a function. Contracts
that capture the properties of a function completely commonly rely on a func-
tion’s input, i.e., they are dependent contracts. Consider again the sort function.
We can define a contract

(list <@> true) _ (ord <@> true)

that can correctly identify problems when sort , or one of the functions it uses,
does not return an ordered list. However, if we implement sort as

sort xs = [ ]

it trivially satisfies its contract, since an empty list is always sorted, and the
contract will never fail. Still, it is clear that this function is not a sorting
function, as it just ignores the input.

This problem is due to the fact that we have not made our contract spe-
cific enough. Sorting a list does not only mean delivering a sorted list, it also
means that the resulting list is a permutation of the input list. In other words,
the contract for the function’s result depends on the function’s input. We can
capture the correct contract for sort in a dependent contract

(xs : list <@> true)
d7−→ (sorted xs)

where sorted is a contract that checks whether the output is sorted and is a
permutation of the input list xs. Recapping from Section 2.2.1, the dependent

contract arrow (
d7−→) is defined as

(
d7−→) = Function

where Function is a constructor from the Contract GADT, which allows the
function contract’s argument to be used in its result. It is the same constructor
used for the non-dependent contract arrows (_), with the only difference that
(_) applies const to the second argument. One might be tempted to simply
replace the non-dependent contract arrow with a dependent contract arrow in
the inferencing algorithm. As we will see shortly, this is not enough to success-
fully infer dependent contracts. For example, suppose sort was implemented in
terms of foldr :

foldr : (a → b → b)→ b → [a ]→ b

Now imagine that the dependent contract for sort was naively unified with the
contract of foldr . Doing so would produce the following contract for foldr , where
y , ys and b are freshly generated variable names:

((y : true)
d7−→ (ys : sorted xs)

d7−→ (sorted xs))
d7−→ (b : sorted xs)

d7−→ (xs : list <@> true)
d7−→ (sorted xs)
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Several problems plague this contract. Firstly, xs is bound only in the second-
last argument, but it is already referred to before it comes into scope. Secondly,
the contract for ys also requires a list xs, but since there simply is no list
argument defined before b, this is impossible. Lastly, the contract for the result
of the function argument should be (sorted (y :: ys)), instead of (sorted xs),
because sort ’s insert function produces a sorted list by inserting the element y
into the list ys.

We can solve the first and second problem by only assigning contracts to
function results. However, it is unclear how to solve the last problem. The
following contract is the desired dependent contract for foldr in the context of
the sort function:

((y : true1)
d7−→ (ys : true2)

d7−→ (sorted (y :: ys)))
d7−→ (b : true2)

d7−→ (xs : true3)
d7−→ (sorted xs)

If at all possible, inferring this contract from code is a hard problem which we
will not attempt to solve in this thesis. For this reason, we do not attempt to
infer dependent contracts at all.

3.5.1 Eliminating dependent contracts

Working around the problem of inferring dependent contracts, rather than solv-
ing it, is also possible in certain cases. Instead of trying to infer dependent
contracts, we get rid of them altogether, eliminating the problems described
above. We do so by inlining a QuickCheck counter-example in a function’s con-
tract. The intuition behind this approach is that since QuickCheck has found a
counter-example, contract assertion fails for the same input. For this to work,
it is essential that the QuickCheck properties and the contracts are exactly the
same.

To understand why using a QuickCheck counter-example allows us to elim-
inate dependent contracts, we need to understand how QuickCheck produces a
counter-example. When starting a QuickCheck test, QuickCheck will generate
random values and apply the property under test to them. When QuickCheck
has generated a value that violates the property under test, it will try to shrink
it, i.e., it will try to make the counter-example structurally as small as possible,
ensuring that it keeps violating the property under test. It does this, because
the values it finds are random values, not necessarily minimal counter-examples.
For example, suppose QuickCheck has randomly generated the list

[0, 1, 2]

and has determined that this value causes the property under test to fail. Before
returning this value to the user, QuickCheck will try to systematically reduce
the number of elements in the list, until it finds the smallest list that causes the
property to fail. In this specific example, it will first try all of the values from
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the following list1:

[[ ], [1, 2], [0, 2], [0, 1], [0, 0, 2], [0, 1, 0], [0, 1, 1]]

It will then try to shrink all of these lists. For example, when it tries to shrink
the list [1, 2], it will generate the list

[[ ], [2], [1], [0, 2], [1, 0], [1, 1]]

From which each element is tested again. Eventually QuickCheck will return one
of the smallest counter-examples it can find. Indeed, in QuickCheck’s current
implementation there is no guarantee that it is a minimal counter-example. We
will discuss this problem in Section 4.1. In the mean time, we will consider the
counter-example returned by QuickCheck to be minimal in order to demonstrate
how we work around dependent contracts.

When we have a minimal counter-example, e.g. [0, 1], we can assume that
the property under test succeeds for the smaller list [1]. We can use this knowl-
edge when embedding contract assertions in our program. Suppose we have a
function

f : [Int ]→ [Int ]
f xs = assert c g xs

where g [ ] = [ ]
g (y :: ys) = (y + 1 :: assert c g ys)

c = (xs ′ : true)
d7−→ (silly xs ′)

where silly is some contract that fails for xs ′ = [0, 1] (and possibly larger
lists), but not for xs ′ = [1] and xs ′ = [ ]. Now we want to eliminate the
dependent contract. Since QuickCheck gives us [0, 1] as counter-example for
this function, we inline it in the place of xs ′ in the silly contract, and replace the
dependent contract arrow with a plain contract arrow, resulting in the following
code:

f : [Int ]→ [Int ]
f xs = assert c g xs

where g [ ] = [ ]
g (y :: ys) = (y + 1 :: g ys)
c = true _ (silly [0, 1])

Note that we do not assert the contract in recursive applications of g . Since
we know that QuickCheck’s counter-example is minimal, we do not have to,
because having a minimal counter-example implies that the contract will suc-
ceed for smaller lists. Now when we apply f to [0, 1], we can expect the silly
contract to fail and blame the right location. While this particular example is

1The list is generated by QuickCheck’s shrink function. It does not necessarily contain all
permutations of the original list
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rather contrived, experimentation with the sort function has indicated that this
approach works for bigger examples as well.

So far, we only have initial experimental results for eliminating dependent
contracts. Section 4.1 will explore some of the problems that affect this idea.
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Chapter 4

Discussion and future work

We have seen how contracts can be inferred from functional programs. We
think that the ideas presented in this thesis can be extended to a full-fledged
programming language, such as Haskell, and lifted outside the context of the
Ask-Elle tutor. Still, there are several aspects of contract inferencing we have not
fully explored. In this section we will look at aspects of contract inferencing that
we have not fully explored and the shortcomings of the current implementation
of our system.

4.1 Exploring dependent contracts

Section 3.5 discussed dependent contracts, the problems with dependent con-
tracts and contract inference, and how we can work around the need for them
using a QuickCheck counter-example. While the results in that section look
promising, only few experiments have been performed. Further experimenta-
tion will be required to verify that the idea presented in that section is valid in
general, and that it can be applied to most or all contracts and programs.

One of the problems identified in Section 3.5 was that QuickCheck currently
does not necessarily give a minimal counter-example. This is due to the current
implementation of QuickCheck’s Arbitrary class instances, the type class which
generates the random values. This particular explanation was given by Nick
Smallbone on the QuickCheck mailing list. Suppose we have some function f
and a property p for f . Now suppose that p fails for the list [0, 0, 0], succeeds
for [0, 0], but fails again for [0]. QuickCheck will always shrink [0, 0, 0] to
[0, 0] first, before shrinking it to [0]. In the example, QuickCheck will never
try shrinking to [0], because [0, 0] has already succeeded. To make this more
concrete, f and p could be implemented as follows:

f [ ] = False
f [ , , ] = False
f = True
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p xs = f xs

Outside the context of our work, QuickCheck’s current shrinking behaviour is
desired, because it reduces the number of shrink operations, speeding up testing.
However, since we are interested in minimal examples, we want QuickCheck to
also shrink [0, 0], so we can find the even smaller counter-example [0]. Different
shrinking behaviour can be obtained by re-implementing the instances for the
Arbitrary .

Another problem with relying on QuickCheck for shrinking a counter-example
is that it is not always clear what it means for a counter-example to be the
smallest. For lists, it’s clear: the empty list is the smallest lists one can have.
If natural numbers in Haskell were defined as

data Nat = Succ Nat | Zero

then it would be clear that Zero is the smallest natural number. However,
Haskell only has Int and Integer to represent whole numbers. QuickCheck
will shrink integers towards 0. For example, suppose it finds (−7) as counter-
example, it will produce the following shrink list:

[7, 0,−4,−6]

while another perfectly reasonable shrink list would have been

[−11,−13,−17,−19]

There is no guarantee that either of these lists contain a “smallest” number
such that the function under test needs to make a minimum number of recursive
calls before it terminates. This is illustrated by the following function f , which
generates an infinite list of integers:

f : Int → [Int ]
f n = n :: f (n + 1)

Even though Int has a definition for maxBound , simply increasing the number
of n will eventually cause the number’s sign bit to flip, appending the minBound
value for Int to the list, after which the function will continue until it reaches
the maxBound for Int again. f will never terminate. From this we can con-
clude that it is hard to define what it means for a number to be the smallest,
and our approach for eliminating dependent contracts in its current form will
probably not work for Int . A similar argument holds for Integer , because it is
not bounded. How we can eliminate dependent contracts when integers (and
possibly other types) are used remains an open question.

4.2 Embedding contract inference in Ask-Elle

Our original motivation for this work was the Ask-Elle Haskell tutor. By com-
bining QuickCheck and contract inferencing, we wanted to locate where a pro-
gram failed its contracts when the Ask-Elle strategies could no longer do so.
Integrating contract inference into Ask-Elle still remains to be done.
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In the context of the tutor, we want the student to focus only on learning.
The student should not be required to do any extra work to make use of contract
inferencing. As such, we want the tutor to automatically infer contracts and
augment the student’s program with the inferred contracts, so they may be
asserted by applying the student’s function to a QuickCheck counter-example.
Initial experimentation has shown that it is possible to do so, although it remains
to be seen if it is possible to define transformations that achieve this in general.

As we saw in Section 3.5, we require QuickCheck counter-examples in order
to eliminate dependent contracts. However, out of the box, QuickCheck can only
display the counter example it finds, and not return it for further use. Koen
Claessen, one of the original authors of QuickCheck, proposed a workaround on
the QuickCheck mailing list. The workaround involves wrapping QuickCheck’s
quickCheck function–the function that starts testing the specified property–
by a custom function that uses an IORef that stores the counter-examples
QuickCheck produces while testing.

quickCheckArg : (Arbitrary a,Testable prop)⇒ (a → prop)→ IO (Maybe a)
quickCheckArg p = do

ref ← newIORef Nothing
quickCheck (λx → whenFail (writeIORef ref (Just x )) (p x ))
readIORef ref

We can then read the counter-example values from the Maybe value.
Lastly, when integrating contract inference with the tutor, we will need to

be able to infer more interesting contracts than those that never fail assertion.
Teachers need to be able to specify a contract for the exercise, and the contract
inferencing algorithm needs to be able to use this specific contract to infer con-
tracts for the rest of the program. In essence, this is not very different from the
way an explicit type annotation is persisted through a program in type inference.
Our implementation already largely supports using explicit contracts during in-
ference, although we still need to finish the implementation and integrate this
with the tutor.

4.3 Constant expression contracts

Contracts inferred using Algorithm CW are not very useful if they always suc-
ceed. However, in some cases, we may be able to infer more specific contracts
from the code, making it more likely that we will find a situation where an
assertion fails. Consider the following (contrived) example:

silly : a → Int
silly x = 1

The resulting tuple will always have an integer 1 for its left element. A perfectly
valid and reasonable contract for silly would therefore be:

true _ equalsOne
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Where equalsOne is an inferred contract that only succeeds for the constant
value 1. We can easily infer this contract from the code. Such contracts could
be called constant expression contracts, as they check for constant values. Un-
fortunately, naively generating these constant expression contracts will quickly
lead to problematic contracts. Consider, for example, a constant expression
contract for silly2 :

silly2 xs = let f [ ] = [ ]
f (y :: ys) = (if y≡ 1 then y + 1 else 0) :: f (map (+1) ys)

in f (map (λy → 1) xs)

Using constant expression inferencing, we can infer the contract

(true _ equalsOne) _ (list1 <@> true) _ (list2 <@> equalsOne)

for the first application of map in the in branch of the let block, which will be
unified with the contract for f . If we would infer a contract for f alone, it would
get contract

(list1 <@> int2) _ (list3 <@> int2)

due to its type

f : (Eq a,Num a)⇒ [a ]→ [a ]

After unification with map’s contract, f gets the following contract:

(list1 <@> equalsOne) _ (list3 <@> equalsOne)

This contract is clearly not correct, because the list f produces never contains
a 1 as element. Inferring constant expression contracts in this form requires
program analysis to ensure that values remain constant. However, this is outside
the scope of this thesis.

One possible solution to this problem would be to not allow constant ex-
pression contracts to be unified. Instead, upon unification, a superset contract
could be used in the substitution. For example, when unifying

list1 <@> equalsOne

and

list1 <@> int2

we could opt to maintain the int2 contract, rather that generating a [int2 7→ equalsOne ]
substitution. Clearly, this problem is under-explored and more work is required
to before useful constant expression contracts can be inferred.
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Appendix A

Proofs

A.1 Soundness of Algorithm CW
We want to show that if CW Γ e = (θ, c), then Γ ` e : c. For variables, appli-
cation, abstraction, and let bindings we refer to Damas and Milner’s original
proof, as contract inference and type inference are the same for these rules.
We also forego explicitly proving soundness for [ ], Nothing , and ?, since these
proofs are trivial. We also omit the proof for case blocks and binary operations,
since they are not represented in presentation of CW. Lastly, we also omit the
proof for Right , as it is very similar to the proof for Left . For the remaining
expressions, we proceed by induction on e. We assume fresh contract variables
to be tautologies.

Case (x :: xs)

To show: if CW Γ (x :: xs) = (θ2 ◦ θ1, list <@> c), then Γ ` (x :: xs) : list <@> c

IH1 If CW Γ x = (θ1, c), then Γ ` x : c

IH2 If CW Γ xs = (θ2, list <@> c), then Γ ` xs : list <@> c

Proof:

Γ ` (x :: xs) : list <@> c
⇐ { Rule C-Cons }

Γ ` x : c,Γ ` xs : list <@> c
⇐ { Case x , apply IH1 }
CW Γ x = (θ1, c)

⇐ { Case xs, apply IH2 }
CW Γ xs = (θ2, list <@> c)

from which follows that if CW Γ (x :: xs) = (θ2 ◦ θ1, list <@> c), then Γ `
(x :: xs) : list <@> c.
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Case Just x

To show: if CW Γ (Just x ) = (θ,maybe <@> c), then Γ ` Just x :maybe <@> c.

IH If CW Γ x = (θ, c), then Γ ` x : c

Proof:

Γ ` Just x :maybe <@> c
⇐ { Rule C-Just }

Γ ` x : c
⇐ { Apply IH }
CW Γ x = (θ, c)

from which follows that if CW Γ (Just x ) = (θ,maybe <@> c), then Γ `
Just x :maybe <@> c.

Case (x , y)

To show: if CW Γ (x , y) = (θ2 ◦ θ1, pair <@@> (c1, c2)), then Γ ` (x , y) : pair <
@@> (c1, c2).

IH1 If CW Γ x = (θ1, c1), then Γ ` x : c1

IH2 If CW Γ y = (θ2, c2), then Γ ` y : c2

Proof:

Γ ` (x , y) : pair <@@> (c1, c2)
⇐ { Rule C-Pair }

Γ ` x : c1,Γ ` y : c2
⇐ { Case x , apply IH1 }
CW Γ x = (θ1, c1)

⇐ { Case y , apply IH2 }
CW Γ y = (θ2, c2)

from which follows that if CW Γ (x , y) = (θ2 ◦ θ1, pair <@@> (c1, c2)), then
Γ ` (x , y) : pair <@@> (c1, c2).

Case Left x

To show: if CW Γ (Left x ) = (θ, either <@@> (c, truei)), then Γ ` Left x :
either <@@> (c, truei).

IH If CW Γ x = (θ, c), then Γ ` x : c
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Proof:

Γ ` Left x : either <@@> (c, truei)
⇐ { Rule C-Left }

Γ ` x : c, fresh (i)
⇐ { Apply IH }
CW Γ x = (θ, c)

from which follows that if CW Γ (Left x ) = (θ, either <@@> (c, truei)), then
Γ ` Left x : either <@@> (c, truei).

A.2 Asserting inferred contract is identity

We want to show that if CW Γ e = (θ, c), then assert c e = e. We forego
providing explicit proofs for variables, [ ], Nothing , and ?, since these proofs are
trivial. We also omit the proof for case blocks and binary operations, since they
are not represented in presentation of CW. Lastly, we also omit the proof for
Right , as it is very similar to the proof for Left . For the remaining expressions,
we proceed by induction on e.

For lambda abstraction and function application we failed to give a full proof,
due to the important role unification and substitutions play in these parts of
the algorithm. It was not clear how to incorporate these in the proofs. Instead
of completing the proof, we opted to give an informal reasoning as to why we
think the proof can be completed.

Case λx → e

If CW Γ (λx → e) = (θ, θ truei _ c), then assert (θ truei _ c) (λx → e) =
(λx → e)

IH If CW (Γ [x 7→ truei ]) e = (θ, c2), then assert c2 e = e

Proof:

assert ((θ truei) _ c2) (λx → e)
≡ { Definition of _ }

assert (Function (θ truei) (const c2)) (λx → e)
≡ { Definition of assert }
λx ′ → (assert (const c2 x ′) ◦λx → e) x ′ ◦ assert (θ truei)

≡ { Definition of const }
λx ′ → (assert c2 ◦λx → e) x ′ ◦ assert (θ truei)

≡ { Apply x ′ }
λx ′ → (assert c2 (e [x / x ′ ])) ◦ assert (θ truei)

≡ { Missing steps }
λx ′ → assert c2 (e [x / x ′ ])
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≡ { Apply IH }
λx ′ → e [x / x ′ ]

Part of this proof is missing, because it could not be proved in time. Instead
of a formal proof, we give an informal reasoning for why we think it is possible to
give a proof for this case. We can reason that a valid contract will be inferred by
CW for x somewhere in expression e. A substitution will be returned which will
substitute the inferred contract for the fresh contract truei . By this Proposition,
we then know that asserting this inferred contract yields the identity of the value
for which we assert this contract. This allows us to eliminate the right-most
assertion:

λx ′ → (assert c2 (e [x / x ′ ])) ◦ assert (θ truei)
≡ { assert is identity }
λx ′ → assert c2 (e [x / x ′ ])

With all occurrences of x replaced by x ′

λx ′ → assert c2 (e [x / x ′ ])

is equivalent to

λx → assert c2 e

up to α-conversion, so we can apply our induction hypothesis, completing our
proof.

Case e1 e2

If CW Γ (e1 e2) = (θ3 ◦ θ2 ◦ θ1, θ3 truei), then assert (θ3 truei) (e1 e2) =
(e1 e2)

IH1 If CW Γ e1 = (θ1, c1 _ c), then assert (c1 _ c) e1 = e1

IH2 If CW (θ1 Γ) e2 = (θ2, c2), then assert c2 e2 = e2

Proof:

assert (θ3 truei) (e1 e2)
≡ { Definition of θ3 }

assert (U (θ2 c1 _ c, c2 _ truei) truei) (e1 e2)
≡ { Definition of U }

assert ((U (θ2 c,U (θ2 c1, c2) truei) ◦ U (θ2 c1, c2)) truei) (e1 e2)
≡ { Missing steps }
...

≡ { Case e1 }
assert (c1 _ c) e1
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≡ { Apply IH1 }
e1

≡ { Case e2 }
assert c2 e2

≡ { Apply IH2 }
e2

Again, part of the proof is missing and is left as future work. We assume
that this proof can also be given, because e1 will be some function and e2 some
other expression. If we finish the proof for lambda abstraction, we can reason
that we can also complete this proof for e1. When we then also assume that
this case can be proved, we can also reason that the case for e2 can be proved.

Case let x = e1 in e2

If CW Γ (let x = e1 in e2) = (θ3 ◦ θ2 ◦ θ1, c), then assert c (let x = e1 in e2) =
(let x = e1 in e2)

IH1 If CW (Γ [x 7→ truei ]) e1 = (θ1, c1), then assert c1 e1 = e1

IH2 If CW (θ2 ◦ θ1 Γ [x 7→ gen (θ2 ◦ θ1 Γ) θ2 c1 ]) e2 = (θ3, c), then
assert c e2 = e2

Proof:

True by IH2, from which follows that if CW Γ (let x = e1 in e2) = (θ3 ◦ θ2 ◦ θ1, c),
then assert c (let x = e1 in e2) = (let x = e1 in e2)

Case (x :: xs)

To show: if CW Γ (x :: xs) = (θ2 ◦ θ1, listi <@> c), then assert (listi <@>
c) (x :: xs) = (x :: xs)

IH1 If CW Γ x = (θ1, c), then assert c x = x

IH2 If CW Γ xs = (θ2, listi <@> c), then assert (listi <@> c) xs = xs

Proof:

assert (list <@> c) (x :: xs) = (x :: xs)
≡ { Definition of <@> }

assert (list & Functor c) (x :: xs) = (x :: xs)
≡ { Definition of & }

(assert (Functor c) ◦ assert list) (x :: xs)
≡ { Definition of assert and list }

assert (Functor c) (x :: xs)
≡ { Definition of assert }
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fmap (assert c) (x :: xs)
≡ { Definition of fmap }

(assert c x :: fmap (assert c) xs)
≡ { Apply IH1 }

(x :: fmap (assert c) xs)
≡ { Definition of <@>, &, assert and list in IH2, then apply IH2 }

(x :: xs)

from which follows that if CW Γ (x :: xs) = (θ2 ◦ θ1, listi <@> c), then
assert (listi <@> c) (x :: xs) = (x :: xs)

Case Just x

To show: if CW Γ (Just x ) = (θ,maybe <@> c), then assert (maybe <@>
c) (Just x ) = (Just x ).

IH If CW Γ x = (θ, c), then assert c x = x

Proof:

assert (maybe <@> c) (Just x )
≡ { Definition of <@> }

assert (maybe & Functor c) (Just x )
≡ { Definition of & }

(assert (Functor c) ◦ assert maybe) (Just x )
≡ { Definition of assert and maybe }

assert (Functor c) (Just x )
≡ { Definition of assert }

fmap (assert c) (Just x )
≡ { Definition of fmap }

Just (assert c x )
≡ { Apply IH }

Just x

From which follows that if CW Γ (Just x ) = (θ,maybe <@> c), then
assert (maybe <@> c) (Just x ) = (Just x ).

Case (x , y)

To show: if CW Γ (x , y) = (θ2 ◦ θ1, pair <@@> (c1, c2)), then assert (pair <@@>
(c1, c2)) (x , y) = (x , y).

IH1 If CW Γ x = (θ1, c1), then assert c1 x = x

IH2 If CW Γ y = (θ2, c2), then assert c2 y = y
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Proof:

assert (pair <@@> (c1, c2)) (x , y)
≡ { Definition of <@@> }

assert (pair & Bifunctor c1 c2) (x , y)
≡ { Definition of & }

(assert (Bifunctor c1 c2) ◦ assert pair) (x , y)
≡ { Definition of assert and pair }

assert (Bifunctor c1 c2) (x , y)
≡ { Definition of assert }

bimap (assert c1) (assert c2) (x , y)
≡ { Definition of bimap }

(assert c1 x , assert c2 y)
≡ { Apply IH1, IH2 }

(x , y)

from which follows that if CW Γ (x , y) = (θ2 ◦ θ1, pair <@@> (c1, c2)), then
assert (pair <@@> (c1, c2)) (x , y) = (x , y).

Case Left x

To show: if CW Γ (Left x ) = (θ, either <@@> (c, true)), then assert (either <
@@> (c, true)) (Left x ) = (Left x ).

IH If CW Γ x = (θ, c), then assert c x = x

Proof:

assert (either <@@> (c, true)) (Left x )
≡ { Definition of <@@> }

assert (either & Bifunctor c true) (Left x )
≡ { Definition of & }

(assert (Bifunctor c true) ◦ assert either) (Left x )
≡ { Definition of assert and either }

assert (Bifunctor c true) (Left x )
≡ { Definition of assert }

bimap (assert c) (assert true) (Left x )
≡ { Definition of bimap }

Left (assert c x )
≡ { Apply IH }

Left x

from which follow that if CW Γ (Left x ) = (θ, either <@@> (c, true)), then
assert (either <@@> (c, true)) (Left x ) = (Left x ).
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