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Summary 
As biodiversity and biodiversity hotspots worldwide are threatened by the effects of land use, such as 

habitat loss and habitat fragmentation, it is important to understand the ongoing processes and their 

effect on the environment. It is especially important to gain a better understanding of deforestation 

and forest fragmentation patterns in biodiversity hotspots, such as the Afromontane mountains in 

Southwestern Ethiopia, and how this might impact large mammals. This research aimed to identify 

deforestation and forest fragmentation in Southwestern Ethiopia from 1973-2019 and what 

recommendations can be given in the context of large mammal conservation. This was done creating  

forest cover maps and analysing those for deforestation and forest fragmentation patterns. Results 

showed that forest cover has been decreasing from 1973 to 2019, but during the last decade (2010-

2019), the forest cover seemed to increase again. Deforestation was found mainly along the forest 

edges and among smaller forest patches between agricultural fields. Only the core area index showed 

to have a significant decreasing trend, indicating that the forest interior is decreasing. After the 

establishment of the Yayu Biosphere Reserve, forest cover increased and the core area remained 

similar. Reforestation was found at the forest edges while deforestation occurred mainly among the 

small forest patches. It is important to improve landscape connectivity and to halt deforestation as 

there is no certainty that recent reforestation efforts will have an immediate positive effect on 

biodiversity. This can be done by the implementation of land sharing and sparing zones in the area and 

the reconnection of forest patches by reforesting disconnected or nearly disconnected large forest 

patches. Moreover, an effort needs to be made to protect the small forest patches in the agricultural 

landscape as these patches are important for landscape connectivity and ecosystem services. This 

research identified patterns of deforestation and forest fragmentation from the 1970s to the present 

in the Afromontane mountains in Ethiopia, one of the world’s biodiversity hotspots. Moreover, it adds 

to the empirical evidence to the contribution of biosphere reserves in the contribution to nature 

conservation. In addition, the scripts that were created in this study could be reused for similar 

research in the future, reducing the time needed to create forest cover maps and their analysis. 

 

Keywords: Deforestation, forest fragmentation, landscape connectivity, Afromontane mountains, 

biosphere reserve  



4 
 

Inhoud 
Summary ................................................................................................................................................. 2 

Don’t forget an acknowledgement for Patricia in the end .............. Fout! Bladwijzer niet gedefinieerd. 

Introduction ............................................................................................................................................. 5 

Theory ...................................................................................................................................................... 6 

The impact of land use change on forest cover .................................................................................. 6 

Opportunities for landscape connectivity ........................................................................................... 7 

Remote sensing ................................................................................................................................... 8 

Biosphere Reserves ............................................................................................................................. 8 

Conceptual model ............................................................................................................................... 9 

Research framework ......................................................................................................................... 10 

Methods ................................................................................................................................................ 11 

Research area .................................................................................................................................... 11 

Data preparation ............................................................................................................................... 12 

Analysis of forest cover change ......................................................................................................... 13 

Analysis of forest fragmentation ....................................................................................................... 13 

Comparison of Yayu and area outside reserve ................................................................................. 13 

Results ................................................................................................................................................... 14 

Deforestation .................................................................................................................................... 14 

Differences between the Yayu Biosphere Reserve and the area outside the reserve ...................... 19 

Discussion .............................................................................................................................................. 20 

Decreasing forest cover ..................................................................................................................... 20 

Forest fragmentation in Southwestern Ethiopia ............................................................................... 21 

Yayu ................................................................................................................................................... 21 

Recommendations ............................................................................................................................ 22 

Limitations ......................................................................................................................................... 23 

Conclusion ............................................................................................................................................. 24 

References ............................................................................................................................................. 25 

Appendix 1: Code unsupervised classification using GEE (1984-2019) ................................................. 30 

Appendix 2: Code unsupervised classification (1973) ........................................................................... 35 

Appendix 3: Validation forest cover maps ............................................................................................ 41 

Appendix 4: R script ............................................................................................................................... 44 

 

  



5 
 

Introduction 
During the last decades, global biodiversity and biodiversity hotspots have been increasingly under 

threat from anthropogenic pressures (Habel et al., 2019; IPBES, 2019). Biodiversity is crucial to 

humanity as it provides not fully replaceable or irreplaceable services (i.e. ecosystem services), 

including feed, energy, medicine, materials, and culture (IPBES, 2019). Biodiversity hotspots cover only 

2.5% of the land’s surface but carry about half of known terrestrial life (Myers et al., 2000; Noss et al., 

2015; Stork & Habel, 2014). Most of these biodiversity hotspots are located in developing countries 

that face problems such as growing populations, poverty, food shortage, and unstable governments 

(Veech, 2003; Williams, 2011). These problems also are a big threat to biodiversity as they are drivers 

for land use change, which is among the main drivers of deforestation and biodiversity loss (IPBES, 

2019; Habel et al., 2019). Therefore, we need a better understanding of the effects of land use change 

on biodiversity to be able to halt biodiversity loss, especially in important regions such as biodiversity 

hotspots. 

Land use change is, besides overexploitation, the biggest threat to biodiversity (IPBES, 2019). The 

expansion of agriculture, urban areas, and infrastructure have come mostly at the expanse of wetlands, 

grasslands, and tropical forests. Deforestation in tropical areas is also driven by wood fuel and timber 

extraction, global demand for biofuel, and deforestation displacement (Busch & Ferretti-Gallon, 2017). 

Deforestation not only leads to a decrease in forest surface but also leads to forest fragmentation (Dixo 

et al., 2009). The latter is the process of large forest patches breaking up into smaller forest patches 

(Laurence et al., 2011), affecting the connectivity of the landscape (i.e. the extent to which the 

landscape is connected) (Fischer & Lindenmayer, 2007) and the degree to which species can travel 

through the landscape (Scolozzi & Geneletti, 2012). This is a threat to wildlife, especially large 

mammals, as tropical forests are able to carry a decreasing size of populations which increases the 

risks of extinction (Schnell et al., 2013). Differently shaped forest patches could have a different effect 

on different animals (Slattery & Fenner, 2021). Patches that have become more complex with longer 

edges and a smaller core area seem to affect dispersive species or specialist to core habitat species, 

while patches that are simple and create disjoined core areas affect slow sedentary animals (Slattery 

& Fenner, 2021). In addition, past deforestation and fragmentation can have a delayed effect on 

species and could increase the risk of extinction (Kuusari et al., 2009). For nature conservation, it is 

crucial that the patterns of deforestation and reforestation are well understood (Slattery & Fenner, 

2021).   

Remote sensing enables high-resolution quantification of deforestation and forest fragmentation 

(Taubert et al., 2018). With remote sensing, large areas can be monitored over a long period of time 

(Khorram et al., 2012). This is especially useful for studying areas in tropical countries as there is often 

a lack of data available in those countries. The ability to study land cover change in the past could 

provide useful insights into how deforestation and fragmentation have developed over time and how 

this affects wildlife in the area (Zemanova et al., 2017). In addition, remote sensing creates the ability 

to test the effectiveness of nature reserves considering land cover change (Liu et al., 2001). More 

research on deforestation, forest fragmentation, and nature reserve effectiveness using remote 

sensing is necessary for improving the effectiveness of nature conservation (Zemanova et al., 2017).  

The effectiveness in the conservation of forest cover of the biosphere reserves in the Afromontane 

mountains in Ethiopia remains unknown. Ethiopia is among 25 countries with the highest biodiversity, 

in which the Eastern Afromontane biodiversity hotspot is one of the two hotspots found in the country 

(Gole et al., 2019). Additionally, the inhabitants are heavily dependent on biodiversity for their 

livelihood (Gole et al., 2019). Yet, deforestation in the Afromontane mountains is an ongoing process 

since 1973 (Hylander et al., 2013) and even before (Ango et al., 2020). Logging and agricultural 
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expansion are among the biggest drivers (Hylander et al., 2013), with underlying drivers including 

national policies, institutional instability, agricultural stagnation, poverty, and demographic pressure 

(Ango et al., 2020). Different deforestation rates have been found in the Goma-Gera and Bonga regions 

in the Afromontane mountains for different altitudes; higher altitudes (2300-2500m) have experienced 

more deforestation than lower altitudes (1800m) (Hylander et al., 2013). This is because coffee is 

growing in lower altitudes in forested areas, contributing to the conservation of forests in these areas 

(Hylander et al., 2013). Even in coffee growing areas, where the forests are managed, biodiversity has 

been decreasing as the forest structure has been altered (i.e. the removal of lianas, climbing vines, 

shrubs, and small trees) (Hylander et al., 2013). To protect the biodiversity in the area, biosphere 

reserves have been implemented, two, Yayu and Kafa,  in 2010 and Sheka in 2012 (UNESCO, 2019). 

The effectiveness in protecting the forest cover in the reserves remains unknown as no research has 

been done on this matter yet. Similarly, no research has been done yet on how deforestation may lead 

to fragmentation in the area. 

In continuation of current deforestation practices, it is expected the hotspot Afromontane Mountains, 

except for the protected nature areas, will have disappeared in 2050 (Habel et al., 2019). This would 

have a tremendous impact on biodiversity in the area (e.g. through the loss of forest or fragmentation) 

and global biodiversity (IPBES, 2019). More specifically, this could have a big impact on red-listed 

species, such as the leopard (Rodrigues et al., n.d.). When only nature reserves remain, “islands” are 

created (MacArthur & Wilson, 1967) and connectivity within the landscape is lost (Fischer & 

Lindenmayer, 2007). To prevent this, remote sensing could be used to monitor deforestation and 

forest fragmentation in the area (Taubert et al., 2018). This could be used to identify areas that need 

protection to keep forest patches connected. As of yet, no such research has been performed yet. 

Therefore, this research aims to assess what conservation measures can be proposed when considering 

landscape connectivity for large mammals in Southwestern Ethiopia. To do this, the following research 

questions need to be answered: 

• How did forest cover change during 1973-2019? 

• How did forest fragmentation occur in the study area during 1973-2019 

• What effect did the establishment of the Yayu Biosphere Reserve have on the deforestation 

and forest fragmentation in the reserve? 

Theory 

The impact of land use change on forest cover 
Land use change is the practice of converting one land use type to another, which also alters the land 

cover (i.e. the biophysical material of the Earth’s surface including grass, croplands, and forests) 

(Lambin & Geist, 2010). The alteration of land cover could cause significant environmental effects at 

local, regional and global scales, such as biodiversity loss, soil quality loss, and alteration of local and 

global climate (Lambin & Geist, 2010;). Yet, some of these effects may be delayed. For example, a 

delayed effect in biodiversity loss may occur after habitat loss due to deforestation (Kuusaari et al., 

2009). This effect is also known as extinction debt (Kuusaari et al., 2009). Some cases have been 

reported in which extinction debts are paid 100 (Vellend et al., 2006) to 500 years after habitat loss 

(Chen & Peng, 2017). It cannot be predicted whether and at what time-delayed effects will occur 

(Kuusaari et al., 2009), therefore, it is important to monitor the deforestation processes. Research 

shows that monitoring the deforestation processes in tropical forests may increase the effectiveness 

of species conservation (Zemanova et al., 2017) and that studying its effects may prevent large 

mammals from going extinct (Semper-Pascual et al., 2019). 
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Deforestation, which is the practice of converting forests to another land cover, is one of the biggest 

drivers of biodiversity loss in tropical forests (Ehrlich & Pringle, 2008; IPBES, 2019). It has been widely 

documented that deforestation leads to a deterioration of forest quality, forest fragmentation, and 

habitat loss (e.g. Dixo et al., 2009; Scolozzi & Geneletti, 2012). Interacting threats that result from 

deforestation, such as habitat loss, habitat degradation, habitat isolation, changes in biology, and 

interactions of species, may result in the decline of individual species (Fischer & Lindenmayer, 2007). 

The biggest driver of deforestation in Africa is agricultural expansion (commercial & subsistence) 

(Kissinger et al., 2012). Other drivers in Africa include fuelwood collection and charcoal production, 

mining, infrastructure, and urban expansion (Kissinger et al., 2012). In addition to this, forests are more 

likely to be cleared in locations where economic returns are high (Busch & Ferretti-Gallon, 2017). 

Globally, timber activity, local forest management, and demography are not consistently associated 

with higher or lower deforestation rates (Busch & Ferretti-Gallon, 2017). Different drivers of 

deforestation may also lead to different patterns of deforestation (Slattery & Fenner, 2021). 

Habitat fragmentation is the process that deforestation breaks up continued patches of habitat into 

smaller patches (Broadbent et al., 2008). Deforestation along infrastructure and built-up is often a 

driver for this process (Broadbent et al., 2008). Consequences of habitat fragmentation can be 

understood by (1) looking at how deforestation patterns affect individual species and by (2) looking at 

landscape patterns and how these may affect a multitude of species (Fischer & Lindenmayer, 2007). 

When looking at landscape patterns, subjects to focus on include the amount and condition of native 

vegetation, and connectivity (Fischer & Lindenmayer, 2007). It is important to look at the amount and 

condition of native vegetation as many species prefer larger forest patches over smaller patches, even 

though smaller areas complement larger areas (Fischer & Lindenmayer, 2007). Similarly, the alteration 

of core area and edge length also affect species differently (Slattery & Fenner, 2018). Additionally, it is 

important to study the connectivity in a landscape as this shows the restrictions of animals within the 

landscape. Landscape connectivity is based on the human perspective on the connectedness of the 

landscape, thus might disregard the complexity of interactions between environmental factors (Fischer 

& Lindenmayer, 2007). Connectivity could be decreased when the distance between patches increases 

and the number of (small) patches increases, creating higher difficulty for species to move within the 

landscape (Fischer & Lindenmayer, 2007). To effectively measure fragmentation, a multitude of 

indicators are needed (Table 1) 

Indicators Measures 

%forest Amount of forest 

C/A index Condition of forest 

Number of patches + average patch size Condition of forest/connectivity 

Edge density Condition of forest 
Table 1: Indicators 

Opportunities for landscape connectivity 
To protect landscape connectivity, different measures can be taken. One option would be to introduce 

conservation corridors (Hofman et al., 2018). These are long stretches of nature that connect natural 

core areas, aiding the dispersal of populations and contributing to the survival of a species (Hofman et 

al., 2018). Another option could be to apply more sustainable agriculture in the area, using the land-

sharing/land-sparing model (Desquilbet et al., 2017). With land sparing, zones are implemented for 

biodiversity and agriculture (Desquilbet et al., 2017), as has been done in the Yayu Biosphere Reserve. 

On the other hand, land sharing allows for more environmentally friendly but less productive 

agricultural systems, such as coffee plantations (Desquilbet et al., 2017). Important to notice is that 
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biodiversity and agriculture can enhance each other as biodiversity provides services such as 

pollination and climate-resilient soils (Garibaldi et al., 2016). 

Remote sensing 
Remote sensing is defined as the acquisition of information on phenomena, objects, or materials by a 

recording device that is not physically in contact with the studied phenomena, objects, or materials 

(Khorram et al., 2012). In an environmental context, this often refers to technologies that record 

electromagnetic energy that areas and objects on the Earth’s surface, oceans, or atmosphere emit 

(Khorram et al., 2012). This is mainly done through instruments mounted on airplanes and satellites, 

which allows us to study processes at places that are hard to reach for humans and study large areas 

of land. Satellites use different colour bands to gather information. Depending on the studied object, 

different coloured bands need to be used to gather data (Khorram et al., 2012). Remote sensing 

through satellites has a large variety of applications, such as assessing ecosystem health, atmospheric 

composition, seismic activity, surface vegetation, polar ice fluctuations, humanitarian violations, and 

the subsurface (Khorram et al., 2012). Specifically, remote sensing can be used to aid nature 

conservation (Liu et al., 2001;  Zemanova et al., 2017), for example, through the identification of 

corridors (Bleyhl et al., 2017). 

In addition to the ability to research remote areas and large study areas, changes in an area can be 

traced back to the 1970s. Since the first LANDSAT satellite has been launched in the 1970s, the 

LANDSAT satellites have been a continuous source of information on Earth’s phenomena, objects, or 

materials (Khorram et al., 2012). This can help nature conservation by identifying temporal trends in 

land cover in a studied area. An interesting example of such research is research by Liu et al. (2001) on 

the ecological degradation of the Wolong Nature Reserve. They used remote sensing to assess 

deforestation and fragmentation of the nature reserve before and after its founding and found that 

deforestation rates and fragmentation increased after the founding. This provided information on the 

need for effective management of protected nature areas. This shows the importance of monitoring 

land cover change in protected nature areas. Moreover, it is important to monitor the land cover in 

areas that are known to be home to endangered species to aid in its conservation (Liu et al., 2001; 

Zemanova et al., 2017). 

Biosphere Reserves 
The Yayu Biosphere Reserve belongs to a worldwide network of biosphere reserves of UNESCO. The 

concept of the biosphere reserves is closely related to the concept of sustainability science as they 

both share an integrative problem-solving approach and considers everyone’s knowledge (Reed, 

2019). Biosphere reserves are sites for the “[conservation] of natural resources and of the genetic 

material they contain”, while they are also sites of scientific research, monitoring, education, and 

training (UNESCO 1970, 1971). The reserves consist of three zones (Figure 1), the core area is a 

protected area in which nature should be left undisturbed, the buffer zone is an area that can be used 

for purposes that maintain the values of the core area (e.g. recreation and education), and the 

transition zone that allows for more intense human activities (Batisse, 1986). These zones allow for 

experimentation and understanding of the effects that human activities have on the biosphere (Reed, 

2019). 

Nature conservation in Ethiopia has shown to be challenging (Abebe & Bekele, 2018). In countries like 

Ethiopia, protected areas are often referred to as “paper parks” since the pressure to exploit the areas 

outweighs the drive to protect the natural areas (Abebe & Bekele, 2018). Often, people have been 

living in the protected areas before they received such status, and as such the residents are not willing 

to change their way of life (Abebe & Bekele, 2018). The biosphere reserves seek a different approach; 
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working together with the residents as well as allowing for restricted use of the land (Reed, 2019). 

Research suggests that human exploitation is still a threat in the Yayu Biosphere Reserve as agricultural 

expansion and logging activities continue (Fekensa et al., 2016; Abera et al., 2021). However, the 

effectiveness of the biosphere reserve in protecting the forest cover is still unknown. 

 

 

Figure 1: The layout of a biosphere reserve. Here the three different zones represent three different levels of protection. The 
core area in which nature is completely protected from perturbation, the transition zone that allows for some human 
intervention, and the buffer area that balances the values of the transition zone with the values of the core area (Batisse, 
1986). Figure retrieved from Reed (2019). 

Conceptual model 
Figure 2 shows this research’s conceptual framework. Here, land use change (e.g. agricultural 

expansion) leads to deforestation, which also leads to forest fragmentation. As a consequence, the 

length of edges increases, and the core area decreases, as well as a loss of landscape connectivity 

(Broadbent et al., 2017). A combination of deforestation, increasing edge to interior ratio, and loss of 

landscape connectivity lead to habitat loss (Kuusari et al., 2009). To protect species, conservation can 

aid in halting land use change in certain areas. Monitoring changes in the environment can aid in 

effective species conservation (Liu et al., 2001). Remote sensing can be used to monitor deforestation 

and forest fragmentation (Hylander et al., 2013), providing information on how a change in forest cover 

could impact species (Slattery & Fenner, 2021). This is why this research focuses on monitoring trends 
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of deforestation in Southwestern Ethiopia and the implications this could have on large mammals. 

With this information, recommendations can be made on conservation measures considering 

landscape connectivity for large mammals. 

 

Figure 2: Conceptual model land use change, deforestation, and landscape connectivity 

Research framework 
This research is based on both deforestation and forest fragmentation (see Figure 3). This is done 

through the creation of forest cover maps using satellite images of the years 1973-2019, which is then 

succeeded by the calculation of deforestation and forest fragmentation indicators. To measure 

deforestation, the indicator percentage of forest cover in the landscape (%forest) is used. Indicators 

used to measure forest fragmentation are the C/A index (core area index), mean patch area, edge 

density, LPI (largest patch index), and the number of patches. These calculations are done for the whole 

study area, the Yayu Biosphere Reserve, and the area outside of Yayu. These results will then lead to 

conservation measures in the context of landscape connectivity for large mammals. 
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Figure 3: Research framework 

Methods 

Research area 
The research area is located in the Afromontane Mountains in Southwestern Ethiopia and entails the 

Yayu Biosphere Reserve and an area that might be interesting for biosphere conservation (Ine 

Dorresteijn, personal communication, 07-02-2021) (see Figure 4). The study area can be found 

between (35.0161, 7.0458) and (37.04579, 8.7651). The Yayu biosphere reserve was founded in 2010 

to preserve the biodiversity in this hotspot (UNESCO, 2019). The Yayu Biosphere Reserve is an 

important gene pool for several plant species and agricultural purposes (Gole et al., 2019). The 

biosphere also has the highest abundance of wild coffee in Ethiopia (Gole, 2003). Maintaining genetic 

variation is important for coffee crop development (Gole et al, 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:Map of the study area. Showing the location of Ethiopia, the location of the Afromontane forest 
(Jimma), the study area (dark blue polygon) and the Yayu Biosphere Reserve (in light blue). Received from 
Patríccia Rodrigues (personal communication, 02-03-2021)  and altered. 
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The Afromontane Mountains in Southwestern Ethiopia are known as the origin of the coffee plant 

(Coffea arabica), which can be found in the wild. Nowadays, this area is still responsible for 45% of the 

country’s coffee production (Kufa, 2012). Moreover, coffee is the country’s main source of foreign 

currency, making it an important cash crop (Ango et al., 2020). As the coffee plant prefers shade, these 

plants are traditionally grown in forests, aiding the conservation of the forest area (Hylander et al., 

2013). However, forest degradation still occurs in these areas as smaller trees, shrubs, and lianas are 

cut down (Hylander et al., 2013). In the Afromontane Mountains, deforestation has been an ongoing 

process since 1973 (Hylander et al., 2013) and even before (Ango et al., 2020). Deforestation rates are 

especially high above the coffee-growing heights (Hylander et al., 2013). Drivers for deforestation in 

Ethiopia include conversion to agriculture and wood and timber collection (Dibaba et al., 2020) with 

underlying drivers of national policies, institutional instability, agricultural stagnation, poverty, and 

demographic pressure (Ango et al., 2020). 

Data preparation 
Forest cover data has been collected using remote sensing. To do this, Google Earth Engine (GEE), an 

open-access cloud platform for earth observation analysis, has been used to retrieve satellite images 

and to analyse forest/non-forest cover. To analyse historic deforestation in Southwestern Ethiopia, 

satellite images of 1973-1984-1995-2001-2010-2019 were used. This is also in accordance with 

Hylander et al (2013) who researched deforestation in the Bonga and Goma-Gera areas which partly 

coincides with the study area. Different satellites were used to get the best images possible for the 

time periods researched. The satellites used in this study are also in accordance with Hylander et al. 

(2013). Different time periods were used because of the difference in cloud cover. January to March 

was the preferred time period to find satellite images as this is the dry season in Ethiopia (Hylander et 

al., 2013). Due to similarity in solar reflectance, it was preferred to use images that were taken in a 

similar time period (Khorram et al., 2012). When this was not possible, the time period searched in 

was extended (e.g. 2001). 

Year Satellite Time period images were taken from 

1973 LANDSAT 1 1 - 15 Feb 1973 

1984 LANDSAT 5 1 Dec 1984 – 31 Mar 1985 

1995 LANDSAT 5 1 Dec 1994 – 31 Mar 1995 

2001 LANDSAT 7 1 Jan 2001 – 12 Dec 2001 
2010 LANDSAT 5 1 Dec 2009 – 31 Mar 2010 

2019 LANDSAT 8 1 Jan 2019 – 31 Mar 2019 
Table 2: LANDSAT images used to identify forest cover in which year 

Forest cover maps were created using GEE through unsupervised classification (Appendix 1 & 2). 

Several steps were undertaken to do this. First, images were selected that had less than 5% cloud cover 

and were within the preferred time period. Second, a composite was made of the different images for 

further analysis. Third, an unsupervised classification tool was used to create 10 classes (Hylander et 

al., 2013). These were then manually identified as “forest”, “non-forest” or “both”. “Forest” areas were 

all areas that clearly contained tall vegetation, including coffee plantations. “Non-forest” areas were 

all areas that contained open areas such as agriculture or built-up areas. Classes were identified as 

“both” when they contained categories that were considered as forest and non-forest, for example, a 

class that contains both agriculture and forest. This process was then repeated for the classes that 

were both forest and non-forest until they were all identified correctly. For most images, three 

repetitions were necessary until the images were deemed correct. For 1973 and 2019, however, four 

repetitions were needed. Then the resulting raster was saved to Google Drive to be able to further 
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analyse them using the programme R. The maps were also checked for their validity using maps that 

Hylander et al. (2013) created for part of the research area by visually comparing the borders (appendix 

3). Only the forest cover map of 2019 was visually compared with the most recent satellite image 

provided by GEE to validate the map (appendix 3). 

To prepare the land cover for further quantitative and qualitative analysis, different steps were 

undertaken (appendix 4). Firstly, forest and non-forest patched smaller than 1ha were converted to 

the other class. This was done to prevent overestimation of forest cover and to compensate for 

misidentified non-forest areas (Hylander et al., 2013). Secondly, a data set on water bodies in Ethiopia 

(ICPAC_IGAD_UNOSAT, 2017) was used to correctly classify these water bodies by classifying these 

areas as non-forest. This was done because GEE had difficulties with correctly identifying water bodies 

as non-forest areas. Thirdly, the boundaries of the study area, the Yayu Biosphere Reserve, and the 

area outside the reserve were used to create different maps for these areas. All data outside these 

areas were identified as NA. 

Analysis of forest cover change 
For quantitative and qualitative assessment of forest cover change, two more calculations were done 

using the R software. Firstly, the forest cover of the study area was calculated for all studied years 

(Table 2) in absolute numbers (ha) and in part of the landscape (%forest). Second, forest cover change 

maps were made for the combinations 1973-1984, 1984-1995, 1995-2001, 2001-2010, 2010-2019 & 

1973-2019. 

The different forest cover maps were then qualitatively analysed, while the change in forest cover was 

quantitatively assessed. All different maps were analysed for areas of deforestation or reforestation 

and these areas were also numbered. In addition, the location of reforestation and deforestation was 

also noted (i.e. along the forest edges, in the core areas, or amongst small forest patches). For the 

forest cover, a regression analysis was performed using Excel. The trend was deemed significant when 

α<0.05. 

Analysis of forest fragmentation 
Different indicators were calculated using the R package SpatialMetrics (Hesselbarth et al., 2019). The 

indicators, C/A index (core area index), average patch size, edge density, and LPI (largest patch index), 

were chosen because they are good indicators for forest fragmentation (McGarigal, 2015). For the C/A 

index, the edge depth was needed for calculations. In correspondence with Rodrigues et al. (2019), a 

depth of 100m was chosen. After this, a regression analysis was performed using excel on the 

indicators. 

Comparison of Yayu and area outside the reserve 
The same steps were undertaken for the reserve and the area outside for the forest cover and forest 

fragmentation,  and the results were compared to each other for the area within the reserve and 

outside the reserve. Deforestation and reforestation patterns were analysed for the Yayu Biosphere 

Reserve by numbering the areas. Then regression analyses were performed for the deforestation and 

forest fragmentation. The significance of the trend, the steepness of the trend, and the values of 

indicators were compared between the two areas. Assessment of the effectiveness of the reserve was 

based on qualitative analysis of forest cover change and forest fragmentation of 2010-2019. Values of 

the indicators were compared and the reforestation and deforestation patterns were visually analysed. 
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Results 

Deforestation 
During the studied time period, forest cover in the study area decreased (Figure 5A). Between 1973 

and 2019, the forest cover decreased by 11.1% from 58.02% cover in 1973 to 51.31% in 2019 (Table 

3). The largest decrease can be found between 1973-1984 (-8.27%) and 2001-2010 (-11.1%), while 

the biggest increase occurred between 2010 and 2019 (12%; Table 3; Figure 5A) 

 1973 1984 1995 2001 2010 2019 

Total study area 

Forest (ha) 575632 528018 532401 511312 454545 509024 

Non-forest (ha) 416420 464034 459651 480740 537506 483028 

Part forest of landscape (%) 58.02 53.22 53.66 51.53 45.81 51.31 

Forest cover change since 1973  -8.27 -7.51 -11.19 -21.04 -11.57 

Forest cover change since the last 
measurement 

 -8.27 0.83 -3.97 -11.10 12.01 

Yayu 

Forest (ha) 110679 91855 88960 90786 86218 97367 

Non-forest (ha) 56339 75162 78058 76232 80799 69650 

Part forest of landscape (%) 66.27 55.00 53.26 53.26 51.62 58.29 

Forest cover change since 1973  -17.01 -19.63 -17.99 -22.11 -12.04 

Forest cover change since the last 
measurement 

 -17.01 -3.16 2.05 -5.02 12.92 

Outside reserve 

Forest (ha) 464951 436163 443446 420524 368326 412001 

Non-forest (ha) 358717 387505 380222 403144 455342 411667 

Part forest of landscape (%) 56.45 52.95 53.83 51.05 44.71 49.97 

Forest cover change since 1973  -6.20 -4.64 -9.57 -20.80 -11.48 

Forest cover change since the last 
measurement 

 -6.20 1.66 -5.16 -12.42 11.77 

Table 3: forest cover change from 1973 to 2019 for the study area, the Yayu Biosphere Reserve, and the area outside the 
reserve 
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 Research area Yayu Outside Yayu 

 Coefficient SE R2 Coefficient SE R2 Coefficient SE R2 

%Forest -0.184 0.074 0.608 -0.170 0.132 0.293 -0.188 0.074 0.619 

C/A index -0.007* 0.002 0.718 -0.014* 0.003 0.828 -0.006 0.002 0.647 

Edge density 0.006 0.061 0.02 -0.0002 0.045 6*10-6 0.007 0.071 0.023 

LPI -0.119 0.063 0.471 -0.089 0.041 0.547 -0.147 0.078 0.471 

Average 
patch size 

-0.242 0.140 0.428 -0.342* 0.090 0.782 -0.203 0.154 0.302 

Number of 
patches 

21.78 12.36 0.471 5.836 3.211 0.312 16.31 12.10 0.452 

Table 4: Coefficient, R2, and SE for the regression of the fragmentation indicators. *P<0.05 **P<0.01. 
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Forest cover loss and gain between 1973-2019 did not occur homogeneously throughout the study region (

 

Figure 6). Deforestation mainly took place along the forest edge and in smaller forest patches. The 

Yayu area (Figure 6, area 1) shows high forest loss in the smaller patches outside the continuous forest. 

Some reforestation can be found at the edges of the continuous forest. It is also visible that the core 

areas within large forest patches remain largely intact (Figure 6, area 2). In the Sidamo/Sentama area 

(Figure 6, area 3) large-scale deforestation can be identified. Here, small patches have been removed 

from the landscape and the deforestation expands to the edges of the large continuous forest patches 

next to the area. This results in forest patches being cut off around Sidamo (Figure 6, area 4) and Boto 

(Figure 6, area 5). In the Agaro area (Figure 6, area 6 ), reforestation can be seen among small patches, 

resulting in a mosaic of patches. In the Sentama area (Figure 6, area 7), similar patterns can be found 

as in Sidamo (Figure 6, area 3) deforestation can be found around the edges of the forest and in the 

smaller forest patches. Lastly, the Seka Chekorsa area (Figure 6, area 8) is an area that shows clear 

reforestation around the forest edges. 
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Figure 6: Forest cover change study area 1973-2020. The numbers in the map represent areas that are interesting to 
consider for deforestation/reforestation purposes. Areas 1,3,4,5, & 7 are areas of high deforestation, while areas 6 & 8 show 
noticeable reforestation. Area 2 shows how well preserved the core areas in the study area are, even though they are still 
shrinking in size due to deforestation along the edges. 

When observing the changes in deforestation and deforestation through the decades, it can be noted 

that patterns have developed differently throughout the study area (Figure 7). The periods of 1973-

1984 and 2001-2010 were periods that know high deforestation in the whole study area (Table 1). 

From 1973 to 1984, areas 1,3 & 7 (Figure 7A) were the deforestation hotspots (i.e. areas with high 

deforestation). Especially the smaller forest patches in Yayu (Figure 7A, area 1) disappeared, during 

this period. In areas 3 and 7 (Figure 7A), deforestation focused on both the smaller forest patches and 

the edges of continuous forest. Area 8 shows reforestation around the forest edges between 1973-

1984 (Figure 7A). From 2001 to 2010, deforestation hotspots spread throughout the study area (Figure 

7D). In areas 1, 3, and 7 of Figure 7D, deforestation still occurs among the small forest patches in the 

landscape. Especially in area 7 of Figure 7D, deforestation has also spread to the edges. Also, other 

deforestation hotspots can be identified. Area 4, 6 &8 (Figure 7D) have now also become deforestation 

hotspots (Figure 7D). In area 4, a large forest patch is cut off from a larger continuous forest patch 

(Figure 7D). The period of 2010-2019 seems to be a period of reforestation (Figure 7E). Deforestation 

still occurs in 1,5 and 7 of Figure 7E, but in other areas reforestation can be identified (areas 6 & 8 in 

Figure 7E), especially at the edges of the forest. 

Not only is the forest cover decreasing in the area, but fragmentation indicators also suggest that 

fragmentation is occurring in the study area (Figure 5; Table 4). The C/A index shows a significant 

decreasing trend (Figure 5B; Table 4), which indicates that the cores areas are decreasing in size. Other 

indicators show trends that are not statistically significant (Figure 5C-F; Table 4). Edge density 

remained similar throughout the studied period (Figure 5C; Table 4). The LPI (Figure 5D; Table 4) and 
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the average patch (Figure 5E; Table 4) seem to be decreasing during the time period while the number 

of patches (Figure 5F; Table 4) is increasing. 
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Differences between the Yayu Biosphere Reserve and the area outside the reserve 
Both within the biosphere reserve as in the area outside, forest cover decreased between 1973-2019 

(Figure 5; Table 4). In 1973, the forest within the Yayu Biosphere Reserve covered 66.27% of the 

landscape while this reduced to 58.29% in 2020 (Table 3). The forest decreased from 56.45% of the 

total landscape in 1973 to 49.97% in 2019 for the area outside the reserve (Table 3).  The biggest loss 

in forest cover was between 1973 and 1984 when the forest cover decreased by -17.01% (Table 3). For 

the area outside of the reserve, the biggest forest cover loss occurred between 2001-2010 with -

12.42% (Table 3).  Between 2010 and 2020, the forest cover greatly increased from 51.62% of the 

landscape to 58.29%  (+12.9%; Table 3). During this period the forest cover outside of the reserve also 

increased by 11.77% (Table 3). The Yayu Biosphere Reserve still shows to have a higher relative forest 

cover than the area outside in 2019.  

Most of the deforestation in the Yayu area occurred before the establishment of the Biosphere Reserve 

in 2010. During this period, most deforestation occurred around the forest edges and among the 

smaller forest patches (Figure 8). Since the establishment of the reserve, it can be seen that much 

reforestation has taken place around the forest edges (e.g. are A in Figure 8). Even though 

deforestation can still be found in the area, along the forest patches and among smaller patches (Figure 

8, area C), the continuous forest remains intact (Figure 8, area B). 

 

Figure 8: Forest cover change Yayu Biosphere Reserve 2010-2020. Area A shows reforestation along the edge. Area B shows 
that the core area within the reserve stays intact. Area C shows an area that remains high in deforestation after the 
establishment of the reserve. 

The C/A index and the average size of patches suggest that the Yayu biosphere reserve has become 

more fragmented between 1973 and 2019 (Figure 5; Table 4). These indicators suggest that the 

patches have decreased in size. The average size of patches only shows to be significantly decreasing 

in the Yayu Biosphere Reserve, as the area outside the reserve does not show any significant trends 

The C/A index shows a steeper decreasing slope in the Yayu area (-0.014 %patch/yr) than in the area 
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outside (-0.006 %patch/yr; Table 4). Similar to the area outside the reserve, a positive trend can be 

observed for the number of patches in the Yayu Biosphere Reserve, while edge density remains similar 

and the average patch size and the LPI show to be decreasing.  

After the establishment of the Yayu Biosphere Reserve, the fragmentation seems reduced. The C/A 

index, the LPI, and the average patch size increased. This indicates that forest patches have increased 

in size. In addition, the edge density and the number of patches also increased, however, this coincides 

with an increase in forest area. 

Discussion 
As biodiversity and biodiversity hotspots worldwide are threatened by the effects of land use, such as 

habitat loss and habitat fragmentation, it is important to understand the ongoing processes and their 

effect on the environment (Dixo et al., 2019; IBPES, 2019; Schnell et al., 2013; Zemanova et al., 2017). 

It is especially important to gain a better understanding of deforestation and forest fragmentation 

patterns in biodiversity hotspots, such as the Afromontane mountains in Southwestern Ethiopia, and 

how this might impact wildlife (Desquilbet et al., 2021; Zemanova et al., 2017). This research aimed to 

identify deforestation and forest fragmentation in Southwestern Ethiopia from 1973-2019 and what 

recommendations can be given in the context of large mammal conservation. In addition, this research 

aimed to assess the effects of the establishment of the Yayu Biosphere Reserve in Southwestern 

Ethiopia. This was done creating  forest cover maps and analysing those for deforestation and forest 

fragmentation patterns. It was found that forest cover decreased between 1973 and 2019 for the 

whole study area, but the forest cover showed recovery in the last decade. The Yayu Biosphere Reserve 

aided in the protection of the core area but small patches were still lost after establishment, possibly 

affecting the connectivity of the landscape for large mammals. 

Decreasing forest cover 
Deforestation in the study area did not show a constant rate. Between 1973-2019, forest cover showed 

a decline, with the biggest declines in the periods 1973-1984 and 2001-2010. This is also in line with 

the findings of Ango et al. (2020) for the Gera region. Research has shown that deforestation in 

Southwestern Ethiopia is mainly driven by intensification and expansion of agricultural activities, as 

well as logging activities (Tadesse, 2003; Gole et al., 2019).  Reforestation occurred between 2010 and 

2019 (Fout! Verwijzingsbron niet gevonden.). Hylander et al. (2013) suggested that forest cover 

change in Southwestern Ethiopia is often heavily influenced by coffee; from planting coffee shade trees 

outside of the forest patches to the conversion of grazing or agricultural lands to semi-forest coffee 

plantations. This might also be the reason why reforestation can be found in area 6 of Figure 6, which 

is an area known for its coffee plantations. Coffee plantations enhance forest retention, as coffee 

requires shade, but above coffee-growing altitude deforestation is widespread (Hylander et al., 2013). 

Even though reforestation has been widely occurring in the study area during the last 10 years, it is 

important to take into consideration what kind of vegetation has been planted. In the study area, 

Eucalyptus trees and coffee trees are commodities that are known to impact the biodiversity in the 

area (Cordero-Rivera et al., 2017; Hylander et al., 2013). Yet it is hard to distinguish the difference 

between forests and plantations using remote sensing (Hylander et al., 2013). Therefore, ground 

research must be done on what kind of trees are used for reforestation in the study area. Moreover, 

as the forest has only recovered during the last decade, the effects this might have on large mammals 

may not be visible yet. Future research could focus on researching the effects of deforestation in 

Southwestern Ethiopia on large mammal abundance. 
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Forest fragmentation in Southwestern Ethiopia 
Forest fragmentation has occurred throughout the study region between 1973 and 2019, however, 

only the core areas showed a significant decreasing trend. This could have a big impact on specialised 

core species as their habitat is decreasing in size (Desquilbet et al., 2021). The reason why no other 

regression showed to be significant, could be because only 6 data points were used for analysis. This 

could be because only 6 data points were used for the analysis, making the results of the statistical 

tests a bit weaker. However, the forest cover map of the study area (Figure 6) shows that forest patches 

have been cut off in the region, suggesting that forest fragmentation is taking place. Important to 

notice is that small forest patches are disappearing throughout the study area. From the satellite 

images, it could be observed that this mainly occurred on a large scale in the agricultural area. Here, 

they seem to remove forest patches between the agricultural fields for expansion of agricultural 

activities (Ango et al., 2014). This, however, harms the connectivity of the landscape for large mammals 

as they may use those patches as stepping stones to move around in the area (Fischer et al., 2010). 

Core areas remained largely intact but decreased in size, possibly because few main roads are going 

through continuous forests (Abebe et al., 2018). This is a large driver of forest fragmentation in Brazil; 

large-scale deforestation occurs directly next to the road; expansion of the infrastructure leads to 

forest fragmentation (Taubert et al., 2018). For Ethiopia, it is recommendable to prevent the expansion 

of roads into remote forests (Abebe et al., 2021). 

Yayu 
The establishment of the Yayu Biosphere Reserve seems to have halted deforestation and forest 

fragmentation within the area. Overall, the forest cover, patch size, and core area were higher in 2019 

compared to 2010, suggesting that forest unification is occurring in the area. Even though 

deforestation has been observed in the area, widespread reforestation efforts have contributed to a 

netto increase in forest cover in the area. A similar trend, however, has been observed outside the 

study area as well, which is why this process cannot be attributed to the establishment of the reserve 

only. 

Deforestation was found to be very low in the core area of the Yayu Biosphere Reserve, while 

deforestation still occurred among small forest patches and along the forest edges. Similar patterns 

were found by Beyene (2014). Yet, they did not observe reforestation during the period of their 

research (2000-2013). This could suggest that reforestation efforts in the Biosphere Reserve only 

started after 2013. However, a more detailed annual study of deforestation in the Yayu Biosphere 

Reserve from the establishment to the present is needed to understand reforestation efforts within 

the reserve. 

Not only the Yayu Biosphere Reserve showed successes in the conservation of forests, but also the 

Monarch Butterfly Biosphere Reserve in Mexico showed that forests in the core area were well 

protected and even gained forest cover (Manzo-Delgado et al., 2014). Similarly, Sasanifar et al. (2019) 

found that nitrogen, potassium, and organic carbon content was higher in the protected areas of 

Arasbaran Biosphere Reserve in Northwest Iran, suggesting that biosphere reserves are successful in 

nature conservation. However, challenges remain for biosphere reserves worldwide (Reed & Price, 

2019). First, there seems to be a lack of understanding between different levels of the government 

considering the objectives of biosphere reserves (Moreira-Muñoz et al., 2019). Second, there is limited 

participation by local inhabitants (Gole et al., 2019). The latter also showed to be an issue in biosphere 

reserves in Ethiopia (Gole et al., 2019). Better participation of locals in the protection of the biosphere 

is among the key components for biosphere reserves (Reed, 2019) and should prove useful in the 

effectiveness of the conservation of nature (Abebe & Bekele, 2018). 
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Recommendations 
Based upon the discussion above, I provide several recommendations for the study area: 

1. Adopt an approach that includes both land sharing and land sparing in the study area 

2. Conserve small forest patches between agricultural areas to conserve connectivity of the 

landscape for large mammals 

3. Reconnect important core areas through corridors 

For the protection of biodiversity in the study area, it is important to consider the implementation of 

land sharing and land sparing agriculture in the area (Desquilbet et al., 2021). Both biodiversity and 

agricultural activities are crucial for the livelihood in the study area, for example, 90% of the residents 

in the Yayu Biosphere Reserve are reliant on agriculture (Fakensa et al., 2018) and the natural 

resources in the area (Gole et al., 2019). It’s crucial that these are united. Moreover, as different 

species prefer edges while others prefer core areas, the edge-core ratio must stay in balance 

(Desquilbet et al., 2021). The land-sparing land-sharing principle could help balance the edge-core 

ratio. Area A in Figure 9 would be an interesting area for land sparing. In this area, a large agricultural 

area can be found, which is surrounded by continuous forest. The continuous forests must not get 

fragmented any further, as the core areas are crucial for biodiversity (Desquilbet et al., 2021). 

Agricultural land also needs to be protected from unsustainable use by its users (Fekensa et al., 2018). 

Areas B and C in Figure 9 would be interesting for land sharing as these areas have a mosaic of forest 

patches. Firstly, this would benefit the connectivity of the landscape for large mammals (Fischer et al., 

2010). Secondly, the forest patches between the fields provide many ecosystem services to the 

resident and should be protected (Shumi et al., 2019). Residents have already shown a preference for 

land sharing agriculture (Jiren et al., 2020), thus such measures are likely to be supported.  

 

 

Figure 9: Land sparing (A) and land sharing (B&C) areas in the study area based on forest cover change 1973-2019 
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Small forest patches between agricultural patches have shown to be essential for landscape 

connectivity (Fischer et al., 2010) and the livelihood of residents (Shumi et al., 2019). Therefore, it is 

recommended that these are largely forest patches are protected. Literature suggests that residents 

are often unaware of the overexploitation of woody species in the area (Shumi et al., 2019), thus raising 

awareness among residents could help to protect the smaller forest patches. 

Landscape corridors have shown to be a useful tool in increasing the connectivity of a landscape 

(Hofman et al., 2018). Five areas have been identified as areas that where reforestation efforts with 

native vegetation could help connect forest large forest patches (Figure 10). These are areas where 

forest patches are nearly cut off or already cut off but can be still be reconnected. 

 

Figure 10: Areas in the study area to consider for corridors (white circles) 

Limitations 
As this research is heavily reliant on the maps created, the quality of the maps is essential for the 

results of this research. To do this, good-quality satellite images are of great importance (Khorram et 

al., 2012). Especially for the earlier images (i.e. 1973), this was a challenge as the quality of LANDSAT1 

was much lower than the newer LANDSATs. This might have caused a differently mapped forest cover 

than it was in reality. The validation of past forest cover might also be a challenge as there were no 

forest points or old photographs available. Validation was done using maps provided by Hylander 

(personal communication, [date]), however, this could only be done for region B in Figure 9 as the 

maps only covered that part of the study region, possibly leading to the overestimation or 

underestimation of forest cover. Lastly, the method used for classification can greatly influence the 

accuracy of the maps (Khorram et al., 2012). For example, one programme could be more user-friendly 

than the other or the decision of whether to use supervised or unsupervised classification could result 

in a different bias. 

Another limitation of this research was the limited amount of data points that could be used for linear 

regression. Perhaps a different study with more data points, such as annual data points or bi-annual 

data points. Another suggestion could be to test for non-linear regressions as well 
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Results of this research could aid in further research concerning forest cover in the area, such as 

research concerning quantitative research on landscape connectivity of large mammals. The maps 

created during this research could also be used as validation for research on forest cover on a grander 

scale than this research has done. Larger maps of the area are necessary when one wants to research 

the connectivity of the landscape. There is also a need to research what kind of vegetation can be 

found in reforested areas, as the kind of vegetation can greatly influence the quality of the 

environment (Hylander et al., 2013). The scripts created in this research can also be reused for other 

research, making it faster to do a similar kind of research. 

Conclusion 
This research aimed to assess what conservation measures can be proposed when considering 

landscape connectivity for large mammals in Southwestern Ethiopia. This was done by identifying 

deforestation fragmentation patterns in Southwestern Ethiopia from 1973 to 2019 and by assessing 

the effects of the establishment of the Yayu Biosphere Reserve on deforestation and forest 

fragmentation. Based on the quantitative and qualitative assessment of forest cover in the study area, 

it can be concluded that reforestation efforts can turn the tides of a negative trend of forest loss and 

forest fragmentation. Results indicate that forest cover in Southwestern Ethiopia increased between 

2010 and 2019 after decades of decline. Because of this late increase in forest cover, only the core area 

showed a significant decreasing trend, while the other indicators showed no significant trend. A 

qualitative assessment of the forest cover in Yayu suggests that the establishment of the reserve has 

a positive effect on forest cover in the area, but a quantitative analysis of annual forest cover is needed 

to support this. 

Despite the absence of significant trends in deforestation and fragmentation indicators, practitioners 

should still consider efforts to increase the connectivity and to halt deforestation of the landscape as 

there is no certainty that recent reforestation efforts will have an immediate positive effect on 

biodiversity. This can be done by the implementation of land sharing and sparing zones in the area and 

the reconnection of forest patches by reforesting disconnected or nearly disconnected large forest 

patches. Moreover, an effort needs to be made to protect the small forest patches in the agricultural 

landscape. 

This research identified deforestation and forest fragmentation from the 1970s to the present in the 

Afromontane mountains in Ethiopia, one of the world’s biodiversity hotspots. Moreover, it identified 

patterns of deforestation and forest fragmentation and adds empirical evidence to the contribution of 

biosphere reserves in the contribution to nature conservation. In addition, the scripts that were 

created in this study could be reused for similar research in the future, reducing the time needed to 

create forest cover maps and their analysis. 
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Appendix 1: Code unsupervised classification using GEE (1984-2019) 
// Advice! Use /* and */ to comment text, especially useful for the reclassification part as you do not 

know how often you need to iterate to create a correct map. 

//// Data Preparation //// 

// Import study area 

var StudyArea = ee.FeatureCollection("users/soostdi/New_srudy_area"); 

 

// Import collection 

var collection = ee.ImageCollection('LANDSAT/LC08/C01/T1') 

                    .filterDate('2020-01-01','2020-12-31') 

                    .filterBounds(StudyArea); 

//print(collection); 

 

//Create composite 

var composite = ee.Algorithms.Landsat.simpleComposite({ 

  collection:collection, 

  cloudScoreRange:5, 

  percentile:75, 

  asFloat:true 

  }); 

//print(composite); 

   

// Use these bands for prediction. 

var bands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B10', 'B11']; 

 

// Add layer to map 

Map.setCenter(36.14224165757499,8.139329789820918, 9); 

Map.addLayer(composite, {bands:['B4', 'B3', 'B2'], max:0.3,gamma:1.1},'Satellite image'); 

 

 

//// Unsupervised classification //// 

 

// Make the training dataset. 

var training = composite.sample({ 

  region: StudyArea, 

  scale: 30, 

  numPixels: 5000 

}); 

 

// Instantiate the clusterer and train it. 

var clusterer = ee.Clusterer.wekaKMeans(10).train(training); 

 

// Cluster the input using the trained clusterer. 

var result = composite.cluster(clusterer); 

var result_clip = result.clip(StudyArea); 
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// Display classification. 

Map.addLayer(result_clip, {min:0, max:9, palette: [  

    'YellowGreen', //0 
    'Gold', //1 
    'ForestGreen', //2 
    'Aquamarine', //3 
    'DodgerBlue', //4 
    'DarkOrange', //5 
    'FireBrick', //6 
    'Fuchsia', //7 
    'LemonChiffon', //8 
    'DarkSlateBlue', //9 
    ]}, 
'clusters'); 

 

//// Reclass clusters //// 

 

// Define from to values 

var fromForest = [5,7,8]; //original values 

var toForest = [1,1,1];//new values 

 

var fromBoth = [2,3]; 

var toBoth = [1,1]; 

 

// Remap the pixel values and rename 

var Forest =  result_clip.remap(fromForest, toForest, 0, 'cluster').rename('Forest'); 

var Both = result_clip.remap(fromBoth, toBoth, 0, 'cluster').rename('Both'); 

 

// Create image 

var image = ee.Image.cat([Forest]); 

Map.addLayer(image.clip(StudyArea),{palette: ['grey','green']},"merged clusters");  

 

 

//// Iterate for doubtful areas //// 

 

//Create input of doubtful areas 

var mask = composite; 

var masked_composite = mask.mask(Both.eq(1)); 

 

// Make the training dataset. 

var training2 = masked_composite.sample({ 

  region: StudyArea, 

  scale: 30, 

  numPixels: 5000 

}); 

 

// Instantiate the clusterer and train it. 

var clusterer2 = ee.Clusterer.wekaKMeans(10).train(training2); 
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// Cluster the input using the trained clusterer. 

var result2 = composite.cluster(clusterer2); 

var result2_clip = result2.clip(StudyArea); 

var masked_result2 = result2_clip.mask(Both.eq(1)); 

 

// Display the clusters with random colors. 

Map.addLayer(masked_result2, {min:0, max:9, palette: [  

    'YellowGreen', //0 
    'Gold', //1 
    'ForestGreen', //2 
    'Aquamarine', //3 
    'DodgerBlue', //4 
    'DarkOrange', //5 
    'FireBrick', //6 
    'Fuchsia', //7 
    'LemonChiffon', //8 
    'DarkSlateBlue', //9 
    ]}, 
'new clusters'); 

 

//Convert to forest 

var fromForest2 = [0,1,6,7,8,9]; 

var toForest2 = [1,1,1,1,1,1]; 

 

var fromBoth2 = [3,4,5]; 

var toBoth2 = [1,1,1]; 

 

var Forest2 =  masked_result2.remap(fromForest2, toForest2, 0, 'cluster').rename('Forest'); 

var Both2 = masked_result2.remap(fromBoth2, toBoth2, 0, 'cluster').rename('Both'); 

 

 

////Iterate again for doubtful areas//// 

 

//Create input of doubtful areas 

var masked2_composite = mask.mask(Both2.eq(1)); 

 

// Make the training dataset. 

var training3 = masked2_composite.sample({ 

  region: StudyArea, 

  scale: 30, 

  numPixels: 5000 

}); 

 

// Instantiate the clusterer and train it. 

var clusterer3 = ee.Clusterer.wekaKMeans(10).train(training3); 

 

// Cluster the input using the trained clusterer. 

var result3 = composite.cluster(clusterer3); 

var result3_clip = result3.clip(StudyArea); 
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var masked_result3 = result3_clip.mask(Both2.eq(1)); 

 

// Display the clusters with random colors. 

Map.addLayer(masked_result3, {min:0, max:9, palette: [  

    'YellowGreen', //0 
    'Gold', //1 
    'ForestGreen', //2 
    'Aquamarine', //3 
    'DodgerBlue', //4 
    'DarkOrange', //5 
    'FireBrick', //6 
    'Fuchsia', //7 
    'LemonChiffon', //8 
    'DarkSlateBlue', //9 
    ]}, 
'newest clusters'); 

 

//Convert to forest 

var fromForest3 = [0,1,2,3,8]; 

var toForest3 = [1,1,1,1,1]; 

 

var Forest3 =  masked_result3.remap(fromForest3, toForest3, 0, 'cluster').rename('Forest'); 

 

// Add forest, forest2 and forest3 together 

var combinedForest = ee.ImageCollection([Forest,Forest2,Forest3]); 

var Forested = combinedForest.reduce(ee.Reducer.max()); 

 

Map.addLayer(Forested.clip(StudyArea),{palette: ['grey','green']},"Forest cover"); 

 

//// Exporting images //// 

 

// Export image to drive 

Export.image.toDrive({ 

  image: Forested, 

  description: 'forest_2020_New', 

  scale: 30, 

  region: StudyArea, 

  fileFormat: 'GeoTIFF', 

  skipEmptyTiles:true, 

  formatOptions: {cloudOptimized: true} 

}); 

 

// Export image to asset 

/*Export.image.toAsset({   

  image: Forested,   

  description: 'Unsupervised_class_2020',   

  assetId: 'Unsupervised_class_2020', 

  scale:30, 

  region: StudyArea, 
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  });*/ 
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Appendix 2: Code unsupervised classification (1973) 
////Prepare data//// 
 
// Define a region in which to generate a sample of the input. 
var StudyArea = ee.Geometry.Polygon( 
        [[[35.01614302480194, 8.765073235177475], 
          [35.01614302480194, 7.045797077749566], 
          [37.02664107167694, 7.045797077749566], 
          [37.02664107167694, 8.765073235177475]]]);                     
 
//Import best images 1973 
var img1 = ee.Image('LANDSAT/LM01/C01/T2/LM01_182054_19730201'); 
var img2 = ee.Image('LANDSAT/LM01/C01/T2/LM01_182055_19730201'); 
var img3 = ee.Image('LANDSAT/LM01/C01/T2/LM01_183054_19730202'); 
var img4 = ee.Image('LANDSAT/LM01/C01/T2/LM01_183055_19730202'); 
 
//get information on projection 
var repr1 = img1.reproject({ 
  crs:img1.projection(), 
  scale:30 
  }); 
var repr2 = img2.reproject({ 
  crs:img2.projection(), 
  scale:30 
  }); 
var repr3 = img3.reproject({ 
  crs:img3.projection(), 
  scale:30 
  }); 
var repr4 = img4.reproject({ 
  crs:img4.projection(), 
  scale:30 
  }); 
 
//Create composite 
var collection = ee.ImageCollection([repr1,repr2,repr3,repr4]); 
var composite = collection.reduce(ee.Reducer.median()); 
//print(composite); 
 
//Add LANDSAT image to map 
Map.setCenter(36.0213920482, 7.905435505, 8); 
Map.addLayer(composite, {bands:['B4_median', 'B5_median', 'B6_median']},'Satellite image'); 
 
 
//// Unsupervised classification //// 
 
// Make the training dataset. 
var training = composite.sample({ 
  region: StudyArea, 
  scale: 30, 
  numPixels: 5000 
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}); 
 
// Instantiate the clusterer and train it. 
var clusterer = ee.Clusterer.wekaKMeans(12).train(training); 
 
// Cluster the input using the trained clusterer. 
var result = composite.cluster(clusterer); 
var result_clip = result.clip(StudyArea); 
 
// Display the clusters with random colors. 
Map.addLayer(result_clip, {min:0, max:11, palette: [  
    'YellowGreen', //0 
    'Gold', //1 
    'ForestGreen', //2 
    'Aquamarine', //3 
    'DodgerBlue', //4 
    'DarkOrange', //5 
    'FireBrick', //6 
    'Fuchsia', //7 
    'LemonChiffon', //8 
    'DarkSlateBlue', //9 
    'HotPink', //10 
    'DarkGray', //11 
    ]}, 
'clusters'); 
 
////Reclass clusters//// 
var fromForest = [0,4,5,7]; //original values 
var toForest = [1,1,1,1]; //new values 
 
//Identify doubtful classes 
var fromBoth = [2,6,9,10]; 
var toBoth = [1,1,1,1]; 
 
//Remap the pixel values and rename  
var Forest =  result_clip.remap(fromForest, toForest, 0, 'cluster').rename('Forest'); 
var Both = result_clip.remap(fromBoth, toBoth, 0, 'cluster').rename('Both'); 
 
//Create image 
var image = Forest; 
//print(image); 
 
//// Iterate for doubtful areas //// 
//Create input of doubtful areas 
var mask = composite; 
var masked_composite = mask.mask(Both.eq(1)); 
 
// Make the training dataset. 
var training2 = masked_composite.sample({ 
  region: StudyArea, 
  scale: 30, 
  numPixels: 5000 
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}); 
 
// Instantiate the clusterer and train it. 
var clusterer2 = ee.Clusterer.wekaKMeans(12).train(training2); 
 
// Cluster the input using the trained clusterer. 
var result2 = composite.cluster(clusterer2); 
var result2_clip = result2.clip(StudyArea); 
var masked_result2= result2_clip.mask(Both.eq(1)); 
 
// Display the clusters with random colors. 
Map.addLayer(masked_result2, {min:0, max:11, palette: [  
    'YellowGreen', //0 
    'Gold', //1 
    'ForestGreen', //2 
    'Aquamarine', //3 
    'DodgerBlue', //4 
    'DarkOrange', //5 
    'FireBrick', //6 
    'Fuchsia', //7 
    'LemonChiffon', //8 
    'DarkSlateBlue', //9 
    'HotPink', //10 
    'DarkGray', //11 
    ]}, 
'new clusters'); 
 
 
//Convert to forest 
var fromForest2 = [8]; 
var toForest2 = [1]; 
 
var Forest2 =  masked_result2.remap(fromForest2, toForest2, 0, 'cluster').rename('Forest'); 
/* 
//add forest and forest2 together 
var combinedForest = ee.ImageCollection([Forest,Forest2]); 
var Forested = combinedForest.reduce(ee.Reducer.max()); 
 
Map.addLayer(Forested.clip(StudyArea),{palette: ['grey','green']},"Forest cover"); 
 
*/ 
 
//// Iterate AGAIN for doubtful areas //// 
var fromBoth2= [3,4,5,9]; 
var toBoth2 = [1,1,1,1]; 
 
var Both2= masked_result2.remap(fromBoth2, toBoth2, 0, 'cluster').rename('Both'); 
 
//Create input of doubtful areas 
var masked2_composite = mask.mask(Both2.eq(1)); 
 
// Make the training dataset. 
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var training3 = masked2_composite.sample({ 
  region: StudyArea, 
  scale: 30, 
  numPixels: 5000 
}); 
 
// Instantiate the clusterer and train it. 
var clusterer3 = ee.Clusterer.wekaKMeans(12).train(training3); 
 
// Cluster the input using the trained clusterer. 
var result3 = composite.cluster(clusterer3); 
var result3_clip = result3.clip(StudyArea); 
var masked_result3= result3_clip.mask(Both2.eq(1)); 
 
// Display the clusters with random colors. 
Map.addLayer(masked_result3, {min:0, max:11, palette: [  
    'YellowGreen', //0 
    'Gold', //1 
    'ForestGreen', //2 
    'Aquamarine', //3 
    'DodgerBlue', //4 
    'DarkOrange', //5 
    'FireBrick', //6 
    'Fuchsia', //7 
    'LemonChiffon', //8 
    'DarkSlateBlue', //9 
    'HotPink', //10 
    'DarkGray', //11 
    ]}, 
'newest clusters'); 
 
 
//Convert to forest 
var fromForest3 = [3,4,5,6,8,11]; 
var toForest3 = [1,1,1,1,1,1]; 
 
var Forest3 =  masked_result3.remap(fromForest3, toForest3, 0, 'cluster').rename('Forest'); 
/* 
//add forest, forest2 and forest3 together 
var combinedForest = ee.ImageCollection([Forest,Forest2,Forest3]); 
var Forested = combinedForest.reduce(ee.Reducer.max()); 
 
Map.addLayer(Forested.clip(StudyArea),{palette: ['grey','green']},"Forest cover"); 
 
*/ 
 
 
//// Iterate AGAIN AGAIN for doubtful areas //// 
var fromBoth3= [7,10]; 
var toBoth3 = [1,1]; 
 
var Both3= masked_result3.remap(fromBoth3, toBoth3, 0, 'cluster').rename('Both'); 
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//Create input of doubtful areas 
var masked3_composite = mask.mask(Both3.eq(1)); 
 
// Make the training dataset. 
var training4 = masked3_composite.sample({ 
  region: StudyArea, 
  scale: 30, 
  numPixels: 5000 
}); 
 
// Instantiate the clusterer and train it. 
var clusterer4 = ee.Clusterer.wekaKMeans(5).train(training4); 
 
// Cluster the input using the trained clusterer. 
var result4 = composite.cluster(clusterer4); 
var result4_clip = result4.clip(StudyArea); 
var masked_result4= result4_clip.mask(Both3.eq(1)); 
 
// Display the clusters with random colors. 
Map.addLayer(masked_result4, {min:0, max:4, palette: [  
    'YellowGreen', //0 
    'Gold', //1 
    'ForestGreen', //2 
    'Aquamarine', //3 
    'DodgerBlue', //4 
    ]}, 
'newer newest clusters'); 
 
//Convert to forest 
var fromForest4 = [1,2,3,4]; 
var toForest4 = [1,1,1,1]; 
 
var Forest4 =  masked_result4.remap(fromForest4, toForest4, 0, 'cluster').rename('Forest'); 
 
//add forest, forest2, forest3 & forest 4 together 
var combinedForest = ee.ImageCollection([Forest,Forest2,Forest3,Forest4]); 
var Forested = combinedForest.reduce(ee.Reducer.max()); 
var Forested_clip = Forested.clip(StudyArea); 
 
Map.addLayer(Forested_clip,{palette: ['grey','green']},"Forest cover"); 
 
//Raster to vector conversion 
 
/*Select forested area 
var forest = image.select("Reclassification").eq(1).selfMask(); 
print(forest); 
 
//Projection 
var prj = composite.projection(); 
var scale = prj.nominalScale(); 
print (scale); 
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//// Exporting //// 
/* 
//Export image to drive 
Export.image.toDrive({ 
  image: Forested_clip, 
  description: 'forest_2020_2', 
  scale: 30, 
  region: StudyArea, 
  fileFormat:'GeoTIFF', 
  skipEmptyTiles:true, 
  formatOptions: {cloudOptimized: true} 
}); 
 
//Export image to asset 
/*Export.image.toAsset({   
  image: Forested_clip,   
  description: 'Unsupervised_class_2020',   
  assetId: 'Unsupervised_class_2020', 
  scale:30, 
  region: StudyArea, 
  });*/ 
  



42 
 

Appendix 3: Validation forest cover maps 

 
Figure 11: Validation 1973. Left part of the map created during this study. On the right Hylander's map (Hylander et al., 
2013) 

 

  

Figure 12: Visual validation of 1984. Left map created during this study. On the right the map created by Hylander et al 
(2013) 
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Figure 14: Visual validation of forest cover map 1995. Left the map created in this study. Right the map created by 
Hylander et al. (2013) 

Figure 13:Visual validation of forest cover map 2001. Left the map created during this study and on the right the forest 
cover map created by Hylander et al. (2013) 
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Figure 16: Visual validation of forest cover map 2010. On the left the ma created in this study and on the right the 
forest cover map created by Hylander et al. (2013) 

Figure 15: Visual validation of forest cover map 2020. On the left the map of the sdtusy area created during this research. On the 
right a recent satellite image provided by GEE 
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Appendix 4: R script 
## Install libraries 
install.packages('raster') 
install.packages('rgdal') 
install.packages('devtools') 
library(devtools) 
install_github('dutri001/bfastSpatial') #Rtools is needed 
install.packages('igraph') 
install.packages('fieldRS') 
install.packages("spatialEco") 
install.packages('landscapemetrics') 
install.packages('rasterVis') 
install.packages('RColorBrewer') 
install.packages('ggplot2') 
 
## Call libraries 
library(raster) 
library(rgdal) 
library(bfastSpatial) 
library(igraph) 
library(sp) 
library(fieldRS) 
library(spatialEco) 
library(landscapemetrics) 
library(sf) 
library(rasterVis) 
library(RColorBrewer) 
 
## Set working directory 
setwd("~/SUSD/Master thesis") 
## Load data 
load("R/Truedata3.RData") 
## Load rasters forest cover (geotif) 
fc_1973 <- raster("GIS/New_supervised/1973.tif") 
fc_1984 <- raster("GIS/New_supervised/1984.tif") 
fc_1995 <- raster("GIS/New_supervised/1995.tif") 
fc_2001 <- raster("GIS/New_supervised/2001.tif") 
fc_2010 <- raster("GIS/New_supervised/2010_2.tif") 
fc_2019 <- raster("GIS/New_supervised/2019.tif") 
r<-raster(fc_1973) 
 
## Load water bodies (vector) 
water <- readOGR("GIS/eth_water_lines_dcw/eth_water_lines_dcw.shp") 
# Create raster 
water_r<-rasterize(water,r,field= c(1:4070), fun=min, background=NA) 
water_r <- extend (water_r,(c(1,1))) 
water_r[water_r>0]<-1 
 
## Load study area 
aoi <- readOGR("GIS/Files Patricia/New Study Area/studyarea.shp") 
yayu <- readOGR("GISFiles Patricia/yayu_zone.shp") 
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outside <- readOGR("GIS/Files Patricia/Outside_Study_Area.shp") 
 
## Rasterize aoi 
# change crs 
aoi_rprj <- spTransform(aoi,crs(fc_1973)) 
# Get extent 
aoi_ext <- extent (aoi_rprj) 
# Create raster 
r <- raster(aoi_ext) 
res(r) <- res(fc_1973) 
aoi_r <- rasterize(aoi_rprj,r,field = 1, fun=min, background=0) 
aoi_r <- extend(aoi_r, (c(1,1))) 
aoi_r[is.na(aoi_r)]<-0 
 
## Rasterize yayu 
# change crs 
yayu_rprj<- spTransform(yayu,crs(fc_1973)) 
# Get extent 
yayu_ext <- extent (yayu_rprj) 
# Create raster 
r <- raster(yayu_ext) 
res(r) <- res(fc_1973) 
yayu_r <- rasterize(yayu_rprj,r,field = 1, fun=min, background=0) 
 
## Rasterize outside reserve 
# change crs 
crs(outside)<- crs(fc_1973) 
# Get extent 
outside_ext <- extent (outside) 
# Create raster 
r <- raster(outside_ext) 
res(r) <- res(fc_1973) 
outside_r <- rasterize(outside,r,field = 1, fun=min, background=0) 
 
## Create function for data preparation 
sieve <- function(fc){ 
   
  ## Remove all NAs from data 
  fc[is.na(fc)]<-0 
   
  ## Create logical (True/FALSE) raster 
  fc <- as.logical(fc) 
   
  ## Extend rasters to isolate clumps at the edges 
  r2 <- extend (fc, (c(1,1))) 
  rc <- clump (r2, directions = 4) 
   
  ## Create frequency of unigue IDS of clumps 
  f <- freq (rc) 
  f <- as.data.frame(f) 
   
  ## Check all clumps that are smaller than 11 pixels (about 1 ha) 
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  str(which(f$count < 11))  
  str(f$value[which(f$count < 11)]) 
  excludeID <- f$value[which(f$count < 11)] 
   
  ## Reverse values (0 to 1 and vice versa) for clusters smaller than 11 pixels 
  fc_sieve <- r2 
  fc_sieve[rc %in% excludeID] <- !fc_sieve[rc %in% excludeID] 
  fc_sieve[is.na(fc_sieve)] <- 0 
   
  ## Remove water 
  fc_sieve[water_r==1]<-0 
   
  ## Make all 0s outside study area NA 
  fc_sieve[aoi_r==0]<-NA 
     
  return(fc_sieve) 
} 
 
## Perform data preparation 
sieve_1973 <- sieve(fc_1973) 
sieve_1984 <- sieve(fc_1984) 
sieve_1995 <- sieve(fc_1995) 
sieve_2001 <- sieve(fc_2001) 
sieve_2010 <- sieve(fc_2010) 
sieve_2019 <- sieve(fc_2019) 
 
## Crop map to create raster for yayu reserve 
get_area <- function (map, intended_area){ 
  cropped <- crop(map,extent(intended_area)) 
  cropped [intended_area==0]<-NA 
  return(cropped) 
} 
 
yayu_1973 <- get_area(sieve_1973,yayu_r) 
yayu_1984 <- get_area(sieve_1984,yayu_r) 
yayu_1995 <- get_area(sieve_1995,yayu_r) 
yayu_2001 <- get_area(sieve_2001,yayu_r) 
yayu_2010 <- get_area(sieve_2010,yayu_r) 
yayu_2019 <- get_area(sieve_2019,yayu_r) 
 
outs_1973 <- get_area(sieve_1973,outside_r) 
outs_1984 <- get_area(sieve_1984,outside_r) 
outs_1995 <- get_area(sieve_1995,outside_r) 
outs_2001 <- get_area(sieve_2001,outside_r) 
outs_2010 <- get_area(sieve_2010,outside_r) 
outs_2019 <- get_area(sieve_2019,outside_r) 
 
#### Start analysing fragmentation #### 
 
## Calcute reforestation and deforestation 
## Create functions  
funn <- function (map_old, map_new){ 
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  return(map_old+map_new) 
} 
 
ref_def <- function (map_old, map_new){ 
  diff <- overlay(map_old,map_new, 
                  fun = funn) 
  diff[map_old>map_new]<--1 
  diff[map_old<map_new]<-1 
  return(diff) 
} 
 
## Create maps of reforestation/deforestation 
d73_84 <- ref_def(sieve_1973, sieve_1984) # 1973-1984 
d84_95 <- ref_def(sieve_1984, sieve_1995) # 1984-1995 
d95_01 <- ref_def(sieve_1995, sieve_2001) # 1995-2001 
d01_10 <- ref_def(sieve_2001, sieve_2010) # 2001-2010 
d10_19 <- ref_def(sieve_2010, sieve_2019) # 2010-2019 
d73_19 <- ref_def(sieve_1973, sieve_2019) # 1973-2019 
  
yayu_d73_84 <- ref_def(yayu_1973, yayu_1984) # yayu 1973-1984 
yayu_d84_95 <- ref_def(yayu_1984, yayu_1995) # yayu 1984-1995 
yayu_d95_01 <- ref_def(yayu_1995, yayu_2001) # yayu 1995-2001 
yayu_d01_10 <- ref_def(yayu_2001, yayu_2010) # yayu 2001-2010 
yayu_d10_19 <- ref_def(yayu_2010, yayu_2019) # yayu 2010-2019 
yayu_d73_19 <- ref_def(yayu_1973, yayu_2019) # yayu 1973-2019 
 
## Calculate %forest 
per_forest <- function (map){ 
  freq0 <- freq(map, value=0) 
  freq1 <- freq(map, value=1) 
  total <- freq0+freq1 
  for_lan <- freq1/total*100 
  return(for_lan) 
} 
 
for_1973 <- per_forest(sieve_1973) 
for_1984 <- per_forest(sieve_1984) 
for_1995 <- per_forest(sieve_1995) 
for_2001 <- per_forest(sieve_2001) 
for_2010 <- per_forest(sieve_2010) 
for_2019 <- per_forest(sieve_2019) 
 
yayu_for_1973 <- per_forest(yayu_1973) 
yayu_for_1984 <- per_forest(yayu_1984) 
yayu_for_1995 <- per_forest(yayu_1995) 
yayu_for_2001 <- per_forest(yayu_2001) 
yayu_for_2010 <- per_forest(yayu_2010) 
yayu_for_2019 <- per_forest(yayu_2019) 
 
outs_for_1973 <- per_forest(outs_1973) 
outs_for_1984 <- per_forest(outs_1984) 
outs_for_1995 <- per_forest(outs_1995) 
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outs_for_2001 <- per_forest(outs_2001) 
outs_for_2010 <- per_forest(outs_2010) 
outs_for_2019 <- per_forest(outs_2019) 
 
#### Landscape metrics #### 
## Change CRS to meters 
ncrs<- CRS("+proj=utm +zone=37 +datum=WGS84 +units=m") 
#projection<-"+proj=longlat +datum=WGS84 +units=m +no_defs" 
sieve_1973_rprj <- projectRaster(sieve_1973, crs= ncrs, method="ngb") # Adjust using the nearest 

neighbour method 
sieve_1984_rprj <- projectRaster(sieve_1984, crs=ncrs, method="ngb") 
sieve_1995_rprj <- projectRaster(sieve_1995, crs=ncrs, method="ngb") 
sieve_2001_rprj <- projectRaster(sieve_2001, crs=ncrs, method="ngb") 
sieve_2010_rprj <- projectRaster(sieve_2010, crs=ncrs, method="ngb") 
sieve_2019_rprj <- projectRaster(sieve_2019, crs=ncrs, method="ngb") 
 
yayu_1973_rprj <- projectRaster(yayu_1973, crs=ncrs, method="ngb") 
yayu_1984_rprj <- projectRaster(yayu_1984, crs=ncrs, method="ngb") 
yayu_1995_rprj <- projectRaster(yayu_1995, crs=ncrs, method="ngb") 
yayu_2001_rprj <- projectRaster(yayu_2001, crs=ncrs, method="ngb") 
yayu_2010_rprj <- projectRaster(yayu_2010, crs=ncrs, method="ngb") 
yayu_2019_rprj <- projectRaster(yayu_2019, crs=ncrs, method="ngb") 
 
outs_1973_rprj <- projectRaster(outs_1973, crs=ncrs, method="ngb") 
outs_1984_rprj <- projectRaster(outs_1984, crs=ncrs, method="ngb") 
outs_1995_rprj <- projectRaster(outs_1995, crs=ncrs, method="ngb") 
outs_2001_rprj <- projectRaster(outs_2001, crs=ncrs, method="ngb") 
outs_2010_rprj <- projectRaster(outs_2010, crs=ncrs, method="ngb") 
outs_2019_rprj <- projectRaster(outs_2019, crs=ncrs, method="ngb") 
 
## Distance between patches 
patches_1973 <- get_patches(sieve_1973_rprj,class=1,return_raster = TRUE) 
patches_1984 <- get_patches(sieve_1984_rprj,class=1,return_raster = TRUE) 
patches_1995 <- get_patches(sieve_1995_rprj,class=1,return_raster = TRUE) 
patches_2001 <- get_patches(sieve_2001_rprj,class=1,return_raster = TRUE) 
patches_2010 <- get_patches(sieve_2010_rprj,class=1,return_raster = TRUE) 
patches_2019 <- get_patches(sieve_2019_rprj,class=1,return_raster = TRUE) 
 
yayu_patches_1973 <- get_patches(yayu_1973_rprj,class=1,return_raster = TRUE) 
yayu_patches_1984 <- get_patches(yayu_1984_rprj,class=1,return_raster = TRUE) 
yayu_patches_1995 <- get_patches(yayu_1995_rprj,class=1,return_raster = TRUE) 
yayu_patches_2001 <- get_patches(yayu_2001_rprj,class=1,return_raster = TRUE) 
yayu_patches_2010 <- get_patches(yayu_2010_rprj,class=1,return_raster = TRUE) 
yayu_patches_2019 <- get_patches(yayu_2019_rprj,class=1,return_raster = TRUE) 
 
outs_patches_1973 <- get_patches(outs_1973_rprj,class=1,return_raster = TRUE) 
outs_patches_1984 <- get_patches(outs_1984_rprj,class=1,return_raster = TRUE) 
outs_patches_1995 <- get_patches(outs_1995_rprj,class=1,return_raster = TRUE) 
outs_patches_2001 <- get_patches(outs_2001_rprj,class=1,return_raster = TRUE) 
outs_patches_2010 <- get_patches(outs_2010_rprj,class=1,return_raster = TRUE) 
outs_patches_2019 <- get_patches(outs_2019_rprj,class=1,return_raster = TRUE) 
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dton_1973 <- get_nearestneighbour(patches_1973) 
dton_1984 <- get_nearestneighbour(patches_1984) 
dton_1995 <- get_nearestneighbour(patches_1995) 
dton_2001 <- get_nearestneighbour(patches_2001) 
dton_2010 <- get_nearestneighbour(patches_2010) 
dton_2019 <- get_nearestneighbour(patches_2019) 
 
yayu_dton_1973 <- get_nearestneighbour(yayu_patches_1973) 
yayu_dton_1984 <- get_nearestneighbour(yayu_patches_1984) 
yayu_dton_1995 <- get_nearestneighbour(yayu_patches_1995) 
yayu_dton_2001 <- get_nearestneighbour(yayu_patches_2001) 
yayu_dton_2010 <- get_nearestneighbour(yayu_patches_2010) 
yayu_dton_2019 <- get_nearestneighbour(yayu_patches_2019) 
 
outs_dton_1973 <- get_nearestneighbour(outs_patches_1973) 
outs_dton_1984 <- get_nearestneighbour(outs_patches_1984) 
outs_dton_1995 <- get_nearestneighbour(outs_patches_1995) 
outs_dton_2001 <- get_nearestneighbour(outs_patches_2001) 
outs_dton_2010 <- get_nearestneighbour(outs_patches_2010) 
outs_dton_2019 <- get_nearestneighbour(outs_patches_2019) 
 
## Coefficient of variation nearest neighbour distance 
cnn_1973 <- lsm_l_enn_cv(sieve_1973_rprj,directions = 4) 
cnn_1984 <- lsm_l_enn_cv(sieve_1984_rprj,directions = 4) 
cnn_1995 <- lsm_l_enn_cv(sieve_1995_rprj,directions = 4) 
cnn_2001 <- lsm_l_enn_cv(sieve_2001_rprj,directions = 4) 
cnn_2010 <- lsm_l_enn_cv(sieve_2010_rprj,directions = 4) 
cnn_2019 <- lsm_l_enn_cv(sieve_2019_rprj,directions = 4) 
 
yayu_cnn_1973 <- lsm_l_enn_cv(yayu_1973_rprj,directions = 4) 
yayu_cnn_1984 <- lsm_l_enn_cv(yayu_1984_rprj,directions = 4) 
yayu_cnn_1995 <- lsm_l_enn_cv(yayu_1995_rprj,directions = 4) 
yayu_cnn_2001 <- lsm_l_enn_cv(yayu_2001_rprj,directions = 4) 
yayu_cnn_2010 <- lsm_l_enn_cv(yayu_2010_rprj,directions = 4) 
yayu_cnn_2019 <- lsm_l_enn_cv(yayu_2019_rprj,directions = 4) 
 
outs_cnn_1973 <- lsm_l_enn_cv(outs_1973_rprj,directions = 4) 
outs_cnn_1984 <- lsm_l_enn_cv(outs_1984_rprj,directions = 4) 
outs_cnn_1995 <- lsm_l_enn_cv(outs_1995_rprj,directions = 4) 
outs_cnn_2001 <- lsm_l_enn_cv(outs_2001_rprj,directions = 4) 
outs_cnn_2010 <- lsm_l_enn_cv(outs_2010_rprj,directions = 4) 
outs_cnn_2019 <- lsm_l_enn_cv(outs_2019_rprj,directions = 4) 
 
## Edge to interior ratio(E/I)/core area index (CAI) 
caisd_1973 <- lsm_l_cai_sd(sieve_1973_rprj, edge_depth = 4) 
caisd_1984 <- lsm_l_cai_sd(sieve_1984_rprj, edge_depth = 4) 
caisd_1995 <- lsm_l_cai_sd(sieve_1995_rprj, edge_depth = 4) 
caisd_2001 <- lsm_l_cai_sd(sieve_2001_rprj, edge_depth = 4) 
caisd_2010 <- lsm_l_cai_sd(sieve_2010_rprj, edge_depth = 4) 
caisd_2019 <- lsm_l_cai_sd(sieve_2019_rprj, edge_depth = 4) 
 
yayu_caisd_1973 <- lsm_l_cai_sd(yayu_1973_rprj, edge_depth = 4) 



51 
 

yayu_caisd_1984 <- lsm_l_cai_sd(yayu_1984_rprj, edge_depth = 4) 
yayu_caisd_1995 <- lsm_l_cai_sd(yayu_1995_rprj, edge_depth = 4) 
yayu_caisd_2001 <- lsm_l_cai_sd(yayu_2001_rprj, edge_depth = 4) 
yayu_caisd_2010 <- lsm_l_cai_sd(yayu_2010_rprj, edge_depth = 4) 
yayu_caisd_2019 <- lsm_l_cai_sd(yayu_2019_rprj, edge_depth = 4) 
 
outs_caisd_1973 <- lsm_l_cai_sd(outs_1973_rprj, edge_depth = 4) 
outs_caisd_1984 <- lsm_l_cai_sd(outs_1984_rprj, edge_depth = 4) 
outs_caisd_1995 <- lsm_l_cai_sd(outs_1995_rprj, edge_depth = 4) 
outs_caisd_2001 <- lsm_l_cai_sd(outs_2001_rprj, edge_depth = 4) 
outs_caisd_2010 <- lsm_l_cai_sd(outs_2010_rprj, edge_depth = 4) 
outs_caisd_2019 <- lsm_l_cai_sd(outs_2019_rprj, edge_depth = 4) 
 
caimn_1973 <- lsm_l_cai_mn(sieve_1973_rprj, edge_depth = 4) 
caimn_1984 <- lsm_l_cai_mn(sieve_1984_rprj, edge_depth = 4) 
caimn_1995 <- lsm_l_cai_mn(sieve_1995_rprj, edge_depth = 4) 
caimn_2001 <- lsm_l_cai_mn(sieve_2001_rprj, edge_depth = 4) 
caimn_2010 <- lsm_l_cai_mn(sieve_2010_rprj, edge_depth = 4) 
caimn_2019 <- lsm_l_cai_mn(sieve_2019_rprj, edge_depth = 4) 
 
yayu_caimn_1973 <- lsm_l_cai_mn(yayu_1973_rprj, edge_depth = 4) 
yayu_caimn_1984 <- lsm_l_cai_mn(yayu_1984_rprj, edge_depth = 4) 
yayu_caimn_1995 <- lsm_l_cai_mn(yayu_1995_rprj, edge_depth = 4) 
yayu_caimn_2001 <- lsm_l_cai_mn(yayu_2001_rprj, edge_depth = 4) 
yayu_caimn_2010 <- lsm_l_cai_mn(yayu_2010_rprj, edge_depth = 4) 
yayu_caimn_2019 <- lsm_l_cai_mn(yayu_2019_rprj, edge_depth = 4) 
 
outs_caimn_1973 <- lsm_l_cai_mn(outs_1973_rprj, edge_depth = 4) 
outs_caimn_1984 <- lsm_l_cai_mn(outs_1984_rprj, edge_depth = 4) 
outs_caimn_1995 <- lsm_l_cai_mn(outs_1995_rprj, edge_depth = 4) 
outs_caimn_2001 <- lsm_l_cai_mn(outs_2001_rprj, edge_depth = 4) 
outs_caimn_2010 <- lsm_l_cai_mn(outs_2010_rprj, edge_depth = 4) 
outs_caimn_2019 <- lsm_l_cai_mn(outs_2019_rprj, edge_depth = 4) 
 
## Edge density 
ed_1973 <- lsm_l_ed(sieve_1973_rprj,directions=4) 
ed_1984 <- lsm_l_ed(sieve_1984_rprj,directions=4) 
ed_1995 <- lsm_l_ed(sieve_1995_rprj,directions=4) 
ed_2001 <- lsm_l_ed(sieve_2001_rprj,directions=4) 
ed_2010 <- lsm_l_ed(sieve_2010_rprj,directions=4) 
ed_2019 <- lsm_l_ed(sieve_2019_rprj,directions=4) 
 
yayu_ed_1973 <- lsm_l_ed(yayu_1973_rprj,directions=4) 
yayu_ed_1984 <- lsm_l_ed(yayu_1984_rprj,directions=4) 
yayu_ed_1995 <- lsm_l_ed(yayu_1995_rprj,directions=4) 
yayu_ed_2001 <- lsm_l_ed(yayu_2001_rprj,directions=4) 
yayu_ed_2010 <- lsm_l_ed(yayu_2010_rprj,directions=4) 
yayu_ed_2019 <- lsm_l_ed(yayu_2019_rprj,directions=4) 
 
outs_ed_1973 <- lsm_l_ed(outs_1973_rprj,directions=4) 
outs_ed_1984 <- lsm_l_ed(outs_1984_rprj,directions=4) 
outs_ed_1995 <- lsm_l_ed(outs_1995_rprj,directions=4) 
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outs_ed_2001 <- lsm_l_ed(outs_2001_rprj,directions=4) 
outs_ed_2010 <- lsm_l_ed(outs_2010_rprj,directions=4) 
outs_ed_2019 <- lsm_l_ed(outs_2019_rprj,directions=4) 
 
## Size biggest patch 
lpi_1973 <- lsm_c_lpi(sieve_1973_rprj,directions = 4) 
lpi_1984 <- lsm_c_lpi(sieve_1984_rprj,directions = 4) 
lpi_1995 <- lsm_c_lpi(sieve_1995_rprj,directions = 4) 
lpi_2001 <- lsm_c_lpi(sieve_2001_rprj,directions = 4) 
lpi_2010 <- lsm_c_lpi(sieve_2010_rprj,directions = 4) 
lpi_2019 <- lsm_c_lpi(sieve_2019_rprj,directions = 4) 
 
yayu_lpi_1973 <- lsm_c_lpi(yayu_1973_rprj,directions = 4) 
yayu_lpi_1984 <- lsm_c_lpi(yayu_1984_rprj,directions = 4) 
yayu_lpi_1995 <- lsm_c_lpi(yayu_1995_rprj,directions = 4) 
yayu_lpi_2001 <- lsm_c_lpi(yayu_2001_rprj,directions = 4) 
yayu_lpi_2010 <- lsm_c_lpi(yayu_2010_rprj,directions = 4) 
yayu_lpi_2019 <- lsm_c_lpi(yayu_2019_rprj,directions = 4) 
 
outs_lpi_1973 <- lsm_c_lpi(outs_1973_rprj,directions = 4) 
outs_lpi_1984 <- lsm_c_lpi(outs_1984_rprj,directions = 4) 
outs_lpi_1995 <- lsm_c_lpi(outs_1995_rprj,directions = 4) 
outs_lpi_2001 <- lsm_c_lpi(outs_2001_rprj,directions = 4) 
outs_lpi_2010 <- lsm_c_lpi(outs_2010_rprj,directions = 4) 
outs_lpi_2019 <- lsm_c_lpi(outs_2019_rprj,directions = 4) 
 
## Average size patch 
mn_1973 <- lsm_l_area_mn(sieve_1973_rprj, directions = 4) 
mn_1984 <- lsm_l_area_mn(sieve_1984_rprj, directions = 4) 
mn_1995 <- lsm_l_area_mn(sieve_1995_rprj, directions = 4) 
mn_2001 <- lsm_l_area_mn(sieve_2001_rprj, directions = 4) 
mn_2010 <- lsm_l_area_mn(sieve_2010_rprj, directions = 4) 
mn_2019 <- lsm_l_area_mn(sieve_2019_rprj, directions = 4) 
 
yayu_mn_1973 <- lsm_l_area_mn(yayu_1973_rprj, directions = 4) 
yayu_mn_1984 <- lsm_l_area_mn(yayu_1984_rprj, directions = 4) 
yayu_mn_1995 <- lsm_l_area_mn(yayu_1995_rprj, directions = 4) 
yayu_mn_2001 <- lsm_l_area_mn(yayu_2001_rprj, directions = 4) 
yayu_mn_2010 <- lsm_l_area_mn(yayu_2010_rprj, directions = 4) 
yayu_mn_2019 <- lsm_l_area_mn(yayu_2019_rprj, directions = 4) 
 
outs_mn_1973 <- lsm_l_area_mn(outs_1973_rprj, directions = 4) 
outs_mn_1984 <- lsm_l_area_mn(outs_1984_rprj, directions = 4) 
outs_mn_1995 <- lsm_l_area_mn(outs_1995_rprj, directions = 4) 
outs_mn_2001 <- lsm_l_area_mn(outs_2001_rprj, directions = 4) 
outs_mn_2010 <- lsm_l_area_mn(outs_2010_rprj, directions = 4) 
outs_mn_2019 <- lsm_l_area_mn(outs_2019_rprj, directions = 4) 
 
## Total patch area\ 
ca_1973 <- lsm_c_ca(sieve_1973_rprj, directions = 4) 
ca_1984 <- lsm_c_ca(sieve_1984_rprj, directions = 4) 
ca_1995 <- lsm_c_ca(sieve_1995_rprj, directions = 4) 
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ca_2001 <- lsm_c_ca(sieve_2001_rprj, directions = 4) 
ca_2010 <- lsm_c_ca(sieve_2010_rprj, directions = 4) 
ca_2019 <- lsm_c_ca(sieve_2019_rprj, directions = 4) 
 
yayu_ca_1973 <- lsm_c_ca(yayu_1973_rprj, directions = 4) 
yayu_ca_1984 <- lsm_c_ca(yayu_1984_rprj, directions = 4) 
yayu_ca_1995 <- lsm_c_ca(yayu_1995_rprj, directions = 4) 
yayu_ca_2001 <- lsm_c_ca(yayu_2001_rprj, directions = 4) 
yayu_ca_2010 <- lsm_c_ca(yayu_2010_rprj, directions = 4) 
yayu_ca_2019 <- lsm_c_ca(yayu_2019_rprj, directions = 4) 
 
outs_ca_1973 <- lsm_c_ca(outs_1973_rprj, directions = 4) 
outs_ca_1984 <- lsm_c_ca(outs_1984_rprj, directions = 4) 
outs_ca_1995 <- lsm_c_ca(outs_1995_rprj, directions = 4) 
outs_ca_2001 <- lsm_c_ca(outs_2001_rprj, directions = 4) 
outs_ca_2010 <- lsm_c_ca(outs_2010_rprj, directions = 4) 
outs_ca_2019 <- lsm_c_ca(outs_2019_rprj, directions = 4) 
 
## Patch variability (patch size standard deciation) 
sd_1973 <- lsm_c_area_sd(sieve_1973_rprj, directions = 4) 
sd_1984 <- lsm_c_area_sd(sieve_1984_rprj, directions = 4) 
sd_1995 <- lsm_c_area_sd(sieve_1995_rprj, directions = 4) 
sd_2001 <- lsm_c_area_sd(sieve_2001_rprj, directions = 4) 
sd_2010 <- lsm_c_area_sd(sieve_2010_rprj, directions = 4) 
sd_2019 <- lsm_c_area_sd(sieve_2019_rprj, directions = 4) 
 
yayu_sd_1973 <- lsm_c_area_sd(yayu_1973_rprj, directions = 4) 
yayu_sd_1984 <- lsm_c_area_sd(yayu_1984_rprj, directions = 4) 
yayu_sd_1995 <- lsm_c_area_sd(yayu_1995_rprj, directions = 4) 
yayu_sd_2001 <- lsm_c_area_sd(yayu_2001_rprj, directions = 4) 
yayu_sd_2010 <- lsm_c_area_sd(yayu_2010_rprj, directions = 4) 
yayu_sd_2019 <- lsm_c_area_sd(yayu_2019_rprj, directions = 4) 
 
outs_sd_1973 <- lsm_c_area_sd(outs_1973_rprj, directions = 4) 
outs_sd_1984 <- lsm_c_area_sd(outs_1984_rprj, directions = 4) 
outs_sd_1995 <- lsm_c_area_sd(outs_1995_rprj, directions = 4) 
outs_sd_2001 <- lsm_c_area_sd(outs_2001_rprj, directions = 4) 
outs_sd_2010 <- lsm_c_area_sd(outs_2010_rprj, directions = 4) 
outs_sd_2019 <- lsm_c_area_sd(outs_2019_rprj, directions = 4) 
 
## Number of patches/core areas 
id_1973 <- get_unique_values(patches_1973,simplify = TRUE) 
id_1984 <- get_unique_values(patches_1984,simplify = TRUE) 
id_1995 <- get_unique_values(patches_1995,simplify = TRUE) 
id_2001 <- get_unique_values(patches_2001,simplify = TRUE) 
id_2010 <- get_unique_values(patches_2010,simplify = TRUE) 
id_2019 <- get_unique_values(patches_2019,simplify = TRUE) 
 
yayu_id_1973 <- get_unique_values(yayu_patches_1973,simplify = TRUE) 
yayu_id_1984 <- get_unique_values(yayu_patches_1984,simplify = TRUE) 
yayu_id_1995 <- get_unique_values(yayu_patches_1995,simplify = TRUE) 
yayu_id_2001 <- get_unique_values(yayu_patches_2001,simplify = TRUE) 
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yayu_id_2010 <- get_unique_values(yayu_patches_2010,simplify = TRUE) 
yayu_id_2019 <- get_unique_values(yayu_patches_2019,simplify = TRUE) 
 
outs_id_1973 <- get_unique_values(outs_patches_1973,simplify = TRUE) 
outs_id_1984 <- get_unique_values(outs_patches_1984,simplify = TRUE) 
outs_id_1995 <- get_unique_values(outs_patches_1995,simplify = TRUE) 
outs_id_2001 <- get_unique_values(outs_patches_2001,simplify = TRUE) 
outs_id_2010 <- get_unique_values(outs_patches_2010,simplify = TRUE) 
outs_id_2019 <- get_unique_values(outs_patches_2019,simplify = TRUE) 
 
np_1973 <- which.max(id_1973) 
np_1984 <- which.max(id_1984) 
np_1995 <- which.max(id_1995) 
np_2001 <- which.max(id_2001) 
np_2010 <- which.max(id_2010) 
np_2019 <- which.max(id_2019) 
 
yayu_np_1973 <- which.max(yayu_id_1973) 
yayu_np_1984 <- which.max(yayu_id_1984) 
yayu_np_1995 <- which.max(yayu_id_1995) 
yayu_np_2001 <- which.max(yayu_id_2001) 
yayu_np_2010 <- which.max(yayu_id_2010) 
yayu_np_2019 <- which.max(yayu_id_2019) 
 
outs_np_1973 <- which.max(outs_id_1973) 
outs_np_1984 <- which.max(outs_id_1984) 
outs_np_1995 <- which.max(outs_id_1995) 
outs_np_2001 <- which.max(outs_id_2001) 
outs_np_2010 <- which.max(outs_id_2010) 
outs_np_2019 <- which.max(outs_id_2019) 
 
##Note down all data 
 
##Export dton to csv 
write.csv2(dton_1973, 
           "R/dton_1973.csv", 
           row.names=FALSE) 
write.csv2(dton_1984, 
           "R/dton_1984.csv", 
           row.names=FALSE) 
write.csv2(dton_1995, 
           "R/dton_1995.csv", 
           row.names=FALSE) 
write.csv2(dton_2001, 
           "R/dton_2001.csv", 
           row.names=FALSE) 
write.csv2(dton_2010, 
           "R/dton_2010.csv", 
           row.names=FALSE) 
write.csv2(dton_2019, 
           "R/dton_2019.csv", 
           row.names=FALSE) 
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write.csv2(yayu_dton_1973, 
          "R/yayu_dton_1973.csv", 
          row.names=FALSE) 
write.csv2(yayu_dton_1984, 
          "R/yayu_dton_1984.csv", 
          row.names=FALSE) 
write.csv2(yayu_dton_1995, 
           "R/yayu_dton_1995.csv", 
           row.names=FALSE) 
write.csv2(yayu_dton_2001, 
           "R/yayu_dton_2001.csv", 
           row.names=FALSE) 
write.csv2(yayu_dton_2010, 
           "R/yayu_dton_2010.csv", 
           row.names=FALSE) 
write.csv2(yayu_dton_2019, 
           "R/yayu_dton_2019.csv", 
           row.names=FALSE) 
 
write.csv2(outs_dton_1973, 
          "R/outs_dton_1973.csv", 
          row.names=FALSE) 
write.csv2(outs_dton_1984, 
          "R/outs_dton_1984.csv", 
          row.names=FALSE) 
write.csv2(outs_dton_1995, 
           "R/outs_dton_1995.csv", 
           row.names=FALSE) 
write.csv2(outs_dton_2001, 
           "R/outs_dton_2001.csv", 
           row.names=FALSE) 
write.csv2(outs_dton_2010, 
           "R/outs_dton_2010.csv", 
           row.names=FALSE) 
write.csv2(outs_dton_2019, 
           "R/outs_dton_2019.csv", 
           row.names=FALSE) 
 
##Save rasters for visualisation in QGIS 
writeRaster(d73_84, "Rasters difference/d73_84.tif") 
writeRaster(d84_95, "Rasters difference/d84_95.tif") 
writeRaster(d95_01, "Rasters difference/d95_01.tif") 
writeRaster(d01_10, "Rasters difference/d01_10.tif") 
writeRaster(d10_19, "Rasters difference/d10_19.tif") 
writeRaster(d73_19, "Rasters difference/d73_19.tif") 
 
writeRaster(yayu_d73_84, "Rasters difference/Yayu d73-84.tif") 
writeRaster(yayu_d84_95, "Rasters difference/Yayu d84-95.tif") 
writeRaster(yayu_d95_01, "Rasters difference/Yayu d95-01.tif") 
writeRaster(yayu_d01_10, "Rasters difference/Yayu d01_10.tif") 
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writeRaster(yayu_d10_19, "Rasters difference/Yayu d10-19.tif") 
writeRaster(yayu_d73_19, "Rasters difference/Yayu d73-19.tif") 


