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Introduction

This thesis concludes the work that I have done between January 2012 and September 2012
at the National Aerospace Laboratory of the Netherlands (Nederlands Lucht en Ruimtevaart
Laboratorium, NLR) as my master thesis, which is made up out of two parts; the work that
I have done within the context of the C-Share project and the research that was done in
succession to this.

The C-Share project concerns itself with developing automated tools for Air Traffic
Management that plans paths in 2D+time while keeping Air Traffic Controllers involved
in the decision making. My part in this project was to implement a module which is
capable of planning paths for aircraft, which are then presented to the Air Traffic Controllers.
The module that I have implemented contains a modified version of the Rapidly-exploring
Random Tree algorithm [9], which performs well in the C-Share context, but also exposed
the need for better path planning algorithms, which leads to the second part of this thesis.

In my research I have developed two algorithms which are capable of planning paths in
the 2D+time amongst moving obstacles, which can be travelled at a constant speed which
is chosen from an interval of speeds which is provided as a part of the solution. This type of
planning originates from the C-Share context and can be used in Air Traffic Managements,
since it not only allows an entity to travel at a constant speed, it also lets the entity pick an
arrival time. This is particularly useful when aircraft need to get back, or stay on schedule,
so that delays can be avoided and future conflicts between aircraft and a delayed aircraft
can be eliminated. The algorithms that were developed were tested on a number of different
sets of scenarios and the performance was measured by recording the rate of success, the
time it took to find a solution, and the length of the shortest path.
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1 The C-Share Project

This thesis is made up out of two parts; the work that was done for the C-Share project and
the research that was done in succession to this. In this section I will go into a high level
description of the C-Share project and its context, such as the field of air traffic management
and the consortium partners. Next, I will introduce the concept of the Joint Cognitive
System, followed by a description of my involvement in the project.

1.1 Air Traffic Management

Air Traffic Management (ATM) is the regulation of civilian air traffic done by Air Traffic
Controllers (ATCos), who have the responsibility of making sure that all air traffic is guided
in such a way that no dangerous situations arise. In order to do this, ATCos are in contact
with the aircraft and can instruct a pilot to make changes to, for instance, his aircraft’s
speed or direction. ATM is considered to be a difficult and responsible task that is becoming
increasingly more complicated due to the constant increase of the amount of air traffic.

Taking the growth of the air traffic sector into consideration, it is important to keep
looking for solutions that can aid ATCos with finding solutions for potentially dangerous
situations [4]. The C-Share project concerns itself with designing a shared representation
of the air space, in order to present comprehensible resolutions for conflicts to the ATCos.
This project is executed by a consortium between the NLR , Thales Netherlands, and Delft
University of Technology. The project has started in May of 2011 and has a duration of 30
months.

1.2 Joint Cognitive System

The top priority of the C-Share project is to develop a piece of automation that can assist
ATCos, which is designed according to the principle of the Joint Cognitive System (JCS).
The idea of a JCS is that both the automated agents and the users use that same repre-
sentation of the world in order to avoid discrepancies between their views on the situation.
Secondly, the automated agents are not allowed to implement any solutions; the solutions
it produces are presented to the ATCos who must then make the final decision, opposed to
free-flight models as seen in [12]. The way that the solutions of the automated agents are
presented to the users, is targeted to be so that the user is shown the reasoning behind it,
thus allowing for a deeper insight into the decision making of the automated agents.

The JCS is made up out three elements; the environment, the automated agents, and
the human actors. The environment stores all the data on the world and is fed by different
servers, such as a traffic server and a weather server, and shares its information through the
Functional Airspace Representation (FAR) and the Functional Airspace View (FAV), with
the other elements.

1.3 Involvement in the Project

An essential part of the C-Share project is the planning of trajectories for aircraft at a
timescale of roughly twenty minutes. This involves both hard and soft constraints that
should be taken into account. Each suggested trajectory must be flyable and respect all
separation criteria with regard to all other aircraft without exception. There are normally
two separation criteria; aircraft may not approach each other closer than a distance ls in
the earth’s plane, also called lateral separation. The second criterion is that aircraft must
also maintain a vertical separation of a certain distance vs. Next to these hard constraints,
there are soft constraints such as the interests of multiple parties which must be looked
after, as for instance the air traffic controller, the airline, and the pilots. Each party brings
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new constraints and/or preferences to the table which will possibly conflict with the ones
from other parties. An example of this is that an airline will prefer to minimize fuel burn,
while an ATCo will give preference to optimizing the comprehensibility which may not be
compatible with the airlines wishes. The objective of the C-Share project was to design
and implement the first version of the automated agents that is part of the JCS, which is
responsible for creating the before mentioned trajectories.
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2 The C-Share Problem

In the previous section the C-Share project was explained and we will continue on this in
the next section. I will put forward the software that was implemented within the scope of
the C-Share project, followed up with the difficulties that were encountered during the work
on this part of my internship. This will lead to the motivation for the need to develop new
algorithms, succeeded by the problem formulation and eventually the research question.

2.1 Problem Description

For the first version of the JCS, it was decided to simplify the original problem in order
to put more emphasis on the collaboration between the different parts of the system. For
this version of the JCS, the problem was defined as follows; given a set of aircraft travelling
in a straight line at a constant speed, find all conflicting aircraft and be able to suggest
a new trajectory for one of the conflicting aircraft. We chose to let all aircraft travel in
the same plane and each aircraft was represented by a disc centered at the aircraft position
with a radius 0.5 ∗ ls, where ls is the minimal required lateral separation. Each solution
was required to, at some point, resume the trajectory it was replacing in both space and
time. Secondly, each solution can only use two speeds, the original speed at which at it
was travelling and another one to resolve the conflict. Since the original trajectory must be
resumed, each solution must be made up out of three parts; a part of the original trajectory
with the original speed, a trajectory with a different speed that resolves the conflict, and
another trajectory from the original path at the original speed. Next to these constraints,
the new trajectory may only implement speeds which are within the performance model of
the aircraft for which that trajectory is intended. Lastly, the module is required to be able
to calculate the cost of the new trajectories with an adaptable cost function, and be able
to selected the trajectories that have the lowest cost. In this implementation a simple cost
function was used, namely the length of the trajectory, because developing more complicated
cost functions is outside the scope of this thesis.

2.2 Literature

The problem described in the previous section is a path planning problem in two dimensions
plus a time dimension. In this section I will go into the different classes of path planning
algorithms that can be used in order to solve our problem, and discuss the suitability of
each class by considering their pros and cons.

2.2.1 Potential Field Methods

Potential Field Methods is a class of path planning algorithms that relies on attractive and
repellant forces to guide an entity through the configuration space. For instance, the goal
state would have an attractive force, opposed to obstacles who exert a repellant force. The
potential field created by the forces on the configuration space can be searched using algo-
rithms such Hill climbing or Gradient descent. These methods are known to be vulnerable to
local minima which is a great disadvantage, since it would mean that the goal configuration
is not reached. More importantly, combining the time-based aspect of our problem with a
potential method, is not trivial since a force does not take into account that an obstacles is
moving. In other words, a path of a moving obstacle can not be anticipated through a force,
meaning that a potential field method might not be possible or requires a lot of adaptations.
Despite the fact that these disadvantages make it very unattractive to develop a potential
field algorithm for our problem, there are some advantages to it as is shown in [10]. An
example of this is that these methods produce smooth, curved paths by themselves, which
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might be required in a later stage. However, the pros do not outweigh the cons thus this
class of path planning techniques was not chosen.

2.2.2 Roadmaps

Roadmaps by itself is not a path planning technique, but merely the concept of building
a graph in the configuration space that describes how various configurations are connected
to each other. If all configurations of a roadmap are connected, a path can be found if the
start and goal configuration can be connected to the roadmap. A roadmap can typically be
used for multiple queries if required.

2.2.3 Cell Decomposition Methods

Cell Decomposition Methods are based on the principle of dividing the configuration space
into simple cells which are then connected to each other forming a roadmap. An important
feature of this class of methods is that they guarantee completeness, which means that a
solution will always be found if one exists. Despite this great advantage, CDM do have
a considerable number of disadvantages when applying them to our problem. For one,
CDM will become progressively harder to implement when incrementing the number of
dimensions of the problem, which might provide problems in the future when expanding
the problem. Secondly, CDM can require a lot a time to run since the whole configuration
space is indexed, which may not be necessary. Overall, I did not choose to develop a cell
decomposition method due to the first stated disadvantage, because I believe it is important
that the developed method is scalable.

2.2.4 Grid-Based Methods

Grid-based Methods (GBM) or Grid-based search methods place a grid over the config-
uration space and build a graph between adjacent points of the grid in order to build a
graph for which a solution can be extracted. When a coarser grid is used, the algorithm
will become faster at the expense of the possibility to find a path through more narrow
passages. A great downside of this kind of algorithm is that the number of points in the grid
grows exponentially with the number of dimensions, which makes it unsuitable for future
expansions. In the C-Share project we are dealing with three dimensions (2D+time) but
this could be scaled to include more complex flight dynamics such as the pitch, roll, and jaw
of a an aircraft, up to the angular acceleration which might considerably raise the number of
dimensions. The fact that GBM are easy to implement and guarantee completeness within
the resolution of the grid, does not outweigh the downside, thus this kind of method was
not chosen.

2.2.5 Sampling-Based Methods

Sampling-based Methods can be roughly classified into two categories; Probabilistic Road-
maps (PRM) and Rapidly-exploring Random Trees (RRT). Both these algorithms rely on a
graph or tree that is expanded by attempting to add and connect randomly chosen config-
urations to it. A direct downside of this is that sampling-based methods do not guarantee
completeness. However, sampling-based methods can often proven to be probabilistically
complete, which means that the probability that a solution will be found, given that at least
one exists, will converge to 1 as the number of added configurations will approach infinity.
One advantage of sampling-based methods is the fact that they can easily be adapted to
higher dimensions, because these methods simply deal with configuration-configuration con-
nections which makes the amount of work proportional to the number of configurations that
is added. This the opposite of for instance cell decomposition methods or grid-based methods

8



were the amount grows exponentially with the number of dimensions. The configuration-
configuration connections are left up to the local planner, which is a method that determines
whether a connection can be travelled within the constraints of the problem, such as obsta-
cles or speed constraints. Local planners often simply use a linear interpolation between two
configurations, but can be expanded to deal with any kind of interpolation which is useful
when dealing with our problem, since it makes it possible to incorporate flight dynamics as
complicated as desired. Having a local planner incorporated into the algorithm is an ad-
vantage, since it means that the algorithm need not be adapted when the dimensionality of
the problem is changed, because the local planner can simply be replaced for one that does
handle the new dimensionality. Overall the sampling-based methods score very positively
compared to the other class of path planning algorithms. On top of this, previous work done
at the NLR [14] shows that both PRM and RRT are suitable for solving our problem. In
the following to paragraphs I will go into the differences between PRM and RRT.

Probabilistic Roadmaps This technique builds a roadmap in the configuration space by
attempting to add randomly chosen nodes to a graph and later connecting the start and goal
configuration to the graph. The main difference with RRT, is that PRM directly connects
to the new candidate node whereas RRT use a less greedy approach. Another difference is
that PRM typically connect multiple times to a newly added node. PRM are a multiple-shot
approach which means that a roadmap can be used multiple time since it is not dedicated
to a specific pair of start and goal configurations, opposed to RRT which is a single-shot
approach.

Rapidly-exploring Random Trees Rapidly-exploring Random Trees or Rapid Random
Trees (algorithms 1,2) is a form of probabilistic path planning which has been first described
by laValle [7]. The idea of this method is to explore the configuration space in a non-
greedy fashion, in order to make a graph that connects the start and goal configuration.
This is done by starting with the start configuration and repeatedly placing a randomly
chosen configuration within a distance u of the closest configuration in the graph, followed
by attempting to connect the two, as seen in algorithm 1. As the algorithm progresses
throughout the configuration space it will reach the goal with probabilistic completeness.
When this happens, the adding of nodes is stopped and the graph can be traversed for
the solution. A note must be made about the metrics that are used for determining which
configuration in the graph is the closest to the random configuration, and for place the
random configuration at a distance u. Namely, this is not trivial when using dimensions
of different nature such as euclidean dimensions versus time dimensions. In this thesis all
distances between configurations will only be measured in the euclidean dimensions.

The largest difference with PRM is that RRT use non-greedy exploration, which trades
speed for a higher probability of adding a new node. This property introduces a new concept
named Voronoi Bias, which is another way of saying that the probability of exploring towards
an unexplored part of space, is proportional to the size of that chunk of space. This can
be visualized by imagining a graph and dividing all of the space according to a Voronoi
diagram using the nodes of that graph as its seeds. A larger cell in this diagram can be said
to indicate an unexplored piece of space, since each cell holds exactly one node and thus
larger cells are less explored. Since the probability of picking a random configuration from
a cell is equal to the size of that cell divided by the size of the total space, less explored
cells have a higher probability of containing the next random configuration and thus have a
higher probability of being explored. This effect is called a Voronoi bias.

Another consequence of using non-greedy exploration is that the graph of an RRT typ-
ically contains shorter edges than those in a roadmap made with PRM. In the context of
ATM this can be considered to be a downside of RRT, since ATCos prefer trajectories that
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consist of longer, and thus fewer edges because this means less workload and a more com-
prehensible situation. However, making shortcuts on a solution will reduce the number of
edges in a solution thus making it compatible with the ATCos preferences.

A third advantage of RRT over PRM is that the fact that RRT attempt to connect the
start and goal configuration, which can be exploited by introducing a bias towards the goal
in the sampling of the new randomly chosen nodes, or even grow two graphs towards each
other [6]. This is not as easy with PRM since a roadmap, by definition, is a multi-shot
technique which therefore can not be biased towards a goal since a multi-shot technique
does not take a goal configuration into account. Having a goal bias is a heuristic which
reduces the time needed for a solution to be found [13].

Both RRT and PRM have shown able to cope with higher dimensionality, however RRT
have the advantage of being a single-shot technique, which means that the graph can be
directed. This is already the case with most RRT because their graph is a tree, but this
especially important when applying it to kynodynamic, or otherwise time-involved path
planning [1], [8], [2], even though PRM have been applied to these kinds of problem as
well [3].

I chose to make an implementation of a RRT instead of a PRM because of the fact that the
C-Share problem requires only a single-shot technique, since each query for a new trajectory
often contains a different set of obstacles and a different start and goal configuration. The
C-Share project also require the method to involve a time dimension which results in the
fact that configuration-configuration connections become directed. This is in favor of RRT
because it uses a directed graph by nature, namely a tree.

Algorithm 1 Build RRT(xinit)

1: τ.init(xinit)
2: for k = 1 to K do
3: xrand ← Random State()
4: Extend(τ,xrand)

5: return τ

Algorithm 2 Extend(Graph τ , Node xrand)

1: xnear ← FindNearestNode(xrand)
2: if Distance(xnear, xrand) > u then
3: Move xrand towards xnear until Distance(xnear, xrand) = u

4: if Edge(xnear, xrand) is does not intersect any obstacles then
5: AddConfiguration(xrand)
6: AddEdge(xnear, xrand)
7: if xrand has not been moved then
8: return Reached . xrand has been reached.
9: else

10: return Advanced . The graph advanced in the direction of xrand.

11: else
12: return Trapped . No progression has been made

2.3 Module Description

In the previous section I have concluded that RRTs are the most suitable for solving the
problem stated in section 2.1. In this section I will elaborate on the implementation of an
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adaptation of the RRT algorithm for this problem. However, I will first go into the part of
the module that takes care of the communication with the rest of the JCS.

2.3.1 TCP/XML Communication

The module communicates with the rest of the system using a TCP connection, which
was chosen so that the different modules of the JCS could be written in any programming
language on any platform. Another advantage is that a TCP connection can be established
over the internet or LAN, through a cable, or within one computer, which facilitates the
debugging and testing sessions.

It was agreed upon that the format of the data that is sent through the TCP connection
is in the XML-format. The developed module is a passive module in the sense that it only
responds to calls instead of spontaneously generating calls. The only exception to this is
during the initialization of the module, when it asks the server for the data of the airspace
and data concerning the coordinate system.

Call description Every XML-file which is transferred between the modules of the JCS is
required to contain the following (meta-)data;

Call ID This is used to link an answer to a question.

Function Name When the module is initialized it will request two things from the JCS,
a description of the boundaries of the airspace and the center of projection used for the
geographic coordinate system.

2.3.2 Path Planning

The path planning function of the module can be called in order to resolve a conflict by the
JCS. The call takes a callsign of an aircraft in order to identify it, acc, and the current time,
tc, as arguments. The conflict detection function is called in order to check whether acc
has any upcoming conflicts within a certain time from tc which can be taken into account.
The idea of the function is to remove the part of the original trajectory which contains the
conflict, and fill the resulting gap with a trajectory that can be flown at a constant speed
using a bidirectional RRT [5] (algorithm 4).

Bidirectional RRT Since it is preferable to resume the original path after avoiding a
conflict, we chose to use the bidirectional variation of the RRT algorithm (algorithm 4).
This variation can start with either two nodes or two graphs, which are grown alternatingly
towards each other until they become connected. A trajectory can be though of as a graph,
so when a piece of a trajectory is removed from the middle, the result are two graphs. This
is done in the context of the C-Share project, were the two starting graphs are obtained by
taking the original trajectory and removing the part which contains a conflict. These two
pieces of trajectory are then connected again using a biRRT. This is advantageous over the
original RRT because the solution produced by a biRRT does not necessarily contain every
node from the starting graphs, such that the number of possible solutions becomes larger
opposed to when an original RRT would have been used to connect xf to xl. In other words,
the biRRT is given freedom in terms of how much of the original trajectory is used.

Path Recycling The RRT is only able to connect two nodes together instead of connecting
a node halfway to an edge. In order to overcome this, extra nodes were interpolated on the
original path of acc, acc.p0 (algorithm 3 line 10). This gives the biRRT more options on
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Algorithm 3 PlanPath(Aircraft ac, toffset, Traffic T )

1: define ac.p0 : {x0, . . . , xn} as the original trajectory of the aircraft
2: if ac is involved in a conflict then . This is checked in a manner comparable to

algorithm 5
3: tf ← find the first moment that ac is involved in a conflict
4: tl ← find the last moment that ac is involved in a conflict
5: tf ← max(tf − toffset, x0.time)
6: tl ← min(tl + toffset, xn.time)
7: xf ← interpolate tf in ac.p0
8: xl ← interpolate tl in ac.p0
9: insert xf and xl in ac.p0

10: interpolate nodes every 30 seconds along ac.p0
11: remove all nodes between xf and xl
12: define τa and τb as a 2D+T graph
13: τa ← {x0, . . . , xf}
14: τb ← {xl, . . . , xn}
15: define pnew to be a trajectory in 2D+T . Not every configuration has to have a

time.
16: pnew ← RunBiDirectionRRT(τa,τb) . In 2D
17: xi ← the first node from pnew which does not have a time
18: xj ← the last node from pnew which does not have a time
19: gap.length← the length of {xi−1, . . . , xj+1}
20: gap.time← xj+1.time− xi−1.time
21: gap.speed← gap.length/gap.time
22: for s← i to j + 1 do
23: xs.time← xs−1.time+ Distance(xs−1, xs)/gap.speed . Adding times to the

new configurations

24: if pnew ∩ (T − ac) = ∅ ∧ pnew is flyable according to BADA then . Validation
25: return pnew

Algorithm 4 RunBiDirectionalRRT(Graph τa, Graph τb, Node xstart, Node xgoal)

1: for k = 1 to K do
2: xrand ← Random State()
3: if ¬Extend(τa, xrand) = Trapped then
4: if Extend(τb, xrand) = Reached then
5: return Path(xstart,xgoal)

6: Swap(τa,τb)

7: return Failure
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how much of the original path is reused. The second argument of planPath, toffset, can be
used to control how much of the original path is being used for the biRRT method.

Flight Dynamics At this time, the module only verifies whether the aircraft is capable
of flying the different speeds used in a solution. This is done by a piece of software which is
a variation of the the Eurocontrol Base of Aircraft Data (BADA).

Parameters The PlanPath function has two variables which are not provided by the
call, toffset and, the maximal edge length u. For each variable a for loop was implemented
that iterates over a range of values. The boundaries of this range and the step size are
defined in an external file, so that they can easily be modified if needed.

2.3.3 Conflict Detection

When the module receives a request to detect conflicts, it will request the current state of
the traffic from the traffic server. After the traffic has been received, all conflicts occurring
within the look-ahead time are detected using algorithm 5. The look-ahead time is an
optional argument of the method and is by default set to 20 minutes.

Algorithm 5 Detect Conflicts(Traffic T , look-ahead time tla, the current time tc)

1: for all Aircraft ac1 ∈ T do
2: for all Aircraft ac2 ∈ T do
3: if ac1 and ac2 intersect at a time within tla from tc then
4: report conflict(ac1,ac2)

Each conflict that is reported contains following information;

• the callsigns of the involved aircraft

• the begin time

• the end time

• the smallest distance between the involved aircraft

2.4 Conclusions

The adaptation of the biRRT that was implemented together with the function for detecting
conflicts showed to be sufficient during the first trials of the JCS. Furthermore, the literature
showed that there do not yet exist methods able of planning paths that can be travelled
at a constant speed amongst moving obstacles. Though the implementation of the module
yielded valid solutions, it does still suffer from several disadvantages such as not being able
to make shortcuts without introducing an extra speed that should be flown, or the fact that
the method will occasionally reject a candidate solution.
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3 Problem Formulation

From the literature study that was done in the C-Share project, it can be concluded that
there does not yet exist a solution targeted for motion planning with a constant, yet unknown
speed. This proved to be a difficulty when doing 2D+T motion planning, because in order
to get a constant speed, the speed profiling had to be done afterwards, which meant that the
edges in the graph had to be validated after a candidate solution had been built. This was
unsatisfactory since it meant that every so often, candidate solutions would be discarded.

This is why I have committed the research I have done during my time at the NLR, to
developing algorithms that would be able to perform this kind of motion planning. Having
these kinds of planning algorithms will be valuable for applications such as ATM due to
constraints in this field.

Since the C-Share project deals with a large number of both soft and hard constraints,
I will put forward the exact requirements for the new algorithms which will contain not all
constraints and some will be simplified. After this I will discuss the goals of the experiments
and the measurements that will be done during the experiments.

3.1 Problem Description

3.1.1 Configuration Space

In the C-Share project, both the moving obstacles and the entity for which new paths are
planned live in a 2D+time dimensional space, which we will call Cspace. The original problem
of planning paths for actual aircraft is in 3D+time, but this was simplified. The algorithms
that will be developed will be required to be able to plan paths in 2D+time, similar to the C-
Share project, although the dimensionality should be scalable. Therefore the configuration
space of this problem and thus for the experiments is a 2D+time dimensional space. A
part of Cspace is defined as Croom which has boundaries in the two euclidean dimensions;
[0, xmax] and [0, ymax], and [0,→〉 for the time dimension.

3.1.2 Obstacles

The motion planning problem in the C-Share project sets itself apart from most other
motion planning problems because the obstacles are moving and each one has a fully known
trajectory in 2D+time. The set of moving obstacles with a known trajectory is called O,
and lies fully within Cspace but not per se fully in Croom;

O ⊂ Cspace

and
O ∩ Croom 6= ∅

Other kinds of obstacles such as static obstacles or moving obstacles with an unknown
or partially known path are outside of the scope of this thesis.

The moving obstacles that are considered in this thesis have the same shape as the
obstacles in the C-Share project, namely a disc shape. This comes from the lateral separation
criterion that should always be maintained between aircraft. The radius of the disc is equal to
the lateral separation distance whereas normally this would be half of the lateral separation
distance. This is explained further on when the entity for which the paths are planned is
introduced. Regards of this, the algorithms are required to be designed such that they are
adaptable to any kind of shape.

To summarize the properties of the obstacles,

• moving with a known trajectory
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• the trajectory is in 2D+time

• linear interpolation between points of the trajectory

• represented by a disc with radius equal to the lateral separation distance

3.1.3 Entity

The entity for which the path is planned is an abstraction of an aircraft simlilar to the
moving obstacles, and is called e. In order to achieve a formal definition, I will state the
properties of e from scratch, instead of simplifying the C-Share context.

First off, the shape of e was originally a disc with a radius of half of the lateral separation
distance, but this is reduced to a point. This is done by taking the Minkowsky sum of the
original shape of an obstacle and the entity which both are a discs with a radius of half the
lateral separation distance. The result of the Minkowsky sum is that the obstacles becomes
discs with the lateral separation distance as the radius, and the entity becomes a point.
From this, a requirement for a valid path is that it should not overlap with any obstacle, or
in other words the entity may only travel through the free configuration space, Cfree, which
is defined as follows.

Cspace \O = Cfree

which leads to
e ∩O = ∅

and
e ⊂ Cfree

Secondly, the entity has speed limitations similar to those of an aircraft, namely a min-
imum and maximum speed called vmin and vmax. This means that at no point the entity
will be able to travel faster than vmax or slower than vmin.

Next to these constraints, e has a few other properties which can be seen as simplifications
of the original properties of an aircraft. Namely, e has instantaneous acceleration which
means that it is able to change the direction in which it is heading instantaneously and the
same goes for its speed, even though speed changes will not be used.

Finally, e is only allowed to navigate through a confined part of Cspace which is called
the room, or Croom.

e ⊂ Croom ⊂ Cspace

To summarize the properties of the entity,

• point shape

• may not intersect with O

• instantaneous accelaration

• can not travel faster than vmax or slower than vmin

• can only travel within Croom

3.1.4 Solutions

In the C-Share project some of the preferences of ATCos and other involved parties in that
project are discussed. From this can be learned that the problem that is targeted within that
project has to deal with a large number of both requirements and preferences. Here I will
put forward the requirements for the solutions that the algorithms should produce, which
are for the most part based on the requirements and preferences from the C-Share project.
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Take note that a number of requirements and constraints have already been discussed in
this section. I will not discuss all of these requirements and constrains again, though I will
repeat some of them.

The most important constraint that all solutions should implement, is that all proposed
paths should be able to be travelled at a constant speed. This originates from the preferences
of ATCos who prefer to adjust one thing at a time such as the speed, direction or flight level
(height) of an aircraft. On top of this, the solutions will be required to be able to be travelled
at a constant speed picked from an interval of speeds that should be provided as a part of
each solution. This means that every solution is made up out of two parts; a path in 2D
called P2D and an interval of speeds called V , such that P2D can be travelled at a constant
speed vi with vi ∈ V , without violating any constraints stated in this section.

Having an interval V from which a speed can be chosen, yields a number of implications
when applying this kind of solution to the context of ATM. First off, this gives an ATCo
a range of solutions from which he can chose, allowing him to adapt the solution to his
preferences. Secondly, having an interval of speeds to chose from, also implies an interval of
times at which e can arrive at xgoal, which can be of useful when an aircraft is required to
arrive at a certain place at a certain time.

To summarize the constraints concerning the solutions,

• Provide a path P2D and an interval of speeds V

• P2D can be travelled at a constant speed vi ∈ V

Next to all of the above stated requirement, shorter solutions are preferred for a number of
reasons. Firstly, shorter solutions are often preferred by airlines due to the reduction of fuel
burn, which is also a plus for the environment. On top of this, measuring the length of the
trajectories is an comprehensive way of comparing solutions with each other. This is why
it was chosen to measure the length of the shortest path of each graph that is built by an
algorithm, as the way to measure the quality of the solution.

◦ Measure the shortest path as an indicator of the quality of the solution.

There are of course many other ways of measuring the quality of a solution, which can
also be relevant to the context of ATM as well. For instance, measuring the number of nodes
in P2D or the size of V will both provide valuable information about the solution, namely
the number of nodes is proportional to the number of instructions that an ATCo will have
to give to a pilot in order to implement that solution. Secondly, the size of V not only
indicates the range of speeds at which P2D can be travelled, it also gives an indication of
how much space an aircraft has to maneuver when travelling along P2D. Both of these ways
of measuring the quality of the path will be further discussed in section 8. The reason why
it was chosen to use one metric for measuring the quality of the solution is because when
using multiple metrics it is no longer trivial to determine the best solution. Using multiple
metrics will yield a best solution for each metric, and this will often not be the same solution.
This leads to the fact that when presenting the results of the quality measurements, it is
unclear how well the best solution using metric A scores when using metric B. It is possible
to overcome the problem of having multiple best solutions by combining multiple metrics
into one, but this is outside the scope of the thesis.

3.1.5 Shortcuts

The last requirement for the new algorithms is that they allow for shortcuts to be made on
a solution. Due to the probabilistic nature of RRT, the shortest path often is not found.
However, by making shortcuts on a solution, the length of the shortest solution can often
be reduced. There are more reasons to make shortcuts such as the fact that they allow a
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solution to reduce the number of nodes in it, which might be preferred depending on the
application.

• The new algorithms are required to allow shortcuts to be made

3.2 Research Question

The literature study that was done within the C-Share project points out that it can be
concluded that there not yet exists a solution for planning paths which can be travelled at a
constant speed. Existing techniques from the field of kynodynamic path planning only allow
for concrete actions instead of keeping things in middle such as speed. From studying the
different kinds of approaches to the path planning problem (section 2.2), I concluded that
a sampling-based technique is the most suitable for this kind of problem, due the fact that
this class handles higher dimensions really well, which makes for expandability in the future.
However, sampling-based algorithms which can be used for this specific kind of problem do
not yet exist. More importantly, from the sampling-based path planning algorithms, RRT
showed to be the most suitable for our problem (see section 2.2.5). This is why I pose as the
main research question; “Can the RRT algorithm be adapted so that it is able to produce
solution consisting out of a path, P2D, and an interval of speeds, V , such that P2D can
be travelled with a constant speed vi ∈ V , while avoiding moving obstacles with a known
trajectory?” For the full description of the problem requirements see section 3.1.

Next to validating the capability of the new algorithms to find solutions, the quality of
these solutions will be compared by measuring the lengths of the shortest solutions. The
second research question is; “Which algorithm produces shorter paths on average?”

One of the requirements for the new algorithms is that they should allow for shortcuts
to be made on an existing solution. Making these shortcuts should reduce the length of
the shortest path, thus the third research question becomes; “How does making shortcuts
influence the length of the shortest path?”

Lastly, it is important to measure how much time the new algorithms take to make a
solution, which is especially relevant for an online application such as ATM.

“How does the averaged time it takes to make a solution compare between the new
algorithms?”

17



4 Algorithm Description

In this last section I have discussed the goals of my research; study whether RRTs can be
used to produce paths that can be travelled at a constant speed. This will be the center of
my research and in this section I will put forward two algorithms which were designed to
solve the problem in section 3. Both algorithms will be discussed in detail with the aid of
figures and pseudo code. After this section I will present the experimental setup followed
by my findings.

4.1 Rapid Random Tree: Forbidden Times

In this subsection I will put forward the first of the two algorithms that I have developed;
the Forbidden Time variation on the RRT algorithm; RRT-FT. In this method, each edge
in the graph holds with it information on when e may not travel over this edge.

4.1.1 Idea

The principle of the RRT-FT method is to build a roadmap in the Euclidean dimensions,
similar to the original RRT algorithm, with one adaptation. Each edge ed holds a collection
of intervals which indicate the times at which an obstacle obstructs any part of ed. An
interval of time associated to an object obstructing an edge, is called a Forbidden Time-
object. The idea behind this is that any Forbidden Time-object is independent of the time
at which e visits its related edge, thus giving it the advantage of being able to make shortcuts
without having to update any other parts of the graph or Forbidden Time-objects. However,
this also brings several disadvantages with it, such as the fact that it is not guaranteed that
every node in the graph of the RRT can be visited by e while travelling at a constant
speed. This is because the algorithm only stores data about the obstacles, instead of taking
into account whether e can reach the next node. In order to determine whether a node is
reachable from the root, the graph has to be queried. The RRT-FT algorithm is designed
to be a simple, or in other words näıve, method that opposes the RRT-TP algorithm which
I will present further on in this thesis.

Figure 1(a) shows a representation of a path planned in the x, y-plane in an empty
environment. Given that the entity travelling this path can travel at any speed in the
interval [vmin, vmax], a d, t-diagram can be made (figure 1(b)), which shows the relation
between the distance travelled along this specific path d, and the time t. The horizontal
lines indicate a place along the path, namely the nodes. The parts of these horizontal lines
that overlap with the striped triangle, indicate the times at which a nodes can be reached.
This kind of diagram can be used to visualize the forbidden time-intervals (figure 2(b)),
which have the shape of a rectangle in the d, t-diagram. The rectangular shape is the result
of prohibiting the entity from travelling on an edge during an interval of time. In a d, t-
diagram, travelling at a constant speed is shown straight line, and since e starts to move
at t = 0, this line originates in the origin thus it is actually a half-line. In figure 2(b), the
striped triangle indicates the collections of speeds that e can travel without colliding with
the Forbidden Time-object.

4.1.2 Implementation Details

In order to implement the Forbidden Time method, I had to redefine the original extend-
function, which can be seen in algorithm 2, to a new one (algorithm 6). The difference with
the original version is that I have added a set of forbidden time-objects which is initialized
by a function called Find Forbidden Times, which can be found at algorithm 7. Also
note that opposed to the original extend function, this one does not check whether an edge
intersects with any obstacles because this data is stored as Forbidden Time objects. As said
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(b) The tilled triangle shows the relation be-
tween the distance travelled along a path and
the time.

Figure 1: The relation between the Euclidean space and d, t-space
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(a) The same situation as seen in 1(a) with
the addition of an moving obstacle (grey
disc).
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(b) A d, t-diagram showing a forbidden time-
interval (rectangle), an obstacle (circle), and
d, t-space that e can travel through without
intersecting the Forbidden Time-object (tri-
angle). The shape of the obstacle is arbitrar-
ily chosen.

Figure 2: Two figures illustration the relation between the euclidean space and d, t-space
with the addition of a moving obstacle.
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before, by doing this, it can no longer be guaranteed that each node in the graph of the
RRT-FT can be reached from the root when meeting all criteria from section 3.1.

Algorithm 6 Extend FT(Graph τ , Node xrand)

1: xnear ← Nearest Node(xrand, τ)
2: if Distance(xnear, xrand) > u then
3: Move xrand towards xnear until Distance(xnear, xrand) = u

4: τ.Add Vertex(xrand)
5: ftsnear,rand ← Find Forbidden Times(xnear, xrand)
6: τ.Add Edge(xnear, xrand, ftsnear→rand)
7: if xrand has not been moved then
8: return Reached
9: else

10: return Advanced
11: return Trapped

Algorithm 7 Find Forbidden Times(Node xfrom, Node xto)

1: define an empty set of time intervals fts
2: for each obstacle o in O do
3: for each trajectory segment ts from o do
4: if ts crosses the path between xfrom and xto then
5: find the begin- and end time, tbegin and tend of the intersection
6: fts.Add(Interval(tbegin, tend))

7: return fts

4.1.3 Reducing the Size of Forbidden Times by Edge Segmentation

Due to the nature of the RRT-FT method, the forbidden space interval will always invalidate
more configuration space than necessary. This is an inherent problem since the forbidden
time interval is a rectangular object and the obstacles are circular objects1. The alternative
to this rectangular shape would be to use the tangents to the obstacle in the d, t-space,
but these tangents change when a shortcut is made on a path. This is undesirable because
this would mean that all forbidden time objects associated to nodes between the end of a
shortcut and any reachable leaves in the graph would have to be updated. The problem of
invalidating more d, t than the obstacle becomes more evident when making relatively long
edges, since the size of a FT is equal to the length of the edge it is associated with, multiplied
by the size of the interval of time at which an obstacle obstructs that edge. Note that there
can be multiple obstacles obstructing an edge, I will go into this at a later time. In the case
of one obstacle o crossing an edge (xa, xb), it is possible to determine the part of the edge
which is obstructed at at least one moment by o, (xc, xd). Make this into a separate edge
with the FT of edge (xa, xb) linked to it. If the edge (xa, xc) is not of zero-size, make this
into a separate edge with an empty set of FTs and do the same for edge (xb, xd). The result
of this on figure 3(a) can be seen in figure 3(b).

1Depending on the speed, the shape of an obstacles in a d, t-diagram will stretch. In this case we consider
the obstacles travel at a speed such that they do not appear stretched, even though this would not matter
for this purpose.
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(a) A d, t-diagram showing a forbidden time-
interval.
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(b) The result after dividing the edge
(x2, xgoal) into three parts.

Figure 3: Before and after the edge segmentation. Notice the reduction of the size of the
Forbidden Time-area (tilled square).

4.1.4 Edge Segmentation with Multiple FTs

When multiple obstacles intersect with an edge, xc becomes the point on the edge which is
closest to xa and is obstructed at least once by any of those obstacles. xd becomes the point
on the edge which is closest to xb and is obstructed at least once by any obstacle. This does
leave one case in which there is a part of the edge(xa, xb) which is never obstructed by an
obstacle, but lies between two parts of the edge which do get obstructed at some point. Due
to time constraints this has not been implemented.
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4.2 Rapid Random Tree: TraPeziums

The second method I have developed is also a variation on the RRT algorithm and is called
the Rapid Random Tree with TraPeziums. Instead of mapping the obstacles like the RRT-
FT does, it maps the valid speeds at which the entity can travel edges.

4.2.1 Idea

The RRT-TP algorithm was designed such that every node in its graph can be reached
from the root, while travelling at a constant speed within the speed limitations of e. This is
founded on the shortcomings of the RRT-FT algorithm, which does not guarantee a solution
when the graph connects xstart and xgoal.

In figure 1, the relation between the Euclidean dimensions, (x, y), and the path/time
dimension, (d, t), is explained. When considering the d, t-space in figure 1(b), and we add
an obstacle to a diagram, we can eliminate the part of space that is obstructed by that
obstacle. This leaves us with the part of the d, t-space which can be reached at a constant
speed (figure 5). The shape of the obstacle is not very relevant at this point, since the
construction of the reachable d, t-space is done by taking the two tangents of the obstacle
seen from the origin. This is much like the way that a cone of light from a flashlight behaves
when casting shadows.

When looking at this d, t-diagram, it can be seen that the d, t-space in which an entity
is allowed to travel between two nodes, is shaped like a trapezium (figure 5). The only
exception to this is the shape between the start configuration and its successor which is
a triangle, which can be thought of as a degenerate trapezium. I will refer to trapeziums
which represent a segment of the d, t-space as simply trapeziums. The idea of this method is
to store unobstructed pieces of d, t-space as trapeziums with each edge, such that it can be
queried for a path that can be travelled at a constant speed. Each trapezium is constructed
such that it can be linked to at least one trapezium from the preceding edge until the root
(xstart) is reached. In order the define when this is case, I first have to define what I call the
origin of a trapezium. This is the intersection of the extensions of the non-parallel edges of
a trapezium in d, t-space as is seen in figure 4.
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Figure 4: Two trapeziums, A,B, having the same origin (x0, t0) and another one, C, with
a different origin. The dotted lines are the extensions of the non-parallel edges of the
trapeziums.

Next to the origin of a trapezium, I use the abbreviations defined in figure 8 to define
the departure times of a trapezium as the interval of time between the time of ld and rd,
and the arrival times of trapeziums as the interval of time between the time of lu and ru.

The first requirement for the two trapeziums to be linked, is that the first one, tpA, asso-
ciated to the preceding edge of the edge to which the second trapezium, tpB , is associated.
Secondly, the origin of the trapeziums must be the same, and lastly the departure times of
tpA must overlap with the arrival times of tpB .

Constructing new trapeziums in such a fashion that they can always be linked to a
preceding one, gives the advantage that when the tree connects to the goal configuration,
it is guaranteed that a solution exists. As mentioned earlier, the disability to do this was
one of the shortcomings of the RRT-FT algorithm. I have also discussed the fact that the
RRT-FT is really suitable for making shortcuts, which is opposed to the RRT-TP algorithm,
since a trapezium-object represents a specific interval of arrival times. Making a shortcut
on the graph would change the times at which e can arrive at a node, and thus all nodes
that are children of this node might be unreachable when travelling using the new shortcut.
For now I only want to point out this complication, as I will discuss the solution for this
further on in this section.
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Figure 5: The grey circle is representing an obstacle. All of the d, t-space that is reachable
by the entity starting at the origin is highlighted. The entity may only move at a constant
speed.

4.2.2 Implementation Details

Adding new edges In this variation on the RRT algorithm, each edge links to a non-
empty set of trapeziums. It is possible that given a candidate edge (xa, xb), no valid trapez-
iums exists, in which case, (xa, xb) is no longer a candidate and the algorithm moves on to
attempting another candidate edge (algorithm 8).

Algorithm 8 Extend TP(Graph τ, Node x)

1: xnear←Nearest Node(x,τ)
2: if Distance(x,xnear)> u then
3: Move x towards xnear until Distance(xnear, x) = u

4: xp← xnear.predecessor
5: TPsin ← the trapeziums associated to edge(xp,xnear)
6: for all tpi ∈ TPsin do
7: TPsout.Add(Get Corresponding TPs To(tpi))

8: if TPsout 6= empty then
9: Add Vertex(x)

10: Add Edge(xnear,x,TPsout)
11: if xnew=x then
12: return Reached
13: else
14: return Advanced
15: return Trapped
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Finding Valid Trapeziums Given an edge (xi, xi+1) and its predecessor (xi−1, xi), it is
possible to find the trapeziums that should be linked to (xi, xi+1) using the trapeziums from
(xi−1, xi) and the obstacles in O. In order to implement this within the time frame of this
thesis, I chose to create a sampling method as described in algorithm 9. The idea behind
this method is to construct the candidate space, tpnc, which is equivalent to the trapezium
that would be constructed if there were not any obstacles. The candidate space is then
sampled by stepping through the different departure times of tpnc. These departure times
are linked to arrival times, which can be found by mapping the departure time from the
interval of departure times to the interval of arrival times. The same result can be achieved
by drawing a line line through the sampled departure time and the origin of tpnc and taking
the intersection of that line with the arrival times of tpnc. When the departure and the
arrival time are known, the sample is constructed and can be checked whether it intersects
any obstacles. Valid samples that are subsequent are put together to form a new trapezium.
A graphical representation of the sampling can be seen in figure 6.

Algorithm 9 Get Corresponding TPs To(Trapezium tp, Node xi−1, Node xi, Node
xx+1)

1: δ ← the step size for the sampling
2: TPi,i+1 ← an empty set of trapeziums
3: define tpcs as a trapezium representing the candidate space
4: tpcs.vmin ← Distance(xi−1, xi)/(tp.ru− tp.rd)
5: tpcs.vmax ← Distance(xi−1, xi)/(tp.lu− tp.ld)
6: tpcs.ld← tp.lu . 2

7: tpcs.rd← tp.ru
8: tpcs.lu← tpcs.ld+ Distance(xi, xi+1)/tpcs.vmax

9: tpcs.ru← tpcs.rd+ Distance(xi, xi+1)/tpcs.vmin

10: boolean currentIsValid ← false
11: define tpnc as the next candidate trapezium
12: for ti ← tp.lu to tp.ru step δ do
13: ti+1 ← map ti from interval (tp.lu, tp.ru) to interval (tp.ld, tp.rd)
14: vi−1,i ← Distance(xi−1, xi)/(ti − ti−1)
15: ti+1 ← ti + Distance(xi, xi+1)/vi−1,i
16: boolean previousWasValid ← currentIsValid
17: currentIsValid ← trajectory((xi, ti), (xi+1, ti+1)) ∩O = ∅
18: if currentIsValid equals previousWasValid then
19: continue
20: else if (¬previousWasValid)∧ currentIsValid then
21: tpnc.ld← ti
22: tpnc.lu← ti+1

23: else if previousWasValid ∧(¬currentIsValid) then
24: tpnc.rd← ti − δ
25: tpnc.ru← map tpnc.rd from interval (tpcs.ld, tpcs.rd) to interval (tpcs.lu, tpcs.ru)
26: TPi,i+1.Add(tpnc)

27: if currentIsValid then
28: tpnc.rd← ti − δ
29: tpnc.ru← map tpnc.rd from interval (tpcs.ld, tpcs.rd) to interval (tpcs.lu, tpcs.ru)
30: TPi,i+1.Add(tpnc)

31: return TPi,i+1

2The symbols ld, rd, lu, and ru, are explained in figure 8
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Figure 6: The construction of the set of trapeziums (light gray) which belong with the edge
(xixi+1) from the trapezium belong with the preceding edge (black). The circle represents
an obstacle. The dotted-dashed lines represent the samples.

4.2.3 Handling Shortcuts

Given a path which is a solution to the problem stated in section 3.1, P : {x0, x1, . . . , xn},
such that x0 = xstart and xn = xgoal. Introduce a shortcut from xi to xj with 0 ≤ i < j ≤ n
to P . This leads to a set of new arrival times on xj which may not connect to any trapeziums
of the edge (xj , xj+1). All other edges in {xj , . . . , xn} may need to be updated if this is the
case. To update the trapeziums associated with an edge, more or less the same procedure
can be used as seen algorithm 8 except that there now may be more predecessors of xnear
as a result of the shortcut. When constructing trapeziums from all of these predecessors, it
can occur that trapeziums within a the updated set that is associated to an edge overlap.
4.2.4 Joining Trapeziums

When trapeziums within a set, TPi,i+1, associated to an edge edi,i+1 : (xi, xi+1) overlap, it
becomes more expensive to query that tree or to connect a new edge to xi+1 since there are
more preceding trapeziums. In order to counter this, trapeziums are joined together into a
new trapezium when this is possible. However, this is not possible for all trapeziums within
a set, since the conjugation of two overlapping trapeziums is not per se a trapezium, thus
not all overlapping trapeziums are suitable for joining. In figure 7 two pairs of overlapping
trapeziums are shown which are not suitable for joining. For a pair of trapeziums, (tpA,tpB),
to be joined, it is required that the following is true for that paira;

tpA.ld ≤ tpB .ld ≤ tpA.rd ∧ tpA.lu ≤ tpB .lu ≤ tpA.ru

∨
tpB .ld ≤ tpA.ld ≤ tpB .rd ∧ tpB .lu ≤ tpA.lu ≤ tpB .ru

aThe abbreviations lu, ru, ld, rd are shown in 8
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Figure 7: An example of two overlapping trapeziums that are not suitable to be fused into
one new trapezium.
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Figure 8: The names of the corners of a trapezium. The letters stand for the position
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4.3 Rapidly-exploring Random Tree

The original RRT algorithm has several parameters of itself which I will explain in this
subsection. Next to that, I will discuss the methods which apply to both the RRT-FT and
the RRT-TP algorithms that are required to conduct the experiments.

4.3.1 Introducing Goal Bias

Path planning problems can be classified into two categories, the ones which require the
entity to end in an exact state, and those which require the entity to end in a region or
a set of states. In this thesis we are dealing with a problem of the first category, since e
should end up at exactly xgoal. This means that the approach that is used to solve the
problem must be targeted to reach the goal state. One way to accomplish this when dealing
with RRTs, is to introduce a bias in the sampling of the random nodes towards the goal
configuration (algorithm 10). This method requires a parameter, g, to set the probability
that xgoal is attempted to be connected to the graph. After running a pilot experiment, it
became clear that using g = 0.05 is a reasonable value, since the average number of nodes
before xstart and xgoal became connected was roughly 45 for both algorithms during the
same pilot experiment. Using g = 0.05 means that on average the goal state is attempted to
be added to the graph every 20 nodes. This value seems balanced compared to the 45 nodes
that are added on average before xstart and xgoal become connected, because it suggests
that on average the goal state is attempted once without success before the goal state is
added with success. Having this succeed in half of the times seems appropriate, even though
it is hard to say exactly why this ratio seems balanced.

Algorithm 10 BuildRRT(GoalBias g, Node xstart, Node xgoal)

1: τ ← a graph containing only xstart
2: while ¬GoalIsReached do
3: if g > RandomNumberBetween(0, 1) then
4: AttemptGoal(τ,xgoal)
5: else
6: xrand ← GetRandomConfiguration()
7: AddNode(τ, xrand)

4.3.2 Maximum Edge Length

A difference between Rapid Random Trees and Probabilistic Roadmaps (PRM) is that the
RRT does not implement a form of greedy exploration, while PRM does. This is done by
introducing u, the parameter for the maximal edge length, which can be as seen in algorithm
2. By limiting the length of an edge, the probability of successfully adding an edge increases
as is discussed in [9]. Choosing a value for u depends for the most part on the obstacles in
the scene and the distance between the start and the goal state. From a pilot experiment
with visual inspection, I found that u = 20 yields edges which are in proportion with the
scene.

4.3.3 Query Method and Solution Selection

I chose to compare solutions by their length, since this is an insightful way of measuring
the quality of a path. The trees were queried by using a depth-first search, which was
still applicable after shortcuts were made in the graphs, since the graphs are directed. The
motivation behind this quality measure is given in section 3, and as mentioned before all
distance metric are strictly Euclidean.
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4.3.4 Shortcut Strategy

As discussed in section 3.2, an important requirement for the developed methods was that
they allowed for shortcuts. After the start and goal configuration become connected, short-
cuts are made as described in algorithm 11. The idea of this method is to attempt a certain
number of shortcuts between the nodes of the solution, followed by another query for a solu-
tion on the tree. By not updating the solution after a shortcut, all possible combinations of
shortcuts are considered during the second query. In the experiments that were conducted,
the number of shortcuts that are attempted was set to 100. This value was chosen because
pilot experiments showed that the average number of nodes in the solutions was around 10,
which makes that 100 is a number that should give a good idea of how well shortcuts in
general improve the quality of the solution.

Algorithm 11 MakeShortcuts(Graph τ, Path P : x0, . . . , xn)

1: for nrAttempts ← 0 to maxNrAttempts do
2: repeat
3: a← RandomIntegerInRange(0, n)
4: b← RandomIntegerInRange(0, n)
5: until |a− b| > 2
6: c← min(a, b)
7: d← max(a, b)
8: AttemptEdgeBetween(xc, xd, τ)
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5 Experimental Setup

In the previous section, the RRT-TP and the RRT-FT algorithms were discussed, together
with the implementation details of these methods. Next to this, I had to make a number of
choices considering the implementation of the experiments. In this section, I will go into the
details which are not per se part of the algorithms, but are essential for the experiments.
Before that, I will discuss the method that I will use to answer the research question, in
other words the goal of the experiments.

5.1 Goal of the Experiments

As stated in section 3.2, the main goal of this research is to determine whether the RRT-
FT and the RRT-TP methods are suitable for planning paths which can be travelled at
a constant speed. In order to determine this, I will measure the rate of success of both
methods and compare them with each other. The rate of success is defined by the ratio
between the number of runs in which the RRT finds a valid solution and the total number
of runs of that RRT.

To answer the second question; “Which algorithm produces shorter paths on average?”,
and the third question; “How does making shortcuts influence the length of the shortest
path?”, the lengths of the shortest solutions will be measured before and after shortcuts
have been made, and these measurements will be averaged.

For the question; “How does the averaged time it takes to make a solution compare
between the new algorithms?”, the time spent on building the tree will be measured and
averaged, to see which of the two algorithms is faster on average.

5.2 Scene Design

The scenes were designed in such a manner that they represented situations similar to those
seen in Air Traffic Management, even though the RRT-TP and the RRT-FT algorithms
were not designed specifically for this type of situation. An example of one of these ATM
influenced situations is a scenario called String, where the moving obstacles travel in a line
right behind each other (figure 9(a)). This comes from the fact the aircraft typically travel
along set paths at roughly the same speed. Another example of this, is the scenario called
Guillotine, which is similar to String except that the aircraft are coming from two directions.
The other two scenarios, ImplodeTilt and Diamond, are not directly based upon an ATM
situation, but are designed to be challenging scenarios that are different from the first two.
Namely, Diamond has moving obstacles that do not travel in a straight path and ImplodeTilt
is more crowded by moving obstacles, especially around the center of Croom.

All parts of the scenarios are separately described in xml-files and allow for easy modifi-
cation and expansion of the experiments. Each obstacle set has been given a name based on
the shape of the paths of the obstacles that are part of that set. All obstacles have a known
trajectory (2D+T) and travel at a constant speed between the points in that trajectory.
The times in these 2D+T trajectories were chosen such that the obstacles travel at 1 unit
of length per second.

The space, Croom, in which the entity is allowed to move has a Euclidean dimension of
[100 × 100] with the start configuration at (10, 10) and the end configuration at (90, 90).
These dimensions are based on the situations that were dealt with during the C-Share
project and the same goes for the proportion between the number of obstacles and the size
of the configuration space. The entity begins at the start configuration at t = 0. The speed
limitations of e are vmin = 0.5 and vmax = 2.5.
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(a) String (b) Guillotine

(c) ImplodeTilt (d) Diamond

Figure 9: The four scenarios that were used for the experiments. The arrows indicate the
direction in which the aircraft are going.

5.3 Technical Details

All experiments were implemented in C++ using Microsoft Visual Studio express 2010. The
following libraries were used;

std/stl Where possible I have used the standard C++ libraries.

Atlas This library was used to manage the graphs of the RRT algorithms.

Callisto A 3D visualizer library also suitable for collision detection. This was only used as
a visualizer in order to validate the solutions (figure 16,17).

All experiments were conducted on a Intel Celeron M CPU 410 1.46 GHz.
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6 Results

In this section I will present the data obtained from the experiments as discussed in section
5.1. First of is the rate of success which has been measured for each scene for both the RRT-
FT and the RRT-TP method. Secondly I will present the measurements of the average length
of the shortest solutions, followed by the data on the time it took to build the graphs of
both of these methods.

6.1 Rate of Success

As described in section 5.1, the rate of success is defined by the ratio between the number
of runs in which the RRT finds a valid solution and the total number of runs of that RRT.
The data on the number of runs in which a solution was found can be seen in table 1.
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Figure 10: The Rate of Success measured over 10.000 runs.

RRT-FT RRT-TP
Diamond 3829 9997
Guillotine 2408 9994
String 1004 9981
ImplodeTilt 1763 9998

Table 1: Number of runs in which a solution was found (10K runs).

6.2 Average Path Length

The average path length is calculated by taking the average of the length of the shortest
path of every run that produces a valid solution. The measurements take place before and
after shortcuts have been made.
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Figure 11: The average path length was measured by averaging the length of the best
solution of every run, over 10.000 runs. The error bars indicate two standard deviations.

6.3 Average Build Time

In this subsection the data concerning the average build time of the RRT-FT and the RRT-
TP are put forward. I have managed to obtain enough data so that I was able to use
statistics to show that the build time of both algorithms can be modeled with a log-normal
distribution. This was discovered after I had attempted to describe the data with a normal
distribution, but since the standard deviation was in the same order of magnitude as the
mean, I suspected that a normal distribution would not be accurate. Another reason why
a log-normal distribution in this case should be preferred over a normal distribution, is
because the build time of a graph can not be less than zero seconds, which agrees with
a log-normal distribution opposed to a normal distribution. I have analyzed all 8 cases
(4 scenarios times 2 algorithms) by looking at the graphs of (1) the calculated log-normal
distribution and (2) the relative frequency scores of the build times, of which an example is
shown in figure 15. This showed in all cases to be an accurate model, therefore I presume
that the log-normal distribution should be applied. Also, the Chauvenet criterion [11] was
used in order to determine the number of outliers, which was in each case less than 0.1%
of the measurements, which implies that the probability function that is used as a model
applies to > 99.9% of the data.

In the figures below, three graphs are shown which visualize the probability densities of
the build time of the algorithms. Since the RRT-FT and the RRT-TP score very differently, I
have chosen to display each graph twice; once in the overview of all build time measurements
and once separate from the other algorithm to allow for more detail.
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Figure 12: The probability densities of the building times of both the RRT-FT and the RRT-
TP algorithms. The following curves of RRT-FT are overlapping; ImplodeTilt, Guillotine
and, String. Since this a probability density, the y-axis shows the relative probability.
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Figure 13: A graph similar the one shown in figure 12. The probability densities of the
building times of the RRT-FT algorithm. Guillotine is overlapping with String and Im-
plodeTilt.
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Figure 14: A graph similar the one shown in figure 12. The probability densities of the
building times of the RRT-TP algorithm.
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Figure 15: This graph compares the relative frequencies of the build time of the RRT-FT
(blue), with a log-normal probability function (red). The build times were measured over
10K runs and scenario Diamond was used for this example.
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6.4 Graphical Representation

Since the experiments involved three dimensions, two Euclidean and time, it is possible to
make a graphical representation of both of the trees with their associated attributes.

6.4.1 RRTTP

Figure 16: A graphical representation of the tree of the RRTTP method together with the
obstacles (red), trapeziums (yellow), Euclidean graph (blue) and solution (green). The axis
pointing upwards is used as the time-dimension.

6.4.2 RRTFT

Figure 17: A graphical representation of the tree of the RRTFT method similar to the one
shown in figure 16 with the ForbiddenTime object shown in black.
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7 Conclusion

In section 3.2 I posed the question whether the RRT algorithm can be adapted in such a
way that it will be able to produce paths which can be travelled at a constant speed within
the constraints stated in section 3. In the sections after that, the RRT-TP and the RRT-FT
algorithms were presented as possible solutions for the problem stated in section 3.1. The
result of the experiments in section 5 were presented in section 6, and from these I will
answer the research questions in this section.

7.1 Research Question

The main research question for this thesis as posed in section 3.2 is; “ Can the RRT algo-
rithms be adapted so that is able to produce solution existing out of a path, P2D, and an
interval of speeds, V , such that P2D can be travelled with a constant speed vi ∈ V , while
avoiding moving obstacles with a known trajectory? ” When designing possible candidate
algorithms, I quickly noted that searching for a solution with a set speed will directly elim-
inate possible solutions, making it harder or even impossible to find a solution. This is why
both algorithms that were designed use the opposite strategy; that is to look for path with
an interval of speed at which that path can be travelled. In this sense, the algorithms both
present collections of solutions instead of one solution, which was not meant to be the aim
of the algorithm, although it does yield more valuable solutions.

To answer the research question, I have measured the rate of success, which is the ratio
between the number of runs in which the algorithm was successful and the total number of
runs. Note that this is a normalized measure. In figure 10 and table 1 the measurements of
the rate of success are displayed, showing that both the RRT-FT and the RRT-TP algorithms
have a rate of success that is higher than zero, which means that they are able to find valid
solutions in at least some of the runs.

From these measurements it can be concluded that the RRT-FT algorithm has the highest
average rate of success for scenario Diamond, which is also the scenario containing the
smallest number of moving obstacles (figure 9). The other scenarios have a lower rate of
success, which is likely due to their complexity. String has the lowest rate of success, which
can be explained by looking at the obstacles (5.2) that shows that every solution will have to
cross paths with four moving obstacles. This means that every solution will contain an edge
which has four Forbidden Time objects associated to, making it difficult for the RRT-FT to
plan a path. It seems that the RRT-FT has more difficulty dealing with edges with more
Forbidden Time objects associated to it, opposed to edges with less Forbidden Time objects,
though this can not be said with much certainty from these measurements.

The RRT-TP finds a solution almost every time, while the RRT-FT only succeeds some
of the times, depending on the scenario. From this is concluded that both algorithms are
variations of the RRT that are suitable for finding paths that can be travelled at a constant
speed amongst moving obstacles. Even though the RRT-TP definitely shows to have a
higher rate of success for the scenarios that were tested.

7.2 Quality Performance and Shortcuts

In section 5.1, next to measuring the rate of success as a way to answer the main research
question, I have also discussed measuring the length of the solutions in order to answer the
questions; “Which algorithm produces shorter paths on average?”, and; “How does making
shortcuts influence the length of the shortest path?”. The results of these measurements
can be seen in figure 11, from which can be concluded that RRT-TP on average gives
shorter paths than RRT-FT, both before and after shortcuts have been made. It can also be
concluded that making shortcuts reduces the spread in path lengths. The difference in the
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average length of the shortest paths between the RRT-FT and the RRT-TP algorithms can
be explained by the fact that the RRT-FT invalidates more d, t-space than is needed, due
to the nature of the algorithm (section 4.1.3), opposed to the RRT-TP. This implies that
the RRT-FT has a smaller probability of planning a path through a narrow passage, which
limits its possibilities with respect to the RRT-TP, eventually leading to the fact that the
RRT-FT has a lower probability of finding shorter paths. The scenarios do not allow this
conclude for the general case this with much certainty, however it can be concluded that the
RRT-TP produces shorter paths that the RRT-FT for these scenarios.

7.3 Build Time

The third aspect that was measured is the time it took both algorithms to build the graph
that should answer the last research question; “ How does the averaged time it takes to make
a solution compare between the new algorithms? ”. As discussed in section 6.3, the data
was shown to be log-normally distributed, hence the measurements were presented in the
form of graphs of the probability densities. In these graphs (figures 12, 13, 14) it can seen
that the RRT-FT has its probability densities closer to zero than the RRT-TP, which means
that on average the RRT-FT takes less time to build a graph. This is further discussed in
the Discussion & Future Work section (section 8).

The measurements of the average build time shows some resemblance to the measure-
ments of the average length of the shortest paths, since Diamond is also showing to require a
smaller build time compared to the other scenarios. This can be seen in the graphs showing
the probability densities, as Diamond has more probability that is closer to zero than the
other curves. In this case of RRT-FT it is easily explained why Diamond has a shorter build
time than the other scenarios, Diamond contains two obstacles while the other scenarios
contain four obstacles. The RRT-FT builds the graph in the same fashion every time it is
ran regardless of the scenario, because it does not take into account whether a node can be
reached from the root and thus ‘blindly grows on’. The only noticeable difference between
the scenarios for the RRT-FT, when it comes down to build time, is the number of obstacles
in the scenarios, which is reflected in figure 13.

It is difficult to draw a solid conclusion about what exactly causes the difference in the
average build times between the different scenarios when it comes down to the RRT-TP.
However, it can be said that the RRT-TP needs the most time, on average, to build a graph
for String, which is also the scenario with the lowest rate of success when using the RRT-FT.
This is an indicator that the build time is related to the complexity of the scenario, even
though this research does not provide enough data to make conclusion about what exactly
makes a complex situation, and whether this is the same for both algorithms. It should
however be clear that the number of obstacles is an important factor for the build time.

Though it is difficult to draw any conclusions concerning the time it takes to build the
graph for the general case, it can be said that the amount of time that is consumed is
acceptable when applying the algorithms to the context of ATM. As discussed in section
5.2, the scenarios that were designed as well as the obstacles and the entity are influenced by
the ATM context, especially the proportions between the distance between xstart and xgoal,
the size of Croom and the size obstacles. Since this is the case, the time it takes the RRT-TP
and the RRT-FT to build the graph for the scenarios can be thought of as an indicator for
how much time building the graph would take in real situations. In ATM a look-ahead time
of 20 minutes is often used, which means that conflicts are dealt with around 20 minutes
before the actual violation of the separation criteria would occur. When comparing this
look-ahead time with the time it takes to build the graph for the RRT-FT or the RRT-TP,
it can be said that both these algorithms consume an acceptable amount of time, and since
the scenarios are designed based on the ATM context future investigation is worthwhile.
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8 Discussion and Future Work

8.1 Obstacles

In this thesis, all planning was done amidst moving obstacles instead of also using stationary
obstacles. This was done in order to show that the RRT-TP and the RRT-FT algorithms
work in ATM-like situations where there are no static obstacles. However, ATM does fre-
quently have to deal with weather conditions such as thunderstorms, or more permanent
boundaries such as military airspace, which is off limits for normal aircraft. These types
of obstacles or boundaries are static, albeit that some are only temporary. Static obstacles
can be thought of as dynamic obstacles remaining in one place, thus both of the algorithms
that I have designed still apply, even though that it might require different parameters.
For instance, when static obstacles form a narrow passage, a smaller value for u should be
used to increase the probability of planning a path through this passage. For future work, I
recommend that both algorithms should be tested in situations containing both static and
dynamic obstacles, in order to show that they still function in those situations.

From the measurements of the rate of success, it also seems relevant to investigate the
behavior of the RRT-TP algorithm with more obstacles, because the RRT-TP was equally
successful in all four scenarios. Testing the RRT-TP algorithm on scenarios with more mov-
ing obstacles or more obstacles in general, will give a better understanding of the limitations
of this algorithm.

8.2 Measuring the Path Quality

In this thesis, I have used the simplest way of measuring the path quality that I could think
of; the length of path. However, there are lots of aspects to the solutions which one might
want to measure and optimize. Examples of this are the size of the interval of flyable speeds
related to a path, or the number of nodes in the path. During the experiments, I have
measured both these things in order to give an indication on the performance when it comes
down to other quality measures. Note that the experiments were implemented such that the
shortest path would be selected as the solution, whereas these two values were not taken
into account. Secondly, the runs in which no valid solution was produced were omitted from
these results. Thirdly, it should be noted that the speed limitations of e are vmin = 0.5 and
vmax = 2.5 (section 5.2) and the size of the speed interval V is calculated by subtracting the
lowest value in V from the highest. For example, in the case that there are no obstacles, V
would become [0.5, 2.5] and the size of the speed interval would become 2.
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Figure 18: The average size of the speed interval, V , measured over 10K runs.

From these two graphs, it can be concluded that the RRT-TP performs better than
the RRT-FT at both these quality measures and in all scenarios. It makes sense that, on
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Figure 19: The average number of nodes in a valid solutions, measured over 10K runs.

average, the RRT-TP yields larger speed intervals than the RRT-FT, since it is designed to
find exactly all flyable speeds, opposed to the RRT-FT algorithm which invalidates more
d, t-space (more details in section 4.2)

What is remarkable about these graphs, is that in each case the average of the size of
the speed interval grows by making shortcuts. I suspect this to be caused by the fact that
the path of most moving obstacles in O is perpendicular to a line segment from xstart to
xgoal. Making shortcuts and selecting the shortest path, will cause the solutions to converge
to this virtual line segment. In turn, this will minimize the size of the intersection between
the solutions and the moving obstacles, and thus lead to an increase of the size of the speed
interval. The scenario containing the moving obstacles with the largest variety in direction,
implodeTilt, has the smallest increase in size of the average speed interval as a result of
shortcut, which agrees with the previously stated theory. Unfortunately this research does
not provide enough data to make any conclusion about the correctness of the theory with
any certainty. However, it can be said that RRT-TP has outperformed RRT-FT in this
research when it comes to the average size of the speed interval.

When it comes down to the average number of nodes of the solution, the RRT-TP also
performs better than the RRT-FT. It can be seen in figure 18 that the RRT-TP algorithm
on average needs the same number of nodes in each scenario before the shortcuts have been
made. While after the shortcuts are made, ImplodeTilt seems to need more nodes than
the other scenarios. This likely due to the fact that in this scenario, there are two moving
obstacles, which are close to the virtual line going through xstart and xgoal, which might
require solutions to be more evasive which in turn requires more nodes. On the contrary,
the RRT-FT algorithm yields a more constant average number of nodes across the scenarios,
which is likely due to the fact that it does not take into account whether a node can be
reached from the root when taking the criteria from section 3.1 into account.

8.3 Sampling in RRT-TP

In this thesis I concluded that my implementation of the RRT-TP algorithm is slower than
the one of the RRT-FT algorithm (section 7.3). Contrary to the RRT-FT algorithm, the
RRT-TP algorithm uses a form of sampling in order to determine which parts of the d, t-space
are unobstructed. This might be a part of the cause that it runs slower than the RRT-FT.
By replacing the sampling with an algebraic method, the running time of the RRT-TP
implementation can potentially be shortened and might even outperform the RRT-FT. This
will be an interesting aspect to look into in future work.
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8.4 Context

For the research part of this thesis, I have put the ATM context of the C-Share in the back of
my mind, and focused on making generally applicable methods that are suitable for solving
an abstract problem as is formulated in section 3. However, it should not be forgotten that
the origins of the developed methods lie within the ATM context, and therefore I would like
to advise that in future work, the RRT-FT and the RRT-TP algorithms are tested within
the ATM context. I expect to see a great difference with the speed profiling method that
was implemented in the C-Share project (section 2), in the sense that the RRT-FT and
especially the RRT-TP will provide solutions that are shorter and can be travelled with a
much wider interval of speeds. I also expect them to be faster at producing solutions.

When thinking ahead even more, the RRT-FT and the RRT-TP should be tested in
higher dimensions such as 3D+time. At this moment aircraft are restricted to discrete flight
levels of 1000 feet, implying that the added dimensions is not same and less complex than the
first two euclidean dimensions. However, this might subject to change in the future, and at
this it is still necessary to maneuver between these flight levels which also requires the third
dimension to be continuous instead of discretized. The RRT was chosen as a foundation of
both methods because it is known to handle higher dimensionality well, which was expected
to be required in not only the C-Share project, but also in other applications. Having an
extra Euclidean dimension will not invalidate the applicability of these methods, because
the d, t-space will always have two dimensions. This is because all Euclidean dimensions are
captured in one dimension, d, when a candidate edge is created, thus making it applicable
to Trapeziums and Forbidden Time objects. Even when dimensions such as for instance the
pitch and the roll of an aircraft are involved, the RRT-FT and the RRT-TP will still hold,
even though it will become much harder to visualize.

A third point of interest within the ATM context, is to add curved or otherwise non-linear
trajectory segments as edges to the graphs of the RRT-FT and the RRT-TP. This should
be possible because the Euclidean dimensions of one edge are captured in one dimension, d,
as explained before. In this C-Share project it was chosen to simplify the trajectories to be
made up out of line segments with the assumption that an aircraft can have instantaneous
acceleration. In order to be able to reach a level of accuracy required for planning paths
for ATM applications, non-linear edges should be added and tested to the RRT-FT and the
RRT-TP.

Finally, it would be interesting to look into ways for replanning two aircraft simultane-
ously. At this moment, the new algorithms only allow planning for one entity at a time. It
is likely possible to plan paths for two entities using the RRT-TP, since the trapeziums of
the first entity would become obstacles for the second entity. In this way, both entities can
receive a new path with both their own speed interval V as was the case with one entity.
However, this is still a form of prioritized planning, which becomes clear when considering
the situation where two edges from different entities intersect in the euclidean dimensions.
Namely, the trapeziums associated to these edges have to be constructed in an order, be-
cause the trapeziums associated to the first edges have to be fully constructed before the
trapeziums associated to the second edge can take them into account. Switching the order
in which the trapeziums for one or the other entitity are constructed influences the size of
the trapeziums, since the entity that goes first will not have to take the second entity into
account. This might be solved by linking trapeziums from different entities that intersect
each other, and allowing these trapeziums to change their size in responds to the size of
the trapezium that it is linked to. The result of this would be that the speed intervals of
the solutions for the different entities would be linked as well, meaning the size of V of one
solution might be reduced in order to benefit the size of V of the other solutions. This idea
will likely become complex rather fast when the number of intersects, and thus the linked
trapeziums, increases, which might mean that this solution is best applied to problems with
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two entities. Altogether I would recommend the RRT-TP for further research on planning
paths for two entities simultaneously.

Adapting the RRT-FT to avoid prioritized planning is much harder, because the times at
which an entity travels over an edge are not stored with it. This means that when one entity
has found a solution, it becomes an obstacle for the second entity and the sets of forbidden
time objects associated to the edges in its graph must be updated. This way of planning is
not expected to yield different results than it would have with prioritized planning.
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