
Hierarchical Object Classification through

Probabilistic Common Sense Knowledge

Reasoning

Masters’ Thesis

Loy van Beek

January 27, 2013

Abstract

This thesis presents a manner for object classification by the use of semantic
knowledge and probabilistic reasoning with such knowledge. An ontology of
object classes and their context and properties is represented as a Markov
Logic Network, which is a method of unifying first-order logic with probabilistic
reasoning, developed recently. For each scene, the ontology is combined with
symbolic observations of objects observed in the scene. Probabilistic inference
is then used to infer the class or a superclass of those objects.

Preface

Ever since being a little boy, I loved and dreamed about robots. I was amazed
and inspired by movies as Star Wars, but also by robotic rover missions to the
planet Mars that set of during my childhood. While building planetary rovers
and other robots rather than cars and houses from my Lego toys, I always knew
that I wanted to do one thing when I grew up: robotics.

After studies in the fields of mechanical engineering and mechatronics, I
started a study in the field in of Artificial Intelligence at Utrecht University, as I
was disappointed by the industrial robots I worked with during my internships.
These are programmed by listing the coordinates they should visit, when to
enable their welding torch, et cetera. I wanted to make robots that were more
intelligent than just following such detailed and fixed program.

The chance to be involved in developing such a more intelligent robot came
via Eindhoven University of Technology (TU/e). Although I did not pursue
any study at TU/e, I was accepted as a new member of the RoboEarth research
group which develops an intelligent robot named Amigo. During the year in
which I worked on my thesis, I worked in this very friendly and open group of
PhD, masters’ and bachelors’ students. Besides doing research, a part of the
group participates in the RoboCup@Home1 competitions, mostly as a hobby
project. By participating in this project I gradually became the teams’ expert
on the autonomy and coordination software, developing the software needed to
coordinate tasks such as learning faces and names of persons and serving drinks
to those. Working in this project involved several robot competitions, one of
which took place in Mexico City.

First, I want to thank my supervisors Jos Elfring and Jan Broersen, for the
great feedback I received from them. Second, I would like to thank the team
for the great year I had with them and finally thank René van de Molengraft of
Eindhoven University of Technology for giving me the opportunity of working
in this group and living my childhood dream of making robots.

1http://www.robocup.org/robocup-home/

1

http://www.robocup.org/robocup-home/

Contents

1 Introduction 4

2 Background 5
2.1 Goal of the Amigo robot . 5
2.2 Existing System . 6

3 Main Idea 7
3.1 Research Question . 8
3.2 Contributions . 8

4 Literature Survey on Object Classification 10
4.1 Recognition by segmentation . 12
4.2 Bag of words . 12
4.3 Part-based models . 13
4.4 Semantics and common sense-based classification methods 15

5 Refinement of the Main Idea 17
5.1 Refined research questions . 19

6 Theoretical Framework 20
6.1 Semantics and Reasoning . 20
6.2 Description logics . 20
6.3 Probabilistic reasoning and probability in description logics . . . 23
6.4 Markov Logic Networks . 26

7 Software Framework 30
7.1 ROS . 30
7.2 Perception Pipeline . 30
7.3 Research Context . 31
7.4 World model . 32
7.5 Non-probabilistic Reasoner . 32

8 System and Language Design 33
8.1 Framework Integration . 33
8.2 Embedding Description Logic in Markov Logic 34
8.3 Probabilistic Annotations in the Description Logic 38

2

9 Development of the Markov Logic Network 39
9.1 Representing Appearance . 39
9.2 Inheritance or Concept Inclusion 40
9.3 Continuous-valued properties and Dimensions 40
9.4 Context & Spatial Relationships 43
9.5 Classification . 45
9.6 Ontology . 46
9.7 Final Markov Logic Network . 46

10 Experiments 47
10.1 Experiment setup . 47
10.2 Validation method . 48
10.3 Parameters for convergence . 50
10.4 Nominal performance . 53
10.5 Context Makes the Difference . 55
10.6 The Influence of Dimensions . 57
10.7 Dealing with Incorrect Observations 57
10.8 Comparison to other methods . 57

11 Conclusion 60

12 Future work 61

Appendices 68

A Implemented Rules 69

B Class Knowledge 72

C Plots and Figures 78

3

Chapter 1

Introduction

Robots are becoming more and more prevalent and are starting to invade our
homes. Currently, robots exist for mundane household tasks, such as lawn
mowing, vacuum cleaning and even washing a floor. Another development is
the aging of the population. The need for care for the elderly is increasing, but
the supply of care is not keeping up with this development and it is expected
that it will not catch up. One solution could be employing robots to at least
assist care workers and the elderly themselves, to lessen the need for care and
to make the care workers more efficient at their jobs.

To make this happen, robots need to become smarter than they currently are.
It is often said that inventions and new ideas arise due to needs and frustrations.
A personal frustration is that robots often fail to recognize an object correctly
although there are clear hints, at least to a human, to what class an object might
be. The difference, in my opinion, is common sense knowledge. Humans simply
know the world better and can infer from their perceptions and common sense
what sort (class) of object they are observing. This thesis project attempts to
integrate common sense knowledge with perception, with the goal of making
robots smarter and to let robots take over more tasks.

Thesis Outline

This report is outlined in the following manner: First, the background of the
research is formulated (page 5), after which the main idea (page 7) is stated
along with a basic research question and the contributions of this research as
well. Then, an investigation into existing methods for object classification is
made (page 10), followed by a refined formulation of the main idea (page 17) as
motivated by this investigation, together with more refined research questions.
Next, the literature to answer these questions and to accomplish the main
idea is studied (page 20). This is then followed by the framework in which
the implemented system must be placed (page 30) and the design (page 33)
and implementation (page 39) of the system. Finally, experiments (page 47),
conclusions (page 60) and future work (page 61) are discussed.

4

Chapter 2

Background

The Eindhoven University of Technology, at which this research was performed,
is developing a robot named Amigo, which stands for Autonomous Mate for
InteliGent Operations.

2.1 Goal of the Amigo robot

The robot Amigo (Figure 2.1 on the following page) is used in several research
projects, as well as in RoboCup1. The future goal is to develop a robot that is
employable in a care or home environment. For this purpose, robots should be
cheap, must be able to perform in complex environments and be able to share
knowledge.

RoboEarth

The RoboEarth2 project aims to create a world wide web for robots, with which
robots can share knowledge. Examples of such shared knowledge are listed
below:

• Navigation maps of the environments the collaborating robots operate in.

• Action recipes of how to perform actions and how robots with different
capabilities can perform those.

• Object models for recognition, classification, manipulation and possibly
other tasks.

Bobbie

The Bobbie3 project aims to accomplish standard interfaces for robot components
on both the hardware and software level. This in order to allow easy exchange
of robot parts, such as hands, arms, heads et cetera between robots, so that
each robot can use parts from different vendors of robot parts.

1www.robocup.org
2http://www.roboearth.org/
3http://www.bobbierobotics.nl/

5

www.robocup.org
http://www.roboearth.org/
http://www.bobbierobotics.nl/

Figure 2.1: The Amigo robot. Source: http://www.techunited.nl/nl/

photos/72157631289381106

RoboCup

RoboCup4 is a set of competitions for robots. The overall goal is to accelerate
robotics and AI research by setting an ambitious challenge, which is to have
soccer robots play and win against the human world soccer champions by
2050. There is also a competition for household and care robots, called the
RoboCup@Home-league. Amigo and the team surrounding it finished 7th at
the 2012 world championship in this league, which took place in Mexico City.

2.2 Existing System

The Amigo robot consists of several subsystems, a few of which are of relevance
to this thesis. As this thesis deals with perceptions and objects in the robots’
environment, the perception software that observes objects and their properties
and world model that keeps track of those objects and properties, are of importance.
These are discussed in more detail in Section 7.2 on page 30 and Section 7.4 on
page 32 respectively.

4http://www.robocup.org/robocup-home/

6

http://www.techunited.nl/nl/photos/72157631289381106
http://www.techunited.nl/nl/photos/72157631289381106
http://www.robocup.org/robocup-home/

Chapter 3

Main Idea

Object recognition and classification in computer vision works on a non-symbolic,
numeric level, as will be shown in the literature survey of Chapter 4 on page 10.
Recognizing objects and classifying objects are broad topics in the Computer
Vision literature, and are two separate tasks. Object recognition is the task
of assigning observations of some object to a specific object, observed earlier.
Object classification is assigning a class or category to an object and is one of
the hardest problems in Computer Vision [42]. The difference between the tasks
is the difference between finding your car and finding a car.

This problem is hard due to a couple of reasons. First of all, there is the
problem that instances of the same class can look very different (intraclass
variance), while on the other hand, instances of different classes may appear
to be very similar (interclass variance). Then, there is variance in the scene
an object is pictured in, with for instance differences in lighting, which makes
that the same object looks differently between different scenes. In a household
environment, the environment in which service robots are destined to work,
objects may be found in the dark of a cupboard or in the bright light next to
a sun-lit window. When the class or category ’unknown’ or ’something else’ is
permitted, assigning a correct class label to an object gets even more difficult,
as this requires some measure and threshold of dissimilarity on which to base
such a conclusion.

Methods to do so exist, but often make mistakes that humans would not
make because of their common sense. Common sense, however, is not very
common in computers and robots and as such, computer vision methods usually
do not take common sense knowledge into account. Equipping robots with some
form of common sense knowledge could improve their capability to recognize and
classify (household) objects.

The main idea in this thesis is thus to use some form of knowledge to describe,
on a symbolic, semantic level, what everyday household items look like. When
this knowledge is represented in some way on a robot, it can be used to classify
objects in the robots’ environment, by combining it with symbolic/semantic,
rather than numeric, observations on those objects.

7

3.1 Research Question

The research question for this final thesis project is thus: How can inference
with descriptions and predicates about color, shape, context and
spatial relationships to context be used to classify instances of object
classes? First, a survey of existing computer vision object recognition and
classification methods is made, after which the main idea and the research
question above will be refined, in Section 5.1 on page 19

3.2 Contributions

In short, the contribution of this research is ontology based classification of
objects.

Resulting from this, some interesting properties are obtained:

• Hierarchical classification.

• Recognition framework extensible with new types of observations.

• Common sense in classification.

These properties are elaborated on below.

Hierarchical Classification

Hierarchical classification in this context means that when not enough information
is available, as-accurate-as-possible classifications can still be made. Instead of
providing a wrong classification, it can provide a less precise classification. I.e.
a more general class can be assigned to the observed object. Based on such a
classification, a robot may decide to take a better look at the object in case
more detail is needed. Deciding this is future work however (see Chapter 12 on
page 61).

Besides the more robust classification this yields, it has other advantages
as well. As the approach in this thesis is knowledge based, the hierarchical
nature of the knowledge provides a way to compactly describe objects. If a new
subclass of objects is to be added to the system, “learning“ that new subclass
can suffice with stating what superclass the new subclass has, and then stating
what distinguishes it from that superclass and from other subclasses of the same
superclass (i.e. its “sibling”-classes). The new subclass can derive most of its
properties from its superclass. E.g, a tea cup may be described by stating what
makes it more a specific class than the the more general cup, and by stating
what distinguishes it from is sibling-class coffee cup.

Recognition framework extensible with new types
of observations

The second property is that the knowledge, about the classes that the system
knows of, is easily extensible. New facts about classes and classification rules
concerning those can be added to the knowledge base directly, in a declarative
fashion.

8

Common Sense in Classification

Classification in the domain of Computer Vision is by definition based on the
appearance of objects. In some cases however, deciding what class an observed
object belongs to can also be helped by reasoning about the object and about
the context the object is in. For instance, a floor could be defined as the thing
that is beneath every other thing in a room. This classification rule is not related
to the appearance of the actual floor, and it applies to floors regardless of what
they are made of and their appearance.

9

Chapter 4

Literature Survey on
Object Classification

In this chapter, a survey is made into existing methods of object classification.
The goal of this survey is to provide some insight into what has already been
researched, to identify opportunities for improvement and to refine the main
idea stated in Chapter 3 on page 7.

Various methods for recognizing and classifying objects exist and vast amounts
of literature have been written on this subject. To constrain the search for
literature in this field, a focus has been placed on methods for object classification
with 3D-data, e.g. point clouds. From this kind of data, pieces of information
such as shape and position of objects can be gathered, which is much more
difficult or impossible with only 2D data.

In the past, sensors for acquiring point cloud data have been very expensive.
The Microsoft Kinectr range camera, a cheap, real-time 3D sensor, has revolutionized
robotics by giving even hobbyists and students access to full 3D perception.
Papers on 3D recognition and classification written before and after the release
of the Kinect can even be distinguished from each other, as the older papers
devote more text on the setup of their 3D sensing devices and scanners, whereas
later papers often simply mention the use of a Kinect. The Kinect also put a
larger focus on real-time algorithms, as data comes in at a 30Hz rate instead of
1Hz or less.

The robot used in this thesis, Amigo, is also equipped with such a sensor,
mounted in a anthropomorphic fashion: it uses a Kinect as its head. The Kinect
outputs two streams of images: one of coloured images (RGB) and a second one
of depth (D) maps, i.e. gray-scale images with the gray-value indicating distance
to the sensor, making it a RGBD-camera.

As 2D cameras have existed for much longer than 3D cameras, vastly more
research and literature exists for object classification in 2D. Many methods for
2D object classification can, however, be extended to 3D in a rather straightforward
manner. First understanding the 2D approaches therefore is a requirement for
understanding their 3D extensions, on which the literature survey is focused.
An overview of the methods available is given, first introducing the method in
2D and later the extension to 3D, if it exists.

10

Difficulties of 3D perception

Working with an additional dimension comes with some (inherent) additional
difficulties. A major difficulty, depending on the type of 3D sensor, is the result
of perspective. In 2D, the laws of perspective dictate that objects further away
are perceived smaller, so that for a distant object, a pixel on the camera covers
a larger area of that object. As 3D captures an additional dimension, each pixel
covers a larger volume for distant objects. This larger volume is still represented
by a single point, and thus the sampling density decreases with distance to the
3D sensor. In 2D, pixels remain side-by-side, while in 3D, points may be meters
apart.

Secondly, consecutive samplings may yield measurements of points that have
the same coordinates. This, however, does not imply that they were sampled
of the same surface or object. Additional information, like the surface’s color
or normal can reduce ambiguity, but not eliminate it. To generalize the notion
of a point beyond its 3D coordinate, the concept of a point is replaced by a
point feature representation (PFR), which may also take the normal, intensity
or even color at the coordinate into account [34].

One might argue that voxels, a portmanteau of volumetric pixels, are a
closer equivalent of 2D pixels. A 2D image is constructed of pixels, which divide
a picture in small, rectangular grid cells. Equivalently dividing a 3D object
results in the object being constructed of small cubical cells, called voxels. Such
a representation with voxels is dense, whereas pointclouds are sparse.

4.0.1 Feature Descriptors and Keypoints

An important concept in Computer Vision is that of a feature, feature descriptors
and of a keypoint. A keypoint is in essence a pixel or 3D point in an image or
pointcloud that is distinctive in some way so that it can be detected again in
different images or pointclouds containing the same or very similar keypoint [8].
For instance, it can be a feature like the corner of a window, that is sampled to a
pixel or 3D point, which is then labeled by some algorithm as a suitable keypoint.
A feature descriptor is a numeric description (e.g. a vector of numbers) of such
a feature, like that window corner.

2D pixels or 3D point feature representations alone are not unique and
not distinctive enough to serve as features. Therefore, higher level feature
descriptors are needed, that are more distinctive.

Feature descriptors take the region around a keypoint into account when
describing it and ideally, they are very (dis)similar for very (dis)similar features,
so that when the same feature is present in different images and labeled as a
keypoint, it can still be matched via the corresponding descriptors of the feature
in the two images. One way to match feature descriptors is to see them as points
in a high dimensional space and use, for instance, Euclidean distance between
points to see which are close and thus very similar.

In 2D computer vision, such feature descriptors are SIFT [22], SURF [1]
and subregion histograms. In 3D there are Point Feature Histograms (PFH),
Fast Point Feature Histograms (FPFH), Viewpoint Feature Histograms [34] and
many more. New feature descriptors, for 2D and 3D, are researched continuously.
SIFT and SURF use gradients to describe the region around a keypoint, whereas
(F)PFH uses the local curvature around a PFR.

11

4.1 Recognition by segmentation

One approach to recognition is by doing recognition simultaneously with segmentation.
The problem of segmentation is to decide what measurements (2D pixels or 3D
PFRs) of an image or pointcloud belong together, e.g. separating background
and foreground in a 2D image. When performing recognition simultaneously
with segmentation, this problem is generalized by also labeling segments of the
image with what class each segment is. For background/foreground segmentation,
each pixel is labeled accordingly. To refine the results, e.g. filtering noise and
sharpening boundaries, Conditional Random Fields (CRFs) [41] are often used.
CRFs are a probabilistic graphical model, that take context into account for
tasks such as classification and segmentation, but can be also applied to other
tasks. An example concerning background/foreground segmentation is where
a patch of neighboring and observed pixels are noisy and all belong to the
background. But due the the noise in the image, one of the pixels appears to
be foreground. It is known (which is thus common sense) that it is unlikely for
a single pixel to be foreground while it is surrounded by all background, so the
CRF classifies said pixel to be background as well. One could say that the pixel
that appears to be foreground is peer-pressured to be classified as background.

Another approach is to divide the image into label-less subregions (e.g.
squares) and then try to match these subregions to parts of models, and then
labeling them accordingly [42]. A very different approach is to employ a codebook
of visual items (e.g. a wheel), in which each item has a predefined segmentation
mask (e.g. a filled ellipse). When a visual item from the codebook is matched
in the query image, the item’s local segmentation mask is added to the global
segmentation mask [42].

4.2 Bag of words

The core of the bag of words method is to compare the frequency with which
some features occur between a query image and training images [8]. This is
best explained with an analogy to text classification, hence the name. This
works as follows: The number of occurrences for a set of preselected words, the
vocabulary, is counted, thus creating a histogram of which words occur how
often in a document. Note that the order of the words in a document is lost
when performing this step. Such histograms are created for each document in
the training set for each class of documents, resulting in a set of histograms for
each class. Obviously, when the right set of words is selected for the vocabulary,
the histograms for documents on sports and medicine, for instance, are very
different. When a new, untrained, query document is presented, the word
histogram of the document is compared to the histograms of the documents
in each class. Several methods to compare (word) histograms exist, however
this is out of the scope of this overview.

In computer vision, roughly the same method is used, albeit not with textual
words but instead with visual words. Visual words can also be feature descriptors.
To create a vocabulary of visual words, feature descriptors gathered from a
training set of images or pointclouds are clustered together. This clustering can
be compared to “clustering” derivations of verbs to a base form, e.g. “drank”
and “drinking” to their base form: “drink”. When classifying, descriptors are

12

matched to a visual word, one of the clustered descriptors, in the vocabulary.
As noted earlier, all structure in a text, image or pointcloud is lost in a

bag of words model. Structure and relative position is what, in some cases,
distinguishes one class of objects from another. For instance, humans are very
good at recognizing faces, but not when they are upside down.

As it is uncommon for faces to be upside down, e.g. the mouth above the
nose, it is less likely that such a thing is indeed a face. Thus the classification
“face” may be less probable than some other classification. The use of prior
knowledge, of what situations are more likely and make more sense, can prevent
robots and computers from making mistakes.

4.3 Part-based models

A different approach to classifying objects is the use of part-based models. This
is perhaps the oldest method of object recognition [42], and it focuses on what
parts an object is comprised of and the relative positions of these parts. To use
the example of faces once more: eyes are next to each other, the nose is below
the eyes in the middle and the mouth is below the nose. Any other configuration
is very unlikely to be a face, or due to a failed recognition of the parts.

The key difficulties in part-based models are the representation and learning
of the parts and of the geometrical relationships between parts. Occlusion of
parts is a problem as well, as it is in most recognition and classification methods.
For the representation of the geometrical relationships, i.e. relative positions of
the parts, most approaches use a graph, with various types of topology. Many
different types and topologies of graphs have been used [42]. One approach
is to interpret the edges connecting the parts as springs and then trying to
find a configuration of the parts that results in a state of minimal energy, i.e.
the most “relaxed” configuration of parts that best fits a model. The most
commonly used topology for this approach is the fully connected constellation
model, in which all parts are linked to all other parts. A downside of it is the
combinatorial complexity that limits its number of parts to ca. seven at most,
as the number of weights to assign to the edges grows quadratically with the
number of parts [4].

A recent development is the sparse flexible model, which does not take the
full graph into account like the constellation model, but only a number of edges
between adjacent part locations [5]. Another development is the shared use of
parts by multiple classes, instead of the standard approach of a set of parts per
class [14]. One approach that seemed particularly interesting was that in [4].
Their method does not seek for relative part locations on a global scale, but first
at a lower part and subpart scale, by finding subparts and image features that
seems to often appear together, thus creating a hierarchical model (e.g. spoke
→ wheel → car, so in a different sense than in this thesis, which has hierarchy
in classes instead of in (sub)parts). The geometrical relations between children
and parents in the tree with respect to each other are represented by uncertain
spatial transformations. This approach is interesting because the use of parts
and subparts are envisioned to be of use in this thesis.

The work in [31] is also an example of the part-based approach to object
recognition. [31] defines a numeric shape representation, around points in a
mesh. Connected points with a similar shape representation are grouped into

13

a shape-class component. These shape-class components are assigned a symbol,
and the mesh-points they were calculated from are labeled with that symbol.
The geometric relationships between shape-class components are described by
symbolic shape descriptors, which are extracted from the labeled mesh. The
essence of their approach is that similarly shaped regions in triangulated pointclouds
are assigned the same symbol. A short-coming of [31], in the light of this thesis,
is that shape-class components alone are too low-level features, while the full
symbolic shape descriptors describe whole objects already, making them too
high-level.

A similar approach is taken in [24]. Again, a shape descriptor, Radius-based
Surface Descriptors (RSD), is used. As to reduce computational complexity,
instead of labeling individual points, their enveloping voxels are labeled. From
these labeled voxels, Global RSDs (GRSDs) are computed. GRSDs are based on
another global feature descriptor, called Global Fast Feature Point Histograms
(GFPFHs) [33], but GRSDs are computationally less expensive. GFPFHs are
computed by taking the histogram of voxel label transitions in the neighborhood
of the voxel that contains the point under consideration.

With GRSD, not the distribution of voxel label transitions is used, but rather
the sum of these. Finally, these GRSDs are classified using a Support Vector
Machine [48].

An additional classification step taken in [24] is to segment these 3D shapes
in a 2D image and using a Bag-of-SURF-features model to further classify
the objects. The SVM classification reduces the number of candidates for 2D
classification, resulting in a global success rate over 98% on a real-world data
test set of 12 common household objects. Note that this approach, also the
3D-part, can be seen as a bag-of-words model, but with some basic, structural
geometric information used as well.

The approach taken in [37] also uses two levels of classifiers, but in a very
different way. The low-level classifier that comes first identifies vertical and
horizontal planes and determines their principal dimensions, which are to be as
features. For horizontal planes, distance to the ground is also used as a feature,
whereas for vertical planes, additional features are the distances between the
plane’s top and bottom to the floor and ceiling, respectively.

Regions in the vicinity of these planes, or furniture face candidates, may be
fixtures, like knobs and handles. On these regions, lines and circles are fit. The
numbers of handles and knobs as well as the distance between the fixtures and
the plane are used as a features in the second, higher-level classifier. On the
second level, a naive Bayes classifier is used in the form of a Conditional Random
Field (CRF), that classifies the object based on the weighted joint probabilities
between the class and the observed value. The classifier is learned under
supervision, in order to estimate the weights for each feature that maximizes
the log-likelihood of the probability of a label given an observation for a feature.
In [37] the system is trained on noisified synthetic data and achieved an item
accuracy of 0.97, 0.98, 0.91 for vertical and horizontal planes and furniture,
respectively. This is used to create semantic maps, mapping which class of
object is located where, a task of which categorizing objects is only a subtask.

An extension, or generalization, of [37] is the work in [25], which labels
furniture, learned from CAD models, in scenes. Instead of dealing with points
directly, they use larger regions as basic units for recognition. In their approach,
a scene is segmented by growing regions of neighboring pixels up to sharp (40◦)

14

curves and openings larger than 5cm. Region growing is done by randomly
picking a point as a seed for the region and adding neighboring points that
satisfy the aforementioned condition. For large enough regions, which represent
object parts, feature vectors are computed, which are clustered into a vocabulary
of parts. When presented with a new scene, the scene is segmented and labeled
with part-labels from a subset of the vocabulary. Each part then casts a vote for
the location in order to determine the location of the whole object. The method
used for voting is called probabilistic Hough voting [21]. The best hypothesis
for the complete object’s location is verified by fitting its CAD-model to the
pointcloud data. This approach is very interesting, but it has a deficiency:
learning and verification uses CAD-models, which is infeasible for a lot of very
specific object types, as they may not be available at all. This is not to say that
learning furniture from real-life examples is more feasible, it is likely to be the
reverse. Chairs, tables et cetera do have a pattern to their structure though,
which can be used to determine whether some object is a chair or table. A
possible improvement may be to use probabilistic reasoning for the verification,
by determining if the object’s label is in accordance with its context. Using
semantic labels and context, it is not even necessary to determine exactly what
CAD model is detected, as long as any type of chair is correctly labeled as being
a chair, instead of as a table. Using context, if a chair shoved under a table is
incorrectly labeled as a couch or table, the verification would suggest that such
a combination, of a couch shoved under a table, is unlikely. Note the use of a
semantic spatial relation here, “shoved under”, or simply “under”.

[25] assembles objects from parts, by letting them vote for a best possible
match. Parts alone are mere symbols, i.e. words in the vocabulary of parts,
without relations to other parts or symbols. In the light of this thesis, it would
be much more interesting to have parts with a symbolic label, with relations
to other symbols. This would allow a robot to reason which objects the object
could be part of or what other properties are likely to be associated with the
part.

4.4 Semantics and common sense-based classification
methods

The methods below involve methods that can be dubbed semantic or could be
said to use some form of common sense. These methods, [40] and [29], could
also be listed in the sections on Bag-of-words methods and Part-based methods
respectively, but a separate section was deemed more appropriate.

The work in [40] takes an approach involving global and local semantic
attributes of a scene as a whole and of objects in it respectively. A Support
Vector Machine-classifier (SVM) is trained for each attribute. There are 60
global attributes (e.g. city, landscape, grass, sky, et cetera) and 55 local attributes
(e.g. black, circle, door, metal) in groups such as color, shape, part and material.
Local attributes for objects are found by determining the average response for
100 patches of an image. The responses of the 115 classifiers are concatenated
into a 115-dimensional semantic attribute feature descriptor. [40] states that
context often helps in recognizing objects.

An approach that uses some form of common sense more heavily is described

15

in [29]. In the approach taken, objects seen in range images (which can be
converted to point clouds) are segmented into primitive shapes (sticks, plates
and blobs). Groups of primitive parts are labeled with a functional symbol, such
as Sittable, Back Support and Ground Support for example, that are associated
with the sitting plane, the back support and the legs of a chair, respectively.
These groups can be part of a more complex part or object in their turn, thus
forming a directed acyclic graph (DAG) of parts and primitive parts. By doing
so, an object is described in a part-wise hierarchy. This part-wise hierarchy
allows different classes of objects to reuse parts, which do not have to be learned
for each class that uses it.

16

Chapter 5

Refinement of the Main
Idea

The main idea in this thesis is that object classification can be aided by reasoning
about perceptions, the properties of perceived objects and the spatial relationships
between those objects, using symbolic, probabilistic, prior knowledge about the
objects and their classes.

As absolute certainty is hard to obtain from sensor data, probabilistic reasoning
is needed, in order to determine what sensors are really observing given their
output, as this is not necessarily the same due to errors, sensor noise, etc. While
knowledge of measurements is current knowledge, an understanding of how the
world works or is likely to be is prior knowledge; known beforehand.

Symbolic knowledge is knowledge concerning symbols, the concepts they
refer to and the relations between concepts. The meaning, or semantics, of a
concept is mainly defined by the relations it has to other concepts. Concepts
can have symbols and names associated with them.

Perhaps an example is in order here. Take the concept associated with the
symbol “table”, a very common household object. How can such a common
concept of “table“ be defined? The simplest definition is that it is some form of
top surface with ca. four legs supporting it. But then, what is a “top surface”,
what are “legs”, what is “top”, “surface” and “supporting”?

The interpretation of symbols and names can vary between individuals and
languages. For instance, the concept “pink” refers to some color, but exactly
which hues and variations of colors are still labeled “pink” can vary between
humans. Some languages used by humans do not even have names for concepts
that other languages do have. The same symbol can have a different meaning,
or concept associated with it, in a different language.

Of course, in order to classify objects, their appearance must be somehow
known, but an hypothesis of this paper is that also context can be used as a clue
to which class an object belongs to. As an example of using context, imagine
observing some protrusion, a little blob of points in space measured by a 3D
sensor. This particular protrusion is circle-shaped and only a few centimeters in
both length and diameter. When this is all the available information, no usable
conclusion can be made on the class of the object observed. Now, imagine that
this blob of points protrudes from a plane. Next, the knowledge is added that

17

the plane is, with some probability, the door of a closet. The protrusion on that
door could now be a handle. The reverse also holds: a plane is more likely to
be a door if there is some sort of handle on it, no matter what type of handle.

So, from this, we can assert that doors are likely to have handles, and
that handles are likely to be attached to doors. Doors may also be related
to other types of objects as well, such as houses, storage containers like closets,
refrigerators, etc. This prior knowledge, of which objects often occur together,
is thus useful for inferring which objects are being observed.

In the above examples, some different relations between objects occurred:
a relation between objects and their parts, and relations between two objects.
Such knowledge, and knowledge of the appearance of objects and their parts,
must somehow be stored, in a probabilistic manner that is fit for some form
of reasoning. Effectively, objects and classes of objects are to be described,
somehow.

In general, the idea is to describe concepts concerning household objects,
their properties and the relations between such concepts. The default method
[32] to store and reason with such knowledge, about concepts, is by the use
of so called Description Logics. In such a logic, one can express the fact
that doors have some relation to handles, for instance. Description Logics,
often abbreviated to DL, are a family of logics for describing classes of things
(concepts) and relations between those. For this thesis, the idea is then to use a
DL that is able to represent uncertain or probabilistic relationships concerning
classes of objects.

The work in [37] uses a conditional random field (CRF) to learn and store
knowledge about object appearance and their context. In this thesis, I want
to store such knowledge in a symbolic, semantic way, by the use of description
logics and use more properties and attributes of objects as well. In the work
of [24], object parts cast probabilistic votes for the main objects’ class and
position. For this thesis, I want to make such spatial relations symbolic and
attach meaning/semantics to them, by describing the (spatial) relations between
objects and possibly parts in a DL as well.

In a description logic, one of the possible relations is the sub/superclass
relation. This allows to, for instance, define a spoon to be a subclass of cutlery.
I think this can be useful in object classification as well: if it is not sure whether
a spoon or fork is observed, then the more general class “cutlery” may suffice.
If or when needed, a robot may take a better look at the object to determine
which subclass of cutlery is a more accurate labeling.

Another advantage of using a class hierarchy, is the possibility to use that
hierarchy for inheritance. Inheritance, in the context of this thesis, means that
subclasses inherit relations and properties from their superclasses. Using the
cutlery example again, the relation that cutlery is often made of metal can be
defined for cutlery in general, along with the fact that cutlery is often found
near plates. As a subclass of cutlery, the class “spoon” may inherit those
relationships.

How this can be done exactly and what “tools“ are needed for the execution
of this main idea is the subject of the theoretical framework in Chapter 6 on
page 20.

18

5.1 Refined research questions

With the survey of literature and a detailed main idea, we can now define
subquestions of the research question stated in Section 3.1 on page 8. The
original, high-level research question is this: How can probabilistic inference
with descriptions and predicates about color, shape, context and spatial relationships
to context be used to classify instances of object classes?

It can be refined to these subquestions:

1. How can knowledge of descriptions of objects and classes be represented?
Can a formal system be used for that?

2. How can the uncertainty involved in such descriptions be represented?

3. What kind of inference mechanism or decision making scheme can be
employed for the classification of objects, using the represented knowledge?
I.e. can perhaps Bayesian Networks be used, or Conditional Random
Fields, Markov (Logic) Networks, plain non-probabilistic First Order Logic,
or some probabilistic variant of a Description Logic?

19

Chapter 6

Theoretical Framework

6.1 Semantics and Reasoning

In order to decide what type of logic to use for reasoning in this application,
it must first be very clear what type of knowledge is being reasoned with. In
essence, some classes of objects will be described somehow, stating the relations
between a class’s symbol to other symbols. As explained above, a single class
of objects can have multiple subclasses with their own appearances. Classes of
objects can thus have super- and subclasses, e.g. ”Doorhandle” is a subclass of
the more general class “Handle”. Also, classes can have relations to each other,
such as the part-of relation that a door would have with “Handle”. Furthermore,
there are relations describing the visual appearance of objects, like their shape
and color. The default way [32] to represent this type of knowledge is by means
of a Description Logic. Description logic is investigated below and finally used in
this thesis for knowledge representation, because it is the default method, allows
hierarchy in classes and represents knowledge symbolically and declaratively.

Additional measures need to be taken to make a knowledge base in a description
logic probabilistic, as it needs to represent knowledge of how likely situations
and relations are, instead of making only absolute statements, which is the
default in formal logic.

In the next section, an introduction to description logics will be given,
and thereafter an investigation of what options are available in the field of
probabilistic description logics.

6.2 Description logics

Description logics [20] are, indeed, a family of logics to describe concepts and
roles. More specific, a DL can be used to describe classes and relations between
classes, respectively. In the description logic literature, the terms “concept” and
“class” are used interchangeably, along with “role” and “relation”.

Description logics being a family of logics means that there is a variety of
such logics, each with different expressiveness and semantics. Many variants of
description logic are subsets of first order logic (FOL) and can be implemented
or expressed in terms of First Order Logic. In a description logic, all relations
are binary, meaning that relations are made between two items. The more

20

expressive members of the DL family allow the definition of not only just
relations, but also subrelations. For instance, the father-of relation is more
specific than the parent-of relation. Other expressive features are the construction
of relations by composition, the construction of classes by requiring its members
to have certain relations to some classes, restrictions on the number of relations
to other classes et cetera. An introduction into description logics is provided in
[20].

6.2.1 Example ontology

The type of knowledge needed in this thesis is exemplified below.

• Cutlery can be made of Metal.

• Cutlery can be made of Plastic.

• Cutlery is often seen near Plates.

• Cutlery is often on top of a Table.

• Tables are usually made of Wood.

• Tables usually have 4 table legs.

• A table leg is attached to the underside of a table.

• Spoon is a sort of Cutlery.

• Fork is a sort of Cutlery.

• Forks have Spikes, usually four.

• Spikes are pointy-shaped.

• One end of a Spoon is a Bowl.

• Plates are often on top of a Table.

• et cetera.

When substituting the word “is a sort of” with “is a subclass of” or “is a
concept included in”, then it becomes clear that such knowledge can be perfectly
represented in a description logic. The terms “often” and “usually” are not
very well suited to be stored in any form of first-order knowledge base, as
such a knowledge base assumes that all statements and assertions are absolute.
Some relations will therefore have to be probabilistic, to express the uncertainty
involved. Not all of this knowledge is easily represented by any form of symbolic
logic. For instance, describing complex shapes by using symbols is very difficult.
Some of the perception routines as described in Section 4 on page 10 can however
be used to estimate the “pointiness”, for instance, of some part (e.g. a spike
of a fork), the output of which can be used when reasoning about perceptions.
These methods can thus be used as input, about which the classification scheme
of this thesis can reason.

Besides knowledge about classes of objects, the information gathered from
the perceptions must also be represented symbolically, in order to enable reasoning.

21

For instance, the observation that object321 is made of metal, is near an instance
of Plate and is that it is pointy on one end must be represented. With that
information represented symbolically, the reasoning system may infer that object321
is an instance of the class Fork or Knife, each with some probability.

So, an observation of the environment a robot may find itself in, a scene, is
represented as a smaller knowledge base, such as the one exemplified below:

• object321 is likely to be made of Metal.

• object321 is unlikely to be made of Plastic.

• object321 is pointy on one end.

• object321 is near object456.

• object456 is likely to be white, less likely to be gray and very unlikely to
be black.

• object456 is likely to be round and unlikely to be square.

• object456 is on top of object789.

• object789 is most likely to be an instance of Table.

Requirements for knowledge representation For the purposes of this
thesis, only the simplest semantics of description logic are needed. The type of
knowledge stated in example 6.2.1 on the preceding page is the following:

1. Definition of classes (e.g. Handle, Cup, Plate, Table, Shape, etc.).

2. Definition of instances of classes (e.g. fork31, table85, red, cylinder, metal
etc.).

3. Definition of binary relations between classes and instances/values (has-color,
has-height, seen-with, seen-on-top-of etc.).

4. Definition of binary relations between instances and other instances/values
(has-color, has-height, seen-with, seen-on-top-of etc.).

5. Concept Inclusion, i.e. the definition of subclass-relationships and the
transitivity of such relations. This means that if B is a subclass of A, and
C a subclass of B, then C is also a subclass of A.

6. Subclasses must inherit the relations of their superclasses.

7. Subclasses must inherit the assignments made to relations of their superclasses
and be able to make assignments to the same relations, making the description
more specific.

8. Preferably, both discrete and continuous values for relations (has-height,
has-diameter) (This preference has not been satisfied, see Section ?? on
page ??).

A knowledge base describing concepts, i.e. a set of description logic facts, is
commonly referred to as an ontology.

22

6.2.2 OWL and RDF

A well defined, standardized format to store the type of knowledge above exists
already, and is called Web Ontology Language, abbreviated OWL [3]. This
language is based on RDF, the Resource Description Format [43]. An RDF-document,
in essence, is a set of triples, each consisting of three items: two entities and
one relation between those entities. OWL extends RDF by providing some
predefined relations as well, such as relations for subclasses and assigning properties,
but also poses some restrictions on what relations can be expressed. Unfortunately,
standard OWL and RDF have no way defined in which to express statements
of probability. There is some research on creating such extensions, but before
we look into these, let us first discuss what type of probabilistic knowledge and
reasoning is needed in this thesis.
A list of reasoners for OWL ontologies can be found on the World Wide Web
Consortium (W3C) website [46]

6.3 Probabilistic reasoning and probability in
description logics

For classification of objects based on their visual properties alone, as described
above, simple inference can be used. For instance, from the facts that an object
is made of metal, has a bowl on one end is seen near a plate it can be inferred that
the observed object is a spoon. That is, when there is absolute knowledge of the
observed properties. Absolute knowledge of the environment is hard to obtain,
however. As seen in the example of section 6.2.1 on page 21, unfortunately no
absolute statements are given about any of the objects, but rather words such
as “usually” are employed, which indicate uncertainty.

Instead of absolute certainty, a degree of belief can be assigned to statements,
for instance that some class of object is made of metal. Another degree of belief
can be assigned to the statement that the same class of objects is made of
wood. These uncertain statements can then be used in probabilistic reasoning,
that also takes the degrees of belief for other properties of objects and their
context into account. As seen in the example of Section 5 on page 17, some
objects are observed together more often than other combinations of objects.
From this, we can conclude that perhaps joint probabilities of objects being
observed together need to be used, but also joint probabilities between object
classes and values for properties thereof.

Many approaches and frameworks for probabilistic reasoning and probabilistic
inference exist. The knowledge described above can become quite complex, with
tens to hundreds of statements already for even the simplest ontology. The
used method of inference must be able to handle relatively large domains, i.e.
hundreds of classes and facts about those. In the next section, an investigation
is made of what the inference method must be able to do, thus listing the
requirements for an inference method.

6.3.1 Requirements for probabilistic reasoning

In the investigation, two types of requirements are identified: functional and
non-functional requirement, The non-functional requirements are:

23

• A fully functioning implementation should be readily available.

• Integrability with ROS [51] for eventual deployment on Amigo. This
implies that the implementation must be able to run on Linux.

• Preferably, some of the knowledge must be able to be learned. Learning
is not a focus of this thesis, but allows some practical future work to be
more easily performed.

• Preferably, be able to work with standardized knowledge representation
formats, such as OWL.

The functional requirements are best stated in terms of what kind of knowledge
must be represented, and what kind of inferences it must be able to make. The
types of knowledge to represent are shown in the enumeration in Paragraph 6.2.1
on page 22. The inferences to be made are the following: From measurements on
the observable properties of some objects, infer what the class of these objects
is. More specifically, a measurement consists, for each object and for each
observable property, of some degree of belief that the object is having some
value for that property. For example, a measurement may report that there is
high degree of belief that object A is cylinder shaped and a low degree of belief
that it is rectangularly shaped. Object B is believed highly to be white and
to be a large box. Further, there is also some degree of belief that object A is
inside object B, which is inferred from their estimated positions.

Note that this assumes that the data association problem, of which measurements
and observations to assign to which object, has already been solved. The
world model [12] incorporated on the Amigo robot performs the task of data
association.

The task of the inference system is then to compute degrees of belief about
the classes each observed object belongs to. It could output a degree of belief
that object A is a bottle or some piece of tubing, as there is no more information.
Object B might be a closet, a refrigerator or maybe the enclosing of a boiler for
heating the house. As bottles are often found inside refrigerators and tubing
may be found near a boiler, additional degrees of belief can be computed for
each of these combinations of objects.

In short, both the knowledge base itself and the queries posed convey information
on degree of beliefs, and the inference mechanism must be able to use this
information about uncertainty to output a number of possible conclusions, each
associated with a degree of belief in that conclusion.

In this section, some options for probabilistic reasoning will be reviewed. As
stated earlier, the knowledge described above can be represented in a description
logic. Therefore, first some probabilistic variants of description logic are reviewed.

6.3.2 Existing probabilistic description logics

Some forms of probabilistic description logics (abbreviated PDL) already exist.
One of the requirements is that there is an implementation readily available. A
probabilistic description logic named P-CLASSIC [19] was immediately dismissed
as there was no implementation available.

24

BayesOWL BayesOWL [38] is an extension of OWL with probabilistic relations
between (distinct) classes. An implementation is available, but according to its
manual [2], it can only deal with binary variables. As this thesis will deal with
both arbitrary discrete and continuous random variables, BayesOWL cannot be
used.

PR-OWL PR-OWL [9] is an extension of OWL, that provides ways to express
probabilistic statements in an OWL ontology. UnbBayes [6] can reason with
PR-OWL ontologies. Not much information is available on how to use PR-OWL
and UnbBayes and PR-OWL requires elaborate, exponentially growing conditional
probability tables to be defined.

Log Linear Description Logics Log Linear Description Logics [26] are
based on Markov Logic Networks [10]. In [26], a description logic called EL++−
LL is defined, which is based on a EL++ also known as ELRO description
logic, but without nominals and concrete domains. EL++ − LL however is not
directly suitable for the type of queries that are to be answered in this thesis. It
is intended for queries concerning the probability that one concept is included
in another. As the LL in EL++ − LL denote the fact that it cannot deal with
concrete domains, i.e. instances of objects and not only classes, it is unsuitable
for use in this thesis. However, the main point to get from this paper is that it
is very well possible to implement the rules of a description logic in a Markov
Logic Network.

6.3.3 Custom implementation

A decision was made to use a general framework for probabilistic reasoning
with first-order logic and to implement a simple probabilistic description logic
in that, which would allow maximal control over the implementation. The most
general framework to do this with is Markov Logic [10], and more specific Hybrid
Markov Logic Networks [11]. The hybrid variant allows for both discrete and
continuous domains. Continuous domains are desired to describe continuous
properties of objects with, such as height and diameter.

Implementing the needed rules and semantics in first-order logic is straightforward,
and creating a working implementation of the rules in a logic programming
language such as Prolog is moments of work. From this, it was taken that
embedding the same rules in a probabilistic first order logic would deliver exactly
the needed system.

The standard implementation of (Hybrid) Markov Logic Networks is Alchemy
[17], developed by a team surrounding the inventor of Markov Logic. Some
advantages come from taking this approach:

• Markov Logic Networks scale linearly in the number of relations between
entities, instead of the exponential scaling of Bayesian Networks.

• Markov Logic Networks are the most general of probabilistic first order
logics. The use of first order logic is required to write the needed rules for
description logic.

• Choice of several probabilistic inference algorithms implemented in Alchemy.

25

• Alchemy is actively developed, in contrast to some probabilistic description
logics.

It also fulfills the other non-functional requirements:

• The intended platform for Alchemy is Linux.

• Alchemy has the ability to learn the degrees of belief in the knowledge
base already built-in, thus easing possible future work.

• Alchemy is able to learn structure from a knowledge base as well.

• As Alchemy is not a description logic implementation, it cannot handle
OWL directly. Converting an ontology in a subset of OWL to a Markov
Logic Network for use in Alchemy is very well possible though, and can
easily be automated.

Markov Logic Networks will be given a detailed review in Section 6.4. The
semantics and logic rules derived from the functional requirements are elaborated
in Section 8.2.1 on page 34.

6.4 Markov Logic Networks

Markov Logic Networks (MLNs) [10] are an attempt to unify logical artificial
intelligence and statistical artificial intelligence. The logical side of AI behaves
well under complexity, but not under uncertainty. Statistical AI is the opposite
in that regard, as it cannot cope with complexity very well, but it can handle
uncertainty. The core of the concept of MLNs is to assign each logical sentence
with a weight, which can be obtained by learning them from a (large) data set
of ground clauses, or by setting them manually.

In a Markov Logic Network, formulas in first order logic are considered as
constraints on possible worlds, with possible worlds being the set of all possible
assignments to all variables in a set of query predicates. In classic first order
logic, inconsistent worlds cannot exist, but in a MLN they are assigned a low
probability.

A MLN consists of a set of tuples, each of which consists of a first-order clause
and a real-valued weight. Together with a finite set of constants, this forms a
template for a Markov Network. From this template, a ground Markov Network
is formed by grounding the template, which is done by grounding each variable
in each formula with the possible values it can take. Markov Logic Networks are
typed, which limits the amount of groundings. Formally, the Markov Network
ML,C as defined by the aforementioned set of tuples, named L, and the set of
constants, named C, consists of a node for each ground predicate and a feature
for each ground formula. A feature has a weight, which is that of the formula of
which it is a grounding. Nodes and features both have a value, which can be 1
or 0 according to whether the grounding is true or not, i.e. is the corresponding
constraint satisfied or not in a possible world. Nodes are connected via an edge
if they appear together in a ground formula.

The concept of a feature as used above, it not clearly defined in [10]. In [18]
however, a feature is described as a node which’ final value, state or output, is
interesting. Features also provide an easy mechanism for specifying certain types

26

of interactions (in a network) more compactly [18]. Features, in this context,
represent formulas in a Markov Network. For inference, we are interested in the
final state of some formulas, specifically formulas or rules that give the class of
an object.

A ground Markov network, or Markov Random Field (MRF) defines a probability
distribution over the set of possible states X. The probability of a possible world
x ∈ X is the sum of number of true groundings ni of each formula F in that
world multiplied by that formula’s weight wi, exponentiated and normalized:

P (X = x) =
1

Z
exp(

F∑
i=1

wini(x)) (6.1)

Markov Logic Networks allow formulas to contradict each other, resolving
contradictions by evaluating the weights of each possibility, weighing the evidence
as it were.

In the case of this thesis, one of the predicates will be the relation of classes
to objects. The ground Markov network contains nodes and features for each
combination of possible objects and classes. The most probable possible world
then includes the most probable assignment of classes to objects, and thereby
performs classification.

6.4.1 Relation to other probabilistic graphical models

Probabilistic graphical models [18] are a way to represent the relations between
random variables, in which the random variables are nodes and the relations
and dependencies they have among each other are represented by edges. Many
other probabilistic graphical models, such as Conditional or Markov Random
Fields, Bayesian Networks (of which Naive Bayesian Classifiers in their turn are
a special case), Hidden Markov Models and others can be seen as spacial cases
of Markov Logic Networks [10]. The advantage of Markov Logic over them is
that independence can be assumed while dependence can be incorporated very
easily, in a declarative manner. It is very well possible that the final Markov
Logic Network developed in this thesis resembles one of the approaches above,
although stated in a declarative manner.

6.4.2 Inference

Multiple methods of inference are possible: Maximum A Posteriori (MAP) and
marginal inference. MAP inference is finding the possible world with the highest
probability, maximizing Equation (6.1) by finding a truth assignment x that
best satisfies the weighted formulas. Multiple algorithms to find this world
of maximal probability exist; the original paper on Markov Logic Networks
[10] mentions MaxWalkSAT [16], which is a satisfiability solver that also takes
weights into account.

Several methods for either type of inference in Markov Logic Networks exist:

• MC-SAT [30]

• Gibbs Sampling [7]

• Simulated Tempering [23]

27

• Belief Propagation [28], and its lifted variant: Lifted Belief Propagation
[39].

To evaluate the performance of a Markov Logic Network for classification
though, it is not only useful to know the most probable worlds, i.e. classifications,
but also to know less probable classifications. This, so it can be observed in more
detail if the classification results are completely wrong, or almost right and needs
some refinement. With MAP inference, the result is either right or wrong, and
no evaluation can be made of how wrong the result is, as the correct result may
be just slightly less probable.

Marginal inference is capable of finding the marginal probabilities for a (set
of) possible world(s), enabling aforementioned evaluation. As the probabilities
of each possible world are normalized, marginal inference yields a probability
mass function over possible assignments for each query predicate with one
variable. If we then “ask” the Markov Logic Network what the class of an
object is, given some evidence, it outputs a probability mass function over the
possible classes for that queried object. Marginal inference can be performed
by the MC-SAT algorithm [30], as mentioned in [10], and is the only algorithm
performing marginal inference that is also implemented in Tuffy (Section 6.4.3),
as well as Alchemy.

MC-SAT MC-SAT works by first satisfying the hard constraints and setting
this assignment of variables as the possible world x(0), where (0) indicates the
current iteration, 0, of the algorithm. It then performs the following procedure
for a predefined amount of iterations: Initialize an empty set M that is to contain
satisfied clauses, each of which should remain satisfied in the next iteration.
Then, for each clause ck that was satisfied in the previous iteration x(i−1), add
it to M with probability 1 − exp(−wk), where wk is the weight of clause ck.
After adding all the selected clauses, sample a new possible world uniformly
from the set of possible worlds that satisfy the clauses in M . This assumes that
all weights wk are positive, which can be achieved negating all negative-weight
formulas and their weights.

The pseudocode for MC-SAT is shown in Algorithm 1.

Algorithm 1 MC-SAT(clauses, weights, num samples)

x(0) ← Satisfy(hard clauses)
for i← num samples do

M ← ∅
for all ck ∈ clauses satisfied by x(i−1) do

With probability 1− exp(−wk) add ck to M
Sample x(i) ∼ USAT (M)

6.4.3 Tuffy

There exist multiple implementations of some of the algorithm(s) discussed in
the previous section. The reference implementation of Markov Logic is named
Alchemy [17], as mentioned earlier in Section 6.3.3 on page 25. A different
implementation of Markov Logic Networks called Tuffy [27] claims to be three

28

to five orders of magnitude faster. Tuffy only implements MC-SAT for marginal
inference.

The input-files for Alchemy and Tuffy are compatible, although Alchemy
accepts implications while Tuffy requires the knowledge base to be written in
clausal form. The claim that Tuffy’s authors make is also valid in the cases of
this research, as observed in the experiments: Tuffy produces results in under
20 seconds for an MLN where Alchemy takes roughly 20 hours, which is indeed
a speed-up of three-orders of magnitude . It achieves this tremendous speed-up
through three improvements on Alchemy:

• Grounding through SQL-queries, using a relational database which optimizes
these queries automatically, as a black box.

• Partitioning the ground MRF into smaller components, yielding a smaller
search space for the lowest-cost possible world; components which can also
be processed in parallel.

• Using a so-called hybrid architecture for inference.

The hybrid architecture for inference is the result of employing the right
tools for each job. A relational database is very suitable for grounding but
not for inference, as inference involves random sampling, which in turn requires
random access to data storage in a computer. Relational databases usually
employ disk-based storage, which cannot perform random access efficiently. The
architecture is hybrid in the regard that after grounding, the now ground Markov
Random Field is copied from disk into the computers’ main Random Access
Memory (RAM). RAM is efficient for the random memory access used in random
sampling. As the MRFs produced by Alchemy become very large, they can
potentially not fit in RAM anymore, which results in very inefficient memory
swapping to disk. Another advantage of the partitioning that Tuffy performs
is that the components are smaller than the whole MRF and will generally fit
into RAM, also in cases where the whole MRF is too large for RAM.

Tuffy is the implementation used for the final experiments, although Alchemy
was chosen first because of its support of Hybrid Markov Logic Networks. This
discrepancy is elaborated on in Section 9.3 on page 40.

29

Chapter 7

Software Framework

In order to integrate with the other software modules in the Amigo-robot, the
system developed in this thesis is built on ROS, the robot operating system. It
integrates with the world model [12, 45], a reasoning component for that world
model and other knowledge and finally with a perception pipeline. Each of these
are briefly discussed below.

7.1 ROS

ROS, in recent years, has been adopted by robotics researchers worldwide, as it
provides a large library of robotics algorithms and other software, communication
services, and software building infrastructure. For instance, it provides off the
shelf navigation and localization algorithms, libraries for 2D and 3D perception,
inverse kinematics, speech synthesis and much more. The Amigo robot also
works with ROS, and in order to be valuable to the team, the developed system
should preferably work with ROS.

Software packages, called Nodes in a ROS system, communicate with each
other through message passing. This is based on a publish-subscribe architecture,
which means that the publisher of information is not directly tied to the subscriber
of it, and that multiple publishers may publish on the same stream of messages.
Message streams, or topics in ROS terminology, can also have multiple subscribers.
Thus, there needs to be at least one publisher of information about each object
property. ROS nodes can also provide services to each other, for example to
perform some calculation on request.

7.2 Perception Pipeline

As stated earlier, the robot is equipped with a Kinect RGBD camera. This
data is processed by the perception pipeline, which includes ROS [51] packages
for segmentation, detecting objects on a table and color recognition. Software
to recognize object shapes is present as well, based on separate 2D matching
with several methods and 3D shape matching using VFH [35]. The perception
software packages do not output a definite conclusion, but rather they output
the probability of a match to each model. A key deficiency of this pipeline is
that it lacks a ways in which to combine all the parallel classification methods

30

for a final classification. The output information is then fed into the World
Model (Section 7.4 on the next page). Several of these systems are subject or
ongoing research, which is briefly mentioned below.

7.3 Research Context

The research group in which this thesis is performed in part of a Mechanical
Engineering department and has its focus accordingly. Research is also performed
on the topic of advanced control theory, motion planning, state estimation and
many more topics. Two theses from the group are relevant to this thesis and
are elaborated on below.

Object Appearance Prediction and Active Object Search
Using Probabilistic Object Relations [15]

The work in [15] is very much related. It investigates the use of probabilistic
relations between objects for two different purposes: predict object appearance
given the context and to search for particular objects more efficiently. The
relations are obtained by learning the joint probabilities of which objects are
often seen together in a scene. Then, when a robot is asked to retrieve some
item, which often involves searching for the item, the robot plans a path that
maximizes the probability of encountering the desired item as fast as possible.
Predicting object appearance is useful when performing object recognition with
a large database. Matching the observed object against every model in the
database is a computationally very expensive operation, and this work can
provide means to first match against objects that are most likely to be observed,
given the context.

The method used for probabilistic inference is the weighted sum approach.
To calculate the probability for a queried item given the context (evidence)
items, the weighted probability for the query item Q given each evidence item
E is calculated. The weight, for each context item, is the normalized probability
for that item having a particular class label. Put mathematically:

P (Q|E1, ...En) =

n∑
i=1

P (Q|Ei)wi

where the weight

wi =
P (Ei)∑n
j=1 P (Ej)

There is a major difference between the work in [15] and this work though: in
[15], the class labels for the evidence items are known, and moreover, the class
labels are definitive. In this thesis, class labels are not definitive and the point
of my thesis is that they are unknown at first.

The second application of the probabilistic relations, active object search, is
less relevant to this thesis.

Combined 2D+3D segmentation (Ric Jacobs)

Before objects can be classified, they have to separated, or segmentated, from
the background and other objects. One such approach for doing so is shown

31

in [25] and uses geometric information alone. Ric intends to combine both
2D and 3D information with a Conditional or Markov Random Field for the
segmentation of objects, possibly also splitting objects into parts. This project
is still underway, so the results cannot be used or evaluated already.

If this research would segment object from their environment and further
split objects into parts, outputting multiple hypotheses on splits and parts, it
could be very useful.

7.4 World model

One of the systems with which the classification system of this thesis will heavily
communicate is the world model. The world model is the result of a master’s
thesis [45] (a resulting article is [12]) and subject of continuous research. This
system is implemented and running on Amigo and performs the task of keeping
track of object identities and their properties, such as position, motion, color,
shape, et cetera. It can store arbitrary discrete and continuous properties in
probability mass and density functions, and uses models, when available, to
predict values of those properties. The models used for prediction depend on
the class of an object. For example, household objects usually cannot move by
themselves and are thus assumed to remain in the same place, while e.g. humans
can move around and are assumed to move with a low speed. A research goal
concerning this system is to also include common sense knowledge, so that the
behavior models do not predict that persons move into walls but take a turn
before that happens, for instance.

The perception software’s output is pipelined into the world model as input,
which then probabilistically matches perceptions to object identities, by keeping
a set of hypotheses about which perceptions (a form of data) associate to which
objects. By doing so, it attempts to solve the data association problem. The
world model uses the information from previous time steps to formulate a more
accurate conclusion on the identity and, for instance, class and name of objects
and faces.

In short, the world model is able to provide the probabilistic data that will
serve as input for the software resulting from this final thesis project. The
output of the classification scheme of this thesis will also be input for the world
model, in order to label object with their classifications. The world model
uses probability distributions for properties of objects where it can, in order to
maintain multiple hypotheses about each property.

7.5 Non-probabilistic Reasoner

To access the information in the world model, a first-order reasoning component
named tue reasoner was created which can also take other knowledge into
account, stated as a Prolog knowledge base. The tue reasoner can be said to
act as a query front-end to the world model. It can attach a probability to its
output, based on hypotheses in the world model about the queried information.
Given that such information is available in the world model through the perception
pipeline, it can answer queries like “What is the color of Object1”, and yield a
probability mass function over the possible colors Object1 has in each hypothesis.

32

Chapter 8

System and Language
Design

8.1 Framework Integration

The system developed in this thesis must be deployed on the Amigo robot, and
can preferably also be used in a broader context. This is achieved by splitting
up the classification method in two parts:

• A ROS service1 for Markov Logic reasoning, named mln reasoner.

• A ROS node2 that extracts the relevant information, i.e. observations,
from the running system and passes it to the reasoning service. This node
is named mln classifier.

Using this architecture, classification is only one application of Markov Logic
and is open to others.

The service for Markov Logic reasoning is mainly a wrapper around the
actual implementation of Markov Logic Network inference algorithms. The
service loads a Markov Logic Network when it starts or by external request.
It then waits for the classification application to send it information on which
inference can be performed, after which the results are sent back to the classification
application. This node then processes the classification results and publishes
these to the rest of the robot system, so that the robot can act on the inferred
information by finally grasping a can of coke, for example.

8.1.1 Input and Output

The information that the mln classifier gathers from the system are the
properties that are associated with each observed object. For the Amigo robot,
a perception pipeline has been developed which outputs a part of the needed
information. It performs some classification tasks itself as well, but is lacking
a proper method for combining classification results from multiple steps in the
pipeline, as mentioned earlier. The perception pipeline outputs information over
the following properties:

1http://www.ros.org/wiki/Services
2http://www.ros.org/wiki/Nodes

33

http://www.ros.org/wiki/Services
http://www.ros.org/wiki/Nodes

• Color of an object

• Shape of an object, classified using VFH[34] and not into primitive shapes.

• Location of an object

• Dimensions of an object

For the spatial relationships, reasoning about object locations is required. Currently,
no implementation of such reasoning is implemented on the Amigo robot, but the
reasoning components and so-called computables in KnowRob [44] could provide
this functionality when it is integrated with Amigo’s tue reasoner-package.
The names of spatial relations as defined later in this thesis are taken form the
KnowRob ontology with this purpose in mind.

VFH classifies object shapes into more specific classes than just primitive
shapes: it can be any set of shapes, such as the shape of a coke can or a fork.
The method developed in this thesis does assume primitive shapes, but there is
no reason why such more specific shapes could not be used instead. Performance
could possibly improve using this sort of shape-symbols, but for the purposes
of this thesis the decision was made to remain more generic.

8.2 Embedding Description Logic in Markov Logic

In 6.3.3 on page 25, the choice was made to create a custom implementation
of a very simple probabilistic description logic. In this section, the design and
implementation of the description logic is described.

8.2.1 Formal Semantics and Syntax of Description Logics

In this section, the needed DL formal syntax and semantics are stated using
formal logic. The core of any DL is the Top concept >, or the class which is the
superclass of all things. Reversely, there is the Bottom concept ⊥, or the class
which represents no thing at all.

The semantics of a DL are defined by an interpretation I = (∆I , •I), in
which ∆I is the domain of discourse, i.e. the set of all classes, instances and
relations considered in the model. •I is the interpretation function, which maps
symbols to interpretations. In the model, there is a set of class names NC , a set
of relation names NR and a set of instances, or objects, NI . •I then assigns:

• each class name C ∈ NC a subset of classes CI ⊆ ∆I ,

• each relation name r ∈ NR a relation rI ⊆ ∆I ×∆I

• every instance a ∈ NI an element aI ∈ ∆I

In general individuals are denoted with a, b, classes with C, D and roles with
r, s. As said, there exists a large family of description logics, that each define
different further semantics. For the purposes of this thesis, only a relatively
small subset of the semantics and features of description logics is used. The
type of knowledge that needs to be represented is the following:

• That some class is a subclass of another.

34

• That some class has some relation to another class or value.

For classification of objects, i.e. instances of classes, the knowledge about
such objects consists of simply the knowledge that some instance has some
relation to some value or class. The rules of inference are then merely of the
form: “If an instance i has a relation R to A and class C also has relation R
to A, then the class of i may be C”. It is possible to implement such a general
rule directly in a logic programming language such as Prolog. A key feature of
description logics, however, is that relations can be specified to only apply to
a certain domain and range of classes and types of values. While it is possible
to specify rules that would enforce such typing, predicates in Markov Logic
Networks are already typed, as opposed to Prolog. The distinction between
classes and different types of values is very important.

For the purposes of this thesis, the semantics needed and syntax that are
defined are listed below. The rules that were to be implemented in Markov Logic
have evolved over time, as the capabilities syntax-wise were not familiar to me
enough at the time of design. For Markov Logic, that what is presented below
are the final forms of the concerned rules, after several iterations described in
Section 9 on page 39.

In Prolog, variable names start with capitals and names of constants start
with a lowercase letter, as do predicates. In Markov Logic Networks, it is the
opposite: names of constants and predicates start with a capital; variables start
in lowercase.

Top Concept

Syntax : >

Semantics : ∆I

Meaning : The Top concept is the set of all concepts, i.e. the class of all
things, and represents everything, thus every thing.

Prolog : superclass(Class, top).

MLN : Superclass(class, Top)

Bottom Concept

Syntax : ⊥

Semantics : ∅

Meaning : The Bottom concept is the subconcept of all concepts, and represents
nothing, i.e. no thing at all.

Prolog : subclass(Class, bottom).

MLN : Subclass(class, Bottom)

35

Concept assertion

Syntax : c : C

Semantics : cI ∈ CI

Meaning : “c is an instance of class C”.

Prolog : instance of(instance, class).

MLN : Class(instance, Cls)

Role assertion for instances

Syntax : (a, b) : R

Semantics : (aI , bI) ∈ rI

Meaning : “Instance a and b are related by relation R”.

Prolog : instance relation(instance, role, value).

MLN : Role(instance, value). Please note the difference here. Prolog uses
triples, whereas the MLN version uses a binary relation. This also means
that a new predicate must be defined for each relation.

Role assertion for classes

Syntax : (A, b) : R

Semantics : ∀a : a ∈ AI ∧ (aI , bI) ∈ rI

Meaning : “Class a and b are related by relation R”.

Prolog : class relation(a, role, b).

MLN : ClsRole(a, b)

Concept Inclusion, i.e. subclassing

Syntax : C v D

Semantics : CI ⊆ DI

Meaning : C is a subclass of D.

Prolog : subclass(Class, Superclass).

MLN : Subclass(cls, supercls)

Concept equivalence

This rule has not been implemented in Prolog nor Markov Logic as the need for
it has not occured.

Syntax : C ≡ D

Semantics : CI = DI

Meaning : Concepts/classes C and D are the same, or equivalent.

36

Transitivity of Concept Inclusion

No special rules are needed for this in either Prolog or Markov Logic.

Syntax : C v D ∧D v E → C v E

Semantics : CI ⊆ DI ∧DI ⊆ DI → CI ⊆ EI

Meaning : The concept C is a subclass of D, and D is a subclass of E, so C
is also a subclass of E. For example: a fork is some kind of cutlery and
cutlery is a form of tools, thus forks are some kind of tools.

Existential Restriction

This rule has not been implemented in Prolog nor Markov Logic.

Syntax : ∃r.D

Semantics : {x ∈ ∆I |∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI} and C ≡ ∃r.D

Meaning : C is defined as the class of objects that have relation r with some
object in D. For example: the relation r is one that means “has color”,
and D is the concept of color. Then C is defined as the class of colored
things.

Inheritance of relations from superclasses to subclasses

This rule is also not required in Markov Logic.

Syntax : C v D ∧D ≡ ∃r.E ⇒ C < ∃r.E

Semantics : CI ⊆ DI ∧ {x ∈ ∆I |∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ DI} → {x ∈
∆I |∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}

Meaning : C is included in D, while D is defined as the set of things that have
a relation r with E. This implies that C also has that relationship.

Subclasses inherit assignments made to superclass relationships

Syntax : (d, e) : r ∧ c ∈ C ∧ d ∈ D ∧ e ∈ E ∧ C ⊆ D ⇒ (c, e) : r

Semantics :

(d, e) ∈ RI ∧ c ∈ CI ∧ d ∈ DI ∧ e ∈ EI ∧ CI ⊆ DI → (c, e) ∈ RI

Meaning : If d is related to e through the relation r and if c is a C, d is a D,
e is an E and C is a subclass of D, then also c has an r-relation to e. For
example: Soda cans are cylindrical. Coke cans are a subclass of soda cans
and thus inherit the property of being cylindrical.

Prolog : class relation(Sub, Rolevalue) :-

subclass(Sub, Super), class relation(Super, Superrole, Rolevalue)

MLN : Subclass(sub, super) ^ ClsRole(super, superrole) => ClsRole(sub,

superrole)

37

Not all description logic semantics described above are needed, as is stated
above. They are still mentioned to show what is needed for this thesis and what
is not needed.

These rules, as derived from a formal description logic, are enough to describe
objects with knowledge that is certain. However, this thesis does not deal with
certain knowledge, but with uncertain knowledge. In a Markov Logic Network,
uncertainty is expressed by assigning a weight (comparable to degree of belief)
to each fact or rule, by prefixing it with a floating point number. Rules postfixed
with a dot ’.’ are hard constraints and must always be satisfied. The formal
semantics of the description logic itself are not made probabilistic, but rather
the rules derived from it are given probabilistic annotations.

8.3 Probabilistic Annotations in the Description
Logic

Probabilistic reasoning in description logics can have several meanings, each
implying a different part of the knowledge being probabilistic. In this research,
concept inclusion is not probabilistic: it is certain that for instance coke cans are
a sort of soda can. Only the properties, the role assertions, that define a class of
objects are probabilistic, in the sense that a relation between a class and a value
only hold with some weight. A high weight for a role assertion, for example 10.0
ClsColor(Coke can, Red color) means that it is very likely that coke cans
are red. Please note that weights in themselves are of no particular meaning:
it is only in proportion to other weights that one rule is more important than
another.

38

Chapter 9

Development of the Markov
Logic Network

9.1 Representing Appearance

The classification scheme of this thesis must classify objects based on their
appearance and their context. The appearance of objects must therefore be
described, represented in some way.

An attempt was made to use RDF-style triples, as discussed briefly in
Section 6.2.2 on page 23. This resulted in triples such as

Property(Obj1, Color, Red)

and

Property(Obj1, Shape, Cylinder)

This has a major downside however. As both values for Color and Shape are
used in the same predicate, Alchemy puts Cylinder and Red under the same
type. Alchemy could thus infer that the Shape of an object was Red, which is
incorrect of course. It is possible to write hard constraints to prevent this, but
the added complexity was considered to be not worth the effort, not to mention
that the amount of possible worlds would still be much larger than with the
alternative, which is to repeat rules for each property. Furthermore, in other
good software engineering practice, it could be beneficiary to automatically
generate such rules from a template.

Even more important on a conceptual level, is the fact that properties of
instances of classes (objects) are different from properties of classes. I.e. there
must be a difference between the knowledge that a class is generally of some
color, or that an instance has a specific color.

Following the two observations above, binary predicates are introduced for
each property: one to assert that an object has some property and one to assert
that a class has some property. These are ClsProperty(Class, PropertyValue)

and Property(Object, PropertyValue) respectively. Such predicates are repeated
for each property, so the Markov Logic Network contains facts such as

ClsColor(CokeCan, Red)

39

ClsShape(SodaCan, Cylinder)

ClsMaterial(SodaCan, Metal)

et cetera.
Descriptions of actual objects, instead of classes, use similar facts:

Color(Object23, Red)

Shape(Object23, Cylinder)

Material(Object23, Metal)

9.2 Inheritance or Concept Inclusion

With the predicates defined in the previous section, it is finally possible to
express rules that express inheritance, or subclassing or concept inclusion, via a
Subclass-predicate. These rules are repeated for each predicate. The inheritance-rule
for a predicate such as Color is then:

Subclass(sub, super) ^ ClsColor(super, supercolor) => ClsColor(sub, supercolor).

This states that if sub is a subclass of some superclass super and that superclass
has some particular color supercolor, then the subclass also has that color.
The above is a template for property-inheritance rules and is repeated for each
property.

9.3 Continuous-valued properties and Dimensions

Alchemy, the implementation of Markov Logic that has been chosen earlier in
this thesis for this reason, has the capability to deal with continuous values,
instead of discrete ones. Using continuous values, an attempt was made to
define predicates for representing appearance descriptions and to write rules for
classification and inheritance in the same fashion as for the discrete properties.
This resulted the following rule:

ClsHeight(cls)=clsheight ^ Height(inst)=instheigth ^ instheight=clsheight =>

Class(inst, cls).

This simply states that when an instance has some height, and a class has some
height, and those heights are equal, then the instance belongs to said class.
Unfortunately, Alchemy rejects this rule with a syntax error. In trying to fix
this, a closer look at Alchemy’s user guide was taken, specifically the tutorial1

on Hybrid Markov Logic Networks.
The semantics and syntax for defining rules that include continuous properties

are not quite clear. E.g. in the rule

Class(CokeCan, id) * (Height(id) = 0.1)

1http://alchemy.cs.washington.edu/tutorial/11Hybrid_Domains.html

40

http://alchemy.cs.washington.edu/tutorial/11Hybrid_Domains.html

, as adapted from the tutorial, what is the meaning of the *? Other ways of
writing the rule were explored, but none seemed to work.

Eventually, a decision was made to not use continuous properties using
Hybrid Markov Logic Networks and thus to discretize the range of all properties
that concern spatial dimensions. This is in conflict with the preference for
continuous properties, as listed in the requirements for knowledge representation
of Section 6.2.1 on page 22.

A choice was was made to make steps of one centimeter, which is at a scale
fit for most household objects: not much household objects are smaller than
a centimeter and not much are larger than a few hundred centimeters, thus
keeping the number of atoms needed relatively small.

Stepping away from HMLNs allows to explore other implementations of
Markov Logic as well, as Alchemy is the only implementation of Markov Logic
that is able to handle HMLNs. For example, Tuffy, as mentioned earlier in
Section 6.4.3 on page 28, is another Markov Logic implementation that claims
to be faster and to scale better to larger MLNs.

The example of this section deals with the property of height, but more
dimensions for objects and classes have the potential to yield a more accurate
description and result in more constraints on the set of possible worlds and
are thus expected to yield a smaller set of plausible answers. Some more
philosophical than technical questions and problems arise directly. What exactly
is height? What exactly are length, depth and width? In which direction are
they measured? Do cylinders and spheres also have depth and width or just
diameter? Height, for instance, is the distance between the bottom and top of
an object. But, when an object is on its side, what is the top and what is the
bottom?

Clearly, some definitions are needed. A difficulty here is that humans intuitively
know what the front, back and other sides of an object are, without being able
to tell why they think so. The dimensions that are to be used must be clear
for robots, which for example do not know the intended usage of an object,
certainly not before they know what class an object is, as is the case in this
thesis.

Below is a list of some dimensions with their interpretation by humans:

Length The longest dimension of an object [47, 52].

Height The distance between the lowest and highest points on an object.

Breadth or width The distance between two opposing sides of an object,
measured in a direction perpendicular to the object’s length-axis.

Depth “The distance between the front and the back, as the depth of a drawer
or closet.” [49]

Diameter Twice the radius, where radius is the greatest distance between the
axis of a cylinder and its surface.

These definitions of dimensions depend on the following notions:

Side “A flat surface of a three-dimensional object; a face.” [50]

Top The side of an object delimiting it in the vertical dimension at the highest
point, opposing the bottom.

41

Bottom The side of an object delimiting it in the vertical dimension at the
lowest point, opposing the top.

Front The side of an object closest to the observer, or the “business-side” of
an object, on which it is operated or otherwise used. This side is parallel
to the height-axis of an object.

Back The side of an object opposing the front.

These definitions indirectly all depend on the insight and prior knowledge of
a human observer, e.g. to indicate what the front of an object is. Such prior
knowledge and insight on this level are not yet available in robots and can
therefore not be used.

In order to decide what dimensions can be used, it it first necessary to
asses what can be measured by a robot, specifically the Amigo-robot, which is
equipped with a Kinect 3D camera and software to analyze pointclouds based
on PCL [36]. The capabilities of the analysis software related to the estimation
of the dimensions described above are listed below:

• Fitting an orientated bounding box to a cluster (a cluster is a set of points
measured on the same object).

• Of such an oriented bounding box, list its dimensions along the edges of
the box.

• Fit an oriented cylinder to a cluster.

• Estimate the diameter of a fitted cylinder and length of its axis.

• Fit planes (i.e. sides) to clusters.

Ideally, the dimensions can be measured irregardless of the orientation of the
object, so that an object on its side still has the same dimensions. Dimensions
such as height depend on orientation and can therefore not be used. In some
cases though, the length and height of an object are equal. Length is not
dependent on orientation and can therefore be used.

For the most basic shapes that occur in household environments, the following
conventions are used:

Shape Length Diameter Width Depth
Cube Longest dimension Undefined 2nd longest

dimension
3rd longest
dimension

Cylinder The distance from
end to end along the
axis of the cylinder.

Distance between
axis and surface.

Undefined Undefined

Sphere Undefined Distance between
center and surface.

Undefined Undefined

In the perception pipeline, some logic will have to included to route measurements
to the correct interpretation.

These properties are stored in the knowledge base and evidence respectively
in this form:

ClsLength(Sodacan, 12).

42

and

Length(Obj9, 12)

9.4 Context & Spatial Relationships

Classifying objects by their appearance and dimensions is only a part of the
investigated approach. Context is also to be used as a clue to the class of an
object.

That one object or class is, or usually is, in the context of another object or
class can can be expressed using the Neighbor- and ClsNeighbor-predicates,
which were used in early stages of the implementation. The meaning of these
predicates is that the two objects or classes in this relation are (usually) spatial
neighbors of each other, and that thus are standing very close together, that
they are on top of each other, or that one is inside the other, etc. This relation of
“being in context of“ is refined into predicates such as OnTop and IsInside. But
with this relation of Neighbor already, spatial relation graphs of an environment
can already be created, with the objects as nodes and the Neighbor-predicate
as edges between the objects. An example of this is (Figure 9.1)

X_0

X_2 X_3

X_1

Figure 9.1: Graph showing neighbor-relations between objects. Xi is the class
of an object

On each object, however, we observe some properties, such as Color, Shape
etc, as already mentioned before. Per object, this yields a graph (Figure 9.2
on the following page) in which observations are also linked to the class of the
object.

When these two graphs are combined, we obtain a graph quite similar to
a Conditional Random Field with multiple observations, i.e. Figure 9.3 on the
next page. Exact inference in CRFs is intractable, but there exist methods
that can yield approximate solutions. For each situation, a graph like that in
Figure 9.3 on the following page is instantiated with a structure depending on
the relative positions of the observed objects and the observable properties of
those objects.

43

X_0

Y_0 Z_0 W_0

Figure 9.2: Observations on an object X0. Using the notation commonly used
in literature on graphical models, X is the hidden variable that is to be inferred,
whereas Y is the observed variable, which could represent Color, Shape etc. As
multiple observations are made, also W and Z are observed variables. Strictly
speaking, this classification scheme does not deal with observations directly, but
instead with the symbolic output of lower-level classifiers and the world model
mentioned earlier.

X_0

X_2 X_3

Y_0
Z_0

Y_2

Z_2

X_1

Y_1
Z_1

Y_3

Z_3

Figure 9.3: Conditional random field with multiple observations per object

As mentioned above, the (Cls)Neighbor-predicates can be refined into much
more precise spatial relationships. The following spatial relations are defined:

• AboveOf

• BelowOf

• InCenter

• InFrontOf

• InBehindOf

• IsInside

• IsOnPhysical (note the specification “Physical”, to specify that an object
is on top of another, instead of the “On”-state of devices and machines. A
TV set can be switched on while also being on top of a closet, for instance)

44

• ToTheSideOf

– ToTheLeftOf

– ToTheRightOf

• IsNear

Some of these spatial relations are the inverse of each other, such as InFrontOf
and InBehindOf, AboveOf and BelowOf, ToTheLeft/RightOf.

9.5 Classification

Classification rules can be written in multiple ways. During exploration of the
syntax and possibilities of Markov Logic, rules were defined this form:

ClsColor(cls, clscolor) ^ Color(inst, clscolor) => Class(inst, cls)

This takes only one property into account. It seems natural that performance
improves when multiple properties are taken into account, so that e.g. both
shape and color should match. This would result in a rule of the following
form:

ClsColor(cls, clscolor) ^ Color(inst, clscolor) ^

ClsShape(cls, clsshape) ^ Shape(inst, clsshape) => Class(inst, cls)

We can then also increase the weight of such rules, as more matched properties
naturally lead to more sure classifications. This results in relatively verbose
and unclear code, certainly when more than two properties are to be taken
into account, and even more so when rules are written in clausal form. This is
circumvented taking an intermediate step, using a rule of of this format:

ClsColor(cls, clscolor) ^ Color(inst, clscolor) => Colormatch(inst, cls)

ClsShape(cls, clsshape) ^ Shape(inst, clsshape) => Shapematch(inst, cls)

These can then be combined in a slightly cleaner fashion:

Colormatch(inst, cls) ^ Shapematch(inst, cls) => Class(inst, cls)

which is

!Colormatch(inst, cls) v !Shapematch(inst, cls) v Class(inst, cls)

when converted to clausal form. As there are many properties, ideally all of the
combinations of properties are used as rules. All these combinations are indeed
used, automatically generated, and weighted proportional to the amount of
properties they combine. Several different Markov Logic Networks are created,
each with increasing length/complexity of rules, i.e. a MLN with rules of only 1
property up to a MLN with rules for each combination of 6 properties. Which
amount of properties yields the best success rate is evaluated in the experiments,
in Section 10.4.1 on page 53.

45

9.6 Ontology

In order to demonstrate that the system works and to perform experiments,
a large ontology is needed that encompasses all objects, their properties and
context classes and also their properties. A non-probabilistic ontology, manually
created in OWL [3] during the literature study-phase of this thesis, was therefore
taken and converted to an ontology in Markov Logic, utilizing the predicates
developed in previous sections.

This translation from OWL to MLN is fully automatic, with each predicate
name in OWL mapped onto a predicate name in MLN, along with a function
that assigns a weight to each fact concerning that predicate. Automatically
generating MLNs from OWL-ontologies requires to split the factual knowledge
and the rules for inference into two parts, listed in Appendix A on page 69 and
Appendix B on page 72.

The translation program can selectively include or exclude facts concerning
some predicate. When converted from OWL to an MLN, including only Color-,
Shape-, Material- and Class-related predicates, the generated MLN consists of
ca. 600-700 weighted facts about ca. 115 classes and values. Combined with the
rules, this results in a ground Markov Random Field with ca. 800.000 ground
clauses, according to Alchemy’s output.

9.7 Final Markov Logic Network

The experiments, as discussed in the corresponding chapter, are performed
with the MLN as discussed up to this point. Much more knowledge can be
added, more rules, other weights; there is a multitude of possibilities for further
improvement. It is relatively easy to add new facts and rules and thus the
current (variants of the) MLN can be seen as a proof of concept.

The final MLN, as it is used in the experiments, is included in the appendices.
It is split into two parts, one containing only the rules (Appendix A on page 69)
and a second only containing class knowledge (Appendix B on page 72). In this
MLN, the weights of rules are determined mainly based on experience developed
during this thesis project. The weights of the facts are randomized and thus not
all set to the same value. This has been done in order to emulate the effect of
learning the weights, which also would result in different weights for each fact.
A final important note regarding the description of classes is that only positive
evidence is given, since listing all negative evidence (i.e. what a class of objects
does not look like) is not reasonable to do.

46

Chapter 10

Experiments

The experiments to select the best performing variant of the final MLN, to
validate the approach and to test the performance of the selected MLN are
discussed below. First, the system is evaluated in scenes where all information
that could be available is indeed available. Later, it is tested on situations where
some information is missing or wrong.

10.1 Experiment setup

In order to test the method, a number of scenes was developed, 16 to be exact.
A scene is simply a description of a situation as it could occur in the real world.
It lists the knowledge that is available about a situation. A simple example is
this (scene 1):

Color(Obj12, Red_color)

Shape(Obj12, Cylinder_shape)

Material(Obj12, Metal_material)

Length(Obj12, 12)

Diameter(Obj12, 6)

//Class(Obj12, Coke_can)

Color(Obj22, Brown_color)

Shape(Obj22, Cylinder_shape)

Material(Obj22, Wood_material)

Length(Obj22, 74)

Diameter(Obj22, 100)

//Class(Obj22, RoundTable)

IsOnPhysical(Obj12, Obj22)

It lists the properties of a coke can (Obj12) and a round table (Obj22) and the
fact that Obj12 is physically on Obj22. The Markov Logic Network, developed
in the previous chapter, contains knowledge about classes; scenes contain knowledge
about instances of classes. The statement of the class of each of the objects is
in comments, so that the inference mechanism cannot take this information, the
ground truth, into account. Such a scene is combined with the Markov Logic

47

Network as listed in Appendix A on page 69 and Appendix B on page 72. The
Tuffy program is then ran with these files and the predicate we are interested
in (i.e. Class) as its arguments and it outputs a result-file, which contains a
probability distribution of possible answers for each query predicate. A possible
output of the program is listed below:

0.3100 Class("Obj12", "Sodacan")

0.1900 Class("Obj22", "RoundTable")

0.1900 Class("Obj12", "Cookiejar")

0.1700 Class("Obj22", "Closet")

0.1600 Class("Obj22", "PepperShaker")

0.1500 Class("Obj22", "Beer_bottle")

0.1400 Class("Obj22", "Chair")

0.1200 Class("Obj12", "Pan")

0.1100 Class("Obj12", "Juice_carton")

0.1000 Class("Obj12", "Coke_bottle")

0.1000 Class("Obj22", "Table")

0.1000 Class("Obj12", "Teapot")

0.0900 Class("Obj22", "Bottle")

0.0700 Class("Obj12", "PepperShaker")

The analysis software developed for this thesis takes a set of such result-files
and parses and processes them to finally produce the figures shown below.

In the example above, the ground truth class for Obj12 is Class("Obj12",

"Cokecan") and for Obj22 it is Class("Obj22", "RoundTable"). The most
probable (rank 1) class for Obj12, however is Sodacan, which is a superclass of
Cokecan. For Obj22, the most probable class is indeed RoundTable. The second
most probable (thus ranked 2) class for Obj12 is a Cookiejar.

How the results are further processed to determine performance is subject
of the next section.

10.2 Validation method

The output of the default Maximum A Posteriori inference is the most probable
state of the world. In effect, it yields the most probable class of each object,
given a set of observations as listed above. Performing marginal inference results
in a number of hypotheses with a probability for each, which allows for a much
deeper analysis than just observing only which is the best class. The result-files
as described in the previous section are the result of marginal inference and used
for the validation method described here.

Marginal inference takes some more time than MAP inference, but this
difference is relatively small. Results from marginal an MAP inference are
often different but similar, as the used algorithms are different. The results of
MAP inference do not allow for a deeper analysis of individual results, while
those of marginal inference do. Furthermore, the world model, that will receive
the output of this classification scheme, can take probability distributions over
the class of an object and use that for later reasoning. The world model tracks
the values properties, and also the class of an object, over time. The fact that
the most probable class is different when more information is available can be

48

valuable to the world model or to the software that uses it. In this thesis,
therefore marginal inference is used, as this provides the most valuable output.

With the output of marginal inference, we can see if the possible world that
is inferred to be the the second most probable world, i.e. assignment of classes
to objects, was perhaps the correct one. It is then also possible to get the index
or rank of the ground truth in the results, when they are sorted by probability:
if the ground truth is listed as the most probable class, then the ground truth is
at rank 1, the ground truth has rank 2 if it is the second most probable result,
et cetera. Ideally, the ground truth class is always the most probable class, but
because the Markov Logic Network is used to infer the class of an object, the
ground truth class and the most probable class of an object are certainly not
always the same, as misclassifications may occur.

The success rate is then how often, in a set of objects in scenes, the ground
truth is listed at rank 1, or rather the fraction of cases in which this happens.
The method developed in this research can however also classify something as
the superclass of the ground truth class, e.g. classify a coke can as a more general
soda can. The rank of the superclass in the results is also taken into account,
and the total success rate is the sum of these two fractions. For the total success
rate, both ground truth and superclass of ground truth are weighed equally; one
is not weighed heavier than the other for the total success rate. This measure
of total success rate will be used as the primary measure of performance.

Rankings can be summarized into a histogram, an example of which is shown
in Figure 10.1 on the following page. The bars in such a graph show the fraction
of cases in which the ground truth, superclass thereof or a sibling class of the
ground truth was at rank n. The stepped plots in the graph show cumulative
histograms for each labeling, along with a total cumulative histogram of the
ground truth and superclass cumulative histograms added together. The value
of a cumulative histograms at rank n tells in what fraction of cases, the ground
truth, superclass or sibling was listed at a rank lower than or equal to n.

From the plot of the cumulative total success rate, another performance
measure can be defined. Namely, the rank n at which this plot hits the 1.0
mark. For any n, it can then be said that the classification scheme has the
ground truth or a superclass thereof in the first n results.

Ideally, the classification scheme always list the ground truth class as the
most probable class for an object, in which case the bar for the ground truth at
rank 1 would stretch to 1.0, i.e. all cases. Less ideal but still very good would
be the case in which the bars for ground truth and superclass of the ground
truth add up to 1.0 at the first rank.

In the example graph of Figure 10.1 on the next page, the total cumulative
histogram hits the 1.0-mark at rank 4.

In 2D object classification research, it is common practice to compare the
developed classifier to other using the PASCAL Visual Object Classes Challenge
[13]. This challenge currently only deals with 2D data, in ca. 20 classes in 4
broad categories and is therefore not an interesting or usable benchmark for use
in this thesis.

49

Figure 10.1: Example histogram of rankings. While the bars show a normalized
histogram, the lines show the steps for a cumulative normalized histogram. The
graph marked with stars (as opposed to bullets or triangles) shows the total
cumulative histogram, for both ground truth and superclasses of the ground
truth

10.3 Parameters for convergence

Before performing further experiments, it is important to tune the performance
of Tuffy, in order for it to yield the best results. The key parameter that
heavily influences accuracy is the amount of samples that MC-SAT is set to take,
as described in Paragraph 6.4.2 on page 28. This is evaluated by performing
inference on the same Markov Logic Network on the same scene multiple times
for different settings of this parameter. Per setting of the number of MC-SAT
samples, 10 inference runs were performed.

In Figures 10.2 and 10.3 on page 52, the average probability with the error
over 10 inference runs are shown, for the default 100 and 50.000 samples respectively.
The scene used in this evaluation contains four unknown objects of which their
class is to be inferred. Although not relevant for what the figures must show, in
them, a Pan is confused by the classification scheme for a Teapot. These objects
are relatively alike, as both are cylindrical, made of metal and related to stoves.
The same goes for the confusion between KitchenStove and ComputerCase, as
both can be the same colors and are boxes made of metal. Mainly the dimensions
vary, in both (actually: three) cases.

For each of these query objects, and for each setting, the sum of the errors
of all possible answers to that query is plotted in Figure 10.4 on page 53. This
measure of summed error is not a meaningful measure for classification, but it

50

Figure 10.2: Average probabilities with errorbars for MC-SAT with 100 samples
(default) 51

Figure 10.3: Average probabilities with errorbars for MC-SAT with 50000
samples 52

is a sufficient measure for convergence, i.e. to show the trend of decreasing error
with increasing sample count. Unfortunately, taking more samples inherently

Figure 10.4: Convergence and time consumption of MC-SAT with increasing
numbers of samples

takes more time as well, which is also shown in the graph of Figure 10.4.
From this analysis, the parameter for the amount of MC-SAT samples was

set to 50.000, as this yields errors smaller than the variations between first
and second rank results, and thus the variations between inference runs can be
said to least affect the ranking of results, as used in the performance measure
described in Section 10.2 on page 48.

10.4 Nominal performance

To evaluate nominal performance, inference is performed once (since convergence
is reached) on the 16 scenes mentioned earlier. The MLN that performs best
under these nominal conditions, with all information except about class available,
is used in subsequent experiments.

10.4.1 Rule Complexity

During the development of the Markov Logic Network, several variants were
developed, each variant with a different complexity of rules. In this experiment,
the performance for each rule complexity is evaluated.

From the data in Table 10.1, it can be observed that a rule complexity of
two properties combined performs best, with a success rate of 73%, which is

53

Combined properties Total Success rate Inference time on scene 1 [s]
1 68% 118
2 73% 80
3 54% 53
4 48% 53
5 34% 52
6 11% 41

Table 10.1: Success rate for varying rule complexity.

reasonable.
If only 73% of the objects are classified correctly, i.e. as their ground truth,

then what happens in the other 27% of cases? These are described below.

Scene 1,2 A RoundTable is misclassified as a Chair. Both are made of the
same material and have the same color and material and are both related
to the floor.

Scene 3 A Knife, Spoon and Fork are present, which are all misclassified as a
ComputerCase. This is rather odd, as the only common property between
utensils and computer cases is that they are made of metal.

Scene 5 A Book is misclassified as a remote control. Both are box-shaped, can
be black and on top of tables. Dimensions and material do not match
however.

Scene 6 A Tea cup is misclassified as a pepper shaker in scene 6. Only their
diameter is different, so quite understandable.

Scene 7 The confusion between teapots and pans arises again, as was seen
investigating the convergence (Figure 10.2 on page 51 and 10.3 on page 52).

Scene 9 The results of Scene 9 contain a confusion between SoupPlate (a
subclass of Plate) and a Vase. The only difference there is in dimensions
and context. The ontology does not contain flowers; if they were in the
context of the vase, possibly, the confusion could have been resolved.

Scene 15 A FruitBowl is confused for a Coffeemaker, with a small difference
in probability. These classes of objects however are quite different.

Scene 16 In scene 16, only the DrinkingGlass is classified correctly, the other
objects are confused in the same way seen in other scenes.

Further, it can be seen that the performance actually decreases with increasing
rule complexity. This is due to the fact that for a rule complexity of 2 and 3,
more combinations of properties, i.e. rules can be created. As the weight of a
rule is set to be proportional to its complexity, the result is that for complexity
2, the total weight of the matching rules is the greatest.

The expectation is that performance would increase with greater rule complexity.
With a different weight-assignment function, other than a proportional one, the
MLN can likely be adjusted to compensate for this effect and to match the
expectation. This tuning and tweaking of the used MLN, however, is regarded
as future work.

54

10.4.2 Scene complexity

The scenes used in the evaluation have varying amounts of objects in them.
It is interesting to note that the success rate decreases with increased scene
complexity, i.e. more objects per scene. For low-complexity scenes with only 2
objects, the success rate is 75%, while for scenes 6 objects, the success rate is
just over 50%.

Scene complexity Success rate Scenes complexity occurrences Avg. Inference time [s]
2 6/8 4 80
3 13/15 5 122
4 13/16 4 107
5 2/5 1 155
6 7/12 2 153
55 26/55 1 1687

Table 10.2: Success rate for varying scene complexity.

The last row in Table 10.2 shows results for the integration of all scenes into
one large scene of 55 objects (in 16 groups). The time needed for inference on
this larger scene is ca. 1700 seconds, which is less than the total time needed for
the 16 scenes separately. Reducing the needed inference time was the motivation
for trying to integrate all scenes into one. The success rate, however, for this
integrated scene is significantly lower than the success rate of the separate scenes
combined and thus scenes were kept separate.

A possible explanation as to why the success rate for more complex scenes
is lower, could be the increased amount of possible worlds and the resulting
search space, which is inherently much larger. Potentially, this problem could
be mitigated by increasing the amount of samples taken. The set of possible
worlds however grows exponentially with the amount of objects in it. Getting
the same sampling ratio of the possible worlds, i.e. the ratio of the amount of
samples divided by the amount of possible worlds, would require an enormous
amount of needed samples and would result in an impractically long time needed
for inference.

10.5 Context Makes the Difference

The use of context (i.e. spatial relations to other objects) is expected to be
a useful clue for classification. In order to evaluate this expectation, some
experiments are performed. In the first, the spatial relations to other objects in
a scene are omitted in the evidence. For a second experiment regarding context,
the evidence stated the exact class of the context objects.

10.5.1 Influence of spatial relations

The scenes used for evaluating nominal performance are altered for this first
experiment, by removing all spatial relations from the evidence.

As can be seen in Figure 10.5 on the following page, the omission of the
spatial relations does not affect the success rate at all. This, however, is the
case when all other possible information is available. What happens when all the

55

Figure 10.5: Performance with missing spatial relations

information is shape and color? The success rate is only 21% in this case. When
information about spatial relations is also included, the success rate slightly
increases to 23%. Thus, in the used MLN, the context does in fact not have
a large effect and but does benefit classification in cases where there is only
little information. The histograms for these cases are listed in Appendix C on
page 78, in Figure C.1 on page 78 and Figure C.2 on page 79 respectively.

10.5.2 Known context classes

In previous experiments, no class was known for all objects in the scene. But
what happens when only one class in unknown, and all other classes are known?
The resulting success rate is 81%, with 3 misclassified objects. The histogram
for this case is shown in in Figure C.3 on page 80 in Appendix C. In the first
failing scene, scene 8, the ground truth (Floor) has probability 0.4994, while
the most probable class (CounterTop) has probability 0.5006, which is a minute
difference. The confusion is understandable: A floor and countertop can both
be made of stone and are both flat (box-shaped), as can be seen in Appendix B
on page 72 In the second failing scene, the difference in probability between the
superclass (Plate) of the ground truth (Soup Plate) and the most probable class
(Cup) is only 0.003, which is again a minute difference. Plates and cups both
have a lot of similarities, both in appearance and context. In each failing result,
where the ground truth class is a Spoon, the differences in probability for the
superclass (Utensil) and the most probable class (FruitBowl) is larger, over 0.1.
The confusion in this case is also less understandable, because the shape and

56

dimensions of a Spoon and FruitBowl are quite different. Their context and
material however are similar. Increasing or otherwise tuning the weights for the
inference rules concerning context could possibly improve the results for at least
the first two failing cases.

10.6 The Influence of Dimensions

Household objects come in all sorts of shapes and sizes. A goal of this thesis
is to generalize knowledge about objects. One of the generalizations it must be
able to make are those concerning dimensions of objects. For example, tables
can be of various heights, plates can have varying diameters and so on. This
experiment shows that the classification scheme developed here still classifies
tables correctly as tables even when the dimensions vary very much.

10.6.1 Dimensions Omitted

Let us first see what the effect of not including dimensions is, i.e. only information
about color, shape, material and spatial relations is available. This results in
a success rate of 30%, which is much lower than the nominal 73% success rate.
This is due to the fact that there are multiple dimensions, and account for a
large part to a class’ description and thus, a lot of information is missing.

10.7 Dealing with Incorrect Observations

The classification scheme depends on lower level classifiers in a perception
pipeline. These lower level classifiers, for instance for color, may mis-classify and
incorrectly indicate that some object is blue when it in fact is red. Preferably,
the developed system still makes correct classifications under the condition that
other evidence is correct, similar to the “peer-pressure” discussed earlier.

Multiple variants of this experiment were performed: one for each property
and finally one where a random 5% of the evidence facts (i.e. one in twenty) was
perturbed. In the cases where facts concerning a single property are perturbed,
the value of each fact concerning this property was replaced by a different value
for that property. E.g. when perturbing the property Color, a coke can that is
in reality red could be observed to be orange, blue or any other color equally
likely.

As shown in Figure 10.6 on the following page, classification on these incorrect,
perturbed observations is still quite successful. This holds for most properties,
as can be seen in Table 10.3. Only perturbing observations about all dimensions
affects the success rate severely. As discussed earlier, this is due to the fact that
dimensions are a large part of a class’ description. In the 70% of object where
the dimensions are observed wrong and are misclassified due to that, the classes
of the objects are arguable quite similar, if the dimensions are ignored or wrong.

10.8 Comparison to other methods

Above, the performance of the classification scheme is discussed. But, how does
it compare to some other methods for object classification?

57

Incorrect property Success rate
Nominal/All correct 73%
Colors 73%
Dimensions 32%
Materials 66%
5% of observations 70%
Spatial Relations 70%

Table 10.3: Success rate for incorrect properties.

Figure 10.6: Performance with 5% incorrect observations

58

10.8.1 Naive Bayes Classifier

Naive Bayes Classifier are a relatively simple method of classification, that
assumes independence of the features fi and that the output classes c are
mutually exclusive and exhaustive [18]. It tries to find the most probable class
using the expression below:

argmaxcP (C = c)

n∏
i=1

P (Fi = fi|C = c)

At least one of the assumptions, however, does not hold for the case of this
thesis: the hierarchy of classes make them mutually not exclusive. Further,
independence does not always hold either, for instance because the property of
color has a relation to that of material. In the final MLN, this relation is not
included but can be added with great ease, while this is not possible in a Naive
Bayes Classifier. In short, independence in assumed in a MLN but can easily
added. However, it can be said that the combined rules somewhat resemble a
Naive Bayes Classifier or a template of one. Thus, comparing the developed
scheme against a Naive Bayes Classifier is not possible without harming the
contributions of this thesis.

10.8.2 Conditional Random Fields

As can be seen in Figure 9.3 on page 44, a scene can be regarded as resembling
an instance of a conditional random field, in which for each hidden node, i.e. the
class of an object, is conditioned on observed other properties of an object and
its neighboring objects. As such, one reason to not use conditional random fields
is that CRFs also cannot perform hierarchical classification, in which one class
subsumes another and are not mutually exclusive. Furthermore CRFs are not
knowledge or logic based and as such cannot symbolically incorporate common
sense knowledge and reasoning. As for Naive Bayes Classifiers, also comparing
against CRFs is not possible while respecting the contributions of this thesis.

59

Chapter 11

Conclusion

This thesis presented a method for performing object classification using common
sense knowledge, by performing probabilistic inference on such a knowledge base
in combination with symbolic observations. As demonstrated above, it can be
used for object classification with some success.

In short, the approach taken consists of a common sense knowledge base,
stating weighted facts about the appearance of ca. 115 household object classes
and their context. The knowledge base also includes weighted inference rules,
which are used to probabilistically infer the class of observed objects, given some
observations on those objects represented in a symbolic rather than numeric
fashion. The knowledge and rules are expressed in Markov Logic and thus
it has been shown that Markov Logic can be used to express common sense
knowledge and reasoning rules and to classify objects. Hybrid Markov Logic
Networks seemed very useful for this thesis, but was hindered by insufficient
documentation regarding the implementation and related syntax in the Alchemy
package.

This results in a 73% success rate on a small test set of 16 scenes. When
some observations (concerning color, material, spatial relations, or a random
5%) are omitted or wrong, the classification scheme still continues to perform
similar to the nominal case. Observations concerning the dimensions of objects
heavily influence classification results, omitting or perturbing them leads to a
drastic drop in the success rate. The influence of context is also significant in
this method: when the class of only one object is unknown with others known,
the success rate increases significantly. With some tuning, it is expected that
the performance can be greatly improved. This is however left to future work.

Further, it has been shown that multiple algorithms can be used to perform
inference on Markov Logic Networks in the case of this thesis. Different implementations,
namely Alchemy and Tuffy, of the same algorithm (MC-SAT) vary greatly in
the runtime they require for the same task. The implementation of Markov
Logic provided by Tuffy requires a runtime that is in the order of a few minutes,
whereas Alchemy already takes tens of hours for relatively simple cases.

Another conclusion is that there are no strict formal systems for probabilistic
description logics available that can perform the task of classification of instances
of classes. Instead, a custom simple description logic implemented in Markov
Logic is defined.

60

Chapter 12

Future work

As mentioned in Chapter 9.7 on page 46, the approach taken is mainly a
proof of concept. It can be improved in many ways, most notably by also
including knowledge about object parts and by learning some of the knowledge
and weights. Other ideas for improvement or for further research are mentioned
below.

Tuning and Tweaking

The Markov Logic Network rules, the knowledge the MLN contains and Tuffy
together have a multitude of parameters. Each rule has a weight, the possibility
of tuning each already yields an large space to explore. Furthermore, other rules
can be added. For instance, currently, color and material are unrelated, while
in practice, some relations between those certainly exist. Tuning these weights
is a very tedious task and as such, it is better left to be learned automatically.

Distributions over Dimensions

The used knowledge base lists one value for each dimension of each object.
Many objects however come in various sizes. To use the example of soda cans
once more, those are manufactured in multiple sizes. The knowledge base can
be extended to reflect this. Also, furniture for instance also comes in varying
dimensions. In the knowledge base, a distribution over dimensions could be
included, that states that for example tables are on average 74 centimeters high,
but tables also exist that have different dimensions. A step in this direction has
already been made, but is not included in this thesis due to time constraints.

Parts

As noted in some of the examples given and in the literature survey, the use of
parts could help classification of the whole object. The ontology used in this
thesis does in fact list some parts of household objects, such as handles and
buttons, but are not used in the developed classification method due to time
constraints.

61

Learning

No emphasis is put in this thesis on learning. There are several things can
could be learned automatically in the light of this thesis. The simplest of these
is to learn the weights assigned to individual axioms. This assumes that the
axioms themselves are already defined. A field of study is dedicated to structure
learning. Structure learning, often directed to graphical models, attempts to
learn what random variables exist and influence each other. If this was fully
developed and employed to the fullest, that would allow a robot to, over time,
learn to semantically recognize objects.

Learning new (sub)classes

If a superclass has a few very specific subclasses, it would be very useful to learn
different subclasses automatically, possibly aided by human guidance.

Enhanced spatial reasoning

The integration of enhanced spatial reasoning, combined with world hypothesis
evaluation/verification could be useful to the world model system as mentioned
in 7.4 on page 32. Consider two objects, A and B, and a situation in which B is
on top of A. If the z-coordinates of B’s bottom and of A’s top are uncertain to
some degree, common sense knowledge can provide some additional insights. All
situations in which B’s bottom is lower than A’s top are practically impossible in
the case both A and B are rigid objects. Such a situation would be a collision,
where B is inside of A, and should be assigned a low probability.. Spatial
reasoning can also be of help when reasoning with different parts of objects.

Extension to other properties and integration of
other ontologies

In the thesis, only quite basic properties are used. Other properties can easily be
added, such as the text on an object or the contents of an object. For instance,
imagine an ontology of brands and their products. A transparent cylinder with
the text “Water“ or “Spa“ on it, is then likely to be a bottle of water.

Also, ontologies of other types of knowledge could be integrated. If there is
a knowledge base of actions or operations and what objects can perform each
action, some interesting inferences could be made. For instance, a dishwasher
is a device that cleans dishes, so the dishes that go in are supposed to come
out clean. An advanced robot could perceive dirty dishes going in at some time
and later observing them coming out clean. As there is only one class of objects
that performs such an action, the object could be classified as a dishwasher.

Inferring what to inspect

If an object is not classified in a leaf class (not a superclass of any other
classes), the robot needs to perform more/other perception techniques to gather

62

more information on the object. A system could be devised that infers what
perception best to perform in order to determine the leaf class of an object.

63

Bibliography

[1] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features.
In In ECCV, pages 404–417, 2006.

[2] BayesOWL Project. Bayesowl manual, July 2012.

[3] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,
P. F. Patel-Schneider, and L. A. Stein. Owl web ontology language
reference. http://www.w3.org/TR/owl-ref/, Feb. 2004.

[4] G. Bouchard and B. Triggs. Hierarchical part-based visual object
categorization. In Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, volume 1, pages 710–715 vol.
1, june 2005.

[5] G. Carneiro and D. Lowe. Sparse flexible models of local features. Computer
Vision–ECCV 2006, pages 29–43, 2006.

[6] R. Carvalho, K. Laskey, P. Costa, M. Ladeira, L. Santos, and S. Matsumoto.
Unbbayes: modeling uncertainty for plausible reasoning in the semantic
web. Semantic Web, IN-TECH Publishing, ISBN, pages 978–953, 2010.

[7] G. Casella and E. I. George. Explaining the gibbs sampler. The American
Statistician, 46(3):pp. 167–174, 1992.

[8] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray. Visual
categorization with bags of keypoints. In In Workshop on Statistical
Learning in Computer Vision, ECCV, pages 1–22, 2004.

[9] P. da Costa, K. Laskey, and K. Laskey. Pr-owl: A bayesian ontology
language for the semantic web. URSW. LNCS, pages 88–107, 2008.

[10] P. Domingos, S. Kok, H. Poon, M. Richardson,
and P. Singla. Unifying logical and statistical ai.
http://www.cs.washington.edu/homes/pedrod/papers/aaai06c.pdf, 2006.

[11] P. Domingos and J. Wang. Hybrid markov logic networks.
http://www.cs.washington.edu/homes/pedrod/papers/aaai08b.pdf, 2008.

[12] J. Elfring, S. van den Dries, M. van de Molengraft, and M. Steinbuch.
Semantic world modeling using probabilistic multiple hypothesis anchoring.
Robotics and Autonomous Systems, 61(2):95–105, February 2013.

64

http://www.w3.org/TR/owl-ref/

[13] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.

[14] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object
categories. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 28(4):594–611, 2006.

[15] S. Jansen, J. Elfring, and M. van de Molengraft. Object appearance
prediction and active object search using probabilistic object relations.
Master’s thesis, Eindhoven University of Technology, July 2012.

[16] H. Kautz, B. Selman, and Y. Jiang. A general stochastic approach to
solving problems with hard and soft constraints. In The Satisfiability
Problem: Theory and Applications, pages 573–586. American Mathematical
Society, 1996.

[17] S. Kok, P. Singla, M. Richardson, P. Domingos, M. Sumner, H. Poon, and
D. Lowd. The alchemy system for statistical relational ai. University of
Washington, Seattle, 2005.

[18] D. Koller and N. Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[19] D. Koller, A. Levy, and A. Pfeffer. P-Classic: A tractable probabilistic
description logic. In H. Shrobe and T. Senator, editors, Proceedings of
the Thirteenth National Conference on Artificial Intelligence and the Ninth
Innovative Applications of Artificial Intelligence Conference, Vol. 1, pages
390–397, Menlo Park, California, 1996. American Association for Artificial
Intelligence, AAAI Press.

[20] M. Krotzsch, F. Simancik, and I. Horrocks. A description logic primer.
CoRR, abs/1201.4089, 2012.

[21] B. Leibe, A. Leonardis, and B. Schiele. Robust Object Detection with
Interleaved Categorization and Segmentation. International Journal of
Computer Vision, 77:259–289, 2008.

[22] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60:91–110, 2004.
10.1023/B:VISI.0000029664.99615.94.

[23] E. Marinari and G. Parisi. Simulated tempering: a new monte carlo scheme.
EPL (Europhysics Letters), 19(6):451, 2007.

[24] Z.-C. Marton, D. Pangercic, R. B. Rusu, A. Holzbach, and M. Beetz.
Hierarchical object geometric categorization and appearance classification
for mobile manipulation. In Proceedings of 2010 IEEE-RAS International
Conference on Humanoid Robots, Nashville, TN, USA, December 6-8 2010.

[25] O. M. Mozos, Z. C. Marton, and M. Beetz. Furniture Models Learned
from the WWW – Using Web Catalogs to Locate and Categorize Unknown
Furniture Pieces in 3D Laser Scans. Robotics & Automation Magazine,
18(2):22–32, 2011.

65

[26] M. Niepert, J. Noessner, and H. Stuckenschmidt. Log-linear description
logics. Proceedings of IJCAI, 2011.

[27] F. Niu, C. Ré, A. Doan, and J. W. Shavlik. Tuffy: Scaling up statistical
inference in markov logic networks using an rdbms. PVLDB, 4(6):373–384,
2011.

[28] J. Pearl. Reverend Bayes on inference engines: a distributed hierarchical
approach. Cognitive Systems Laboratory, School of Engineering and
Applied Science, University of California, Los Angeles, 1982.

[29] M. Pechuk, O. Soldea, and E. Rivlin. Learning function-based object
classification from 3d imagery. Computer Vision and Image Understanding,
110(2):173–191, 2008.

[30] H. Poon and P. Domingos. Sound and efficient inference with probabilistic
and deterministic dependencies. In Proceedings of the National Conference
on Artificial Intelligence, volume 21, page 458. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.

[31] S. Ruiz-Correa, L. G. Shapiro, and M. Meila. A new paradigm for
recognizing 3-d object shapes from range data. In In Proc. of the Int.
Conf. on Computer Vision (ICCV, pages 1126–1133, 2003.

[32] S. Russell, P. Norvig, E. Davis, S. Russell, and S. Russell. Artificial
intelligence: a modern approach. Prentice hall Upper Saddle River, NJ,
2010.

[33] R. Rusu, A. Holzbach, M. Beetz, and G. Bradski. Detecting and segmenting
objects for mobile manipulation. In Computer Vision Workshops (ICCV
Workshops), 2009 IEEE 12th International Conference on, pages 47–54,
27 2009-oct. 4 2009.

[34] R. B. Rusu. Semantic 3D Object Maps for Everyday Manipulation in
Human Living Environments. phd, Tecnische Universitatet Muenchen,
Munich, Germany, 10/2009 2009.

[35] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3d recognition and
pose using the viewpoint feature histogram. In Proceedings of the 23rd
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Taipei, Taiwan, 10/2010 2010.

[36] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In IEEE
International Conference on Robotics and Automation (ICRA), Shanghai,
China, May 9-13 2011.

[37] R. B. Rusu, Z. C. Marton, N. Blodow, A. Holzbach, and M. Beetz.
Model-based and Learned Semantic Object Labeling in 3D Point Cloud
Maps of Kitchen Environments. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), St.
Louis, MO, USA, October 11-15 2009.

[38] SemanticWeb.org. Bayes owl, 2009. [Online; accessed 9-July-2012].

66

[39] P. Singla and P. Domingos. Lifted first-order belief propagation.
Proceedings of the 23rd national conference on Artificial intelligence,
2:1094–1099, 2008.

[40] Y. Su, M. Allan, and F. Jurie. Improving object classification using
semantic attributes. In Proceedings of the British Machine Vision
Conference, pages 26.1–26.10. BMVA Press, 2010. doi:10.5244/C.24.26.

[41] C. Sutton and A. McCallum. An introduction to conditional random fields
for relational learning. Introduction to statistical relational learning. MIT
Press, 2006.

[42] R. Szeliski. Computer Vision: Algorithms and Applications. Springer, draft
edition, September 3 2010.

[43] J. Tauberer. What is rdf, 2 2012.

[44] M. Tenorth, L. Kunze, D. Jain, and M. Beetz. KNOWROB-MAP
– Knowledge-Linked Semantic Object Maps. In Proceedings of 2010
IEEE-RAS International Conference on Humanoid Robots, Nashville, TN,
USA, December 6-8 2010.

[45] S. van den Dries. World modeling in robotics: Probabilistic multiple
hypothesis anchoring. Master’s thesis, Eindhoven University of Technology,
2011.

[46] W3C OWl Working Group. Implementations, July 2012. [Online; accessed
18-July-2012].

[47] Wikipedia. Length — wikipedia, the free encyclopedia, 2012. [Online;
accessed 24-October-2012].

[48] Wikipedia. Support vector machine — wikipedia, the free encyclopedia,
2012. [Online; accessed 13-June-2012].

[49] Wiktionary. depth — wiktionary, the free dictionary, 2012. [Online;
accessed 24-October-2012].

[50] Wiktionary. side — wiktionary, the free dictionary, 2012. [Online; accessed
24-October-2012].

[51] Willow Garage. Ros: Robot operating system. http://www.ros.org, june
2012.

[52] WordNet. Length — wordnet 3.1, 2012. [Online; accessed 24-October-2012].

67

http://www.ros.org

Appendices

68

Appendix A

Implemented Rules

// Evidence

*Subclass(class, class)

Class(instance, class!)

ClsColor(class, color)

*Color(instance, color!)

ClsShape(class, shape)

*Shape(instance, shape!)

ClsMaterial(class, material)

*Material(instance, material!)

ClsNeighbor(class, class)

Neighbor(instance, instance)

IsAboveOf(instance, instance)

ClsIsAboveOf(class, class)

IsBelowOf(instance, instance)

ClsIsBelowOf(class, class)

InBehindOf(instance, instance)

ClsInBehindOf(class, class)

InCenterOf(instance, instance)

ClsInCenterOf(class, class)

InFrontOf(instance, instance)

ClsInFrontOf(class, class)

IsInside(instance, instance)

ClsIsInside(class, class)

IsOnPhysical(instance, instance)

69

ClsIsOnPhysical(class, class)

IsNear(instance, instance)

ClsIsNear(class, class)

ToTheSideOf(instance, instance)

ClsToTheSideOf(class, class)

ToTheLeftOf(instance, instance)

ClsToTheLeftOf(class, class)

ToTheRightOf(instance, instance)

ClsToTheRightOf(class, class)

ClsLength(class, discretedimension)

Length(instance, discretedimension!) //Instance can only have 1 Length

Diameter(instance, discretedimension!) //Instance can only have 1 Diameter

ClsDiameter(class, discretedimension)

Width(instance, discretedimension!) //Instance can only have 1 Width

ClsWidth(class, discretedimension)

Depth(instance, discretedimension!) //Instance can only have 1 Depth

ClsDepth(class, discretedimension)

Colormatch(instance, class!)

Shapematch(instance, class!)

Materialmatch(instance, class!)

Lengthmatch(instance, class!)

Diametermatch(instance, class!)

Widthmatch(instance, class!)

Depthmatch(instance, class!)

Neighbormatch(instance, class!)

// Rules:

!Class(i1, c1) v !Class(i1, c2) v c1 = c2.

//Subclass(sub, super) ^ ClsColor(super, supercolor) => ClsColor(sub, supercolor)

!Subclass(sub, super) v !ClsColor(super, supercolor) v ClsColor(sub, supercolor).

!Subclass(sub, super) v !ClsShape(super, supershape) v ClsShape(sub, supershape).

!Subclass(sub, super) v !ClsMaterial(super, supermaterial) v ClsMaterial(sub, supermaterial).

!Subclass(super, sub) v !ClsNeighbor(super, neighCls) v ClsNeighbor(sub, neighCls).

!Subclass(super, sub) v !ClsLength(super, neighCls) v ClsLength(sub, neighCls).

!Subclass(super, sub) v !ClsDiameter(super, neighCls) v ClsDiameter(sub, neighCls).

!Subclass(super, sub) v !ClsWidth(super, neighCls) v ClsWidth(sub, neighCls).

!Subclass(super, sub) v !ClsDepth(super, neighCls) v ClsDepth(sub, neighCls).

// Rules - Clues: (These could be hard constrainst)

70

1.0 !ClsColor(cls, clscolor) v !Color(inst, clscolor) v Colormatch(inst, cls)

1.0 !ClsShape(cls, clsshape) v !Shape(inst, clsshape) v Shapematch(inst, cls)

1.0 !ClsMaterial(cls, clsmaterial) v !Material(inst, clsmaterial) v Materialmatch(inst, cls)

1.0 !ClsLength(cls, clsmaterial) v !Length(inst, clsmaterial) v Lengthmatch(inst, cls)

1.0 !ClsDiameter(cls, clsmaterial) v !Diameter(inst, clsmaterial) v Diametermatch(inst, cls)

1.0 !ClsWidth(cls, clsmaterial) v !Width(inst, clsmaterial) v Widthmatch(inst, cls)

1.0 !ClsDepth(cls, clsmaterial) v !Depth(inst, clsmaterial) v Depthmatch(inst, cls)

20.0 !Colormatch(inst, cls) v !Shapematch(inst, cls) v Class(inst, cls)

20.0 !Colormatch(inst, cls) v !Materialmatch(inst, cls) v Class(inst, cls)

20.0 !Colormatch(inst, cls) v !Lengthmatch(inst, cls) v Class(inst, cls)

20.0 !Colormatch(inst, cls) v !Diametermatch(inst, cls) v Class(inst, cls)

20.0 !Colormatch(inst, cls) v !Widthmatch(inst, cls) v Class(inst, cls)

20.0 !Colormatch(inst, cls) v !Depthmatch(inst, cls) v Class(inst, cls)

20.0 !Shapematch(inst, cls) v !Materialmatch(inst, cls) v Class(inst, cls)

20.0 !Shapematch(inst, cls) v !Lengthmatch(inst, cls) v Class(inst, cls)

20.0 !Shapematch(inst, cls) v !Diametermatch(inst, cls) v Class(inst, cls)

20.0 !Shapematch(inst, cls) v !Widthmatch(inst, cls) v Class(inst, cls)

20.0 !Shapematch(inst, cls) v !Depthmatch(inst, cls) v Class(inst, cls)

20.0 !Materialmatch(inst, cls) v !Lengthmatch(inst, cls) v Class(inst, cls)

20.0 !Materialmatch(inst, cls) v !Diametermatch(inst, cls) v Class(inst, cls)

20.0 !Materialmatch(inst, cls) v !Widthmatch(inst, cls) v Class(inst, cls)

20.0 !Materialmatch(inst, cls) v !Depthmatch(inst, cls) v Class(inst, cls)

20.0 !Lengthmatch(inst, cls) v !Diametermatch(inst, cls) v Class(inst, cls)

20.0 !Lengthmatch(inst, cls) v !Widthmatch(inst, cls) v Class(inst, cls)

20.0 !Lengthmatch(inst, cls) v !Depthmatch(inst, cls) v Class(inst, cls)

20.0 !Diametermatch(inst, cls) v !Widthmatch(inst, cls) v Class(inst, cls)

20.0 !Diametermatch(inst, cls) v !Depthmatch(inst, cls) v Class(inst, cls)

20.0 !Widthmatch(inst, cls) v !Depthmatch(inst, cls) v Class(inst, cls)

10.0 !ClsIsAboveOf(clsA, clsB) v !Class(instA, clsA) v !Class(instB, clsB) v IsAboveOf(instA, instB)

10.0 !ClsIsBelowOf(clsA, clsB) v !Class(instA, clsA) v !Class(instB, clsB) v IsBelowOf(instA, instB)

10.0 !ClsInBehindOf(clsA, clsB) v !Class(instA, clsA) v !Class(instB, clsB) v InBehindOf(instA, instB)

10.0 !ClsInCenterOf(clsA, clsB) v !Class(instA, clsA) v !Class(instB, clsB) v InCenterOf(instA, instB)

10.0 !ClsInFrontOf(clsA, clsB) v !Class(instA, clsA) v !Class(instB, clsB) v InFrontOf(instA, instB)

10.0 !ClsIsInside(clsA, clsB) v !Class(instA, clsA) v !Class(instB, clsB) v IsInside(instA, instB)

10.0 !ClsIsOnPhysical(clsA, clsB) v !Class(instA, clsA) v !Class(instB, clsB) v IsOnPhysical(instA, instB)

10.0 !ClsIsNear(clsA, clsB) v !Class(instA, clsA) v !Class(instB, clsB) v IsNear(instA, instB)

10.0 !ClsToTheSideOf(clsA, clsB) v !Class(instA, clsA) v !Class(instB, clsB) v ToTheSideOf(instA, instB)

10.0 !ClsToTheLeftOf(clsA, clsB) v !Class(instA, clsA) v !Class(instB, clsB) v ToTheLeftOf(instA, instB)

10.0 !ClsToTheRightOf(clsA, clsB) v !Class(instA, clsA) v !Class(instB, clsB) v ToTheRightOf(instA, instB)

71

Appendix B

Class Knowledge

Each fact below that is not postfixed by a dot ’.’ is suffixed with a random
floating point number between 0 and 1. They are omitted for brevity.

72

//Class Knowledge

ClsColor(Apple, Brown_color)

ClsColor(Apple, Red_color)

ClsColor(Apple, Green_color)

ClsDiameter(Apple, 8)

ClsShape(Apple, Sphere_shape)

Subclass(Apple, Fruit).

ClsColor(Banana, Brown_color)

ClsColor(Banana, Yellow_color)

ClsDiameter(Banana, 3)

ClsShape(Banana, Toroid_shape)

Subclass(Banana, Fruit).

ClsColor(Beer_bottle, Brown_color)

ClsDiameter(Beer_bottle, 7)

ClsIsInside(Beer_bottle, Refridgerator)

ClsLength(Beer_bottle, 20)

ClsShape(Beer_bottle, Cylinder_shape)

Subclass(Beer_bottle, Bottle).

ClsColor(Book, Brown_color)

ClsDepth(Book, 2)

ClsIsInside(Book, Closet)

ClsIsOnPhysical(Book, Table)

ClsLength(Book, 20)

ClsMaterial(Book, Paper_material)

ClsShape(Book, Box_shape)

ClsToTheSideOf(Book, Book)

ClsWidth(Book, 12)

ClsColor(Bottle, Green_color)

ClsColor(Bottle, Brown_color)

ClsIsOnPhysical(Bottle, Table)

ClsMaterial(Bottle, Glass_material)

ClsShape(Bottle, Cylinder_shape)

Subclass(Bottle, Closable_container).

ClsIsBelowOf(Chair, Table)

ClsColor(Chair, Brown_color)

ClsDepth(Chair, 50)

ClsIsNear(Chair, Table)

ClsIsOnPhysical(Chair, Floor)

ClsLength(Chair, 90)

ClsMaterial(Chair, Wood_material)

ClsMaterial(Chair, Fabric_material)

ClsMaterial(Chair, Metal_material)

ClsShape(Chair, Complex_shape)

ClsWidth(Chair, 50)

Subclass(Closable_container, Container).

ClsColor(Closet, Brown_color)

ClsDepth(Closet, 60)

ClsIsNear(Closet, Refridgerator)

ClsIsNear(Closet, Dishwasher)

ClsIsOnPhysical(Closet, Floor)

ClsLength(Closet, 150)

ClsMaterial(Closet, Wood_material)

ClsShape(Closet, Box_shape)

ClsWidth(Closet, 90)

Subclass(Closet, Closable_container).

ClsDiameter(Coffee_cup, 5)

ClsLength(Coffee_cup, 11)

Subclass(Coffee_cup, Cup).

ClsColor(Coffeemaker, Gray_color)

ClsDepth(Coffeemaker, 20)

ClsIsNear(Coffeemaker, Coffee_cup)

ClsIsOnPhysical(Coffeemaker, Table)

ClsIsOnPhysical(Coffeemaker, CounterTop)

ClsLength(Coffeemaker, 30)

ClsShape(Coffeemaker, Complex_shape)

ClsWidth(Coffeemaker, 15)

Subclass(Coffeemaker, KitchenAppliance).

ClsColor(Coke_bottle, Red_color)

ClsDiameter(Coke_bottle, 10)

ClsIsInside(Coke_bottle, Refridgerator)

ClsLength(Coke_bottle, 25)

ClsMaterial(Coke_bottle,

Plastic_material)

ClsShape(Coke_bottle, Cylinder_shape)

Subclass(Coke_bottle, Bottle).

ClsColor(Coke_can, Red_color)

Subclass(Coke_can, Sodacan).

ClsIsBelowOf(ComputerCase, Table)

ClsColor(ComputerCase, Gray_color)

ClsColor(ComputerCase, White_color)

ClsColor(ComputerCase, Black_color)

ClsDepth(ComputerCase, 18)

ClsIsOnPhysical(ComputerCase, Table)

ClsLength(ComputerCase, 47)

ClsMaterial(ComputerCase, Metal_material)

ClsShape(ComputerCase, Box_shape)

ClsWidth(ComputerCase, 43)

73

ClsColor(ComputerMonitor, Gray_color)

ClsColor(ComputerMonitor, White_color)

ClsColor(ComputerMonitor, Black_color)

ClsDepth(ComputerMonitor, 10)

ClsInBehindOf(ComputerMonitor, Keyboard)

ClsIsOnPhysical(ComputerMonitor, Table)

ClsLength(ComputerMonitor, 40)

ClsMaterial(ComputerMonitor,

Plastic_material)

ClsShape(ComputerMonitor, Box_shape)

ClsWidth(ComputerMonitor, 30)

ClsColor(Computermouse, Black_color)

ClsColor(Computermouse, Gray_color)

ClsColor(Computermouse, White_color)

ClsDepth(Computermouse, 4)

ClsIsNear(Computermouse, Keyboard)

ClsIsNear(Computermouse,

ComputerMonitor)

ClsIsOnPhysical(Computermouse, Table)

ClsLength(Computermouse, 10)

ClsMaterial(Computermouse,

Plastic_material)

ClsShape(Computermouse, Complex_shape)

ClsToTheRightOf(Computermouse, Keyboard)

ClsWidth(Computermouse, 5)

ClsColor(Cookiejar, Red_color)

ClsDiameter(Cookiejar, 25)

ClsIsInside(Cookiejar, Closet)

ClsIsNear(Cookiejar, Teapot)

ClsIsOnPhysical(Cookiejar, Table)

ClsLength(Cookiejar, 12)

ClsMaterial(Cookiejar, Metal_material)

ClsShape(Cookiejar, Cylinder_shape)

Subclass(Cookiejar, Closable_container).

ClsColor(Couch, Black_color)

ClsColor(Couch, White_color)

ClsColor(Couch, Brown_color)

ClsColor(Couch, Gray_color)

ClsDepth(Couch, 90)

ClsIsNear(Couch, Table)

ClsIsOnPhysical(Couch, Floor)

ClsLength(Couch, 200)

ClsMaterial(Couch, Fabric_material)

ClsShape(Couch, Box_shape)

ClsWidth(Couch, 85)

ClsColor(CounterTop, Black_color)

ClsColor(CounterTop, White_color)

ClsDepth(CounterTop, 64)

ClsIsOnPhysical(CounterTop, Floor)

ClsLength(CounterTop, 200)

ClsMaterial(CounterTop, Stone_material)

ClsMaterial(CounterTop, Metal_material)

ClsShape(CounterTop, Box_shape)

ClsWidth(CounterTop, 82)

ClsColor(Cup, Black_color)

ClsColor(Cup, White_color)

ClsIsOnPhysical(Cup, CounterTop)

ClsMaterial(Cup, Earthenware_material)

ClsShape(Cup, Cylinder_shape)

Subclass(Cup, Open_container).

ClsColor(Dishwasher, White_color)

ClsDepth(Dishwasher, 84)

ClsIsOnPhysical(Dishwasher, Floor)

ClsLength(Dishwasher, 86)

ClsShape(Dishwasher, Box_shape)

ClsWidth(Dishwasher, 60)

Subclass(Dishwasher,

Closable_container).

Subclass(Dishwasher, KitchenAppliance).

ClsDiameter(DrinkingGlass, 5)

ClsIsInside(DrinkingGlass, Dishwasher)

ClsIsInside(DrinkingGlass, Closet)

ClsIsNear(DrinkingGlass, Plate)

ClsIsOnPhysical(DrinkingGlass, Table)

ClsIsOnPhysical(DrinkingGlass,

CounterTop)

ClsLength(DrinkingGlass, 15)

ClsMaterial(DrinkingGlass,

Glass_material)

ClsShape(DrinkingGlass, Complex_shape)

Subclass(DrinkingGlass, Open_container).

ClsColor(Fanta_can, Orange_color)

Subclass(Fanta_can, Sodacan).

ClsDiameter(Flat_plate, 27)

ClsLength(Flat_plate, 2)

ClsToTheLeftOf(Flat_plate,

Knife_utensil)

ClsToTheRightOf(Flat_plate,

Fork_utensil)

Subclass(Flat_plate, Plate).

74

ClsMaterial(Floor, Wood_material)

ClsMaterial(Floor, Stone_material)

ClsShape(Floor, Box_shape)

ClsIsOnPhysical(Food, CounterTop)

ClsToTheLeftOf(Fork_utensil, Flat_plate)

ClsWidth(Fork_utensil, 3)

Subclass(Fork_utensil, Utensil).

ClsIsInside(Fruit, FruitBowl)

Subclass(Fruit, Food).

ClsColor(FruitBowl, Gray_color)

ClsDiameter(FruitBowl, 30)

ClsMaterial(FruitBowl, Metal_material)

ClsShape(FruitBowl, Sphere_shape)

Subclass(FruitBowl, Open_container).

ClsLength(Frying_pan, 5)

Subclass(Frying_pan, Pan).

ClsColor(Juice_carton, Orange_color)

ClsDepth(Juice_carton, 3)

ClsLength(Juice_carton, 12)

ClsWidth(Juice_carton, 4)

Subclass(Juice_carton, Tetrapak).

ClsColor(Keyboard, Gray_color)

ClsColor(Keyboard, Black_color)

ClsColor(Keyboard, White_color)

ClsDepth(Keyboard, 4)

ClsInFrontOf(Keyboard, Computermouse)

ClsIsOnPhysical(Keyboard, Table)

ClsLength(Keyboard, 40)

ClsMaterial(Keyboard, Plastic_material)

ClsShape(Keyboard, Box_shape)

ClsWidth(Keyboard, 15)

ClsMaterial(KitchenAppliance,

Plastic_material)

ClsMaterial(KitchenAppliance,

Metal_material)

ClsShape(KitchenAppliance, Box_shape)

ClsColor(KitchenStove, White_color)

ClsColor(KitchenStove, Black_color)

ClsDepth(KitchenStove, 10)

ClsIsInside(KitchenStove, CounterTop)

ClsIsOnPhysical(KitchenStove, CounterTop)

ClsLength(KitchenStove, 80)

ClsMaterial(KitchenStove, Metal_material)

ClsShape(KitchenStove, Box_shape)

ClsWidth(KitchenStove, 80)

Subclass(KitchenStove, KitchenAppliance).

ClsLength(Knife_utensil, 16)

ClsToTheRightOf(Knife_utensil,

Flat_plate)

ClsWidth(Knife_utensil, 2)

Subclass(Knife_utensil, Utensil).

ClsIsAboveOf(Lamp, Floor)

ClsIsAboveOf(Lamp, CounterTop)

ClsIsAboveOf(Lamp, Table)

ClsColor(Lamp, Yellow_color)

ClsColor(Lamp, Gray_color)

ClsDiameter(Lamp, 5)

ClsMaterial(Lamp, Glass_material)

ClsShape(Lamp, Sphere_shape)

ClsColor(Milk_bottle, White_color)

ClsDiameter(Milk_bottle, 10)

ClsIsInside(Milk_bottle, Refridgerator)

ClsIsOnPhysical(Milk_bottle, CounterTop)

ClsLength(Milk_bottle, 24)

ClsShape(Milk_bottle, Cylinder_shape)

Subclass(Milk_bottle, Bottle).

ClsColor(Milk_carton, White_color)

ClsDepth(Milk_carton, 9)

ClsIsOnPhysical(Milk_carton, CounterTop)

ClsLength(Milk_carton, 20)

ClsWidth(Milk_carton, 9)

Subclass(Milk_carton, Tetrapak).

ClsColor(OliveOil_bottle, Green_color)

ClsDiameter(OliveOil_bottle, 8)

ClsIsInside(OliveOil_bottle, Closet)

ClsLength(OliveOil_bottle, 24)

ClsShape(OliveOil_bottle, Box_shape)

Subclass(OliveOil_bottle, Bottle).

Subclass(Open_container, Container).

ClsColor(Orange, Orange_color)

ClsDiameter(Orange, 10)

ClsShape(Orange, Sphere_shape)

75

Subclass(Orange, Fruit).

ClsColor(Pan, Gray_color)

ClsIsInside(Pan, Dishwasher)

ClsIsNear(Pan, Pan)

ClsIsOnPhysical(Pan, Table)

ClsIsOnPhysical(Pan, KitchenStove)

ClsLength(Pan, 20)

ClsMaterial(Pan, Metal_material)

ClsShape(Pan, Cylinder_shape)

Subclass(Pan, Closable_container).

ClsColor(Pear, Green_color)

ClsColor(Pear, Brown_color)

ClsDiameter(Pear, 7)

ClsLength(Pear, 20)

ClsShape(Pear, Cone_shape)

Subclass(Pear, Fruit).

ClsColor(PepperShaker, White_color)

ClsDiameter(PepperShaker, 3)

ClsIsInside(PepperShaker, Closet)

ClsIsOnPhysical(PepperShaker, Table)

ClsLength(PepperShaker, 7)

ClsMaterial(PepperShaker, Wood_material)

ClsMaterial(PepperShaker,

Earthenware_material)

ClsMaterial(PepperShaker, Glass_material)

ClsMaterial(PepperShaker, Metal_material)

ClsMaterial(PepperShaker,

Plastic_material)

ClsShape(PepperShaker, Cone_shape)

ClsShape(PepperShaker, Cylinder_shape)

ClsShape(PepperShaker, Box_shape)

Subclass(PepperShaker, Container).

ClsColor(Plate, White_color)

ClsIsOnPhysical(Plate, Table)

ClsIsOnPhysical(Plate, CounterTop)

ClsMaterial(Plate, Earthenware_material)

ClsShape(Plate, Cylinder_shape)

ClsLength(RectTable, 200)

ClsWidth(RectTable, 100)

Subclass(RectTable, Table).

ClsColor(Refridgerator, White_color)

ClsDepth(Refridgerator, 84)

ClsIsOnPhysical(Refridgerator, Floor)

ClsLength(Refridgerator, 150)

ClsWidth(Refridgerator, 84)

Subclass(Refridgerator,

Closable_container).

Subclass(Refridgerator,

KitchenAppliance).

ClsColor(RemoteControl, Black_color)

ClsDepth(RemoteControl, 2)

ClsIsOnPhysical(RemoteControl, Table)

ClsLength(RemoteControl, 20)

ClsMaterial(RemoteControl,

Plastic_material)

ClsShape(RemoteControl, Box_shape)

ClsWidth(RemoteControl, 5)

ClsDiameter(RoundTable, 100)

Subclass(RoundTable, Table).

ClsColor(Sodacan, Orange_color)

ClsColor(Sodacan, Green_color)

ClsColor(Sodacan, Red_color)

ClsColor(Sodacan, Black_color)

ClsDiameter(Sodacan, 6)

ClsIsInside(Sodacan, Refridgerator)

ClsIsOnPhysical(Sodacan, Table)

ClsIsOnPhysical(Sodacan, CounterTop)

ClsLength(Sodacan, 12)

ClsMaterial(Sodacan, Metal_material)

ClsShape(Sodacan, Cylinder_shape)

Subclass(Sodacan, Closable_container).

ClsDiameter(Soup_plate, 23)

ClsIsOnPhysical(Soup_plate, Flat_plate)

ClsLength(Soup_plate, 4)

ClsToTheLeftOf(Soup_plate,

Spoon_utensil)

Subclass(Soup_plate, Open_container).

Subclass(Soup_plate, Plate).

ClsToTheRightOf(Spoon_utensil,

Soup_plate)

ClsWidth(Spoon_utensil, 3)

Subclass(Spoon_utensil, Utensil).

ClsColor(Table, Brown_color)

ClsDepth(Table, 74)

ClsIsOnPhysical(Table, Floor)

ClsMaterial(Table, Wood_material)

ClsShape(Table, Box_shape)

76

ClsDiameter(Tea_cup, 5)

ClsLength(Tea_cup, 7)

Subclass(Tea_cup, Cup).

ClsDepth(Teabox, 4)

ClsIsInside(Teabox, Closet)

ClsLength(Teabox, 8)

ClsMaterial(Teabox, Paper_material)

ClsShape(Teabox, Box_shape)

ClsWidth(Teabox, 5)

Subclass(Teabox, Closable_container).

ClsColor(Teapot, Gray_color)

ClsDiameter(Teapot, 15)

ClsIsNear(Teapot, Tea_cup)

ClsIsOnPhysical(Teapot, Table)

ClsLength(Teapot, 20)

ClsMaterial(Teapot, Metal_material)

ClsShape(Teapot, Cylinder_shape)

Subclass(Teapot, Closable_container).

ClsColor(Tetrapak, White_color)

ClsIsInside(Tetrapak, Refridgerator)

ClsIsNear(Tetrapak, DrinkingGlass)

ClsIsOnPhysical(Tetrapak, Table)

ClsMaterial(Tetrapak, Paper_material)

ClsShape(Tetrapak, Box_shape)

Subclass(Tetrapak, Closable_container).

ClsColor(Utensil, Gray_color)

ClsDepth(Utensil, 1)

ClsIsInside(Utensil, Closet)

ClsIsOnPhysical(Utensil, Table)

ClsIsOnPhysical(Utensil, CounterTop)

ClsLength(Utensil, 14)

ClsMaterial(Utensil, Plastic_material)

ClsShape(Utensil, Complex_shape)

ClsColor(Vase, White_color)

ClsColor(Vase, Gray_color)

ClsDiameter(Vase, 10)

ClsIsOnPhysical(Vase, Table)

ClsLength(Vase, 15)

ClsMaterial(Vase, Earthenware_material)

ClsShape(Vase, Cylinder_shape)

Subclass(Vase, Open_container).

ClsColor(WineGlass, Gray_color)

ClsLength(WineGlass, 25)

Subclass(WineGlass, DrinkingGlass).

ClsColor(Wine_bottle, Green_color)

ClsDiameter(Wine_bottle, 9)

ClsLength(Wine_bottle, 26)

ClsShape(Wine_bottle, Cylinder_shape)

Subclass(Wine_bottle, Bottle).

77

Appendix C

Plots and Figures

Figure C.1: Histogram for
classification with only color and
shape

78

Figure C.2: Histogram for
classification with only color, shape
and spatial relations

79

Figure C.3: Histogram for
classification with the context classes
known

80

	Introduction
	Background
	Goal of the Amigo robot
	Existing System

	Main Idea
	Research Question
	Contributions

	Literature Survey on Object Classification
	Recognition by segmentation
	Bag of words
	Part-based models
	Semantics and common sense-based classification methods

	Refinement of the Main Idea
	Refined research questions

	Theoretical Framework
	Semantics and Reasoning
	Description logics
	Probabilistic reasoning and probability in description logics
	Markov Logic Networks

	Software Framework
	ROS
	Perception Pipeline
	Research Context
	World model
	Non-probabilistic Reasoner

	System and Language Design
	Framework Integration
	Embedding Description Logic in Markov Logic
	Probabilistic Annotations in the Description Logic

	Development of the Markov Logic Network
	Representing Appearance
	Inheritance or Concept Inclusion
	Continuous-valued properties and Dimensions
	Context & Spatial Relationships
	Classification
	Ontology
	Final Markov Logic Network

	Experiments
	Experiment setup
	Validation method
	Parameters for convergence
	Nominal performance
	Context Makes the Difference
	The Influence of Dimensions
	Dealing with Incorrect Observations
	Comparison to other methods

	Conclusion
	Future work
	Appendices
	Implemented Rules
	Class Knowledge
	Plots and Figures

