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Abstract

In this thesis we discuss the behaviour of suspended bullet-shaped

rods in electric �elds. Confocal microscopy is used to observe rodlike

silica particles under the in�uence of a 1 MHz alternating electric �eld.

Particle tracking software allows us to obtain the angle between the

rods and the direction of the electric �eld, from which we calculate the

two dimensional nematic order parameter. The results are compared

with a theoretical model assuming ellipsoidal particles in electric �elds.

This model agrees with our experimental results. For high enough

electric �elds, the rodlike particles align with the electric �eld. We

also wish to know the zeta potential and charge on the rods. Since

no theoretical model exists relating macroscopic properties to these

quantities we use spherical silica particles as an approximation. We

observe suspended spherical silica particles under in�uence of a non-

alternating electric �eld at two di�erent concentrations using confocal

microscopy and obtain their speeds using particle tracking software.

Their electrophoretic mobilities are calculated while considering the

e�ects of gravity and �ows of the solvent. From the mobilities the zeta

potential and particle charge are calculated, resulting in between 40

to 521 unit charges per sphere and zeta potentials ranging from 11.2

mV to 145 mV.



Contents

1 Introduction 4

1.1 Colloids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Colloids in electric �elds . . . . . . . . . . . . . . . . . . . . . 4

2 Theory: rodlike particles 6

2.1 The ellipsoid model . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The nematic order parameter . . . . . . . . . . . . . . . . . . 7

3 Methods: rodlike particles 9

3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1 Preparing the samples . . . . . . . . . . . . . . . . . . 9
3.1.2 Confocal microscopy . . . . . . . . . . . . . . . . . . . 10

3.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Results: Rodlike particles 13

4.1 Particle observation and tracking . . . . . . . . . . . . . . . . 13
4.2 Angle distribution . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Determining the Boltzmann factor . . . . . . . . . . . . . . . . 18
4.4 The nematic order parameter . . . . . . . . . . . . . . . . . . 22

5 Theory: spherical particles 24

6 Methods: spherical particles 26

6.1 Stationary layers . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Results: Spherical particles 28

7.1 Particle observation and tracking . . . . . . . . . . . . . . . . 28
7.2 Mobility, zeta potential and charge . . . . . . . . . . . . . . . 29

7.2.1 Sample A . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2.2 Sample B . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 Conclusions 36

9 Acknowledgements 37

10 Bibliography 38

3



1 Introduction

For many years now researchers have been experimenting with so called col-
loids, particles with sizes between nanometers and several micrometers. Since
colloids undergo phase transitions like ordinary atoms and molecules while
being visible under a microscope, they serve well as a means of study of phase
behaviour [1]. The study of colloids has also led to numerous applications
such as coatings, electronic ink and photonic crystals [2, 3, 4].

1.1 Colloids

Colloids are, as aforementioned, small particles which serve well as a model
for phase behaviour. The main reason for this is the fact that colloids un-
dergo Brownian motion, which causes them to move around in a random
fashion due to thermal �uctuations of the surrounding solvent [5]. Some
common examples of colloids are blood, milk, mayonnaise and paint. For
this thesis colloidal rods and spheres and their behaviour in electric �elds
where examined.

1.2 Colloids in electric �elds

The colloids we consider in this thesis are either rodlike or spherically shaped.
When colloidal rods are placed in an electric �eld, and the rods' dielectric
constant di�ers from the solvent's dielectric constant, the rods obtain an in-
duced polarization [6]. Therefore they start to behave as small dipoles, and
dipole-dipole interactions may change some of the rods' macroscopic prop-
erties, such as their orientation. Since the e�ects of electric �elds are fully
reversible, electric �elds provide us with a very interesting way of manipulat-
ing our colloids. For this thesis we research the e�ect of 1 MHz alternating
electric �elds with di�erent �eld strengths on the orientation of rodlike parti-
cles. We use a high frequency alternating �eld so that the rods' double layers
do not get polarized. We would like to know the charge and zeta potential
of the rods as well. Since no theoretical model exists relating macroscopic
properties to these quantities we use spherical silica particles as an approxi-
mation. We research the e�ects of a steady electric �eld applied to spherical
colloids, at di�erent �eld strengths. Since the colloids are charged (due to the
dissociation of a hydrogen from silica's outer hydroxylgroups), they move in
or against the direction of the electric �eld. In the following sections, �rst we
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discuss the theory of the behaviour of rodlike particles in an alternating elec-
tric �eld. Next we discuss our experimental and analytical methods and then
we show the results concerning the rodlike particles. Secondly we discuss the
theory of the behaviour of suspended spherical colloids in a steady electric
�eld. Then we again look at the experimental and analytical methods and
present the corresponding results. Finally we shortly consider all the results
and give an outlook for these kind of experiments.
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2 Theory: rodlike particles

2.1 The ellipsoid model

We wish to be able to predict the behaviour of rods in an electric �eld theo-
retically. For a comparison between theory and experiment, we have to �nd
a model which resembles our particles well. Our rodlike particles are nearly
spherocylinders: they look like bullets, as shown in �g. 2.1.

Figure 2.1: Image made with a Transmission Electron Microscope of the rodlike particles

It was shown in [7] by Venermo and Sihvola that the polarizability of
circular cylinders di�ers little from the polarizability of ellipsoids. Venermo
and Sihvola showed that for aspect ratios between 0 and 10 the di�erence
in polarization between circular cylinders and ellipsoids was less than 10%.
Therefore we compare our experiments with a model for ellipsoids for which
we can analytically calculate the polarization [8]. The polarizability in the
direction of the ith axis is given by

αi =
τ − 1

1 +Ni(τ − 1)
(2.1)
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where τ=εc/εs, the dielectric constant of the colloids relative to that of the
solvent. Ni is the depolarization factor in the direction of the ith axis, and
symmetry tells us that Ny = Nz = (1 − Nx)/2 if we choose our coordinate
system with one base vector along the long axis of the ellipsoid (denoted
by subscript x) and two others perpendicular to that vector (denoted by
subscripts y and z). Nx is then given by

Nx =
1− e2

2e3
(ln(

1 + e

1− e
)− 2e) (2.2)

where e is the eccentricity,

e =

√
1−

a2y
a2x

(2.3)

with ay and ax the lengths of the ellipsoids along their respective axes. Now

that the polarizability is known we can calculate the polarization ~p = αV ~E
and from this we obtain the energy [9]

U = −A~p · ~E = −AV αθ,φ ~E · ~E = −AV αθ,φ| ~E|2 (2.4)

Here V is the volume of a rod, ~E is the electric �eld and a factor A is
included to account for e�ects such as mutual induction [8]. This factor
which will be further determined in section 4.3 using experimental data. The
polarizability is speci�cally denoted as αθ,φ, since in spherical coordinates the
relevant polarizability depends on those two angles. However, since θ and
φ are mutually independent we can consider the orientational distribution
in the x,y-plane only, or equivalently only consider θ. αθ can be computed
using Nθ = Nx cos(θ) + Ny sin(θ), where θ indicates both the dependence of
αθ on θ and αθ being the polarizability in the direction of the electric �eld.

2.2 The nematic order parameter

Now we have calculated all the important physical quantities we can deter-
mine some order parameter which is relevant to this system. Since at high
�elds the rods in the sample tend to transit to the nematic liquid crystal
phase [10], we consider the two dimensional nematic order parameter P to
quantify the order in our system. This quantity is de�ned as the average over
the ensemble of the cosine of twice the angle with the nematic director [11],

P = 〈cos(2θ)〉 (2.5)
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where the nematic director points just in the same direction as the electric
�eld. Since our system is always in thermal equilibrium during the experi-
ments, we can use the Boltzmann distribution to model our ensemble

Ψ(θ) =
e−βU(θ)∫ π

2

0
e−βU(θ)dθ

(2.6)

such that

P (E) =

∫ π
2

0

cos(2θ)Ψ(θ) dθ (2.7)

8



3 Methods: rodlike particles

3.1 Experimental setup

The setup of the experiment is as follows. First we prepare a sample of
colloids in a solvent which is �t for putting under a microscope and has
the possibility of carrying an electric �eld over the solvent. A more detailed
description of how this is done can be found in section 3.1.1. After the sample
is made we put it under the microscope while being able to apply an electric
�eld. This electric �eld is generated by an HP 33120A generator. This
generator is connected to an ampli�er (Krohn-Hite model 7602 wideband
ampli�er), then to a homemade voltage doubler and �nally to our sample,
where the electric �eld is created. We measure the voltage over the sample
with a Tektronix TDS 3012B oscilloscope. Note that for our theory we use
the root-mean-square value of the voltage since the voltage oscillates. The
connections are all being made with coax-cables. We apply an oscillating
�eld of 1 MHz while varying the �eld strength from 0 V/µm to 0.09 V/µm
in 9 steps (an increase of roughly 9 · 10−3 V/µm each time). The rods are
observed and recorded with a Leica SP2 DMIRB confocal microscope, of
which the details will be further discussed in section 3.1.2.

3.1.1 Preparing the samples

The samples are made by using two-sided gold- and chrome-coated VitroCom
glass capillaries which are able to take in some rods dispersed in a solvent
via capillary forces. The gold/chrome coating is done using a Cressington
208Hr sputter coater. The solvent used is cyclohexylchloride (CHCl) and is
chosen because of its matching refractive index and low dielectric constant
of 7.4. The rods used are made of silica and prepared by dr. Bing Liu. The
details of his preparation method can be found in [12]. The rods are coated
with FITC to make them �uorescent under the confocal microscope. Some
of the properties of the rods are listed in table 3.1.
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Length (µm) and polydispersity 3.3 (6.3%)
Diameter (µm) and polydispersity 0.59 (8.7%)
Aspect ratio 5.6
Dielectric constant 4.5

Table 3.1: Some properties of the silica rods

After the capillary is nearly full with the dispersion (leaving a meniscus
only at one side, if any) we use UV-glue to seal the capillary shut onto a
glass slide, preventing any solvent to evaporate during the experiments. The
next step is to attach wires to the coating to be able to apply a �eld over
the sample. Using silverpaint and more UV-glue, a thin thermocouple alloy
wire is attached to the capillary. Whenever the UV-glue has to cure under
a UV-lamp, the sample is protected by a piece of aluminum foil. The thin
wires are connected to thicker wires and the entire sample is reinforced with
plain tape. The result is shown schematically in �gure 3.1

Figure 3.1: A glass slide, mounted by a glass capillary. This capillary is �lled with rods suspended in
solvent and coated with silverpaint. One wire is connected to the front side and one to the back side, as
to establish an electric �eld. Note that the glue, thicker wires and tape are not shown for clarity

Finally it is checked if the two coated sides are isolated from eachother,
since for an electric �eld there should be no current running through the
sample.

3.1.2 Confocal microscopy

After preparing the sample we connect it to the generator and put it under
the microscope. This technique is called confocal laser scanning microscopy
(CLSM). A confocal microscope works by focussing light of a single point
into a detector, and then scanning and adding many points to construct an
image [9]. An overview is given in �gure 3.3
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Figure 3.2: An overview of the functionality of a confocal microscope

A laser beam passes a convex lens and a pinhole. The resulting divergent
bundle of light passes �rst a dichroic mirror and then the objective lens
to illuminate the sample. The rods in the sample are �uorescently labeled
and thus sent back light of a di�erent colour, unable to pass back through
the dichroic mirror. After being re�ected the lightbeam passes a confocal
pinhole such that only light from the focal point passed. Finally this light
hits the detector, making up for one pixel of the total image. Scanning many
points quickly makes up an entire image. In our case (observing the rodlike
particles) we make images of 512 x 512 pixels in about 2.2 seconds.

3.2 Data analysis

After recording images of the sample with the confocal microscope, we use
tracking software developed by Michiel Hermes to obtain information about
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the particles. The tracking software is programmed to obtain the position
(which was of no relevance for our goal) and the projection of particles on
the x- and y-axis, with which we can determine the angle between the major
axis of a rod and the electric �eld. Note that this angle is only an angle
projected on the x,y-plane, since the images recorded with the microscope
display projections of the rods. Using Wolfram Mathematica (version 8.0)
the angles are calculated and further analysis of the data is done.
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4 Results: Rodlike particles

4.1 Particle observation and tracking

To obtain enough angles for the averaging when calculating the two dimen-
sional order parameter we take 100 images for every �eld strength at three
di�erent places, resulting in 300 images and at least 3000 angles for every
�eld strength. To ensure the applied �eld is uniform all images were taken in
the vertical middle of the capillary. All images are analysed by the software.
In the following �gures you can see one of the recorded images (left) and
their tracked particles (right) for three di�erent �eld strengths.

Figure 4.1: Rods (in red) in a �eld of 0 V/µm Figure 4.2: Rods (in red) and tracked rods (yellow
lines) in a �eld of 0 V/µm
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Figure 4.3: Rods (in red) in a �eld of 0.045 V/µm Figure 4.4: Rods (in red) and tracked rods (yellow
lines) in a �eld of 0.045 V/µm

Figure 4.5: Rods (in red) in a �eld of 0.090 V/µm Figure 4.6: Rods (in red) and tracked rods (yellow
lines) in a �eld of 0.090 V/µm
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As can be seen in the images rods which are too blurry or not bright
enough are not tracked by the software, as desired. Since we make two
dimensional images of the sample, we only see the projection of the rods on
our imaging plane. If a rod points upwards (or equivalently, downwards) we
see that it's hard to obtain a proper two dimensional angle. Some of these
rods are shown in the white circles in the �gures above. Since these do not
yield a proper angle, they are �ltered out during the analysis. Only rods with
a length of 80% of the actual length of a rod are kept after �ltering. In �gure
4.5 and �gure 4.6 we can see a small aggregate of two rods in the middle of
the pictures. Such aggregates were uncommon and their contribution to the
angles can therefore be neglected.

4.2 Angle distribution

After extracting the data from the images with our tracking software, we
are able to analyse the angles of the rods with the electric �eld. We �nd
the following histograms, where on the vertical axis we have the number of
counts and on the horizontal axis the angle θ. The width of each bin is π/60,
resulting in 60 bins.

Figure 4.7: 3811 observed angles at a �eld strength
of E = 0V/µm

Figure 4.8: 3011 observed angles at a �eld strength
of E = 0.009V/µm
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Figure 4.9: 3156 observed angles at a �eld strength
of E = 0.018V/µm

Figure 4.10: 3640 observed angles at a �eld strength
of E = 0.027V/µm

Figure 4.11: 5443 observed angles at a �eld strength
of E = 0.036V/µm

Figure 4.12: 3927 observed angles at a �eld strength
of E = 0.045V/µm

Figure 4.13: 5597 observed angles at a �eld strength
of E = 0.054V/µm

Figure 4.14: 5017 observed angles at a �eld strength
of E = 0.063V/µm
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Figure 4.15: 5402 observed angles at a �eld strength
of E = 0.072V/µm

Figure 4.16: 4361 observed angles at a �eld strength
of E = 0.089V/µm

We observe a reasonably �at histogram changing into a high-peaked one as
the electric �eld strength increases, since the stronger the �eld, the stronger
the induced polarizability will be, resulting in more alignment with the elec-
tric �eld. From all these observed angles we can directly calculate the ne-
matic order parameter using the de�nition from eq. 2.5. The experimentally
obtained values for the nematic order parameter for di�erent values of the
electric �eld strength are plotted in �g. 4.17.
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Figure 4.17: Experimentally found values for the nematic order parameter P against the electric �eld
strength E

4.3 Determining the Boltzmann factor

Our next step is determining the Boltzmann factor in order to obtain a
theoretical value for the nematic order parameter. But for the Boltzmann
factor we need �rst to obtain a value for the factor A as mentioned in section
2.1. The way we do this is by viewing the relative occurrences of angles
as statistical chances and �tting the Boltzmann factor of eq. 2.6 to that
experimentally found data:

Ψ(θ) = beβAV αθ,φ|
~E|2 (4.1)

Where the factor b is just for normalisation. We �t the relative occurrences
to beaα(θ) and �nd for every �eld strength the value of a = βAV | ~E|2. By

plotting a against | ~E|2 we should �nd a linear relation of which the slope
is the value of βAV . Once we have obtained that value we can further
theoretically calculate the nematic order parameter as de�ned in eq. 2.7.
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Figure 4.18: Relative occurrences of angles at a �eld
strength of E = 0V/µm

Figure 4.19: Relative occurrences of angles at a �eld
strength of E = 0.009V/µm

Figure 4.20: Relative occurrences of angles at a �eld
strength of E = 0.018V/µm

Figure 4.21: Relative occurrences of angles at a �eld
strength of E = 0.027V/µm

Figure 4.22: Relative occurrences of angles at a �eld
strength of E = 0.036V/µm

Figure 4.23: Relative occurrences of angles at a �eld
strength of E = 0.045V/µm

19



Figure 4.24: Relative occurrences of angles at a �eld
strength of E = 0.054V/µm

Figure 4.25: Relative occurrences of angles at a �eld
strength of E = 0.063V/µm

Figure 4.26: Relative occurrences of angles at a �eld
strength of E = 0.072V/µm

Figure 4.27: Relative occurrences of angles at a �eld
strength of E = 0.089V/µm
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In the �gures 4.17 - 4.26, we have plotted the experimentally found rel-
ative occurrences of our rods (blue points) and �tted a function of the form

of eq. 4.1 to it (red graph). Next, using the values of | ~E|2, we plot βAV | ~E|2
against | ~E|2. We also �nd a �t to the function f(| ~E|2) = βAV | ~E|2, such that
the slope of this function gives us the value of βAV

Figure 4.28: Experimentally found values for βAV | ~E|2 against | ~E|2 and their errorbars in blue, and a
linear function �tting the points in red.

As can be seen in �g. 4.27, the straight line does not seem to �t our data
very well. It seems as if for higher �eld strengths the slope lowers and our
relation is no longer linear. To see if we have better linearity at low �eld
strengths we also make a linear �t to only the �rst six points of our data.
The result is shown in �g. 4.28
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Figure 4.29: Experimentally found values for βAV | ~E|2 against | ~E|2 and their errorbars in blue, for only
the �rst six points, and a linear function �tting these six points in red.

Now we see much more linearity in our data, indicating that higher order
e�ects occur when our �eld strength is too high. We shall therefore use
the value of βAV corresponding to �g. 4.28, namely βAV = 1.71(±0.9) ·
104µm2/V 2.

4.4 The nematic order parameter

Now we �nally have all the necessary parameters needed to calculate the
nematic order parameter. We numerically calculate the integrals of eq. 2.6
and eq. 2.7 (using a stepsize of 10000) and show this plot together with
the experimentally found values for the nematic order parameter, which we
calculated directly from the angles using eq. 2.5.
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Figure 4.30: The nematic order parameter plotted against the electric �eld strength. Our experimentally
found data is shown in blue points, our theoretically predicted curve is shown in red.

We see that the theoretical curve and experimental data agree reasonably.
Note that the experimental values are too high at near-zero �eld strengths,
and to low at high �eld strengths. This is because the nematic order pa-
rameter is de�ned to have a value between zero and one. Since any value
is larger than zero, the average can never be zero at ~E = 0 as theoretically
predicted. Likewise, at high �elds the average can never be one since any
value of the nematic order parameter is less than one. However, the main
reason the curves do not perfectly overlap (especially in the middle of the
curve) is because of the use of our value for βAV , which is determined from
only the �rst six �eld strengths.

Now that the nematic order parameter is known, we turn to spherical par-
ticles in a steady electric �eld in order to �nd their charge and zeta potential
and approximate those quantities for our rodlike particles.
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5 Theory: spherical particles

Since there is no theoretical model relating the charge and zeta-potential of
rodlike particles to a macroscopic quantity, we need particles which resemble
our silica rods well and for which a model does exist. We use silica spheres,
particles with the same surface as the silica rods, and for which a model does
exist. Here the electrophoretic mobility relates to the particle charge and
the zeta potential. The electrophoretic mobility is de�ned in the following
way [14]:

~vE = µ~E (5.1)

So that the electrophoretic mobility µ is the ratio of the speed |~vE| a particle
gains (due to the electric �eld) in the direction of the electric �eld to the

electric �eld strength | ~E|. When we measure the speed we do however not
obtain the speed the particle has gained due to the electric �eld. Therefore
we use Stokes' law [15] to �nd an expression for the mobility:

QE −∆mg = 6πηrv (5.2)

where Q denotes the charge on a particle, E the electric �eld strength, ∆m
the di�erence between the mass moved by a particle and the mass of a par-
ticle itself, g the gravitational acceleration, η the dynamic viscosity of the
solvent, r the radius of a particle and v its measured speed. We now consider
this formula in the absence of gravity. Rearranging the terms we �nd an
expression for the mobility:

µ =
v

E
=

Q

6πηr
(5.3)

If we now do consider gravity, we �nd

Q

6πηr
− ∆mg

6πηrE
=

v

E
(5.4)

so that, if we take Q
6πηr

to be our mobility,

µ =
v

E
+

∆mg

6πηrE
(5.5)

Conclusively we have to add a constant factor to the ratio of measured speed
to electric �eld strength in order to account for gravity. The mobility is
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related to the zeta potential via

µ =
2εsε0ζ

3η
(5.6)

where εs denotes the dielectric constant of the solvent, ε0 the dielectric con-
stant of the vacuum and ζ the zeta potential. We can calculate the electric
force on a single particle using Stokes' law again:

Q =
6πηr~vmeasured + ∆mg

E
= 6πηrµ (5.7)
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6 Methods: spherical particles

When measuring the electrophoretic mobility we apply the same method as
we did for the rodlike particles: we use CLSM to observe our particles inside
a capillary, and tracking software to locate our particles. To obtain their
speeds, we link particles from frame to frame to form trajectories using IDL
routines developed by John C. Crocker, David Grier and Erik Weeks [16].

6.1 Stationary layers

We observe particles at several heights, �nding di�erent speeds at di�erent
heights. This is due to motion of the �uid in which the particles are sus-
pended. When applying an electric �eld to a closed capillary, counterions
near the walls start to move along the wall, resulting in an electro-osmotic
plug �ow. Having to result in a net �ow of zero in a closed capillary �lled
with an incompressible �uid, a counter�ow ensues. This parabolic Poiseuille
�ow cancels the electro-osmotic plug �ow exactly at the stationary layers,
which for rectangular capillaries can be found at [17]

zstat = h

√
1

3
+ 4(

2

π
)5
h

d
(6.1)

where zstat denotes the distance from the center of the capillary, h is the
height of the capillary and d the distance between the two walls furthest
apart. Since the mobility at the stationary layers is una�ected by the �ow
of the solvent, we use this mobility to calculate the zeta potential and the
particle charge.

6.2 Experimental setup

We use an experimental setup very similar to the one used for rodlike parti-
cles. We do change the capillaries we work with: instead of coated ones we
put thin thermocouple alloy wires through ordinary capillaries to carry an
electric �eld over the samples. A schematic overview can be found in �gures
6.1 and 6.2.
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Figure 6.1: A glass slide, mounted by a glass capil-
lary. This capillary is �lled with spheres suspended
in solvent and penetrated by two wires, which set
up an electric �eld over the sample when they are
connected to a power source. Note that as with the
previously described sample, the glue, thicker wires
and tape are not shown for clarity

Figure 6.2: Cross-section of the sample. The grey
circles inside the capillary represent the wires with a
diameter of 0.05 mm

Note that we still glue the capillaries shut so that all that has changed is
really the means of carrying a �eld over the sample. We use the same solvent
as before (CHCl) in a sample, which has a dynamic viscosity of 1.5675 mPa s
and a density of 0.998 ·103kg/m3. The stber silica spheres are monodisperse,
have a radius of 0.7 µm and a density of 2.03 ·103kg/m3 [18]. After observing
the spherical particles under the same microscope as the one we observed
our rods with, we notice that too much sedimentation takes place in a short
time, making it very hard to �nish a dataset under the same circumstances.
Therefore we set up the microscope so that it is laying on its side, so that
the electric �eld is no longer perpendicular to gravity but rather aligns with
it (albeit in opposite direction). This way we can counter the sedimentation.
Our next step is to �nd a proper combination of �eld strength and volume
fraction. A too high volume fraction or too high �eld strengths lead to string
formation. A too low volume fraction still has quick sedimentation. A too low
�eld strength will result in speeds in the direction of the �eld of comparable
size to speeds due to Brownian motion, which will result in large deviations
for the mobility. Therefore we do the experiment with two di�erent samples
called sample A and sample B. Sample A has a concentration of 0.5 volume-
%, measuring it under in�uence of �eld strengths of 1.59 mV/µm and 2.19
mV/µm. Sample B has a concentration of 0.25 volume-%, measuring it under
in�uence of �eld strengths of 1.10 mV/µm, 1.59 mV/µm and 0.66 mV/µm.
We take recordings of the samples at several heights (up to twelve di�erent
heights) in order to establish a parabolic (z,µ)-curve due to the parabolic
Poiseuille �ow. Here µ denotes the electrophoretic mobility and z denotes
the relative height, where the bottom is at z=0 and the top at z=1. Per
recording we take 40 frames in order to minimize the time (as to delay the
e�ects of sedimentation) but still have a large enough sample size.
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7 Results: Spherical particles

7.1 Particle observation and tracking

Figure 7.1: Observed particles (white spots) and their
tracks found by the software (coloured lines) at t =
0 s. The direction of the �eld is to the right

Figure 7.2: Observed particles (white spots) and their
tracks found by the software (coloured lines) at t =
5 s. The direction of the �eld is to the right

In �gures 4.1 and 4.2 we see the observed particles of sample B (the white
spots) and the trajectories they follow according to our tracking software (the
coloured lines). In �g. 4.2 we see most of the white spots have advanced along
their trajectory, since this image is taken 10 ms later than �g. 4.1. Note that
there are still many trajectories unoccupied by a particle. This is because
particles move in and out of focus, so some trajectories will be occupied at a
later time. We check the correctness of the tracking software by playing the
video of the observed particles and see if they particles actually follow the
trajectories. This is true for almost all trajectories, let alone a few exceptions.
In �g. 4.2 we have encircled three of those exceptions. Here we see a sudden
movement in the vertical direction, where a smoother motion in the direction
of the �eld is expected. This is because of a tracking option which allows
particles to disappear for two frames. If it resurfaces in an acceptable distance
from where it disappeared in two frames or less, it is counted as the same
particle. This causes the software to falsely recognize a di�erent particle
as the same, and linking their trajectories. Because these false trajectories
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are uncommon, their contribution to the mean speed used for calculating
the electrophoretic mobility can be ignored. Furthermore we see a slight
tendency of moving upward of the particles as well, whereas the direction of
the �eld is assumed to be purely from left to right. This may be caused by
local deviations of the �eld, likely caused by the geometrical imperfections
of our sample. Another cause of the tendency of moving upward may be a
systematical error: when placing the sample in the microscope, it may not
have been placed purely horizontal. Then gravity and the electric �eld would
not be antiparallel. This e�ect will be ignored in processing our results since
it does not occur for all recordings.

7.2 Mobility, zeta potential and charge

From the acquired data we calculate the mean speed of the particles. The
speed is calculated by dividing the distance travelled by a particle in the
direction of the electric �eld from one frame to another, by the time it took
to get there; one second in our case. Using eq. 3.1 we calculate the mobility.
This is done for several heights in the sample, so that we hope to establish
a parabolic (z,µ)-curve due to the parabolic Poiseuille �ow. The following
curves are found.

7.2.1 Sample A

Figure 7.3: (z,µ)-diagram for sample A at E =
1.59mV/µm. The blue dots correspond to the ex-
perimental values of the mobility, the blue line is a
parabola �tted to these points and the two purple
lines represent the location of the stationary layers

Mobility µ (µm
2

V s
) 983.8 - 1149

Zeta potential ζ (mV ) 35.3 - 41.2
Charges Z 127 - 148

Figure 7.4: Values for the mobility, zeta potential
and number of unit charges of a silica sphere from
batch A E = 1.59mV/µm. The two di�erent values
correspond to using the two di�erent mobilities of the
lower and the upper stationary layer
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Figure 7.5: (z,µ)-diagram for sample A at E =
2.19mV/µm. The red dots correspond to the ex-
perimental values of the mobility, the red line is a
parabola �tted to these points and the two purple
lines represent the location of the stationary layers

Mobility µ (µm
2

V s
) 311.6 - 487.2

Zeta potential ζ (mV ) 11.2 - 17.5
Charges Z 40 - 63

Figure 7.6: Values for the mobility, zeta potential and
number of unit charges of a silica sphere from batch
A at E = 2.19mV/µm. The two di�erent values cor-
respond to using the two di�erent mobilities of the
lower and the upper stationary layer

In the �gures above we show the (z,µ)-diagrams and the resulting values
for the mobility, zeta potential and number of unit charges. Note that we
plot our experimentally found values of the mobility by calculating it per
ten frames, resulting in four di�erent mobilities at each height. By doing
so we get an idea of the spread in the mobility. We see that the curves �t
the data quite well most of the time. However, the resulting parabolas are
usually quite asymmetrical, causing the values of the mobility to be di�erent
at both stationary layers. With these two values and equations 3.6 and 3.8
we calculate the zeta potential and the number of unit charges.

We observe a signi�cant di�erence in mobilities at the two di�erent �eld
strengths. This indicates that the velocity is not linearly dependent on the
electric �eld strength, so that µ = µ(| ~E|). We see that at both station-
ary layers, a higher �eld strength (red curve) seems to correlate to a lower
mobility.
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Figure 7.7: The (z, µ)-diagrams of sample A at E = 1.59mV/µm and E = 2.19mV/µm combined. Note
that we average the mobility over the four points at each height
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7.2.2 Sample B

Figure 7.8: (z,µ)-diagram for sample B at E =
0.66mV/µm. The black dots correspond to the ex-
perimental values of the mobility, the black line is a
parabola �tted to these points and the two purple
lines represent the location of the stationary layers

Mobility µ (µm
2

V s
) 2890 - 4033

Zeta potential ζ (mV ) 104 - 145
Charges Z 373 - 521

Figure 7.9: Values for the mobility, zeta potential and
number of unit charges of a silica sphere from batch
B at E = 0.66mV/µm. The two di�erent values cor-
respond to using the two di�erent mobilities of the
lower and the upper stationary layer

Figure 7.10: (z,µ)-diagram for sample B at E =
1.10mV/µm. The blue dots correspond to the ex-
perimental values of the mobility, the blue line is a
parabola �tted to these points and the two purple
lines represent the location of the stationary layers

Mobility µ (µm
2

V s
) 2329 - 2714

Zeta potential ζ (mV ) 83.6 - 97.4
Charges Z 301 - 350

Figure 7.11: Values for the mobility, zeta potential
and number of unit charges of a silica sphere from
batch B at E = 1.10mV/µm. The two di�erent val-
ues correspond to using the two di�erent mobilities
of the lower and the upper stationary layer
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Figure 7.12: (z,µ)-diagram for sample B at E =
1.59mV/µm. The red dots correspond to the ex-
perimental values of the mobility, the red line is a
parabola �tted to these points and the two purple
lines represent the location of the stationary layers

Mobility µ (µm
2

V s
) 3039 - 3162

Zeta potential ζ (mV ) 109 - 113
Charges Z 392 - 408

Figure 7.13: Values for the mobility, zeta potential
and number of unit charges of a silica sphere from
batch B at E = 1.59mV/µm. The two di�erent val-
ues correspond to using the two di�erent mobilities
of the lower and the upper stationary layer

Here above too, we show the (z,µ)-diagrams and the resulting values for
the mobility, zeta potential and number of unit charges. Also we show the
spread in mobilities by taking the speed over 10 frames again. Once again
we check the dependency of the mobility by putting the curves together in
�g. 4.17.
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Figure 7.14: The (z, µ)-diagrams of sample B at E = 0.66mV/µm, E = 1.10mV/µm and E = 1.59mV/µm
combined. Note that we average the mobility over the four points at each height
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Once again we note that there are signi�cant di�erences in the mobilities
at the three di�erent �eld strengths. However, this �gure doesn't indicate
whether the mobility increases or decreases with the �eld strength clearly as
with sample A.
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8 Conclusions

For the �rst part of this thesis we have observed rodlike silica particles in
rapidly oscillating electric �elds at di�erent �eld strengths and considered the
orientational order of the rods. The order was parameterised by the nematic
order parameter and this parameter was also computed theoretically using a
model concerning ellipsoids. We �nd that this model is capable of predicting
the values of the nematic order parameter reasonably well. It shows a phase
transition from an unordered dispersion to a liquid crystal. Nevertheless the
model does not predict the dependency of the energy on the electric �eld
strength well for higher �eld strengths. There doesn't seem to be linearity
between the two for higher �eld strengths, indicating that the factor A as
calculated in section 4.3 is �eld-dependent. Since we introduced the factor A
to account for e�ects such as mutual induction contributing to the energy of
a dipole, it is not strange to see this happen because the induction is caused
by the electric �eld. Using a constant factor as in eq. 2.4 for the contribution
to the energy of a dipole is thus not justi�ed at all �eld strengths.

For the second part of this thesis we have observed spherical silica particles
in a steady electric �eld, at di�erent heights in the sample and at two di�erent
�eld strengths. Their speeds were measured and from it we calculated the
mobility, the zeta potential and the number of unit charges on a sphere. The
results are not unequivocal, since the mobilities at di�erent stationary layers
can di�er by a factor of up to 1.56 (sample A, E = 2.19mV/µm). The spread
in mobilities result in a spread in zeta potential and charge on a sphere as
well. This spread may be caused by the quick sedimentation of our samples
due to density di�erences between silica and the solvent and the charge on
the glass walls. These result in concentration di�erences at the stationary
layers. Concentration di�erences a�ect the amount of hydrogen a colloid is
able to dissociate to the solvent, so that the charge of a colloid and hence its
mobility are a�ected as well.
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