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“Either you’re an intuitionist, or you’re not”



Abstract

In this thesis I intend to present a comparison of Kripke and Beth models for
Intuitionistic Logic, foremost to see how the two relate to each other and to explore
frame properties of both. I will start off in chapter 2 by introducing the reader to
Intuitionism, Intuitionistic Propopsition Logic and Intuitionistic Predicate Logic.
In chapter 3 and 4 I will introduce the Kripke and Beth models and will see in
chapter 5 if they can be translated into each other and by which means. In chapter
6 we look at what is known about frame properties of Kripke models, and we will
see if we can find frame properties for Beth models as well. We will look at the
intermediate logics KC and LC and see if we can find Beth models related to them.
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Chapter 1

Intuitionism

Intuitionism is a philosophy of mathematics. It was developed by L.E.J. Brouwer
(1881–1966), a Dutch mathematician. The main idea of Intuitionism is that math-
ematics is a creation of the mind. This has major implications for what is con-
cidered true, because many statements can no longer be upheld. Intuitionism
shares many properties with constructivism, the philosophy of mathematics which
claims that something can only exist if it can be constructed.

The believe that mathematics is a creation of the mind implies that something
that has not yet been created (in the mind), is not yet true. Logic is no longer
tenseless in this philosophy. A statement P might not be true at the moment, but
as soon as one finds a proof for P it becomes true. Intuitionism therefore differs
from classical mathematics like Platonism and Formalism, where truth is eternal
and a truth is ‘discovered’, more than ‘created’.

In Intuitionism the ∨-connective is interpreted much stronger than in classical
logic. This has, for example, consequences for the Principle of Excluded Middle
(P∨¬P), which longer holds in Intuitionistic reasoning. Concider for example the
famous Riemann Hypothesis, a proposition for which there currently is neither a
proof, not a proof of its negation. Since P can only be true if there is a proof of P,
and the same goes for ¬P, we cannot conclude P∨¬P at the moment. Only when
we have either proven or disproven the Riemann Hypothesis we can conclude
P ∨ ¬P.

Brouwer’s intention was to rebuild mathematics with this more demanding
view. A proof from Reductio ad Absurdum just wasn’t good enough. And al-
though mainstream mathematics is still classical, intuitionism remains a topic of
research until today.
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1.1 Intuitionistic Logic
Although Brouwer himself was not particulary interested the use of logic – his
proofs were written in natural language – his pupil A. Heyting has formalised a
logic that is acceptable from the perspective of Intuitionism: Intuitionistic Logic.
This logic is similar to classical logic, with the exception that the rule of excluded
middle has been left out.

Intuitionistic Logic is also the logic that is used for most of the other branches
of constructivism. And since the rules of Intuitionistic Logic are a subset of the
rules of classical logic, the formulae that are true in Intuitionistic Logic are also
a subset of those in classical logic. Intuitionistic Logic can therefore be seen as a
stronger sort of logic, a sort where more is demanded of a proof.

• ϕ ∧ ψ is true iff there is a proof of ϕ and a proof of ψ

• ϕ ∨ ψ is true iff there is a proof of ϕ or there is a proof of ψ

• ϕ → ψ is true iff there is a general method that transforms any proof of ϕ
into a proof of ψ

• There is no proof of ⊥

• ∀xϕ(x) is true iff there is a method that given an object a transforms it into
a proof for ϕ(a)

• ∃xϕ(x) is true iff there is an object a with a proof of ϕ(a)

¬ϕ means ϕ → ⊥, and can therefore be read as: “Any proof of ϕ can be trans-
formed into a proof of ⊥, and since no proof of ⊥ can exist, a proof of ϕ cannot
exist”.

These definitions can be used to form natural deduction-style introduction and
elimination rules:

Introduction rules Elimination rules

ϕ ψ
ϕ ∧ ψ ∧-I ϕ ∧ ψ

ϕ ∧-E
ϕ ∧ ψ
ψ ∧-E

ϕ
ϕ ∨ ψ ∨-I

ψ
ϕ ∨ ψ ∨-I

ϕ ∨ ψ

ϕ(1)
....
χ

ψ(2)
....
χ

χ(1),(2) ∨-E
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ϕ(1)
....
ψ

ϕ→ ψ(1) → -I ϕ→ ψ ϕ
ψ → -E

ϕ(a)
∃xϕ(x) ∃-I

∃xϕ(x)

ϕ(x)(1)
....
ψ

ψ(1) ∃-E

....
ϕ(a)
∀xϕ(x) ∀-I

∀xϕ(x)
ϕ(x) ∀-E

Any number on top represents an open assumption and a number below represents
the cancelation of that open assumptions.

To this we add the intuitionistic absurdity rule, which states that ex falso
sequitur quodlibet or: “from a contradiction we can deduce anything”:

⊥
ϕ ⊥i

These deduction rules together form the rules of Intuitionistic Predicate Logic
or IQC1. To create Classical Predicate Logic or CQC one only needs to add one
rule, which state that from the absurdity of the absurdity of a claim, we can deduce
that claim:

¬ϕ....
⊥
ϕ ⊥c

If we remove the ∀-I, ∀−-E, ∃-I and ∃-E rules from IQC and CQC we get Intu-
itionistic Propositional Logic (IPC) and Classical Propositional Logic (CPC)
respectively.

For example, while we can not prove¬¬ϕ→ ϕ in IQC, we can prove¬¬(¬¬ϕ→

1IQC stands for Intuitionistic Quantifier Calculus. The yet to be defined abbreviations CQC,
IPC and CPC stand for Classical Quantifier Calculus, Intuitionistic Proposition Calculus and Clas-
sical Proposition Calculus
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ϕ).

¬(¬¬ϕ→ ϕ)(1)

¬¬ϕ(2)

¬(¬¬ϕ→ ϕ)(1)

¬¬ϕ(4) ϕ(3)

¬¬ϕ→ ϕ(4) → -I

⊥ → -E

¬ϕ(3) → -I

⊥ → -E
ϕ ⊥i

¬¬ϕ→ ϕ(2) → -I

⊥ → -E

¬¬(¬¬ϕ→ ϕ)(1) → -I
♥ (1.1)

Glivenko’s theorem

What we observe in (1.1) is an interesting feature, apparently we can’t prove that
¬¬ϕ implies ϕ, but we can prove that we can’t prove the negation of it. This can be
generalised to the statement that if something is true classically, the negation of it’s
negation is true intuitionistically. This should be the case, because if something
is true, classically it’s negation can not possibly be true Intuitionistically. This is
known as Glivenco’s theorem:

Theorem 1 (Glivenco’s Theorem for propositional logic)

CPC ` A⇔ IPC ` ¬¬A

Proof That IPC ` ¬¬A ⇒ CPC ` A is easy to prove. Since any derivation in
IPC also exists in CPC it follows that IPC ` ¬¬A ⇒ CPC ` ¬¬A and since
CPC ` ¬¬A→ A it follows that CPC ` ¬¬A⇒ CPC ` A.

For the other direction (CPC ` A ⇒ IPC ` ¬¬A) we will device a way of
rewriting every proof of A in CPC into a proof of ¬¬A in IPC. Every classical
inference rule with {ϕ, ψ . . . } as it’s premises and χ as it’s conclusion will be
transformed to an inference rule from {¬¬ϕ,¬¬ψ, . . . } to ¬¬χ. Now for a given
classical proof, we can replace all inference rules for our new inference rules and
all premises and conclusions for the double negations of those formulae. If our
new inference rules are intuitionistically valid, so will the derivation be. We will
now give intuitionistic proofs for the validity of ¬¬(¬ϕ→ ⊥) `i ¬¬ϕ (the double
negation of the classical ⊥c-rule) (1.2) and for ¬¬(ϕ → ψ),¬¬ϕ `i ¬¬ψ (the
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double negation version of the→-elimination rule) (1.3).

¬¬(¬ϕ→ ⊥)

¬ϕ(1) ¬ϕ→ ⊥(2)

⊥

¬(¬ϕ→ ⊥)(2)

⊥

¬¬ϕ(1) (1.2)

¬¬(ϕ→ ψ)

¬¬ϕ

¬ψ(1)
ϕ→ ψ(2) ϕ(3)

ψ
⊥

¬ϕ(3)

⊥

¬(ϕ→ ψ)(2)

⊥

¬¬ψ(1) (1.3)

We leave the other inference rules as an exercise for the reader. ♥

For predicate logic this rule does not hold, but with a simple additional rule
this can be fixed.

Definition The Double Negation Shift or DNS is the rule ∀x¬¬ϕ(x)→ ¬¬∀xϕ(x)

Theorem 2 (Glivenko’s Theorem for predicate logic)

CQC ` A⇔ IQC + DNS ` ¬¬A

Proof As with the proof for propositional logic, the implication of Intuitionistic
Logic to classical logic is immediate.

Also the proof from classical logic to Intuitionistic logic is similar. We con-
struct inference rules for the double negations. These are the same as those for
propositional logic, plus the rules for the introduction and elimination of the quan-
tifiers. We will give the introduction and elimination rules (resp. (1.4) and (1.5))
for the ∀-quantifier as an example. The rest is left as an exercise for the reader.

¬¬ϕ(a)
∀x¬¬ϕ(x) ∀x¬¬ϕ(x)→ ¬¬∀xϕ(x)

¬¬∀xϕ(x) (1.4)
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¬¬∀xϕ(x)

¬ϕ(a)(1)
∀xϕ(x)(2)

ϕ(a)
⊥

¬∀xϕ(x)(2)

⊥

¬¬ϕ(a)(1) (1.5)

♥



Chapter 2

Kripke models

To show that a formula ϕ is provable in IQC we now have the natural deduction-
style deduction method. But to show that ϕ is not provable in IQC, we need
something else.

Remember that in CQC counterexamples are very simple. They consist of a set
of elements and a set of atomic formulae that are true, and assume the rest of the
atomic formulae to be false. For example, to show that the statement ∀x(A(x) ∨
B(x)) → (∀xA(x) ∨ ∀xB(x)) is not provable, we can give the following counter
model: {a, b} with A(a) and B(b). This is less trivial in IQC, where we must have
a counter model for e.g. ϕ ∨ ¬ϕ. For this purpose we can use Kripke models.

At first we will look at Kripke models for IPC. A Kripke model for IPC is a
set K of possible worlds that represent certain stages of knowledge. We can move
between those worlds according to a relation 4. Since known information cannot
be made unknown (knowledge is monotone), such a relation must be a partial
order and for all knowledge in world k it must be so that for all k′ that follow k at
least that same knowledge is known.

Concider the following Kripke model:

0

1 P

(2.1)

We will always visualise a Kripke model from the bottom up. When two nodes
are connected by a line, the higher node comes after the lower node in the partial
order. The bottom node 0 is the root node, which can be seen as the starting
situation. In 0 we do not know if P is true or not. As we move up we gain more
information. In 1 we do know P. So in 0 we cannot with certainty say that we will

8
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never find out P, which would be equivalent to knowing ¬P. And since we know
neither P nor ¬P we cannot conclude P ∨ ¬P.

Now consider the following Kripke model:

0

1 P 2

(2.2)

Here, there are two successors of node 0. In node 1 we have again P, but in
node 2 we now have ¬P. This makes (2.2) different from (2.1), in the sense that
in (2.1) ¬P could never be true. Therefore in (2.1) one can conclude ¬¬P, also
implying ¬P ∨ ¬¬P, another tautology in classical logic. But in (2.2) this is not
the case. One cannot conclude either ¬P or ¬¬P in 0, making this a countermodel
to ¬P ∨ ¬¬P.

Definition A binary relation R is a partial order over a set iff:

• R is reflexive, i.e. aRa,

• R is antisymmetric, i.e. if aRb and bRa then a = b,

• R is transitive, i.e. if aRb and bRc then aRc

Definition A frame F is a tupel 〈K,4〉 where

1. K is a non-empty set of nodes,

2. 4 is a partial order on those nodes,

In the visualisation of frames we will only draw the immediate successor re-
lation S . The <-relation is the transitive reflexive closure 1 over S . Naturally
p 4 q⇔ q < p.

We will now proceed with the formal definition of a Kripke model for propos-
itional logic.

Definition A Kripke model K for propositional logic is a tupel 〈K,4,〉, where

1. 〈K,4〉 is a frame,
1A transitive closure R+ over a relation R on a set X is the minimal transitive relation on X that

contains R. A reflexive closure R= over a relation R on a set X is the minimal reflexive relation on
X that contains R.
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2.  is a relation between a node and a formula and is for atomic formula P
defined such that:

• ∀k, k′ ∈ K(k  P and k 4 k′ ⇒ k′  P)

i.e.  is upwards closed for atomic formulae.

For compound formulae the -relation is defined as follows:

• k  ϕ ∧ ψ iff k  ϕ and k  ψ

• k  ϕ ∨ ψ iff k  ϕ or k  ψ

• k  ϕ→ ψ iff ∀k′ < k (if k′  ϕ then k′  ψ)

• k  ¬ϕ iff ∀k′ < k (k′ 1 ϕ)

The -relation defined above is pronounced as ‘k forces P’, and means P is
true in k.

Looking at (2.2) we have according to the definition: K = 〈K,4,〉 with:

1. K = {k0, k1, k2}

2. 4= {k0 4 k1, k0 4 k2}

3. = {k1  P}

If we want to extend the Kripke models to IQC, we will add to each node
a set of objects, known at that node. The atomic propositional variables are re-
placed by prime formulae of the form Rn(d1, . . . , dn), meaning R is a n-ary predic-
ate and d1, . . . , dn are parameters (e.g. Gives3( john, pierre, jacket), meaning that
John gives Pierre the jacket), or R(~d ) for short.

As an example we will take an intuitionistic counter model for the Drinkers
paradox. The Drinkers paradox is the statement that in every non-empty café there
exists a person in the café for who it is true that if he drinks everybody drinks, or
in formula form ∃x(P(x)→ ∀y(P(y))). This statement is true in CQC, for if there
is someone who does not drink, we can take him to make the antecedent false, and
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if there is no such person the consequent is true. In Intuitionistic Logic this is not
the case as is illustrated by the following Kripke model.

{a}

{a, b} D(a)

{a, b, c} D(a),D(b)

{a, b, c, d} D(a),D(b),D(c)

(2.3)

In each node we know one person of which we can not say if he drinks, so
the consequent – that it is known that everybody drinks – is never true. But there
is never a person for which we can say that he doesn’t drink –thus making the
antecedent false –, for every person that we do not know if he drinks, eventually
ends up drinking. Note that the bottom two nodes are sufficient to prove this point.
In the root node we only know a, but we cannot say that if he drinks everybody
drinks, because as we will see in the next node, he does drink, but not everybody
drinks.

Definition A Kripke model K for predicate logic is a tupel 〈K,4,D,〉, where

1. 〈K,4〉 is a frame,

2. D is the domain function that assigns to every node k a non-empty set D(k)
of elements such that ∀k, k′ ∈ K(k 4 k′ → D(k) ⊆ D(k′)), i.e. D is mono-
tone.

3.  is a relation between a node k and a formula and is for prime formula
Rn(d1, . . . , dn) defined such that:

• k  R(~d )⇒ d ∈ D(k) for all d ∈ ~d

• ∀k, k′ ∈ K(k  Rn(d1, . . . , dn) and k 4 k′ ⇒ k′  Rn(d1, . . . , dn))

i.e.  is upwards persistent for prime formulae.

For compound formulae the -relation is defined as follows:
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• k  ϕ ∧ ψ iff k  ϕ and k  ψ

• k  ϕ ∨ ψ iff k  ϕ or k  ψ

• k  ϕ→ ψ iff ∀k′ < k(if k′  ϕ then k′  ψ)

• k  ¬ϕ iff ∀k′ < k(k′ 1 ϕ)

• k  ∀x(ϕ(x)) iff ∀k′ < k(∀d ∈ D(k′)(ϕ(d)))

• k  ∃x(ϕ(x)) iff there is a d ∈ D(k) for which it is the case that k  ϕ(d)

Rules (1) defines the frame, rule (2) assigns to every node in the frame a domain,
which is monotone, and (3) assigns to every node in the frame a set of formulae
which are true in that given node. Formulae that are true, remain true and every
object in a formula that is true at a node is also in the domain of that node. This is
because we can not know things about objects that we do not know.

The rules for the connectives ∧,∨,→,¬,∀ and ∃ can be read as follows:

• ϕ ∧ ψ is true in a node if both ϕ and ψ are true

• ϕ ∨ ψ is true in a node if at least one of them is true (and as we know from
Intuitionistic Logic, this means, that we also know which one that is)

• ϕ → ψ is true in a node, if we know that in every successive node if ϕ is
true, then ψ must be true too

• ¬ϕ is true in a node, if we know that there is no successive node where ϕ is
true, i.e. ϕ will never be true.

• ∀x(ϕ(x)) is true in a node, if we know for every element d we now know,
and ever will know, that ϕ(d) is true

• ∃xϕ(x) is true in a node, if we know at least one element d for which ϕ(d)
is true

For prime formulae it is by definition that  is upwards persistent. But for
compound formulae it is not specifically in the definition. However this is still
true.

Theorem 3 The -relation is upwards persistent for all formulae.
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Proof by induction. For prime formulae upwards persistence follows by defini-
tion. For compound formulae it follows by induction. We will give one induction
step as an example.

Suppose  is upwards persistent for ϕ and ψ and suppose k  ϕ∨ψ and k 4 k′.
Then either k forces ϕ or k forces ψ, and since  is upwards persistent for both,
either k′  ϕ or k′  ψ. Therefore k  ϕ ∨ ψ.

We leave the proofs for the other connectives as an exercise for the reader. ♥

Definition Let Γ be a set of formulae, or a theory. If any node k that forces Γ

must also force a formula ϕ, then we write Γ  ϕ, i.e. Γ  ϕ⇔ (k  Γ⇒ k  ϕ).

Theorem 4 Any Kripke model is intuitionistically sound, that is Γ ` ϕ⇒ Γ  ϕ

Proof By induction. Suppose that for ϕ and ψ soundness is proven. Now given a
node k for which k  ϕ → ψ, and k  ϕ. Then by the Kripke rule for→, for all
k′ < k (so including k) it is the case that if k  ϕ then k  ψ. So k  ψ.

The soundness proofs for the other derivation rules are of a similar nature, and
are left as an exercise. ♥

2.1 Finitary Kripke models for IPC

We’ll now prove that for any infinite Kripke model proving that Γ 1 ϕ there is
finite Kripke model also proving Γ 1 ϕ. First we’ll define the formula ∆, which
defines for each node a set of subformulae of ϕ that are true in that node. Then
from a infinite tree we’ll create a new tree, which uses ∆ as an equivalence relation.
After that we’ll prove for the constructed tree, that it is finite and that it proves
Γ 1 ϕ.

Definition Let ϕ be a theory and let S ub(ψ) the function that maps a formula ψ
onto the set of all it’s subformulae. Then let ∆ϕ be the function that maps a theory
Γ ≡ {ψ0, ψ1, . . . , ψn} onto the set of subformulae overlapping with the subformulae
of ϕ, that is:

∆ϕ(Γ) ≡
n⋃

i=0

(S ub(ϕ) ∩ S ub(ψi))

If a node k forces exactly the set of formulae Γ then we define the function
∆ϕ(k) to mean the same as ∆ϕ(Γ).
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Definition Let K be a Kripke model 〈K,4,〉 and ϕ is a formula. Then let the
ϕ-filtration of K be the Kripke model K ′ ≡ 〈K′,4′,′〉 constructed by the
following transformation. First define the ∆-equivalence on nodes as follows:
k

∆
≡ k′ iff ∆ϕ(k) ≡ ∆ϕ(k′). To avoid confusion the nodes in the filtration will be

referred to with [k]’s.

• K′ consists of all non-empty equivalence classes on K, that is any [k] ∈ K′

is the set 〈k0, k1, . . . 〉 where for all ki, k j in [k], it is the case that ki
∆
≡ k j.

• [k] 4′ [k]′ iff ∆ϕ([k]) ⊆ ∆ϕ([k]′), where ∆ϕ([k]) for a [k] ∈ K′ maps to the
same set that the nodes k ∈ [k] map.

• [k] ′ P where P is an atomic formula iff P′ ∈ ∆ϕ([k]).

Lemma 5 Let K ′ ≡ 〈K′,4′,′〉 be the ϕ-filtration of K ≡ 〈K,4,〉. Then there
is a node k ∈ K 1 ϕ iff there is a node [k] ∈ K ′ 1 ϕ.

Proof There is a surjection from K to K′, mapping k ∈ K to [k] ∈ K′ iff ∆ϕ(k) ≡
∆ϕ([k]) (again we’ll use [k] to denote nodes from K′, to avoid confusion). For
each formula ψ ∈ S ub(ϕ), it is the case that k  ψ iff [k]  ψ. We will show this
by induction.

• For the atomic formulae this is by definition.

• Suppose it is proven for ϕ and ψ. Then if k 1 ϕ∧ ψ, it is either the case that
k 1 ϕ or k 1 ψ, which means it is proven that either [k] 1′ ϕ or [k] 1′ ψ
from which follows [k] 1 ϕ ∧ ψ. The reverse is similar.

• Suppose it is proven for ϕ and ψ. Then if k 1 ϕ ∨ ψ, it is both the case that
k 1 ϕ and k 1 ψ, which means it is proven that both [k] 1′ ϕ and [k] 1′ ψ
from which follows [k] 1 ϕ ∨ ψ. The reverse is similar.

• Suppose it is proven for ϕ and ψ. Take a node k ∈ K and a node [k] ∈ K′

where k is mapped to. Then if k 1 ϕ → ψ then there is a node k′ < k  ϕ
and k′ 1 ψ. This k′ is mapped to [k]′ ∈ K′. And since for the relation is
proven for ϕ and for ψ it is known that [k] ′ ϕ and [k] 1′ ψ. And since
∆ϕ(k′) ⊇ ∆ϕ(k) it is known that ∆ϕ([k]′) ⊇ ∆ϕ([k]) and therefore [k]′ < [k].
Thus [k] 1′ ϕ→ ψ.

For the reverse we take k ∈ K  ϕ → ψ. k is mapped to [k] ∈ K′. If k  ϕ
then k  ψ, and since this is proven for ϕ and ψ, it is the case that if [k] ′ ϕ
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then [k] ′ ψ. Now to show that there are no nodes [k]′ < [k] for which
[k]′ ′ ϕ and [k]′ 1′ ψ,we take a node after [k]′′ < [k]. For this node we
know there is a node k′′ ∈ K which maps to [k]′′. Since [k]′′ is a successor of
[k], and by definition ϕ → ψ ∈ ∆ϕ([k]), it is the case that ϕ → ψ ∈ ∆ϕ([k]′′)
and by the reasoning above, if [k]′′ ′ ϕ then [k]′′ ′ ψ.

• ¬ϕ is the same as ϕ → ⊥ therefore the induction step above can be used to
prove it for ¬ϕ.

Since ϕ is it’s own subformula, it is proven that if there is a node k ∈ K 1 ϕ then
there is a node [k] ∈ K′ 1′ ϕ. ♥

Lemma 6 Let K ’ be the ϕ-filtration of K . Then K ’ is finite.

Proof Since there are finitely many subformulae of ϕ there can only be finitely
many unique sets of subformulae. These sets define the possible equivalence
classes and for each such a class there is at most one node in K ’. Therefore
there are finitely many nodes in K ’. ♥

Theorem 7 Let K be an infinite countermodel proving Γ 0 ϕ, then there is a
finite countermodel K ’ proving Γ 0 ϕ.

Proof Let K ’ be the ϕ-filtration of K . Let n be the node in K , which contains
Γ but does not force ϕ (i.e. the node that proves Γ 0 ϕ). Then by lemma 5 there is a
node [k] in K ’, where k is mapped to which does not force ϕ too. Now we extend
that node [k] with all formulae in Γ. It is easy to see that all relevant formulae
which might change things for ϕ are already used in this node and all successive
nodes, so these will not affect ϕ. The node now contains all formulae in Γ but
does not force ϕ. And since K ’ is finite (by theorem 6), we now have a finite
countermodel proving Γ ` ϕ. ♥

2.2 Completeness of Kripke semantics
Definition Let Γ be a theory (set of formulae). Then Γ is saturated if:

• if Γ ` ϕ then ϕ ∈ Γ

• if ϕ ∨ ψ ∈ Γ then either ϕ ∈ Γ or ψ ∈ Γ
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Lemma 8 For any consistent theory Γ, then there is a saturated consistent Γ′ ⊇ Γ

which can be constructed from Γ.

Proof Given is the theory Γ. The saturated theory Γω is constructed as follows.
Let Γ0 be the smallest set such that Γ0 ⊇ Γ where (Γ0 ` ϕ) ⇒ (ϕ ∈ Γ0). Let

the formulae in the theory be ordered on the length of the formulae2. Now by
induction we define Γk. Given is Γk−1. Let Γk ⊇ Γk−1. Let ϕ be the first formula in
Γk−1 such that ϕ ≡ ψ ∨ χ, but neither ψ ∈ Γk−1 nor χ ∈ Γk−1, then:

• if Γk−1 ∪ {ψ} 0 ⊥, then ψ ∈ Γk

• otherwise χ ∈ Γk

Let Γk ` ϕ⇒ ϕ ∈ Γk and Γk be ordered on the length of the formulae.
If no such ϕ exists, then Γk−1 ≡ Γk. Γω is the result of the infinite iteration.

This Γω is the saturated theory.
Given that there are finitely many propositional variables in Γ, Γω will be sat-

urated. This can be proven as follows. Given a Γk, and a formula ϕ ≡ ψ ∨ χ ∈ Γk,
for which neither ψ nor χ are in Γk. Then there are only finitely many formulae
that can come before ϕ. If any of these formulae will be handled before this, that
is, if there is a disjunction ψ without any of the disjuctive formulae, then handling
this formula will add at least one formula to the formulae smaller then ϕ, namely
one of the disjunctive formulae of ψ. Since there are only finitely many formulae
that can come before ϕ then there are also only finitely many steps that can be
made before ϕ. Thus each formula in Γk that needs to be handled, will be handled
in a finite amount of time. Therefore in Γω there will be no disjunction, for which
neither disjunctive formula is the case. ♥

Theorem 9 Kripke models for IPC are complete, that is Γ ` ϕ iff for all nodes on
all Kripke models for IPC Γ  ϕ.

Proof In theorem 4 we have proven that if Γ ` ϕ then Γ  ϕ. Now we’ll prove
that if Γ 0 ϕ then Γ 1 ϕ, or there is a node k concievable, that k  Γ and k 1 ϕ. We
will do this by induction. Let Γ be saturated:

• Let Γ 0 P where P is an atomic formula. Then P < Γ, and thus if k  Γ then
k 1 P

2This will be done in such a way that the shortest formula will be at the start. Furthermore, the
atomic formulae will be written as p, p′, p′′, . . . , i.e. the nth atomic formula has a length of n
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• Let it be proven that Γ ` ϕ ⇔ Γ  ϕ and Γ ` ψ ⇔ Γ  ψ. Now suppose
Γ 0 ϕ ∧ ψ. Then (Γ 0 ϕ ∧ ψ) ⇔ (Γ 0 ϕ or Γ 0 ψ) ⇔ (Γ 1 ϕ or Γ 1 ψ) ⇔
(Γ 1 ϕ ∧ ψ).

• Let it be proven that Γ ` ϕ ⇔ Γ  ϕ and Γ ` ψ ⇔ Γ  ψ. Now suppose
Γ 0 ϕ ∨ ψ. Then (Γ 0 ϕ ∨ ψ) ⇔ (Γ 0 ϕ and Γ 0 ψ) ⇔ (Γ 1 ϕ and Γ 1 ψ) ⇔
(Γ 1 ϕ ∧ ψ).

• Let Γ′ be the saturation of Γ ∪ {ϕ}. Let it be proven that Γ′ ` ψ ⇔ Γ′  ψ.
Now suppose Γ 0 ϕ → ψ. Then (Γ 0 ϕ → ψ) ⇔ (Γ′ 0 ψ) ⇔ (Γ′ 1 ψ) ⇔
(Γ 1 ϕ → ψ). The last step can be seen as follows. Take a node k  Γ, then
there can be a node k′ < k  Γ ∪ {ϕ} for which k′ 1 ψ.

• ¬ϕ ≡ ϕ→ ⊥ thus as above.

With this, the ⇔ relation is proven. Γ ` ϕ iff Γ  ϕ. Kripke models for IPC
are complete. ♥

The proof described above can be used to create a tableaux style method to
create countermodels, but instead of having a single node with true statements
and false statements, at each point there is a possibly incomplete Kripke model. A
complete Kripke countermodel is a model on which no rules can be used anymore.
A rule takes a node k, and a formula ϕ for which it is known that k  ϕ or k 1 ϕ,
and has not yet been simplified. For example:

• If a node k 1 ϕ∨ ψ in a Kripke model K , then this is followed by a Kripke
model K ’, which is a copy of K , except that now k 1 ϕ and k 1 ψ.

• If a node k  ϕ∨ψ in a Kripke model K , then this is followed by two Kripke
models K ’ and K ”, both being copies of K , only with K ’ having k  ϕ
and K ” having k  ψ.

• If a node k 1 ϕ→ ψ in a Kripke model K , then this is followed by a Kripke
model K ’, which is a copy of K , except for a new node k′ < k  ϕ and
k′ 1 ψ. For all k′′ 4 k′ if k′′  χ→ ξ that formula is reactivated again.

For IQC the completeness can be proven in a similar way as for IPC. First
of all the saturation used in the proof for the completeness of IPC needs to be
extended.
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Definition Let Γ be a theory (set of formulae) and C be a possibly infinite set of
elements {c0, c1, . . . }. Then Γ is C-saturated if:

• if Γ ` ϕ then ϕ ∈ Γ

• if ϕ ∨ ψ ∈ Γ then either ϕ ∈ Γ or ψ ∈ Γ

• if ∃xϕ(x) ∈ Γ then for a c ∈ C ϕ(c) ∈ Γ

Theorem 10 Let Γ be a theory in the language L , ϕ be a formula in L and Γ 0 ϕ.
Let C be a set of elements not in L , and L (C) be the language L extended with
C. Then there is a theory Γ′ ⊃ Γ in L (C) which is C-saturated.

Proof The method will be roughly the same as the method described in the proof
of theorem 8. The main difference is now that the first formula in ϕ ∈ Γk−1 for
which

• ϕ ≡ ψ ∨ χ and ϕ < Γk−1 and ψ < Γk−1, or

• ϕ ≡ ∃xψ(x) and there is no c ∈ C for which ψ(c) ∈ Γk−1

is taken to calculate Γk, taking in the last case a ci ∈ C that is not yet used and
adding ψ(ci) to Γk. ♥

Definition Let Γ be a theory in L , and let C0,C1, . . . be infinitely many infinite

disjoint sets of elements not occurring in L . Let a set C∗n be the set
n⋃

i=0

Ci. For Γ

we define the canonical model K as follows.

K = 〈K. 4,D,〉

where

• K is the set of nodes, having k0 ∈ K, with Γ0 is the C∗0-saturation with
respect to Γ and k0  Γ0. Furthermore if there is a node k ∈ K  Γi where
Γi is C∗n-saturated, then for all Γ j ⊃ Γi where Γ j is C∗n+1-saturated, there is a
node k′  Γ j.

• For the k and k′ described above, kS k′ and 4 being the transitive reflexive
closure over S .

• If a k is C∗n-saturated, then D(k) is D(L ) ∪C∗n.
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• If k  Γ then for all formulae ϕ ∈ Γ(k  ϕ).

Theorem 11 Kripke models for IQC are complete, that is Γ ` ϕ iff for all nodes
on all Kripke models for IQC Γ  ϕ.

Proof Let Γ be a C-saturated theory. Suppose Γ  ϕ. Now we construct the
canonical model for Γ and prove that Γ ` ϕ. This we will do by induction on the
length of ϕ.

• For atomic formulae this follows immediate because of the C-saturation.

• Suppose it is already proven that Γ ` ϕ ⇔ Γ  ϕ and Γ ` ψ ⇔ Γ  ψ. Then
(Γ ` ϕ ∧ ψ)⇔ (Γ ` ϕ and Γ ` ψ)⇔ (Γ  ϕ and Γ  ψ)⇔ (Γ  ϕ ∧ ψ).

• Suppose it is already proven that Γ ` ϕ ⇔ Γ  ϕ and Γ ` ψ ⇔ Γ  ψ. Then
(Γ ` ϕ ∨ ψ)⇔ (Γ ` ϕ or Γ ` ψ)⇔ (Γ  ϕ or Γ  ψ)⇔ (Γ  ϕ ∨ ψ).

• Suppose Γ  ϕ→ ψ and Γ 0 ϕ→ ψ. Then Γ∪{ϕ} 0 ψ, so by induction there
is a node Γ′ ⊇ Γ for which Γ′  ϕ but Γ′ 1 ψ. This contradicts Γ  ϕ → ψ,
therefore Γ ` ϕ→ ψ.

• Since ¬ϕ ≡ ϕ→ ⊥ this is proven above.

• Let Γ  ∃xϕ(x), then by the C-saturation of Γ there is a c ∈ C(Γ  ϕ(c))
from which follows, again by saturation ϕ(c) ∈ Γ. Therefore Γ ` ϕ(c) and
Γ ` ∃xϕ(x).

• Let Γ be a saturated theory in the language L and Γ  ∀xϕ(x). Suppose
Γ 0 ∀xϕ(x), then there is a language L (C) with a c ∈ C and a Γ′ ⊇ Γ 0 ϕ(c),
with Γ′ is C-saturated. Then Γ′ 1 ϕ(c) and therefore Γ′ 1 ∀xϕ(x), which
contradicts Γ  ∀xϕ(x). Therefore Γ ` ∀xϕ(x).

For any formula ϕ for which Γ  ϕ it is the case that Γ ` ϕ. ♥



Chapter 3

Beth models

When building models to evaluate Intuitionistic Logic Kripke models are not the
only tools to our disposal.

After Heyting and Kolmogorov created the BHK-interpretation of Intuition-
ism, stating that the statement A was the same as proving A in the early 1930’s
there was a gap of semantics. The simple semantics that was used in classical
logic could not be matched by any Intuitionistic equivalent. In 1945 the first true
semantics was created by S.C. Kleene.

One year later E.W. Beth was appointed as the first Dutch professor of logic.
A year after that Beth published a paper titled “Semantic Considerations on In-
tuitonistc Semantics”. In it Beth underlines the notion of a spread as a critical
notion. But only as late as 1955 Beth presented a sketch of what later became the
Beth models n a lecture he gave in Paris. He continued developing his semantics
trying to get a contructive completeness proof.

The choice of the use of trees was made by Beth because of their relation to
tableaux. The use of choice sequences and barring are introduced. In 1956 Beth
published a paper with a correct validity proof of his semantics and two proofs
of completeness, one classical and one constructive. The classical proof is easily
accepted but the constructive proof is not received as good. It was criticised as
being unintelligible or flawed. Beth did not attent to those problems. But Beths
method still maintained succesfull. [9]

For the Kripke’s semantics for Intuitionistic Logic that are explored in the
preceding chapter we still had to wait untill 1963 and are heavily influenced by
Beth semantics. Beth models also use partially ordered nodes, with formulae and
possibly domains of elements assigned to them. The interpretation however is
slightly different from Kripke models. The major difference lies in the fact that

20
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in a node in Beth models a formula is considered true if under all possible future
scenarios it will eventually become true.

What this means is that for example if we have a way of deciding in finite time
if A or B is the case and we know that one of them will be the case, we can say
A∨ B. In a Kripke model this is not allowed because we need to know either A or
B at a node in order for A ∨ B to be true at that node. However, Beth models and
Kripke models are equally strong when it comes to expressing logical formulae.
For example, for the statement A ∨ ¬A to be true, it is needed to have a way of
deciding between those two, in finite time.

Let’s for example take the very basic Kripke model:

0

1 P

(3.1)

We can read this as a Beth model (the visualisation of Beth models is similar to
Kripke models). In 1 P is true, just like in a Kripke model. But in 0 it is known
that eventually we will find that P is true, therefore in 0 P must also be the case.
So while (3.1) is a good Kripke counter model for (P ∨ ¬P), it is not a good
Beth counter model. In Beth’s view the notion of a spread was a fundamental
ingredient.

Definition A spread is a tree where every node has at least one successor.

This has to do with the notion of an absolutely free choice sequence or a.f.c.s.
An a.f.c.s. is a sequence chosen from a certain spread where the only restrictions
on that sequence can be the restrictions defining the spread.

Now we know what not to expect from Beth models, let’s build a countermodel
for P ∨ ¬P:

P

P P

P P

P P

(3.2)
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(3.2) is a infinite Beth model, where, as long as P is not yet known, one can always
find P and if P is known, one can never ‘unknow’ it. But, at no point, when P is
not known, one is forced to know P. One can always stay ignorant about P, or
there is a a.f.c.s. where P will never be known.

Before we come up with a formal definition for Beth models we first need
some notations and definitions.

A path is one possible way of moving through a model, that can only start at a
node with no predecessors and can only end at a node with no successors.

Definition A path α in a frame 〈K,4〉 (we will henceforth refer to paths with
lowercase Greek letters) is an ordered set 〈k1, k2, . . . , kn〉 (possibly infinite, like
〈k1, k2, . . . 〉 or 〈. . . , kn−1, kn, kn+1, . . . 〉) of nodes from K for which:

• ∀x, y ∈ α if z ∈ K and x 4 z 4 y then z ∈ α

• ∀x ∈ α if ∃y ∈ K(y ≺ x) then ∃z ∈ α(z ≺ x)

• ∀x ∈ α if ∃y ∈ K(y � x) then ∃z ∈ α(z � x)

• ∀x, y ∈ α either x 4 y or y 4 x

• ∀x, y ∈ α if x ≺ y then y comes after x in α, i.e. α = 〈. . . , x, . . . , y, . . . 〉

A path in a rooted tree is a set of nodes 〈k1, . . . , kn〉 where k1 is the root node and
kn is a leaf. If the path is infinite, no last node exists. For every node k in the path,
all nodes predecessing it, are also in the path before k, given that the model is a
tree.

If a node k occurs in a path α, or in other words α goes through k we write this
as k ∈ α or α 3 k.

Now for a formal definition of Beth models, let’s start with Beth models for
propositional logic:

Definition A Beth model B for propositional logic is a tupel 〈K,4,〉, where

1. 〈K,4〉 is a frame,

2.  is a relation between a node k and a formula, and is for atomic formula P
defined such that:

• k  P if ∀α 3 k(∃k′ ∈ α(k′  P))

For compound formulae, the -relation is defined such that:
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• k  ϕ ∧ ψ iff k  ϕ and k  ψ

• k  ϕ ∨ ψ iff ∀α 3 k(∃k′ ∈ α(k′  ϕ or k′  ψ))

• k  ϕ→ ψ iff ∀k′ < k(if k′  ϕ then k′  ψ)

• k  ¬ϕ iff ∀k′ < k(k′ 1 ϕ)

As with Kripke models, Beth models are easily extended to predicate logic.

Definition A Beth model B for predicate logic is a tupel 〈K,4,D,〉, where

1. 〈K,4〉 is a frame,

2. D is the domain function that assigns to every node k a non-empty set D(k)
of elements such that ∀k, k′ ∈ K(k 4 k′ → D(k) ⊆ D(k′)), i.e. D is upwards
closed

3.  is a relation between a node k and a formula, and is for prime formula
Rn(d1, . . . , dn) defined such that:

• k  Rn(d1, . . . , dn) if ∀α 3 k(∃k′ ∈ α(k′  Rn(d1, . . . , dn)))

• k  Rn(d1, . . . , dn)⇒ di ∈ D(k) for 1 ≤ i ≤ n

For compound formulae, the -relation is defined such that:

• k  ϕ ∧ ψ iff k  ϕ and k  ψ

• k  ϕ ∨ ψ iff ∀α 3 k(∃k′ ∈ α(k′  ϕ or k′  ψ))

• k  ϕ→ ψ iff ∀k′ < k(if k′  ϕ then k′  ψ)

• k  ¬ϕ iff ∀k′ < k(k′ 1 ϕ)

• k  ∀x(ϕ(x)) iff ∀k′ < k(∀d ∈ D(k′)(ϕ(d)))

• k  ∃x(ϕ(x)) iff ∀α 3 k(∃k′ ∈ α(∃d ∈ D(k′)(for which it is the case that k′ 
ϕ(d)))

Rule (1) defines the frame, rule (2) assigns to the nodes a set of known elements
ensuring monotocity, rule (3) assigns to each node a set of predicates, making sure
that no things are known about unknown objects. Also (3) ensures that if a prime
formula bars node k, it is true in k.
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Definition A set of nodes ~k bars a node k iff each path α through k has at least
one node in ~k. If all nodes in ~k force P and ~k bars k, we say P bars k.

So if we take the set of ~k = {k ∈ K|k  P} then ~k bars k iff from k one will
eventually end up in ~k. In a Beth model, this means that due to (3) k  P, for we
will eventually but without a doubt find out that P is the case.

The rules for the connectives can be read to mean the following:

• ϕ ∧ ψ is true in k, if ϕ is true in k and ψ is true in k

• ϕ ∨ ψ is true in k, if {k|k  ϕ} ∪ {k|k  ψ} bars k, i.e. if eventually we will
find out that ϕ or ψ is true, i.e. for every path through k we will reach a node
k′ in which either ϕ is true or ψ is true

• ϕ → ψ is true in k, if for every node k′ < k it is true that if ϕ is true, then ψ
is also true.

• ¬ϕ is true in k if there is no k′ after k where ϕ is true

• ∀xϕ(x) is true in k if for every node k′ < k and for every d ∈ D(k′) ϕ(d) is
true

• ∃xϕ(x) is true in k if eventually we will come to a node where there is an
element d for which ϕ(d) is true.

If we would like to make a Beth counter model for the drinkers paradox, it
would look something like this.

{a}

{a,b} D(a)

{a,b,c} D(a),D(b) {a,b} D(a)

{a}

{a,b} D(a) {a}

(3.3)

In each node there are two possible successor nodes. To the left is a node that
adds one new element to the domain, and adds for the already known element d
the formula D(d). To the right is the successor node, where no new information is
added.

The rules do not directly state that the -relation is persistent for all formulae.
This is however the case.



CHAPTER 3. BETH MODELS 25

Theorem 12 The -relation is upwards persistent for all formulae.

Proof by induction. For prime formulae the persistency follows by definition.
For comound formulae it follows by induction. We give one induction step as an
example.

Suppose  is persistent for ϕ and ψ and suppose k  ϕ ∨ ψ and k 4 k′. Then k
is barred by {k|k  ϕ} ∪ {k|k  ψ}. Since k′ comes after k it is barred by the same
set. Therefore k′  ϕ ∨ ψ.

The rest is left as an exercise for the reader. ♥

Theorem 13 If a node k is barred by a set of nodes ~k where ∀k ∈ ~k(k  ϕ) then
k  ϕ.

Proof by induction. For prime formulae it follows by definition. For compound
formulae it follows by induction. We give two of the induction steps as an ex-
ample.

Suppose for ϕ and ψ this is already proven. Now suppose a node k is barred
by K where K ≡ {k|k  ϕ ∧ ψ}. Then all nodes in K also force ϕ and ψ. Since K
bars k and for ϕ and ψ it is already proven that barring forces that formula, k  ϕ
and k  ψ. Then k  ϕ ∧ ψ.

Again suppose that for ϕ and ψ it is already proven. Now suppose a node k
is barred by K where K ≡ {k|k  ϕ → ψ}. Now take any node k′ < k. If k′ is a
successor of a node in K or is a node in K, then k  ϕ immediately. If k′ is not in
this group, then it is still barred by K. Now assume that k′  ϕ, then all nodes in
K that are a successor of k′ force ϕ and therefore ψ. This means that k′ is barred
by ψ and by the induction hypothesis, k′  ψ. Thus if k is barred by ϕ → ψ, then
for every node k′ < k if k′  ϕ then k′  ψ, and so k  ϕ→ ψ. ♥

3.1 Completeness for Beth semantics
Theorem 14 Any Beth model is intuitionistically sound, that is if Γ ` ϕ then Γ  ϕ

Proof By induction. Suppose that for ϕ and ψ soundness is proven. Now presume
Γ ` ϕ and Γ ` ψ then Γ ` ϕ ∧ ψ. Since soundness is proven for ϕ and ψ, it is the
case that Γ  ϕ and Γ  ψ. Then by the rule for conjunction on Beth models, it is
the case that Γ  ϕ ∧ ψ. Thus it is also proven for the ϕ ∧ ψ.

The other induction steps are left as an exercise for the reader. ♥
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Theorem 15 Beth models for IQC are complete, that is Γ ` ϕ iff for all nodes on
all Beth models for IQC Γ  ϕ

Proof The left to right implication is proven in theorem 14.
To prove that if for all nodes on all Beth models Γ  ϕ then Γ ` ϕ, we will

prove that Γ 0 ϕ iff there is a countermodel in which there is a node Γ 1 ϕ.
As we will see in section (4.2.1) there is a way of transforming a Kripke model

into a Beth model. If Γ 0 ϕ then as we have proven in the previous chapter there
is a Kripke model K which is a countermodel proving Γ 1 ϕ. Since there is a
transformation from Kripke models to Beth models we can transform K into a
Beth model B, which also proves Γ 1 ϕ. ♥



Chapter 4

Transformations

4.1 Relation between Kripke and Beth models
We can define thruth in Beth models in terms of thruth in Kripke models.

Theorem 16 k B ϕ iff k K ϕ or {k′|k′ B ϕ} bars k

Proof As we have proven in theorem 13, ϕ bars k ⇔ k B ϕ, which proves
the left to right implication. For the other direction it suffices to prove that if
k K ϕ⇒ k B ϕ. This can be done inductively.

• For atomic formulae, the Beth definition of  is twofold. A node must force
an atomic formula if it is forced by a preceding node in exactly the same
way as in a Kripke model, or it is forced by a set of nodes that bar that node.
The former forces that if it holds in a Kripke model, it must hold in a Beth
model.

• For the ∧,→, ∀ and ¬ the rules for the composites are the same in Beth as
in Kripke. As an example we will prove that for ϕ → ψ the induction step
holds. Let’s assume that theorem 16 has been proven for ϕ and ψ. Now
suppose that for a node k in our model k K ϕ → ψ. Then in all nodes
k′ < k it holds that k′ K ψ or k′ 1K ϕ. For all those nodes k′ K ψ it
is already proven that k′ B ψ. For those nodes k′ 1K ϕ it might be the
case that in our B-interpretation k′ B ϕ because of barring. If that is the
case then k′ is barred by a set of nodes ~k that forces ϕ, but not from barring
themselves. For those nodes k′′ ∈ ~k it then holds that k′′ K ϕ and since

27
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they are successors of k this leads to k′′ K ψ. This means that k′′ B ψ
and by the barring rule k′ B ψ.

The proof for the other connectives follows along the same line.

• For the ∨ and ∃ the Kripke definition is made in such a way, that for a
formula to be true in k, k itself would be enough to bar it, in order for the
formula in the Beth interpretation to be true. For example, k K ϕ ∨ ψ iff
k K ϕ or k K ψ, both cases being enough to let k be the node to bar itself
in order to let k B ϕ ∨ ψ

♥

In a way, a Kripke model must force a formula, if it were true in the past and
a Beth model must force a formula, if it were true in the past, or it will certainly
be true somewhere in the future.

Another way to define the difference between Beth models and Kripke models
is as follows:

Theorem 17 A Kripke model can be seen as a Beth model where a path can also
stay in a node, i.e. not every node in a path has to be the successor of the last
node, but can also be the same as the last node.

Proof All rules for Beth models lead to the rules of Kripke models when every
node can be seen as its own successor in a path. E.g. for ϕ ∨ ψ the barring rule
in Beth models implies that {k|k  ϕ} ∪ {k|k  ψ} bars k. Now there is a path α
possible that stays in k indefinitely. In order to bar k, it must be the case that a
node in α forces either ϕ or ψ. This must mean that k must force either ϕ or ψ, and
therefore force it in precisely those cases that a Kripke model forces it. For all the
other connectives the same reasoning can be applied. ♥

So in other words, a Kripke model is a reflexive Beth model, a Beth model
where you can get ‘stuck’ in a node.

4.2 Transformation from Kripke to Beth

4.2.1 The simple transformation
Taking theorem 17 we can see that taking a Kripke model, we can easily read it
as a Beth model, by applying the Beth rules to it, but defining a path in such a
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way that it can stay in a node. For example we can take model (2.1) and add the
reflexive property.

0

1 P

(4.1)

We can unfold this structure into a tree, by taking each reflexive node, copying
that node, including successors and relations on them, and adding it as a child.
This will result in the Beth model (3.2).

Formally we can define this procedure as follows: take a Kripke model K =

〈K,4,D,〉. We will transform it to a Beth model B = 〈B,4′,D′,′〉.
All nodes in K will be uniquely labeled. We will define B as follows.

• B is defined recursively.

– For all k ∈ K, if k has no predecessors 〈k〉 ∈ B

– If 〈k1, k2, . . . , kn〉 is in B, then 〈k1, k2, . . . , kn, kn〉 is also in B

– For 〈k1, k2, . . . , kn〉 ∈ B and km ∈ K, if km is an immediate successor of
kn, then 〈k1, k2, . . . , kn, km〉 is also in B

• The 4′-relation is defined as follows: for ~ka = 〈k1, . . . , kn−1〉 and ~kb =

〈k1, . . . , kn−1, kn〉, ~kaS~kb, with S being the immediate successor function. 4′

is the transitive, reflexive closure over S .

• D′(k) is a function that maps elements k ∈ B onto d ∈ D′ as follows: if
〈k1, . . . , kn〉 is a node in B, then D′(〈k1, . . . , kn〉) = D(kn)

• ’ is a predicate that is defined as follows: if 〈k1, . . . , kn〉 is an node in B,
then if kn  φ then 〈k1, . . . , kn〉 

′ φ

4.2.2 The transformation to a constant domain
Definition A Kripke or Beth model has a constant domain (or CD) if each node
has the same domain assigned to it, i.e. D(k) ≡ D(k′) for each k and k′ in K.

It is not always possible to create a counter model for a certain formula in Kripke
semantics using a constant domain. For example, the a countermodel for the for-
mula ∀x(ϕ(x) ∨ ψ) → (∀xϕ(x) ∨ ψ) is not possible with a Kripke model with
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constant domain, for if a node k would force ∀x(ϕ(x) ∨ phi) either for all the ele-
ments x it would have to be the case that k forces ϕ(x), or it must be the case that k
forces ψ, to make the statement true for each element x for which k doesn’t force
ϕ(k). A Kripke countermodel with a non-constant domain could look something
like this:

ϕ(a) {a}

ϕ(a),ψ {a, b}

(4.2)

The class of Beth models with a CD however is still complete. Kripke himself
deviced a manner to transform a Kripke model K into a Beth model B in such
a way that B has a constant domain D . D is the set of all natural numbers N,
and there is a mapping from each node in the Beth model to the elements in the
Kripke model.

Formally the transformation is as follows. Given is a Kripke model K =

〈K,4,D,〉. We’ll define the Beth model B as follows: B = 〈B,4′,D′,′〉. B
and 4′ are defined as before:

• B is defined as in (4.2.1).

• The 4′-relation is defined as in (4.2.1).

We split up the domain N into infinitely many infinite subsets N1,N2, . . . in
such a way that:

• ∀Ni,N j(i , j → Ni ∩ N j = ∅), i.e. no two distinct subsets have elements in
common

• N =
⋃

(Ni where i ∈ N), i.e. every element of N is in a subset

• M j =
⋃
i≤ j

Ni

Let the length of a node ~k = 〈k1, k2, . . . , kn〉 be lth(~k) = n. For each node
~k = 〈k1, k2, . . . , kn〉 in B we’ll define the function φ~k(x) in such a way that φ~k maps
for each ki in ~k the subset Ni onto D(ki). This is done in such a way, that for
~k = 〈k1, k2, . . . kn〉 and ~k′ = 〈k1, k2, . . . , kn, kn+1〉 it is the case that ψ~k(m) = ψ~k′(m)
for all m ∈ Mn. For a node ~k all m < Mlth(~k) do not map to any nodes in D.
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We define the ’-relation for atomic formulae on a node ~k = 〈k1, . . . , kn〉 as
follows:

~k ′ P(d1, d2, . . . , dm) if kn  P(φ~k(d1), φ~k(d2), . . . , φ~k(dm))

Now for the countermodel for ∀x(ϕ(x) ∨ ψ) → (∀xϕ(x) ∨ ψ), we take the
Kripke countermodel (4.2) and use the above rewrite method. First of the disjunct
subsets N will be defined by taking for N1 all the odd numbers, and for each other
subset Ni, take all elements from Ni−1 and multiply them by 2.1

• N1 = {1, 3, 5, 7, . . . }

• N2 = {2, 6, 10, 14, . . . }

• N3 = {4, 12, 20, 28, . . . }

• N4 = {8, 24, 40, 56, . . . }

• etc.

In the model (4.2) the root will be called 0, and the child node 1. The Beth model
will look like this:

〈0〉

〈0, 1〉

〈0, 1, 1〉

〈0, 0〉

〈0, 0, 1〉 〈0, 0, 0〉

(4.3)

Each node will of course have N at its domain. For a node ~k = 〈k1, k2, . . . , kn〉:

• if ki is 0, φ~k maps all elements from Ni to a.

• if ki is 1, φ~k maps the elements from Ni alternating to a and b.

If φ~k(m) maps m to a, then ~k  ϕ(m). If ~k contains 1, then ~k  ψ.
Now we verify if it is a countermodel for ∀x(ϕ(x) ∨ ψ)→ (∀xϕ(x) ∨ ψ). First

of all, to verify that ∀x(ϕ(x) ∨ ψ), take an element n ∈ N. By definition there
is a Ni for which n ∈ Ni. This means that at each node 〈k1, . . . , ki〉 (thus having

1There are of course millions of easy ways of taking infinitely many infinite disjunct subsets
from N, but I like this one.
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length i) it is either the case that either ki = 0 or ki = 1. In the former case n is
mapped to a and thus ϕ(n), in the latter ψ is the case. In either way, ϕ(n) ∨ ψ.
Since the set of all nodes at height i bar the root node, ϕ(n) ∨ ψ is true in the root
node for any n. Therefore the antecedent is true. Now for the consequent; there is
a path 〈0, 0, 0, . . . 〉, where a 1 is never encountered. In that path ψ will never be
the case, and so ψ does not bar the root node, so the root node does not force ψ.
Furthermore, in the node 〈0, 1〉 at least one element n is mapped to b (which was
not mapped to any element in D in the root node), and it will be mapped to b in
all following nodes. The formula ϕ(n) will therefore never be true after that node.
Again, the root node does not force ϕ(n) and consequently does not force ∀xϕ(x).
Since it forces neither ψ, nor ∀xϕ(x) it does not force ∀xϕ(x) ∨ ψ, the consequent
is not forced and the implication is not true.

Theorem 18 Let K be a Kripke model, and B be a Beth model that is the result
of Kripke’s own transformation described above. Let ~k = 〈k1, . . . , kn〉 be a node in
B. Then for all e where φ~k(e) maps to an element in D(kn)

~k ′ ϕ(e1, . . . , em)⇔ kn  ϕ(φ~k(e1), . . . , φ~k(em))

Proof For atomic formulae the right to left implication is by definition. There are
only three ways which can make a node n force an atomic formula ϕ in our Beth
model. Two of them come from the behaviour of a Beth model, namely if a node
before n forces ϕ, and if a set of nodes that force ϕ bar n. The third way arises
from the transformation itself.

To prove the left to right implication it suffices to prove that the Beth model be-
haviour does not matter. For predecessors, if given a node~k = 〈k0, . . . , kn, . . . , km〉 ∈

B and a predecessor ~k′ = 〈k0, . . . , kn〉 ∈ B that forces P(e1, . . . , eq), it must be the
case that kn  P(φ~k′(e1), . . . , φ~k′(eq). kn is either a predecessor of km or it is the
same node. Therefore kn  P(φ~k′(e1), . . . , φ~k′(eq). φ~k maps all elements e1, . . . , eq

from the formula to exactly the same elements as φ~k′ by definition. Therefore ~k
forces P(e1, . . . , eq) too.

It is easy to see that barring does not matter either, since for a node ~k =

〈k0, . . . , kn〉 there is a path consisting of all the nodes 〈k0, . . . , kn . . . , kn〉. All nodes
in this path will force the same formulae, for the elements for which φ~k.

For composite formulae the theorem is proven by induction. For example for
a formula ∀xϕ(x) it is proven as follows: suppose the theorem is proven for a
formula ϕ(x). Let kn ∈ K  ∀xϕ(x) and let ~k = 〈k0, . . . , kn〉. Now let e be an
element in D′(~k). If e ∈ Mn then φ~k(e) maps to an element e′ ∈ D(kn). Since
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kn  ∀xϕ(x) it follows that kn  ϕ(e′). Therefore ~k ′ ϕ(e). If however e < Mn

then φ~k(e) does not map to an element in D(kn). However there is a height m at
which e ∈ Mn. For each node ~k′ = 〈k1, . . . , km〉 at that height e is mapped to
an element e′ ∈ D(km). Since km < kn it follows that km  ϕ(e′) and ~k′  ϕe.
Therefore ϕ(e) bars ~k. We have proven that for any e ∈ D′(~k), ϕ(e) holds, thus
kn  ∀xϕ(x)⇒ ~k ′ ∀xϕ(x).

Now let kn ∈ K, let ~k = 〈k1, . . . , kn〉 ∈ B and let ~k ′ ∀xϕ(x). Take an element
e ∈ D′(~k). If φ~k(e) maps to an element e′ ∈ D(kn), then ~k ′ ϕ(e) can only be the
case if kn  ϕ(e′). If φ~k(e) does not map to an element e′ ∈ D(kn), then ~k  ϕ(e)
because it is barred. There is a m for which e ∈ Nm. For all nodes ~k′ = 〈k0, . . . , km〉

at height m, e is mapped to an element in km. For that node the same reasoning
follows. ~k′ ′ ϕ(e) can only be if km  ϕ(φ~k′(e)). So for each element e′ in
each new node km that can possibly come up after kn it is proven that km  ϕ(e′).
Therefore kn  ∀xϕ(x). This proves that ~k ′ ∀xϕ(x)⇔ kn  ∀xϕ(x).

The other steps are left as an exercise for the reader. ♥

4.3 Transformation from Beth to Kripke
While a transformation from Kripke models to Beth models is pretty easy, the
converse is not. As can be seen in Lòpez-Escobar (1981) [6] it is not even possible
to make a natural transformation from Beth models to Kripke models. However,
for some Beth models it is possible to transform them into Kripke models.

Definition A propositional Beth model is strong if

• for all nodes k it is the case that if k  ϕ ∨ ψ, then k  ϕ or k  ψ.

• for all nodes k it is the case that if k  ∃xϕ(x), then there is an element
e ∈ D(k) for which k  ϕ(e)

In such a strong Beth model a transformation is automatic.
Each node in this Beth model is saturated and therefore forces exactly the same

formulae as when it is interpreted as a Kripke model.
Even more, when transforming from Kripke to Beth using the simple method,

when the resulting Beth model is interpreted as a Kripke model, it is equivalent to
the original Kripke model.

Theorem 19 Given a Kripke model K and a Beth model B, which is the simple
transformation of K . Then given a node kn K ϕ iff 〈k0, k1, . . . , kn〉 B ϕ.
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Proof Take a node kn in K and b ≡ 〈k0, k1, . . . , kn〉 in B. By definition both nodes
force the same atomic formulae. That the nodes force the rest of the formulae
follows by induction on the length of the formula:

• Suppose both kn and b force ϕ and ψ, then both kn as b force ϕ ∧ ψ by the
definition of Beth and Kripke models. The inverse (if kn and b both do not
force both formulae ϕ and ψ) follows along the same lines.

• Suppose both kn and b force ϕ or ψ, then both kn and b force ϕ ∨ ψ by the
definition of Beth and Kripke models. Suppose kn and b both do not force
ϕ nor ψ. Then kn does not force ϕ ∨ ψ. For b there is a path through b
that goes through all nodes 〈k0, k1, . . . , kn, . . . , kn〉. Since we could prove by
induction that b does not force ϕ and ψ we can prove the same for all nodes
〈k0, k1, . . . , kn, . . . , kn〉. Therefore there is a path through b in which ϕ ∨ ψ
meaning that b is not barred by ϕ ∨ ψ and thus b does not force ϕ ∨ ψ.

• Suppose that for all nodes kn in K and for all associated nodes 〈k0, . . . , kn〉

in B it is proven that kn  ϕ iff 〈k0, . . . , kn〉  ϕ and that kn  ψ iff
〈k0, . . . , kn〉  ψ. Now suppose a node kn in K forces ϕ → ψ. Then of
course all nodes km < kn  ϕ → ψ. So all nodes 〈k0, . . . , kn, . . . , km〉 force
ϕ → ψ and therefore 〈k0, . . . , kn〉  ϕ → ψ. The proof that 〈k0, . . . , kn〉 
ϕ→ ψ then kn  ϕ→ ψ follows along the same lines.

♥

This means that if a Kripke countermodel is transformed into a Beth coun-
termodel, this model can then be interpreted as a Kripke model which is again a
countermodel for the same formula.

However, if the model is not strong, then there is at least one node that cannot
exist in a Kripke model, since all nodes in a Kripke model need to be saturated.



Chapter 5

Frame properties

5.1 General frame properties
Although frames are defined as nodes with a partial order defined over them, they
are commonly seen as trees. We will now look at several types of non-tree frames
and how to rewrite them to trees.

Definition Rewriting a frame F to another frame F ’ is constructing F ’ in such
a way that for every model M on F , there can be constructed a model M′ on F ’
in such a way that for every node k ∈ M there is a k′ ∈ M′, where k  ϕ⇔ k′  ϕ.

The simplest type of frames to rewrite is the type where there is only one root.
Consider for example the following frame F :

0

1

3

5 6

2

4

(5.1)

Every path in F starts at 0. We can simply construct a tree, by taking every
node with multiple immediate predecessors and copying that node, and all it’s
successors (including successor relations). For (5.1) this wil result in the following

35
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frame F ’:

0

1

3

5 6

2

3’

5’ 6’

4

(5.2)

Definition Splitting is the rewriting step that takes a frame F ≡ 〈K,4〉, and two
nodes ki, k j ∈ K, that have the same immediate successor ks and rewrites it to
F ′ ≡ 〈K′,4′〉, where:

• For all kn ∈ K where kn 6< ks there is a k′n ∈ K′.

• For all km ∈ K where km < ks there are two nodes k′m,i, k
′
j,m ∈ K′

• If for kn, km ∈ K where kn 6< ks and km 6< ks it is the case that knS km then for
the corresponding nodes k′n, k

′
m ∈ K′ it is the case that k′nS k′m.

• If for kn, km ∈ K where kn < ks and km < ks it is the case that knS km then
for the corresponding nodes k′n,i, k

′
m,i, kn, j, k′m, j ∈ K′ it is the case that k′n,iS k′m,i

and k′n, jS k′m, j.

• kiS ks,i and k jS ks, j.

Consider the following frame:

0

1 2

3

4

(5.3)

To rewrite a frame consisting of multiple trees (i.e. a forest) into a tree, one simply
adds one node, which is the immediate predecessor of the root nodes of the all the
trees. The new root node shall only be forcing those atomic formulae that all its
direct successors force.

ω

0

1 2

3

4

(5.4)
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Now consider the next frame:

0

2

3 4

1

(5.5)

The same tactics as in the case of the forest can be applied to this frame, adding
a root node to the frame, making it the direct predecessor of all nodes without
predecessors. This creates a frame which has one root node, and for which we
already have a method of creating a tree.

ω

0

2

3 4

1

2’

3’ 4’

(5.6)

Definition Rerooting is the rewriting step that takes a frame F ≡ 〈K,4〉 where
there are no nodes k that have no predecessors k′ without predecessors, and re-
writes it to F ′ ≡ 〈K′,4′〉 where:

• For all nodes kn ∈ K there is a node k′n ∈ K′.

• If for kn, km ∈ K it is the case that knS km, then for the corresponding nodes
k′n, k

′
m ∈ K′ it is the case that k′nS k′m.

• There is a node ω in K′ that does not correspond to any k ∈ K.

• If kn ∈ K has no predecessors, then for the corresponding node k′n ∈ K′ it is
the case that ωS k′n

We can use this stacked applying of strategies to rewrite the most common
frames.
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Theorem 20 Given that a frame F contains no infinite descending chains we can
rewrite it to a tree T using only splitting and rerooting.

Proof If F contains more than one node that has no predecessors, to create T
we first reroot the frame. After that we will split every point in the tree where two
nodes have the same immediate successor. We will do this row1 by row starting
at the first row above ω. The splits will happen on all nodes in that row that have
multiple predecessors, and will be executed simultaneously.

Rerooting makes sure that there is only one root node, and the splitting after
that does not add new root nodes to the model. Furthermore, it is easy to see that
every node in the frame that has multiple immediate predecessors is split at some
point so there are no two nodes k and k′ anymore for which there is a third node
k′′ with k 4 k′′ and k′ 4 k′′ but neither k 4 k′ nor k′ 4 k. ♥

A more problematic frame is a frame that does have infinite descending chains.
On a frame like this the method above does not suffice to make it into a tree. An
example of this is the following:

k − 2

k

k + 1 k + 2

k − 1

(5.7)

There are no nodes without predecessors. We can of course split the frame in
two, but end up with two unrooted trees, which cannot be reconciled in the ways
described above.

Frames like this will not be discussed in the sections to come. The following
will therefore only be for completeness sake and is not necessary for later chapters.

To rewrite this frame we’ll however add a new root node again. For each node
in the frame we copy that node including all successors, and make the root node

1A row here will be defined the set of all nodes that can be reached in n steps from ω



CHAPTER 5. FRAME PROPERTIES 39

its immediate predecessor.

ω

k − 2

k

k + 1 k + 2

k − 1

k′

k + 1′ k + 2′

k′′

k + 1′′ k + 2′′

k + 1′′′ k + 2′′′

(5.8)

This strategy can be used for any frame, but might unnecessarily lead to infinitely
branching trees (for example with frames with infinitely many nodes, which are
exactly those frames for which we want to use this method). But this shows that
all frames can be rewritten into trees.

Definition Grafting is the rewriting method that takes a frame F ≡ 〈K,4〉 and
rewrites it into a tree T R ≡ 〈KR,4R〉 using the following method.

KR will at least contain the node ω, corresponding to an empty sequence. All
other nodes will correspond to subpaths in F , that is a node ~k ∈ KR is a finite
sequence 〈k0, k1, . . . , kn〉 of nodes in K, such that

• if ki and k j are in ~k then ki 4 k j or k j 4 ki

• if ki and k j are in ~k then all nodes km for which ki 4 km 4 k j are also in ~k

Then let the 4R relation be the following relation: if ~ki is prefix of ~k j then
~ki 4

R ~k j.

This method can with a small adjustment be used to rewrite dense models, but
those models are beyond the scope of this thesis.

5.2 Frame properties of Kripke models
N.B. In this and following sections we’ll restrict ourselves to frames
that model partial orders that have no infinite descending chains.

Definition If any model on a certain frame F forces a formula ϕ – that is to say
any node in the model forces ϕ – then F is said to force ϕ. In such a case ϕ is a
frame property of F .
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For example, the simplest frame that exists is of course the following:

0 (5.9)

A model on a frame with only one node is exactly like a classical model, because
everything that is not yet true now will never be true. This means that any model
on (5.9) naturally forces ¬¬ϕ → ϕ. The entire idea of Kripke and Beth models
stems from an extension of the classical notion of counter models. It is easy to
see that every maximal node (i.e. a node without a successor) in a Kripke model
behaves like a classical node.

Definition We will call a node k in a model classical, if every formula that can be
classically derived from the formulae in k, is also true in k, or Γ ⊆ k `c ϕ⇒ k  ϕ.
A model K is classical if all nodes in K are classical. A frame is classical if
all possible models on that frame are classical. This definition extends to Beth
models as well.

Consider the following frame:

0

1

2

(5.10)

Theorem 21 A Kripke model K on a frame in which every node has only one
direct successor forces (ϕ→ ψ) ∨ (ψ→ ϕ).

Proof If there is a node k ∈ K that forces ϕ but not ψ, then every node forces
ψ → ϕ, for there cannot be a node k′ anymore where ϕ is not the case and ψ is
the case, since the former demands that k′ ≺ k and the latter demands that k′ � k.
If such a node does not exists, every node forces ϕ → ψ. Since for any model on
this frame it is known if such a node exists, it is also known which one is the case.
Therefore K  (ϕ→ ψ) ∨ (ψ→ ϕ). ♥

Definition Gödel-Dummett Logic or LC is intuitionistic logic extended with the
axiom (ϕ→ ψ) ∨ (ψ→ ϕ).
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Definition A height n tree is a tree, for which the maximum distance between
the root and a node is n.

Theorem 22 A Kripke model on a height 1 tree, forces ϕ ∨ (ϕ→ (ψ ∨ ¬ψ)).

Proof The root node will be called k. Every node that is not k is a maximal node,
and therefore classical, thus forcing ψ∨¬ψ. If k  ϕ then k  ϕ∨ (ϕ→ (ψ∨¬ψ)).
If not then since all the child nodes force ψ∨¬ψ and k does not force ϕ, all nodes
force ϕ→ (ψ ∨ ¬ψ), and therefore ϕ ∨ (ϕ→ (ψ ∨ ¬ψ)). ♥

This theorem can be extended for any height n tree.

Theorem 23 For a height n tree T , a formula ϕ can be constructed for which
T  ϕ, but 0i ϕ, i.e. no height n tree is intuitionistically complete.

Proof Given is a height n tree T . To construct a formula ϕ with the desired prop-
erties take the atomic formulae P1, P2, . . . , Pn. All nodes at height n are maximal
nodes, therefore all nodes at height n force Pn ∨¬Pn. Let’s call this ϕn. Following
theorem 22, it is clear that all nodes at height n−1 force ϕn−1 = Pn−1∨(Pn−1 → ϕn).
For all nodes at height n − 2 it is the case that all their successors force ϕn−1, thus
they themself force ϕn−2 = Pn−2 ∨ (Pn−2 → ϕn−1). Inductively we can define
ϕ1 = P1 ∨ (P1 → (P2 ∨ (P2 → (. . . (Pn ∨ ¬Pn) . . . )))). There is no Kripke model
K on T that is a countermodel for ϕ1, so T  ϕ1. But on a height n + 1 tree this
countermodel can easily be constructed, thus 0i ϕ1. ♥

We can say that no finite Kripke frame is complete. However this is differ-
ent from the claim that there are intuitionistically invalid formulae for which no
Kripke countermodel with a finite frame can be constructed.

Definition The logic on trees of a maximum depth n is called a Logic of Bounded
Depth n, or BDn

Definition A beehive is a frame in which:

• There is exactly one node with no predecessors,

• Every node has exactly two immediate succesors,

• If two nodes have a common immediate predecessor, they also have a com-
mon immediate successor.
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A beehive looks as follows:

(5.11)

Observe, every two nodes have at least one common successor.

Theorem 24 A Kripke model on a beehive forces ¬ϕ ∨ ¬¬ϕ.

Proof For each two nodes, there is a third node that is a successor of both. If
there are no nodes that force ϕ we have ¬ϕ and therefore ¬ϕ ∨ ¬¬ϕ. In any other
case we have a node that forces ϕ. In that case every other node has a common
successor with that node, which has to force ϕ. So no node can force ¬ϕ, which
leads to every node forcing ¬¬ϕ and which implies ¬ϕ ∨ ¬¬ϕ. ♥

Definition De Morgan Logic or KC is Intuitionistic Logic extended with the
axiom ¬ϕ ∨ ¬¬ϕ. This axioma is also known as the Law of Weak Excluded
Middle or WEM.

5.3 Frame properties of Beth models
Theorem 25 If a frame is finite, any Beth model on that frame is classical.

Proof To prove that a Beth model is classical it suffices to prove that in every
node P ∨ ¬P is true. It is easy to see that in a maximal node this is the case, for
either P is the case in that node, or P will never be the case, being the maximal
node. So all maximal nodes have P ∨ ¬P. Since the model is finite, there can be
no infinite paths. Thus every path will end in a maximal node. Therefore every
node is barred by the set of maximal nodes and P ∨ ¬P is true in every node. ♥

Theorem 26 If a node k has only one immediate successor k′, then k  ϕ⇔ k′ 
ϕ.
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Proof Trivial, k 4 k′, so k  ϕ⇒ k′  ϕ and {k′} bars k, so k′  ϕ⇒ k  ϕ. ♥

Theorem 27 A Beth model in which each node has at most one immediate suc-
cessor is classical.

Proof Again, to prove that a Beth model B is classical, it suffices to prove that in
every node P∨¬P is true. If B is finite, we have already proven that it is classical.
We only need to prove that it is classical for infinite models. We will first presume
that B only has one path (i.e. that it is a unary tree). By repeated application on
theorem 26, it follows that all nodes are equal to eachother. So if k 1 P then no
k′ ∈ K forces P, and therefore, k  ¬P. Otherwise, k  P. In any case, P ∨ ¬P
is the case. For more paths in B the argument goes the same for each path (since
those paths don’t cross, they can be treated as single linear Beth models). ♥

Theorem 28 A Beth model with finitely many branches is classical

Proof We will again prove that for every node in Beth model B the formula
P ∨ ¬P is true. Suppose B has a finite number of branches. Then every path will
eventually reach a node, after which there will be no more branching. By theorem
27 we can see that all successive nodes force the same and in that node P ∨ ¬P
is true. Thus in every path we will come across a node where P ∨ ¬P is true.
Therefore every node is barred by P ∨ ¬P, and will force P ∨ ¬P itself. ♥

Definition A frame is a spread if it is a tree and every node has at least one
successor.

Definition A frame is a fan if it is a spread and every node has at most finitely
many immediate successors

Theorem 29 If there is a height in a tree after which every node has at most one
successor, it is classical

Proof The proof of this is not that hard. If there is a point after which the tree
stops branching, every node at that height is classical because of theorem 27.
These nodes bar all nodes below it, and therefore the frame is classical. ♥
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All fans that are classical have a highest point of branching. There are however
other frames that are classical, but do not have a highest point of branching. Here
are two examples.

(5.12)

(5.13)

In model (5.12) if a formula ϕ is true in any node, then its immediate suc-
cessors bar every node beneath them. So either ϕ is not true in any node, or ϕ is
true in all nodes, making the model as expressive as a single node in the model,
and clearly making it classical.

In model (5.13) the root node ω has infinitely many immediate successors,
k1, k2, . . . . Each immediate successor kn has a ‘branching node’ sn and n − 1 fully
ordered nodes between kn and sn. sn has two immediate successors, ln and rn, both
having infinitely many fully ordered successors. For each n it is easy to see that ln

and rn are classical. Since they bar kn, kn must also be classical. And since this is
true for all n’s the set of k’s bar ω, making it classical.

So not only frames that have a maximum branching height can be classical.
However there is a property that every non-classical frame has to have.
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Definition A path 〈k0, k1, . . . 〉 is a frame F is said to have the offroad property
if there exists the set L ≡ 〈l0, l1, . . . 〉 and

• ~k is infinite

• ∀k ∈ ~k∃l ∈ L(l < k)

• ∀l ∈ L∀k ∈ ~k(k 6< l)

i.e. each node in the path has a successor in L and no node in L has a successor in
~k.

Theorem 30 A frame F is non-classical iff there is a path with the offroad prop-
erty.

Proof To prove that a frame is non-classical if there is a path with the offroad
property, we take a frame with a path with the meta-comb property and construct
a model on it that is not classical.

Let F be a frame with a non-empty path ~k with the offroad property. Then for
~k there exists a set of nodes L as in the definition. We construct the model B on
F in such a way that ∀l ∈ L(l  p). All other -relations are defined by the rules
of Beth models.

Now we prove that no node in ~k forces p ∨ ¬p. Take a node k ∈ ~k. This node
has by definition a successor l ∈ L. l  p therefore k 1 ¬p. k has no predecessors
in L and since the path ~k through k has no nodes forcing p, k is not barred by
nodes forcing p. Therefore k 1 p and thus k 1 p ∨ ¬p. This means that F is
non-classical.

To prove the reverse we take a non-classical frame and show that there is a
path in that frame that has the offroad property.

Let F be a non-classical frame. Then there is a model on the frame not forcing
ϕ∨¬ϕ for a certain formula ϕ. This means that there is a node k not forcing ϕ∨¬ϕ.
For k not to force ϕ ∨ ¬ϕ, it has to be the case that k is not barred by formulae
forcing ϕ ∨ ¬ϕ. From this follows that there is an infinite path ~k through k that
does not force ϕ ∨ ¬ϕ. Since all nodes kn ∈ ~k do not force ϕ ∨ ¬ϕ, it is the case
that:

• kn 1 ϕ

• kn 1 ¬ϕ
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To make the latter true there is for every node kn a successor ln forcing ϕ. Let
the set of all l’s be called L. No node in L can have a succesor in ~k or the former
condition will not be true. Therefore ~k satisfies the conditions for the offroad
property. ♥

Definition A comb is a fan, for which it is the case that:

• The root node has two immediate successors,

• if a node has two immediate successors, then one of those successors has
itself two immediate successors and the other has only one immediate suc-
cessor,

• if a node has one immediate predecessor, it also has one immediate suc-
cessor.

The main branch is that branch with all nodes with 2 immediate successors.

There is only one frame which is a comb, which is depicted in (5.14). We
have already seen a comb in (3.2). All ways of depicting a comb can be folded to
(5.14).

(5.14)

Theorem 31 A Beth model on a comb forces (ϕ ∨ ¬ϕ) ∨ (ϕ→ (ψ ∨ ¬ψ)).

Proof Take a Beth model on a comb. Following the same reasoning as in theorem
27, it is clear that on each node, that is not in the main branch, it is the case that
ϕ ∨ ¬ϕ and ψ ∨ ¬ψ. If on the main branch there is a node that forces ϕ, then
consequently ϕ∨¬ϕ bars the root node. If however this is not the case, then every
node that forces ϕ is not on the main branch, and for all those nodes we have
already proven that ψ ∨ ¬ψ. Therefore, given a Beth model B on a comb, we can
prove that B  (ϕ ∨ ¬ϕ) ∨ (ϕ→ (ψ ∨ ¬ψ)). ♥
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5.3.1 Beth models and KC

Lemma 32 For each Beth model B on a beehive each formula ϕ for which B 1
¬ϕ has one origin, that is ∀(k, k′ ∈ K((k  ϕ ∧ k′  ϕ)→ ∃k′′ ∈ K(k′′  ϕ ∧ k′′ 4
k ∧ k′′ 4 k′))).

Proof Take two nodes that force ϕ, k and k′. If one of the two is a predecessor
of the other, the property holds. If neither is a predecessor of the other, there is a
third node k′′, that is a predecessor of both nodes, and each path through k′′ also
goes through k or k′ or any of their children. This can be proven as follows.

A beehive can be seen as a series of binary choices between 0 and 1 forming
a sequence 〈c0, c1, . . . , cn〉. Two sequences from a node reach the same node iff
both sequences have the same amount of 0’s and 1’s, in whichever order. Now
let the node k′′ be that node for which one node (let this be k) can be reached
by 〈0, 0, . . . , 0〉 and the other (k′) by 〈1, 1, . . . , 1〉. All nodes that can be reached
with sequences with as many or more zeroes as in the first sequence end up in
k or a successor. For the sequences with as many or more ones as in the second
sequence, the reached node is k′ or a successor. So for each path through k′′ there
will eventually be a node that either is a successor of k or a successor of k′, both
forcing ϕ. If k′′ still isn’t the origin, then there is another node that is not a child
of k′′ and forces ϕ. We can preform the same trick as long as we have not found
the origin. ♥

Theorem 33 A Beth model on a beehive forces ¬ϕ ∨ ¬¬ϕ.

Proof Same as the proof of theorem 24. ♥

As has been noted before the rule ¬ϕ ∨ ¬¬ϕ is called the Weak Excluded
Middle and Intuitionistic Logic extended with WEM is called KC.

Definition A path ~k ≡ 〈k0, k1, . . . 〉 in a frame F is said to have the meta-comb
property if there exist the sets L ≡ {l0, l1, . . . } and M ≡ {m0,m1, . . . } and

• ~k is infinite

• ∀k ∈ ~k∃l ∈ L(l < k)

• ∀k ∈ ~k∃m ∈ M(m < k)

• ∀l ∈ L∀k ∈ K(k 6< l)
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• ∀m ∈ M∀k ∈ K(k 6< m)

• ∀l ∈ L∀m ∈ M¬∃o(o < l ∧ o < m)

i.e. each node in the path has a successor in L and in M, no node in L has suc-
cessors in common with a node in M and no nodes in either L or M have suc-
cessors in the path. 2.

Theorem 34 A frame F does not force Weak Excluded Middle, iff there is a path
with the meta-comb property.

Proof To prove that a frame does not force WEM if there is a path with the meta-
comb property, we take a frame with a path with the meta-comb property and
construct a model on it that does not force WEM.

Let F be a frame with a non-empty path ~k with the meta-comb property. Then
for ~k there exist the sets of nodes L and M . We construct the model B on F in
such a way that ∀l ∈ L(l  p). All other -relations are defined by the rules of
Beth models.

Now we prove that no node in ~k forces WEM. Take a node k ∈ ~k. This node
has by definition a successor l ∈ L and m ∈ M as in the definition. l  p therefore
k 1 ¬p. m is not a successor of a node in L and no successor of m is in L or a
successor of a node in L. Therefore no successor of m forces p, and thus m  ¬p.
So we can see that k 1 ¬¬p. Since we can show that this is the case for all nodes
in ~k that are successors of k, we also know that k is not barred by a set of nodes
that force WEM. Therefore k 1 ¬p ∨ ¬¬p, and thus F does not force WEM.

To prove the reverse we take a frame that does not force WEM and show that
there is a path with the meta-comb property in that frame.

Let F be a frame that does not force WEM. Then there is a model B on F
that does not force WEM and subsequently a node k in B that does not force ¬ϕ∨
¬¬ϕ for a formula ϕ. Since we only deal with frames without infinite descending
chains, there is a root node k0 not forcing ¬ϕ ∨ ¬¬ϕ. For this to be the case, it
must be so that k0 is not barred by a set of nodes forcing ¬ϕ ∨ ¬¬ϕ. And since
any maximal node forces this formula, there has to be an infinite path ~k of nodes
not forcing ¬ϕ ∨ ¬¬ϕ, starting from k0. For all those nodes kn ∈ ~k not to force
¬ϕ ∨ ¬¬ϕ it also has to be the case that:

2The meta-comb property is named this way, because a frame with such a path can be seen as a
collection of subtrees, where each subtree can be seen as a node in a comb. Of course a meta-comb
forces very different formulae than an actual comb.
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• kn 1 ¬ϕ

• kn 1 ¬¬ϕ

To make the former true, kn has to have a successor l forcing ϕ, and for the latter
to have a successor m forcing ¬ϕ. Let the set of all l’s be L and the set of all m’s
be M. Since no node in ~k may force either ¬ϕ or ¬¬ϕ, L and M may not have any
successors in ~k, and since all nodes in L force ¬ϕ and all nodes in M force ¬¬ϕ
they can not have any common successors. Therefore ~k fulfills the definition of a
meta-comb. ♥

Following are two frames that do not force WEM.

(5.15)

(5.16)

5.3.2 Beth models and LC

Theorem 35 A beehive forces the formula (ϕ→ ψ) ∨ (ψ→ ϕ).

Proof Naturally this follows from the fact that KC is stronger than LC – of which
(ϕ→ ψ) ∨ (ψ→ ϕ) is the defining formula – and that the beehive forces KC. But
for instructive purposes we give a semantic proof.
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Let frame F be a beehive and ϕ and ψ be two formulae. If there is no node
in F that forces ϕ then the frame forces ψ → ϕ and therefore (ϕ → ψ) ∨ (ψ →
ϕ). The same reasoning goes for a frame without nodes that force ψ. By case
distinction we are left with one case, the case that there are both nodes that force
ϕ and nodes that ψ. As proven in lemma (32) there are nodes kϕ and kψ that are
predecessors of all other nodes forcing respectively ϕ and ψ. These nodes – as
noted in (32) – are characterised by the amount of 0’s (times left) and 1’s (times
right) are needed to reach it. Let the coordinate of a node be 〈n,m〉 where n is
the amount of 0’s and m the amount of 1’s. Then let 〈nϕ,mϕ〉 be the coordinate of
kϕ and 〈nψ,mψ〉 be the coordinate of kψ. Then 〈max(nϕ, nψ),max(mϕ,mψ)〉 is the
coordinate of the lowest node kϕ∧ψ that forces ϕ ∧ ψ. It is of course the case that
kϕ∧ψ  (ϕ → ψ) ∨ (ψ → ϕ). Any node k on the same height as kϕ∧ψ (note that the
height can be defined by the sum of m and n) either:

• k  ϕ, then k  (ϕ→ ψ) ∨ (ψ→ ϕ),

• k  ψ, then k  (ϕ→ ψ) ∨ (ψ→ ϕ),

• k 1 ϕ and k 1 ψ, then the coordinate 〈nk,mk〉 has either a lower nk than
min(nϕ, nψ), or a lower mk than min(mϕ,mψ). Note that they cannot be both
lower, because nk + mk is fixed. Suppose nk < nϕ ≤ nψ and mk > mϕ ≥ mψ.
Therefore any node k′ < k for which k′  ψ then it also must force ϕ
because the coordinate 〈nk′ ,mk′〉 has an nk′ equal or greater than nψ and
which is equal or greater to nϕ, and since it is a successor of k which has
an mk greater than mϕ it also has an mk′ greater than mϕ. Therefore it is a
successor of kϕ and forces ϕ. So k  ψ → ϕ and thus (ϕ → ψ) ∨ (ψ → ϕ).
The same reasoning holds if mk it less than min(mϕ,mψ) and if nϕ ≥ nψ or
mϕ ≤ mψ.

Thus all nodes at the height of kϕ∧ψ force (ϕ → ψ) ∨ (ψ → ϕ) This bars all nodes
below it, thus a beehive forces (ϕ→ ψ) ∨ (ψ→ ϕ). ♥

Remember that LC is Intuitionistic Logic + (ϕ→ ψ) ∨ (ψ→ ϕ).

Definition A path ~k ≡ 〈k0, k1 . . . 〉 in a frame F is said to have the ghostbuster
property if there exist the sets L ≡ {l0, l1, . . . } and M ≡ {m0,m1, . . . } and

• ~k is infinite

• ∀k ∈ ~k∃l ∈ L(l < k)
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• ∀k ∈ ~k∃m ∈ M(m < k)

• ∀l ∈ L∀k ∈ ~k(k 6< l)

• ∀m ∈ M∀k ∈ ~k(k 6< m)

• ∀l ∈ L∃~l(~l is a path through l and ∀m ∈ M¬∃o ∈ ~l(o < m))

• ∀m ∈ M∃~m(~m is a path through m and ∀l ∈ L¬∃o ∈ ~m(o < l))

i.e. each node in the path has a successor in L and M, through each node in L
there is a path that does not contain successors of nodes in M and the other way
around, and the nodes in L and M have no successors in ~k. 3.

Theorem 36 A frame F does not force LC, iff there is path with the ghostbuster
property.

Proof To prove that a frame does not force LC if there is a path with the ghost-
buster property, let us assume we have a frame with a path that has the ghostbuster
property and construct a model on this frame that is a countermodel to LC.

Let F be a frame with a path ~k with the ghostbuster property. Then for that
path ~k there exist the sets L and M as in the definition. Let B be a model on F
where all nodes in L force p and all nodes in M force q. All other -relations are
defined by the rules of Beth models.

Now we prove that no node in ~k forces (p→ q)∨ (q→ p). Take a node k ∈ ~k.
For that k there are an l ∈ L and m ∈ M, where l  p and m  q. There is a
path ~l through l for which no nodes are successors of nodes in M, therefore those
nodes do not force q. Thus l 1 q and l 1 p → q. The opposite is true for m, thus
m 1 q → p. Therefore k 1 p → q and k 1 q → p, and since none of the nodes in
~k force this, k is also not barred by (p→ q)∨ (q→ p), so k 1 (p→ q)∨ (q→ p),
implying that B and in extention F do not force LC.

To prove the reverse we take a frame that does not force LC and show that it
has a path with the ghostbuster property.

Let F be a frame that does not force LC. Then there is a model B that has
a node k, for which k 1 (ϕ → ψ) ∨ (ψ → ϕ) for formulae ϕ and ψ. Because we
do not allow infinite descending chains, there is a root node k0 that does not force

3The ghostbuster property is named this way as a reference to a famous quote from the movie
The Ghostbusters: “There is something very important I forgot to tell you. Don’t cross the
streams”.
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(ϕ → ψ) ∨ (ψ → ϕ). For k0 not to force (ϕ → ψ) ∨ (ψ → ϕ) it at least has to be
the case that k0 is not barred by nodes forcing (ϕ → ψ) ∨ (ψ → ϕ). Any maximal
node forces (ϕ → ψ) ∨ (ψ → ϕ) therefore there has to be an infinite path ~k from
k0 of nodes not forcing (ϕ → ψ) ∨ (ψ → ϕ). For each node k ∈ ~k not to force
(ϕ→ ψ)∨ (ψ→ ϕ) it also has to be the case that k 1 ϕ→ ψ and k 1 ψ→ ϕ. This
means for one that k 1 ϕ and k 1 ψ. It also means that k has to have successors l
and m for which:

• l  ϕ

• l 1 ψ

• m  ψ

• m 1 ϕ

Let the set of the l’s corresponding to each of the k ∈ ~k be L and the set of m’s
corresponding to each of the k ∈ ~k be M. For any node l ∈ L, if it has a successor
k ∈ ~k then, k  ϕ which is not the case. Therefore ∀l ∈ L∀k ∈ ~k(k 6< l). The same
is true for M. Now if a node l has no path ~l such that no node in ~l is a successor
of a node in M, then this means that l is barred by successors of m, and therefore
l  ψ, which we have excluded. Therefore there must be a path ~l through l for
which no nodes in ~l are successors of nodes in M. The same is true for all nodes
m ∈ M. Therefore the path ~k satisfies the demands for the ghostbuster property. ♥

The frames shown as examples for frames that do not force KC – frame (5.15)
and (5.16) – can also be used as examples for frames not forcing LC. The follow-
ing frame does not force LCbut does force KC.

(5.17)
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Conclusions

In chapter 4 we have compared Kripke to Beth models and we have seen that
Kripke and Beth models are easily defined in each others definition. We have seen
two transformations from Kripke to Beth and we have seen that transformations
from Beth to Kripke can only happen in very specific cases – i.e. when the Beth
model is strong – and in that case the transformation is immediate.

In chapter 5 we have looked at frame properties. First of all we looked at how
to rewrite frames into trees in such a way that there is an injection from the frame
to the tree. It became clear that for frames without infinite descending chains it is
easy to rewrite by only using two simple methods, named splitting and rerooting.
For frames that do contain infinite descending chains the method of grafting can
be used, which is more brute force and has some possibly unwanted side-effects,
like infinite branching for infinite models.

After that we looked at frames for Kripke models and looked at a couple of
frames to see which formulae it forced. We have seen frames forcing different
formulae, most notably frames forcing KC and LC. These properties have been
studied more thoroughly in Fiorentini [3].

In section 5.3 we have looked at frame properties for Beth models. These
properties have not been studied before. We find that the defining features for
frame properties for certain logics are often the non-existence of paths with certain
properties. We define those paths for classical logic, KC and LC.

53
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6.1 Future research
For two intermediate logics – KC and LC – we have given properties defining
frames that force those logics. It would be very interesting to see if there are
defining properties for other logics and what they are, e.g. for the logic of bounded
depth/branching, the Kreisel-Putnam Logic and Medvedev Logic.

Also it could be of interest to see if there are frames that are complete in Beth
semantics for a given intermediate logic.

6.2 Relevance for artificial intelligence
Intuitionistic logic is a topic that is relevant for the field of artificial intelligence.
It produces more intuitive proofs than classical logic and is therefore often more
closely related to human reasoning. Also since constructive proofs are stronger,
they are more desirable.

Furthermore the constructive proofs are used in a couple of programming lan-
guages – most notably COQ. In these programming languages countermodels are
very important. Research into Beth semantics might come up with relevant in-
formation. However this thesis has come out inconclusive.
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