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Abstract
We introduce BeatGAN, a generative model for rhythmic patterns. A GAN
is a generative model, used in image generation. BeatGAN was trained on an
image dataset consisting of a visual representation of the Groove [12] data set,
which contains drum recordings. We are interested in applying image generation
techniques to music generation, which leads to the following research question:
How suitable are generative adversarial networks for generating rhythmic pat-
terns represented in a visual format? We created a custom data set on which we
trained BeatGAN. BeatGAN uses convolutional neural networks to generate im-
ages, making it a DCGAN [10]. Adjustments to the model and the data set were
made during training, with the aim to achieve better GAN performance. Re-
sults show that the visual output of BeatGAN is not comparable to the samples
in the data set. Converting the visual representation of the rhythmic patterns
to audio, we conclude that the audio is also not comparable to the samples in
the data set. We identify multiple problems with our method and the training
of BeatGAN, and provide suggestions for future research to improve BeatGAN.
The results of our research provide evidence that a visual representation of mu-
sic in combination with a DCGAN is not suitable to generate novel rhythmic
patterns.
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1 Introduction

In nature, we can identify many examples of periodicity. The movement of the
planets within our solar system can be described as periodic. Their orbits affect
our perception of the rising and setting of the sun, which in turn is a periodic
recurrence. We as humans seem to want to identify these periodic patterns [1].
In the art of music, this periodicity is essential. We identify periodicity as a
pulse or a beat. In music, we amplify the importance of some of the beats, and
deamplify the importance of others. This accentuation of different beats causes
rhythm [2].
We have seen that within the field of artificial intelligence, much research has
been done relating to image generation [3][4][5]. Deep generative modeling tech-
niques have produced images of people that do not exist in the world. There
have also been examples of deep learning models that are able to generate art.
Within the field of music generation, much research has been done to generate
songs that were not created by humans [6][7][8]. Image generation and music
generation are sub-fields of generative modeling. The goal of generative model-
ing is to generate novel pieces of data, that are comparable to already existing
data. Generative modeling techniques often provide an architecture which can
be adjusted such that they are able to process different types of data. In this
research, we will be adapting a generative modeling technique to generate mu-
sic, and more specifically, rhythm.
A promising technique within the field of generative modeling is the generative
adversarial network (GAN), first introduced by Goodfellow et al. [9]. A GAN
is an architecture in which two neural networks are trained in parallel, using
the performance of each other to get better at their respective tasks. One of
the neural networks is a generative network, which can be used to produce new
samples. The GAN architecture will be explained in more detail in chapter 2.
GANs have been shown to produce convincing results when applied to image
generation. However, within the field of music generation, research has been
somewhat lacking [7]. Mogren performed research with a GAN architecture,
using classical piano music as a data set to train the model [11]. In this study,
Mogren aimed to generate melodies and harmony similar to the classical piano
music the model was shown. There was no emphasis placed on rhythmic ele-
ments. The output data of the model reflects the aim of the study. A lack of
rhythm can be identified in the output.
The relevance of this research is the adaptation of the GAN architecture to
rhythm generation, a topic that has not seen as much research as melody and
harmony within the field of music generation. GANs have produced convinc-
ing results in image generation. We will be creating an image representation
of rhythm, and we will convert samples of a rhythm data set to this image
representation. We will use these image representations as a data set to train
the networks in the GAN architecture. We then aim to generate new music by
converting generated images from the GAN back to a musical representation of
the generated rhythms.
We are curious to see if GANs can be applied to a visual representation of

1



rhythm. Are GANs able to discover the relations in rhythm that are important
in our experience of rhythm? Can the rhythmic relations be learned when uti-
lizing a visual representation of rhythm? We have formulated our main research
question as follows: How suitable are generative adversarial networks for gener-
ating rhythmic patterns represented in a visual format?
There are some sub-questions we will encounter. Because we are using a tech-
nique from the field of image generation, we need an image representation of
rhythm. The first sub-question is: how can rhythm be represented in a visual
format? Second, what types of neural networks should be selected within the
GAN structure? Third, how does the output of the GAN compare to man-made
rhythms?
The application of a GAN specifically to generate rhythmic patterns could give
insight into computers’ ability to interpret rhythm, when represented as a vi-
sual format. Rhythm is characterized by the selective accentuation of certain
beats. We aim to give insight into the usability of GANs for identifying and
reproducing these characterizations.
Finally, we will now give an overview of the chapters in this research. In chapter
2, we will first describe what neural networks are, and how they can be used
inside the GAN architecture to generate images. We will then give a high-level
description of the implementation of our GAN in chapter 3. Chapter 4 will
describe the process of selecting the data set, and processing the data set to
create a visual representation of music which we used in the GAN architecture.
Chapter 5 consists of the results produced by our model. Chapter 6 contains
an analysis of the results, a review of our method and suggestions for further
research. Chapter 7 concludes our research by answering the research questions.

2 Generative Adversarial Network

The GAN architecture is a generative modelling technique. GANs are able to
generate new data, whenever it is shown many examples of what the programmer
is trying to generate. We will introduce the GAN architecture by first giving a
general overview of neural networks. The GAN requires the use of two neural
networks that are trained in parallel. One neural network is an image classifier
and one neural network is an image generator. The high-level flow of a GAN
is as follows: the image generator generates images and the image classifier
is trying to classify generated and real images as generated and as real. The
goal of the GAN is to create an image generator that generates images that
are indistinguishable from real images, according to the image classifier. We
will also describe the specific type of neural network used in our model, the
convolutional neural network (CNN). Finally, we give an overview of the GAN
architecture and describe how the CNN fits in the GAN architecture.
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2.1 Neural Networks

One part of the GAN architecture is the use of an image classifier. In this sec-
tion, we describe what a neural network is, and how it can be implemented as
an image classifier.
A neural network is a mathematical function, taking numerical inputs and pro-
ducing numerical output. Neural networks consists of layers. Every layer con-
sists of a number of neurons, which store numbers. A neural network has an
input layer, an output layer and intermediate layers which are called hidden
layers, as shown in figure 1.
The input of a neural network consists of an array of numbers equal in size to
the number of input neurons. When classifying images, the number of neurons
in the input layer is equal to the number of pixels in the image. The neurons of
the input layer are connected to the neurons of the next layer, whose neurons
are in turn connected to the following layer’s neurons. The connection between
neurons is called a weight, and is represented as a variable numerical value. We
often initialize all the weights as random numbers at first. If we feed the network
numerical input, we can calculate the value of all neurons in the next layer. For
every neuron nx in layer x, its value is defined as the sum of all weighted val-
ues of nx’s input neurons Nx−1. We also add a randomly initialized numerical
variable to the value of nx, called a bias. Bias is used to make a model more
flexible when handling data it has not seen before. The number of layers and
neurons is specified by the programmer. The final layer of the network is the
output layer. In an image classifier, the number of neurons in the output layer
is often equal to the number of classes of images we would like the network to
classify. Every class is represented by an output node in the output layer. We
scale the output layer neuron values between 0 and 1. Their values can then
represent probabilities that some input belongs to a certain class.
In an image classifier, the output node with the highest probability is taken as
the network’s prediction on what class the image belongs to. It is not likely that
an untrained network is able to assign the correct class to some data input, when
all weights and biases are initialized randomly. To achieve better performance,
we show the network many images, along with the class the image belongs to.
We compare the network’s output to the real label of the sample and adjust the
weights and biases, aiming to improve the model’s performance, such that the
network is able to make better predictions. This process is called training. We
use a data set to train a neural network. Our data set is labeled, which means
that the data set contains some label value for every sample. This label tells us
what class the sample belongs to.
When comparing the real labels of samples to the network’s predictions of the
same samples, we can measure the network’s performance. Measuring perfor-
mance is done using a loss function. We use the network’s predictions on samples
and the real labels of the same samples as input for the loss function. If the
network performs well, this loss function will output a small value. If the net-
work performs poorly, it will output a large value. The loss function gives us a
measure of how poorly the network performs when classifying data. In neural
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Figure 1: Example of a neural network with one input layer (4 nodes), two
hidden layers (6 nodes) and one output layer (2 nodes). Connections between
neurons are represented as lines. In neural network implementations, these lines
represent a certain weight value.

network training, we are trying to minimize this loss function, which can be
done by utilizing an algorithm called gradient descent.
The output of the loss function is a numerical value. Since the weights and
biases are used to produce the network’s predictions, we can tweak the weights
and biases to search for the gradient along which the output of the loss func-
tion decreases the most. The gradient is computed using an algorithm called
backpropagation. We descend the gradient, thereby adjusting the weights and
biases of the network. We repeat gradient descent until a minimum is reached
for the loss function. If the loss does not decrease any more, we have found a
minimum. At this point, the model’s performance is optimized for all training
samples in the data set. Note that this minimum is not necessarily a global
minimum. Overall model performance of the network will then be analyzed by
calculating the model’s performance on unseen data. A neural network is trying
to approximate a data distribution. A data set almost never contains all images
that exist belonging to a certain class. For example, a data set containing im-
ages of cats can always be expanded. A data set is therefore a subset of the full
data distribution. However, as long as the data set has enough variation, we
can approximate the full data distribution. A well trained network on a data
set that is representative of the full data distribution is likely to perform well
on data from the full data distribution, even though the network had never seen
that data before.

2.2 Convolutional Neural Networks

Convolutional neural networks (CNN) are a subset of neural networks. The
type of image classifier we used for our GAN is a CNN. Groupings of pixels
often contain important information about the image, which is taken into ac-
count when classifying images with CNNs. The description of a neural network
and its training procedure as described in the previous section still applies to a
CNN. However, a CNN has some additional mechanisms, which improve perfor-
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Figure 2: High-level example of a convolution from an input image to a feature
map. A window of pixels is selected, which is mapped to a single pixel in the
feature map, using a filter.

mance when compared to a densely connected network, when used in the GAN
architecture [19].
In a CNN, the weights are not represented as single values per neuron connec-
tion. Neuron connections are weighted as a collective, instead of weighting them
individually. The use of collective weighting causes CNNs to be useful in image
classification, where pixel context is important [22].
The connections between each layer are defined by a convolution operation. To
apply the convolution we randomly initialize a filter, which is a matrix of values.
This filter is used to perform the convolution. Applying a convolution results
in a set of nodes called a feature map. The feature map is a downsampled
representation of the image, a result of the convolution. A high-level overview
of a convolution in a CNN is shown in figure 2. Figure 3 provides a detailed
explanation of a two-dimensional convolution, where the two dimensions repre-
sent the width and height of an image.
In CNNs, we initialize multiple different filters per layer. When applying the
convolution with a single filter, we get a feature map, which is two dimensional.
Applying the convolution for all filters, we get a three-dimensional convolu-
tional layer, where the z-axis corresponds to the different feature maps created
by the different filters. At first, these filters are initialized randomly. But during
training, the filters get adjusted, such that better feature maps are learned. To
connect a convolutional layer to a new convolutional layer, we apply a convo-
lution to the three-dimensional layer, with a three-dimensional filter instead of
a two-dimensional filter. This results in a single two-dimensional feature map.
Using multiple filters results in a new convolutional layer in three-dimensions.
The convolutional layers are the hidden layers of our CNN.
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Figure 3: Moving from top to bottom, this figure describes a two-dimensional
convolution in a CNN. First row represents a 3 × 3 pixel image. The second
row corresponds to all sub-matrices of the image selected when using a filter
size of 2× 2. The third row contains a randomly initialized filter (left), and the
resulting feature map (right). Feature map calculation using the filter and the
top-left sub-matrix in the middle row: (1×3)+(4×0)+(2×21)+(2×12) = 69.

The last convolutional layer gets connected to an output layer. Since the convo-
lutional layer is three-dimensional, we first flatten the layer. Flattening a three-
dimensional layer creates a one-dimensional array, resulting in a regular neural
network layer consisting of an array of all nodes from the three-dimensional
layer. Every single node in the flattened layer is connected to every single node
in the output layer. The value of a node in the output layer corresponds to a
probability that an input image belongs to the class represented by the node.
The CNN is given no information on what filters need to be learned. This lies
at the core of the CNN architecture. The network is itself is responsible for
learning useful features from processing the data set using gradient descent.
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Figure 4: Example of a transposed convolutional neural network. Network
generates random noise images as input and applies transposed convolutions to
upsample the random noise. Filters are learned which generate feature maps.
Multiple feature maps form a three-dimensional transposed convolutional layer.
The network consists of 4 transposed convolutional layers in total. Output layer
is a two-dimensional layer, consisting of a single feature map. Original image is
taken from Radford et al. [10], adjusted to a two-dimensional output.

2.2.1 Transposed convolution for Generative Networks

CNNs can not only be implemented as classifiers, they can also be used as
generative networks. Instead of using the convolution, which downsamples an
image, we use the transposed convolution, which can upsample an image. The
CNN architecture still applies, so the weights to be learned are still filters,
matrices of trainable values.
Figure 4 provides an example of a transposed convolutional neural network.
The transposed convolution requires specifying a stride and a filter size. The
stride is a tuple of two numbers, when creating an image generator. The stride
tells us how many pixel steps we need to take in the feature map, to match one
pixel step in the original image. The filter size can also enlarge the resulting
feature map, this happens when two filters overlap when the filters are either
too big, or the stride is too small. A transposed convolution in two dimensions
is shown in figure 5. The transposed convolution is applied for all filters in the
transposed convolutional layer, resulting in many different feature maps. Similar
to the standard convolutional layer, using more than one filter results in a three-
dimensional layer. Filters used in three-dimensional transposed convolutional
layers are also three-dimensional. The result of the transposed convolution for a
single filter in three-dimensions is a two-dimensional feature map. It is common
practice to use many filters in the early layers of the network, and slowly decrease
the number of filters in the later layers, until a final layer can be added with
a single filter, such that a single feature map is produced, which is the image
output of the generative network.
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Figure 5: Moving from top to bottom, this figure describes a two-dimensional
transposed convolution in a CNN. The first rows represent a pixel image (left),
and a filter (right). Every value in the filter is used as a scalar for the pixel
image. Results after scalar multiplication are shown in the middle row. Stride
is set to (2,2), resulting in the feature map in the bottom row.

2.3 GAN Overview

In the paper Generative Adversarial Nets [9], the authors propose a framework
for training two neural networks in parallel. One neural network is an image
generator, the second neural network is an image classifier. In this research, we
use a convolutional neural network for the classifier, and a transposed convolu-
tional neural network for the image generator. These days, many of the GANs
are similar to the deep convolutional type (DCGAN) [19][10]. The term deep
refers to the fact that the CNNs used in the GAN contain more than one hidden
layer. We follow this approach with our implementation.
We will introduce the GAN architecture with an analogy [9]. Suppose that two
parties exist, a group of criminals, and a group of policemen. The criminals are
trying to produce fake currency. The policemen are trying to distinguish fake
currency from real currency, to prevent the criminals from using fake currency.
The criminals and the policemen are competing with each other, which causes
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Figure 6: High-level overview of the GAN structure, describing the program
flow between the data set, discriminator and generator

both groups to improve their methods to gain the upper hand. In the GAN
architecture, the criminals are analogous to the image generator, and the po-
licemen are analogous to the image classifier.
Following GAN terminology [9], we define the generative neural network as the
generator (G), and the image classifier as the discriminator (D). Figure 6 pro-
vides a high-level overview of the architecture. G is responsible for generating
images from random noise. D is responsible for assigning real labels to the im-
ages from the data set and the generated samples from G. D tries to classify
images belonging to the data set as real, and images generated by G as fake.
The output of D is the prediction D(z). D(z) is interpreted as the probability
that the sample z is a sample from the data set. D(z) is compared to the true
label, after which D adjusts its weights using some gradient, such that it im-
proves in classifying samples. G moves using a gradient such that it improves
in generating samples that are more likely to be wrongly classified by D. The
gradient for G is calculated using the classifications D made on G’s generated
samples. The training process of D and G can be defined as a minmax game,
where D maximizes, and G minimizes the probability that D assigns the correct
label to the samples it processes.
A GAN converges whenever D(z) = 0.5 [9]. At convergence, D cannot distin-
guish real samples from fake samples, and therefore classifies all samples as true
and fake equally as often. Goodfellow et al. have proven that theoretically,
GANs always converge to D(z) = 0.5 [9]. After convergence, we can conclude
that G is successful in generating images that fool D.

3 GAN Implementation

This chapter first describes the implementations of D and G in more detail.
We then describe the high-level training loop used to train D and G. Finally,
we describe some of the heuristics we used when training D and G. Training
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GANs is a difficult task [29][30][31][32], as it requires training and balancing
two neural networks in parallel. Trying to obtain meaningful results, we often
adjusted our model architectures and tweaked the step size used in gradient
descent. Because of this trial-and-error approach, this chapter will only describe
the main elements and heuristics that were used in the models. For the specific
model implementations, we refer to the GitHub repository containing all code.1

3.1 Generator

G is a CNN with transposed convolutional layers. Following Goodfellow et al.
[9], we first generate an input vector of 100 random values from a normal dis-
tribution. The input vector is connected to a dense neural network layer. The
dense neural network is reshaped to a three-dimensional transposed convolu-
tional layer. The layers following this first transposed convolutional layer are
also transposed convolutional layers, whose dimensions depend on the preceding
layer’s dimensions and stride specifications. The output layer of G is a trans-
posed convolutional layer with a single filter, producing a feature map whose
dimensions are equal to the desired image dimensions. Design of the network is
similar to the example in figure 4.
G uses the transposed convolutional layers to upsample random noise to an im-
age of the desired dimensions. In the early layers of the network, many filters
are used, resulting in many feature maps. After some set number of transposed
convolutional layers, the desired image size can be reached. At that point, G
has generated an image from random noise. We then apply the tanh activation
function to normalize the image’s pixel values between -1 and 1, following Good-
fellow [19]. We used LeakyReLU as the activation function for the hidden layers
of G. An activation function adjusts the output space of a node. LeakyReLU
weighs negative values lesser than positive values.

3.2 Discriminator

D is a CNN with convolutional layers. All input is first rescaled between −1 and
1. The network consists of several convolutional layers after the input layer. The
last convolutional layer is densely connected to the output layer. The output
layer consists of a single node, which corresponds to the probability that an
input sample is real. We used LeakyReLU as the activation function for the
hidden layers of D.

3.3 Training Loop

In chapter 2, we described how neural networks are able to learn. Whenever a
network has produced an output, we can compare its output to the real output
we would want the network to give. We calculate the network’s performance
using a loss function, which outputs a value resembling how poorly the network

1https://github.com/thomhoog/BA Thesis-BeatGAN
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performs. The higher the loss function output, the poorer the network’s perfor-
mance. We can calculate a gradient using the weights and biases of the network,
along which the loss function decreases the most. Calculating the gradient is
done efficiently using backpropagation. We adjust the weights and biases such
that we descend the gradient. During the training of the GAN, we repeat the
process of adjusting the weights and biases multiple times.
Calculating the gradient and adjusting the weights and biases is a costly op-
eration with respect to time. Applying standard gradient descent means that
we process all examples in the data set before we make a decision on how to
adjust the weights and biases, such that the loss decreases the most. Alterna-
tives exist that are more time efficient, such as mini-batch gradient descent, also
called stochastic gradient descent (SGD). In SGD, we shuffle the data and divide
the data set in equally sized mini-batches. We then perform standard gradient
descent on the mini-batches. Processing one mini-batch is called an iteration.
When all mini-batches have been processed, we say that one epoch has passed.
We can repeat training the networks for as many epochs as we specify. In this
research, we use SGD.2

The output value of a neuron is first passed through an activation function. We
can normalize the output values from the activation functions, such that the
mean of the neuron’s output distribution is equal to 0 and the standard devi-
ation is equal to 1. Normalizing the outputs of neurons within a mini-batch is
called mini-batch normalization.
Mini-batch normalization is used frequently in GANs and often improves GAN
stability, even though the reasons for model improvement are somewhat unclear
[23][24]. We used mini-batch normalization during training.
In the implementation of our GAN, one iteration of the training loop starts
with calculating loss for D and G. Calculating the loss requires D to output
predictions for all samples in the mini-batch, and all samples generated by G.
The number of samples G generates is equal to the mini-batch size. D outputs
predictions on all samples in the mini-batch and all samples generated by G.
With D’s output and the real labels for all samples, we are able to calculate the
cross-entropy loss:

− 1

batch size

batch size∑
i=0

P (zi) · log(D(zi)) + (1− P (zi)) · log(1−D(zi))

where number of samples = {z1, ..., zi} and P (z) represents the real probability
that a sample is real. Real samples are labelled as 1, generated samples are
labelled as 0. Cross-entropy loss is calculated for both the real and the generated
samples. The two calculated cross-entropy losses are then combined to find the
total loss for D. The loss for G is obtained by calculating the cross-entropy loss
between D’s predictions on the generated samples and a set of labels all set to

2Goodfellow [19] suggested using the Adam optimizer, which is an extension of some vari-
ants of SGD. We initially followed this recommendation, but during training we were curious
if using standard SGD would improve performance. We did not find any noticeable improve-
ments when using SGD over Adam, or vice versa.
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1. We compare to a set of 1’s, because we want G to adjust its weights such
that D is more likely to classify a generated sample as a 1, which causes G to
improve at fooling D.
After calculating the losses for D and G, we can calculate two gradients using
the Keras API optimizers. We ascend the gradient for G, and descend the
gradient for D. Moving along the gradient completes one epoch.
Whenever the loss value converged, we stopped training the models. The output
of G at the last completed epoch was taken as the output of the model.

3.4 Training The Model

During training, we generate 16 images from G after every epoch of training.
These are saved for review. Loss per epoch was printed, to monitor for improve-
ments in performance of both networks. If the loss did not decrease anymore,
the network has found a minimum for the loss function. The loss for D and G is
printed after every epoch. Both parts of D’s loss function are printed separately.

3.5 Zero Padding

A side effect of the convolution is the reduction of image dimensions. Depending
on the window size and image size, images lose some detail when applying
a convolution. The loss of detail is caused by the fact that the window is
compressing areas of images into a single value. Another side effect of the
convolution is that pixels at the edges have less impact on the feature map
values, since they are processed less often in the convolutions.
A solution to size reduction and information loss is zero padding [21]. Before
the image is processed by D, we pad the border of the image with zeros. Zero-
padding makes sure that the output feature map dimensions are the same as
the input feature map dimensions. Zero-padding was used heuristically during
training.

3.6 Dropout

We want to avoid that a model overfits the data. Dropout is a technique we can
use to address the problem of overfitting the dataset. With a set probability,
dropout is applied to every neuron of the layer. The probability is used to
decide if a neuron is ignored, or if it may propagate its output. Some neurons
are therefore purposely ignored, which significantly reduces overfitting of the
data set [25]. Dropout was used heuristically during training.

4 Data Set

In this chapter, we describe the process for selecting and processing the data
set such that it can be used in the GAN architecture. In the first section, we
provide some music theory, that lays the foundation on which we built our image

12



representation of the data set. The second section describes the selection of the
data set. The third section will describe the general method for processing the
data set. The fourth section will describe the conversion process from MIDI to
CSV. The fifth section will describe the conversion process from CSV to PNG.
The final section provides a summary of the total data set, after having applied
all processing steps.

4.1 Introduction

The data set we used to train the GAN consists of MIDI files. MIDI files require
some additional processing before they can be used in our GAN. We are able to
exploit the structure music theory provides, such that we can convert MIDI to
an image.

Drum Hits

Notes are the fundamental building block of music. In this research, we are
trying to model rhythms produced by a drum kit. We define playing one element
of the drum kit as a drum hit. Drum hits can be represented as notes in music
theory. In practice, notes and drum hits have duration and pitch. In this
research, we discard the pitches of specific drum hits, given that the MIDI data
set does not contain pitch information. We also discard drum hit duration. The
argumentation for discarding duration is given in section 4.3.

Groupings of Drum Hits

Rhythm is defined by context. Playing a single drum hit in isolation can be
musical, but it is not music. Music occurs whenever we play multiple drum hits
over time. A result of playing a steady drum hit pattern over time is the beat
within the music.
In music theory, the beat of a song is typically defined in quarter notes. The
time between beats is equal to the length of a quarter note. Note that this
definition does not provide any information on how long a quarter note is in
practice.
The real time between beats is provided by the beats per minute (BPM). BPM
is a value which is set by the composer. BPM relates the length of a beat, and
thus the length of a quarter note to time. Adjusting the BPM, adjusts the real
length of a quarter note. The length of quarter notes is therefore variable, but
the relation of a quarter note to BPM is always the same.

Measures

A grouping of some specific set of notes is called a measure. A related term to
a measure is the time signature. A time signature defines how many notes are
played in a measure [33]. The most common time signature in western music is
common time, or 4

4 . The top of the fraction specifies that there are 4 notes in
a measure. The bottom of the fraction specifies that these 4 notes are quarter
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Figure 7: Comparison of measure subdivisions. The width of every row of notes
is equal to a single measure, spanning the same amount of time. From top to
bottom: whole note, 2 half notes, 4 quarter notes, 8 eighth notes, 16 sixteenth
notes, 32 thirty-second notes.

notes. As a result, the measure cannot be longer than the total real time of
4 quarter notes. Common time therefore defines the length of a measure as 4
quarter notes per measure.

Subdividing Measures

As the name implies, a quarter note is a quarter of the length of a whole note.
A whole note in common time spans the whole measure. Dividing the measure
in quarter notes is called a subdivision. We are not restricted to quarter note
subdivisions. We can divide in two, giving us half note subdivisions. We can also
divide in sixteenth notes, which means that we play sixteen notes per measure,
during the same time it takes us to play one whole note. Comparisons between
subdivisions are given in figure 7. In this research, we will use the sixteen
note subdivision as the smallest subdivision. Larger subdivisions do not allow
for enough expressiveness in the rhythms. If we use smaller subdivisions, the
amount of data to be saved doubles, increasing the file size. Sixteenth notes
strike a good balance between expressiveness and file size.

4.2 Data Selection

This section describes the selection of the data set used as input for the model.
The source of the data is a processed subset of the Groove data set, made public
by Magenta [12]. This data set contains recordings of 10 drummers, who played
drum beats on an electronic drum kit, which converted the performances to
MIDI. Drummers performed with a metronome, which causes the data to be
aligned with a particular BPM, set by the drummers themselves. Performances
were mainly played in common time. We restrict the data set to only contain

14



Figure 8: Example of a sample in the data set, pixels on the x-axis represent a
sixteenth note. Different drum hits are represented on the y-axis. A non-black
pixel represents an instrument being played at a sixteenth note.

music played in common time. Different time signatures impact the length and
feel of a measure. Using a single time signature allows us to make sure that every
drum beat is of equal length. Genres varied, with rock being the most common.
We exclude Latin drum beats, being outliers in general rhythmic sensation.
Drum beats that were shorter than two measures were also discarded, since
these are shorter than the desired length. A complete list of selected genres is
provided in section 4.6.

4.3 Processing Data - General Method

This section describes the general method we used to process the data set such
that we can use it for generating music. We are trying to use image generation
methods to generate music. We convert MIDI files to an image, which is then
used as input for the GAN. We first converted all MIDI files to a CSV file,
which allows for easier access to the information in the MIDI files. The CSV
files consist of multiple rows with information. All rows describe events at
some time. The events we extracted are the events that specify that a note
is being played. The CSV files also contain information on when a note ends.
Drum hits have a fixed duration in the MIDI format. Because of the fixed
duration, information about the end of the note is not relevant. This information
was therefore discarded. The CSV files contain headers with meta-information,
relating to the playback speed of the MIDI file. The notes with their respective
times, and the headers were saved and used to convert the CSV file to an image.
This resulted in a data set of images, which we used to train the GAN. Figure
8 shows an example of a sample in the data set. Audio examples of the samples
in the data set can be found in the GitHub repository.

4.4 Processing Data - MIDI to CSV

The MIDI files were converted to the CSV format using an open source script
[15]. Using Python, the conversion was easily performed by calling the script
on every MIDI file in the data set, which resulted in a CSV representation of
all MIDI files in the data set.
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4.5 Processing Data - CSV to PNG

This chapter describes the process of converting the CSV music representation
to the image music representation. We also highlight some encountered prob-
lems during the conversion process.
We introduce three dimensions of music, which we will use in our image repre-
sentation of the music. First, we have pitch, in our case, the different drum hits.
Second, we have velocity, representing how loud the drum hit is being played.
Third, we have time. Combining the three dimensions, we get a definition of
music: different drum hits being played with a certain velocity, at a certain
point in time. We pick an image format which is able to represent the three
dimensions: greyscale images. The three dimensions in greyscale images are the
x-axis, y-axis and the pixel values. We mapped time to the x-axis, the differ-
ent drum hits to the y-axis and velocity to the pixel values. This specification
relates pitch, velocity and time to images. The extracted information from the
CSV files consists of the drum hits being played, at a time, with a velocity.
With the defined dimensions, we are able to map the extracted information in
the CSV file to the image.
The first encountered problem during the mapping process is the fact that time
is continuous. A digital image is a two-dimensional array of values, and is not
continuous. We are trying to map a continuous scale to a non-continuous for-
mat. Utilizing the structure of music allows us to relate time to the x-axis. Like
Gillick et al. [12], we specify that one pixel represents a sixteenth note. The
first pixel of a row in the image represents the first sixteenth note in a piece of
music. The second pixel represents the second sixteenth note. The third pixel
represents the third sixteenth note, et cetera.
The first line of the CSV file contains a header, with a field describing the num-
ber of MIDI clock pulses per quarter note (PPQN). This is the link between the
time representation of a MIDI file and the time representation in music theory.
We define the MIDI clock time for quarter note x as follows:

tx = PPQN × (x− 1)

If t1 = 0, it follows that t2 = PPQN . In the time it takes to play one quarter
note, we can play four sixteenth notes. The MIDI time per sixteenth note is
therefore equal to PPQN

4 . This is the core of the mapping of MIDI time to the
pixels of an image. If we set PPQN to 480, it follows that all MIDI events
that fall between the range of 0-119 MIDI pulses, should be played on the first
sixteenth note. The process of mapping values within a certain range to a certain
sixteenth note is called quantization [34].
Mapping different drum hits to the y-axis is done by selecting a row of pixels,
which corresponds to a specific drum sound. In the MIDI format, the velocities
range from 0 to 127. To map the velocities, we normalize them to the range
0-255, corresponding to the pixel range of a greyscale image.
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Image Dimensions

To decrease the time spent on the training procedure, it is important that the
images are not too large. The aim was to minimize the size of the images, such
that training the model can be done as fast as possible. We initially chose the
image dimensions as 32 pixels wide and 10 pixels high. The 10 pixels are able
to represent every possible MIDI drum sound used in the data set. Every row
of pixels in the image corresponds to a specific drum sound. In total, 22 drum
sounds were available during recording. Gillick et al. [12] and Roberts et al. [13]
simplified the 22 drum sounds to 9 classes. We added one extra class, resulting
in one extra pixel. The class we selected to add was the side stick of the snare,
which plays the role of a snare, but has a different sound. Adding an extra
class aids in creating more stable transposed convolutional neural networks. A
transposed convolution with strides (2,2), doubles the image size, which is useful
since we are upscaling a random noise image in the GAN. We cannot multiply
a number of pixels by 2 to achieve a pixel height of 9 pixels. This is possible
with 10 pixels.
In the images, 32 pixels represent 32 sixteenth notes, or two measures of music
in common time.
Whenever we convert a MIDI track to an image, we first convert the entire
track to a single image. We then slice the image to sub-images of the desired
dimensions.
During the implementation and experimentation phase of this research, we sus-
pected that the 10× 32 image dimensions might be a cause of instability in the
training phase. We were therefore interested in the model’s behavior when we
changed the aspect ratio and size of the images. We created two more data sets,
consisting of the same data, but with different image dimensions. We suspected
that using square images would aid in training the models. Samples in the first
additional data set have image dimensions of 32×32. We obtained these dimen-
sions by padding the 10×32 data set with 11 rows of black pixels on the top and
bottom of the sample. Samples in the second additional data set have image
dimensions of 16 × 16. We obtained this data set using the same methods we
used to obtain the 10× 32 data set. We argued that using multiples of 2 would

Figure 9: Comparison between samples with different image dimensions. Image
dimensions from left to right: 10× 32, 32× 32 and 16× 16.
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allow for a more stable transposed CNN. Note that the length of a sample in
the 16 × 16 data set spans one measure, instead of two measures for the other
two data sets. This resulted in a larger data set. Examples of the additional
data sets are shown in figure 9.
Implementing and training the GAN was split into three parts, because of the
three different data sets. We denote the model that uses the 10× 32 data set as
BeatGAN 1. The model that uses the 32× 32 data set is denoted as BeatGAN
2. The model that uses the 16× 16 data set denotes BeatGAN 3. The training
procedure was the same for all versions of BeatGAN, except that the models
and learning parameters were adjusted, and a different version of the data set
was used.

Beat Detection and Offset Correction

The recordings in the Groove data set are not perfect. Examples can be found
where the drumming does not start when the track begins. Converting such
a track to an image and slicing that image to smaller images of the desired
dimensions without addressing these problems would result in drum beats that
are offset in time by some slight amount, when compared to other samples in
the data set. We need to make sure that every sample in the data set starts
with a beat. We achieve this by making sure that a beat lies in the first column
of the pixel images. In music one can identify a beat of a track, which can be
seen as a grid with equal step size, laying on top of the track, this is called a
beatgrid. Examples of how the beatgrid relates to a sample is shown in figure
10.
The first step in our offset correction process is detecting the beat of the
track. The method we used here is inspired by known beat detection algo-
rithms [16][17]. For every column in the image, the pixel values are summed,
this gives us a velocity distribution of the MIDI track over time. To aid in the
detection of peaks, bass drum velocity is emphasized when played under certain
conditions. In pop music, the bass drum is often played on the first and third
beat, in combination with a snare drum on the second and fourth beat [18].
The exact locations of the bass drum and snare drum are known in the array.
Bass drum velocity is emphasized whenever it is followed by a snare drum on
the next expected beat. Averaging over all velocities gives us a threshold, which
is calculated as follows:

threshold = 0.95× avg(velocities)

For every column in the sample image, the sum of velocities is compared to the
threshold, if it is larger than the threshold, the column is defined as a peak.
The peaks are used to identify high energy points in the track, which can be
indicators for places where a beat can lie.
Beats occur at every quarter note. For every peak, we created a beatgrid using
quarter notes as step size, and count how many peaks lie on that grid. We
selected the peak with the maximum count as the most likely beat to lie on the
beatgrid. From this selected peak, we expanded the grid to the end and to the
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Figure 10: Visualisation of the offset correction process. Red bars in the top
image represent the beatgrid without offset correction. The yellow bars in the
middle image represent the desired beatgrid location. The bottom image rep-
resents the corrected beatgrid, note that the pixels have shifted to the left,
indicating offset correction.

start of the track in steps of quarter notes, resulting in a beatgrid for the track.
The beatgrid array is of equal length as the full track.

Downbeat Selection

The downbeat is the first beat of the measure. It is the beat which often has
the strongest accent [18]. We shifted the track such that the downbeat lies on
the first column of the pixel images, which was not always achieved using just
the offset correction. Using the beatgrid array we calculated in the previous
section, we checked every beat i in the grid, starting from the beginning of the
grid. If it contained a snare drum, we returned i− 4, giving us a location of an
expected bass drum. Otherwise, we checked if i contained a bass drum, which
often lies on the first beat. If that was the case, we returned i.
It is possible that the index is negative, when a snare drum was selected. If that
was the case, we extended the image such that the negative index becomes the
first column of the image. A bass drum is then placed at that point.

19



Final Image Processing

After the process of downbeat selection, we sliced the image according to the
desired dimensions of the data set, starting from index i defined above. These
sub-images were saved, as samples for our data set. Any leftover data is dis-
carded.

4.6 Final Data Set

For the 10 × 32 and 32 × 32 dimensions, the data set contains 4906 samples.
The 16 × 16 data set contains 9952 samples. The additional samples obtained
when preparing the 16× 16 data set is a result of applying our MIDI processing
method for smaller image dimensions. The data set consists of the following
genres, ordered from most common to least common: rock, funk, jazz, afrobeat,
afrocuban, hiphop, neworleans, soul, dance, reggae, pop, highlife, country, punk
and blues. Table 1 gives an overview of the General MIDI (GM) sound mappings
to the recorded pitch and array position. Drum performances were recorded on
a drum kit with more elements than GM provides in their specification [14].
Sounds recorded at pitch 26 and pitch 22 do not exist in the GM specification
and were mapped to an open hi-hat and closed hi-hat respectively.
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Recorded sound Pitch Array position Class (pitch)
tom 2 45 0 low-mid tom (47)

tom 2 (rim) 47 0
tom 1 48 1 high tom (50)

tom 1 (rim) 50 1
tom 3 (head) 43 2 high floor tom (43)
tom 3 (rim) 58 2
snare (head) 38 3 snare (38)
snare (rim) 40 3

snare x-stick 37 4 side stick (37)
kick 36 5 kick (36)

open hi-hat (bow) 46 6 open hi-hat (46)
open hi-hat (edge) 26 6
closed hi-hat (bow) 42 7 closed hi-hat (42)
closed hi-hat (edge) 22 7

pedal hi-hat 44 7
ride (bow) 51 8 ride cymbal(51)
ride (edge) 59 8
ride (bell) 53 8

crash 1 (bow) 49 9 crash cymbal (49)
crash 1 (edge) 55 9
crash 2 (bow) 57 9
crash 2 (edge) 52 9

Table 1: Overview of GM sound mappings to recorded pitches, array position
and drum hit class.

5 Results

We will now give a brief overview of how the data set is used in the GAN. We
used the final data sets described in the previous chapter to train the GAN. The
data set is used in combination with the output from the generator as input for
the discriminator. The discriminator assigns a probability that the samples it
processes are real. We compare D’s predictions to the real labels of the real and
generated data. Calculating the cross-entropy loss, we are able to use backprop-
agation to calculate gradients for D and G. Using the gradients we adjust the
weights and biases of D and G, such that D improves at classifying samples and
G improves at generating samples that fool D. Whenever the loss converged to
a certain value, we stopped the training procedure. When the loss converged,
we saw that change in the output of G stagnated. At every epoch, we ask G to
generate 16 images which are saved for review.
The image output of G was first converted to a CSV file, in the format specified
by the MIDICSV script [15]. We then used the MIDICSV script to convert the
CSV files to MIDI. Images were imported as arrays, and the rows of the images
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were mapped to a drum hits specified in table 1.
Image results vary in size, because of the use of three different data sets. As
a reminder, image dimensions consist of: (10 × 32) for BeatGAN 1, (32 × 32)
for BeatGAN 2 and (16 × 16) for BeatGAN 3. We adjusted the parameters of
BeatGAN 2, twice, resulting in two extra versions of BeatGAN 2: BeatGAN
2.1 and BeatGAN 2.2.
To better analyze the rhythmic sensations, we looped the generated MIDI pat-
tern 4 times for the images of length 32, and 8 times for the patterns of length
16. Images were upscaled, results do not represent the actual image size. For
every implementation of BeatGAN we first show all generated samples over all
epochs. We then show a single generated sample per epoch.

5.1 Visual Output

Figure 11: Total overview of output of G in BeatGAN 1 (10×32 pixels). Epochs
are separated by horizontal black bars. Every row contains 16 generated samples
from G. Epochs from top to bottom: 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40,
45, 50. Loss for G converged to 0.338, loss for D converged to 0.694.
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Figure 12: Figure is read from left to right and top to bottom. The figure shows
the first column of figure 11.
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Figure 13: Total overview of output of G in BeatGAN 2.0 (32 × 32 pixels).
Epochs are separated by horizontal black bars. Every row contains 16 generated
samples from G. Epochs from top to bottom: 0, 5, 10, 20, 40, 60, 80, 100, 120,
140, 160, 180, 200, 220, 240. Loss for G converged to 3.001, loss for D converged
to 6.029.
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Figure 14: Figure is read from left to right and top to bottom. The figure shows
the first column of figure 13.
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Figure 15: Total overview of output of G in BeatGAN 2.1 (32 × 32 pixels).
Epochs are separated by horizontal black bars. Every row contains 16 generated
samples from G. Epochs from top to bottom: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Losses for both D and G did not converge.
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Figure 16: Total overview of output of G in BeatGAN 2.2 (32 × 32 pixels).
Epochs are separated by horizontal black bars. Every row contains 16 generated
samples from G. Epochs from top to bottom: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Losses for both D and G did not converge.
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Figure 17: Figure is read from left to right. The figure shows the output of G
for BeatGAN 2.1 (first row) and BeatGAN 2.2 (second row), at epochs 0, 1 and
10.

28



Figure 18: Total overview of output of G in BeatGAN 3 (16×16 pixels). Epochs
are separated by horizontal black bars. Every row contains 16 generated samples
from G. Epochs from top to bottom: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Loss for G
converged to 0.693, loss for D converged to 1.385.
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Figure 19: Figure is read from left to right. The figure shows the output of G
for BeatGAN 3 at epochs 0, 1 and 10.

5.2 Audio Output

The middle 10 pixel rows were used to convert the images to MIDI. Images of
32× 32 pixels were sliced to 10× 32 pixels. Images of 16× 16 pixels were sliced
to 10 × 16 pixels. MIDI output of the final epochs of every BeatGAN version
can be found on the GitHub repository.

6 Discussion

In this chapter we analyze our results, highlight the main problems with our
GAN and review our method. We will suggest avenues for further research in
the final section.

6.1 Analysis of Results

Comparing the image output of all models at the final epoch to the image
samples in the data set, we can state that the generated images do not resemble
images in the data set. For all versions of BeatGAN 2, and BeatGAN 3, we
can see that the G did not generate output just in the middle 10 pixels of the
image, but generally used the whole pixel space to generate patterns. In the
image output of BeatGAN 2.0, we see that grey/black pixels start to emerge in
the later epochs. We do not know what features the CNNs are learning. For
more in-depth analysis we could look at the generated feature maps. Feature
map visualisation of CNNs is possible [22], but lies outside the scope of this
research.
After converting the images to MIDI, we are able to identify a steady pulse
in all outputs. However, we do not conclude that this pulse is caused by the
GAN interpreting rhythm. Because every column in the images corresponds
to a sixteenth note, we conclude that this steady pulse is a result from our
particular choice of data distribution. We converted a random noise sample
from epoch 0 of BeatGAN 2 to MIDI, which produces similar results to all
generated output of G. We can conclude that the pulse we identified is caused
by the data representation. In the output of BeatGAN 1, we are able to identify
that the second and fourth beats are accentuated with a hi-hat. The output
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of BeatGAN 2 also includes a form of fade-in and fade-out, which is caused by
the gray/black pixels on the left and right of the generated image. We find the
MIDI results to be inconclusive, as it is hard to determine if some of the faint
features present in the generated MIDI files were learned features, or produced
by random chance.

6.2 Mode Collapse and Vanishing Gradient

A GAN has a lot of moving parts. The implementation of the parts is left up
to the programmer, which allows for many degrees of freedom. The task of the
programmer is to find a good balance between D and G. Any change in the
model’s implementation affects this balance. Identifying training problems in
GANs is difficult because of the many variables involved, which makes balancing
D and G a difficult task. Finding the perfect balance is analogous to finding
a needle in a haystack. However, we are convinced that one can decrease the
volume of the haystack, by choosing the right variables. We suspect that train-
ing GANs is a trainable skill, that heavily relies on intuition and background
knowledge. GANs are fairly unstable because of the many variables involved.
There are two main scenarios in which a GAN is unbalanced. Either G is too
strong, this is called mode collapse, or D is too strong, which is called vanishing
gradient [28].
Figure 17 shows two examples of mode collapse after epoch 0. G generates a
single pattern, and does not change the pattern during training. It’s possible
that D is stuck in a local minimum. G has then found a pattern which is able
to fool D in that local minimum. Since D cannot escape the minimum, G will
continue generating the same pattern.
The vanishing gradient problem occurs whenever D is too powerful. If D is very
good at classifying data, it’s loss function will converge to some minimum. This
means that D’s gradient to improve becomes smaller and smaller. G learns by
ascending the gradient calculated according to D’s predictions. If D’s gradient
gets smaller, G’s gradient will also get smaller. If D has reached a minimum, G
will not improve.
During the training of BeatGAN, we encountered both mode collapse and the
vanishing gradient problem. Solving mode collapse would often result in van-
ishing gradients and vice versa. When balancing D and G, we accumulated
the sentiment that these two problems are very much connected. Given that
theoretically, GANs always converge, there is some form of balancing D and
G, such that neither of the problems occur. However, since there are so many
variables to adjust and design choices to be made, it is hard to say how much
room for error there is when training a GAN. It seems as though one of the
bottlenecks in this balancing problem is computational power. A lot of trade-
offs are made during training of neural networks. These trade-offs often involve
computational speed and performance of the model. Increasing computational
power would allow us to move towards better performance. We think that the
margin for error when balancing a GAN will increase as computational power
increases.
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A lot of research relating to GANs is focused on improving stability of the net-
works. Authors often propose a method which offers a solution for some GANs,
but not for all GANs. The general view is that these methods should be used
as heuristics. When arriving at this point in the implementation of the GAN,
the approach becomes much more trial-and-error, without much theoretical ar-
gumentation for the heuristics one chooses to implement. Again, with the many
variables involved, one can imagine that not every heuristic will work for every
GAN.
Our research eventually stranded at the trial-and-error phase, in which we made
adjustments to both networks and the data set, and used alternative algorithms
for decreasing the loss functions of the networks. Repeatedly training the net-
works costs time, which ran out before we were able to achieve GAN conver-
gence.

6.3 Review of Method

We created a DCGAN which we trained on a custom data set. The custom data
set contains images or rhythmic patterns. A balance between D and G was not
achieved. BeatGAN produced inconclusive output.
Our GAN did not output the desired results we aimed to produce. No version
of BeatGAN was able to output images that resemble the data set images, nor
MIDI files that resemble the data set MIDI files. It is interesting however, that
the generated patterns are often very structured. We think that this is a result
of the data representation. We do not question the power of GANs as generative
models. There exist many GANs which are able to produce high-quality images,
similar to the data set the GAN was trained on.
Our main concern with our method lies with the data set. Our data set is fairly
small, in comparison to more widely used data sets like CIFAR-10 and MNIST,
which contain around 60.000 and 70.000 images respectively [26][27]. We do not
think that the variation in the data set is too large. Like CIFAR-10 and MNIST,
we included many different classes (genres) of images. GANs have been shown
to work without having to specify a class label for all classes in a data set. The
real image/fake image distinction should be sufficient to generate novel data.
Another concern regarding the data set is the usability of the chosen image
representation for the DCGAN architecture. Our main concern is the sparsity
of white pixel values in the data samples. We think that there might not be
enough pixel data present in the samples to correctly learn the relations these
pixels have to one another. Gillick et al. [12] used a similar music representation.
However, they did not use CNNs to generate new music. The use of a DCGAN
in combination with our music representation has not yet produced any results
as far as we are aware. We conclude that more research is needed to determine
if images with a sparse number of informative pixels can be used successfully in
a DCGAN.
We do think that it is possible to obtain a balanced network using our method.
However, the steps we need to take are obscured by the complexity of the overall
project.
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6.4 Future Research

Goodfellow [19] suggests adding some form of labelling to the GAN. Adding
more labels seems to always improve performance of the GAN. Adding labels
would involve expanding the discriminator and the generator, such that they
can be trained and nudged in some direction using additional labels. This type
of framework results in a conditional GAN.
Karras et al. [29] propose a method for training GANs with limited data. Using
datasets consisting of a couple thousand examples, the authors show that it is
possible to train a GAN. This method seems promising for our research, given
that we identified our limited data set as a possible problem in our research.
Krizhevsky et al. [20] apply data augmentation in their GAN. Data augmen-
tation involves making small adjustments to copies of samples in the data set,
increasing the amount of data in the data set. For example, adjustments can
include rotation and adding noise.
Since training a GAN involves a lot of trial and error, and adjusting the pa-
rameters of the model, we suggest applying evolutionary algorithms as another
layer of abstraction on top of the GAN. These algorithms could learn the op-
timal values of all parameters. We think that this would help tremendously in
the trial-and-error phase of training a GAN. Training a single version of a GAN
costs a lot of time. A large drawback to this method is computational power, as
it would require training many different versions of the GAN. Another drawback
of this method is implementing a fitness function for GANs. GANs are fairly
difficult to evaluate, and evaluating G’s output requires a human eye.

7 Conclusions

We will try to answer our research question by first highlighting the sub-questions.

How can rhythm be represented in a visual format?
We chose an image format which was able to account for the three dimensions
we defined for music: time, pitch and velocity. We placed time on the x-axis of
the images, pitch on the y-axis of the images, and represented velocity as the
brightness of a pixel. This type of implementation has seen success in earlier
work by Gillick et al. [12].

What types of neural networks should be selected within the GAN structure?
Following a commonly used type of GAN, the DCGAN, we chose the neural net-
works in our GAN to be convolutional neural networks. CNNs are often used
in image generation and classification [19][20][22]. A reason CNNs are useful in
this field is because they take pixel context into account.

How does the output of the GAN compare to man-made rhythms?
Since the output of BeatGAN was inconclusive, we are not able to make a fair
comparison with man-made rhythms. A pulse in the output could be identified,
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but we concluded that the pulse was an effect of our image representation of
the output. The output of BeatGAN does not represent the man-made rhythms
the network was trained on.

How suitable are generative adversarial networks for generating rhythmic pat-
terns represented in a visual format?
We do not think that our visual representation is necessarily the cause of non-
convergence. The use of a CNN is also not the cause of non-convergence. How-
ever, we do feel as though a DCGAN is not the best fit for generating images
like the samples in our data set. The sparsity of white pixels in the data set
does not provide much information for the D to process. The white pixels are
sparse, but also very dense with information. We suspect that CNNs are not
very useful to learn this kind of representation. Feature map visualisation would
allow us to investigate what kind of features D is learning. This can provide
clues for how BeatGAN operates, which in turn can steer us in a direction to
better balance D and G.
We also suspect that balancing the network may become easier if we increase
the size of the data set, which would allow us to use a larger batch size. This in
turn allows for more stable training since more data is taken into account when
using gradient descent, which allows for better informed updates of the weights
and biases. We also might achieve better results if we use different types of
neural networks in the GAN.
The MIDI results do not contain much rhythmic information. Looking at the
generated visual patterns however, we do conclude that the networks are learn-
ing. The output of G seems to show intelligence, especially considering the fact
that the input of G is a random noise vector.
Even though the results may be inconclusive, we have added knowledge to the
field of DCGAN training, by showing that the data representation can possibly
have a large impact on the difficulty of training a DCGAN.
We conclude that our implementation of a DCGAN, trained on our visual rep-
resentation of music, was difficult to train. The difficulty of training BeatGAN
could indicate that our method is not very suitable for generating rhythmic
patterns. However, the complexity of the project obscures the drawing of any
strong conclusions.
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Reflections and Acknowledgment3

At the beginning of this project, I was very excited about the path that lied
ahead. Diving into the literature and seeing what results were generated in
preceding research, opened my eyes for what can be achieved within the field
of generative modeling. My excitement only grew while taking the first steps
along the path, searching for useful data sets, and orienting myself on what type
of networks can be used to achieve the results I set out to achieve. During these
first stages, my personal goal was to create a system that could generate new
music with a single button press.
At some point in time, I was introduced to the GAN architecture, which im-
mediately grabbed my attention. The elegance of the idea and the proof of it’s
convergence amazed me. I immediately felt that I wanted to use this architec-
ture in my research. Further exploring GANs did bring me to a realisation that
the process of implementing BeatGAN would be arduous and would require a
lot of time. On top of the implementation, the research would also require a
comprehensive report.
At this point, I would like to thank Dr. Tomas Klos for his supervision of the
project. He not only provided me with tips on how to schedule my work, but
was also an excellent sparring partner when presenting design choices in our
weekly meetings on monday. I thoroughly appreciated the interest Dr. Klos
showed in me and my research and I wish him well.
The magnitude of the project became increasingly clear as time went on. The
first realisation came when I finished the processing of the data set, which by
itself took up a lot of time. At that point, I had not done any research on how
to implement the GAN, which worried me, as I still needed to write the full
data set chapter.
Actually implementing the GAN was easier than I expected, leaving me with
a lot of time to train the GAN. Training the GAN however, was harder than
I expected. Listening to the results made me realise that I did not achieve my
personal goal. Strangely, I was not let down by this realisation. At this point
in the research, my excitement for GANs had only grown, and I was proud of
the knowledge I gained and the work that I had done.
In the last few weeks my day to day consisted of writing and improving the
research. Living in this type of rhythm resulted in a tunnel vision mindset of
finishing the thesis as best as I could. I thoroughly enjoyed writing the dis-
cussion and conclusion chapters, at which point I realised that the project was
coming to a close. This realisation made me take a step back and look at the
project that was the result of weeks of effort. Being able to see the project in
its entirety was relieving, and I realised that I was proud of my work.
My sentiment for the future is hopeful, and I am excited to see what new tech-
niques and architectures the future will bring. GANs offer us proof that neural
networks are not just programs to be used in isolation. As computational power
increases, I argue that more architectures combining different neural networks

3This section was purposely written in the first person.
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will emerge. I think that Ian Goodfellow has shown a level of neural network
abstraction which promotes creativity for programmers and researchers; not see-
ing neural networks as the complex mathematical functions that they are, but
seeing them as tools for sub-problems in the increasingly complex problems the
field of machine learning presents to us. API’s such as PyTorch, TensorFlow
and Keras all follow the trend of abstracting away the complex implementation
details of neural networks. One can implement powerful neural networks with
just a few lines of code. Understanding the general workings of a neural network
is now sufficient to create one. As these API’s introduce machine learning to a
broader audience, my excitement only grows, wondering what type of new and
creative solutions the field will bring.
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