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Abstract

The original idea of this master thesis was to calculate a Hall conductivity
from a field theory with anisotropic scaling in 2 + 1 dimensions using a
dyonic black brane in the 3 + 1 dimensional dual Lifshitz spacetime with a
U(1) x U(1) abelian gauge group. In order to calculate the Hall conductivity
using the dual theory, one needs electric and magnetic charges originating
from the same U(1) gauge field in the bulk. However the dual theory didn’t
admit a solution for this system such that the Hall conductivity could not be
calculated using holography. This led to a no-go theorem for dyonic Lifshitz
black branes in 3 + 1 dimensions.
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Chapter 1

Introduction

1.1 Thesis subject

Transport coefficients of physical systems provide you with a lot of important
information. These coefficients can tell one how currents of matter will flow
when certain potentials are turned on. For example, electrical conductivity
states how much electrical current will flow upon application of an electrical
potential

J = σE . (1.1)
For phases of matter at small couplings, these transport coefficient are well
understood and can be analytically computed.
In the last decades strongly coupled phases were discovered such that known
weakly coupled theories failed to describe the microscopic behaviour. A nice
example of a physical system which exhibits those exotic phases are the high
Tc superconductors.1 Hence, one can not acquire results for the transport
coefficients. This led to a large challenge in condensed matter theory in the
beginning of this century. Luckily a solution was proposed in 2007 by Her-
zog, Kovtun, Sachdev and Son [1]. They proposed that the AdS/CFT corre-
spondence can be used to calculate the transport coefficients of the strongly
coupled phases.
In this thesis we will try to calculate a specific transport coefficient: the Hall
conductivity. We want to find the Hall conductivity for a strongly coupled
field theory, a possible condensed matter system. Furthermore we will assume
that this field theory possesses an anisotropic scaling symmetry. The idea for
this calculation is based on the papers [2] and [3]. In [2] a Hall conductivity

1This will be discussed in section 3.1.
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1.2. OUTLINE

was calculated for a field theory with isotropic scale invariance. The second
paper [3] introduced an analytical solution for field theories at nonzero charge
density with an anisotropic scale invariance using the dual theory. During the
thesis project it became clear that our system couldn’t be solved with the
procedure of [1]. This led to a no-go theorem.

1.2 Outline

This thesis is divided over 2 parts. The first part explains all the concepts
that are required to understand the physics of the thesis subject. We start
with an introduction to the AdS/CFT correspondence. We give a motiva-
tion for the correspondence, we discuss how physical quantities of the two
theories are related and extend the correspondence to theories with finite
temperature, finite chemical potential and background magnetic fields. The
next chapter handles on condensed matter theories. The correspondence will
be generalised to condensed matter theories. Furthermore we derive the for-
mula of the electrical conductivity and conclude that we are able to calculate
the electrical conductivity with the correspondence.
The second part of this thesis covers all the calculations and interpretations of
the thesis subject. We start with a basic model in chapter 4 to give the reader
some comfort with the system. Afterwards we continue with an extended
model in order to calculate the Hall conductivity. It shall become clear that
this model admits no solution in the dual theory and leads to a no-go theorem.
All these results are discussed in the last chapter to conclude this thesis.
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Preliminaries
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Chapter 2

AdS/CFT correspondence

We start with some preliminaries concerning the anti de Sitter/conformal
field theory (AdS/CFT) correspondence. First we make a small journey back
in time to motivate why the AdS/CFT correspondence received much atten-
tion in the physics community. At the same time, we will try to explain some
interpretations of the correspondence. Then we will introduce the quantita-
tive formalism of the AdS/CFT correspondence and show how to compute
correlation functions. We conclude by discussing some generalisations and in-
troduce concepts like non-zero temperature, electric charge and background
magnetic fields in the conformal theory and their counterparts in the AdS-
spacetime.
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2.1. MOTIVATION

2.1 Motivation

The AdS/CFT correspondence was first proposed by Maldacena in 1998 [4].1
The main idea in his paper was that supergravity or string theory on a d+1-
dimensional AdS-spacetime together with a compact manifold corresponds
with a special kind of conformal field theories in d-dimensions. To be precise,
he stated that N = 4 super Yang-Mills theory in four dimensions with gauge
group SU(N) is equivalent to type IIB superstring theory on AdS5 × S5,
where it was assumed that N was large.
There was a lot of activity after the publication of the paper of Maldecena.
Among them Gubser, Klebanov, Polyakov and Witten. They proposed a
relation between observables of the conformal field theory and fields of the
supergravity action [5],[6]. This made it possible to calculate correlation func-
tions in a strongly coupled d-dimensional conformal field theory by perform-
ing much simpler perturbative calculations in a weakly coupled supergravity
theory on a d+ 1-dimensional AdS spacetime. This is the true power of the
correspondence: gathering information about a complicated strongly coupled
theory by considering its much better understood and weakly coupled dual
theory.
Another important feature of the AdS/CFT correspondence that was pointed
out, was the holographic interpretation. One can understand the conformal
field theories of the correspondence as living on a flat d-dimensional boundary
Md of the d + 1-dimensional AdS-spacetime (AdSd+1). See Figure 2.1 for a
graphical interpretation. For example, it was shown in [4] that Md is a copy of
Minkowski space. In this interpretation, the AdS space of the correspondence
is mostly referred to as the bulk and the the flat d-dimensional space-time
on which the conformal field theories live as the boundary.
Likewise it was shown that the bulk spacetime and the boundary theory pos-
sess the same symmetry: SO(2, d). On the boundary this symmetry group is
the group of conformal symmetries of the CFT. In the bulk however, SO(2, d)
is just an ordinary symmetry of the AdSd+1 spacetime. One can conclude that
both theories are different representations of the same symmetry.
The observation of the gauge/gravity duality was a major breakthrough in
the nineties since the understanding of the strong force using QCD was still
far from obvious. Now the duality made it possible to calculate specific prop-
erties of the strongly coupled theories using weakly coupled supergravity
theories or string theories. In particular one hoped that the correspondence
could be applied to supersymmetric versions of QCD. Ironically string theory

1The AdS/CFT correspondence is also called the gauge/gravity duality.
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CFT	  on	  the	  boundary	  𝑀! 	  
	  

𝐴𝑑𝑆!!!	  (the	  bulk)	  

Extra	  dimension	  

Figure 2.1: The AdS/CFT correspondence.

was invented in de sixties to describe the strong nuclear force but somewhere
along the way it got lost of its original track. It was soon enough realised
that string theory had more potential that just describing the strong nu-
clear force and that it could be used as a quantum gravity. The AdS/CFT
correspondence links string theory back to strongly coupled field theories.
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2.2. THE ADS/CFT DICTIONARY

2.2 The AdS/CFT dictionary

In the previous section we introduced the AdS/CFT correspondence and its
motivation. We still need to discuss the quantitative formalism of this theory.
One can interpret it as a ”dictionary”. This dictionary consists of a list of
statements how fields in the bulk should be translated in the boundary, how a
global symmetry should be understood in the bulk, etc. It also enables one to
calculate certain properties of the CFT in the bulk, for instance correlation
functions.
We begin with discussing the formalism that was generated independent by
Witten in [5] and Gubser, Klebanov and Polyakov in [6]. It is important to
note that it was formulated for Euclidean signature. This means that AdSd+1
can be identified with the open unit ball Bd+1, such that the boundary of
AdSd+1 is Sd, the unit sphere in d+ 1-dimensions. Recall that Sd is just the
union of Rd with a point at infinity. A recipe for Minkowski space is given in
[7]. Secondly, gravity terms are not considered in the action of the bulk. The
action is defined in a fixed background AdSd+1 spacetime. In other words,
one looks at fluctuations of the fields around zero.
Consider an action S[φ], defined in the bulk, depending on a scalar field φ(x)
with x ∈ Bd+1. The scalar field satisfies the boundary condition

lim
x→x

φ(x) = φ0(x) , (2.1)

where x ∈ Sd and φ0(x) < +∞ . Since φ is a scalar field, one can always
find a solution to the equations of motions in the bulk together with the
boundary condition given in (2.1). See [5] for a broader discussion.
A first conjecture of the AdS/CFT correspondence states that φ0 couples to a
conformal operator O on the boundary such that the action of the CFT SCFT
acquires a new term: δSCFT =

∫
Sd φ0O. The second and central conjecture of

the correspondence links the expectation value of the exponential of δSCFT
to the partition function of the bulk in the limit x→ x〈

exp
∫

Sd
φ0O

〉
CFT

= ZS(φ→ φ0) . (2.2)

To put it differently: the perturbed partition function of the CFT is equal to
the partition function of the bulk at the boundary.
Often we may approximate the supergravity partition function by

ZS(φ→ φ0) ≈ exp(−IS(φ→ φ0)) , (2.3)

CHAPTER 2. ADS/CFT CORRESPONDENCE 7



2.2. THE ADS/CFT DICTIONARY

with IS(φ → φ0) the classical supergravity action. This is the saddle point
approximation of the path integral. It is clear that this approximation can
only be valid when quantum and string corrections are small. Let us now
assume that this approximation is valid. We can state our AdS-CFT ansatz
in the following way〈

exp
∫

Sd
φ0O

〉
CFT

= exp(−IS(φ→ φ0)) . (2.4)

As before, IS(φ→ φ0) is the value of the classical supergravity action at the
boundary. However some subtleties can arise when calculating this term. It is
possible that the action will diverge when we move towards the boundary. In
that case we have to regularise the action by adding counter terms to render
the action finite at the boundary. In this thesis we will only consider models
that are renormalizable.
Next we turn our attention to gauge symmetries in the bulk. One is interested
how these symmetries are translated on the boundary. Likewise one would
like to know which operators couple to the gauge fields at the boundary. In
[4] it was suggested that a gauge group G of dimension n with gauge fields Ai
(i = 1, . . . , n) in the bulk becomes the global symmetry G of dimension n on
the boundary which possesses n conserved currents Ji. These currents couple
to the boundary values of the gauge fields via a coupling

∫
Sd Ai0Ji, with Ai0

the value of the gauge field Ai at the boundary. For instance, a global U(1)
symmetry on the boundary is translated to an abelian U(1) gauge group in
the bulk.
The goal of this thesis is to calculate a Hall conductivity. As we will see
the Hall conductivity will depend on correlation functions of the current
operators. So we need to explain how to calculate those correlation functions
using the dual theory. Before this can be done, we have to formulate the
AdS/CFT ansatz similar to (2.2) for the gauge fields〈

exp
∫

Sd
Ai0Ji

〉
CFT

= ZS(A→ A0) , (2.5)

with
lim
x→x

Ai(x) = Ai0(x) < +∞ . (2.6)

Since the left hand side of this is equation is the expectation value of the gen-
erating functional, we can calculate the correlation functions of the currents
by simply taking functional derivatives

〈Ji1 . . . Jik〉CFT = 1
ZS

δ

δAi10
. . .

δ

δAik0
ZS(A→ A0)

∣∣∣∣∣
A0=0

. (2.7)

CHAPTER 2. ADS/CFT CORRESPONDENCE 8



2.2. THE ADS/CFT DICTIONARY

In the low energy limit we can use the same approximation as (2.3)

ZS(A→ A0) ≈ exp(−IS(A→ A0)) (2.8)

In this approximation (2.7) becomes

〈Ji1 . . . Jik〉CFT = (−1)k δ

δAi10
. . .

δ

δAik0
IS(A→ A0)

∣∣∣∣∣
A0=0

. (2.9)

To conclude, the procedure for calculating correlation functions using the
Witten formalism can be summarised as follows:

1. Define the action of the supergravity/string theory and derive the equa-
tion of motion for the desired bulk field.

2. Solve the equation of motion in accordance with the boundary condi-
tions.

3. Put this solution back in the action. This will be the generator for
the connected correlation functions of an operator that couples to the
boundary value of the bulk field.

Next we will discuss how the AdS/CFT correspondence is quantitatively
realised when we start with a model with gravity included in the bulk action.2
This prescription is reviewed in [8] by Hartnoll. In this second formalism,
one doesn’t make an assumption about the background of the bulk but one
simultaneously generates the Einstein equations and the equations of motion
of the fields from the action.3 One can see this an extension of the formalism
described above since Witten didn’t take gravity terms into account in the
action of the supergravity. This extended formalism will be used throughout
the remainder of the thesis.
It should be clear that the central assumption of the duality that was for-
mulated in (2.2) has to be modified. The fields of the bulk will now influence
the AdS background spacetime. It is also no longer possible to look at fluc-
tuations around zero, instead fluctuations around the equilibrium values of
the fields will be considered. These fluctuations will now be the sources of
the operators in the CFT. In the next paragraph we will make this statement
mathematically precise.

2In this case one usually assumes a Lorentzian signature. We will follow this.
3When all these equations are solved, we will call the values of the fields equilibrium

values.
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2.2. THE ADS/CFT DICTIONARY

Let φ be the equilibrium value of a field in the bulk, δφ a fluctuation around
this equilibrium value which has a boundary value δφ0 and O an operator
that couples to the source δφ0. The central conjecture of the AdS/CFT cor-
respondence now becomes〈

exp
(
i
∫

Sd
δφ0O

)〉
CFT

= ZS(φ→ φ0 + δφ0) . (2.10)

In this case the expectation value of the exponential of the perturbation of
the field theory action δSCFT =

∫
Sd δφ0O is equal to the partition function

of the fluctuations around φ at the boundary. In the low energy limit this
can again be rewritten〈

exp
(
i
∫

Sd
δφ0O

)〉
CFT

= exp(iIS(φ→ φ0 + δφ0)) , (2.11)

with IS(δφ→ δφ0) the renormalized classical action at the boundary.
As said before, we are interested in gauge fields. For those fields the assump-
tion reads〈

exp
(
i
∫

Sd
δAi0,µJ

µ
i

)〉
CFT

= exp(iIS(A→ A0 + δA0)) . (2.12)

Correlation functions of the currents can still calculated using (2.12)

〈Ji1 . . . Jik〉CFT = δ

δ(δAi10 )
. . .

δ

δ(δAik0 )
IS(A→ A0 + δA0) . (2.13)

The expectation value of a single operator can now be nonzero, since the
equilibrium value of the field does not have to vanish. A similar analysis
can made for fluctuations around the metric tensor. These fluctuations will
source an energy-momentum tensor on the boundary.
The procedure for calculating correlation functions using the formalism of
reviewed by Hartnoll is:

1. Define the action of the supergravity/string theory together with the
gravity terms and derive the equations of motion for the desired bulk
field and the metric.

2. Solve the equations of motion for the bulk fields and the metric

3. Introduce fluctuations in the equations of motion and solve these equa-
tions up to linear order in the fluctuations in accordance with the
boundary conditions.

4. Put this solution back in the action. This will be the generator for
the connected correlation functions of an operator that couples to the
boundary value of the bulk field.

CHAPTER 2. ADS/CFT CORRESPONDENCE 10



2.3. FINITE NONZERO TEMPERATURE CFT AND BLACK
HOLES/BLACK BRANES

2.3 Finite nonzero temperature CFT and black
holes/black branes

Suppose we want to extend the correspondence for CFT in an ensemble such
that a finite nonzero temperature is introduced. In order to work with these
theories in the AdS/CFT correspondence, one needs to know how a nonzero
finite temperature can be established in the bulk.
AdS spacetimes are geometric realisations of scale invariance. Consider for
instance AdSd+1 in the following coordinate system

ds2 = L2
(
−dt

2

r2 + dr2

r2 + dx2

r2

)
, (2.14)

where L is a constant (the AdS radius), x = (x1,x2, . . . ,xd−1) denotes the
spatial coordinates of the boundary, t is the time coordinate and r is the extra
dimension in the bulk. One easily verifies that the transformation r → λr,
t → λt and x → λx doesn’t change the metric. One can also check that a
d-dimensional Minkowski space (the boundary) is recovered at r = 0.
In field theories one assigns temperatures to the period of the Euclidean
time coordinate. See for instance [9]. Therefore, a natural solution is an de-
formation of the bulk AdSd+1 spacetime (2.14) such that the Euclidean time
becomes periodic. Since the boundary may not be altered, the deformation
can only depend on the r coordinate. In general it is possible that the de-
formation will break the scale invariance of the spacetime. We will restrict
ourselves to deformations that are finite in extent, i.e. far away from the
deformation we will recover the AdSd+1 spacetime. This is called an asymp-
totically AdS spacetime.
From these observations, it is natural to consider a modified AdSd+1 space-
time

ds2 = L2
(
−f(r)dt2

r2 + g(r)dr2

r2 + h(r)dx2

r2

)
. (2.15)

Since we need an asymptotically AdSd+1 spacetime f(r), g(r), h(r)→ 1 when
r → 0.
Next we need to insert the proposed metric (2.15) in to the Einstein equations
with a negative cosmological constant Λ

Rµν = 2Λ
d− 1gµν . (2.16)

CHAPTER 2. ADS/CFT CORRESPONDENCE 11



2.3. FINITE NONZERO TEMPERATURE CFT AND BLACK
HOLES/BLACK BRANES

One can verify that this will lead to the following conditions on f , g and h

f(r) = 1−
(
r

rh

)d
, (2.17a)

g(r) = 1
1−

(
r
rh

)d , (2.17b)

h(r) = 1 , (2.17c)

with rh the event horizon and Λ = −d(d−1)
L2 .

Insert this result now into (2.15)

ds2 = L2

r2

−(1−
(
r

rh

)d)
dt2 + dr2

1−
(
r
rh

)d + dx2

 . (2.18)

The obtained solution is called an AdS black brane. It has a close resemblance
with a black hole. The only difference between black holes and black branes is
the fixed-time topology of the event horizon. In a d+1-dimensional spacetime
a black hole has a fixed-time topology of Sd−1, while a black brane has Rd as
fixed-time topology. Since we are working in the coordinate system (2.15),
we find a black brane. If we had considered the coordinate system

ds2 = L2
(
−f(r)dt2

r2 + g(r)dr2

r2 + h(r)dΩ2
d−1

r2

)
, (2.19)

we would have found a black hole.
From a first intuitive method we can understand that a suggested deforma-
tion of the AdSd+1 spacetime with specific boundary conditions leads to the
formation of a black hole (BH) or a black brane (BB). We will further ex-
ploit the properties of these solutions in the next paragraphs. Since those
properties are naturally discussed in Poincaré coordinates, we will start with
transforming the metric (2.14) to the Poincaré coordinate system.
Consider AdSd+1 again in the following coordinates

ds2 = L2
(
−dt

2

r2 + dr2

r2 +
dM2

k,d−1

r2

)
, (2.20)

with4

dM2
k,d−1 =


dφ2 + sin2 φ dΩ2

d−2 if k = 1 and φ ∈ [0, π[ ,
dχ2 + χ2 dΩ2

d−2 if k = 0 and χ ∈ [0,+∞[ ,
dψ2 + sinh2 ψ dΩ2

d−2 if k = −1 and ψ ∈ [0,+∞[ .
(2.21)

4dΩ2
d−2 is the spherical line element in d− 2 dimensions.

CHAPTER 2. ADS/CFT CORRESPONDENCE 12



2.3. FINITE NONZERO TEMPERATURE CFT AND BLACK
HOLES/BLACK BRANES

This metric has an spherical spherical fixed-time topology when k = 1, a
flat fixed-time topology when k = 0 and a hyperbolical fixed-time topology
when k = −1. Since we are interested in black branes or black holes, we
will only consider k = 0 and k = 1 in the remainder of this section. These
coordinates are easily transformed into Poincaré coordinates by the following
transformation:

r = L2

R
. (2.22)

The other coordinates remain unchanged. In Poincaré coordinates (2.20) be-
comes

ds2 = −R
2

L2 dt
2 + L2

R2dR
2 + R2

L2 dM
2
k,d−1 . (2.23)

The boundary of the AdSd+1 space-time can now be found at R→ +∞ and
the radial coordinate R scales as R→ λ−1R.
Next we plug a black brane/black hole into this space-time. This can be done
by introducing a function Vk(R) in the metric. Again k = 0 corresponds with
a black brane and k = 1 with a black hole. The metric (2.23) becomes

ds2 = −Vk(R)dt2 + dR2

Vk(R) + R2

L2 dM
2
k,d−1 . (2.24)

An expression for Vk(R) can be found by solving (2.16) with Λ = −d(d−1)
2L2 .

This leads to
Vk(R) = k − m

Rd−2 + R2

L2 , (2.25)

where m is an integration constant that is related to the mass of the black
brane/black hole. Usually this solution is called the Schwarzschild-AdS solu-
tion in d+1 dimensions. One can check that (2.23) is recovered when we take
R → +∞. This means that the asymptotical AdS requirement is satisfied.
Likewise one obtains (2.23) when m = 0. This is nothing else then erasing
the black brane/black hole from the AdSd+1 spacetime. The event horizon
Rh of the BH/BB is the largest root of

Vk(Rh) = 0 . (2.26)

Hence near this event horizon one can expand Vk(R)

Vk(R) = V ′k(Rh) (R−Rh) +O (R−Rh)2 . (2.27)

Finally we can start discussing the temperature of a black brane/black hole.
As previously mentioned, the temperatures of a field theory is defined as the

CHAPTER 2. ADS/CFT CORRESPONDENCE 13
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HOLES/BLACK BRANES
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Figure 2.2: Scharzschild AdSd+1 black brane/black hole which leads to a
temperature TS on the boundary.

period of the Euclidean time. For this reason, we need to Wick rotate the
Lorentzian time coordinate t to find the Euclidean time coordinate τ

τ = it . (2.28)

This implies that (2.24) transforms into

ds2 = Vk(R)dτ 2 + dR2

Vk(R) + R2

L2 dM
2
k,d−1 . (2.29)

Near the event horizon this becomes

ds2 ≈ V ′k(Rh) (R−Rh) dτ 2 + dR2

V ′k(Rh) (R−Rh)
+ R2

L2 dM
2
k,d−1 . (2.30)

Consider now the following coordinate transformation

ρ = 2√
|V ′k(Rh)|

√
R−Rh . (2.31)

Combining this transformation with (2.30), we find

ds2 ≈
(V ′k(Rh))2

4 ρ2dτ 2 + dρ2 + . . . . (2.32)

CHAPTER 2. ADS/CFT CORRESPONDENCE 14



2.3. FINITE NONZERO TEMPERATURE CFT AND BLACK
HOLES/BLACK BRANES

These are just polar coordinates of R2 where τ needs to satisfy the following
condition to avoid a conical singularity

τ = τ + 4π
|V ′k(Rh)|

. (2.33)

This defines the period P of τ

P = 4π
|V ′k(Rh)|

. (2.34)

Since the period of the Euclidean time coordinate is inversely proportional
to the temperature, we find the expression for the temperature of the black
hole

TS = |V
′
k(Rh)|
4π . (2.35)

If we now plug (2.25) into this equation, we find

TS = 1
4π

(
m(d− 2)
Rd−1
h

+ 2Rh

L2

)
. (2.36)

Using (2.26), we can rewrite m in function of Rh such that TS becomes

TS = 1
4π

(
k(d− 2)
Rh

+ Rhd

L2

)
. (2.37)

Introducing black branes/black holes into the AdSd+1 spacetime causes the
Euclidean time coordinate to be periodic which gives rise to a nonzero tem-
perature. This is dual to placing a CFT in an ensemble, see Figure 2.2. It
also possible to derive the entropy of an AdS black brane/black hole, simi-
lar to the thermodynamic analysis of a black brane/black hole. We will not
consider this. The interested reader can find a discussion on these topics in
[10], [11].
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2.4. BACKGROUND MAGNETIC FIELDS AND ELECTRIC CHARGES
IN CFT AND CHARGED BLACK HOLES/BLACK BRANES

2.4 Background magnetic fields and electric
charges in CFT and charged black holes/black
branes

The second extension of the AdS/CFT correspondence that we will dis-
cuss are electric charges and electromagnetic (EM) background fields on the
boundary. In many theories, especially condensed matter theories, we can
treat the electromagnetic U(1) gauge (local) symmetry as a global symmetry.
This means that we only consider an effective field theory. Charged matter
is considered in electromagnetic background fields and the interactions with
photons are neglected.
In subsection 2.2 we already argued that the dual of a global symmetry on the
boundary is a gauge symmetry in the bulk. In the remainder of this section
we will show that an electric charge density and a magnetic background field
on the boundary correspond with the addition of an electromagnetic U(1)
gauge field in the bulk. We will first consider the purely electric case in the
bulk where the U(1) gauge field A only possesses one nonzero component At.
Afterwards we will discuss the full electromagnetic model with other nonzero
components.

2.4.1 Reissner-Nordström AdSd+1 black brane/black brane

Consider the d+ 1 dimensional Einstein-Maxwell action in the bulk

SEM = −1
16πG

∫
dd+1x

√
−g

[
R− 2Λ− 1

4F
2
]
, (2.38)

with F = dA and Λ = −d(d−1)
2L2 . The equations of motions corresponding to

this Einstein-Maxwell action are

Rµν −
R
2 gµν −

d(d− 1)
2L2 gµν = 1

2FµρF
ρ
ν −

F 2

8 gµν , (2.39a)

DµF
µν = 0 . (2.39b)

We expect the presence of a U(1) gauge field A to change the AdSd+1 metric.
For that reason we will search for deformations of (2.23). We will consider
the ansatz for the metric as given in (2.24)

ds2 = −Wk(R)dt2 + dR2

Wk(R) + R2

L2 dM
2
k,d−1 . (2.40)
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For the d+ 1 dimensional gauge field A we take

A = At(R)dt . (2.41)

Assuming (2.40) and (2.41) we can solve the equations of motion given in
(2.39) to find

Wk(R) = k − m

Rd−2 + q2

2(d− 1)(d− 2)R2(d−2) + R2

L2 , (2.42a)

At(R) = K − q

(d− 2)Rd−2 , (2.42b)

FRt = q

Rd−1 , (2.42c)

where q, m and K are integration constants. The obtained solution is a d+ 1
Reissner-Nordström (RN)-AdS black brane/black hole with a charge density
ρ proportional to q (see below) and an event horizon R̃h. At must vanish at
R̃h in order to be well defined, see [12], [13]. This condition fixes the value of
K

K = q

(d− 2)R̃d−2
h

, (2.43)

such that

Wk(R) = k − m

Rd−2 + q2

2(d− 1)(d− 2)R2(d−2) + R2

L2 , (2.44a)

At(R) = q

(d− 2)R̃d−2
h

1−
(
R̃h

R

)d−2 = µ

1−
(
R̃h

R

)d−2 , (2.44b)

FRt = q

Rd−1 , (2.44c)

with µ = q

(d−2)R̃d−2
h

. It will be shown that µ can be seen as a chemical
potential on the boundary, hence its name. Again, we are only interested in
the values k = 0, 1. Since the metric that we obtained has the same form as
(2.24), we can associate a temperature to the black brane/black hole using
formula (2.35). This gives

TRN = 1
4π

(
k(d− 2)
R̃h

+ R̃hd

L2 −
q2

2(d− 1)R̃h

)
. (2.45)

This RN-AdSd+1 solution has to be the consistent with the Scharzschild-
AdSd+1 solution. In other words, we must obtain the solution found in section
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2.3 when q vanishes in (2.44a). Indeed when we take q → 0, we find

Wk(R)→ k − m

Rd−2 + R2

L2 = Vk(R) , (2.46a)

At(R)→ 0 , (2.46b)
FRt → 0 , (2.46c)
R̃h → Rh , (2.46d)
TRN → TS . (2.46e)

Now we are ready to investigate what this RN-AdSd+1 solution introduces
a charge density on the boundary. From the previous section we know that
the temperature found in (2.45) corresponds with the temperature of the
field theory in an ensemble on the boundary. However the main focus in this
section is on the gauge field A and its field strength Frt. We claim that a
gauge field in the bulk with only At different from zero gives rise to a chemical
potential and a charge densities on the boundary. To see this, recall (2.44b).
When R→ +∞, we have

At → µ . (2.47)
When d = 2, this value diverges. In section 2.2 we argued that we only
consider bulk fields which remain finite on the boundary. This means that
d > 2 . Since (2.47) represents an electrical potential at the boundary with-
out an spacial dependence, it is often interpreted as a chemical potential.
From (2.12) we know that fluctuations of the bulk field component At on
the boundary A0,t = µ couple to the charge density operator J t such that
a nonzero expectation value of the J t will arise in the field theory on the
boundary. We can calculate the charge density using (2.13)

ρ = 〈Jt〉 = q

16πG , (2.48)

which leads to a total charge

Q = qVd−1

16πG , (2.49)

with Vd−1 = 1
ld−1

∫
dd−1x a dimensionless volume. This proves the claim that

was made earlier. One finds a graphical illustration of this correspondence in
Figure 2.3.
For the component of the field strength tensor, Frt, we can see from (2.44c)
that the magnitude of this component has a power law behaviour as we move
towards the boundary and eventually vanishes on the boundary. From this
observation, we can understand that an electrical field in the bulk doesn’t
lead to a background electrical field on the boundary. This is in contrast with
a magnetic field as we will show in the next model.
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Figure 2.3: Reissner-Nordström AdSd+1 black brane/black hole which leads
to a temperature TRH and a net charge density on the boundary.

2.4.2 Dyonic AdS4 black brane/black hole

Now we are going to extend the previous model to a dyonic black brane/black
hole in 3 + 1 dimensions. Dyonic refers to an electrical and a magnetically
charge in the black brane/black hole. This requires that the gauge field also
acquires a magnetic charge by considering a second nonzero spatial compo-
nent of the gauge field

A = At(R)dt+Bydx , (2.50)

with B a constant. This gauge field introduces, besides a charge density,
a background magnetic field on the boundary as will become clear in this
subsection. Since d = 3, there are only 2 spatial directions on the boundary.
We will call them x and y in the remainder of this subsection.
We will consider the same action and metric as in the previous subsection.
For d = 3, one finds

SEM = −1
16πG

∫
d4x
√
−g

[
R− 2Λ− 1

4F
2
]
, (2.51a)

ds2 = −Uk(R)dt2 + dR2

Uk(R) + R2

L2 dM
2
k,d−1 . (2.51b)
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From (2.51a) we find the following equations of motion

Rµν −
R
2 gµν −

3
L2 gµν = 1

2FµρF
ρ
ν −

F 2

8 gµν , (2.52a)

DµF
µν = 0. (2.52b)

Solving these equations gives

Uk(R) = k + R2

L2 −
m

R
+ B2L4 + q2

4R2 , (2.53a)

At = q

R̂h

(
1− R̂h

R

)
, (2.53b)

FRt = q

R2 , (2.53c)

Fxy = B . (2.53d)

This solution is called a dyonic AdS4 black brane/black hole. We obtain an
extra magnetic charge in the black brane/black hole and a second nonzero
component Fxy of the EM field strength tensor in comparison with subsection
2.4.1. The second nonzero component of F sources a magnetic field in the R-
direction of the bulk which is perpendicular to the 2 spatial directions x and
y. Rotational invariance is not broken on the boundary. The event horizon
of this black brane/black hole is called R̂h and is determined by the largest
root of the following equation

Uk(R̂h) = 0 . (2.54)

For future reference we explicitly state the dyonic AdS4 black brane solution

Uk(R) = R2

L2

(
1− mL2

R3 + B2L6 + q2L2

4R4

)
, (2.55a)

At = q

R̂h

(
1− R̂h

R

)
, (2.55b)

FRt = q

R2 , (2.55c)

Fxy = B . (2.55d)

Again the temperature can be calculated using formula (2.35)

Td = 1
4π

(
k

R̂h

+ 3R̂h

L2 −
B2L4 + q2

4R̂3
h

)
. (2.56)

CHAPTER 2. ADS/CFT CORRESPONDENCE 20



2.4. BACKGROUND MAGNETIC FIELDS AND ELECTRIC CHARGES
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It is readily checked that this result is consistent with the RN-AdS4 black
brane/black hole solution if B → 0 and with the Scharzschild AdS4 black
brane/black hole solution if q, B → 0.
As in the previous RN-AdSd+1 model, we investigate the boundary behaviour
of the bulk fields. The analysis for At and FRt is the same as before. Here
we will focus on the behaviour of Fxy. One can see from (2.55d) that the
magnitude of Fxy does not depend on the bulk coordinate R. Hence as we
move towards the boundary, Fxy doesn’t decrease as FRt did. Since this mag-
netic field has a non-zero constant value at the boundary, one can interpret
it as a background magnetic field for the field theory. It was already stated
above that this background magnetic field is perpendicular to x and y. We
can conclude that a dyonic BH/BB in the bulk gives rise to non-zero charge
density and a background magnetic field for the field theory on the boundary,
see Figure 2.4.
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Figure 2.4: Dyonic AdS4 black brane/black hole solution which leads to a
temperature Td, a net charge density and a constant magnetic background
field on the boundary.
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Chapter 3

Holography and condensed
matter

In this chapter we will discuss condensed matter theories (CMT) and their
applications in the AdS/CFT correspondence. When the correspondence is
applied to CMT, we call it the AdS/CMT correspondence. Since the area of
condensed matter is quite broad, we will focus on some specific topics that
will be used in this thesis. One of these topics is the (Hall) conductivity.
We start with motivating the AdS/CMT correspondence. In the second sec-
tion we will introduce the general concepts of linear response theory. After-
wards we will apply linear response theory to derive the Kubo formula, which
is used to calculate (Hall) conductivities.
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3.1. FROM ADS/CFT TO ADS/CMT

3.1 From AdS/CFT to AdS/CMT

Condensed matter physicists have discovered new materials and new phases
of materials in the last decades that behave like strongly coupled systems.
One can think of several examples: high Tc superconductors, cold atoms,
graphene etc. The microscopic behaviour of these materials and phases can
not be described by standard weakly coupled quasiparticle theories. The
examples we just have listed are part of a bigger class of systems, namely
quantum critical systems.
Quantum critical systems undergo quantum phase transitions. These phase
transitions, mostly continuous, occur at zero temperature and are driven
by quantum fluctuations, hence the name. The quantum fluctuations even
dominate the thermal fluctuations at nonzero temperatures where ~ω > kBT ,
with ω the frequency of the quantum fluctuation. This region is called the
quantum critical region. In Figure 3.1 one can find a graphical example of a
quantum phase transition.

Figure 3.1: Phase diagram of a superfluid-insulator quantum phase transition.
The coupling constant is on the horizontal axis and the temperature on the
vertical axis. The pink region is the quantum critical region and the green
line represents the classical Kosterlitz-Thouless phase transition. Illustration
from [14].

The point in the phase diagram that indicates the zero temperature quantum
phase transition is called the quantum critical point. It is at the critical point
and in the quantum critical region that the known theories fail to describe the
microscopic behaviour of the system. The mass of the quasiparticles diverges
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such that the system becomes strongly coupled. The system becomes also
scale invariant. See [14], [15] for more information on these topics.
From these observations, one can naturally suggest the application of the
AdS/CFT correspondence in this regime to calculate correlation functions.
The duality has already been applied to calculate transport coefficients of
certain CMT. An example is found in Figure 3.2. In this thesis we will try
to calculate a Hall conductivity for a strongly coupled field theory at finite
temperature with anisotropic scale invariance using the duality described in
the previous chapter.

	  

	  

Figure 3.2: Electrical conductivity of graphene in function of the frequency
of the applied AC current. The first row represents the experimental data
and the second row represents results computed from the AdS/CFT corre-
spondence. Figures from [8].
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3.2 Linear response and transport coefficients

We will proceed with computing the electrical conductivity tensor and its
place in the AdS/CFT correspondence in this section. The electrical conduc-
tivity tensor, σ, is defined by the equation

Ji(r, t) =
2∑
j=1

∫
d3r

∫ +∞

−∞
dt′σij(r, r′, t, t′)Ep

l (r′, t′) . (3.1)

We will start with a general introduction to linear response theory as given
in [16]. Afterwards apply this formalism to derive a formula for σ.

3.2.1 Linear response theory

Consider a physical system described by an unperturbed time independent
Hamiltonian H0 and a small perturbation H̃(t) at a time t. We work in the
Schrödinger picture. The Hamiltonian of the total system is

H(t) = H0 + H̃(t) . (3.2)

Furthermore we use grand canonical ensemble. The density operator of the
unperturbed system is

ρ0 = 1
Z0

exp(−βH0) , (3.3)

with H0 = H0 − µN and Z0 = Tr(exp(−βH0)). For the total system the
density operator is given by

ρ(t) = 1
Z

exp(−βH(t)) , (3.4)

where H(t) = H(t)− µN and Z = Tr(exp(−βH(t))). One can approximate
this expression by

ρ(t) ≈ ρ0 + ρ̃(t) (3.5)
where ρ̃(t) only contains terms of first order in H̃(t) such that ρ(t) = ρ0 when
the perturbation is absent.
Recall from a course on statistical physics that the expectation value of a
general operator A is completely fixed by the the density operator

〈A(t)〉 = Tr (ρ(t)A) . (3.6)

This expectation value is the physical and measurable quantity associated
with the operator A at time t. From equation (3.6) one can understand
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why it is crucial to have an expression for the density operator ρ(t). This
expression can be calculated using the equation of motion1

i~
dρ

dt
= [H(t), ρ(t)] ≈ [H0 + H̃(t), ρ0 + ρ̃(t)] . (3.7)

Since H̃(t) is a small perturbation, it suffices to consider up to linear order
in H̃(t)2

i~
dρ̃

dt
≈ [H0, ρ̃(t)] + [H̃(t), ρ0] . (3.8)

Now we switch to the Dirac picture

i~ exp ( i
~
H0t)

dρ̃

dt
exp (− i

~
H0t) = [H0, ρ̃H(t)] + [H̃H(t), ρ0] , (3.9)

with ρ̃D(t) = exp ( i~H0t)ρ̃(t) exp (− i
~H0t) and H̃D(t) = exp ( i~H0t)H̃(t)

exp (− i
~H0t). This can be rearranged to

i~
ρ̃D(t)
dt

= [H̃D, ρ0] . (3.10)

This differential equation together with the boundary condition (no fluctua-
tions at the beginning)

lim
t→−∞

ρ̃D(t) = 0 , (3.11)

is solved by
ρ̃D(t) = − i

~

∫ t

−∞
dt′[H̃D(t′), ρ0] . (3.12)

Eventually (3.5) becomes

ρ(t) = ρ0 −
i

~

∫ t

−∞
dt′ exp (− i

~
H0t)[H̃D(t′), ρ0] exp ( i

~
H0t) . (3.13)

Now we are finally ready to calculate the expectation value of operator A in
(3.6)

〈A(t)〉 = 〈A〉0 −
i

~

∫ t

−∞
dt′ Tr

(
exp (− i

~
H0t)[H̃D(t′), ρ0] exp ( i

~
H0t).A

)
= 〈A〉0 −

i

~

∫ t

−∞
dt′ Tr

(
[H̃D(t′), ρ0]AD(t)

)
1It might be confusing due to the resemblance with the Heisenberg EOM but it is

important to stress that this equation is in the Schrödinger picture. This equation is often
referred to as the ”von Neumann-Liouville equation”.

2Since 0 = i~dρ0
dt = [H0, ρ0], we can drop [H0, ρ0] and dρ0

dt .

CHAPTER 3. HOLOGRAPHY AND CONDENSED MATTER 26



3.2. LINEAR RESPONSE AND TRANSPORT COEFFICIENTS

= 〈A〉0 −
i

~

∫ t

−∞
dt′ Tr

(
ρ0[AD(t), H̃D(t′)]

)
= 〈A〉0−

i

~

∫ t

−∞
dt′〈[AD(t), H̃D(t′)]〉0︸ ︷︷ ︸

Ã(t)

, (3.14)

with 〈. . . 〉0 = Tr(ρ0 . . .) and AH(t) = exp ( i~H0t)A exp (− i
~H0t). It is clear

that Ã(t) can be interpreted as the expectation value of the response of the
operator A at a time t due to the perturbation of the system. This is a linear
response because we used a first order approximation.

3.2.2 The Hall conductivity tensor

This thesis focusses on condensed matter systems with anisotropic scale in-
variance in 2+1-dimensions, with a charge density ρi and background mag-
netic field Bi, all originating from the fields Ai or the associated conserved
current Ji, with i = 1, . . . , n. For such a system we would like to calculate
the response of the current Ji to a time dependent electrical field Ei. This
response gives us all the information about the electrical conductivity, see
(3.1). Since the magnetic fields Bi will influence the currents Ji, the elec-
trical conductivity will require off diagonal terms. These terms are mainly
called the Hall conductivity. Let us derive the formula for a conductivity
tensor using linear response theory introduced in the previous subsection.
Consider now the condensed matter system as described above. We perturb
this system using a time dependent vector potential Ap,i(r, t). This induces
a time dependent electric field Ep,i(r, t) which in turn induces an AC electric
current Jpi (r, t).3 Mathematically this becomes

H̃(t) = −
2∑
i=1

2∑
j=1

∫
d3rJp,ij (r)Ap,ij (r, t) , (3.15)

where 1 is the x-direction and 2 the y-direction.
We will assume that the time dependence of Ap(r, t) will be governed by
exp (−iωt). This gives

H̃(t) = −
2∑
i=1

2∑
j=1

∫
d3rJp,ij (r)Ap,ij (r) exp (−iωt) . (3.16)

3The superscript p isn’t an index but indicates that the quantity at hand represents a
perturbation.
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Using the identity −∂tAp,ij (r, t) = Ep,i
j (r, t), we can transform the previous

equation to4

H̃(t) = −
2∑
i=1

2∑
i=j

∫
d3rJp,ij (r)

Ep,i
j (r)
iω

exp (−iωt)

= i

ω

2∑
i=1

2∑
i=j

∫
d3rJp,ij (r)Ep,i

j (r, t) . (3.17)

In the Dirac picture, the perturbation can be written as

H̃D(t) = i

ω

2∑
i=1

2∑
j=1

∫
d3r exp ( i

~
H0t)Jp,ij (r) exp (− i

~
H0t)Ep,i

j (r, t)

= i

ω

2∑
i=1

2∑
j=1

∫
d3rJp,iD,j(r, t)E

p,i
j (r, t) . (3.18)

Now we can calculate the expectation value of the current with the formula
given in (3.14)

〈Jp,jk (r, t)〉 = 〈Jp,jk (r)〉0 + 1
~ω

2∑
i=1

2∑
l=1

∫
d3r′

∫ +∞

−∞
dt′〈[Jp,jD,k(r, t), J

p,i
D,l(r′, t′)]〉0

Ep,i
l (r′, t′) . (3.19)

This can be rewritten using the cyclic property of the trace and that currents
from different gauge fields commute

〈Jp,jk (r, t)〉 = 〈Jp,ik (r)〉0 + 1
~ω

2∑
i=1

2∑
l=1

∫
d3r′

∫ +∞

−∞
dt′θ(t− t′)δji

〈[Jp,jD,k(r, t− t′), J
p,i
D,l(r′, 0)]〉0Ep,i

l (r′, t′)
= 〈Jp,jk (r)〉0 +

2∑
i=1

2∑
l=1

∫
d3r′

∫ +∞

−∞
dt′σjikl(r, r′, t− t′)E

p,i
l (r′, t′)︸ ︷︷ ︸

δJp,i
k

(r,t)

. (3.20)

We have found an expression for the conductivity tensor σ using linear re-
sponse theory as we intended. One is often interested in the frequency de-
pendence of the conductivity tensor. This becomes more transparent after a

4Ep,ij (r, t) = iωAp,ij (r) exp (−iωt) = Ep,ij (r) exp (−iωt)
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Fourier transformation of δJpk (r, t)

δJp,jk (r, ω′) =
∫ +∞

−∞
dt

1
~ω

2∑
i=1

2∑
l=1

∫
d3r′

∫ +∞

−∞
dt′θ(t− t′)δji

〈[Jp,jD,k(r, t− t′), J
p,i
D,l(r′, 0)]〉0Ep,i

l (r′, t′) exp (iω′t)

= 1
~ω

2∑
i=1

2∑
l=1

∫
d3r′

∫ +∞

−∞
dt′
∫ +∞

−∞
dt
∫ +∞

−∞

dω′′

2π E
p,i
l (r′, ω′′)

exp (−iω′′t′)θ(t− t′)δji〈[Jp,jD,k(r, t− t′), J
p,i
D,l(r′, 0)]〉0 exp (iω′t)

= 1
~ω

2∑
i=1

2∑
l=1

∫
d3r′

∫ +∞

−∞
dt′
∫ +∞

−∞
dt
∫ +∞

−∞

dω′′

2π E
p,i
l (r′, ω′′)

exp (−i(ω′′ − ω′)t′)θ(t− t′)δji〈[Jp,jD,k(r, t− t′), J
p,i
D,l(r′, 0)]〉0

exp (iω′(t− t′)) . (3.21)

Now perform a coordinate transformation

u = t− t′ , (3.22a)
v = t′ . (3.22b)

to find

δJp,jk (r, ω′) = 1
~ω

2∑
i=1

2∑
l=1

∫
d3r′

∫ +∞

0
du
∫ +∞

−∞
dv
∫ +∞

−∞

dω′′

2π E
p,i
l (r′, ω′′)

exp (−i(ω′′ − ω′)v)δji〈[Jp,jD,k(r, u), Jp,iD,l(r′, 0)]〉0 exp (iω′u)

= 1
~ω

2∑
i=1

2∑
l=1

∫
d3r′

∫ +∞

0
du δji〈[Jp,jD,k(r, u), Jp,iD,l(r′, 0)]〉0

exp (iω′u)Ep,i
l (r′, ω′)

=
2∑
i=1

2∑
l=1

∫
d3r σjikl(r, r′, ω′)E

p,i
l (r′, ω′) . (3.23)

Since Ep,i
l (r, ω′) = 2πEp,i

l (r)δ(ω − ω′), there can only be a non-zero contri-
bution when ω′ = ω and we will only consider the conductivity tensor σ at
this particular frequency. We obtain the following result for the conductivity
tensor

σjikl(r, r′, ω) = 1
~ω

2∑
i=1

2∑
l=1

∫
d3r′

∫ +∞

0
dt δji〈[Jp,jD,k(r, t), J

p,i
D,l(r′, 0)]〉0 exp (iωt) .

(3.24)
At the point it should be clear why the duality is interesting to use. Mostly it
will take a lot of work to compute the expectation value of the commutator
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(3.24). If a condensed matter system can be described by a scale invariant
theory, we can calculate this expectation value easily using the AdS/CFT
formalism that was developed in subsection 2.2 and 2.4.2. A nice example of
a Hall conductivity with one global U(1) field and an associated conserved
current on the boundary can be found in [2].
We need to stress that this conductivity tensor only makes sense when the
currents, i.e. the charge densities, and the magnetic fields have the same
index i. This is obvious for the electric charges since the expression for the
conductivity tensor is zero when the charge densities of the currents have
different values. For the magnetic fields this is more subtle. However the Hall
conductivity will be zero when we consider one magnetic background field
and one charge density originating from a field and a conserved current with
different index, due to the Maxwell equations.
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Chapter 4

The magnetic Lifshitz black
brane

In this second part of the thesis we will look at the dual theory of a model
with anisotropic scale invariance. The specific anisotropic scale behaviour
that we are going to investigate is given by

t→ λzt , x→ λx , (4.1)

where z is called the dynamical exponent. This scaling is also known as
Lifshitz scaling. One should notice that in the limit z → 1, the isotropic
scaling behaviour of the AdS/CFT correspondence is recovered.
As was shown in [17], these theories exhibit gravity duals, called Lifshitz
spacetimes. For a d-dimensional field theory on the boundary with Lifshitz
scaling, the d+ 1 dimensional dual spacetime has a Lifshitz metric that can
be written as

ds2 = −R
2z

L2z dt
2 + L2

R2dR
2 + R2

L2 dM
2
k,d−1 . (4.2)

The constant L is the radius of the corresponding AdSd+1 spacetime, z the
dynamical exponent and the line element dM2

k,d−1 was previously defined
in (2.21). This is an extension of the AdSd+1 spacetime that we considered
earlier. Furthermore we let R scale as R→ λ−1R, such that this metric will
be invariant under Lifshitz scalings.
In this chapter we will have a look at a magnetic Lifshitz black brane. The
first part of this chapter further explains this model. The equations of motion
are also derived. Afterwards we will explicitly solve the equations of motion
and finally the obtained solutions will be discussed.
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4.1 Introducing the magnetic Lifshitz model

As was mentioned before, we will consider a magnetic Lifshitz black brane.
We will work in a 3+1 dimensional bulk. A natural choice of the metric in
the bulk is

ds2 = L2

R2
dR2

b0(R) − b0(R)R
2z

L2z dt
2 + R2

L2 (dx2 + dy2) , (4.3)

where b0(R) is a scalar function depending only on R.1 This metric is just a
deformation of (4.2). We also constrain b0(R), such that we recover a Lifshitz
spacetime when R→∞

b0(R)→ 1 , (4.4)

This will guarantee that Lifshitz scale invariance is recovered close to the
boundary.
In [3] and [18], it was shown that one U(1) gauge field does not suffice to ob-
tain an electric degree of freedom for Lifshitz spacetimes. This gauge field is
fixed by the equations of motions to support the asymptotic Lifshitz space-
time. For that reason, it was proposed to consider a U(1) x U(1) abelian
gauge symmetry with 2 gauge fields to obtain an electric field with a free
parameter. We will follow the same approach for the magnetic Lifshitz black
brane.
Next we need to define the action of our model

S = − 1
16πG4

∫
d4x
√
−g

[
R− 2Λ− 1

2(∂φ)2 − 1
4

2∑
i=1

eλiφF 2
i

]
, (4.5)

where φ is a scalar field that only depends on R, the λi are coupling constants
and Λ < 0 is the cosmological constant. Notice that the coupling between φ
and the gauge fields Ai is exponential. Every power of φ couples to the gauge
fields. This model was solved for an electric Lifshitz black brane in d + 1
dimensions, see [3].
The gauge fields are given by

Ai = Bixdy , (4.6)

where i = 1, 2 and x, y are the two spatial components on the boundary. This
is the simplest model that can be constructed with a nonzero magnetic field
and no electric field.

1The subscript zero in b0(R) indicates that we consider the spatial line element dM2
0,2.
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In the remainder of this chapter we will mainly be working with the elec-
tromagnetic field tensor instead of the gauge field itself. For that reason let
us calculate the components of this tensor using (4.6). The only nonzero
components of the electromagnetic field strength tensor are

(Fi)xy = Bi , (4.7a)

(Fi)xy = Bi
L4

R4 . (4.7b)

From these equations it is obvious that the physical magnetic field can be
thought of as a constant field along the R direction, perpendicular to the two
spatial directions.
We have all the ingredients to calculate the equations of motion from this
model. These are derived by varying the action (4.5) to the various fields

Rµν − Λgµν −
1
2∂µφ∂νφ−

1
2

2∑
i=1

eλiφ
[
(Fi)µσ(Fi)σν −

1
4F

2
i gµν

]
= 0 , (4.8a)

Dµ(eλiφF µν
i ) = 0 , (4.8b)

�φ− 1
4

2∑
i=1

λie
λiφF 2

i = 0 . (4.8c)

Here we used the notation � = 1√
−g∂µ
√
−ggµν∂ν and Dµ is the covariant

derivative. In the next section we will solve these equations using (4.3) and
(4.7).
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4.2 Solving the equations of motion

Lets us solve the equations of motion (4.8) by starting with equation (4.8b)

Dµ(eλiφF µν
i ) = ∂µ(eλiφF µν

i ) + ΓµµρeλiφF
ρν
i + ΓνµρeλiφF

µρ
i = 0 . (4.9)

Since φ and Fi only depend on R and (Fi)µν is zero for µ = R or ν = R, we
can drop the term ∂µ(eλiφF µν

i ). Before we can proceed, we need to calculate
the Christoffel symbols

Γλµν = 1
2g

λσ(∂µgνσ + ∂νgσµ − ∂σgµν) . (4.10)

Using (4.3) we can see that the only non-vanishing components are

ΓRRR = −∂Rb0

2b0
− 1
r
, (4.11a)

ΓRtt = 1
L2z+2

(
R2z+2b0∂Rb0 + 2zR2z+1b2

0

)
, (4.11b)

ΓRij = −δij
R3b0

L4 , (4.11c)

ΓtRt = ΓttR = ∂Rb0

2b0
+ z

R
, (4.11d)

ΓiRj = ΓijR =
δij
R
. (4.11e)

In these formulas i, j are used to denote the spatial coordinates on the bound-
ary, x and y. We have to be careful not to confuse these spatial Lorentz indices
with the indices of the gauge fields. I will explicitly state which indices cor-
respond with the former and which ones to the latter if confusion is possible.
With the Christoffel symbols (4.11), the reader can straightforwardly verify
that equation (4.9) is trivially satisfied for each value of ν.
Next consider equation (4.8a). We start by raising the index ν

Eρ
µ = Rµνg

νρ − Λδρµ −
1
2∂µφ∂

ρφ− 1
2

2∑
i=1

eλiφ
[
(Fi)µσ(Fi)ρσ −

F 2
i

4 δρµ

]
= 0 .

(4.12)
We begin by solving the linear combination Et

t − ER
R = 0

Et
t − ER

R = Rttg
tt −RRRg

RR + 1
2(∂Rφ)2gRR = 0 . (4.13)

The Ricci tensor is defined by

Rµν = ∂ρΓρνµ − ∂νΓρρµ + ΓρρλΓλνµ − ΓρνλΓλρµ . (4.14)
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With the expressions given in (4.11) and (4.14) we can calculate Rtt and
RRR

Rtt = b0R
2z

2L2z+2

(
R2∂2

Rb0 + (3z + 3)R∂Rb0 + 2z(z + 2)b0
)
, (4.15a)

RRR = − 1
2R2b0

(
R2∂2

Rb0 + (3z + 3)R∂Rb0 + 2(z2 + 2)b0
)
. (4.15b)

Using (4.15) we can rewrite (4.13) to find

(∂Rφ)2 = 4(z − 1)
R2 . (4.16)

Solving this differential equation gives an expression for φ

φ = ln
(
R

R0

)±2
√
z−1

, (4.17)

with R0 an integration constant. Equivalently one can write

eφ = µR±2
√
z−1 , (4.18)

with µ = R∓2
√
z−1

0 . Note that µ is not related to any chemical potential.
Secondly we consider (4.12) with ρ = i and µ = j

Ei
j = Rjig

ii−Λδij−
1
2∂jφ∂

iφ− 1
2

2∑
k=1

eλkφ
[
(Fk)jσ(Fk)iσ −

F 2
k

4 δij

]
= 0 . (4.19)

Recall that i and j denote the spatial coordinates on the boundary. k is the
gauge field index. Again we have to calculate a component of the Ricci tensor
namely Rji. Using (4.11) the following result is obtained

Rji = δjiR
2

L4 [−R∂Rb0 − b0(z + 2)] . (4.20)

Inserting this in (4.19) gives

δij
L2 [−R∂Rb0 − b0(z + 2)]−Λδij−

2∑
k=1

eλkφ

2

[
(Fk)jσ(Fk)iσ −

(Fk)xy(Fk)xy
2 δij

]
= 0 .

(4.21)
It is obvious that this equation is satisfied when i 6= j. When i = j, we have

−R∂Rb0 − b0(z + 2)− ΛL2 − L2

2

2∑
k=1

eλkφ
(Fk)xy(Fk)xy

2 = 0 . (4.22)
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If we now use the results (4.7) and (4.18), we obtain the following differential
equation

−R∂Rb0 − b0(z + 2)− ΛL2 − L6

4

2∑
k=1

µλkR−4±2λk
√
z−1B2

k = 0 . (4.23)

This equation uniquely determines b0 up to an integration constant. We find
the following expression for b0 using variation of constants

b0(R) = − ΛL2

(z + 2) −mR
−(z+2) − L6

4

2∑
k=1

µλkR−4±2λk
√
z−1B2

k

z − 2± 2λk
√
z − 1

. (4.24)

The integration constant m can be related to the mass of the black brane.
Let us continue by solving (4.8c). We start by expanding the equation

�φ = 1
2

2∑
i=1

λie
λiφ(Fi)xy(Fi)xy . (4.25)

Substituting (4.18) and (4.7), we find the following expression

�φ = L4

2

2∑
i=1

λiµ
λiB2

iR
−4±2λi

√
z−1 . (4.26)

The � operator was defined to be

�φ = 1√
−g

∂µ(
√
−ggµν∂νφ) . (4.27)

Using (4.3) and (4.18) we can rewrite this expression

�φ = ±2
√
z − 1
L2 [(z + 2)b0 +R∂Rb0] . (4.28)

Combining this result with (4.26) leads to

±2
√
z − 1
L2 [(z + 2)b0 +R∂Rb0] = L4

2

2∑
i=1

λiµ
λiB2

iR
−4±2λi

√
z−1 . (4.29)

Insert the result from (4.24)

±4Λ
√
z − 1 = ∓L4

2∑
i=1

µλiB2
iR
−4±2λi

√
z−1(±λi +

√
z − 1) . (4.30)

In order to solve this equation, we have to fix the values of λi and B2
i (i =

1, 2). We are going to keep B2 as a free parameter such that it can be seen as
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a physical magnetic field like we have discussed above. From equation (4.30),
we can deduce that the condition on λ2 will be

±λ2 +
√
z − 1 = 0 . (4.31)

Since λ2 has to satisfy this equation, (4.30) reduces to the following expression

±4Λ
√
z − 1 = ∓L4µλ1B2

1R
−4±2λ1

√
z−1(±λ1 +

√
z − 1) . (4.32)

The left hand side is independent of R such that λ1 must satisfy

−4± 2λ1
√
z − 1 = 0 . (4.33)

If we use this result together with equation (4.32), we obtain an expression
for B2

1

±4Λ
√
z − 1 = ∓L4µ

± 2√
z−1B2

1
z + 1√
z − 1

. (4.34)

We can conclude from (4.33), (4.31) and (4.34) that λ1, λ2 and B2
1 are re-

stricted by the following identities in order for B2 to remain a genuine degree
of freedom2

λ1 =± 2√
z − 1

, (4.35a)

λ2 =∓
√
z − 1 , (4.35b)

B2
1 =− 4Λ(z − 1)

L4(z + 1)µ
∓ 2√

z−1 . (4.35c)

With these expressions at hand, we can rewrite (4.24), (4.18) and (4.6)

b0(R) = −2L2Λ
(z + 2)(z + 1) −mR

−(z+2) + L6µ∓
√
z−1

4z B2
2R
−2(z+1) , (4.36a)

A1 = 2
L2

√
−Λ(z − 1)

z + 1 µ
∓ 1√

z−1 xdy , (4.36b)

A2 = B2 xdy , (4.36c)
eφ = µR±2

√
z−1 . (4.36d)

We now choose Λ in the following way (b0 → 1 when R→ +∞)3

Λ = −(z + 1)(z + 2)
2L2 . (4.37)

2Note that expression (4.35c) makes sense because Λ < 0.
3Since z ≥ 1 as will be shown in the next section, we have that Λ < 0.

CHAPTER 4. THE MAGNETIC LIFSHITZ BLACK BRANE 38



4.2. SOLVING THE EQUATIONS OF MOTION

With this choice (4.36) becomes

b0(R) = 1−mR−(z+2) + L6µ∓
√
z−1

4z B2
2R
−2(z+1) , (4.38a)

A1 = 1
L3

√
2(z − 1)(z + 2)µ∓

1√
z−1 xdy , (4.38b)

A2 = B2 xdy , (4.38c)
eφ = µR±2

√
z−1 . (4.38d)

The only remaining equation of motion that we did not yet consider is the
linear combination

Et
t + ER

R = 0 . (4.39)

From equation (4.13) we already knew that Et
t = ER

R , such that the only
thing left to verify is

Et
t = 0 . (4.40)

If we now use the definition given in (4.12) and use the results (4.15a),
(4.7),(4.18) and (4.24) we find the following algebraic equation

Λ(1− z) = L4

8

2∑
i=1

B2
i µ

λiR−4±2λi
√
z−1

[
(±2λi

√
z − 1− 4)(±2λi

√
z − 1− 5)

z − 2± 2λi
√
z − 1

+(3z + 3)(±2λi
√
z − 1− 4) + 2z(z + 2)

z − 2± 2λi
√
z − 1

+ 2
]
. (4.41)

The reader can verify that, upon substituting the values of λ1, λ2 and B2
1 ,

this equation is satisfied.
For the temperature we find

T = Rz
h

4πLz+1

(
z + 2− L6B2

2µ
∓
√
z−1

4

)
(4.42)

We have solved the model given in the previous section for a Lifshitz magnetic
black brane. The solution is given in (4.38) and (4.35). This is a new solution
and possesses some interesting features. We will discuss the solution in the
next section.
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4.3 A discussion on the solution

The expressions that we have found in (4.38) together with the restrictions
on the parameters (4.35) solve all the equations of motion given in (4.8). Now
we will discuss the physics behind the obtained solutions. Lets us begin with
equation (4.38a)

b0(R) = 1−mR−(z+2) + L6µ∓
√
z−1

4z B2
2R
−2(z+1) , (4.43)

The form of this solution clearly suggests that we are dealing with a Reissner-
Nordström Lifshitz black brane with a magnetic charge proportional to B2
in 3 + 1 dimensions. The event horizon Rh can be found by searching for the
largest root of b0(Rh) = 0.
Next, consider the solutions of the gauge fields

A1 = 1
L3

√
2(z − 1)(z + 2)µ∓

1√
z−1 xdy , (4.44a)

A2 = B2 xdy . (4.44b)
The second gauge, A2, has a free parameter and leads to the EM field strength
tensor given in (4.7). This can be interpreted as a constant magnetic field
along the R-direction with magnitude B2. As was explained in subsection
2.4.2, this leads to a constant magnetic background field at the boundary
perpendicular to the 2 spatial directions x and y. The first gauge field, A1, is
fixed in terms of the constant µ. However it still corresponds with a magnetic
field. This differs from the observations in [3]. They found for an electric
Lifshitz black brane in the same model that one of the two gauge field could
not be interpreted as a electrical potential.
Another interesting feature of this solution is the limit z → 1. In this limit we
should recover a Reissner-Nordström AdS4 black brane. From (4.38), (4.35)
and (4.42) we can see that

b0(R)→ 1−mR−3 + L6B2
2R
−4

4 , (4.45a)

A1 ∝
√
z − 1µ∓

1√
z−1 xdy , (4.45b)

A2 → B2 xdy , (4.45c)
λ1 → ±∞ , (4.45d)
λ2 → 0 , (4.45e)
eφ → µ , (4.45f)

T → 1
4π

(
3Rh

L2 −
L4B2

2
4R3

h

)
(4.45g)
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From these results, we can derive whether the plus or the minus sign has to
be used because we do not want A1 to diverge in the limit z → 1. This gives

if µ < 1→ ”+”-sign , (4.46a)
if µ > 1→ ”-”-sign , (4.46b)

This choice ensures A1 → 0 when z → 1. Next we have a second look at the
action given in (4.5). The first gauge field will decouple from the theory in
the limit z → 1

−1
4e

λ1φF 2
1 = − 1

2L2 (z − 1)(z + 2)→ 0 . (4.47)

For the second gauge field we find that the coupling with the scalar field
disappears if z → 1

−1
4e

λ2φF 2
2 = −1

4µ
∓(z−1)R−(z−1)L

4

R4B
2
2 →

L4

R4B
2
2 = F 2

2 . (4.48)

Since the scalar field becomes a constant for z → 1, we can also drop the term
1
2(∂φ)2. We conclude that the action in the limit z → 1 takes the following
form

S = − 1
16πG4

∫
d4x
√
−g

[
R− 2Λ− 1

4F
2
2

]
. (4.49)

This action clearly corresponds to the action considered in section 2.4.2. Now
one can check that the results (4.45), are consistent with the ones given in
(2.55) with only one nonzero magnetic charge.
Furthermore we can consider the limit B2 → 0 of (4.38) and (4.35)

b0(R) = 1−mR−(z+2) (4.50a)

A1 = 1
L3

√
2(z − 1)(z + 2)µ∓

1√
z−1 xdy (4.50b)

A2 = 0 (4.50c)

λ1 = ± 2√
z − 1

(4.50d)

λ2 = ∓
√
z − 1 (4.50e)

eφ = µR±2
√
z−1 (4.50f)

We find a Scharzschild Lifshitz solution but we still have a magnetic field
originating from A1. This means that A1 has to vanish. This is not possible
if z 6= 1. This means that we can not compare this result with the uncharged
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Lifshitz solution given in [18]. If we also consider the limit z → 1, we recover
the Schwarzschild black brane in AdS4 from section 2.3

b0(r) = 1−mR−3 (4.51a)
A1 = 0 (4.51b)
A2 = 0 (4.51c)
λ1 = ±∞ (4.51d)
λ2 = 0 (4.51e)
eφ = µ (4.51f)

To conclude this chapter we remark that we have interpreted z as a dynamical
variable. However, not all values of z are permitted. It turns out that causality
of the strongly coupled field theory at the boundary is incompatible when
z < 1. From now on we will always assume that z ≥ 1. The interested reader
can find more information on this topic in [19].
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Chapter 5

The dyonic Lifshitz black brane

The goal of this thesis is trying to calculate a Hall conductivity for an
anisotropic scale invariant field theory using its dual theory. In order to ob-
tain such a conductivity, the field theory must have a nonzero charge density
and a background magnetic field. Obviously, the dual theory that has to be
used to calculate this Hall conductivity is a dyonic Lifshitz black brane/black
hole. We will only consider the black brane here.
We will continue with the action defined in (4.5), but both gauge fields will
have an extra nonzero t component, At. It turns out that a dyonic Lifshitz
black brane does not admit a solution with an electric and magnetic degree
of freedom originating from the same gauge field. This results in a no-go
theorem which we will prove.
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5.1. A FIRST NO-GO THEOREM FOR THE DYONIC LIFSHITZ
BLACK BRANE

5.1 A first no-go theorem for the dyonic Lif-
shitz black brane

As was said in the introduction of this chapter, we consider a dyonic Lifshitz
black brane. We will work with the same model as the previous chapter

ds2 = L2

R2
dR2

b0(R) − b0(R)R
2z

L2z dt
2 + R2

L2 (dx2 + dy2) , (5.1a)

S = − 1
16πG4

∫
d4x
√
−g

[
R− 2Λ− 1

2(∂φ)2 − 1
4

2∑
i=1

eλiφF 2
i

]
. (5.1b)

Only the ansatz for the 2 gauge fields will be different from the previous
chapter

A1 =V1(R)dt+B1xdy , (5.2a)
A2 =V2(R)dt+B2xdy . (5.2b)

Again some of the gauge field components will be determined in terms of
other quantities due to the equations of motion. The idea is to search for a
solution of this model with a free magnetic and electric charge originating
from the same gauge field as was explained in subsection 3.2.2.
The equations of motion that we found in section 4.1

Eρ
µ = 0 , (5.3a)

Dµ(eλiφF µν
i ) = 0 , (5.3b)

�φ− 1
4

2∑
i=1

λie
λiφF 2

i = 0 . (5.3c)

We solve the equations of motion using the same techniques one outlined in
section 4.2. We start with the equation of motion of the EM field strength
tensor (5.3b). Expand this equation by using the definition of the covariant
derivative

∂µ(eλiφF µν
i ) + ΓµµρeλiφF

ρν
i + ΓνµρeλiφF

µρ
i = 0 . (5.4)

Since we are considering the same metric as in the previous chapter, the
Christoffel symbols have already been given in (4.11). The only equation
that is not trivially satisfied arises for v = R. We find the following first
order differential equation

∂R(eλiφFRt
i ) + z + 1

R
eλiφFRt

i = 0 . (5.5)
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which is solved by

(Fi)Rt = ρie
−λiφRz−3 , (5.6a)

(Fi)Rt = −L2z−2ρie
−λiφR−(z+1) . (5.6b)

where ρ1, ρ2 ∈ R. There are two more nonzero components of the EM field
strength tensor. They are given by

(Fi)xy = Bi , (5.7a)

(Fi)xy = Bi
L4

R4 . (5.7b)

The next step is solving the linear combination Et
t −ER

R = 0. This gives the
same differential equation as (4.13) such that we find the same result for φ

eφ = µR±2
√
z−1 . (5.8)

Let us proceed by solving Ei
j = 0. This equation reads

Ei
j = Rjig

ii−Λδij −
1
2∂jφ∂

iφ− 1
2

2∑
k=1

eλkφ
[
(Fk)jσ(Fk)iσ −

F 2
k

4 δij

]
= 0 , (5.9)

where i and j denote the spatial coordinates of the boundary and k is the
gauge field index. Use now result (4.20) to obtain

δij
L2 [−R∂Rb0 − b0(z + 2)] = 1

2

2∑
k=1

eλkφ
[
(Fk)jσ(Fk)iσ

−(Fk)xy(Fk)xy + (Fk)Rt(Fk)Rt
2 δij

]
+Λδij . (5.10)

Again, the above equation is trivially satisfied when i 6= j. When we take
i = j and insert the results (4.7) and (5.6), we find

−R∂Rb0 − b0(z + 2) = ΛL2 + 1
4

2∑
k=1

(
L6µλkB2

kR
−4±2λk

√
z−1

+L2zµ−λkρ2
kR
−4∓2λk

√
z−1
)
. (5.11)

This leads to a solution for b0(R)

b0(R) = −1
4

2∑
k=1

(
L6µλkR−4±2λk

√
z−1B2

k

z − 2± 2λk
√
z − 1

+ L2zµ−λkR−4∓2λk
√
z−1ρ2

k

z − 2∓ 2λk
√
z − 1

)

− ΛL2

(z + 2) −mR
−(z+2) . (5.12)
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The next equation that we need to consider is (5.3c). Using (4.28), (5.12),
(4.7) and (5.6), this equation can be rewritten in the following way

∓4Λ
√
z − 1 =

2∑
i=1

(L4µλiB2
iR
−4±2λi

√
z−1(λi ±

√
z − 1)

+L2z−2µ−λiρ2
iR
−4∓2λi

√
z−1(−λi ±

√
z − 1)) . (5.13)

In the next section we will prove that this equation does not admit a solution
with an electric and a magnetic degree of freedom originating from the same
gauge field. This is called a no-go theorem since it specifies that a specific
situation is not physically possible.

No-go theorem 1
The model defined in (5.1) with an abelian gauge group U(1) x U(1)
does not admit a dyonic Lifshitz black brane solution with an electric
and a magnetic degree of freedom originating from the same gauge
field for z > 1.
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5.2 Proof of the no-go theorem

Let us prove No-go theorem 1. The central idea of this proof is to fix the
values of λ1 and λ2 such that R-dependent terms can cancel or immediately
vanish. Before we start, we can see that the R-dependence of some terms in
(5.13) drops out when

−4± 2λi
√
z − 1 = 0 , (5.14)

with i = 1, 2. This gives the following requirements on λi

λi = ±2√
z − 1

, (5.15)

This observation will be very useful when we are proving No-go theorem 1.
Let us rewrite (5.13)

∓4Λ
√
z − 1 =

A1︷ ︸︸ ︷
L4µλ1B2

1R
−4±2λ1

√
z−1(λ1 ±

√
z − 1)

+

A2︷ ︸︸ ︷
L2z−2µ−λ1ρ2

1R
−4∓2λ1

√
z−1(−λ1 ±

√
z − 1)

+

C1︷ ︸︸ ︷
L4µλ2B2

2R
−4±2λ2

√
z−1(λ2 ±

√
z − 1)

+

C2︷ ︸︸ ︷
L2z−2µ−λ2ρ2

2R
−4∓2λ2

√
z−1(−λ2 ±

√
z − 1) . (5.16)

Furthermore we have that µ > 0. This follows from the definition of µ given
in section 4.2.

Proof: Case 1: B1 6= 0, B2 6= 0, ρ1 6= 0 and ρ2 6= 0.
Suppose we fix λ1 different from (5.15) and different from zero.1 It is clear
from (5.16) that A1 and A2 can not cancel each other since they have different
powers of R. It is also impossible for the two terms to be simultaneously zero.
First we assume that none of these two terms are zero. In that case we have
to fix λ2 in C1 and C2 to cancel the R-dependent terms A1 and A2. This is
only possible when λ2 = λ1 (I) ,

λ2 = −λ1 (II) .
(5.17)

1An analogous argument can be made when you fix λ2 instead of λ1.
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Case (I) leads to 
ρ2

1 = −ρ2
2 ,

B2
1 = −B2

2 ,

−4Λ
√
z − 1 = 0 .

(5.18)

This set of equations does not admit a solution in R. Case (II) also leads to
a set of equations without solution

ρ2
1L

2z−2 = −B2
2L

4 ,

B2
1L

4 = −ρ2
2L

2z−2 ,

−4Λ
√
z − 1 = 0 .

(5.19)

The reader can verify that nothing changes when A1 or A2 is zero. You still
have to consider case (I) or (II) for further cancellation. So this will neither
generate a solution.
When we take λ1 = 0 there are 2 possibilities. The first is that A2 cancels A1,
but this leads to B2

1L
4 = −ρ2

1L
2z−2 which has no solution in R. Otherwise

A1 and A2 can cancel with C1 and C2. This can only happen when λ2 = 0
and results in the following set of equations(ρ2

1 + ρ2
2)L2z−2 + (B2

1 +B2
2)L4 = 0 ,

−4Λ
√
z − 1 = 0 .

(5.20)

Again, this does not admit a real-valued solution.
Suppose that we now take λ1 = ±2√

z−1 . A1 becomes R-independent but A2

will have an R-dependence. Again we have to choose case (I) or (II) to cancel
the R-dependent term A2. Case (I) givesρ

2
1 = −ρ2

2 ,

−4Λ z−1
z+1µ

∓2√
z−1L−4 = B2

1 +B2
2 .

(5.21)

Case (II) gives ρ
2
1L

2z−2 = −B2
2L

4 ,

−4Λ z+1
z−1µ

∓2√
z−1 = B2

1L
4 + ρ2

2L
2z−2 .

(5.22)

Both sets of equations do not generate a physical solution in R.
Case 2: B1 6= 0, B2 6= 0, ρ1 = 0 and ρ2 6= 0.2
In this case A2 obviously vanishes. Suppose we fix λ2 different from (5.15)

2An analogous proof can be made if one of the parameters other then ρ1 is zero.
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and different from zero. It is clear from (5.16) that C1 and C2 can not cancel
each other since they have different powers of R. It is also impossible for the
two terms to simultaneously equal zero and we will assume that both terms
are nonzero. This means that we have to fix λ1 to cancel the R-dependent
terms C1 and C2. Since A1 is the only remaining term with a tuneable R-
dependence, we are only able to let either C1 or C2 vanish, but not both. So
there will always remain a nonzero term on the right hand side of (5.16) that
depends on R. The resulting equation does not have real-valued solutions
If we take λ2 = 0, we are able to have C1 and C2 cancel against each other.
This gives B2

2L
4 = −ρ2

2L
2z−2, which is an equation with no solution in R. If

λ1 also vanishes, we get (B2
1 + B2

2)L4 + ρ2
2L

2z−2 = 0, which again does not
admit a solution in R.
In the case where one of the C- terms vanishes because λ2 is given by (5.15),
it is impossible to find a solution. If C1 is zero, we need

λ1 = −λ2 ,

ρ2
1L

2z−2 = −B2
2L

4 ,

−4Λ
√
z − 1 = 0 .

(5.23)

If C2 is zero, one finds 
λ1 = λ2 ,

B2
1 = −B2

2 ,

−4Λ
√
z − 1 = 0 .

(5.24)

Both (5.23) and (5.24) do not admit a real-valued solution.
Now take λ2 = ±2√

z−1 . C1 becomes R-independent. Again we need to cancel
C2 with A1. This gives 

λ1 = −λ2 ,

B2
1L

4 = −ρ2
2L

2z−2 ,

−4Λ z−1
z+1µ

∓2√
z−1L−4 = B2

2 .

(5.25)

Again a set of equations with no solution in R. An analogous argument can
be made when λ2 = ∓2√

z−1 .
On the other hand, we can also start by fixing λ1. Suppose λ1 = ∓

√
z − 1

then A1 vanishes and we are left with C1 and C2. Since these two terms
can not simultaneously vanish and can only be R-independent when λ2 = 0.
This leads to ρ2

2L
2z−2 = −B2

2L
4, which has no real-valued solution. The same

argument holds when we take λ1 = ±2√
z−1 . If λ1 is different from these 2 values,
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A1 is R-dependent. This means that we need C1 or C2 to cancel A1. This can
be done by choosing 

λ1 = λ2 ,

or
λ1 = −λ2 .

(5.26)

These 2 options both lead to sets of equations without a physical solution.
Case 3: B1 = 0, B2 6= 0, ρ1 = 0 and ρ2 6= 0.3
Only A1 and A2 are different from zero. Since they can not simultaneously
be R-independent or zero, we have to fix λ1 = 0 such that A1 can cancel A2.
This results in 

λ1 = 0
ρ2

1L
2z−2 = −B2

1L
4

−4Λ
√
z − 1 = 0

(5.27)

which does not admit a solution in R.
Case 4: B1 = 0, B2 6= 0, ρ1 6= 0 and ρ2 = 0.
We fix λ1 = ∓2√

z−1 and λ2 = ∓
√
z − 1. This leads to

λ1 = ∓2√
z−1

λ2 = ∓
√
z − 1

−4Λ z−1
z+1µ

∓2√
z−1L2−2z = ρ2

1

(5.28)

This system of equations admits a solution but it has only one free charge,
namely B2. The first gauge field doesn’t lead to a free electric charge on the
boundary since (F1)Rt has no R-dependence like an electric field. It will look
like

(F1)Rt = 2L−z
√
d− 2µ

±2√
z−1Rz+1 . (5.29)

This will blow up a large values of R.
Case 5: B1 6= 0, B2 = 0, ρ1 = 0 and ρ2 6= 0.
We fix λ1 = ±2√

z−1 and λ2 = ±
√
z − 1. This leads to

λ1 = ∓2√
z−1

λ2 = ∓
√
z − 1

−4Λ z−1
z+1µ

∓2√
z−1L−4 = B2

1

(5.30)

This system of equations admits a solution and has 1 free charge, ρ2 and one
fixed charge, B1. The first gauge field leads to a magnetic background field at

3The same argument will hold when B1 6= 0, B2 = 0, ρ1 6= 0 and ρ2 = 0.
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the boundary at the second gauge field gives rise to a nonzero charge density
at the boundary. However they do not originate from the same gauge field.
This means that we can not compute an electrical conductivity.
The situations with ρ1 = ρ2 = 0 or B1 = B2 = 0 are not considered here
since they obviously won’t generate a dyonic Lifschitz BB. The same can be
said when we choose 3 or more parameters of the set {ρ1, ρ2, B1, B2} to be
equal to zero.
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5.3 Extending the no-go theorem for dyonic
Lifshitz black branes

In the previous section we proved No-go theorem 1. We shall argue that this
theorem can be generalised to the same model but with an U(1)N abelian
gauge group. The statement reads

No-go theorem 2
The model defined in (5.1) with an abelian gauge group U(1)N does
not admit a dyonic Lifshitz black brane solution with an electric
and a magnetic degree of freedom originating from the same gauge
field for z > 1.

An explicit proof of this theorem shall not be given here. We provide an
intuitive argument:
Suppose that we add a gauge field to the system defined in section 5.1. After
a similar analysis as done in section 5.1, one finds the following algebraic
equation

∓4Λ
√
z − 1 =

A1︷ ︸︸ ︷
L4µλ1B2

1R
−4±2λ1

√
z−1(λ1 ±

√
z − 1)

+

A2︷ ︸︸ ︷
L2z−2µ−λ1ρ2

1R
−4∓2λ1

√
z−1(−λ1 ±

√
z − 1)

+

C1︷ ︸︸ ︷
L4µλ2B2

2R
−4±2λ2

√
z−1(λ2 ±

√
z − 1)

+

C2︷ ︸︸ ︷
L2z−2µ−λ2ρ2

2R
−4∓2λ2

√
z−1(−λ2 ±

√
z − 1)

+

D1︷ ︸︸ ︷
L4µλ2B2

3R
−4±2λ3

√
z−1(λ3 ±

√
z − 1)

+

D2︷ ︸︸ ︷
L2z−2µ−λ3ρ2

3R
−4∓2λ3

√
z−1(−λ3 ±

√
z − 1) . (5.31)

The extra 2 terms D1 and D2 have the same form as the terms Ai and Ci
(i = 1, 2). Suppose that they are both different from zero. In order to get rid
of the R-dependence in D1 or D2 we need λ3 or −λ3 to equal λ2 and/or λ1.
Again this leads to equations where sums of quadratic terms have to vanish
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similar to the proof in section 5.2. This does not lead to an solution with a
magnetic and an electric degree of freedom originating from the same gauge
field.
When D1 or D2 is zero, we can have an R-independent or an R-dependent
term. R-dependent terms have to be cancelled like was mentioned in the pre-
vious paragraph. This does not lead to a solution with 2 EM degrees of free-
dom originating from the same gauge field. When the term is R-independent
we can absorb this term on the left hand side of (5.31) such that No-go
theorem 1 holds.
This argument can be repeated up to N U(1) gauge fields such that No-go
theorem 2 makes sense.
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Chapter 6

Conclusion

In this thesis we considered a 3 + 1 dimensional system with a U(1) x U(1)
abelian gauge group defined by

ds2 = L2

R2
dR2

b0(R) − b0(R)R
2z

L2z dt
2 + R2

L2 (dx2 + dy2) , (6.1a)

S = − 1
16πG4

∫
d4x
√
−g

[
R− 2Λ− 1

2(∂φ)2 − 1
4

2∑
i=1

eλiφF 2
i

]
. (6.1b)

In particular we searched for 2 types of solutions:

1. Magnetic Lifshitz black branes

2. Dyonic Lifshitz black branes

In chapter 4 we looked at the magnetic case. We found a Lifshitz black
brane solution. Contrary to what was expected, the gauge fields both led
to a magnetic field. One of them was completely fixed by the equations of
motion and the other had a free parameter. This solution turned out to have
an AdS limit that was consistent with the magnetic AdS black brane. Since
we were interested in calculating a Hall conductivity, this model needed to
be extended.
For that reason we looked for dyonic Lifshitz BB solutions. We found that
this system did not admit such a solution which led to a first no-go theorem.
This theorem was proved in section 5.2. It turned out that the no-go theorem
for a dyonic Lifshitz BB could be extended to a system with a U(1)N abelian
gauge group. This was briefly discussed in section 5.3. The underlying physics
which causes the dyonic Lifshitz BB solution to fail for this particular model
remains unclear.
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Since we have focussed on black branes in this thesis, one might wonder if
black holes would be better suited to solve the model (6.1). This remains a
possibility since the algebraic equation (5.13) that will be generated for black
holes will be different. This raises an interesting question for future research.
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