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Abstract

The purpose of this thesis is to investigate different techniques for designing electrical
power network grids and demonstrate how algorithms can be used and combined in
order to solve two power network design subproblems.

In the first part, we focus on the problem of connecting a new energy consumer to an
existing electrical grid based on its distance to the possible connection points. The
terrain is divided into convex or concave polygons, each having a cost for laying cable
within its boundary. To solve this problem we use an approach based on Dijkstra’s
algorithm in order to produce close to optimal solutions. For this particular problem
we conducted computational performance experiments on two identical implementations
written in C++ and PowerFactory. The results support the view that C+-+ is a much
more efficient programming language than the Digsilent Programming Language (DPL)
used in PowerFactory.

In the second part of the thesis, we analyze the problem of routing electricity from
producers to consumers in a simplified electrical network, given that connections are
characterized by capacity and cost. The goal is to find a solution which maximizes
the amount of energy sent through the network (i.e. satisfy as much demand as the
network can handle). If there are multiple such solutions, we are interested in the
one with the minimum cost. The cost of sending energy is determined by the cost of
acquiring connections and the cost of sending energy through those connections. We
propose a branch-and-bound approach which obtains an exact solution, a simulated
annealing approach and a heuristic which varies the cost of the connections in order to
explore the solution space.
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Chapter 1

Introduction

An electric power system is a network of electrical components used to supply, transmit
and use electric power. It is broadly divided into the generators that supply the power,
the transmission system that transports the power from the generating centers to the
load centers and the distribution system that feeds the power to local homes and in-
dustries. The system starts with generation, by which electrical energy is produced in
power plants and transformed to high-voltage electrical energy that is more suitable for
efficient long-distance transportation. High-voltage power lines transport the electrical
energy over long distances to the distribution substations. There, the high-voltage en-
ergy is transformed back into lower-voltage energy that is transmitted over distribution
power lines for residential, commercial or industrial consumption. Although the electric
power system was initially developed in the late 1800s, it is still undergoing change
and continues to evolve in our current time, with a focus on decentralized generation
sources.

A full-scale electric power system is much more complex than the basic generation-
transmission-distribution paradigm, as it involves a large number of elements to take
into consideration during its design:

e Generation - What kind of energy generation should be used, i.e. fossil fuel,
nuclear energy, renewable energy (wind, sun). Where should the generators be
located in the network and how much energy should they generate?

e Storage - Where to place the storage equipment? What properties should they
have?

e Cables - What type of cables should be used?

e Layout and planning - Where to build substations? How to efficiently connect
them (what type of topology should be used)? Should the network be overground
or underground?

e Scalability - How easy can the network be extended? Can it accommodate future
increase in the demand of electrical energy?

e Protective devices (protective relays, circuit breakers, batteries).

e Safety standards and reliability.
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1.1 Project goal

Designing an electric power system (or a part of it) typically consists of three functional
steps: identifying alternatives, evaluating the alternatives against criteria and desired
attributes and selecting the best alternative. These steps can be particularly difficult,
mainly because the problem usually has millions of alternatives which need to be ana-
lyzed. While a domain expert can use his judgment and experience in order to reduce
the set of possible alternatives, the evaluation of these alternatives is still a tedious
and lengthy process, time consuming and expensive, as well as prone to error if done
manually. Therefore, the goal of this project is to develop automatic planning tools in
order to help a domain expert solve electrical power system design subproblems.

1.2 Problem statement

In the second chapter of this paper we develop a tool which can solve the following
layout problem: we want to expand an electrical power network by connecting a new
entity (load, substation, etc.) to the existing grid. The domain expert identifies multiple
points in the grid where the new entity can be connected, but he has to determine which
of those connection points to use, based on the cost of laying cable from the new entity
to each of the connection points. We model the terrain by using a map which is divided
into convex or concave polygons, with different cost coefficients, representing the cost
of laying cable across that region. We use an optimization algorithm to determine the
best way to expand the grid by adding the new entity. The output of the automated
tool represents an exact layout of how the new entity is connected to the existing grid,
in terms of where the cables should be placed in the terrain. We approach this problem
by first identifying a solution for the simplified problem where the polygons’ coefficient
can only be 1 (normal terrain) or oo (obstacles). We then extend the algorithm to work
for any positive coefficient values, which makes the model more realistic: besides normal
terrain and obstacles, we can model areas where the cost of laying cable is smaller (for
example, areas where overground cables are allowed, i.e. no digging is required) or
larger (for example, remote areas).

In the third chapter we tackle a more difficult problem: we are given input data of a
network containing nodes which can supply energy (producers), nodes which consume
energy (consumers) and intermediate nodes which are used as connections points be-
tween these entities. We know the production of each supply node and the demand of
each consumer node and we want to identify the optimum layout in terms of the total
cost we need to spend for the connections we choose to use. The logic behind choosing
the connections is that we want to maximize the flow of energy in the network, i.e.
satisfy as much demand of the customers as possible. Given the large complexity of the
problem we make the following assumptions on the model:

e The production and the demand values are given for a fixed moment in time. We
choose this approach in order to simplify the model and reduce the number of
alternatives we have to analyze.

e In an electrical power system, the connections are bi-directional, meaning that
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current can be transmitted through the cable in both directions depending on
the state of the production and demand patterns. As we choose to analyze the
network for a fixed moment in time, the cables in our model are directed, as
current can only flow in one direction at a specific moment. However, we permit
our input to have any number of connections between two nodes in the network.
For example, if we do not know beforehand in which direction the current should
flow between two nodes u and v, we can have two edges in the input, one from w
to v and one from v to u. The final design will only contain one of these edges.

e Cables are characterized by minimum capacity, maximum capacity, cost per unit
of flow and fixed cost. The minimum capacity represents the minimum amount
of current we want to send on the connection. By default this value is 0, but if
we want to force the algorithm to use a connection in the final solution we can
put a strictly positive value as the minimum capacity of that connection. The
maximum capacity represents the maximum amount of current we can send on
the connection. The cost per unit of flow is the cost we have to pay for each
unit of current we send across the connection. This value is usually derived from
the type of cable used for the connection (for example, a longer cable will have a
larger resistance, meaning a larger voltage drop which implies larger costs). The
fixed cost represents the cost of acquiring the connection, and includes the cost of
the cable and the cost of laying the cable in the terrain.

e We do not account for the voltage constraints which exist in a regular electrical
network. However, we do use the flow conservation constraint, meaning that the
amount of current entering a node must be equal to the amount of current leaving
that node (with the exception of nodes which produce or consume energy).

While some of these assumptions make the model less realistic, they also make it feasible
to be used for solving medium-sized instances of the problem (dozens of nodes, hundreds
of connections) in a reasonable amount of time. The solution proposed by our automatic
tool should not be considered a final design, but a starting solution for a further analysis,
either conducted by another tool or by a domain expert.
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Optimal paths in a non-uniform
weighted two-dimensional space

In power system design, electrical engineers have to find the optimal way to connect a
point (e.g. a house) to another point from a set (e.g. the possible existing grid connec-
tion points). Laying cable across the terrain has different costs, or is even forbidden for
some regions. We assume that we can subdivide the study case map into simple poly-
gons (convex or concave) with different cost coefficients. The default cost coefficient is
1, but there can be forbidden areas with infinite cost (regions which can not be crossed
by cables) or custom areas which have a cost coefficient larger than 0 but smaller than
infinity. For example, if the law forbids a cable crossing a certain region, we will assign
a polygon with infinite cost for that region; however, if for some other region laying
cable is cheaper (because maybe the digging for the cable was previously done) we can
assign a polygon with cost 0.2 for that specific region.

We will use the cost coefficient of a polygon to quantify the actual cost for laying one
unit of cable crossing that region. One unit represents a distance of 1 in the Euclidean
space in which we are given the polygons. For a region belonging to multiple polygons
(overlapping) the following priority rule is used to determine its cost: if one of the
overlapping polygons is a forbidden polygon then the cost of the region is infinite,
otherwise the cost will be the minimum cost of the custom overlapping polygons. The
total cost of a path between two points is measured according to the weighted Euclidean
metric - the cost of a path is defined to be the weighted sum of Euclidean lengths of
the sub paths within each region.

In the field of computer science this problem is known as the weighted region problem
and it was first introduced by Mitchell and Papadimitriou [28] as a generalization of
finding the shortest path in a two-dimensional space with obstacles. It has been recently
proven by Carufel et al. [4] that this problem is unsolvable in the Algebraic Computation
Model over the Rational Numbers (ACMQ!). This result, combined with the fact that
modeling a real terrain using cost coefficient polygons is by its nature inaccurate, makes
approximation algorithms an appealing alternative for solving this problem. In our

'The ACMQ can compute exactly any number that can be obtained from the rationals Q by applying
a finite number of operations from +, —, X, \, ¥ for any integer k > 2.
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Figure 2.1. Example of a power system design map. Forbidden polygons are displayed in red color
(infinite cost), while custom polygons are displayed in green color.

project we have analyzed and solved the weighted region problem for two cases:

e The simplified case, where the polygons can either have a cost coefficient of 1 or
infinity.

e The generalized case, where the polygons can have any positive cost coefficient.

We will proceed to describe in detail the solution chosen for each of these cases.

2.1 Simplified weighted region problem

In the simplified weighted region problem we are interested to find the shortest path
from a start point s to a set of end points T', given that the map is divided into regions
with cost coefficient either 1 or infinity. We use the following theorem as a cornerstone
of our shortest path algorithm:

Theorem 1. Any shortest path between s and an end point t € T, among a set @
of polygonal obstacles (polygons with infinite cost coefficient) is a polygonal path (a
connected series of line segments) whose inner vertices are vertices of Q.

The proof of this theorem is given by Mark de Berg et all [8, p. 325|. Given this theorem,
we can create a graph G with the following vertices:

e the start point s.
e the end points in 7.
e the vertices of the forbidden polygons.

There will be an edge between any two vertices in this graph if and only if the line
connecting the two points does not cross the interior of any forbidden polygon. Con-
structing the set of edges of the graph can be trivially computed in O (n3) time (where
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n is the number of vertices in the graph) by taking each line connecting a pair of vertices
and testing for intersection with each forbidden polygon (see D for the algorithm used
to check for an intersection between a line and the interior of a polygon). The cost of
such an edge is the Euclidean distance between the two vertices.

The set of edges of G can be determined in a better fashion if the pair of vertices for
which we test the intersection with the forbidden polygons are not chosen in arbitrary
order, but instead concentrate on one vertex at a time and identify all vertices which
are visible from it. A vertex wu is visible for some other vertex v, if the segment (v,u)
does not intersect any forbidden polygons. This approach is known as computing the
vistbility graph and can be optimally computed in O (n2logn) time (de Berg et al. [8,
p. 325|). However, this approach was not implemented in our solution.

Set of end points

Valid edge

Polygon vertices

Figure 2.2. Construction of graph G.

Once we have constructed graph G, we can find the shortest paths from s to any
other vertex in G by applying Dijkstra’s algorithm (see Appendix A for the algorithm
description). This algorithm has a running time of O (n2) and computes the optimal
solution for the simplified weighted region problem.

2.2 Generalized weighted region problem

The difference between the generalized and the simplified weighted region problem is
that the polygon coefficients are not limited to 1 or infinity but they can take any
positive value. Intuitively, this problem is much more complex than the previous one,
as in this case, the optimal path can pass through polygons and it is hard to determine
through which polygons it should pass and what should be the entry and the exit points
for those polygons. As solving this problem to optimality is not possible in polynomial
time, we have implemented an approximation algorithm which uses as starting point
Snell’s law ( [1]). A light ray traveling through different media will always choose the
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shortest path, and according to Snell’s Law, the only bending points on the trajectory
will occur at the border of two different isotropic media. In our problem, the shortest
path between two points will only have bending points on the edges of the custom
polygons. As a result, we could use the same Dijkstra algorithm as in the simplified
weighted region problem on an extended graph containing all the points on the edges of
the custom polygons. However, there are an infinity of such points. To solve this issue,
we have used an edge sampling approach, selecting only certain possible bend points on
the edges of the custom polygons.

|
|
I
\\HJ

—_ N\
~=w

Sampling points

Figure 2.3. Sampling using the accuracy parameter e.

The precision of this approximation algorithm lies in how many points we chose to
sample on each edge. A larger number will provide a more accurate solution but it
will also increase the running time. One possible way to sample the points would be to
let the user select an accuracy parameter €, such that on an edge of a custom polygon
with length x we would have ¥ + 1 sampling points. However, we think that choosing
a good value for this parameter is not an easy task for the user as the same parameter
e will yield different running times depending on the length of the edges of the custom
polygons. Instead, we use the following approach:

e The user chooses a maximum number of points n that graph G will contain,
instead of the accuracy parameter e.

e Let m = n—1—|T|—k be the number of sample points. This value is obtained by
subtracting from the maximum number of points, the start point, the end points
and the total number of vertices of the forbidden polygons (k).

e Let L be the total length of the edges of the custom polygons.

e We know that we have to sample m points on custom polygon edges which have a
total length of L. Therefore, for a custom polygon edge of length [ we will sample
mfl points, equally distanced on that edge.
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In this approach the Dijkstra algorithm will run for a fixed sized graph and the running
time will always be O (n3) (given by the construction of the visibility graph).

2.2.1 Implementation and results

We have implemented the generalized weighted region problem in two different settings:
PowerFactory and C++. PowerFactory! is one of the most used application for studying
large interconnected power systems. Its main advantages are the electrical modeling
capabilities as well as the load flow calculation algorithm for an AC or DC network
topology. The results in tables 2.1 and 2.2 show a comparison of the run times for the
two (identical) implementations for two test cases.

Running time (s)
n PowerFactory | C++ | Shortest distance
100 | 6 0.026 | 136.487
250 | 56 0.122 | 136.487
500 | - 0.483 | 136.487
1000 | - 2 136.487
3000 | - 18.176 | 136.487

Table 2.1. Comparison of the run times for the PowerFactory and C+4 implementations of the
generalized weighted region problem - test case 1. The shortest distance does not improve when we
increase the number of points (n) because the optimal solution goes through the vertices of the polygons.

e WY

: D _ Custom Rolygon
End paints

" coefficient = 0.1

Forbidden Polygon

i L R -
V'"age o \ Start point . .
Shortest path to an end point

Figure 2.4. Sample output of the Power Factory implementation (for the test case in table 2.1).

"http://www.digsilent.de/index.php/products-powerfactory.html
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Running time (s)
n PowerFactory | C++ | Shortest distance
100 | 6 0.054 | 166.683
250 | 41 0.133 166.252
500 | - 0.572 | 166.239
1000 | - 1.771 | 166.235
3000 | - 16.180 | 166.235

Table 2.2. Comparison of the run times for the PowerFactory and C++ implementations of the
generalized weighted region problem - test case 2. The shortest distance improves as we increase the
number of points (n).

piv

Village Stat polnt

Shortest path toan end point

Figure 2.5. Sample output of the Power Factory implementation (for the test case in table 2.2).
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Network flow applications in power
system design

One important problem in power system design is to identify a good way to connect the
end users (consumers) to the energy suppliers (producers). The design usually involves
intermediate points (substations) which do not consume or produce energy, but act as
connection points. In such networks, there are multiple viable designs but one has to
choose the most cost-efficient solution. Such a problem can be modeled as a classical
network flow problem, where the goal is to maximize the flow (i.e. satisfying as much of
the customer demand as possible) while in the same time choosing the most inexpensive
way to send that flow across the network. In order to solve this problem we use a two
phase approach:

e In Section 3.1, we try to solve the problem for the case when the connections have
no fixed cost, using a standard minimum-cost maximum-flow algorithm. This is
a known polynomial time algorithm which obtains the optimal solution fast.

e In Section 3.2, we add the fixed cost of the connections in the model. In the com-
puter science literature, this is known as the capacitated single-commodity fized
charge network flow problem. It is part of the larger category of fixed charge
network flow problems which have been studied by researchers in multiple forms:
capacitated or uncapacitated, single-commodity or multicommodity, single source
or multiple sources. Most solution approaches utilize branch-and-bound tech-
niques to find an exact solution ( [3,14,17,20,21,25,29,30]). However, finding an
exact solution is computationally expensive and is infeasible for large instances, so
heuristics have also been proposed in order to find fast reasonable good solutions
(16,9,13,22-24,27]). We propose three different optimization techniques in order
to solve it: a branch-and-bound algorithm, a simulated annealing approach and a
heuristic based on the approximation of the fixed cost using a modified cost per
unit of flow for each edge.

10
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3.1 Minimum-cost maximum-flow problem with edge de-
mands (MCMFP-ED)

The network flow model we use has the following properties:

e There are n nodes in the network G = (V, E), divided into three categories:
producers, substations, consumers. For each node u, we know its demand D,,,
which is negative for producers, zero for substations and positive for consumers.
Each demand has an associated cost C,, representing the cost of producing /
consuming one unit of flow.

e The nodes are interconnected with m directed edges. An edge e = (u, v) connects
two nodes and has the following characteristics:

— Minimum capacity d(u,v) (the minimum amount of flow which has to be
sent on edge (u,v)), Maximum capacity c(u,v) (the maximum amount of
flow which can be sent on edge (u,v)). These represent capacity constraints.

— Cost per unit of flow cost(u,v), i.e. the cost of sending one unit of flow across
edge (u,v). This cost can be determined by the type and the length of the
cable used.

— Flow f(u,v), i.e. the amount of current sent across edge (u,v).

The model allows multiple edges between two nodes, in the same or opposite
directions. The cost of the connections can also be negative, but no negative-
weighted cycles are allowed.

e The amount of flow leaving a node must be equal to the amount of flow entering
the node minus the (partial) demand of that node (flow conservation constraint).

e The flow of the network is equal to the sum of the flows of the edges leaving from
the producer nodes. Let F' be the maximum flow the network can support while
satisfying all the constraints (capacity and flow conservation constraints).

While the flow f(u,v) for each edge (u,v) € E (and implicitly F as well) is a computed
value and represents the solution of the problem, all the other data is given as input.

In order to have a single source (producer) and a single sink (consumer) we will artifi-
cially modify the network as follows:

e Add node s, representing the source. We connect this node to each of the initial
producers (nodes u € V with D,, < 0). Each such edge (s,u) will have d(s,u) =
0,c(s,u) = —D, and cost(s,u) = C,.

e Add node t, representing the sink. We connect all the initial consumers (nodes
u € V with D,, > 0) to ¢t. Each such edge (u,t) will have d(u,t) =0, c(u,t) = D,
and cost(u,t) = Cy. Allowing negative weighted edges in the graph is needed for
these edges, as the value C, for the demand nodes should be negative, representing
the cost that consumers pay for the each unit of flow they receive. Having different
values of C,, for different customers can be useful when there is not enough supply
to satisfy all the demand. In this situation, based on the cost they are able to
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pay, and the layout and cost of the connections in the network, we can decide to
which customers it is optimal to send the flow to.

We introduce the following notations:
o N(u)={veV, st (u,v) € E}, the set of successors of node w.
o M(u)={veV, st. (v,u) € E}, the set of predecessors of node u.

To compute the maximum flow F' of the network, we can solve the following linear
program:

maximize Z f(s,u)

u€N(s)
subject to d(u,v) < f(u,v) < c(u,v), V(u,v) € E (1)
ST oflu) = D> flu,g), Vu e V,us,u#t (2)
i€ M (u) JEN(u)

The goal of the LP formulation is to maximize the flow on the edges leaving the source.
The first constraint ensures that the amount of flow on each edge respects the minimum
and the maximum capacity of that edge. The second constraint makes sure that flow
conservation is achieved, i.e. the amount of flow entering a node equals the amount of
flow leaving that node (for all nodes except for the source s and the sink ).

Once we computed F', we can find the most cost-efficient solution with that maximum
flow using the following linear programming formulation:

minimize Z cost(u,v) f(u,v)

(u,w)EE
subject to d(u,v) < f(u,v) < c(u,v), V(u,v) € B (1)
Yo fGuwy= Y flud), Vu e Viu#s,u#t (2)
i€ M (u) JEN(u)
Y. flsuw)=F (3)
u€EN(s)

While the first and second constraints are the same as in the previous LP formulation,
the last constraint ensures that the flow in the network is maximum, as we want to find
the minimum cost flow while still having the highest possible flow in the network.

Instead of using one of the available LP solvers, we have chosen a graph theory based
approach for solving the MCMFP-ED (Minimum-cost maximum-flow problem with edge
demands):

e Find a feasible flow in the network, i.e. a flow which satisfies the first two con-
straints of the LP formulation (inspired by the lecture notes of Erickson [12]).
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e Augment the feasible flow such that the flow is maximized and the cost is mini-
mized.

The reason why we use a two-step approach is that we first want to eliminate the
minimum capacity constraints in order to simplify the problem. Once we have found a
feasible flow, we can augment the flow in the network to obtain the maximum one.

3.1.1 Identifying a feasible flow in the network.

In order to find a feasible flow in network G (or determine that none exists'), we
will create a new network G'(V', E’) and apply one of the standard maximum flow
algorithms. G is obtained as follows:

e Add all nodes v € V.

’ . ’
e Add a new source s and a new sink ¢ .

For each edge e = (u,v) € E:

— Add an edge ¢ = (u,v) with capacity ¢ (u,v) = ¢(u,v) — d(u,v). This edge
is the equivalent in G’ of edge e in G.

— Add an edge (s,,v) with capacity ¢ (s, v) = d(u, v).

— Add an edge (u, t/) with capacity ¢ (u,t ) = d(u,v).
e Add a new edge (t, s) with infinite capacity.

If G contains multiple edges from the new source s to another node u, we can merge
them all into a single edge with capacity equal to the sum of the capacities of the merged
edges. The same happens for the edges from any one node u to the new sink ¢ .

Definition 1. An (s,t)-flow f is a saturating flow if all edges leaving s and all edges
entering t are saturated, i.e. Yv € N(s), f(s,v) = c(s,v) and Yu € M(t), f(u,t) =

c(u,t).
Lemma 1. G has a feasible (s,t)-flow f if and only if G’ has a saturating (s,,t,)—ﬂow

£, where f(u,v) = f (u,v) + d(u,v),¥(u,v) € E.
Proof. We will only prove the right-to-left implication of the lemma.

The flow f is feasible if it satisfies two constraints:

d(u,v) < f(u,v) < e(u,v), V(u,v) € E (1)
Z fli,u) = quy YueViu#su#t (2)
1€M (u) JEN(u

! An example in which no feasible flow exists: edge (u,v) has a minimum capacity d(u, v) and the sum
of the maximum capacities of all edges leaving from v is less than d(u,v), i.e. d(u,v) > ZieN(v) c(v,1).
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The first contraint is satisfied as Ve = (u,v) € E we have:

The second constraint is satisfied as well, as for any node u € V such that u # s and
u # t we have!:

>, fliw= Y flui=

ieM’ (u) JEN' (u)

| Z (fl(i,u)) + fl(s/,u) = Z (f/(u,j)) + f/(u,tl) = (as fis saturating)

e+ = Y (@) wt) =

1€M (u) JEN(u)
Zf/(i,u)—i-Zdzu ZfUJ Zdug
1€M (u) €M (u) JEN(u JEN(u
> siw= 3 st
1€M (u) JEN(u

We have used the Edmonds-Karp method (described in Appendix C) to find a saturating
flow in G'. Once we have identified a saturating flow, we can obtain the feasible flow
in G by adding to the flow of each edge the minimum capacity of that edge. Figure 3.1
illustrates all the steps involved in the process of finding a feasible flow for a network.

When building the residual network? G ¢ of the feasible flow f, it is important to take
note of a slight modification in the capacity of the residual edges:

c(u,v) — f(u,v), if (u,v) € E.

f(v,u) —d(v,u), if (v,u) € E;in this case the edge (u,v) in G is called
¢f(u,v) = "return edge".
0, otherwise.

For any edge (u,v) € E we cannot return f(u,v) flow as that will cause the edge to
violate the minimum capacity constraint if d(u,v) > 0. Instead, we allow that only
f(u,v) — d(u,v) flow can be returned on that edge.

M =MU{s'}, N =NU{t'}.
2The residual network is defined in the Edmonds-Karp algorithm described in Appendix C
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(e) ()
Figure 3.1. a) The initial network G; the edge capacities are given as d..c. b) The new network G
c) A saturating (sl,t/)—ﬂow fingG. d) A feasible (s,t)-flow f in G. e) The residual network G for
the feasible flow f.

3.1.2 Finding the maximum flow with the minimum cost in the net-
work.

Once we have computed a feasible low f for the initial network G, we can use the
residual network Gy as a starting point for finding the maximum flow with the minimum
cost. If we would only be interested in finding the maximum flow of the network, we
could apply the Edmonds-Karp method just like we did for finding a saturating flow in
G However, we want to find the minimum cost solution with the maximum flow. The
first step is to assign costs to the edges in the residual network:

cost(u,v),  if (u,v) € E.
costy(u,v) = ¢ —cost(v,u), if (v,u) € E.
0, otherwise.

The method we have implemented for finding the maximum flow with the minimum cost
is the Successive Shortest Path Algorithm (described by Ahuja et al. [2]). This algorithm
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searches for the maximum flow and optimizes the objective function simultaneously.
The initial network GG can have edges with negative costs, but we assume that it has no
negative-weighted cycles (with regard to the cost), as then we cannot say exactly what
the "shortest path" is. At each iteration, we will find the shortest path (minimum cost
path) from s to t in the residual network Gy and augment that path. The algorithm
terminates when the residual network contains no such path, i.e. the flow is maximal.
By searching for the shortest path at each iteration, we guarantee that the residual
network will not contain any negative-weighted cycles (according to Lemma 2) which
means that the final solution will be optimal (Lemma 3).

Lemma 2. If a residual network G has no negative-weighted cycles, augmenting the
flow along the shortest path from the source s to the sink t will not induce any negative-
weighted cycles in Gy.

Proof. (Refer to Figure 3.2.)

Suppose that after augmenting the flow along the shortest path P from s to ¢, a negative-
weighted cycle @Q appears in the residual network. As before augmenting, Gy did not
have any negative-weighted cycles, it means that there was a subpath (i---7) in P the
reversal of which closed cycle Q) after the augmentation. @ is a negative-costed cycle,
S0:

cost(j---i) +cost(Q\ (j---i)) <0<
cost(Q\ (j---1)) < cost(i---j)
This implies that we could find another path from s to ¢, which goes from s to i, then

from i to j along the edges of @), then from j to t which has a lower cost than path P.
We have a contradiction to the assumption that P is the shortest path from s to t.

Figure 3.2. The dotted black line represents the shortest path P from source s to sink ¢. The red
line represents a possible cycle @@ formed after the augmentation of flow along the edges of P.

O

Lemma 3. Let f be a feasible solution of a minimum cost flow problem. Then f is an
optimal solution if and only if the residual network Gy contains no negative-weighted
cycle.

(Proof by Ahuja et al. [2]).

As we didn’t consider costs when identifying a feasible flow for G, it is possible that
the residual network Gy has negative-weighted cycles. Before applying the successive
shortest path algorithm we want to eliminate these cycles from the residual network. For
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identifying such cycles we have used the Bellman-Ford algorithm described in Appendix
B. Using this algorithm we either find a negative-weighted cycle or determine that no
such cycle exists in Gy. When we find a negative-weighted cycle, if it contains no return
edge, then that cycle also exists in the initial network GG, which makes it unfeasible for
our algorithm. However, if the cycle contains a return edge, then we will augment the
cycle with the minimum capacity along the edges of that cycle and apply the Bellman-
Ford algorithm again, until no negative-weighted cycles are found. Figure 3.3 illustrates
the concept of cycle-canceling on a simple example.

(b)

Figure 3.3. a) The residual network Gy of the feasible flow f; the edge descriptors indicate its
capacity and cost: ¢, cost. There exists a negative-weighted cycle s —1 —3 — s which can be augmented
with 1 flow (the minimum capacity along the edges of the cycle; in this case the capacity of the return
edge 3 — s). b) The residual network G after the negative-weighted cycle has been augmented. Now
it doesn’t contain any negative-weighted cycles.

After all the negative-weighted cycles in the residual network Gy have been eliminated
we need to find the shortest augmenting paths from s to t. As the network can have
negative-weighted edges we cannot apply Dijkstra’s algorithm, but instead we could
use the Bellman-Ford algorithm. The disadvantage is that Bellman-Ford has a larger
running time than Dijkstra. However, we can apply a reweighing technique described
by Cormen et al. [7, p. 701] which assigns only positive weights to all the edges without
influencing the optimal solution. By having all positive-weighted edges we can then
apply Dijkstra’s algorithm and obtain a better overall time complexity.

Positive edge reweighing

Lemma 4. Given a weighted, directed graph G(V, E) with weight function cost : E — R,
let m:V — R be any function mapping nodes to real numbers. We call w(u) the potential
of node u. For each edge (u,v) € E we can define a new weight function:

cost™(u,v) = cost(u,v) + w(u) — w(v).

The optimal solution for the minimum-cost mazimum-flow problem for graph G will be
the same for either of the two weighting functions.

Proof. We start by showing that:
cost™(p) = cost(p) + m(ug) — m(ug), where p = (ug,u1,--- ,ux) is a path from node ug
to node uy.
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We hayve:

k
cost™ (p) = Z cost™ (uj—1,u;)
i=1

k
= (cost(ui_1,u;) + m(ui—1) + m(u;))
i=1
k
= Z cost(ui—1,u;) + m(ug) — m(ug) (because the sum telescopes)
i=1

= cost(p) + m(ug) — m(ug).

We will now show that the optimal solution is not influenced by the new weighting
function. We know that an (s — ¢) flow can be decomposed into multiple augmenting
paths p1,pa,- -+, p each path i sending f(p;) flow along that path. Therefore:

l
Z cost™ (u,v) f(u,v) = Zcostﬂ(pz‘)f(Pi)
i=1

(u,w)EE

l
= 3 F(pi) cost(pi) + 7(s) - (1))
=1

l l

= Zcost(pi)f(]?i) + (m(s) — 7 (t)) Z f(pi)

i=1 =1
= Z cost(u,v) f(u,v) + (n(s) — 7 (t))F.
(u,v)EE

For fixed node potentials 7, the difference in the objective function is given by a constant
value (m(s) —7(t))F. Therefore, a flow which minimizes the objective function for some
new weights cost™ will also minimize it for the original weights cost. O

Lemma 5. If we assign the potential of a node w(u) to be equal to the shortest distance
(in terms of cost) from s to w in a graph G(V, E),Vu € V, then cost™ (u,v) > 0,¥(u,v) €
E.

Proof. We know that 7(v) < cost(u,v) + 7(u), because otherwise the shortest distance
from s to v could be improved by going through node u and using edge (u,v) to reach
node v. This means that: cost(u,v) + m(u) — 7(v) > 0 = cost™(u,v) > 0. O

Successive shortest path algorithm

Once all the edges in the network have a positive weight we can successfully apply
Dijkstra’s algorithm to find the shortest paths from the source s to all other nodes.
If there exists a shortest path P from s to t in the residual network, then it is an
augmenting path and we can increase the flow on the edges of P. As we are augmenting
the path, we need to add return edges which will have cost(v,u) = —cost(u,v),V(u,v) €
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Figure 3.4. The positive edge reweighing process. a) The initial network. b) The edges of the
network have been reweighed such that all have positive values; each node u has its potential displayed
as [mu]

P. However, if we update the potentials m with the new values of the shortest paths
obtained by the latest Dijkstra run, we can easily prove that the return edges will have
a weight of 0.

Lemma 6. Any return edge in the residual network Gy obtained by augmenting the
flow on the shortest path from s to t will have a weight of 0, as long as we use the node
potentials w(u),Yu € V, where 7(u) is equal to the length of the shortest path from s to
u.

Proof. We assume without loss of generality that we want to augment edge (u,v) € P,
where P is the shortest path from s to ¢ in the residual network Gy. As the edge (u,v)
is on the shortest path from s to v then we know that:

m(v) = m(u) + cost(u,v).
The return edge (v,u) in the residual network will have the weight:

cost™(v,u) = —cost™ (u, v)
= —(cost(u,v) + w(u) — 7(v))
= m(v) — (7(u) + cost(u,v))
=0

O

We can summarize the Successive shortest path algorithm used to compute the minimum-
cost maximum-flow in a network with the steps described in Algorithm 1.

We use Bellman-Ford’s algorithm only once to initialize the node potentials. It takes
O(|V]|E|) time. Then, the loop on line 3 has at most F' iterations, as at every step
we increase the maximum flow in the network by at least 1. The complexity of one
loop iteration is given by Dijkstra’s algorithm, which takes O(|V|?) time. Summing up,
we obtain a complexity of O(|V||E| 4+ F |V|?) which can be further improved if better
implementations are used for Dijkstra’s algorithm.
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Algorithm 1 Successive shortest path

Require: G - the residual network of a feasible flow f in G' containing no negative-
weighted cycles
Use Bellman-Ford’s algorithm to establish the initial potentials 7.
Reweigh the edges of Gy based on the potentials 7.
while G ¢ contains a path from s to ¢ do
Find the shortest path P from s to ¢ in Gy using Dijkstra’s algorithm.
Update the node potentials m with the new shortest path values.
Reweigh the edges of Gy based on the new potentials 7.
Augment path P.

3.2 Minimum-cost maximum-flow problem with fixed cost
on edges (MCMFP-FC)

One of the limitations of the previously described model is that the cost associated with
each edge is defined as the cost per flow, i.e. the amount we pay for sending one unit
of flow on that edge. However, this is not very realistic for electrical networks, where
the highest cost for a connection (edge) is a fixed cost determined by the length of the
connection (digging costs) and the type of the connection (equipment costs). The new
problem can be formulated as an integer linear program (ILP):

minimize Z (cost(u,v) f(u,v) + fizedCost(u,v)y(u,v))

(u,v)EE
subject to d(u,v) < f(u,v) < c(u,v)y(u,v), V(u,v) € E (1)
Z fi,u) = Z f(u,7), VueViu#s,u#t (2)
i€M (u) JEN (u)
S o) = F ()
u€N(s)
y(u,v) € {0,1}, V(u,v) € E (4)

We can notice the addition of the binary variable y(u,v) which indicates if an edge
(u,v) € E is used or not in the maximum flow solution. If the flow f(u,v) is strictly
positive, y(u,v) will be 1 and fizedCost(u,v) will be payed for using edge (u,v).

Lemma 7. MCMFP-FC (Minimum-cost mazimum-flow problem with fized cost on edges)
is NP-hard.

Proof. Lemma 7 has been proven by Guisewite et. al [18] for a generalized version
of MCMFP-FC (where the cost of an edge can be any concave function). We propose
a proof for our more specific problem (MCMFP-FC), based on a reduction from the
directed Steiner tree problem which has been proven to be NP-hard by Garey and
Johnson [15]. The directed Steiner tree problem is the following: given a directed graph
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G = (V, E) with weights w(u,v) on edges, a set of terminals S C V', and a root vertex
r, find a minimum weight out-branching 7" rooted at r such that all vertices in S are
included in T. We will construct our MCMFP-FC instance G as follows:

e G'=(V,E),D, +0,C, < 0NYuecV

o D+ —|S|

e D, D, +1,Yu € S (note that defining D,, < 1,Vu € S is not correct if r € S)
o d(u,v) < 0,c(u,v) < oo,V(u,v) € £

o cost(u,v) < 0, fizedCost(u,v) + w(u,v),V(u,v) € E

It is easy to see that the instance of the directed Steiner tree has a solution if and
only if there is a solution of the MCMFP-FC applied on G'. Figure 3.5 illustrates the
above-mentioned reduction on a simple example. O

['5] cost=0 [1]

We fixedCost = we

C 2:[1]

[1]

O

(a) (b)

Figure 3.5. An example of the reduction from the directed Steiner tree problem to the MCMFP-FC. a)
The directed Steiner tree problem instance Gj; colored nodes represent subset S. b) The MCMFP-FC

instance G/; the supply / demand of the producer / consumers is displayed in square brackets; the
colored edges represent a possible solution.

We have implemented and analyzed three different approaches for solving the MCMFP-FC:
e A branch-and-bound algorithm which computes an optimal solution.
e A simulated annealing heuristic.
e A cost-function slope heuristic.

While similar branch-and-bound algorithms have already been used in the literature
for solving the MCMFP-FC, the other two methods represent new approaches to the
problem.
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3.2.1 Branch-and-bound algorithm (BB)

Branch and bound! is an algorithm used for finding optimal solutions of optimiza-
tion problems. It works by analyzing all candidate solutions, but discarding worthless
candidate subsets, by using upper and lower estimated bounds of the function being
optimized. The branching step of the algorithm consists in splitting a set of candidates
S into two or more smaller subsets 57, S, - - - whose union covers S. The recursive ap-
plication of branching creates a tree in which for every node bounding is applied to find
an estimated lower and upper bound for that particular subset of S. The key idea of
the BB algorithm is the pruning process: for the minimization variant of the BB (which
we use for MCMFP-FC), if a lower bound of a tree node S; is greater than the upper
bound of some other node S5, then all the candidate solutions in S7 can be discarded,
as they are all worse than some solution in S3. The algorithm ends when the upper
bound of the set of candidates S equals the lower bound of S.

In order to solve MCMFP-FC using the BB method we need to define the branching and
bounding steps of the algorithm.

Branching

The complexity of MCMFP-FC is determined by the existence of the fixed cost of the
edges. If for a particular graph instance G = (V, E), we fix the values y(u,v) defined
in the ILP formulation of the problem, we obtain an LP and MCMFP-FC can be solved
by adding the fixed cost of the edges (u,v) € E with y(u,v) = 1 to the solution of
MCMFP-ED applied on a graph G’ derived from G such that:

o All edges (u,v) € E with y(u,v) = 0 will have their capacity c¢(u,v) set to 0 to
prevent them from taking part in the solution. Of course, edges with minimum
capacity d(u,v) > 0 will not be able to have y(u,v) = 0.

e All edges (u,v) € E with y(u,v) = 1 will have their minimum capacity d(u,v)
set to 1 unless they already have a strictly positive value (if they already have
d(u,v) > 0 then the edge will be taken in the solution anyway).

Therefore, the initial set S of candidate solutions of the BB algorithm consists of all
the possible valid combinations of values for the binary variables y(u,v). We define S
as the sequence (y1,y2,- - ,yg|) = (¥1,%2, -+ , % ) Where %, can be either 0 or 1. We
can split S into two subsets S; U Sy = S by fixing the value of *; to 0 or 12. Each of
these subsets can further be split into two other subsets by fixing the value of x3. The
splitting continues until the set contains only one candidate, i.e. all values *, have been
fixed. However, there is an exception for this rule: if a node in the branching tree is
pruned or it contains no feasible solution then no branching will occur for that node.
Figure 3.6 illustrates a complete branching process for a graph with 3 edges.

1Fore a more detailed description of the main principles of BB, I recommend the work of Clausen

5]

2For edges e with d. > 0, *. cannot take the value 0.
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(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1, 1)

Figure 3.6. An example of branching for a graph with 3 edges and no minimum capacities. However,
some of the branches could be pruned depending on their lower and upper bound values.

Bounding

For each node in the branching tree, we need to compute the lower and upper bounds
for the subset of candidate solutions associated with that node. A node ¢ placed on
level [ in the branching tree (the root has level 0) will be characterized by the sequence
St = (Y1,Y2, Y1 ¥141, *¥142, "+ +  ¥|g|), Where the values of y. are fixed to either 0 or
1.

The lower bound L; of node t represents the minimum value that a candidate solution
matching the sequence Sy could take, i.e. there is no candidate solution in the subset
of candidates of node ¢ that can be better than L;. We start by constructing graph G
based on the fixed values y1, 4o, - ,y; from the sequence S;. For the rest of the edges
for which we don’t know whether they should or shouldn’t be in the maximum flow
solution, we will define a new cost per flow as cost (u,v) = cost(u,v) + JizedCost(u,v)

c(u,)
and a new fixed cost as fizedCost (u,v) = 0 (example illustrated in figure 3.7).

Lemma 8. The cost of sendmg flow on an edge (u,v) with cost (u,v) = cost(u,v) +
%‘ﬁ(uv) and fizedCost (u,v) = 0, will always be less or equal than the original
cost of sending flow on that edge (valid for any amount of flow).

+ fizedCost(u,v)

Proof. We want to show that for any edge (u,v), s.t. cost (u,v) = cost(u, v) (o)

and fizedCost (u,v) = 0, the following inequality holds:

cost (u,v) f(u,v) + fizedCost (u,v)y(u,v) < cost(u,v)f(u,v) + fizedCost(u,v)y(u,v).

To prove the inequality we simply replace the terms in the left-hand side with their



CHAPTER 3. NETWORK FLOW APPLICATIONS IN POWER
SYSTEM DESIGN 24

cost A

|
,\’ 1
0° !
. '\(\a\c |
0(\% :
I
cost / flow :'
Y N
(:)\' |
& !
«\b !
N) |
fixedCost {00 |
¥ |
\O 1
I
‘ 1
! | —
1 c flow

Figure 3.7. The new lower bound cost is lower than the real cost for any valid value of the flow.

definition and use the capacity contraint inequality f(u,v) < ¢(u,v)y(u,v):

cost (u,v) f(u,v) + fizedCost (u,v)y(u,v) =

cost (u,v) f(u,v) =

cost(u,v) f(u,v) + fixeciao’f)(u,v)f(u’ v) <

cost(u,v) f(u,v) + fizedCost(u,v)y(u,v).

O

To compute the value of the lower bound L, we apply the MCMFP-ED algorithm on G’
and add the fixed cost of the edges (u,v) € E with y(u,v) =1 (fized edges).

Lemma 9. L is a lower bound for the optimal solution.

Proof. Let f be the maximum flow of the optimal solution. f will also be a valid
maximum flow in G’ (as only costs differ). The cost OPT of the optimal solution is
equal to the sum of the cost of sending the flow f(u,v) on each edge (u,v) € E. By
Lemma 8, we know that each such cost will be higher than or equal to the cost of
sending the same flow in G'. This means that the cost COST ¢ of sending the flow f in
G’ will be less or equal than OPT. As L represents the optimal solution in G’ from all
the possible maximum flows, it will be less or equal than cOST, which is less of equal
than opT. Therefore L is a lower bound for the optimal solution. 0

The upper bound U; of node t simply represents a feasible solution matching the se-
quence S;. We construct the same graph G' as for the lower bound case, however
for edges which have not been fixed we do not modify any costs. After we apply the
MCMFP-ED algorithm on G’ we add the fixed cost of all the edges which have a strictly
positive flow. This represents a feasible solution, but not necessarily the optimal one.
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Pruning

Pruning is important in order to limit the number of nodes which are analyzed. The
runtime of the BB algorithm is directly proportional to the amount of pruning which
can be done. For each node t in the branching tree, after we compute the upper bound
U;, we update the global upper bound U, which represents the best feasible solution
found so far. If the lower bound L; of a node ¢ is higher than or equal to the global
upper bound, that means that we have already found a feasible solution which can not
be improved by any solution which matches the pattern of the sequence S, so we can
prune the subtree rooted in ¢. Unfortunately, it is possible that no pruning occurs,
which means that the BB algorithm will explore the whole branching tree which has
2lEI+1 _ 1 nodes, yielding an exponential running time.

Algorithm and optimizations

An overview of the BB algorithm we have implemented:

Algorithm 2 BB algorithm for MCMFP-FC

Require: G = (V,E) - the network for which we want to find the minimum-cost
maximum-flow solution.

LI: 700t <= (¥1,%2, " ,*|g)|) > The sequence of the root of the branching tree.
2: L <+ Lyoot > The global lower bound.
3: U < Uoot > The global upper bound.
4: Q «+ {root} > The set of unexplored nodes - initially contains only the root.
5: while L < U do
6: t < the node with the minimum lower bound among the nodes in @)
7 [+ level(t) > The level of node ¢ in the branching tree.
8: Q+—Q \ t
9: Branch t into tg and t; by fixing y; to 0 respectively 1.

10: Compute Ltov Utm Lt17 Ut1'

11: Q + QU {to, t1}

12: Update L and U.

13: Prune Q.

Given the exponential running time of the BB algorithm it is important to pay at-
tention to various implementation details. For this particular BB algorithm (applied
for MCMFP-FC) there are several possible optimizations related to improving both the
memory usage as well as the running time.

Optimization #1 The first optimization minimizes the memory usage of the nodes
in the branching tree. For each such node ¢, we need to store the sequence S; =
(Y1,Y2, 5 Yly *1b1s K142, - 7>i<u;|), where [ is the level of node t. The first observation
is that we only need to store the values of y; for i < I. Let P(t) be the parent of
node ¢ in the branching tree and ¢ its other offspring. ¢ will be characterized by the
sequence Sy = (Y1, Y2, , Ui, ¥1+1, ¥14+2, " » *|g|)- The sequences Sp(y), Sy and S, have
the common subsequence y1,ys,- - ,41—1, the only difference between them is the value
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of y;. Therefore, if we know the sequence Sp(;) we only need to store the value of y; for

nodes t and t'. The same reasoning can be made to show that for P(t) we only need to
store the value of y;_1. By recursion, each node in the branching tree will only store the
value of y;, where [ is their level in the tree. So, if for a node ¢t we want to determine S;,
we can simply rebuild it by going from node ¢ up in the branching tree up to the root.
This way, for each node in the tree we only need to store one value, instead of |E|.

Optimization #2 The second optimization illustrates a tradeoff between memory
usage and running time. The pruning process in the BB algorithm 2 occurs at every
iteration and consists in going through all the nodes stored in ) and check if their
lower bounds are higher than the global upper bound. Going through all the nodes
in ) at every iteration ensures that there will not be any nodes stored which cannot
improve the solution, however this is done at the cost of a higher running time. By only
pruning when evaluating a node, we get a better run time but a higher memory usage
as more nodes will be stored throughout the algorithm. We want to avoid extremes
(higher memory usage or high run time) so we chose to apply the pruning only at every
k iterations (in our experiments k = 1000). This way we get a better run time but still
have a moderate upper bound for the memory used.

Optimization #3 The third optimization consists in the way of choosing the node
to expand at every iteration. We have chosen to use the node in () with the lowest lower
bound for the following reason: as the BB algorithm has an exponential running time,
for some test cases we can’t afford to let the program run until it successfully explores
all the nodes in the branching tree due to time constraints; instead we can let it run
for a fixed number of iterations and analyze the lower and upper bound values up to
that point. We are interested to have an as high as possible global lower bound because
that way we can know for certain that no better solution than the value of that lower
bound exists. By choosing to expand the node with the lowest lower bound we increase
the global lower bound at every iteration (as that node is removed from @ and the two
descendants will have a higher or equal lower bound). The disadvantage of choosing the
lowest lower bound node at every iteration is that in a naive implementation we would
have to go through all the nodes in @ to find the minimum. However, we used a heap
data structure to hold the nodes in @), yielding a logarithmic time complexity for the
operations of extracting the minimum or adding new nodes into the heap.

Optimization #4 For each node in the branching tree we have to compute its lower
and upper bound. If computing one of the bounds results in an unfeasible solution, i.e.
the maximum flow cannot be achieved anymore, then there is no point in computing the
other bound as the two graphs used in computing the bounds have identical structures
(nodes, edges, capacities), only different costs.

Optimization #5 For some nodes in the branching tree, we can avoid computing
their lower or upper bound if some conditions are fulfilled. We will analyze two types
of nodes:
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e Let t be a node in the branching tree placed on level [ with y; = 0 and let P(t) be
its parent. If the solution for the lower bound of P(t) did not use edge [, then it
will also be the solution for the lower bound of ¢. The same applies for the upper
bound.

e Let t be a node in the branching tree placed on level [ with y; = 1 and let P(t) be
its parent. The lower bound of ¢ always has to be computed as the cost of edge [
differs in the two graphs on which the lower bound is calculated. However, for the
case of the upper bound, if the solution for the upper bound of P(t) used edge I,
then it will also be the solution for the upper bound of ¢.

Whenever we compute a lower or upper bound for a node placed on level I, we need to
store the flow value for the edges e;y1,€;192,---. When analyzing whether we need to
compute a lower or upper bound for a node t placed on level [ in the branching tree,
we look at the flow value of edge e; in the computed bound of its parent. However, it is
possible that its parent did not compute that bound (as it was not necessary by using
the same logic) so we have to look at the parent of the parent of node t. This situation
can occur multiple times, so in order to find the correct flow information we need to
find the the closest ancestor for node ¢ which has that bound computed.

To minimize the memory usage, we can delete the flow information of the lower bound
of a node ¢t whenever t is not the closest ancestor with a computed lower bound for
any of its descendants (not only the direct descendants). This optimization cannot be
applied for the upper bound case: it can be easily shown that when branching node ¢
into nodes t; and to, exactly one of the upper bounds of ¢; and to will be computed.
Without any loss of generality let ¢; be the node for which we don’t compute the upper
bound. This means that t is the closest ancestor with a computed upper bound for
node t;. When branching ¢; the same situation occurs, as ¢t will remain the closest
ancestor with a computed upper bound for one of the direct descendants of node t1. By
induction, ¢ will always remain the closest ancestor with a computed upper bound for
one of its descendants, therefore we can never delete the flow information of the upper
bound of node t.

Optimization #6 The lower the value of the global upper bound is, the more pruning
will occur, which means that less nodes in the branching tree have to be analyzed. In
order to improve the global upper bound, we can first apply a heuristic algorithm for
the MCMFP-FC, when no edges are fixed (for the root node of the branching tree). We
could further improve the global upper bound by applying the heuristic for each node in
the branching tree, however, from our experiments, this approach did not increase the
pruning (by a significant amount), but greatly increased the running time. Therefore,
we only apply the heuristic for the root node. The heuristic we used is the Cost Function
Slope heuristic which will be described in section 3.2.3.

Optimization #7

Definition 2. A cut is a partition of the vertices of a graph into two disjoint subsets.
Definition 3. The cut-set of the cut is the set of edges whose endpoints are in different
subsets of the cut.
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Definition 4. In a flow network, an s-t cut is a cut that requires the source s and
the sink t to be in different subsets. The capacity of an s-t cut is equal to the sum of
the capacities of the directed edges going from one node from the subset containing the
source to one node from the subset containing the sink.

Theorem 2. The mazimum value of an s-t flow is equal to the minimum capacity over
all s-t cuts.

(Proof by Elias et al. [11])

We can use the max-flow min-cut theorem stated above to deduce that if we identify the
minimum capacity s-t cut, and remove any of the edges which cross the cut (directed
edges from a node in the subset containing the source to a node in the other subset),
then the minimum capacity over all s-t cuts will decrease, therefore the maximum flow
will also decrease. This is not acceptable for MCMFP-FC as we want to obtain the
maximum flow possible. This means that the edges crossing the minimum capacity s-t
cut must always be included in the maximum flow solution, so we can fix the value of
y for those edges to 1. Having more binary variables y fixed before applying the BB
algorithm, results in less branching and a lower run time.

In order to find the minimum capacity s-t cut we can use the following simple algorithm:

Algorithm 3 Minimum capacity s-t cut algorithm

Require: G = (V, E) - the flow network.

1: Apply MCMFP-ED on G.

2: Do DF'S on the residual network Gy starting from the source s.

3: The visited nodes will represent the subset containing the source s. The unvisited
nodes represent the subset containing the sink ¢. These two subsets represent the
minimum capacity s-t cut for G. > s and t will be in different subsets as there is
no path in Gy from s to t, i.e. the sink will be unvisited.

4: All the edges e = (u,v) € E with u visited and v unvisited, cross the cut.

3.2.2 Simulated annealing heuristic

Simulated annealing! (SA) is a local search heuristic used for finding a good approx-
imation to the global minimum (or maximum) of a given function in a large search
space. The SA algorithm starts from a random solution and at each iteration attempts
to replace the current solution by a random solution taken from the neighborhood of
the current solution. The new solution is always accepted if it is better than the current
one, but it can also be accepted when it is not better, based on a probability function
that depends both on the difference between the values of the two solutions and also on
a global parameter 7' (called temperature), that is gradually decreased during the pro-

cess. The most common used probability function for the minimization SA algorithm is

!
cost(S)—cost(S ) . . . .
e T , where S is the current solution and S" is the new random solution. We

can notice that if the difference in cost between the two solutions is low or if the value

1Fore a more detailed description of the main principles of SA, I recommend the work of Henderson
et. all [19].
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of T is really high, then the new solution is likely to be accepted. As the temperature
approaches zero, the exponent approaches —oo, and the probability approaches zero.
The general SA algorithm has the following structure:

Algorithm 4 SA algorithm

Require: T - initial temperature, € - final temperature, a € [0,1) - temperature decre-
ment, L - number of candidate solutions analyzed for a fixed temperature.
1: Initialize S with a random solution.
2: while T" > ¢ do
3: for i + 1,L do

4: Generate random solution S” in the neighborhood of .

5: if cost(S) > cost(S') V random(0,1) < e then
6: S« s

7 T+ Tx«

A more detailed description of the input parameters for the SA algorithm (7, €, @ and
L) is given in the Experiments and Results section 3.2.4.

To apply the SA algorithm on MCMFP-FC!, we need to start from any maximum flow
solution and find a method to generate a random solution in the neighborhood of the
current one. The way we generate the random candidate solution from the current
solution S is as follows:

e Select a random edge e = (u,v) with fe > 0 from S which is not in the mini-
mum capacity s-t cut-set (otherwise by removing this edge the maximum flow will
decrease and the new solution will be rejected).

e Drain f. flow sent from s to u.
e Drain f. flow sent from v to t.
e Remove edge e from the G by setting its capacity to zero.

e Iind random augmenting paths from s to ¢ in the residual network G, until no
such paths exist.

e Discard the new solution S if it doesn’t have the same maximum flow as S.
Otherwise, reset the capacity of edge e to its original value, so that if this solution
will be accepted, the edge e will have the chance to be used again in the next
iterations.

Draining flow between two nodes vy and vo consists in finding random paths from v; to
v9 considering only edges with positive flow. When such a path is found, we decrease
flow on all its edges equal to the minimum flow value among those edges (or the amount
of flow left to be drained on edge (u,v), whichever value is lower). When f. flow has
been drained the process is complete.

In order to find a random path between two nodes vy and vy, we use a slightly modified
depth-first search algorithm: if from a node u we can move to k other unvisited nodes,

'For the simulated annealing approach we do not consider edge demands in order to simplify the
process of finding a random solution in the neighborhood.
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each will have a probability of % to be selected as the next node. This method only finds
a pseudo-random path. To find a true random path the probability to select neighbor

v of u should be: e N(u)fii?i(d@) , where paths(v) denotes the total number of

i paths(i)
paths from v to ve. However, computing paths(v) is NP-hard as there may be an
exponential number of simple paths between two nodes in graph.

3.2.3 Cost function slope heuristic

In the Cost function slope (CFS) heuristic we intend to replace the cost function of
all edges (consisting in the fixed cost and cost / flow components) with cost functions
which only contain a cost / flow component and to apply the polynomial running time
algorithm for MCMFP-ED on the resulting graph. To explore the search space, we vary
the slope of the new cost-function for each edge (u,v) € E, at every iteration, based on

the formula: cost (u,v) = cost(u,v) + ffii?f;jfj}&“jj) (1-— decﬁ%%“’v))

counter(u,v)

, Where:

e cost (u,v) - the new cost function for edge (u,v).

e cost(u,v) - the cost per flow component of the cost function of edge (u,v) in the
original graph G.

o fizedCost(u,v) - the fixed cost component of the cost function of edge (u,v) in
the original graph G.

e total Flow(u,v) - the total amount of flow sent on edge (u,v) from the beginning
of the CFS algorithm up to the current iteration.

e counter(u,v) - the number of times edge (u, v) had a positive flow from the begin-
total Flow(u,v)
counter(u,v)

represents an arithmetic mean for the flow sent on edge (u,v) up to the current
iteration.

ning of the CFS algorithm up to the current iteration. The fraction

o decay(u,v) - the decay coefficient for edge (u,v), taking values between 0 and
100. Whenever we send zero flow on edge (u,v) during an iteration, we increase
the decay coefficient by a small amount. When the flow on edge (u,v) becomes
positive, we reset the decay coefficient to 0. The reason for adding this extra
parameter to the formula is that the cost function could sometimes remain blocked
in a really steep position, meaning that it will hardly ever receive any flow in
the subsequent iterations. This way, we make the slope less steeper with every
iteration when the amount of flow on that edge is 0.

For the decay coefficient we use a small increment which is determined by: 0.2 %
(rand () %5+ 1). To further increase the exploration, we have added a small chance
to reset the variables total Flow(u,v) and counter(u,v) in order to erase the history of
the flow sent on edge (u,v). The probability to reset the history of an edge is directly
proportional to the size of its history: counter(u,v)%. Figure 3.8 illustrates how the
cost function could vary over time.

The CFS heuristic runs for a fixed number of iterations, during which the cost functions
of the edges are modified. The higher the number of iterations, the higher the chance
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Figure 3.8. The cost function of an edge during the CFS iterations. In the first iteration of the
algorithm we use the lower-bound cost function and we get 2 units of flow on that edge. The blue
colored cost function in the leftmost image represents the cost function of the edge for the second
iteration. In the second iteration we get only 1 unit of flow on the edge and we update the cost
function using the formula of the heuristic. The blue colored cost function in the rightmost image
represents the cost function of the edge for the third iteration. In the third iteration there is no flow
sent on the edge, and the decay is increased resulting in a less steep cost function for the next iteration
(yellow cost function). This situation can occur multiple times and the cost function will become less
and less steep.

of obtaining a better solution, as the result of the heuristic represents the best solution
encountered during the iterations. The intuition behind this method is that we try to
approximate the real cost of sending flow on an edge (which contains the fixed cost and
cost per flow components) with a cost function which does not have a fixed cost. By
doing this, we can apply the MCMFP-ED algorithm to find a solution for the problem
in polynomial time.

3.2.4 Experiments and results

The three methods for solving MCMFP-FC have been implemented in C++ and have
been tested on a computer with an Intel Core 2 Duo @ 3.00GHz processor, 3GB of
RAM, running Windows XP SP3. Each method receives as input a graph instance as
well as some run-time parameters:

e Branch-and-bound

— # of iterations: the maximum number of nodes which will be explored
in the branching tree. This value is used to limit the running time of the
method, as in the worst case scenario (when no pruning can be done) the
algorithm goes through all the nodes in the branching tree.

— ¢: If we do not need the optimal solution, but just a solution close to the
optimal, we can set a positive value to € and stop the BB algorithm whenever
U — L < e. By default this parameter is 0, meaning that we require the
optimal solution.

e Simulated annealing
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— T: the initial temperature for the SA method. This value should be large
enough such that a move to almost any neighborhood state is allowed during
the first iterations of the algorithm (when the temperature is high). However,
choosing a too high initial temperature will transform the algorithm in a
random search during the early stages, until the temperature is cool enough
to start acting as a simulated annealing.

— € the final temperature for the SA method. When the temperature reaches
this value, the algorithm stops. Ideally this temperature should be close to
0, but this will cause the algorithm to run for a long time. In practice, when
the temperature approaches 0, the chances of accepting a worse solution are
almost the same as when the the temperature is namely close to 0.

— L: the number of iterations at each temperature.

— «: the temperature drop. After each L iterations, the temperature is mul-
tiplied by « in order to obtain a slightly lower temperature. Therefore, the
value of this parameter should be in the range of [0.8,0.95], depending on
how fast the cooling should be.

e Cost-function slope heuristic
— # of iterations: the number of iterations for one CFS heuristic run.

— # of runs: we have empirically determined that restarting the heuristic may
increase the chance of obtaining a better solution. This parameter indicates
the number of independent CFS heuristic runs.

We have tested the performance of the three methods both in terms of running time and
quality of the solutions. The input graphs were generated using a model developed by
Klingman et. all [26] in "NETGEN: A program for generating large scale capacitated

assignment, transportation and minimum-cost flow network problems"!.

The first input graph instance (netgen 40 120) has the following properties:
e 40 nodes, 120 edges.
e 3 producers, 4 consumers, supply = demand = 400.

e Minimum capacity 0 for all edges. Having a minimum edge capacity larger then 0
only makes the instance easier to solve, as it implies less binary decision variables
(y(u,v) = 1,¥(u,v) € E, s.t. d(u,v) > 0). Maximum capacity has values between
1 and 400.

The cost per unit of flow of connections is randomly generated with values between
1 and 50.

The fixed cost of connections is randomly generated with values between 1 and
1000.

Table 3.1 contains the results of the experiments for the netgen 40 120 graph instance:
the cost of the solution and the time expressed in seconds. The BB algorithm obtains

"'We have used the C implementation of N. Schlenker for the NETGEN model. The source code is
available at: http://elib.zib.de/pub/Packages/mp-testdata/generators /netgen /index.html
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algorithm cost of solution | time (s)
BB(100%, 0) 39791 797 (it ~ SOK)
SA(3000, 1,100,0.9) | 41337 43
CFS(500, 50) 39791 13

Table 3.1. The results of the BB, SA and CFS heuristic for the netgen 40 120 graph instance. The
values in brackets next to each algorithm represent the run-time parameters described in this section.
The cost of the solution for the SA algorithm is averaged over 5 independent runs.

the optimal solution before it reaches its maximum number of iterations. However, the
solution is found in more than 13 minutes of run time. The same solution is found by the
CF'S heuristic in only 13 seconds. The SA algorithm obtains a good solution (compared
to cost of other possible solutions), in a reasonable amount of time. One explanation
of the fact that SA does not reach the optimal solution is that while BB does an
exhaustive search, and the CFS heuristic uses convex functions approximations for the
real cost functions of the connections, the SA does not use any cost information when
searching for new solutions in the neighborhood. Figure 3.9 illustrates the evolution
in time (number of iterations) of the cost of the current and best solution for the SA
method. When the temperature is high (in early stages), the cost of the current solution
decreases, but it can also have jumps. As the temperature decreases, the jumps are less
frequent. We can also notice that the final temperature has a good value, as by the end
of the iterations, the plot of the best solution can be approximated with a horizontal
line.
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Figure 3.9. The evolution in time of the cost of the current and best solution for the SA algorithm
(on netgen 40 120 graph instance). The two plots overlap beginning from iteration & 3000.

We have also used for testing a larger graph instance (netgen 150 1000) with the
following properties:

e 150 nodes, 1000 edges.

e 5 producers, 8 consumers, supply = demand = 800.
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e Minimum capacity 0 for all edges. Maximum capacity has values between 1 and

800.
e The cost per unit of flow of connections is randomly generated with values between
1 and 50.
e The fixed cost of connections is randomly generated with values between 1 and
1000.
algorithm cost of solution time (s)
BB(10k,0) 55592(L = 47978.6) | 1412 (it = 10k)
SA(20000, 1,50,0.9) | 124545 225
CFS(500, 10) 55373 311

Table 3.2. The results of the BB, SA and CFS heuristic for the netgen 150 1000 graph instance.
The values in brackets next to each algorithm represent the run-time parameters described in this
section. The cost of the solution for the SA algorithm is averaged over 5 independent runs.

The results in Table 3.2 indicate that increasing the number of edges significantly in-
creases the running time of the algorithms, even if some of the parameters were reduced.
(like the number of iterations of BB or the number of runs for the CFS heuristic). For
this graph instance, the BB algorithm does not manage to find the optimal solution in
the maximum number of iterations, but provides a lower bound (L) which can be used
to evaluate the results of the other two methods. The CFS heuristic outperforms the
SA method and is at most % = 1.154 times worse than the optimal solution.

In order to make our results more reliable, we have tested our algorithms on more
generated graphs with the same properties as the two graph instances: netgen 40 -
120 and netgen 150 1000. Tables 3.3 and 3.4 contain the results of these additional
experiments which indicate that the implemented methods have a consistent behavior.

Test, # BB(100%,0) SA(3000,1,100,0.9) | CFS(500,50)
cost | time(s) cost | time(s) cost | time(s)
1 41796 | 809 (it ~ 83k) | 45195 | 42 41796 | 13
2 38314 | 789 (it =~ 77k) | 40112 | 42 38314 | 13
3 40970 | 896 (it ~ 91k) | 42637 | 43 40970 | 14
4 43843 | 815 (it ~ 84k) | 45864 | 43 43843 | 13
5 39181 | 772 (it ~ 75k) | 43613 | 43 39181 | 12
6 37880 | 818 (it ~ 84k) | 39030 | 42 37880 | 12
7 39558 | 761 (it ~ 73k) | 41114 | 43 39558 | 14
8 42201 | 899 (it ~ 91k) | 43347 | 43 42201 | 12
9 41029 | 848 (it ~ 88k) | 45671 | 43 41029 | 12
10 42492 | 758 (it ~ 73k) | 44249 | 43 42492 | 13

Table 3.3. The results of the BB, SA and CFS heuristic for additional netgen 40 120 graph instances.
The values in brackets next to each algorithm represent the run-time parameters described in this
section. The cost of the solution for the SA algorithm is averaged over 5 independent runs.
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Test # BB(10%,0) SA(20k,1,50,0.9) | CFS(500,10)
cost time cost time cost time
1 51712(L = 47443) | 1421(it = 10k) | 119707 | 229 52187 | 313
2 58940(L = 49530) | 1417(it = 10k) | 134630 | 220 58445 | 309
3 60138(L = 49701) | 1420(it = 10k) | 140649 | 228 59643 | 315
4 58137(L = 51000) 1416(1 = 10k) | 137661 | 225 58064 | 314
5 59138(L = 47831) | 1411(it = 10k) | 142206 | 223 58928 | 311
6 57816(L = 51162) 1410(zt = 10k) | 133996 | 226 57923 | 310
7 56179(L = 48449) | 1406(it = 10k) | 131659 | 221 55924 | 310
8 55296(L = 46060) 141 (it = 10k) | 122825 | 221 55364 | 312
9 55173(L = 46759) | 1420(it = 10k) | 119055 | 224 54896 | 316
10 56219(L = 48620) | 1419(it = 10k) | 130253 | 223 56127 | 315

Table 3.4. The results of the BB, SA and CFS heuristic for additional netgen 100 1500 graph
instances. The values in brackets next to each algorithm represent the run-time parameters described
in this section. The cost of the solution for the SA algorithm is averaged over 5 independent runs.



Chapter 4

Conclusions

Designing electrical power network grids is a challenging and complex problem, which
is hard to be modeled and solved as a single computer program. Instead, we can
try to solve several subproblems, sometimes using some simplifying assumptions. In
the current paper we have successfully researched and solved two such subproblems:
connecting a new point to an existing electrical grid based on Euclidean distances in a
non-uniform weighted space and choosing the cost-optimum design for a new electrical
network in which we are given information about the producers, the consumers and the
possible connections between points in the network.

For the first subproblem we have shown that Dijkstra’s algorithm combined with a
point sampling approach can be used to find an approximate solution, the quality of
the result being determined by an input parameter which also determines the run time of
the method. We have implemented this solution in both C++ and Powerfactory (DPL)
and we have empirically determined that C++ is a much more efficient programming
language. Given this result, we recommend that all code in a Powerfactory application
should be written in C++ and then called within Powerfactory using a DLL.

In the second part of this paper we have modeled the problem of designing a new
electrical network as a maximum flow problem for which connections do not only have
a cost for each unit of flow sent, but also a fixed cost, which has to be payed if the
connection is used in the network. We proposed three different approaches for solving
this problem: a branch-and-bound (BB) algorithm which yields an exact solution, a
simulated annealing algorithm and a cost-function slope (CFS) heuristic which ignores
the fixed cost of the connections and varies the cost per unit of flow in order to explore
the solution space. Experiments have shown that while the branch-and-bound method
guarantees the optimum solution, the run time of this approach is too high for large
problem instances. However, using the cost-function slope heuristic we obtain a good
solution in a reasonable amount of time. We come to the conclusion that the BB
algorithm should be used for small input instances, to obtain the best possible solution.
For larger input instances, the cost-function slope heuristic is preferred. Even for these
large instances, the BB algorithm can be run for a limited number of iterations in order
to obtain a lower bound which can be used as a reference for determining the quality
of the CFS heuristic solution.

36
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4.1 Future work

While modeling the problem of designing an electrical network as a maximum flow prob-
lem is interesting from an algorithmic point of view and allows efficient computation of
good solutions, there are certain drawbacks to this approach, which could be addressed
in the future:

o Additional electricity constraints for a more realistic model.

Besides the capacity constraints of the connections, the only electricity constraint
which is currently implemented in the model is the flow conservation constraint:
the flow leaving a vertex minus the flow entering the vertex should equal the
production/consumption of flow at that vertex. By only having these constraints,
the model can take advantage of the known algorithms for solving maximum flow
problems. In the future, more electricity constraints could be added to the model
to make it more realistic (e.g. voltage constraints). By adding more constraints,
the linear program will not be solvable by a maximum flow algorithm anymore,
but LP solvers could be used instead. It is important to notice that the complexity
of the linear program increases by adding more constraints, which will result in a
higher running time of the algorithms.

e Production and demand patterns

In our model, the production and demand values are constant (more exactly, we
find the optimal solution for a specific moment in time). In reality, the production
and demands vary over time, meaning that the solution of our algorithm can
become invalid for other production and demand values. For example, imagine
that we compute the optimal design when the demand is low. In this situation,
the optimal solution will probably use the cheaper, lower capacity edges. If the
demand rises, the capacity of the chosen connections will not be able to satisfy the
new increased demand, and the flow in the network will no longer be a maximum
flow. One idea to solve this issue would be to run the algorithm for multiple time
moments (select the most critical timeframes), however, the problem remains in
how to efficiently merge the solutions into a single global one.

e Change the maximum flow constraint from a hard to a soft constraint

In some situations, obtaining the maximum flow in the network can only be done
at a really high cost. What if we could find a solution which almost maximizes
the flow, but at a much lower cost? In order to be able to find such solutions,
we could remove the constraint that the flow should be maximized and instead
add a penalty in the objective function for the difference between the flow of the
current solution and the maximum possible flow. The value of the penalty can
be adjusted to reflect the importance of having an as high as possible flow in the
network.

e Storage
The current model does not offer any possibility for energy storage. For storing
energy at a certain node in the grid, we could add a "virtual" connection between
that node and the sink of the network with the following properties: fixed cost
equal to the cost of buying the storage equipment, cost per unit of flow equal to
the cost of storing one unit of flow and maximum capacity equal to the size of
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the storage device. However, we only want to store energy if there is an excess of
production, i.e. all customer demands have been satisfied. Therefore, we need to
introduce a penalty in the objective function directly proportional to the amount
of unsatisfied demand.

o Automatic detection of connection costs
Currently, the connection costs have to be manually set in the input file. To
automatically obtain a good approximation for the fixed cost of a connection,
we can integrate the first subproblem discussed in this paper by multiplying the
length of the (close to) optimum path between the endpoints of the connection
with the cost (per unit) of the type of cable used (a higher capacity cable will
probably cost more than a lower capacity one).



Appendix A

Dijkstra’s algorithm

Dijkstra’s algorithm computes the shortest path between a single source vertex and every
other vertex in a positive-weighted graph G(V, E'). Depending on the specific implemen-
tation, the algorithm can run in O (|V|2), O (|E|log|V]) or even O (|E| + |V|log|V])

time.

The algorithm will assign some initial distance values and will try to improve them step
by step:

1.

5.
6.

Assign to every vertex a tentative distance value from the source vertex: set it to
zero for the source vertex and to infinity for all other vertices.

Mark all vertices as unvisited.

Search for an unvisited vertex with the lowest distance value (initially this will be
the source vertex). Let this vertex be w.

Let d[u] be the tentative distance from the source vertex to u. Take each neighbor
v of vertex u. Let cost[u,v] be the cost of the edge (u,v). If d[u]+ cost]u,v] < d[v],
update the tentative distance for vertex v. This step is reffered to as relaxing edge

(u,v).
Mark vertex u as visited.

Go back to step 3 as long as there are unvisited vertices.

A more comprehensive and detailed description of Dijkstra’s algorithm is given by Cor-
men et al. [7, p. 658|.
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Bellman-Ford algorithm

Similar to Dijkstra’s algorithm, the Bellman-Ford algorithm computes the single-source
shortest paths in a weighted graph G(V, E). However, the difference is that Bellman-
Ford can be applied on graphs with negative-weighted edges. In such graphs, the al-
gorithm will either find the shortest paths or deduct that a negative-weighted cycle
exists.

The algorithm is based on a dynamic-programming approach and has a similar structure
to Dijkstra’s algorithm. Instead of selecting the node with the minimum distance from
the source, and relaxing the edges of that node, Bellman-Ford relaxes all the edges
at every iteration. As the shortest path will contain at most |V| nodes, we need to
relax all the edges at most |V| — 1 times. Therefore, the complexity of the algorithm is
oIV |E).

To identify if the graph contains a negative-weighted cycle we can relax all the edges
one more time after the first |V| — 1 iterations. If any path is improved in this iteration
it means that the path has more than |V| vertices which implies that there exists a
negative-weighted cycle.

The proof of correctness of this algorithm is given by Cormen et al. [7, p. 653].
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Edmonds-Karp algorithm

Let G(V, E) be a directed graph, and for each edge (u,v) € E let c(u,v) be the capacity
and f(u,v) be the flow. We want to find the maximum flow from the source s to the
sink ¢. At each step of the algorithm the following constraints have to be satisfied:

f(u,v) < e(u,v), V(u,v) € B (1)
> flu) = >0 flug), Vu e Viustsutt (2)
i€ M (u) JEN(u)

The first constraints ensures that the maximum capacity of an edge is respected while
the second constraint guarantees that the flow entering a node is equal to the flow
leaving that node (for all nodes except the source and the sink).

We define the residual network G'f(V, E¢) as the network which reflects the amount of
available capacity:

c(u,v) — f(u,v), if (u,v) € E
cr(u,v) = < f(v,u), if (v,u) € E

0, otherwise

We can see that the residual network indicates how much flow we can still send on an
edge without exceeding the maximum capacity of that edge, as well as how much flow
we can return on that edge.

The idea behind the Edmonds-Karp algorithm is very simple. As long as there is a
path from the source to the sink with available capacity on all edges in the path, we
send flow along those edges. Then we find another path, and so on. A path with
available capacity is called an augmenting path. When there is no augmenting path,
the algorithm has found the maximum flow.

To find an augmenting path we will apply a breadth-first search in the residual network
Gy starting from the source node s until we reach the sink . We identify the minimum
available capacity along the path, 7; we increase the flow on each edge of the path by
7 and update the residual network accordingly.
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The running time of the algorithm is O(V E?) and is found by showing that each aug-
menting path can be found in O(F) time (the complexity of the breadth-first search),
that every time at least one of the E edges becomes saturated (when we increase the
flow of the edges of a path by 7, one of those edges will become saturated), that the
distance from the saturated edge to the source along the augmenting path must be
longer than last time it was saturated, and that the length is at most V. The complete
proof is given by Edmonds and Karp [10].



Appendix D

Checking if a line segment
intersects the interior of a polygon

We are interested to check if a line segment intersects the interior of a simple bounded
polygon. The interior of a polygon is defined by all the points inside the polygon, not
including the points on the edges of the polygon. We use the following approach for
solving this problem:

e Compute the axis aligned bounding box BB of the polygon. The bounding box
is a rectangle defined by the points: (ming, miny), (max,, miny), (maz,, mazx,),
(ming, maxy), where min, represents the minimum z-coordinate of the vertices of
the polygon (similar definition for min,, maz,, max,). Check if the line segment
intersects BB. If it does not, then it will not intersect the polygon either. We use
this step as an optimization, as it is computationally inexpensive and can filter
out some of the cases.

e Given the line segment AB, find all intersection points between AB and the edges
of the polygon. Sort these points by their X coordinate (or Y coordinate if they
all have the same X coordinate): A, I, Is, -+, I, B. Let T be this sorted list.

e Take any two consecutive points Py P, from the sorted list T. These two points
represent a segment which is part of the initial segment AB. As P, and P» are
consecutive points in T, the segment P; P> will not intersect any of the polygon
edges except possibly in P; or P». This means that the segment will either be
completely outside or inside the polygon. To distinguish between the two cases
we can select any point inside the segment Py P». Let Mjs be the middle point
on this segment. If Mo is inside the polygon, P} P, will be inside the polygon as
well, otherwise it be outside.

e If there is any subsegment P; P> which is inside the polygon then we can say that
AB intersects the interior of the polygon.
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D.0.1 Finding the intersection point between two segments

In order to find the intersection point between segment AB and an edge of a polygon
we use a vector cross product approach inspired by the work of Ronald Goldman [16,
p. 304]. The cross product of two vectors a and b is denoted by a x b and is defined
as a vector c¢ that is perpendicular to both a and b, having a direction given by the
right-hand rule and a length equal to the area of the parallelogram determined by the
two vectors a and b.

Suppose we have two line segments which run from p to p+r and from ¢ to ¢+ s. Then
any point on the first line can be represented as p + tr (for a scalar parameter t) and
any point on the second line as ¢ 4+ us (for a scalar parameter u). The two lines will
intersect if we can find ¢ and u such that: p + tr = ¢ 4+ us. By crossing both sides with

s, we get (p+1tr) x s = (q+ us) x s. Since s X s = 0, this means ¢t (r x s) = (¢ — p) X s.

(g—p)xs (g=p)xr
TXS$8 TXS$8

Solving it for t we get t =

. In a similar way we get u =
q+s

p+r

p+tr/{q+us

p

Figure D.1. The vector cross product approach for finding the intersection point between two line
segments.

There are four possible cases:

—_

rxs=0and (¢ —p) x r =0, the two line segments are collinear.
rxs=0and (¢ —p) xr # 0, the two line segments are parallel but not collinear.

rxs#0and 0 <t <1and0<wu<1,the two line segments intersect.

=W N

r X s # 0 but t or u do not have values between 0 and 1, the two lines intersect,
but the two line segments do not intersect.

If r x s = 0, the angle § between 7 and s is either 0 or 180 degrees, such that sin(f) = 0.
This implies that r and s are parallel. If r and s are parallel, there are two situations:
either they are collinear or not. The vector ¢ — p is the vector spanning from p to g,
the start endpoints of the two segments. If this vector is parallel to r it means that the
points p, ¢ and p + r are collinear, and as the two segments r and s are parallel it also
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means that these points are collinear with ¢ + s, meaning that r and s are collinear.

Figure D.2. Segment AB intersects the polygon in I; and I2. The subsegments of AB will be Al
111> and I:B. For each of these subsegments, the middle points Mgy1, Mi2 and Ma, are outside the
polygon, i.e. the subsegments are outside the polygon as well. This means AB does not intersect the
interior of the polygon.

Figure D.3. Segment AB intersects the polygon in I1, I, Is and I4. The subsegments of AB will be
AL, 111z, I213, 1314 and I4B. As the middle point M2 is inside the polygon, the subsegment I 12 is
inside the polygon as well, i.e. AB intersects the interior of the polygon.

D.0.2 Checking if a point is inside a polygon

In computational geometry, the point-in-polygon problem asks whether a given point
in the plane lies inside or outside a polygon. This problem can be solved using the ray
casting algorithm: given a ray starting from the point and going in any fixed direction,
we can count the number of times it intersects the edges of the polygon. If the point is
outside the polygon, the number of intersections will be an even number; if the point is
inside the polygon, the number of intersections will be an odd number. The algorithm
is based on a simple observation that if a point moves along a ray from infinity to the
probe point and if it crosses the boundary of a polygon, possibly several times, then
it alternately goes from the outside to inside, then from the inside to the outside, etc.
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If the point in question lies very close to the boundary of the polygon then the results
may be incorrect because of the rounding errors caused by the finite precision arithmetic
used in the code implementation.

Figure D.4. The horizontal ray starting from A intersects the polygon in 3 points. Therefore, the
point lies inside the polygon.



Appendix E

Input format for the C+-+
implementations

E.1 Optimal paths in a non-uniform weighted two-dimensional

© 00 N O U B W N

o e e e T e T T o =
© 00 J O U = W N = O

NN N NN
S U R W N = O

space

Ts Ys
Ne

Tel Yel
Te2 Ye2

LeN, UYeN.
Ngp
M
11 Y11
T12 Y12

L1,M; Y1,M,

Ne¢p

Py

c1

T1,1 Y1,1
1,2 Y12
T1,p Y1,P
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Py,
CNcp
LINep,1 YNep,1
TNep,2 YNep,2

chp7PNCp ch;mPNcp

Xmultiplier Ymultiplier
N

Listing E.1. Input file format

Symbols in the listing:
e I, ys - coordinates of the start point.
e N, - number of end points.
e T, Ye;i - coordinates of the i*" end point.
e Ny, - number of forbidden polygons.
e M; - number of vertices of the i*" forbidden polygon.
e P - number of vertices of the i** custom polygon.
® 7;; y;; - coordinates of the 4t vertex of polygon i (either forbidden or custom).
e ¢; - coefficient of the i*" custom polygon.

o Xonuttiplier Ymultiplier - scaling factors for the X and Y coordinates.

N - desired total number of points.

E.2 MCMFP-FC

n -m
Dy Dy ... D,
Cip Cy ... Gy

uyp v1 di c1 costy fixedCosty
uo vo dy co costy fixedCostsy

Um Um dm Cp costy, fizedCost,,

Listing E.2. Input file format

Symbols in the listing:

e n - number of nodes; m - number of edges.

e D, - production/demand of node i.
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e C; - cost of producing/consuming one unit of flow at node i.

e u;, v; - endpoints of edge i; d;, ¢; - minimum and maximum capacity of edge ;
cost; - cost per unit of flow of edge i; fizedCost; - fixed cost of edge 1.
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