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Abstract

Path planning is the field of computer science devoted to finding efficient and/or realistic
methods used to navigate characters through virtual environments. The Explicit Corridor
Map [21] is a navigation mesh which has recently been extended to scenes that consist of
multiple 2D layers which are connected by so called transfers [42]. Obtaining such a layered
2D environment from a 3D polygonal environment has been studied by Saaltink [40]. Saaltink
employed a brute-force algorithm, as well as a graph-based algorithm.

In this study we continue searching for other algorithms employing a graph encoding of the
3D polygonal environment. In this graph encoding each polygon is represented by a vertex.
Whenever two polygons are next to each other, an edge connecting the corresponding vertices
is added to the graph. Lastly, a special kind of edge called an overlap is added between to
vertices in the graph whenever the corresponding polygons overlap when they are projected on
the xz-plane. We show that finding a multi-layered environment using this graph encoding is
an NP-Hard problem by a reduction from 3-SAT. Methods are described that can significantly
reduce the size of the graph encoding of the 3D polygonal environment. Furthermore, we
have implemented a range of different heuristic methods. The first heuristic method employs
shortest path algorithms to quickly search and cut all paths connecting overlapping polygons.
The second heuristic method clusters polygons based on height information. In addition to
these two methods, different local search algorithms are implemented, as well as a genetic
algorithm. Since none of these methods are guaranteed to find an optimal solution, we have
also implemented an integer linear programming that employs Branch & Price. The results
of all these different methods are listed and evaluated.

For these tests, nine environments were used. The height-based clustering and an imple-
mentation of local search outperform all other methods, both in quality of the solution as
well as in execution time.

Keywords: Multi-layered environment; Explicit Corridor Map; Branch & Price; Local search; Ge-

netic algorithm; MULTICUT; Graphs
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Chapter 1

Introduction

A lot of computer games and simulations take place in a virtual world, built up off a set of
polygons. Such a set of polygons is called a polygonal environment P. To make the worlds
used for computer games more attractive and dynamic, large crowds of virtual characters are
often added. In simulations large crowds of virtual characters can be used to help determine
the safety of an environment. A great example of such research is carried out by the ‘Fire
Safety Engineering Group’ at the University of Greenwich, which uses simulations to deter-
mine the fire safety of different buildings. To allow these characters to navigate the virtual
landscape, a so-called navigation mesh is constructed. In the past, creating these navigation
meshes was often done by hand. However, with the ever increasing size and complexity of the
current virtual worlds, manual construction of these navigation meshes is no longer feasible.
Creating a navigation mesh by hand would simply take too much time and would be sensitive
to errors.

Therefore, several algorithms were designed to automate this process. In ‘Planning Al-
gorithms’ by LaValle, several methods to generate data structures are described [32]. The
Reduced Visibility Graph can find shortest paths in a 2-dimensional space and Vertical Cell
Decomposition can help navigate in n-dimensional environments. However, both methods
generate unnatural paths, because the virtual character walks close to walls and makes very
sharp turns. Furthermore, both algorithms cannot handle dynamic changes to the environ-
ment, like other moving characters. The reason for this is that the algorithms that construct
the paths on the basis of these navigation meshes do not take any dynamic changes into
account.

The Explicit Corridor Map (ECM) by Geraerts and Saaltink [43] resolves the aforemen-
tioned problems of unnatural paths and single character motion planning. However, the ECM
can only handle a set of 2-dimensional layers, where inside each individual layer no polygons
may overlap. A decomposition of a 3-dimensional virtual environment into such a set of
2-dimensional layers is known as a Multi-layered environment (MLE) [42]. An MLE is char-
acterized by the set of layers, as well as the points where two different layers connect, known
as transfers. When an MLE is given, the construction time for the ECM is O(kn log n), where
n is the number of polygons in the MLE and k the number of transfers between the different
layers. The MLE as described before is used by Saaltink [40] and Van Toll [42]. Saaltink
developed multiple algorithms to generate an MLE from an environment P, whereas Van Toll
assumes that an MLE is given as input for his algorithm.

Since both k and n are important factors in the construction time of the ECM, it is
prudent that the MLE used has a small number of transfers as well as layers. The goal of

1



(a) (b)

Figure 1.1: In (a) an example of a polygonal environment is given. In (b) this same environ-
ment is decomposed into nine layers and uses eight transfers. The number of transfers and
layers for this environments is minimal.

this thesis is finding such an MLE from a 3-dimensional polygonal environment. An example
of a polygonal environment and a corresponding MLE is shown in Figure 1.1.

1.1 Previous work

Manu different methods to generate a layered description of P exist, although none of these
methods generates an actual MLE. Some of these methods are described by Saaltink [40].
Most of these methods just create heightmaps of the environment and directly use this infor-
mation for path planning and collision avoidance. Other methods only detect surfaces that
are connected.

For that reason Saaltink created some methods to find an MLE that has a minimal
number of transfers. First the environment is transformed into a graph structure known as
the Polygonal Environment Graph (PEG). In this PEG, a vertex is added for each polygon in
the environment, and, whenever two polygons connect, an edge between the two corresponding
vertices is added. Furthermore, information is stored in the PEG about vertices that should
never end up in the same layer. Using this PEG both a brute force algorithm, as well as some
heuristics are described. Although the brute force method is guaranteed to find an optimal
solution, it has an execution time of O(2|E|(n + k)) in worst case scenarios and is therefore
infeasible to use in many situations. Here |E| is the number of edges in the PEG, n the
number of layers and k the number of transfers.

The heuristic methods Saaltink describes are mainly based on Ford and Fulkerson’s max-
flow min-cut theorem [17]. Using a PEG, a set of possible transfers PT is calculated by
finding the minimal cut in the PEG between any two polygons that should be in different
layers. Each edge in the resulting cut sets is deemed a possible transfer. Using a simple
branching strategy, a minimal set of transfers from PT that corresponds to a valid MLE is
found.

2



1.2 Goal of this thesis

Although Saaltink’s algorithms seem to have great results, there is no bound on how close
the resulting solutions are to the optimal solution. Furthermore, there is no theoretical
basis for finding the MLE using the above mentioned graph representation. Therefore, the
first goal for this thesis project will be to determine if there can exist a polynomial time
algorithm for solving this problem. If this is not the case, attempts will be made to find good
heuristics for finding an MLE, as well as an algorithm that should be able to find the optimal
solution, despite the fact that this will take a very long time. Furthermore, attempts will be
made at finding possible ways to reduce the size of the graph representation of the polygonal
environment. This is done in the hopes that on the new and smaller representation of the
problems, the algorithms will run significantly faster.

Afterwards, an experimental evaluation of the different algorithms will be made to deter-
mine what algorithm yields the best results when taking in consideration the quality of the
solution as well as the time needed to find this solution.

1.3 Thesis outline

In Chapter 2, a formal definition of the problem will be given, as well as definitions of polygons,
polygonal environments and an MLE. Furthermore, a graph structure containing all relevant
information of a polygonal environment P will be defined. In Chapter 3 it will be shown that
there exists no polynomial time algorithm that can find an optimal MLE. Finding an optimal
MLE turns out to be a NP-Hard problem when we want to find the minimal set of transfers
for a given polygonal environment.

Chapter 4 contains the basis for a divide-and-conquer strategy, as well algorithms that can
be used to reduce the size of the graph, while an optimal solution can still be found. In Chapter
5 a local search and evolutionary algorithm will be described, as well as two greedy heuristic
methods. One method is based on cutting all shortest paths between overlapping vertices, and
the other one is based on clustering polygons together based on height information. A linear
programming formulation of the problem is given in Chapter 6. The experiments conducted
will be described in Chapter 7 and the results will be discussed in Chapter 8. In Chapter 9,
we conclude that on the tested environments the height based heuristic outperforms all other
algorithms, closely followed by local search. Furthermore, running the tested algorithms on
the reduced graph representations does decrease the execution time. Unfortunately however,
reducing the graphs takes more time than that is gained by using these reduced graphs.
Furthermore, a list of still open problems will be given.
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Chapter 2

Problem definition

In this chapter a formal definition of the problem outlined in Chapter 1 will be given. This
chapter considers an Euclidean environment R3. The notation for a point or location in this
environment is l = (lx, ly, lz), where the ly-component of a point gives the vertical position of
this point. Besides points, polygons can be defined in this environment. Such an environment
containing polygons will be called a polygonal environment. The notation used for a polygonal
environment is P. In the upcoming sections, some definitions will be given concerning the
environment P.

First, polygons as they are used in the remainder of this thesis will be defined. Next, in
Section 2.2 a definition of polygonal environments and some properties of these environments
will be introduced. In the last section, definitions of a multi-layered environment and transfers
will be given. Furthermore, a graph structure will be defined that contains all the information
from a polygonal environment needed to create a multi-layered environment which has a
minimal number of transfers.

2.1 Polygons

A polygon P is defined by a list of coplanar vertices p = {p0, . . . , pn−1} where n ≥ 3. Each pi ∈
p is an unique corner of polygon P and the points in p are ordered in a clockwise or counter-
clockwise order. Since all vertices in p lie on one and the same plane, the corresponding plane
can be found using three points from the list p. Using these points, the normal vector of the
plane ~n can be determined using the equation ~n = (pi − p0) × (pj − p0). Here, i 6= j and
1 ≤ i, j ≤ n− 1. Furthermore, p0, pi and pj should not lie on the same line. If p0, pi and pj
are located on the same line, the resulting cross product would be the null vector.

Using the list of coplanar vertices p, n lines can be defined between the consecutive points
of p. The points on these lines are given by the equation ei(t) = t(p(i+1)%n − pi) + pi, where
i = {0, . . . , n − 1} and % is the modulo operation. The line segments ei(t), i ∈ {0, . . . , n −
1}, 0 < t < 1 are called the edges connecting vertices pi and p(i+1)%n. It is assumed that
none of the n edges belonging to polygon P intersect, i.e. P is a simple polygon. Using these
n lines, a polygon P is defined as the open set of points that lie within the bounded area
defined by these n lines and on the plane defined by p0 and ~n as described in Figure 2.1. The
reason for the definition of polygons as an open set is that otherwise neighbouring polygons
(polygons that share an edge) would also share the points on that edge. This would in turn
cause the definition of connecting and overlapping polygons later on to be cumbersome.
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Figure 2.1: The polygon is defined by the vertices p = {p0, p1, p2, p3}. All vertices lie on the
plane defined by (p0, ~n). A part of this plane is shaded blue.

A direct consequence of the definition of polygons as open sets is that the coplanar vertices
p and the points on the edges ei, i ∈ {0, . . . , |p − 1|} are not points on the polygon. These
points are only used to define the polygon.

Two polygons P = (~np, p0) and Q = (~nq, q0) might intersect when the normal vectors ~np
and ~nq are not parallel. When this is the case, it is possible to find a line along which the
corresponding planes intersect. The points on this line are given by eint(t) = l + (~np × ~nq).
The location l has to be located on both planes, and can be found by determining a point
that satisfies both ~np · l = ~np · p0 and ~nq · l = ~nq · q0. Using the line defined by eint(t) and the
edges of both polygons, the two polygons intersect if eint(t) intersects edges of both polygons
but is not equal to the actual edges ei(t) of the polygons.

Furthermore, two polygons can be connected or overlapping. A polygon P is defined to
be connected to a polygon Q if they share an edge. When P is connected to Q, this will be
denoted by 
.

Definition 1. Polygons P and Q are connected (denoted P 
 Q) when P and Q share at
least one entire edge.

Two polygons P and Q can also be placed above each other. When this happens, it is
possible for two polygons to have overlapping points when they are projected onto the xz-
plane (ground-plane): P and Q overlap when a (sub)set of the points of P is contained within
Q when both P and Q are projected on the ground plane.

Definition 2. Polygons P and Q overlap (denoted P m Q or Q m P ) if there exists at least
one point l = (lx, ly, lz) in polygon P and at least one point m = (mx,my,mz) in polygon Q
with (lx, lz) = (mx,mz).
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Figure 2.2: Three polygons Pred = {p0, p1, p2, p3}, Pblue = {p1, p4, p5, p6, p2} and Pgreen =
{p7, p8, p9, p10}. The following statements hold: pred 
 pblue, pgreen m pred, pgreen 6m pblue

These relations between polygons are shown in Figure 2.2. It is important to note that
the green polygon Pgreen does not overlap the blue polygon Pblue, although the points p8 and
p1 and the points p9 and p2 are placed directly above each other. Since polygons are defined
as open sets, the corners and the points on the edges of each polygon are not actually part of
the polygon itself.

2.2 Polygonal environments

A polygonal environment (denoted P) is defined on R3. An unrestricted polygonal envi-
ronment can contain any number of polygons with all possible orientations and locations.
However, the environment under consideration here has some additional restrictions. First
of all, it is assumed that all polygons P ∈ P are convex. It is also assumed that there are
no polygons that intersect. Both these requirements can be fulfilled by pre-processing P.
Transforming concave polygons into convex polygons can be done by using triangulation or
tessellation, and splitting intersecting polygons into multiple polygons can be done using one
of the many clipping techniques. Examples of these techniques were implemented by Fournier
[18] and Cyrus [13].

Furthermore, it is assumed that P is both walkable and realistic. An environment P is
considered walkable if for every polygon P ∈ P, a virtual entity can be located on all points
that are part of this polygon.

Definition 3. A polygonal environment P is considered walkable if ∀P ∈ P : ∀l ∈ P : l is a
valid location for any virtual character under consideration.

This means that polygons cannot be positioned vertically. If this were the case, a virtual
character would have to stand on an area of zero size. Furthermore, it would also mean that
it is not possible for P,Q ∈ P to be both connected and overlapping. Consider Figure 2.3.
In this figure it is not possible to add the red area as a new polygon P . When this polygon
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Figure 2.3: A (weakly) walkable polygonal environment P. When the red polygon P is added,
the environment is no longer walkable; it remains weakly walkable though.

Figure 2.4: An example of a Möbius strip[44]

P would be added, it is connected to all five surrounding polygons A, B, C, D and R. Since
along the edge connecting P and R only a virtual character of size zero can be located,
polygon P is not walkable and therefore the environment would no longer be walkable.

Since the goal is to find valid input for the Explicit Corridor Map (ECM) [43] as explained
in Chapter 1, the concept of walkability is too strict to be used in this case. The ECM is
developed to handle virtual characters of different sizes. For this reason, we will use the
concept of weakly walkable:

Definition 4. A polygonal environment P is considered weakly walkable if ∀P ∈ P : ∃l ∈ P :
l is a valid location for a virtual character of size 0.

In most cases this will mean that situations as described in Figure 2.3 will be allowed
as input for the algorithms described in the remaining chapters. The ECM will ensure that
virtual characters will only be positioned on points of polygons where they can be positioned.

Besides (weakly) walkable, an environment P must also be realistic. An environment is
realistic when it can be reconstructed in the real world and the walkable areas of the polygons
are walkable in the real world. This can be done by checking the angle between the normal of
the polygons and the vertical vector (0, 1, 0). When this is more than a certain threshold (say
40◦), the surface of a polygon is not walkable in realistic situations. For instance, a polygonal
environment containing a Möbius strip is not realistic. An example of the Möbius strip is
given in Figure 2.4.
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2.3 Multi-layered environments

Using the definitions introduced in the previous sections, a multi-layered environment E is
defined as a collection of layers L = {L1, . . . , Ln} and a set of transfers T between the different
layers. Each layer consists of a disjoint set of polygons from P such that P = ∪ni=1Li.
Furthermore, no single polygon in Li may overlap with another polygon in Li (∀P ∈ Li :
¬∃Q ∈ Li : P m Q). A transfer is needed when two polygons that are connected in P
are assigned to two different layers. Therefore, the set of transfers can be defined as T =
{(L(P,Q)|P 
 Q∧P ∈ Li∧Q 6∈ Li}. The function L(x, y) returns the edge e(t) that both the
polygons x and y share. Furthermore, it is assumed that P forms a connected environment.
This means that it is possible to travel from all polygons to all other polygons within P. When
this is not the case, the problem can easily be separated in several subproblems, solving the
problem for each separate connected group of polygons contained within P.

The challenge is to find a partition of P into E such that both the number of layers (|L|)
and the number of transfers (|T|) is minimized. Unfortunately, it is not the case that finding
the minimum number of layers also guarantees the minimal number of transfers. This is
illustrated in Figure 2.5. When we have a multi-layered environment that is minimal with
respect to the number of layers, we have a MIN-L-MLE and when we have a multi-layered
environment that is minimal with respect to the number of transfers we have a MIN-T-MLE.
Suppose we are given a MIN-T-MLE. Since |T| is minimal and there has to be at least one
transfer between two layers, there can be at most |T| + 1 unique layers for a connected
polygonal environment. When a MIN-L-MLE is given, it is not possible to say anything about
the upper bound of |T| given |L|.

This observation is important since the results of this thesis will be used as input for the
ECM [43] and the ECM’s runtime is dependent on the total number of transfers. In the current
implementation of the ECM, the runtime is dependent on both the number of layers and the
number of transfers. However, it is theoretically possible to combine all the layer-dependent
computations in one single step, therefore decreasing the need for a minimal number of layers.
Because of these reasons, the main goal of this thesis will be to find MIN-T-MLEs.

(a) (b)

Figure 2.5: A polygonal environment decomposed into two different multi-layered environ-
ments. In (a) the polygonal environment is decomposed into two layers with four transfers.
The environment in (b) exists out of three layers with only two transfers. These figures are
based upon an example from Saaltink [40].
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To make it easier to reason about this problem, we will introduce a graph-structure called
the P-Graph which contains all essential information of P for finding a MIN-T-MLE.

Definition 5. The P-Graph G is defined on a weakly walkable and realistic polygonal envi-
ronment P and consists of a set of vertices V , a set of overlapping vertices O and a set of
edges E, where:

• V = {vP |∀P ∈ P};

• O = {(vP m vQ)|∀vP , vQ ∈ V : P m Q};

• E = {(vP 
 vQ)|∀vP , vQ ∈ V : {P 
 Q}.

An example of such a P-Graph is given in Figure 2.6. Using the P-Graph, the problem of
partitioning P into E while minimizing |T| is now equivalent to finding a minimal set S ⊆ E
such that there exists no path from vP to vQ through E\S for all (vP m vQ) ∈ O. This set of
edges S is called a the MIN-T-MLE cut set. The problem of finding this MIN-T-MLE cut set is
called FIND-MIN-T-MLE-cut.

Definition 6. The problem FIND-MIN-T-MLE-cut is defined as finding a minimal set S ⊆ E
such that all overlapping pairs (vP m vQ) ∈ O are separated in G = (V,E\S). The set S is
known as the MIN-T-MLE cut set.

When this set S is found, it encodes the information of the set T. From V and E\S, the
information for the different layers can be extracted. Each individual connected component
in (V,E\S) forms one layer and each member of S forms a transfer. Since all connected
components in (V,E\S) are disjoint and for each polygon in P one vertex was created, it
can be shown that P = ∪ni−1Li holds. Furthermore, in each resulting layer Li, there are no
overlapping polygons, since that would mean that there still exists a path from vP to vQ
through E\S for some (vP m vQ) ∈ O.

Since S is supposed to be the minimal subset of E such that a decomposition of P into
multi-layered environment E is possible, it is the case that S encodes T. If there is an edge
in S that does not need to be in T, S is not minimal. Moreover, if it would be the case that
there is a transfer t ∈ T which is not encoded in S, the two vertices that are connected by t
are part of the same layer. Therefore, t cannot be a transfer.

Figure 2.6: Example of a P-Graph belonging to the environment as seen in Figure 2.5. Each
blue dot is a vertex, every blue line an edge and every red line depicts an overlap.
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Chapter 3

Hardness

In this chapter, the hardness of finding a MIN-T-MLE in a given P-Graph G will be discussed.
Section 3.1 shows that using max-flow min-cut is insufficient for finding a minimal decompo-
sition of G with respect to the number of transfers.

Section 3.2 shows that the decomposition of G into a MIN-T-MLE can be done using the
MULTICUT problem which is unfortunately an NP-Hard problem. Next, we will prove that
finding a MIN-T-MLE using a P-Graph is an NP-Hard problem in Section 3.3. This proof is
based on a paper by Dahlhaus et al. [14]. In the last section, we will take a closer look at
the P-Graph. Since a P-Graph is constructed from a convex, realistic and weakly walkable
polygonal environment P, it is not allowed to add edges or overlaps between arbitrary vertices
in the corresponding P-Graph. This restriction on the shape of the P-Graph might result in
bounds on the treewidth which could result in an FPT-time algorithm.

3.1 Max-flow min-cut

The max-flow min-cut theorem is a famous theorem coined by Ford and Fulkerson [17] as
well as Elias, Feinstein and Shannon [15] in 1956. The max-flow min-cut theorem made it
possible to find a minimal set of edges separating two vertices, often referred to as the source
(s) and the sink (t), of a (directed) graph G = (V,E) (G = (V,A)) in polynomial time.
This is done by first finding the maximum flow that is possible between the vertices s and
t. Afterwards, by using the max-flow min-cut theorem it is possible to determine the edges
that form the min-cut separating s from t. Calculating the maximum flow can be done in
O(|V ||E| + |V |2 logU) time by using an algorithm developed by Ahuja et al. [3]. Here, U
is the value of the highest capacity assigned to an edge in E. Whenever the maximum flow
between s and t has been found, a minimal cut can be found by performing a Depth First
Search (DFS) starting from s in O(|V | + |E|) time. This DFS should only traverse edges
that are not saturated (i.e. the flow through these edges that was found using the max-flow
algorithm should be less than the capacity of these edges). All vertices that are found using
this DFS are part of the set S and all remaining vertices are part of the set T . Now the edges
in the cut set are the edges (si, tj) where si ∈ S and tj ∈ T .

The max-flow min-cut theorem can be applied to the MIN-T-MLE problem by using two
different methods. The first method searches for a minimal cut for each pair of vertices
(s m t) ∈ O. This method does not guarantee finding an optimal solution, although the
solution found is valid. This method, due to Saaltink [40], is described in more detail in
Section 5.1. The second method adds a so-called super source and a super sink and requires
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only finding one minimal cut. Unfortunately, this method can result in invalid results. We
will describe below how this method can be applied to a P-Graph and why this method can
fail.

Two simple steps are required to adapt a given P-Graph for use with the max-flow min-cut
theorem.

1) Add a source s and a sink t to V (V ′ = V ∪ {s, t});

2) For each (v m w) ∈ O, create an arc (s→ v) and an arc (w → t) with capacity 1.

These two steps can be applied in O(|O|) time.
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Figure 3.1: A straightforward application of the max-flow min-cut theorem to a polygonal
environment. In (a), the original polygonal environment is shown. (b) shows the correspond-
ing P-Graph and (c) shows the application of min-cut max-flow to this graph as described
above. The min-cut found will be of size 2.

In Figure 3.1, an example of the application of the min-cut max-flow theorem is given for a
given polygonal environment. The capacity of the outgoing arcs of vertex S and the incoming
arcs of vertex T should be set sufficiently high to ensure that it will not be profitable to cut
them. Furthermore, it ensures that the maximal flow will not be limited by the capacities of
these arcs. A resulting min-cut could be the cut {(I 
 J), (R
 H)} of size 2.

It is easy to see that, applying min-cut max-flow to this instance will result in a feasible
multi-layered environment. When one vertex overlaps another vertex, both vertices will end
up in different layers. Unfortunately, applying min-cut max-flow will not always find an
optimal cut set. Two problems that might occur are the introduction of more constraints and
the attachment of both a source- and a sink-arc to the same vertex. Figure 3.2 is an example
of a situation where both problems occur.

When applying max-flow min-cut as described above to the P-Graph, the separation of
E from A is introduced. Furthermore, vertex J is directly attached to both the source S
and the sink T . Separating S from T will result in a min-cut of size 3 (one of (S → J) and
(J → T ) will be cut too), while it is possible to achieve a MIN-T-MLE-cut of size 1.

The reason for the aforementioned problems is that in the max-flow min-cut framework of
Ford and Fulkerson, there is no way to separate the individual constraints. In some environ-
ments, for example the one given in Figure 3.1, this is no problem. In this environment there
are also new constraints introduced (e.g. the constraint that vertex O should be separated
from {A,B,C,D, F,G} instead of just {F}). However, these new constraints do not force a
suboptimal solution to be found in this particular case.
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Figure 3.2: A straightforward application of the max-flow min-cut theorem to a polygonal
environment. In (a), the original polygonal environment is shown. (b) shows the correspond-
ing P-Graph and (c) shows the application of min-cut max-flow to this graph as described
above. Any valid min-cut separating S from T will also separate E from A, while this is not
necessary. The min-cut found using this method equals 3, while the optimal MIN-T-MLE-cut
is of size 1.

3.2 The MULTICUT problem

To resolve these issues, we turn to the multi-commodity minimal-cut problem (MULTICUT for
short) as described by Schrijver [41]. In the MULTICUT-framework multiple source-sink pairs
(si, ti) exist, where each pair generates its own specific flow fi. A flow belonging to such a
pair can only flow from si to ti, and not to another sink tj (j 6= i). The objective of MULTICUT
is to find a global minimal cut, where no residual flow between any source-sink pair remains.
More formally, the MULTICUT problem is defined as follows:

Definition 7. The MULTICUT problem is defined on an undirected graph G = (V,E) and a
terminal pair set T = {(s1, t1), . . . , (sk, tk)} where si, ti ∈ V for all i : 1 ≤ i ≤ k. The goal is
to find a minimal set of edges M ⊆ E such that each terminal pair (si, ti) is disconnected in
the graph G′ = (V,E\M).

Using MULTICUT we can find a MIN-T-MLE-cut on a P-Graph by modifying it in the fol-
lowing way:

1) For each (v m w) ∈ O, create a terminal pair (Sv, Tw)1;

2) Add the arc (Sv → v) and the arc (w → Tw);

3) Remove all (v m w) from O.

This idea is depicted in Figure 3.3. The reason why this works is that each individual
constraint is assigned a specific flow. Because of this no flow can exist between sources and
sinks belonging to different commodities/constraints.

When above steps are applied on a P-Graph, k vertices are inserted. Here k is the size of
the set of terminal pairs, which is the same as size of the set |O|. Since for each source-sink
pair one commodity is needed, we can solve the MIN-T-MLE problem by solving the MULTICUT

problem with k commodities. Unfortunately, MULTICUT is proven to be NP-Hard [9] as well as

1It is possible to reduce the number of introduced vertices and needed flows by reusing some vertices and
flows. For illustrative purposes, this is not done.
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APX-Hard [11] when k ≥ 3. When k = 1, MULTICUT becomes the same problem as max-flow
min-cut which is solvable in polynomial time. For k = 2, polynomial time algorithms exist
to solve MULTICUT [26, 27]. If k ≥ 3, it can be solved in FPT-time if both the treewidth ω
and the number of commodities k are given [23]. Furthermore, MULTICUT remains NP-Hard
even for planar graphs with outer terminals [5] and when the input graph is a tree [20]. Since
MULTICUT is such a computationally hard problem, we can not use MULTICUT to find solutions
for MIN-T-MLE. Furthermore, since MIN-T-MLE looks a lot like a restricted version of MULTICUT,
this suggests that MIN-T-MLE is also NP-Hard. A proof that MIN-T-MLE is indeed NP-Hard
will be given in the next section.
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Figure 3.3: An application of multi-cut to a polygonal environment. In (a), the original
polygonal environment is shown, (b) shows the corresponding P-Graph and (c) shows how
multi-cut can be applied to the P-Graph. Any valid multi-cut separating both terminal pairs
(SE , TE) and (SJ , TJ) will separate E from J , and J from A by removing one of the edges
(E,F ), (F,G), (G,H), (H, I) or (I, J).

3.3 Proof of NP-Hardness

The proof of NP-Hardness for the MIN-T-MLE problem is based on the proof provided by
Dahlhaus et al. [14]. Dahlhaus et al. prove that the MULTITERMINAL-CUT problem (MTC) is
NP-Hard. Their proof is based on a polynomial time reduction of the PLANAR 3-SAT problem
(P3S), which is a special case of the 3-SAT problem, to MTC. In Section 3.3.1 the problems
mentioned above will be described. Section 3.3.2 will contain a sketch of the proof that MTC

is NP-Hard, as given by Dahlhaus et al. [14]. Finally, in Section 3.3.3 it will be shown how
the proof from Section 3.3.2 can be adapted to proof that MIN-T-MLE is NP-Hard.

3.3.1 Descriptions of 3-SAT, P3S and MTC

The 3-SAT problem is a well known NP-Complete problem [29]. In this problem, a set of
n boolean variables X and a set of m 3-element clauses C are given. For each variable
xi ∈ X there exist two literals, denoted xi and ¬xi. Using these literals the set L is defined
as L = ∪xi∈X{xi,¬xi}. A clause cj ∈ C exists out of three elements of L. The elements
of a clause cj will be denoted cj,k for k ∈ {1, 2, 3}. Using X and C, the actual problem is
the question whether there exists a boolean assignment to the variables in X such that the
formula F = ∧cj∈Cf(cj) evaluates to TRUE. Here f(cj) = (cj,1 ∨ cj,2 ∨ cj,3).

P3S is a restricted version of 3-SAT and is also known to be NP-Complete [19, 33]. In P3S,
we also have a set of variables X, clauses C and literals L. Furthermore, a bipartite graph
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GX,C is given, where for each xi ∈ X and for each cj ∈ C a vertex is added to GX,C. An edge
is added between xi and cj whenever one of the literals {xi,¬xi} is in cj . The formula F for a
P3S problem is restricted to formulas of which a planar graph GX,C exists. To check if a graph
is planar we can use graph minors in conjunction with Wagners theorem. For a definition of
graph minors, take a loot at Section 3.4. According to Wagners theorem, a graph is planar if
and only if it contains no K5 or K3,3 minors. K5 is the complete graph on five vertices and
K3,3 is the complete bipartite graph consisting out of 3 vertices in partition one and 3 vertices
in partition two. In practice, this theorem is difficult to use, however algorithms exist that
can check in O(|V |) time if a graph is planar, such as the algorithm due to Hopcraft et al.
[25] or Boyer et a.l [7]. In Figure 3.4 two formulas are given, one of which no planar version
of GX,C exists, and one of which there does exist such a planar graph.

(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)

C1 C2 C3 C4

C1

x2

x1

x3

C2

C4

C3 x4

(a)

(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ x3 ∨ ¬x4)

C1 C2 C3

C1

x2

x1

x3

C2

C3

x4

(b)

Figure 3.4: Two instances of 3-SAT. The instance in (a) is not planar and the instance in (b)
is.

Dahlhaus et al. use a restricted version of P3S in their proof. In this version clauses of
size two and three are allowed. Furthermore, they require that for each variable xi ∈ X, the
associated vertex in GX,C has exactly degree three. Another requirement is that for each
variable xi ∈ X, both of its literals occurs, each in a different clause. Of course Dahlhaus et
al. prove this restricted version of P3S, which we will denote P3Sr, to be an NP-Complete
problem as well.

The last problem that we will define here, is the MTC problem. This problem looks like
the MULTICUT problem. In the MULTICUT problem we had a graph G = (V,E) and a set of
terminal pairs T. Finding a valid solution for the MULTICUT requires finding a minimal set of
edges M that separates each pair of vertices si and ti, where (si, ti) ∈ T. In MTC, instead of
a set of terminal pairs, we have a set of vertices T ⊆ V . A valid solution for MTC is a set of
edges M that separates each terminal ti ∈ T from all other terminals tj ∈ T\{ti}. The MTC

problem remains NP-Hard on a planar graph with either weighted or unweighted edges, as
long as k = |S| is not given. The proof as formulated by Dahlhaus et al. [14] will be given in
the next section.

The decision version of MTC is almost the same as the optimization version described
above. In this version, besides G = (V,E) and T, a positive integer weight w(e) is associated
with each edge e ∈ E. Furthermore, a bound B is given. Instead of searching for the minimal
set of edges M that separates all sinks, it is only required that a set M exists that separates
all terminals in T and that

∑
e∈Mw(e) ≤ B.
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3.3.2 Sketch of proof that MTC is NP-Hard

In this section parts of the proof as given by Dahlhaus et al. [14] that the planar version of
MTC is NP-Hard will be repeated. These parts are important for the understanding of Section
3.3.3. Dahlhaus et al. prove that the decision version of MTC is NP-Complete. To prove this,
a component design approach is used. For each xi ∈ X, one of the components shown in
Figure 3.5 is used to replace the corresponding xi in the graph GX,C.

Whenever two xi literals and one ¬xi literal of variable xi occur in clauses, component
(a) will be used, otherwise component (b) is used. The numbers located at the edges are the
corresponding weights of the edges. The vertices labelled xi and ¬xi will be terminals used
in the MTC problem. In (a) the link-vertices li,1 and li,2 will be connected to the clauses that
contain the literal xi and li,3 to the clause that contains the literal ¬xi. For (b) the link-vertex
li,1 will be connected to the clause that contains the literal xi and li,2 and li,3 to the clauses
that contain the literal ¬xi.

xi

li,1

li,2

li,3

¬xi3

1 1

3
5

1 1
5

3

1 1

3

2

2

4

(a)

xi

li,1

li,2

li,3

¬xi
5

1 1
5

3

1 1

3

3

1 1

3

4

2

2

(b)

Figure 3.5: The widgets used by Dahlhaus et al. [14]. The widget in (a) is used for xi with
two xi literals and one ¬xi literal. The widget in (b) is used for xi with one xi literal and
two ¬xi literals.

Just like every xi was replaced by a component, every cj ∈ C will be replaced by one of
the components given in Figure 3.6. Once again the numbers located at the edges are the
corresponding weights of the edges and the vertices labelled c+

j and c−j will be terminals used
in the MTC problem. For every clause existing out of 3 literals, the component of (a) will be
used. For clauses of size 2 the component of (b) will be used. The link-vertices mj,1 through
mj,3 represent the literals cj,1 through cj,3 in clause cj . The link-vertices will be connected to
the link-vertices of the components representing the corresponding literal for each variable.

As an example, consider the clause cj = x1 ∨ ¬x2 ∨ ¬x3, where ther variables x1 and x2

have two xi literals and x3 only one. Since cj is a clause existing out of three literals, it will be
replaced by the component given in Figure 3.6a. The vertices representing x1 and x2 will be
replaced by the component as shown in Figure 3.5a (since they have two xi literals) and the
vertex representing x3 will be replaced by the component as shown in Figure 3.5b. Whenever
the literal x1 is represented by mj,1, ¬x2 by mj,3 and ¬x3 by mj,2, link-edges of weight two
have to be added connecting mj,1 to either l1,1 or l1,2, mj,3 to l2,1 and mj,2 to either l3,2 or
l3,3. Furthermore, only one link-edge may be connected to a mj,x or li,x link-vertex.

The components belonging to clauses and the components belonging to variables are
linked together by weight two link-edges. Since the original graph GX,C was planar and every
variable xi occurs in at most three clauses, it is possible to link the different components
together while keeping the transformed graph planar.
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c+
j

mj,1 mj,2 mj,3

c−j

5
1 1

5
1 1

5
1 1

54 4 4

(a)

c+
j

mj,1 mj,2

c−j

5
1 1

5
1 1

54 4

(b)

Figure 3.6: The widgets used by Dahlhaus et al. [14]. The widget in (a) is used for clauses
with three variables and (b) is used for clauses with two variables.

Dahlhaus et al. continue by proving that when the decision version of the MTC problem
is solved for the transformed graph with B ≤ 10|X| + 4|C|, a valid solution for P3Sr can
be obtained from M. While proving this, they also prove a lemma which is important for
Section 3.3.3. This lemma concerns all the link structures in the transformed GX,C. A link
structure consists out of the vertex-induced subgraph by mj,x, the li,x that mj,x is linked to,
the neighbours of mj,x and the neighours of li,x. Such a link-structure is shown in Figure
3.7. Edge (e, f) can have weight two or four, depending on to what link-vertex it belongs to.
In this figure mj,x and li,x are the link-vertices and the edge (mj,x 
 li,x) is the link edge.
Dahlhaus et al. prove, when a valid solution for MTC is found, that M contains exactly one of
the sets {(a,mj,x), (b,mj,x)}, {(li,x, e), (li,x, f)} or {(mj,x, li,x)}. This means that all pairs xi
and ¬xi are separated from all other terminals and that all pairs c−j and cj+ are separated
from all other terminals.

a

mj,x

b

li,x

e

f

c+
j

c−j

xi

¬xi

4 2/4
1

1

1

1
2

Figure 3.7: A link structure. The edge between mj,x and li,x is the link-edge, connecting
clause structures to variable structures. The edge between e and f has a weight of 2 or 4,
depending on what link vertex of a variable it belongs to.

3.3.3 Proof that MIN-T-MLE is NP-Hard

To prove that P3Sr can be reduced to MIN-T-MLE, it is important that the transformed graph
obtained from Section 3.3.1 can be reconstructed in a weakly-walkable realistic polygonal
environment P. Furthermore, it has to be the case that from P a P-Graph can be constructed
that will yield the same results for P3Sr as would be obtained from the transformed graph
GX,C. Possible polygonal representations of the variable component and the three variable
clause are shown in Figure 3.8.

In these structures, a vertex v with weighted edge degree (which is
∑

(v,x)∈E w(e)) of two
is represented by convex tetragons, of degree five by a convex pentagon, with degree six
by a convex hexagon, of degree ten by a convex decagon and of degree eleven by a convex
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xi

li,1

li,2

li,3

¬xi

(a)

c+
j

mj,1 mj,2 mj,3

c−j

(b)

Figure 3.8: Polygonal equivalents of the variable structure (a) and a clause structure (b). The
blue lines are the edges belonging to the P-Graph and the circles the vertices of the P-Graph.
The vertices of the P-Graph that correspond to the terminals in the components of Dahlhaus
et al. are the circles with the labels xi, ¬xi, c+

j and c−j .

hendecagon. Triangles and tetragons are used to connect the different polygons to each other.
The resulting P-Graph has the same properties as the components given by Dahlhaus et al.
For example, take a look at Figure 3.9. In this figure, an example is given of how an edge
of weight five can be represented. Vertices v1 and v2 are vertices that exist in the original
components of Dahlhaus, and they are connected by an edge of weight five. The P-Graph
representation has the same properties as a single weighted edge. Instead of a single edge,
five vertex disjoint paths are created connecting v1 to v2. As a result, all five paths should be
cut if v1 were to be separated from v2. The same goes for the entire polygonal representation.

v1 v2

Figure 3.9: A close-up of how a weight five edge can be represented in a P-Graph.

The link-edges connecting the link-vertices li,x to mj,x can be represented using a series
of tetragons. Since the link-edges are of weight two, two of such parallel series are needed,
attached to the only two free sides of the tetragons li,x and mj,x.

Next, it is necessary to create all the terminals in the P-Graph. Whereas in MTC it is
allowed to pick any set of vertices to be terminals, in a P-Graph this is only allowed for vertices
belonging to polygons that overlap. Furthermore, in MTC all terminals have to be separated,
whereas in a P-Graph only pairs of vertices have to be separated if that specific pair of vertices
belong to overlapping polygons. Therefore, it is necessary to somehow position all 2(|X|+|C|)
terminals such that they all overlap. This can be done by taking 2(|X|+|C|) polygons centred
around the same xz-coordinate. By spacing the polygons using a sufficiently big y difference,
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we now have the desired number of terminals that all overlap each other. As a consequence, all
these polygons need to be placed in different components when solving MIN-T-MLE. Attaching
these polygons, and thus there corresponding terminals, to the terminals xi, ¬x−i , c+

j or c−j
can be done by creating a path from each such polyon to the corresponding polygon of xi,
¬x−i , c+

j or c−j . This needs to be done for all xi, ¬x−i , c+
j and c−j . Since the tower exists out

of 2(|X|+ |C|) a sufficient number of such polygons exist. To ensure that these paths will not
be cut, a sufficient number of parallel paths connecting such a polygon to xi, ¬x−i , c+

j or c−j
need to be created to create the effect of a weighted edge. The weight of this edge should be
at least ten to ensure these paths will not be cut when solving MIN-T-MLE.

Another thing that needs to be ensured is that the path connecting an overlapping polygon
Po to a terminal is not self-overlapping. The last part that has to be guaranteed is that no
path from Po overlaps any polygon in the clause structure or variable structure it will be
connected to, nor one of the three link-paths linking its corresponding clause- or variable-
structure to the corresponding structures. The last property is sufficient, since it is already
guaranteed using just xi, ¬x−i , c+

j and c−j as terminals that every variable- or clause-structure
will be separated from the other structures. Since the newly created overlaps will not change
this or change the optimum this will yield the same result as Dahlhaus et al. had for solving
P3Sr using planar MTC.

That the reduction given above can be done in polynomial time is not easy to see. It
is obvious that every v ∈ X ∪ C can be replaced in polynomial time by the corresponding
polygonal component. When n = |X|+ |C|, the most complex link-path connecting a variable
component to a clause component needs at most O(2× 24n) polygons, since that is the most
complex shape the components can form. Other 2n polygons are needed to create the ‘tower’
of overlapping polygons, and at most 2n×O(2×22n) polygons are needed to create the paths
connecting the ‘tower’ to their corresponding terminals. The number of overlaps created will
be exactly n2 + n for creating the ‘tower’ of overlapping polygons and the 2n paths leaving
the tower will have at most O(n− 1) overlaps for each component and at most O(n) overlaps
for each link-path. Whenever a large number of paths leaving the ‘tower’ overlap, at most
another O(((2n)2 +2n)×88n2) overlaps will be created. This in turn means that it is possible
to construct the required polygonal environment in polynomial time. Therefore, the decision
version of MIN-T-MLE is NP-Complete.

3.4 Bounds on the treewidth for P-graphs

From the previous section we know that MIN-T-MLE can be solved by using MULTICUT. Fur-
thermore, we know, if the treewidth ω is bounded for P-Graphs, that it is possible to solve
MULTICUT, and therefore MIN-T-MLE, using a FPT-time algorithm. The treewidth of a graph
G is the width of the minimal width tree decomposition of G. A tree decomposition D of
G is a tree with associated to each vertex of the tree a set of vertices from G. Furthermore,
when an edge (v, w) exists in G, there should be at least one set in D containing both v
and w. Furthermore, for every vertex v contained in G, it should be the case that vertices
in D with associated sets containing v should form a connected subtree of D. The width
of a tree decomposition D is defined to be the size of the biggest set minus one. Finding a
minimal width tree decomposition of a graph is an NP-Hard problem. However, for certain
types of graphs, it is possible to determine beforehand what the treewidth of that graph must
be. For more information about treewidth, we refer the reader to ‘A Tourist Guide through
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(a) (b) (c)

Figure 3.10: (a) A (6, 6)-grid minor shown on top of an environment P containing only
tetragons. (b) A (6, 6)-‘brick wall’3 can be obtained from an environment containing triangles.
When the red edges from (c) are contracted, a (3, 6)-grid is formed.

Treewidth’ by Bodlaender [6].

To determine if a given P-Graph has bounded treewidth, we take a look at graph minors.
According to Robertson and Seymour [36], a graph H is a minor of graph G whenever graph
G can be reduced to H by:

• Removing vertices that have no edges from G;

• Removing edges from G;

• Contracting edges of G.

One of such minors is the grid minor as depicted in Figure 3.10a. It is the case that
whenever a graph contains a (x, x)-grid minor, the treewidth of this graph is at least x [38].
It is easy to see that any P-Graph constructed from an environment P that may contain
tetragons can contain a (x, x)-grid minor. Therefore, for these kinds of environments the
treewidth of the associated P-Graph is unbounded.

For an environment P that may contain triangles, an environment and the corresponding
P-Graph are given in Figure 3.10b. This P-Graph once again contains a grid minor. This
is demonstrated in Figure 3.10c. When the red dashed edges are contracted, a (3, 6)-grid
minor is found, which once again contains a (3, 3)-grid minor. Therefore, the treewidth of
this P-Graph is at least 3. When the environment of Figure 3.10b is increased in size, so will
the treewidth. Therefore, for this type of environment the treewidth is unbounded.

When considering all other possible types of environments2, the treewidth remains un-
bounded. According to Robertson and Seymour [37], every planar graph has a (x, x)-grid
minor. Since every P-Graph can have a planar graph minor, this means that any type of
P-Graph has an unbounded treewidth. As a consequence, it is not possible to use FPT-time
algorithms (e.g. the algorithms described by Guo [23]) for the MULTICUT problem to solve the
MIN-T-MLE problem in polynomial time.

2That is, environments containing only pentagons or pentagons and tetragons or pentagons, tetragons and
triangles, or only hexagons, etc.
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Chapter 4

Finding subproblems and
reductions

Since finding a MIN-T-MLE is hard from a computational point of view, it is important to take
a look at possible subproblems and reductions of the original problem instance. In Section
4.1, we will explore a group of subgraphs of a P-Graph. For this family of subgraphs, solving
the MIN-T-MLE problem for subgraph G′ of G will result in a decomposition of G′ into a
multi-layered environment (MLE) LG′ . For this decomposition, each layer in LG′ will form a
connected component in an optimal MLE for G. Another group of subgraphs will be discussed
in Section 4.2. This group of subgraphs does not necessarily preserve the optimal MLE, but
is less computational intensive.

Section 4.3 will discuss methods that can be used to reduce the number of vertices, edges
and overlaps in a P-Graph. Two of these methods were introduced by Saaltink [40], which
only enabled edge and vertex reductions. The new methods introduced in this section also
enable the removal of overlaps.

4.1 Stable subgraph

In this section we try to find a family of subgraphs of G which we can use to find an MLE for
G that is optimal with respect to the number of transfers. More precisely, we are searching for
subgraphs G′ of G for which, when a minimal MLE L has been found for G′, each individual
layer in L will form a connected component in a minimal MLE for G. In this section, an
optimal MLE is always with respect to the number of transfers.

4.1.1 Definition

A subgraph G′ of G for which such an MLE exists, will be referred to as a stable subgraph.
Furthermore, we assume that this graph is vertex-induced. This means that the vertex set V ′

is a subset of V . Moreover, if a pair v, w ∈ V ′ forms the endpoints of an edge (v 
 w) ∈ E,
this edge also exists in the subgraph G(V ′). The same goes for the set of overlaps O′ of G(V ′).
Whenever two vertices v, w ∈ V ′ correspond to an overlap (v m w) ∈ O, (v m w) will also exist
in G(V ′). The corresponding polygonal environment will be denoted P(V ′). Whenever there
is only one subgraph in play, the notation G′ will be used instead of G(V ′) and P′ instead of
P(V ′).
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Definition 8. Given a P-graph G = (V,E,O) and a vertex-induced subgraph G′ of G. When
there exists an optimal MLE LG′ of G′ and an optimal MLE LG for G for which each layer
Li ∈ LG′ forms a connected component in a layer Lj ∈ LG, G′ is a stable subgraph.

4.1.2 Application

When such a subgraph G′ has been found, as well as the desired MLE LG′ for which each
L ∈ LG′ is a connected component in a layer L ∈ LG, it is quite simple to use LG′ for finding
an optimal MLE for G. This can be done in the following three steps. First, for each Li ∈ LG′

the vertices in Li are replaced by one single vertex vi.

During the second step, for each layer Li the edges Ev for each v ∈ Li are inspected. If
there is an edge (v 
 w) where w ∈ Lj and j 6= i, an edge (vi 
 vj) is created. When there
exists an edge (v 
 w) where w ∈ Li, the edge is discarded. The last type of edge is an edge
neither in Li or Lj where j 6= i. When such an edge (v 
 w) is found, it is replaced by an
edge (vi 
 w).

In the third and final step, for each layer Li the overlaps Ov for each v ∈ Li are inspected.
Since Li is a layer in a valid MLE, we already know that no overlap (v m w) ∈ Ov exists
where w ∈ Li. If such an overlap would exist, the found MLE would be invalid. Whenever
an overlap (v m w) ∈ Ov with w ∈ Li, j 6= i, it is replaced by (vi m vj). In the last situation
where (v m w) ∈ Ov, but w 6= V ′, the overlap is replaced by (vi m w).

In the resulting graph GR = (VR, ER, OR), the number of edges can be further reduced
when there exist multiple (v 
 w) ∈ ER. When we consider finding an optimal MLE
as finding a minimal cut set M for the MULTICUT-problem as described in Section 3.2, the
overlaps become terminal pairs and the edges in M will form transfers. From MULTICUT, we
know that either no edges between v and w are cut, or all edges between v and w are cut.
Whenever some edges between v and w are cut, |M| could be reduced by removing all edges
(v 
 w) from M, since these edges do not separate any terminal pairs. Therefore, all n edges
between v and w can be replaced by a single edge (v 
 w) of capacity n.

The size of OR can be further reduced as well, when switching to the MULTICUT framework.
When there exist multiple overlaps (v m w) ∈ OR, they can be replaced by a single overlap
(v m w). This would still force the terminals v and w to be separated and will not change
the value of the solution when there would exist multiple of these (v, w) terminal pairs in
MULTICUT.

Because of the assumption that an MLE LG′ was found for which each layer would form
a connected component an L ∈ LG, it is easy to see that this will not influence the optimal
solution LG for G. Merging the vertices as described before only ensures that these vertices
will end up in the same layer. Because of the way edges and overlaps are removed and
replaced, the same paths connecting terminals in MULTICUT still exist, as well as the same
terminal pairs.

4.1.3 Properties of a stable subgraph

In the previous section we have seen how a stable subgraph of G can be used to search for
an optimal MLE for G itself, however two questions remained unanswered. Firstly, it is nice
to know which of the solutions for the MIN-T-MLE-problem solved for G′ should be used. One
possible way would be to find all minimal MLEs for each subgraph and use each of these MLEs
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as described above. After these solutions have been used to find a MLE for G, the solutions
yielding the minimal number of cuts is used. However, this might result in a very large
number of computations. If a minimal MLE for G′ has |T| = t, up to

(|E′|
t

)
different solutions

can exist. Therefore, in this section we will only take a look at subgraphs of G for which all
optimal MLEs can be used for finding the optimal solutions for G. These subgraphs will be
referred to as super stable subgraphs. Secondly, we need to know under what circumstances
all minimal MLEs of subgraph G′ can be used for finding the minimal MLE of G. This will
be discussed next.

In this section one property will be given. When this property holds for a subgraph it
is guaranteed to be super stable, however there may exist subgraphs that do not satisfy this
property that are still super stable. In this section, the notation for a simple path p from v to
w will be [v]→ [w]. A simple path starting with a fixed sequence of vertices [v, w] and ending
in another fixed sequence of vertices [x, y] will be denoted as p = [v, w] → [x, y]. The first
vertex of such a path is p0 = pv = v. The second vertex of such a path is p1 = pv+1 = pw = w
and the last element is py = y. The property concerns edges (a 
 b) ∈ E′ and overlapping
vertices v and w.

Property 1. For G′ to be super stable, all vertices on all paths p = [v] → [a, b] → [w] with
(v m w) ∈ O, (a
 b) ∈ E′ should be in V ′.

Lets first consider the edges in a super stable subgraph.

Lemma 1. Assume we have an edge e = (x
 y) ∈ E for which no path p = [v]→ [x, y]→ [w]
in G with overlapping v and w exists. When e is removed from or added to a super stable
subgraph G′, G′ remains super stable.

Proof. Since no p = [v]→ [x, y]→ [w] in G exists for overlapping v and w, edge e will never
separate any overlapping pair (v m w) ∈ O in G or in G′. This means that e will never be
part of the cut set M in a minimal solution. Therefore, when e is added to or removed from
G′, the minimal cut set for G′ will not change.

This means that all these edges can be removed from a subgraph ofG′, while still remaining
super stable. This also means that only edges that have paths connecting overlapping vertices
have to be in a super stable subgraph. If such an edge is in a super stable subgraph, it is
necessary that all simple paths connecting its overlapping vertices are in the stable subgraph.
An example of that is given in Figure 4.1. In this figure, {c, d} could form a subgraph when
property 1 would not be necessary. However, this subgraph does not contain any conflicting
vertices and will therefore be in one single layer in the MLE for G({c, d}). However cutting
the edge (c
 d) is the optimal solution for G, separating both (a m b) and (e m f).

Lemma 2. When property 1 holds for a subgraph G′, we have enough information to decide
if an edge e = (x
 y) ∈ E′ has to be cut.

Proof. If property 1 holds, all simple paths connecting overlapping vertices that pass through
e are also in G′. This also means that all possible ways of separating these overlapping
vertices are in G′. Consider an overlapping pair of vertices (v m w) ∈ O′ that is connected in
G′ through e. This would also mean that all possible [v] → [x, y] → [w] paths are in G′. If
on these paths no edge e′ = (x′ 
 y′) exists that has a [v′] → [x′, y′] → [w′] with (v′ m w′),
v′ /∈ {v, w} and w′ /∈ {v, w}, it is easy to see that the decision can be made for e if it has to be
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Figure 4.1: A situation that shows why property 1 is necessary.

cut or not. The addition of any of these edges to the cut set can only separate v from w, not
any other pair of overlapping vertices. Furthermore, these paths have to be cut to separate v
from w, meaning that they have to be cut and that the cut can not be influenced by anything
not currently in G′.

If on these paths such an edge e′ does exist, it would mean that the corresponding v′

and w′ would also be part of G′, as well as all [v′] → [e′] → [w′] paths. If on these paths
no edge e′′ exists that have a [v′′] → [e′′] → [w′′] with (v′′ m w′′), v′′ /∈ {v, w, v′, w′} and
w′′ /∈ {v, w, v′, w′}, all information for deciding if e′ should be cut is known, and, therefore, all
information to decide if e should be cut. This process can be repeated to show that property
1 is sufficient to decide whether e should be cut in both G′ and G.

The downside of restricting ourselves to subgraphs that adhere to property 1 is that the
subgraphs tend to be very big. For this reason we will also take a look at a different type of
subgraph.

Furthermore, checking if an edge (v 
 w) should be in G′ takes quite some time. To
determine if an edge e = (v 
 w) is on a path connecting two overlapping vertices (x m
y) ∈ O′, we can utilize a max-flow computation [3]. In this computation, all the edges of the
original graph will have capacity 1. A source s is added with edges (s
 v) and (s
 w), both
with capacity 1. The sink vertex t will have the edges (t 
 x) and (t 
 y) also both with
capacity 1 where (x m y) ∈ O′. If the maximal flow is two, e is on a simple path connecting
x to y. Since it can be the case that e does not connect all |O′| overlapping pairs of vertices
in G′, at most |O′| of these tests have to made for a single edge.

4.2 Topo-Forest

In this section, another type of subgraph that looks very promising for certain types of
environments is discussed. This subgraph relies on the idea that most P-Graphs will be
constructed from environments that look like conventional buildings. The usefulness of this
subgraph for solving MIN-T-MLE will be tested in Chapter 7 and beyond.

4.2.1 Definition

A Topo-Forest (TF for short) is a subgraph G′ = (V ′, E′, O′) of G induced by V ′ ⊆ VO. Here
VO is the set of vertices that have an overlap with at least one other vertex. A pair of vertices
v ∈ VO and w ∈ VO is in the same TF if and only if there exists a path p = [v] → [w] that
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only visits vertices in VO. Furthermore, for each pair of succeeding vertices pi and pi+1 on
path p, there has to exist an edge (pi 
 pi+1) ∈ E and/or an overlap (pi m pi+1) ∈ O.

Definition 9. A Topo-Forest is a subgraph G′ = (V ′, E′, O′) of G induced by V ′ where:

1) V ′ ⊆ VO;

2) v and w are in the same TF if and only if there exists a path p = [v]→ [w] of length n
such that:

• pi ∈ VO ∀1 ≤ i ≤ n;

• pi and pi+1 are connected or overlap.

Because of the definition of a TF, either v and all members of Ov are in V ′, or neither v
and Ov are in V ′. An example showing two TFs is given in Figure 4.2.

Figure 4.2: Two TFs in one P-Graph. The red overlaps and corresponding vertices form one
TF, the black overlaps and their corresponding vertices the second TF. The dashed edges are
the edges that are not part of any TF.

As can be readily seen, this type of subgraph is not a stable subgraph. It is possible that
a transfer for the optimal MLE is within a TF while the corresponding edge is not cut when
solving the MIN-T-MLE for this particular TF. An example of this is given in Figure 4.3. In
this example, using the decomposition into a minimal MLE for a subgraph as described in
Section 4.1.2 will yield an MLE with |T| = 9, while the minimal MLE for G has |T| = 7.

4.2.2 Finding a TF

Finding all TFs in a graph G is straightforward. First a graph G′ = (V ′, E′) is constructed,
where V ′ contains all the vertices in VO. When v and w are vertices in V ′, an edge (v 
 w)
is added to E′ for all (v 
 w) ∈ E and all (v m w) ∈ O.

The vertices of each connected component in G′ are the vertices belonging to each TF in
G. The connected components of G′ can be found by running c times a BFS or DFS searche,
where c is the number of connected components in G′. A description of such an algorithm is
given in Algorithm 1 and has complexity O(|V ′|+ |E′|).

24



Figure 4.3: An example TF. The dashed edges are part of the remainder of the graph. The
decomposition of the TF into LG′ consist of all the individual floors (5 layers). The optimal
decomposition of G, however, is found by cutting the ramps in the TF and the green edge,
which resutls in 7 transfers. Using the decomposition LG′ would result in all ramps to be cut
and three transfers outside of G′, resulting in a total of 9 transfers.

Algorithm 1 Pseudocode for finding connected components. Pseudocode for BFS(G, v) is
given in Algorithm 2.

Input: G = (V,E): A graph
1: C ← new List
2: for v ∈ V do
3: if v has been previously visited by BFS then
4: continue
5: end if
6: C.insert(BFS(G, v))
7: end for
8: return C

4.2.3 Application

Since an optimal MLE for a given TF t might not be suitable for use as described in Section
4.1.2, we need to check each MIN-T-MLE decomposition of a TF t to see if it can be used when
searching for the optimal solution for G. How this can be done is described in this section.

Suppose that the vertices of a graph G are split into the set of all TFs (denoted TF) and
a set containing the remainder of the graph (denoted GP). In TF, multiple TFs are stored.
Because of how a TF is defined, we know that the vertices contained in a TF t are a subset
of VO. Furthermore, we know that the following lemma holds:

Lemma 3. A vertex v ∈ V is assigned to at most one TF.

Proof. Suppose we have vertex v. Vertex v is assigned to a TF t and t′. First of, we know
that every TF is connected through its edges and overlaps because of its definition. This
means that any vertex u ∈ t and w ∈ t′ is connected to v. Therefore, u is also connected to
w on a path through E ∪O through vertices only in VO in G. Therefore, it must be the case
that u and w are in the same TF and therefore t = t′.
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Algorithm 2 Pseudocode for a BFS implementation

Input: G = (V,E): A graph;
v: Starting point of search for connected component.

1: C ← new List
2: Q← new Queue
3: Mark v as visisted
4: C.insert(v)
5: Q.insert(v)
6: while ¬Q.empty() do
7: v′ ← Q.dequeue()
8: for all neighbours n of vertex v′ do
9: if n not yet visited then

10: Mark n as visited
11: C.insert(n)
12: Q.insert(n)
13: end if
14: end for
15: end while
16: return C

We assume that for each individual TF, the MIN-T-MLE problem has been solved, which
means each TF t is decomposed in a set of layers Lt. A layer Li,t ∈ Lt overlaps another layer
l, if there is at least one vertex in Li,t and one vertex in l that overlap. In the same way, Li,t
is connected to l whenever there is at least one vertex in Li,t connected to at least one vertex
in l. The vertices from i connecting layer i to layer j are in the set Ci,j . The set of vertices
contained within a layer i of a TF that have edges connecting this layer to vertices contained
within GP, is denoted Fi,t.

Now, given a TF t with an optimal decomposition into Lt, it is readily seen that whenever
l ∈ Lt has no edges going outside of the TF (|Ft,l| = 0), l is a stable layer as long as all of the
layers bordering l are stable.

Lemma 4. Given are a TF t, its optimal MLE Lt, and a layer l ∈ Lt with Fl = ∅. If for all
layers m ∈ Lt for which there exists a vertex v ∈ l such that v ∈ Cl,m, m is stable, than l is
also stable.

Proof. The first thing to note is that l has no edge to any vertex in GP. This means no
edges between vertices in GP and l will be created when searching for the MIN-T-MLE for G.
Therefore, the only influence on the distribution of the vertices of l are from the neighbouring
layers, which are the layers m ∈ Lt for which w ∈ m and w ∈ Cm,l.

Since there are neighbouring layers, it must be the case that there is a vertex o ∈ m and
v ∈ l that overlap, where m is a neighbouring layer. If such a vertex-pair does not exist, this
would mean that Lt is not optimal since the layers m and l can be merged. This holds for all
the neighbouring layers of l.

The vertices in each neighbouring stable layer will end up in the same layer of LG, since
that is the definition of stable layers. Since the overlapping vertices from the neighbouring
layers were already separated in a minimal way in t, this is also minimal for G.
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From here on, we can prove the following lemma:

Lemma 5. Given a TF t and its optimal MLE Lt. If all l ∈ Lt for which |F|t,l > 0 are
stable, all m ∈ Lt for which |F|t,m = 0 must be stable too.

Proof. Since all m are optimally separated from their neighbouring layers, several situations
can arise. First, all neighbouring layers of m can have |F|t,l > 0. That situation has already
been discussed in Lemma 4.

For all other situations the following holds. If the layers l are stable, it once again means
that all vertices from l end up as a connected component in a single layer of the optimal MLE
for G, otherwise l was not stable. If a layer l has a neighbouring layer m with |F|t,m = 0, it
cannot change the location of the cut between l and m, since this was already optimal.

Next we need to know under which circumstances a layer l in a TF with |Fl| > 0 is stable.
For these layers, the following situations can occur:

1) There exists another layer m ∈ t with |Fm| > 0, l m m and l and m are connected
through G\t. On the path(s) connecting l and m pairs of vertices (v m w) exist;

2) There exists another layer m ∈ t with |Fm| > 0, l m m and l and m are connected
through G\t. On the path(s) connecting l and m no pair of vertices (v m w) exists;

3) There exists another TF t′ with two layers m and n that are connected through path p
with at least two consecutive vertices in l.

For a decomposition of a TF to be usable, all of the above properties should not exist or none
of the situations should enforce a different decomposition of t. What this means is explained
in the next paragraphs.

When the first situation occurs, it does not force the decomposition of t to change. On
the path connecting layers l and m, a subpath [v]→ [w] exists with (v m w). Therefore, this
subpath is guaranteed to be cut in any MLE for G and the layers l and m do not need to
change.

The second situation where no pairs of vertices exist on a path is not that easily resolved.
Suppose such a path p is connected to layer l by vertex v and to layer m by vertex w, as
is shown in Figure 4.4. This path only visits vertices in V \Vt, where Vt are the vertices of
topoforest t. When the vertices v and w overlap each other as in (a), there has to exist a
cut disconnecting v and w outside of the layers l and m, otherwise v and w would not be
separated.

Whenever a path connecting the two layers exists such that the vertices do not overlap, it
can be the case that the layers l and m are not stable. An example of this is given in Figure
(b). In this figure there exists a path [v] → [w′] where v and w′ do not overlap. Therefore,
we have no guarantee that the path [v′] → [w′] will be cut outside of t. For that reason we
need to check where this path will be cut.

This can be done by using the max-flow min-cut theorem. Firstly, it is necessary to
calculate how expansive it would be to cut all [m]→ [l] paths that have no pair of overlapping
vertices on them. This can be done by taking all the Fm vertices as sources and all the Fl

vertices as sinks. The size of this cut, let us call it C, is an upper bound of the cuts needed
to separate layer m from l in G. Secondly, we need to check what the minimal cut between
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Figure 4.4: The layers l and m with vertices v, v′, w and w′. The layers l and m are connected
by two paths. The remainder of the graph is not shown. In (a) the two layers are connected
by paths p1 = [v] → [w] and p2 = [v′] → [w′]. In (b) the two layers are connected by paths
p1 = [v]→ [w] and p2 = [v]→ [w′].

the vertices from l that overlap the vertices in m is. This can once again be done by a simple
max-flow min-cut algorithm. If the value found here is smaller than C, this means that l and
m are not guaranteed to be stable, since there is a cut separating the overlapping vertices
from l and m using edges in l and m. If the cut found is equal to C, the means that the
vertices can be cut using the vertices found when searching for the cut separating Fm from
Fl and therefore will only depend on the other two situations.

Whenever the last situation occurs, vertices in one layer l of a TF t are part of a path
connecting two overlapping layers m and n of a different TF t′. In some cases this can force
the layer l of t to be split in to two or more components. This happens whenever the ‘cheapest’
way to separate m and n is by cutting some of the edges in l. Whenever there is only one
pair of such layers that have a path connecting them through l, it is relatively easy to check
if l is unstable or not. First the minimal cut of m and n is calculated. Whenever this value
is smaller than the minimal cut found when the cost of cutting edges contained within l is
increased to a high enough value, l is unstable.

Whenever there exist more pairs of layers from possibly multiple TFs that are connected
with a path through l, the above method will not work. The reason for this is that this would
result in a new instance of multicut. Therefore, whenever this case occurs the TF should be
discarded.

4.3 Reductions

In this section the set of neighbours of v is still Nv and the set of vertices v has an overlap
with is still Ov.

The last thing to note is that until now, it was assumed that the P-Graph was an un-
weighted graph with no capacities assigned to edges. In the upcomming section, this will
change. The edges of a P-Graph now have a capacity. Before any reduction has been applied
to a graph, the capacity of each edge equals one.
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4.3.1 Reducing the number of edges

In his master’s thesis [40], Saaltink already defines two graph simplifications which we will
name 1-CONTRACT and 2-CONTRACT. The first reduction is only applicable for a vertex v with
|Ov| = 0 and |Nv| = 1. When this is the case this vertex can easily be ignored. There is no
reason to add this vertex to any other layer than the layer of its only neighbour. A situation
where this operation can be applied is shown in Figure 4.5a.

v w

(a)

u v w

(b)

u v w

(c)

Figure 4.5: Figure showing situations in which different operations can be applied. The
dashed edges and overlaps depict possible overlaps and edges to the remainder of the graph.
(a): The vertices v and w can be contracted using 1-CONTRACT (b): The edges (u, v) and
(v, w) can be replaced by a single edges (u,w). Furthermore, the vertex v can be removed.
(c): The two edges (u, v) can be merged into a single edge with as capacity the sum of both
edges.

The second graph simplification applies to a vertex with |Nv| = 2 and |Ov| = 0. Assume
the two neighbours of v are x and y. Since this vertex v has no vertices it overlaps with,
contracting v and x or v and y will not induce any new overlaps. The newly created edge (x, y)
does not create any new connections between x and y, nor the minimal cost of separating x
and y. A situation where this operation can be applied is shown in Figure 4.5b.

Because of the restrictions of the underlying polygonal environment, some situations can-
not exist. Two vertices with two different edges connecting them is one of these situations.
This situation is shown in Figure 4.6a. In this figure, the polygon located on the right is
concave, while we require that all the polygons are convex. However, when we apply the
2-CONTRACT operation on an environment as shown in Figure 4.6b, the reduced graph would
contain two vertices with two different edges connecting them. Whenever this happens, some
edge-reduction operations will not be applied, while in fact they can be applied. An example
of a situation like this is given in Figure 4.5c. In this situation it would be nice if we could
apply the 2-CONTRACT operation, but this is not possible since |Nv| = 3, not two. A simple
solution solving this problem is merging all the double edges and combining their respective
capacities. This method is called E-REDUCE. After this operation has been applied to Figure
4.5c, 2-CONTRACT can be applied.

To enable the 2-CONTRACT operation to handle edges of different weights, we need to
change it a little. This version takes the minimum capacity of either one of the edges. The
application of a sequence of the above mentioned operations is illustrated in Figure 4.7.
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(a) (b)

Figure 4.6: In (a) the right polygon may not exist in P since it is concave. Figure (b) shows
a situation where an identical graph would emerge after applying 2-CONTRACT.

(a) (b) (c)

Figure 4.7: An example of the new contraction operation. In (a) the original P-Graph is given,
in (b) the contractions possible with the old contraction operator and in (c) the contraction
with the new contraction operator. The thick edge is of capacity 2.

4.3.2 Reducing the number of overlaps

A logical next step is considering when overlaps can be removed from the graph. This situation
will be subdivided in three categories. First we have the trivial cases, where there is only
one possible cut when two vertices have to be separated. Next there is the case of vertices
with edge degree 2 that do have overlaps. In this scenario several overlaps can be removed
under specific circumstances. The last scenario contains a general approach to detecting if a
certain overlap is removable. Although the algorithm belonging to this approach is easy to
understand, it is rather computational intensive.

Trivial case

A case is considered trivial when there exists only one simple path [v] → [w] and both
(v 
 w) ∈ E and (v m w) ∈ O. When this happens, there is only one possible way to
separate v and w, which is done by cutting the edge (v 
 w). Keeping this cut fixed during
the entire search process will not influence the optimal decomposition of G into a MLE, since
it is the only way to separate v from w. Since this action guarantees that v and w are
separated, the overlap (v m w) can be removed from O. When other paths do exist, the cut
still remains necessary, however the overlap cannot be removed. The operation of removing
the edge between overlapping vertices v and w is called T-CUT.
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Figure 4.8: Two trivial situations considering overlaps. In (a) the edge (v 
 w) has to become
a transfer, since v and w need to be in separate components. (b) depicts a situation where
all paths from v to w are blocked by the single neighbour of v.

Furthermore, when a vertex v has edge degree 1 and (v m w) holds, the overlap can be
removed when all the neighbours of w are overlapped by the single neighbour of v. These two
situations are shown in Figure 4.8. This operation is known as 1-REMOVE.

Vertices with edge degree 2

When considering a vertex v with edge degree 2 and its corresponding overlaps, some of these
overlaps might be removed. Assuming an overlap (v m w) exists, this overlap can be removed
when on all paths connecting v and w, pairs of vertices (x m y) exist. These situations will
be treated in Section 4.3.2.

Another situation where an overlap (v m w) can be removed, is given in Figure 4.9a. In this
situation all edges have capacity one and both v and w have edge degree two. There are two
types of paths connecting v and w. The first type of paths are the paths p = [v, nv]→ [nw, w],
where (nv m nw) ∈ O. For these paths the following lemma holds:

Lemma 6. Given v, w, (v 
 nv), (w 
 nw) and (nv m nw). All paths p = [v, nv]→ [nw, w]
will be cut in a valid MIN-T-MLE.

Proof. On all p = [v, nv] → [nw, w] paths, the subpaths p′ = [nv] → [nw] exist. Since
(nv m nw), on all p′ paths at least one edge has to be part of the cut set, separating nv from
nw and also cutting all [v, nv]→ [nw, w] paths.

The second type of paths are the paths p = [v, nv]→ [n′w, w, nw]. On these paths (nv m nw)
and (n′v m n′w). For these paths the following lemma holds:

Lemma 7. Given v, w, (v 
 nv), (w 
 nw), (w 
 n′w), (nv m nw). If a path p = [v, nv]→
[n′w, w, nw] is cut by removing edge e = (w 
 nw) in an optimal MLE, the value of the MLE
will not change when e is replaced by (w 
 n′w).

Proof. In an optimal MLE, we know that a path p = [v, nv] → [n′w, w, nw] is cut, since
(nv m nw). If this path was not cut, the solution would be invalid. When the optimal
cut contains the edge e = (w 
 nw), it cuts all paths containing the subpath [nw, w, n

′
w].

Replacing e by (w 
 n′w) will still cut all these paths.
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Figure 4.9: An example of when overlaps can be removed when vertices have edge degree 2.
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Figure 4.10: An example of when overlaps can be removed when vertices have edge degree 2.

Using Lemmas 6 and 7, we can now prove that the overlap (v m w) of Figure 4.9 can be
removed.

Proof. By Lemma 6 all paths [v, nv] → [nw, w] and [v, n′v] → [nw, w
′] will be cut even if v

does not overlap w. Furthermore, we know that all paths of type p = [v, nv] → [n′w, w, nw]
will be cut in a valid MLE. If these paths are cut using edges different from an edge in
X = {(v 
 nv), (v 
 n′v), (w 
 nw), (w 
 n′w), v and w are separated.

However, if such a path is cut using an edge from X, it can be the case that v and w are not
separated, for example when the path p = [v, nv]→ [n′w, w, nw] is cut by the edge (nw 
 w).
However, by Lemma 7 we know that this edge can be replaced by edge (n′w 
 w).

Since this means that (v m w) can be ignored, the overlap (v m w) can be removed. This
in turn again means that the E-REDUCE operation can be applied. This is shown in Figure
4.9b and Figure 4.9c.

The above argument still holds whenever the edges (nw 
 w) and (w 
 n′w) have the
same capacities a, and the edges (nv 
 v) and (v 
 n′v) also have the same capacities b, but
b 6= a. However if edges (nw 
 w) and (w 
 n′w) each have different capacities Lemma 7
does not hold any longer, since replacing the edge will change the value of the solution.

This same trick can be applied to prove that in a stack of structures as given in Figure
4.9a, overlaps can also be removed. An example of such a structure is given in Figure 4.10a.
This can be proven using exactly the same steps as before and can only be applied under the
same restrictions.
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Algorithm 3 REMOVE

Input: w: The current vertex under inspection
Ov: The set of old restrictions of the original vertex v
O′v: The minimal set of needed restrictions for v

1: w.visited← true
2: for ∀o ∈ Ow do
3: o.conflictCount+ +
4: end for

5: for n ∈ Nw do
6: if n.conflictCount > 0 ∨ n.visited then
7: continue

8: else if n ∈ Ov then
9: O′v ← O′v ∪ {n}

10: Ov ← Ov\n
11: n.conflictCount+ +

12: if Ov = ∅ then
13: return (∅,O′v)
14: end if
15: continue
16: end if

17: (Ov,O
′
v)←REMOVE(n,Ov,O

′
v)

18: end for

19: w.visited← false
20: for ∀o ∈ Ow do
21: o.conflictCount−−
22: end for
23: return (Ov,O

′
v)

General case

In the general case, overlaps can be removed whenever the separation of overlapping vertices
is already forced by the surrounding environment, just as with STACK-REMOVE. In other words,
an overlap (v m w) can be safely removed when on all paths connecting v and w there exists
a pair of vertices (pi m pj) ∈ O. Unfortunately, checking this requires in worst case scenarios
an exponential amount of time. A simple BFS or DFS will not suffice since not all paths
connecting v and w are traversed. An example implementation of an algorithm that checks
what restrictions can be removed, is given in Algorithm 3.

This algorithm is based on a DFS algorithm, without the guarantee that each vertex or
edge is only traversed just once. The algorithm uses a boolean value v.visited ∀v ∈ V to check
if it is already on the current path under investigation. Besides the boolean for each vertex a
counter v.conflictCount is used to check if the vertex has already been blocked by a previous
vertex on the path.
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Algorithm 4 INITIALIZE

Input: v: Vertex of which to check what overlaps can be removed.
Ov: Set of overlaps currently in place for v

1: for o ∈ Ov do
2: o.conflictCount← −1
3: end for
4: (forget, remainingConflicts)←REMOVE(v,Ov, ∅)
5: return remainingConflicts

REMOVE should be called as described in Algorithm 4. This algorithm initializes the con-
flictCounter for every o ∈ Ov to −1, so the first call to REMOVE will work correctly. In lines
1 through 4 of REMOVE, the conflicts of the current vertex are registered. Furthermore, this
vertex is marked as visited to ensure no loops are formed. Lines 5 through 18 inspect all the
current neighbours of w. On line 6 it is checked if n is still reachable from v when taking
in consideration all vertices with overlaps located earlier on the path to n. When there is a
vertex on this path that overlaps n, it is not possible to visit n and the algorithm continues
with the next neighbour.

Whenever n is reachable from v, it is checked if n is a member of Ov in lines 8 through
16. If it is, this means that nothing in the environment ensures the separation of v and n.
Therefore, n is added to the set of new overlaps for v O′v. Furthermore, the original conflict
from v with n is reactivated. Because this overlap is reactivated, n is no longer reachable
through this path since (v m n), so the algorithm continues with the next neighbour of w. If
it is possible to visit n, REMOVE is called recursively and Ov and O′v are updated accordingly.

Since REMOVE is an algorithm that can visit each vertex and edge multiple times, the
runtime becomes quite big. Given a graph with max edge-degree Edeg, max overlap-degree
Odeg and |V | vertices. For each individual call to REMOVE, 2Odeg calls are made for lines 3 and
21. Furthermore, the loop on lines 6 through 15 is repeated at most Edeg times. Each call
to REMOVE from line 17 can result in at most Edeg − 1 new calls to REMOVE, since at least one
of the neighbours has already been visited. For each of these executions once again at most
Edeg − 1 calls to REMOVE can be made. This results in the following recurrence:

g(0) = 1

g(n) = 2Odeg + Edeg × g(n− 1)

For n = 1, 2, 3 the formulas have been expanded below:

g(1) = 2Odeg + Edeg × g(0)

g(2) = 2Odeg + Edeg × (2Odeg + Edeg × g(0))

g(2) = 2Odeg + 2EdegOdeg + E2
deg × g(0)

g(3) = 2Odeg + 2EdegOdeg + E2
deg × (2Odeg + Edeg × g(0))

g(3) = 2Odeg + 2EdegOdeg + 2E2
degOdeg + E3

deg × g(0)

The series
∑n−1

i=0 x
i is known as the geometric series. When replacing x by Edeg and

multiplying it by 2Odeg, we get:
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n−1∑
i=0

2OdegE
i
deg = 2Odeg

n−1∑
i=0

Eideg

= 2Odeg + 2OdegEdeg + . . .+ 2OdegE
n−1
deg

The direct formula for the geometric series is 1−xn
1−x . Using this results in the following

formula:

n−1∑
i=0

2OdegE
i
deg = 2Odeg

1− Endeg
1− Edeg

Adding this to Endeg gives us O(2x1−yn
1−y + yn) where x = Odeg, y = Edeg and n = |V |.

Since such a worst-case runtime is not usable (especially when you consider running that
algorithm for every vertex that has an overlap to check if its overlaps can be removed), it is
prudent to limit the search depth at the cost of the number of overlaps that will be removed.
Such an algorithm is described in Algorithm 5. This algorithm should be called exactly like
Algorithm 3, but with one more parameter. This parameter d is a bound on the path length
considered when searching for overlaps that can be removed. Whenever d reaches 0, a simple
BFS algorithm suffices for determining whether the overlap has been blocked by the parents
or not.

When limiting the depth of the calls of this algorithm, its running time reduces to

O(2x1−yd
1−y +yd+ydDIJKSTRA). Instead of a path of maximal length |V |, paths of maximal

length d are inspected. Furthermore, calls to Dijkstra’s algorithm are made to determine
the reachability of the overlaps. When the algorithm is called with d = 1, it is the same as
1−REMOV E mentioned in Section 4.3.2.
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Algorithm 5 d-REMOVE

Input: w: The current vertex under inspection
Ov: The set of old restrictions of the original vertex v
O′v: The minimal set of needed restrictions for v
d: The maximal length of the path to consider

1: w.visited← true
2: for ∀o ∈ Ow do
3: o.conflictCount+ +
4: end for

5: if d = 0 then
6: Call Dijkstra from w and block all vertices with visited = true or conflictCount > 0

7: for o ∈ Ov do
8: if o reachable according to Dijkstra then
9: O′v ← O′v ∪ {o}

10: Ov ← Ov\o
11: end if
12: end for
13: else
14: for n ∈ Nw do
15: if n.conflictCount > 0 ∨ n.visited then
16: continue

17: else if n ∈ Ov then
18: O′v ← O′v ∪ {n}
19: Ov ← Ov\n
20: n.conflictCount+ +

21: if Ov = ∅ then
22: return (∅,O′v)
23: end if
24: continue
25: end if

26: (Ov,O
′
v)←REMOVE(n,Ov,O

′
v, d− 1)

27: end for
28: end if

29: w.visited← false
30: for ∀o ∈ Ow do
31: o.conflictCount−−
32: end for
33: return (Ov,O

′
v)
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Chapter 5

Heuristic methods

Since we have shown in Chapter 3 that finding a MIN-T-MLE is an NP-Hard problem, we will
take a look at some heuristic methods. First, we will consider the previous results of Saaltink
[40]. In Section 5.2 an implementation of local search will be described. Section 5.3 will
contain the implementation details of a genetic algorithm based on Neumann et al. [34]. A
heuristic method, based on the observation that all paths, and therefore also all the shortest
paths, should be disconnected from a source to the corresponding sink, is described in Section
5.4. In Section 5.5 a heuristic is described that uses the height information of the polygons.

5.1 Previous results

In Saaltink’s thesis, he suggested using a heuristic guided by a minimal cost cut algorithm
[40]. His heuristic method consists of three phases:

1) Determine the weights for all the edges in the graph;

2) Find a set of candidate transfers/candidate cuts;

3) Iteratively remove candidate cuts that are not needed.

In the first phase of his heuristic, the edges between vertices are weighted according to
some properties of the edge. The first property taken into consideration is the number of
adjacent edges. The set of adjacent edges of edge (a
 b) is defined as the set {(a
 x)|(a

x) ∈ E ∧ x 6= b} ∪ {(b 
 x)|(b 
 x) ∈ E ∧ x 6= a}). If the number of adjacent edges is
heigh, the weight of the edge is increased. The second property taken in consideration is the
number of overlaps that begin or end in the vertices connected by the edge. When there are
conflicts starting and/or ending at both of these edges, the weights were also increased. No
further motivation for theses rules was given. The last property is to check if both ends of
the edge are two fully connected polygons. A fully connected polygon is a polygon that has
the maximal number of neighbours, e.g. a vertex representing a triangle is fully connected
when it has three neighbours and a tetragon only if it has four neighbours. If both ends of
the edges are fully connected edges, the current weight of this edge is doubled.

In the second phase of the heuristic, a minimal s-t cut algorithm is run for each pair
of overlapping vertices. In each run, the minimal set of edges separating the overlapping
vertices is found and stored. The next s-t cut is once again run on the original weighted
graph obtained at step one. All the edges in the different cut sets together form the set of
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candidate transfers T = {mincut(a, b)|∀(a m b) ∈ O)}. It is also shown that using this set T
as the cut set will result in a feasible MLE, however this MLE is most likely not optimal.

Saaltink used for his implementation the minimal s-t cut algorithm as defined by Ford
and Fulkerson [16]. It was not specified how the graph was transformed to work with this
algorithm, however a logical assumption would be that edge e ∈ E was replaced by two
directed arcs between the same vertices and that the overlaps were ignored.

An attempt is made to decrease the number of needed transfers in the last phase of the
heuristic. For each transfer it is checked if the layers at each side can be merged, e.g. there
does not exist an overlap o ∈ O such that one end of the overlap is in layer one and ends
in layer two. If the two layers can be merged, this is done, thereby reducing the number of
transfers.

Another more basic heuristic was also tested, called the Flood-Filling. In this method
a random vertex is picked. From this vertex a layer is ‘grown’ in a Breadth-First manner.
Vertices that would overlap the current members of the layer are not visited and therefore
not added to the layer. This search is repeated for vertices not part of any layer, untill all
vertices are assigned to layers.

Results obtained using Saaltink’s original code for both the Flood-Filling and the minimal
cut heuristics are shown in Appendix F.

5.2 Local search

Local search is a well known heuristic method based on searching the neighbourhoods1 of
the current solution. For this heuristic method several meta-heuristics exist, including tabu-
search [22] and simulated annealing [10, 30]. We implemented these different methods. Short
descriptions of these implementations are given in Sections 5.2.2 and 5.2.3. In this section
the global implementation will be described. The values of the different parameters used in
the experiments will be given in Section 7.3.1 and the found results in Appendix E.

All the neighbourhood operations are defined on components and always return one or
more components. Before we move on to the description of the operations, we will first
describe how components are represented. A single component has three data members:

members The set of vertices contained within this component;

neighbours The set of vertices that are connected to this component;

conflicts The set of vertices that at least one vertex in members overlaps with.

Each vertex that is in the members set has a reference to the component it is in. Each
solution in the local search assigns every vertex to exactly one component. Furthermore,
all components remain valid during the entire process. This means that the intersection of
members and conflicts is always empty. Furthermore, the number of outgoing edges of the
component are maintained.

The sum of internal edges of the components is used as scoring function during the local
search. The goal of the local search becomes finding the set of components with the biggest

1A neighbour of a solution x is a different solution obtained from x by some mutation. All these different
mutations together form the neighbourhood of x.
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Algorithm 6 Pseudocode for the MERGE operation

Input: a: A component;
b: A component.

1: if a.members ∩ b.conflicts = ∅ then
2: return t-MERGE(a, b)
3: else
4: return REDIST(a, b)
5: end if

Algorithm 7 Pseudocode for the t-MERGE operation

Input: a: A component;
b: A component.

1: c.members← a.members ∪ b.members
2: c.neighbours← (a.neighbours ∪ b.neighbours)− c.members
3: c.conflicts← a.conflicts ∪ b.conflicts
4: return c

number of internal edges. When this set of components is found, we also have the minimal
cut set. The three operations used by the different local search implementations are listed
below and explained in more detail later on.

MERGE Combine the members of two neighbouring components. If A has no conflict
with B, a trivial merge is performed. Otherwise, an instance of min-cut
max-flow is solved for these two components only;

MOVE Move x members of component A to neighbouring component B in such
a way that the components remain feasible (conflicting vertices cannot be-
come member of the same set);

SPLIT Split a component in two new components such that the decrease in profit
is minimal (solve the global minimal cut problem for a single component).

The MERGE operation is described in Algorithm 6 through 8. Whenever the MERGE opera-
tion is called, it checks whether it can use a trivial merge (t-MERGE, Algorithm 7). When this
is not the case, instead of actually merging the two components, it will attempt to redistribute
the components using REDIST (Algorithm 8). The t-MERGE operation is applied whenever the
components do not conflict and simply consists of performing several unions and intersections
on the members, neighbours and conflicts of the components.

The REDIST algorithm tries to redistribute the vertices contained within the two compo-
nents in such a way that the size of the cut separating the two components becomes minimal,
but it does not guarantee optimality. It does this by first creating the sub-graph G′ induced
by the members of the components a and b. Secondly, a super source s and a super sink
t are added to the subgraph. Edges are added between s and the members of component
a that overlap members of b, and members of component b that overlap members of a are
connected with edges to t. The capacities of these edges are set to infinity and the weight to
one, ensuring that these edges will never be cut.
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Algorithm 8 Pseudocode for the redistribution of the components

Input: a: A component;
b: A component.

1: c← a.members ∪ b.members
2: G′ ← graph induced by vertices c

3: s← a.conflicts ∩ b.members
4: t← b.conflicts ∩ a.members

5: (a, b)←s-t-cut(s, t,G′)
6: return a, b

This method does not guarantee that the overlapping vertices in a and b are separated
optimally. One way to accomplish this would to solve an instance of MULTICUT which is, as
we know, an NP-Hard problem. Another method would be to try all possible permutations of
connecting the overlapping vertices to either the source s or the sink t. However, this would
require 2|O

′| minimal s-t cut computations, where O′ is the set of overlaps in G′.

An important thing to note is that the solution after a MERGE operation will always have
at most the same number of cuts as before MERGE was applied. Whenever a trivial merge can
be performed, it is easy to understand that the number of cuts will decrease. Whenever the
REDIST-algorithm is called, a set of edges that is needed to separate all overlapping vertices is
found. Since this operation does not influence the number of cuts going to the remainder of
the graph, this number will not change. Since the s-t-cut algorithm finds the minimal number
of edges separating component a from component b when the overlapping vertices are fixed to
their currenct components, it will always decrease the minimal number of cuts needed unless
that cut was already minimal.

The MOVE operation is described in Algorithm 9. It takes two neighbouring, possibly
overlapping components from and to and attempts to move x members of from to to. This
operation allows for both increase and decrease of the number of cuts in the current solution.
It is a very important operator since it can move the current solution away from a local
optimum.

The SPLIT operation is an implementation of a min-cut algorithm, in this case the al-
gorithm as described by Brinkmeier in [8]. This algorithm finds a global min-cut in an
undirected weighted graph in O(δG|V |2) time. Here δG is the minimal vertex degree in G,
or δG = minv∈V (deg(v)) where deg(v) is the sum of the edge weights of v. This algorithm
takes as input one single component and returns two components. Therefore, it will always
increase the number of cuts needed. The reason for using this operator is the same as for
using the MOVE operator, it allows for getting out of a local optimum.

The experiments done with local search are described in Section 7.3.1 and the results are
given in Appendix E.

5.2.1 Hillclimbing

Hillclimbing [39] is the most basic version of local search. When we use this heuristic, a
randomly selected neighbourhood operation is applied to the current solution. Whenever
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Algorithm 9 Pseudocode for the MOVE operation.

Input: from: A component from which vertices are moved to to.
to: A component to which vertices are moved from from.
n: The number of attempted moves.

1: adjacentNeighbours← to.neighbours ∩ from.members
2: moves← 0

3: while moves < n do
4: adjacentNeighbours← adjacentNeighbours\to.conflicts
5: if |adjacentNeighbours| = 0 then
6: break
7: end if

8: i← random number between 0 and |adjacentNeighbours| − 1
9: w ← adjacentNeighbours.at(i)

10: adjacentNeighbours← adjacentNeighbours\w
11: to.members← to.members ∪ {w}
12: from.members← from.members\w
13: to.neighbours← (to.neighbours ∪ w.neighbours) ∩ to.members

14: for n ∈ from.neighbours do
15: isNeighbour ← false
16: for nn ∈ n.neighbours do
17: if nn ∈ from.members then
18: isNeighbour ← true
19: break
20: end if
21: if ¬isNeighbour then
22: from.neighbours← from.neighbours\n
23: end if
24: end for
25: end for

26: from.neighbours← from.neighbours ∪ {w}
27: moves← moves+ 1
28: end while

a newly obtained solution is an improvement compared to the current solution, it becomes
the new current solution. When an improvement has not been found for a predetermined
consecutive number of iterations, the algorithm terminates.

5.2.2 Local search and simulated annealing

Simulated annealing [10, 30] is a form of local search. Instead of rejecting a solution that is
not an improvement to the current solution, it is rejected with a certain probability. This

41



-20 -15 -10 -5 0
0.0

0.2

0.4

0.6

0.8

1.0

D

P
HD

,T
L

T = 10
T = 5
T = 1
T = 0.5

Figure 5.1: A plot showing the chance a new, worse solution is accepted for different temper-
atures and different decreases in solution value.

probability is determined using the following functions:

P (∆, T ) = e∆/T

In this formula, ∆ is the increase in profit, which is in our case the increase in internal
edges for the new solution. T is the current temperature of the simulated annealing instance.
Whenever there is a decrease in profit, P (∆, T ) returns a value in the range [0, 1]. This value
is used in conjunction with a random generated number r in the same range to determine if
the new solution is accepted. Whenever r < P (∆, T ), the new solution is accepted. When
r ≥ P (∆, T ), the new solution is rejected. Whenever ∆ has a positive value the new solution
is always accepted. A plot showing different acceptance ratios for different temperatures is
shown in Figure 5.1.

The chances of accepting new solutions with negative ∆ should decrease over time. This
is accomplished by lowering the temperature T . This change of temperature is dependent on
the cooldown factor C. During the search, the best ever seen solution is stored.

5.2.3 Tabu search

In tabu search [22], a tabulist is maintained. This list contains a history of the last n solutions.
The solutions are encoded by the cut edges for that particular solution. Whenever a new
solution is generated that is in the tabulist, it is disregarded. The new solution is picked out
of a neighbour list of a predetermined size. This number of predetermined neighbours, called
the neighbourhood-size ns, can be changed before a tabu search is started. The neighbour
list is generated each iteration by generating ns random neighbours using the neighbourhood
operations. The best neighbour that is not in the tabulist is the neighbour that becomes the
new current solution.

5.3 Genetic algorithm

Genetic algorithms belong to another class of methods used to solve computational intensive
problems [39]. The general idea of genetic algorithms is to simulate the evolutionary process.
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This is done by encoding a problem using a genotype. This genotype encodes a phenotype of
the problem. This phenotype is the actual solution encoded using the genotype. Using the
phenotype the fitness of the genotype is determined using a fitness function.

Another characteristic of genetic algorithms is that a population of solutions is maintained.
From this population descendants are generated using mutations and/or recombination. This
process continues until some stopping criterion is met.

5.3.1 Solving the MIN-T-MLE problem using genetic algorithms

A genetic algorithm has been applied on the MULTICUT problem by Neumann et al. [34]. As
a genotype a simple bitstring x ∈ {0, 1}|E| was chosen, where a 1 means that a certain edge
is cut. The bitstrings were mutated by flipping each individual bit with probability 1

|E| . No
recombination operators were applied.

The phenotype is assessed using two criteria, the number of cuts made (the number of
bits set to 1 in the genotype) and the summation of all residual s-t flows for all the pairs of
overlapping vertices. Newly generated genotypes were introduced in the population whenever
it was not dominated by any other gene currently in the population. Furthermore, whenever
a member of the population becomes dominated, it is removed from the population.

The reason for picking a component wise fitness function is explained in a previous paper
written by Neumann et al. [35]. Neumann et al. proved that a single-objective algorithm
searching for a s-t cut in a graph would often get stuck in local minimum. Using the previously
described method with two objectives to be optimized resulted in an optimal result in expected
polynomial time for the s-t cut problem. Since MULTICUT is harder, using a single objective
algorithm would be useless according to Nuemann et al.

Using this method, infeasible solutions can remain in the population as long as the number
of cuts is small enough. However, if a solution with no residual flow was found, from that
point on there would always be a feasible solution in the population, since only dominated
solutions are removed. This feasible solution with residual flow 0 can only be dominated by
another feasible solution with a residual flow of 0.

5.3.2 Adding recombination

Neumann et al. [34] used their genetic algorithm on unrestricted graphs. However, the graphs
under consideration in this thesis have some special restrictions. Most of these restrictions
are already discussed on page 18. One more restriction on the graphs is that the pairs of
vertices that have an overlap are located in approximately the same location in the xz-plane.
This observation is used when creating the recombinator. Experiments comparing the original
algorithm as described by Neumann et al. [34] and the algorithm using recombination are
described in Section 7.3.2. The results can be found in Appendix D.

The recombinator places an xz-grid over the graph, as is shown in Figure 5.2. Whenever
two genotypes are recombined, consecutive blocks from one gene are swapped with the same
blocks in the grid of the other genotype. This might enable merging good regions with each
other. The size of the grid is a fixed parameter and does not change during the whole run of
the algorithm.

To speed up the recombination operation, all edges are assigned to a box in the grid before
the genetic algorithm starts. The location of an edge is calculated by taking the average of
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Figure 5.2: An example P -Graph. The brown-dashed lines depicts the grid that is used for
the recombination operation for the genetic algorithm.

the centres of the two vertices it belongs to. This enables for fast retrieval of the edges in a
specific area on the grid.

5.4 Shortest Path Heuristic

The shortest path heuristic is based on the observation that all paths connecting two over-
lapping vertices should be cut, as was previously discussed in Section 4.3. For this reason,
all the shortest paths connecting each overlapping pair of vertices should be cut too. Finding
shortest paths in a graph is a topic that has been studied extensively. The shortest path
algorithm that will be used here is the algorithm as described by Johnson [12, 28]. This
algorithm finds the shortest path between all pairs of vertices in O(|V ||E| log |V |) time when
it is implemented using binary heaps. This algorithm was used because it outperforms other
graph-algorithms on sparse graphs, which the P-Graph is. The implementation of Johnson’s
algorithm in the BGL (Boost Graph Library, [1]) returns a matrix with the distances between
all the vertex pairs. Using this matrix, all paths can be traversed. While traversing a path
using the matrix, it should be the case that whenever there exists more than one option for
continuing a path, the choice of which option to take should be made at random.

Using a priority queue the most often traversed edges can be easily found. Whenever an
edge is removed, the paths going through this vertex should be removed. Afterwards, new
shortest paths should be searched for using Dijkstra’s algorithm. This process continues until
no paths between source-sink pairs remain. During this entire algorithm all edges have length
one. The results for this algorithm can be found in Appendix B.

5.5 Height Heuristic

The last heuristic method created is the Height Heuristic (HH). This heuristic consists out
of three distinct phases. During the CLUSTER phase, polygons are clustered using height
information. Using the height clustered polygons, connected components are created. This
process is described in Algorithm 10. It is assumed that for every polygon the y coordinate is
known and accessable as a member of the polygon. The function AvgHeight( x ) will return
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the average height of the polygons in set x.

On lines 1 through 8, a very simple clustering is made. Polygons that are exactly the same
height, are grouped together. On lines 9 through 41, groups of polygons that are neighbouring
in height are merged. This process starts with first clustering groups with a small height
difference. When there is no conflict between these clusters, they are merged. This repeats
until no clusters with sufficiently small height difference exist. When this happens, the range
in which groups can be merged is multiplied by ten. When all remaining clusters are close
enough to each other, but cannot be merged because there is a conflict, CLUSTER terminates.
The resulting clustering found in priority queue out is converted into connected components.

In the MERGE phase, non-conflicting neighbouring components are merged. During the last
phase, called REDIST, the neighbouring conflicting components are redistributed. For each
component an attempt is made to redistribute its members with each of its neighbouring
components. When a component changes during this process, this is recorded. If no compo-
nent changes, this last phase is completed. If at least one of the components changed, the
process is repeated for all components that did change. The MERGE and REDIST operations
are the same as the t-MERGE and REDIST operations described in Section 5.2. The results for
the experiments done with this algorithm are given in Appendix C.
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Algorithm 10 Pseudocode for the CLUSTER operation.

Input: P: The corresponding polygonal environment of G.

// Cluster polygons at exactly the same height.
1: m←new multi map
2: for P ∈P do
3: m.insert(P.y, P )
4: end for

// Store groups of polygons ordered on height.
5: in← new PriorityQueue; out← new PriorityQueue
6: for bucket ∈ m do
7: in.insert( bucket.key, bucket.values )
8: end for

9: swap ← out; out ← in; in ← swap
10: range = ε
11: notOnlyConflict ← TRUE
12: while notOnlyConflict and out.size() > 1 do
13: notOnlyConflict ← FALSE
14: changed ← FALSE
15: previous ← out.pop()
16: while out.size() > 0 do
17: prevHeight ← AvgHeight(previous)
18: prevConflicts ← Conflicts(previous)
19: prevMembers ← previous

20: current ← out.pop()
21: curHeight ← AvgHeight(current)
22: curConflicts ← Conflicts(current)
23: curMembers ← current

24: conflict ← curMembers ∩ prevConflicts 6= ∅
25: if |curHeight − prevHeight| > range or conflict then

26: if ¬conflict then
27: notOnlyConflict ← TRUE
28: end if
29: in.insert(prevHeight, previous)
30: previous ← current
31: else
32: changed ← TRUE
33: previous ← prevMembers ∪ curMembers
34: end if
35: end while

36: in.push(AvgHeight(previous), previous)
37: if ¬ changed and notOnlyConflict then
38: range ← range ∗10
39: end if
40: swap ← out; out ← in; in ← swap
41: end while
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Chapter 6

Linear programming

In this chapter we consider the application of linear programming techniques for finding good
results for the MIN-T-MLE-cut problem. Just as with local search, the goal will be to find
non-overlapping, feasible connected components rather than finding the set of cutting edges.
As argued before in Section 5.2 this set of connected components will yield the same results
as just searching for a set of cutting edges.

In the (I)LP framework, a connected component ci will be described using two parameters.
Li is a vector of length |V |, with Li,v = 0 whenever vertex v is not in this connected component.
Whenever vertex v is in connected component Li, Li,v will be 1. The other parameter is Ci,
the number of internal edges of such a connected component. Whenever the set of all possible,
feasible connected components is given and has size n, the ILP for finding a MIN-T-MLE can
be formulated in the following fashion:

Maximize:
∑n

i=1 xiCi

Subject to: ∑n
i=1 xiLi,v = 1 ∀v ∈ V (1)

xi ∈ {0, 1} 1 ≤ i ≤ n (2)

Equation (1) guarantees that a vertex will be in exactly one connected component, equa-
tion (2) ensures that a component is selected completely or not at all. The LP-relaxation of
the above problem is:

Maximize:
∑n

i=1 xiCi

Subject to: ∑n
i=1 xiLi,v = 1 ∀v ∈ V (3)

xi ≥ 0 1 ≤ i ≤ n (4)

The variables xi are no longer binary variables. The upper bound of these variables is not
given, however the upper bound is still enforced by constraint (3).
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6.1 Column generation

To solve the given LP, it would be necessary to determine all 2|V | − 1 possible components
in the graph (worst case scenario). Therefore, we will employ a technique called column
generation. This technique allows us to start searching for a solution while not knowing
all possible connected components. It also allows for searching for new components that
will increase the value of the current objective whenever the current solution is not optimal.
Whenever the current solution is optimal, no new components will be found.

Suppose that a new component has been generated and it has corresponding L0, C0 and
decision variable x0. When x0 gets fixed to a very small ε, the following is obtained:

Maximize: x0C0 +
∑n

i=1 xiCi

Subject to: ∑n
i=1 xiLi,v = 1− x0L0,v ∀v ∈ V (5)

xi ≥ 0 1 ≤ i ≤ n (6)
x0 = ε

Since ε is fixed to be an arbitrary small value, we do not have to solve the entire system
to see if the introduction of layer L0 would lead to a possible increase in profit. The direct
increase in profit is given by x0C0 = εC0. Unfortunately the introduction of component 0 also
takes up some of the capacity of constraint (5) used by the previous solution. The cost for
changing the capacity of a constraint is known as the shadow price. For instance, decreasing
the capacity of constraint (5) for vertex v would cost x0L0,vπv. Here πv is the shadow price
for the constraint corresponding to vertex v. The value of πv is known. Putting these two
things together, the following change in profit can be found:

I = x0C0 − x0

∑
v∈V

πvL0,v

= εC0 − ε
∑
v∈V

πvL0,v

The reduced cost is defined to be the unit change in costs, which is I
x0

= I
ε = C0 −∑

v∈V πvL0,v = RC. When the reduced cost is negative for component 0, we know that
introducing this component in the current solution will not increase the current profit. Only
when the reduced costs are positive (which would mean that the value C0 is bigger than∑

v∈V πvL0,v), it is interesting to introduce this new found component. Finding such a com-
ponent with positive RC is called the pricing problem.

6.2 Solving the pricing problem

In this section we will take a closer look at solving the pricing problem. In Section 6.2.1 the
pricing problem will be solved to optimality using another ILP, whereas in Section 6.2.2 the
pricing problem will be solved using a local search method. Both methods attempt to solve
the same pricing problem, which is to maximize C0−

∑
v∈V πvL0,v. Here C0 is the number of

internal edges of a connected component, πv is the shadow price as defined before and L0,v is
1 whenever v is in component 0.
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The constraints that the component has to satisfy are as before. First of all, no single pair
of vertices in a component may overlap. Second of all, the vertices in a component should
form a connected component.

6.2.1 Solving the pricing problem as another ILP

Making sure that no overlapping vertices are selected in one component is a simple constraint
in the ILP. Assuming that for each vertex v there exists a decision variable yv ∈ {0, 1}, where
0 means the vertex is not in the component, an overlap can be encoded as:

yv + yw ≤ 1

When vertex v is not selected, selecting w will still satisfy the constraint. The same holds
when w is not selected and v is. Only when both vertices are selected, the constraint will not
be satisfied.

To make sure the selected vertices will form one connected component, we use the concept
of legal flow as defined in for example Cormen et al. [12]. A legal flow has to have three
properties:

Flow conservation: For all v ∈ V the incoming flow should equal the outgoing flow (
∑

w∈V fv,w =
0), with exception of the sources and sinks in the network;

Skew symmetry: For all v, w ∈ V , the flow fv,w should be −fw,v;

Capacity constraints: For all v, w ∈ V the flow fv,w should be at most the capacity cv,w
of that edge.

Assuming it is known in advance that one vertex s ∈ V will be part of the optimal connected
component, it is possible to find the optimal connected component, that is, the connected
component with the highest reduced costs containing s. This is achieved with the following
steps.

First, each vertex v ∈ V \{s} is given a demand of 1 and all edges a capacity of xv,w|V |.
Here xv,w is a decision variable corresponding to an edge (v 
 w) ∈ E. xv,w has the value 1
whenerver the edge is part of the connected component and 0 the edge is not in the component.
The vertex s, of which is assumed it is part of the optimal connected component, is given an
infinite supply.

Next, a new vertex s′ is added. This vertex has no demand and an infinite supply. Edges
of capacity 1 are added from s′ to all v ∈ V \{s}.

Finally, four more constraints are added. The first constraint guarantees that only one of
two conflicting vertices can be selected. The second constraint ensures that xv,w can only be
positive whenever yv and yw are both positive. The next constraint fixes the flow through
the edges (v 
 w) ∈ E to 0 whenever xv,w = 0. The last constraint fixes the flow through
edges (s′ 
 v), v ∈ V \{s} to 0 whenever yv = 1.
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Figure 6.1: An example of how a graph needs to be modified to solve the pricing problem.
In (a) the original graph is given. Subfigure (b) shows a graph where vertex D is chosen as a
source and s′ is added to the graph. Along the edges are the capacities of each edge, where
c(b) = 1− yb and c(a, b) = |V |xa,b.

An example of such an ILP is shown below. An example of the graph that corresponds
to the ILP is given in Figure 6.1.

Maximize:
∑

(v
w)∈E xv,w −
∑

v∈V yvπv

Subject to: ∑
(v
w)∈E\{v,s′} xv,w ≤ yv|Ev| ∀v ∈ V (7)

yv + yw ≤ 1 ∀(v m w) ∈ O (8)

fv,w + fw,v = 0 ∀(v 
 w) ∈ E (9)
fs′,v +

∑
(w
v)∈E fw,v = 1 ∀v ∈ V \{s, s′} (10)

fv,w ≤ |V |xv,w ∀(v 
 w) ∈ E (11)
fs′,v + yv ≤ 1 ∀v ∈ V \{s, s′} (12)

yv ∈ {0, 1} ∀v ∈ V \{s′} (13)
xv,w ∈ {0, 1} ∀(v 
 w) ∈ E (14)

In this ILP, fx,y is the flow between vertices x and y. The objective function is∑
(v
w)∈E xv,w −

∑
v∈V yvπv = C0 −

∑
v∈V yvπv, which is the reduced cost that we want to

maximize. Constraint (10) is the demand for the vertices and constraint (11) and (12) encode
the edge capacities. Constraint (7) is the constraint that ensures that an edge (v 
 w) can
only be selected whenever both yv = 1 and yw = 1. Constraint (8) encodes the overlaps.

It is easy to see that at no moment in time two overlapping vertices (v m w) ∈ O will
be selected by the ILP given above. This would mean that both yv = 1 and yw = 1, which
would violate constraint (8). Furthermore, when yv = 0 for v ∈ V \{s, s′}, its demand can be
satisfied by making fs′,v = 1, since fs′,v + yv = 1 + 0 ≤ 1. This also happens to be the only
possibility to satify v its demand when yv = 0, since constraint (7) forces all xv,w = 0. This
forces all flow to v through any edge other than through (s′ 
 v) to 0 by constraint (11).

An example of what happens when yv = 1, is given in Figure 6.2. At the beginning, all
vertices except vertex s have yv = 0, as in (a). In (b) yA = 1. Because of this, the flow
fs′,A = 0. The only possibility to satisfy the demand of A is by increasing the flow through
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Figure 6.2: An example of how the vertices with yv = 1 have to form a connected component.
In the images black vertices have yv = 0. Dashed edges have xv,w = 0. The number along
the edges is the flow through the edges.

fB,A to 1. However, there is only flow possible through an edge when both of its vertices are
selected because of constraint (7). This situation is shown in (c). In this situation, both A
and B do not satisfy their demand. The only possible routes to satisfy the demands of A
and B is by increasing the flow through fC,B or fs,B. Lets first consider increasing the flow
through fC,B.

To increase the flow through fC,B, first xB,C has to become equal to 1. However, this can
never happen because this would violate constraint (8). Therefore, the flow through fs,B has
to be increased. Since s is already selected, this can be done immediately and we end up in
(d). Since vertex s has no demand and infinite supply, it can satisfy the demand of both B
and A. This is shown in (e) and (f).

As can be seen from this example, whenever a vertex v is part of the component, the only
possible way to satisfy its demand is by a flow originating in s. Therefore, there needs to exist
at least one path from v to s for which all vertices p on that path have yp = 1. Therefore,
the component found using this ILP will form a connected component.

Unfortunately, it is not possible to determine beforehand if a certain vertex s will be part
of a connected component with positive reduced cost. Therefore, it is necessary to solve the
ILP once for each vertex selected to be s. Fortunately the lower bound of the Branch-and-
Bound process can be increased depending on the previous result. In the first iteration, the
lower bound of Branch-and-Bound can be set to maxv∈V −πv. During the next iteration the
initial lower bound can be set to the final lower bound of the previously solved ILP using
Branch-and-Bound. Whenever a better connected component has been found, the lower
bound will be equal to the value of the objective function corresponding to that component.
When no better connected component has been found, the lower bound has not been changed
during this run of Branch-and-Bound. Using this method can result in faster termination
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of the Branch-and-Bound algorithm. However, it is not necessary to search for the optimal
component, it is only necessary to search for a component with positive reduced cost.

6.2.2 Solving the pricing problem as another local search

The pricing problem can be solved with a local search similar to the one described in Chapter
5. It is still necessary to find connected components that do not contain overlapping vertices,
however two things changed. Besides the number of internal edges for each component, the
sum of all πv of the vertices within the components does also matter. Furthermore, we are only
interested in finding one single component, instead of a set of non-overlapping components
covering the entire graph. The neighbourhood operators of this local search are:

ADD Add a vertex that neighbours a vertex already in the component and does
not overlap any vertex already in the component;

REMOVE Remove a vertex that has at least one neighbouring vertex not in the compo-
nent from the component. If this makes the component disconnected, take
the component with the highest objective score as the new component;

SWITCH Add a vertex that neighbours a vertex already in the component and does
overlap a vertex already in the component. All the vertices already in the
component that have an overlap with the newly added component should
be removed. If this makes the component disconnected, take the component
with the highest objective score as the new component.

For the ADD operation, checking if new conflicts occur can be done in O(Odeg) time, where
Odeg is the maximum number of vertices one vertex overlaps with. When a REMOVE operation
is performed, it is possible to check in amortized O(log2

2 |V |) time if the component has become
disconnected using the method described by Thorup et al. [24]. The same goes for the SWITCH
operation.

6.3 Branching to find the optimal solution

While solving the LP-relaxation of the MIN-T-MLE problem described on page 47 with the use
of column generation, it might be the case that an integral solution is found. Whenever this
happens an optimal feasible solution for the ILP has been found. However, more likely than
not, a fractional solution will be found. Whenever this happens the usual approach is to solve
the problem using Branch-and-Bound [31].

In the Branch-and-Bound algorithm a local upper-bound and a global lower-bound are
maintained. The lower-bound is the solution value of the best known integral solution found
thus far.

Whenever a solution is fractional and the solution value is higher than the lower-bound,
the algorithm branches on one of the fractional variables. In one of the branches one of the
fractional variables is fixed to 0 and in the other branch to 1. The upper-bound of these two
branches will be set to the value of the solution as found by the current fractional solution.

Whenever the current branch of the search tree does not result in a feasible solution for
the LP relaxation, no further action is taken in the current branch. If it is the case that
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a integral solution is found, the global lower-bound is fixed to this value whenever the new
value is an improvement over the old value. The search tree can be formed in several ways, for
example breadth-first or depth-first. As long as only branches of the tree are cut of whenever
it is guaranteed no better solution can be found in this branch of the search tree, an optimal
solution for the current set of available columns will be found.

Unfortunately, this method will only result in an optimal solution whenever all the columns
are known. Since this is not the case (since we are using a pricing problem to find new
columns), other measures need to be taken. One way to tackle this is to generate more
columns than are needed for solving the initial LP-relaxation. How this can be used is
described in Section 6.3.1. This does not guarantee an optimal solution.

Another method that will result in an optimal solution is described in Section 6.3.2.

6.3.1 More columns

When solving the ILP using the columns generated during the column generation phase, we
do not have all possible columns available. As a result it is likely that a sub-optimal solution
is found. To decrease the gap between the found solution and the actual optimal solution, we
will generated more columns during the column generation than is strictly necessary. This
will be done during the pricing phase. Whenever a column is generated during the pricing
phase, we will ensure that this column will not be generated again. This process will be
repeated a pre-determined number of times. Using all these generated columns, the ILP will
be solved.

These columns can be found using several methods. When using the LS Pricer, it is
possible to store all feasible components with positive reduced cost. When searching for the
component with the highest reduced cost using the ILP Pricer, it is possible to list all feasible
components with positive reduced cost and add all of these columns. When the ILP Pricer is
used and it is terminated as soon as a feasible component with positive reduced cost is found,
we can make little changes to the found solution, for example by using the LS operations as
described in Section 6.2.2. The method that was used is to store all columns encountered
during Branch-and-Price, as described in Section 6.4.4. This is the method that was used
during the experiments.

6.3.2 Branch-and-Price

Another way to circumvent this problem is by using Branch-and-Price. This methodology
is an extension to Branch-and-Bound and it goes very well with Column Generation [4].
In Branch-and-Price, the LP-relaxation is solved as usual. Whenever the found solution is
fractional, it once again becomes necessary to branch. Instead of branching on the xi variables,
we branch on edges. In one branch a certain edge will be forced to be cut, while in the other
branch the edge is forced not to be cut. This change is also reflected in the LP-relaxation.
How this is implemented is described in Section 6.4.

When fixing an edge to be either cut or not, this has two very important side effects.
Firstly, it ensures that during the pricing phase no previously blocked layer is regenerated.
Secondly, it reduces the search space. Since certain edges get fixed to either be a cutting
edge or not, no new layers can be generated that contain both the neighbours of this edge.
For this reason, searching for columns during the pricing phase does not get more difficult.
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Simply branching on the xi variables will not have the desired result. This will forbid the
current version of the connected component xi, but no guaratnee is given that it will never
be generated once again in a later stage.

Unfortunately, it also comes at a cost. Branch-and-Bound itself is a very flexible method-
ology, usually no extra implementation is needed to get it running. Branching rules for
Branch-and-Price are unfortunately problem specific. The branching rule that will be used
in this Branch-and-Price solution will branch on one of the edges leaving a layer selected in
the unrestricted linear program that was only selected partially. We know that such a layer
must exist, otherwise there would be no need for branching.

6.4 Implementation

The models described in the previous sections were implemented in the ZIB Optimization
suite, using SCIP [2] and SoPlex [45]. The ZIB Optimization suite is developed at the Konrad-
Zuse-Zentrum für Informationstechnik in Berlin. The main reasons for using this framework
is that it is very flexible and it has Branch-and-Price capabilities. In the following sections
the different implemented parts are described.

6.4.1 Branching

In SCIP, it is possible to implement custom branching rules. The branching rules have
different entry points. The first entrypoint, scip execlp, is the callback for normal branch-
ing. A branching is ‘normal’ whenever there are no new columns with positive reduced cost
(
∑

v∈V
∑

w∈V \{v,s′} xv,w − yvπv > 0) and the found solution is not integral.

However, whenever a pricer is used that does not guarantee no columns with positive
reduced cost remain, it can be the case that there is an integral solution to the LP while this
is not the optimal solution for that particular branch. Whenever such a pricer is used, this
can be signalled to SCIP. How this is done is described in Section 6.4.2. Instead of calling
the scip execlp entry point to the branching rule, the scip execps entry point is used. In
SCIP-terminology, branching using the scip execps entry point is called a pseudo-branching.
Instead of branching on a fractional variable, one is supposed to branch on variables that are
not fixed in the current solution.

For both types of branching, the same branching rule described in Section 6.3 is used. This
means an edge belonging to a fractional (or not fixed) component is selected. On one branch
this edge is cut while in the other branch the vertices belonging to this edge are contracted.
Branching in such a fashion also influences the local upper bound of that branch. Whenever
an edge is cut, or a new cut is forced when two vertices get merged, the upper bound is
adapted appropriately.

6.4.2 Pricing

A pricer implemented in SCIP usually needs at least two entry points. The first entry point,
scip redcost is used for solving the pricing problem for each node in the search tree. From
this entry point, either the local search algorithm or the ILP pricer is called. First an attempt
is made to generate new columns using the local search algorithm. Only when there are no
new columns found using this method the ILP pricer is called. The reason for this is that,
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although the ILP pricer is guaranteed to find new columns with positive reduced cost if any
exist, it is really slow. For smaller environments, pricing using the ILP pricer takes several
minutes, while searching for columns in the bigger environments (such as max described in
Section 7.1 ) can take several hours. Because the ILP pricer takes so much time for finding a
feasible solution with positive reduced cost, sometimes the ILP pricer is even skipped when
the local search pricer does not find new columns. SCIP supports this feature, called early
branching, by not updating the upper bound of that particular branch. Of course this has
the negative side-effect that too much branching might occur.

The second entry point, scip farkas should be implemented for handling the situations,
where branching results in an infeasible LP solution. This can happen whenever the solution
actually is infeasible, in which case the Farkas pricing should not find any new columns to
resolve the problem, or whenever the solution becomes infeasible because the needed columns
were previously not generated. In the second case the Farkas pricing should find enough
columns to resolve this issue. This entry point is however not implemented, because of the
heuristic method that is used and described in the next section.

6.4.3 More heuristics

Besides a heuristic pricer, there is also a heuristic implemented that is executed after each
branching but before a branch is cut off. This is done first and foremost to check if there
still exists a feasible solution for the MIN-T-MLE problem after this branching. It can be the
case that the columns generated up and untill now can not form a feasible solution after the
branching. In Section 5.2, very fast methods have been created that will always find a feasible
solution for the MIN-T-MLE problem whenever one is available. These local searches are run
on the transformed graph, which includes all the restrictions made by the branchings. A
nice side effect is that the heuristic method might find new, better primal solutions, thereby
tightening the global lower bound for the search tree.

6.4.4 More columns

Despite all the effort, finding an optimal solution might still take a very long time, mainly
because of the ILP pricer. It is needed to guarantee that the current solution is optimal.
However, when an optimal solution cannot be found in a reasonable amount of time, all the
generated columns are stored in a file. These columns are used as if these were all possible
columns in a separate branch and bound run, not using any of the methods described before.
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Chapter 7

Experiments

In this chapter the experiments and experimental setup will be described. The algorithms
described in Saaltink’s thesis will be tested on the same environments, so comparisons can be
made. The results will be described in Chapter 8. The number of times an experiment will be
repeated will be stated at each individual experiment. All our experiments were run on Intel
Xeon E5420@2.50GHZ machines with 4GB of RAM. The OS installed on the machines is
Ubuntu 11.10, 32bit running no graphical interface. The algorithms were implemented using
C++. On each machine only one experiment was run at a time to minimize side-effects.
Furthermore, all programs used only one single core.

7.1 Environments

The experiments will be run on some of Saaltink’s original environments, as well as some
newly created environments. The reasons for this are that most of the environments used by
Saaltink are very simple, have a small number of vertices or exist mainly out of one single
Topo-Forest (almost all vertices have an overlap with some other vertex). To allow all methods
to be tested, additional environments have to be created. The environments will be described
in Section 7.1.2 after the different types of environments have been introduced.

7.1.1 Environment types

Environments can basically be divided into separated and unseparated environments. A sepa-
rated environment is an environment consisting out of multiple TFs, whereas an unseparated
environment exists out of only one single TF. This distinction is important since some of the
reduction algorithms described in Chapter 4 need vertices without overlap. Others need a
clear separation of different structures in the environment to work (the TF method).

Another distinction that can be made is the number of floors/layers in the environment.
The number of overlaps can increase faster than the number of edges in a layered environment.

In a worst case scenario, the number of overlaps can be O(
∑|V |−1

i=1 i) = O((|V | − 1)2 + |V |)
while the number of edges always increases in a linear fashion with respect to the number of
vertices. Since the number of edges increase linearly, this means that environments with a lot
of layers have a completely different ratio of overlaps/edges. To test the effectiveness of the
algorithms on all possible environments, it is important that also this distinction is taken in
consideration.
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7.1.2 Environment descriptions

The environments used are described below. The ‘Type’ of an environment can either be
separated or unseparated. For separated environments, ‘TF’ is set to the number of TFs
present in this environment. This number was found using the algorithm described on page
24. ‘|V |’, ‘|E|’ and ‘|O|’ refer to the number of vertices, edges and overlaps in the environment.

‘ |O||V | ’ gives the ratio between overlaps and edges, a way to measure how layered a certain
environment is. Whenever there is a known minimum for the number of cuts needed it will
be listed under ‘min |T |’. Whenever the environment is a model of an existing environment,
it will say so under ‘Existing’. Finally, as short description of the environment will be given.

as oilrig

Type: Separated
TFs: 2
|V|: 634
|E|: 959
|O|: 668
|O|
|V| : 1.05

min |T|: Unknown
Existing: No
Short description:
This environment is one of Saaltink’s orig-
inal environments. It was taken from a
game level. As the name suggests, it is
the floor plan of an oilrig.
The reason for using this environment is the simplicity of the environment, as well as
the fact that this environment is an actual game level. Because it is a game level, it
is that this environment shows some typical structures for this type of environments.

as oilrig scaled

Type: Separated
TFs: 5
|V|: 1830
|E|: 2150
|O|: 5934
|O|
|V| : 3.24

min |T|: Unknown
Existing: No
Short description:
This environment is a scaled version of as oilrig and is reused in the environments
tf1, tf2 and tf3. When importing this file in Blender to use as a part of the afore-
mentioned environments, quite some of the polygons got triangulated. The resulting
version of as oilrig turned out to be a more complex environment in terms of vertices,
edges, overlaps and the number of TFs.
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de vertigo

Type: Separated
TFs: 5
|V|: 367
|E|: 642
|O|: 37
|O|
|V| : 0.10

min |T|: 2
Existing: No
Short description:
This environment is another one of Saaltink’s original environments. It was taken
from a game level of the computer game Counter Strike Source. This environment
shows a relatively simple environment with very little overlapping vertices.

de vertigo scaled

Type: Separated
TFs: 6
|V|: 1196
|E|: 1480
|O|: 409
|O|
|V| : 0.34

min |T|: Unknown
Existing: No
Short description:
This environment is the scaled version of de vertigo. Just as as oilrig scaled, it was
partially triangulated when imported in Blender. This environment is also used as
a part of the environment tf1.

tf1

Type: Separated
TFs: 14
|V|: 9190
|E|: 12000
|O|: 130536
|O|
|V| : 14.2

min |T|: Unknown
Existing: No
Short description:
This environment is a combination of as oilrig, de vertigo, max and uulib. A big
part of its vertices, overlaps and edges are located inside the max environment. tf1
has several TFs that can be used as subproblems, as well as some TFs that cannot
be used as subproblems.
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tf2

Type: Separated
TFs: 41
|V|: 11574
|E|: 15300
|O|: 38562
|O|
|V| : 3.33

min |T|: Unknown
Existing: No
Short description:
This environment is a combination
of 4 as oilrig, 6 uulib and 16 small
garage-like buildings. The large
number of smaller buildings makes
it look like a virtual version of an ur-
ban environment. The environment
was constructed in such a way that
almost all TFs should deliver reusable results when solving the MIN-T-MLE for each
individual TF. The fact that a lot of the TFs are reusable will hopefully result in a
speed-up when finding a MIN-T-MLE.

tf3

Type: Separated
TFs: 16
|V|: 5179
|E|: 6871
|O|: 18387
|O|
|V| : 3.55

min |T|: Unknown
Existing: No
Short description:
This environment is a combination
of 2 as oilrig scaled, 2 uulib and 6
garage-like buildings. Just as tf2 it was modelled to look like an urban environment.
Instead of incorporating the individual structures in the environment in such a way
that using TFs should result in a speed-up, the structures are all interconnected in
such a way that it should result in a slowdown.
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max

Type: Unseparated
TFs: 1
|V|: 5933
|E|: 8034
|O|: 112945
|O|
|V| : 19.03

min |T|: 28
Existing: Based on
Short description:
This environment is based on one of the
towers of City Campus Max in Utrecht.
It has 15 stories, each floor connected to
the other by double stairs. On each floor
several rooms exists, often attached to the
remainder of the building by one single
polygon. This makes it particularly
interesting to test the overlap- and edge-removal methods. Furthermore, this en-
vironment has by far the highest |O||V | ratio. Some of the algorithms, like Saaltink’s

heuristic (Section 5.1) as well as the genetic algorithm (Section 5.3) are greatly
influenced by this ratio.

uulib

Type: Unseparated
TFs: 1
|V|: 298
|E|: 421
|O|: 813
|O|
|V| : 2.72

min |T|: 8
Existing: Yes
Short description:
This environment is based on the
University Library in Utrecht. This
building is interesting because of the
fact that it exists in real-life. Therefore, it is assumed that it shows some typical
real-life structures. Furthermore, it is one of the few environments of which the size
of the minimal set of transfers is known.

7.2 Preprocessing

Every environment can be pre-processed using the methods described in Section 4.3. Dur-
ing these experiments, all described environments are processed using Saaltink’s methods
(1-CONTRACT and 2-CONTRACT), the new edge reduction step (E-REDUCE) and the new overlap
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removal methods (d-REMOVE and STACK-REMOVE).

In a first experiment, all environments are pre-processed using both 1-CONTRACT and
2-CONTRACT. During the second experiment, E-REDUCE will be added to the set of operations
to check out the effect it has on the number of possible applications of 1-CONTRACT and
2-CONTRACT.

In a third experiment the overlap-removal methods d-REMOVE and STACK-REMOVE will be
used to reduce the number of overlaps in the environment. Parameter d will be varied from
1 to 3 during these experiments. The fourth and last experiment will combine Saaltink’s
methods with both the overlap-removal methods and the E-REDUCE operation in an attempt
to make the environments as compact as possible. Once again d will be varied between 1 and
3 during these experiments.

During all experiments, the total runtime and the number of applications of each individual
operation will be counted, as well as the number of vertices, edges and overlaps removed. Each
individual experiment will be repeated 20 times. The experiment is repeated to account for
differences in execution times in the case of Saaltink’s reductions 1-CONTRACT and 2-CONTRACT

as well as to account for the random order in which overlaps are removed using d-REMOVE.

7.3 Heuristic methods

All the heuristic methods will be run on both the original as the most compact versions of
the environments obtained during the experiments done with the graph reductions.

7.3.1 Local search

For all variants of local search, the parameters that can be changed are pE , pS and pO. These
parameters have values in the interval [0, 1] and pE+pS+pO = 1. pE encodes the chance that
MERGE will be executed, pS the chance for SPLIT and pO the chance of MOVE. Furthermore, our
implementation of local search also supports changing the likelihood an operation is picked
over time. This can be useful since the only non-destructive operation implemented is the
MERGE operator. Increasing the probability of picking the MERGE operation might increase the
speed at which good solutions are found, but eventually the destructive operations SPLIT and
MOVE are needed to move away from a local optimum. The chance an operation is picked can
be manipulated in one of two ways:

1. Through an instantaneous increase or decrease whenever no better solution can be
found, or;

2. Through a continuous increase or decrease over time towards a predetermined value at
a predetermined speed.

The last parameter of local search is a simple termination parameter t, forcing the search to
terminate after t unsuccessful attempts at improving the current best score.

For simulated annealing there exist two more parameters. The starting temperature and
the decrease in temperature will be tweaked such that for the environments where a min-
imal cut is known, this value can be found. For all simulated annealing experiments, the
MERGE operation is combined with SPLIT and MOVE. For simulated annealing, six different
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configurations were tested. Three of the configurations used a high starting temperature of
100. Every 1000 iterations the current temperature was multiplied by 0.99. The other three
configurations had a low starting temperature of 10 . This temperature was multiplied by 0.9
every 500 iterations. The reason for the big difference between these two configuration is that
these configurations are also used in combination with the dynamic chance-update. Using
the high starting temperature we tried to prevent that simulated annealing would have a low
temperature by the time the dynamic chance-update finished modifying the chances that the
different operations were picked.

For each temperature setting, a configuration with no dynamic chance-update was used.
During these experiments the chances an operation would be picked were all equal. Another
configuration was run which started out using only the MERGE operator, switching to equal
chances as soon as no better solution was found. The last two configurations also started
only using the MERGE operation. During each individual iteration the chances were updated
so that at iteration 10000 all chances were equal again.

For tabu-search, the same experimental set-up is used, with two additional parameters,
the neighbourhood-size and the size of the tabu list. Instead of a chance for a certain operation
being picked, each operation will be responsible for generating a part of the neighbour-list
proportional to the chance it will be picked. Two distinct configurations of tabu-search were
used during these experiments. The first configuration had a neighbourhood-size of 5 and the
tabu list had a size of 10000. During a second experiment a neighbourhood-size of 10 was
picked and the tabu list had a size of 1000. The chances for picking the different operations
were all equal. An explenation of what is stored in the tabu list and what the neighbourhood-
size paramter exactly does is described in Section 5.2.3.

Every experiment was stopped after no better solution was found for 10000 iterations or
at most 1800 seconds passed. All experiments were repeated 10 times.

During all experiments the total runtime as well as the time needed to find the best
solution will be tracked. Furthermore, the current score of the active solution will be tracked.
Whenever a operation is picked the found change in score will be remembered in combination
with at which iteration this happened, as well as if the change was accepted or not.

7.3.2 Genetic algorithm

The genetic algorithm as implemented has five different parameters. The first one is the
mutation rate. The second parameter is the size of the grid for the recombination operator.
The parameter for the recombination operator b is an integer depicting how much vertical and
horizontal bins should be created. This means that if b is set to a value of x, the number of bins
created equals x2. Furthermore, it is possible to change how often the recombination operator
is applied by manipulating the parameter r. When r = 1, the recombination operator is used
exclusively. Parameter t is a simple termination parameter, forcing the genetic algorithm
to terminate after t unsuccessful attempts at improving the current population. The last
parameter s is the maximal number of seconds the algorithm is allowed to search for a
solution.

Experiments will be done using only the mutation operation as well as with both oper-
ations. During the experiments the size of the population, the average fitness scores of the
solution and the total runtime will be monitored.

During the first experiment, an average of one change will occur for each mutation. This
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is the same as Neumann et al [34] had in their experiments. In a second experiment the
mutation rate will be increased. In the third and fourth experiment, the re-combinator will
be introduced. During both experiments b will be set to 40. In the third experiment r will
be set to 0.3 and in the fourth experiment r will be set to 0.5. When no better solution has
been found in 1000 iterations or 1800 seconds, the search is stopped.

The goal of these experiments is to determine if the recombination operator is useful
or not. It will not be compared with any of the other algorithms because it has not been
optimized in any way. Therefore, we feel like comparing it to any another algorithm would
be unfair.

7.3.3 Shortest Path Heuristic

This heuristic does not have any parameters that can be tweaked. During the experiments
the total runtime as well as the number of shortest path calculations will be counted. Since
this method was designed to quickly attempt to find the stairs/ramps in real buildings, we
will also track the actual cuts performed by this algorithm, to check if the algorithm is able to
find them. Furthermore, the total runtime will be measured. The experiment will be repeated
20 times.

7.3.4 Height Heuristic

This heuristic does not have any parameters that can be tweaked. During the experiments
the total runtime as well as the number of cuts for the solution after clustering, merging and
redistributing the vertices will be tracked. The experiment will be repeated 20 times.

7.4 Column generation

For column generation, the pricing problem can be solved using the ILP (Section 6.2.1), a
local search method (Section 6.2.2) or a two-phase method where in the first phase of a pricing
the local search method is used. Whenever the local search does not find a better solution,
the ILP is used to determine if there really does not exist a better solution. In Section 7.4.1
the best parameters for the local search will be estimated. Section 7.4.2 will describe the
experiments in which the actual problem will be solved.

7.4.1 LS as pricer

The goal of the experiments described here will be to find the best parameters for a local
search meta-heuristic for solving the pricing problem as close to optimality while remaining
fast. For this purpose, all vertices of the graphs will be weighted to simulate the effect of the
shadow prices of the vertices, πv. The random values will be picked in the ranges [0, 1], [0, 2]
and [0, 3]. Using the ILP Pricer, we will search for the optimal value for the reduced cost for
this particular graph instance. This value will be stored and used to compare the performance
of the different local search instances. During the experiments, the chance that either ADD,
REMOVE or SWITCH will be picked, will all be set to 1

3 . Preliminary experiments have shown
that tabu-search outperforms simulated annealing. For that reason only one configuration
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will be using simulated annealing. For this configuration the stating temperature was set to
50. This temperature was multiplied by 0.99 every 100 iterations.

Two configurations using tabu-search were tested. One of the configurations had a
neighbourhood-size of 10, the other configuration used a neighbourhood-size of 5. For both
configuration the maximum size of the tabulist was 1000.

During these experiments no dynamic change of the chances for picking each operation
will be used. The parameters being tracked can be found in Section 7.3.1. The experiments
were repeated 50 times.

7.4.2 LS as pricer combined with ILP as pricer

With the help of Section 7.4.1, a configuration of local search is determined. Using this local
search pricer and the ILP pricer, an attempt is made to find the optimal solution for each
individual environment within eight hours using Branch-and-Price. When no optimal solution
is found within allocated time, the original ILP is solved for the current set of columns.

During all the experiments the number of columns generated as well as the number of
columns generated by each pricer, the solutions found and the total run-time will be tracked.
If no optimal solution was found, the optimal solution for the restricted set of columns as well
as the time needed to solve for these columns will be reported.

7.5 Topo-Forests

For testing the divide and conquer method, the best tested versions found for column gener-
ation, local search and the genetic algorithm will be used to determine the effect on the time
needed for finding an optimal solution.

Using the best local search, Topo-Forests will be partitioned and reduced whenever this
is possible. Next, the problem for the reduced graph will be solved using the best performing
version of local search. During each experiment, the time needed until termination will be
tracked, as well as the total number of cuts found.
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Chapter 8

Discussion of results

In this chapter the results found during the experiments will be discussed. All the results
are put in appendices A through I. Results of different configurations are deemed statistically
different at or below the 5%-significance level. These values are obtained using either Anova
using Tukey as post-hoc analysis or using a simple t-test.

Each individual section in this chapter treats one set of experiments. When examples
are given in these sections, these examples are for the environment as oilrig unless another
environment is explicitly mentioned.

8.1 Reduction experiments

The results of all the experiments are given in Appendix A. For each individual environment
the absolute reductions (e.g. Table A.1) and the relative reductions (e.g. Table A.2) of |V |,
|E| and |O| are given. Furthermore, tests were done to determine the statistical relevance
of the addition of the E-REDUCE operation (e.g. Table A.3), the impact of changing d for
d-REMOVE (e.g. Table A.4) and the application of all operations (e.g. Table A.5). Table A.46
gives the details of the environments used for further experimentation.

8.1.1 E-REDUCE

The addition of E-REDUCE is shown to be significant for all the environments except max
and uulib. For these environments the number of vertices are not reduced significantly when
comparing the results obtained by using only SAAL or SAAL and E-REDUCE combined.

For all other environments the number of both vertices and edges in the resulting envi-
ronment are reduced. The increase in reduction in the number of vertices compared to only
using Saaltink’s operations, ranges from 2 for as oilrig scaled to 26 for de vertigo scaled. The
reduction in the number of edges ranges from 3 as oilrig to 44 for de vertigo.

Although the number of vertices and the number of edges are only reduced very little
compared to Saaltink’s methods, it is still deemed statistically significant since each individual
run resulted in exactly the same score.

8.1.2 d-REMOVE

For all environments, the number of overlaps is significantly reduced. The number of overlaps
are reduced within a range of 25.5% for de vertigo with d = 1 to 67.1% for tf2 with d = 3. In
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all cases except for de vertigo increasing d to two results in another significant reduction in
the number of overlaps.

Unfortunately, the application of these operations can take up a considerable amount of
time. For example, for the environment tf1 it took an average of 1190.46 seconds to reduce
the number of overlaps whenever d = 3.

8.1.3 d-REMOVE combined with E-REDUCE

Combining all different operations resulted in a further significant decrease in the number of
overlaps, vertices and edges. For the environments as oilrig, de vertigo and de vertigo scaled,
the results for d = 3 compared to d = 2 is not significant for |V | and |E|. For the environment
de vertigo even |O| is not significantly reduced when comparing d = 3 to d = 2. A reason for
this might be that |O| was fairly small to begin with. Therefore, it can be the case that the
minimal size of |O| might already be obtained.

8.2 SPH experiments

The results for the Shortest Path heuristic are described in Appendix B in Table B.1. As
can be seen, most of the time was spent cutting the shortest path and finding new shortest
path after the initial run of Johnson’s algorithm has completed. Another thing to take note
of is that for all environments the minimized versions have a shorter runtime. The difference
between the original and the minimized environments will be discussed in Section 8.9.

8.3 HH experiments

The results for the Height Heuristic are given in Appendix C. Table C.1 shows the results
for the HH algorithm after each of the three phases. Table C.2 shows the change in score
between the different phases. The first thing to note is the quality of the solutions listed in
the column |T |R and the little amount of time needed. For all environments the algorithm
completes within a few seconds. Another thing to note is that for five out of nine environments,
the solution changes significantly after each different phase. For the environments max and
max min, no significant change is made after the initial cluster and component creation phase.
In this first phase, the optimal solution for that specific environment has already been found.
This is not very strange since this particular environment has each individual floor at the
same height level and the transfers between the different layers at different heights.

A possible explanation for the good results for HH is that the environments consist out
very little sloped surfaces. The reason for this is that this heuristic has been added at the very
end of the experiments. Therefore, no worst-case environments were constructed. However
this type of environment can exist, espacially in game levels.

8.4 GA experiments

The results for the experiments done using a genetic algorithm are given in Appendix D.
Because of the small sample sizes, nothing significant can be said about the quality of the
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solutions when comparing the different results of only the valid solutions found during these
experiments. When comparing the number of cuts found for any solution, still no statistical
significance is found.

However, when comparing the number of valid solutions found when using the default
settings or default settings in combination with a recombination operator there seems to be
a small difference favouring the recombination operator. Besides that more feasible solutions
were found, the quality of these feasible solutions is usually higher than that of the results
obtained for experiments done without the recombination operator. However, to determine
if this is statistically significant further tests should be conducted.

8.5 LS experiments

The results of all the experiments done during these experiments are given in Appendix
E. For each individual experiment three tables are listed. The first table lists the cut-size
found, as well as the time until best (TTB), iterations until best (ITB), total runtime (TTE)
and iterations until end (ITE). The second and third table describe if there were found any
statistical differences between the different configurations. The second table shows at what
significance level there was a statistical difference between the different configurations when
comparing the quality of the solution. The differences between the TTE values for the different
configurations are compared in the third table.

The tabu-search configuration with neighbourhood-size 5 is listed as Tabu 5, whereas
the version with neighbourhood-size 10 is listed as Tabu 10. All simulated annealing con-
figurations are called ‘Sim.’. Tmin is added whenever it is one of the three configurations
with starting temperature 10. An L is added for configuration that have constantly changing
chances of picking an operation. An I is added for the configuration that change instanta-
neously.

8.5.1 Comparing scores

The first thing that catches the eye is that the ‘Sim.’ configuration has relatively bad scores
for all environments with the exception of uulib min, de vertigo scaled min, de vertigo scaled
and de vertigo. The reason for this is probably that the value of T was too high. ‘Sim. I’ and
‘Sim. L’ were meant to counteract this by forcing a lot of merges in the beginning, effectively
turning simulated annealing into a hillclimber. As can be seen both configurations perform
almost always better than ‘Sim.’ on the bigger environments such as max, tf1, tf2 and tf3. On
both de vertigo scaled and de vertigo scaled min the performance is less than that of ‘Sim.’.
This might be due to the ‘Sim. L’ and ‘Sim. I’ configuration getting stuck in local minima.

Both ‘Tabu’ configuration perform very good when only considering the values of the
solutions found. However, these configurations are very slow.

8.6 Saaltink’s experiments

The results for the algorithms developed by Saaltink are described in Appendix F in Table F.1.
As can be seen, the flood-fill algorithm is very fast, but yield decompositions of environments
that are not very good. The flow-based approach (listed under cut) yields better results, at
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a cost of rapidly increasing runtime. For some of the environments the flow-based approach
was not tested because the algorithm was too slow.

8.7 ILP experiments

8.7.1 Heuristic pricer

The results for the experiments for the pricer are given in tables G.1 through G.4. Tabu 1 is
the configuration of tabu search with a neighbourhood size of 10. As can be seen in Table G.2
and G.4, there is a significant difference between every configuration. Configuration Tabu 1
performs significantly better than any other configuration, but lasts significantly longer. Still
the configuration Tabu 1 is our configuration of choice. The reason for this is that the ILP
Pricer can run for several hours. Picking a LS Pricer that finds better solutions probably
also means picking a LS Pricer that is more likely to find columns of positive reduced cost,
avoiding the execution of the ILP Pricer.

8.7.2 Branch-and-Price

In tables G.5 and G.6 the results for the ILP experiments are given. When only using the
LS Pricer (Table G.5), known minima are found for the environments uulib, and de vertigo.
For the environment de vertigo scaled only a minimal decomposition is found for the original
environment. Only for the non-scaled versions of de vertigo, the Branch-and-Price method
also proved that it found the minimal decomposition.

The version of Branch-and-Price using the Height Heuristic shows very different results.
For certain environments for which the minimum was found using only local search, this
version is not able to find these minima. For some environments, a big improvement is found
(e.g. for tf1 an improvement of 542 was found). This improvement was expected when looking
at Section 8.3.

8.8 TF

The results for the experiments done using TFs are given in Table H.1. When comparing
the found solutions for the different solutions the value for each environment is worse than
found using plain local search. A possible reason for this might be that the TF structure is
not as suitable for selecting entire buildings as intended. Only the environments max and
uulib consist out of a single TF. The environments as oilrig and as oilrig scaled exist out of
multiple TFs while it is one single building. This shows that a TF as described in Chapter 4
is not sufficient for selecting complete buildings.

8.9 Differences between original and minimized environments

In Appendix I an analyses of the influence of minimized environments for SPH, HH, LS and TF

are given. The first thing that stands out is that almost all runs had a significant difference
in execution time in favour of the minimized environments.
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When looking at the solution quality, all environments for SPH that showed a significant
difference were also in favour of the minimized environments, with the exception of the en-
vironments de vertigo scaled. For HH the opposite is true, whenever there was a significant
difference in score, it was in favour of the original environments (with the exception of tf3).
This can be explained by what happens when environments are reduced. In this process, poly-
gons at different height levels can end up in the same vertex of the P-Graph. This again can
disturb HH since artificial slopes are introduced, as well as new height levels (located between
the different height levels of the original polygons). However, since reducing an environment
usually takes more time than it takes to run HH, this is not such a big problem.

For local search the same observation can be made. In most cases, when there is a signif-
icant difference in score, it is in favour of the original environments. Notable exceptions are
the environments as oilrig scaled, tf1 and tf2. Why these environments do have statistically
significant improved scores when mimized, and the other environments do not, is not known.
The last analysed algorithm, TF also shows worse solution values for the environments if they
are reduced.
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Chapter 9

Conclusion

Since it is possible to reduce P3Sr to MIN-T-MLE and there are no bounds on the treewidth for
P-Graphs, the only chance of finding good solutions for MIN-T-MLE is using heuristic methods.
Using Branch-and-Bound or Branch-and-Price simply takes too much time. Several methods
have been formulated and benchmarked in this thesis. In the beginning, an attempt was
made to reduce the problem instances. How useful this is, will be told in Section 9.1. A
conclusion about what method to use will be given in Section 9.2. In Section 9.3 a short list
of unanswered problems will be given.

9.1 Reducing environments

For reducing environments, new methods have been formulated that are able to substantially
reduce the size of environments. Unfortunately, the quality of the solutions for a lot of the
algorithms decreases. All but SPH showed a decrease in the solution quality. Furthermore, the
speed-up gained by first reducing an environment is not big enough to warrant this additional
step. For example, the speed-up for the environment max when looking at local search is less
than one minute, while reducing the environment (when using all different operations) took
between five and fifteen minutes. Saaltink already concluded in his thesis [40] that only using
his reductions, which are the most basic reductions possible, is not profitable.

9.2 Which method to use

All experiments were benchmarked on nine environments and their reductions. All methods
except the ILP using Branch-and-Price offer no guarantee of optimality. The downside of
using the ILP in combination with Branch-and-Price is the running time. All experiments
done using this method were cut off after eight hours, but in most cases no optimum was
found within the time limit.

HH yields very good results on the tested environments in a very short time. However, this
method was only added at the last moment. Because of this no environments were generated
for which HH is likely to be outperformed by other methods. These environments would consist
out of sloped environments.

As mentioned in the discussion, the results for TF were not as good as expected. One
possible reason is that the TF-structure is not sufficient for selecting entire ‘buildings’. This
idea is supported when looking at the environments used. For example the environment
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as oilrig consists out of one ‘building’, but is comprised out of multiple TFs. SPH proved very
sensitive to the number of overlaps, which was to be expected. Furthermore, the quality of
the solutions were worse than those of other methods like LS.

LS as implemented had several different configurations, of which eight configurations were
tested. Although the tabu search configurations obtained very good results for most environ-
ments, the time needed a multitude of some of the simulated annealing configurations. Of
the simulated annealing configurations, there are two configuration that stick out. The first
one is plain simulated annealing (Sim.). This version usually found bad results, probably
because of a lack of incentive to improve. This is due to the slow decrease in temperature.
The other configuration is simulated annealing with reduced temperature (Sim. Tmin). This
configurations usually took significantly more time to terminate. Between the remaining four
configurations there is no statistically significant difference.

The results for each individual environment and algorithm are plotted in a box-plot in
Appendix J. These plots make clear that the flood-fill partitioner, flow partitioner, SPH and
TF methods are outperformed in most situations. It also emphasizes the good performance of
HH. That, together with the great speed suggests that HH should be the method of choice for
environments with very little sloped polygons. Most of the environments we tested on were
of this type. For environments with a lot of slopes, no tests have been made, however we
expect it to perform not as good for these types of environments.

For all other environments a type of local search is recommended. The use of tabu searches
as well as ‘Sim.’ and ‘Sim. Tmin’ are discouraged because of previously mentioned reasons.
Between the remaining four versions of local search, no significant differences can be found.
Therefore, the use of one of these types of local search is advised for environments with sloped
surfaces.

9.3 Open problems

There are still a number of open problems. The first one concerns the hardness of MIN-T-MLE.
This problem looks very similar to the MULTICUT problem, for which is known that it is also
APX-Hard. The question is if this also holds for MIN-T-MLE.

Another open problem that remains concerns the graph reductions. Using the current
implementation, overlaps were removed from the P-Graphs as soon as it was proven that
that particular overlap was already guaranteed. Because of this, the order in which overlaps
were removed, mattered for how much overlaps could be removed. Finding an optimal order
is one open problem.

Since most of this thesis was based on a conversion of a polygonal environment to a
graph on which the problem is NP-Hard, another open problem is if there is another way
to formulate the problem (maybe avoiding graphs all together). It might be the case that
using this different formulation, employing more information (for example more of the height
information of the individual polygons), might make it possible to find better, faster heuristics.
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[10] V. Ĉerný. Thermodynamical approach to the traveling salesman problem: An efficient
simulation algorithm. Journal of Optimization Theory and Applications, 45:41–51, 1985.
10.1007/BF00940812.

[11] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar. On the hardness
of approximating multicut and sparsest-cut. In Proceedings of the 20th Annual IEEE
Conference on Computational Complexity, pages 144–153, 2005.

[12] T.H. Cormen, C. Stein, R.L. Rivest, and C.E. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition, 2001.

[13] M. Cyrus and J. Beck. Generalized two- and three-dimensional clipping. Computers and
Graphics, 3(1):23 – 28, 1978.

72

http://mpc.zib.de/index.php/MPC/article/view/4


[14] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, and M. Yannakakis. The
complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864–894, 1994.

[15] P. Elias, A. Feinstein, and C. Shannon. A note on the maximum flow through a network.
Information Theory, IEEE Transactions on, 2(4):117–119, 1956.

[16] L.R. Ford and D.R. Fulkerson. Maximal Flow through a Network. Canadian Journal of
Mathematics, 8:399–404.

[17] L.R. Ford and D.R. Fulkerson. Solving the transportation problem. Management Science,
3(1):24–32, 1956.

[18] A. Fournier and D.Y. Montuno. Triangulating simple polygons and equivalent problems.
ACM Transactions on Graphics, 3(2):153–174, 1984.

[19] M.R. Garey and D.S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[20] N. Garg, V.V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms for
integral flow and multicut in trees. Algorithmica, 18:3–20, 1997.

[21] R. Geraerts. Planning short paths with clearance using explicit corridors. In IEEE
International conference on robotics and automation, pages 1997–2004, 2010.

[22] F. Glover and C. McMillan. The general employee scheduling problem. An integration
of MS and AI. Computers & Operations Research, 13(5):563–573, 1986. Applications of
Integer Programming.
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Appendix A

Reduction results

A.1 as oilrig

ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL t HsL HdevL
Original 634 . --- 959 . --- 668 . --- --- ---

Saaltink 525. 0. 849. 0. --- --- 0. 0.

Saal.+E-REDUCE 521. 0. 827. 0. --- --- 0. 0.

1-REMOVE --- --- --- --- 479.55 2.24 0.12 0.02

2-REMOVE --- --- --- --- 459.95 1.73 0.22 0.03

3-REMOVE --- --- --- --- 453.85 1.14 0.49 0.06

Saal.+E-R.+1-R. 502.1 0.91 805.3 1.17 473.2 2.93 0.19 0.01

Saal.+E-R.+2-R. 498.65 0.81 801.8 1.11 456.75 1.8 0.31 0.01

Saal.+E-R.+3-R. 498.7 1.81 801.4 2.26 450.2 2.59 0.68 0.01

Table A.1: The absolute results of applying different reduction operations on the environment
as oilrig. The columns |V|, |E|, |O| and t (s) list the average results for each experiment. The
columns with the header (dev) give the standard deviation of the attribute in the previous
column. All results are given within two decimal places. ‘—’ signifies that that particular set
of operations did not effect that particular attribute.

ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL
Saaltink 0.828 0. 0.885 0. --- ---

Saal.+E-REDUCE 0.822 0. 0.862 0. --- ---

1-REMOVE --- --- --- --- 0.718 0.003

2-REMOVE --- --- --- --- 0.689 0.003

3-REMOVE --- --- --- --- 0.679 0.002

Saal.+E-R.+1-R. 0.792 0.001 0.84 0.001 0.708 0.004

Saal.+E-R.+2-R. 0.787 0.001 0.836 0.001 0.684 0.003

Saal.+E-R.+3-R. 0.787 0.003 0.836 0.002 0.674 0.004

Table A.2: The relative results of applying different reduction operations on the environment
as oilrig. The columns |V|, |E| and |O| list the average results for each experiment. The
columns with the header (dev) give the standard deviation of the attribute in the previous
column. All results are given within three decimal places. ‘—’ signifies that that particular
set of operations did not effect that particular attribute.
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Original Saaltink

Saaltink 0.01

Saal.+E-REDUCE 0.01 0.01

(a)

Original Saaltink

Saaltink 0.01

Saal.+E-REDUCE 0.01 0.01

(b)

Table A.3: Results for the Anova significance test using Tukey as post-hoc analysis, com-
paring the original environment to the environments obtained after applying Saaltink and
Saaltink+E-REDUCE. Table (a) gives the found significance levels when comparing |V| and
Table (b) gives the found significance levels when comparing |E|.

Original 1-REMOVE 2-REMOVE

1-REMOVE 0.01

2-REMOVE 0.01 0.01

3-REMOVE 0.01 0.01 0.01

Table A.4: Results for the Anova significance test using Tukey as post-hoc analysis, com-
paring the original environment to the environments obtained after applying d-REMOVE for
d ∈ {1, 2, 3}. This table reports the found significance level when comparing the reduction of
|O|.

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01

(a)

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01

(b)

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(c)

Table A.5: Results for the Anova significance test using Tukey as post-hoc analy-
sis, comparing the original environment to the environments obtained after applying
Saaltink+E-REDUCE+d-REMOVE for d ∈ {1, 2, 3}. These tables report the found significance
level when comparing the reduction of |V| (Table (a)), |E| (Table (a)) and |O| (Table (a)).

A.2 as oilrig scaled

ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL t HsL HdevL
Original 1830 . --- 2150 . --- 5934 . --- --- ---

Saaltink 1513. 0. 1832. 0. --- --- 0. 0.

Saal.+E-REDUCE 1511. 0. 1829. 0. --- --- 0. 0.

1-REMOVE --- --- --- --- 2480.75 20.72 2.85 0.25

2-REMOVE --- --- --- --- 2153.15 17.64 4.26 0.23

3-REMOVE --- --- --- --- 2001.75 13.07 5.84 0.44

Saal.+E-R.+1-R. 1295.8 6.48 1612.8 6.48 2325.55 17.44 3.54 0.21

Saal.+E-R.+2-R. 1260.65 3.63 1577.65 3.63 2035.6 12.58 4.17 0.04

Saal.+E-R.+3-R. 1249.4 3.56 1566.4 3.56 1904.4 12.73 5.99 0.22

Table A.6: The absolute results of applying different reduction operations on the environment
as oilrig scaled. The columns |V|, |E|, |O| and t (s) list the average results for each exper-
iment. The columns with the header (dev) give the standard deviation of the attribute in
the previous column. All results are given within two decimal places. ‘—’ signifies that that
particular set of operations did not effect that particular attribute.
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ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL
Saaltink 0.827 0. 0.852 0. --- ---

Saal.+E-REDUCE 0.826 0. 0.851 0. --- ---

1-REMOVE --- --- --- --- 0.418 0.003

2-REMOVE --- --- --- --- 0.363 0.003

3-REMOVE --- --- --- --- 0.337 0.002

Saal.+E-R.+1-R. 0.708 0.004 0.75 0.003 0.392 0.003

Saal.+E-R.+2-R. 0.689 0.002 0.734 0.002 0.343 0.002

Saal.+E-R.+3-R. 0.683 0.002 0.729 0.002 0.321 0.002

Table A.7: The relative results of applying different reduction operations on the environment
as oilrig scaled. The columns |V|, |E| and |O| list the average results for each experiment.
The columns with the header (dev) give the standard deviation of the attribute in the
previous column. All results are given within three decimal places. ‘—’ signifies that that
particular set of operations did not effect that particular attribute.

Original Saaltink

Saaltink 0.01

Saal.+E-REDUCE 0.01 0.01

(a)

Original Saaltink

Saaltink 0.01

Saal.+E-REDUCE 0.01 0.01

(b)

Table A.8: Results for the Anova significance test using Tukey as post-hoc analysis, com-
paring the original environment to the environments obtained after applying Saaltink and
Saaltink+E-REDUCE. Table (a) gives the found significance levels when comparing |V| and
Table (b) gives the found significance levels when comparing |E|.

Original 1-REMOVE 2-REMOVE

1-REMOVE 0.01

2-REMOVE 0.01 0.01

3-REMOVE 0.01 0.01 0.01

Table A.9: Results for the Anova significance test using Tukey as post-hoc analysis, com-
paring the original environment to the environments obtained after applying d-REMOVE for
d ∈ {1, 2, 3}. This table reports the found significance level when comparing the reduction of
|O|.

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(a)

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(b)

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(c)

Table A.10: Results for the Anova significance test using Tukey as post-hoc analy-
sis, comparing the original environment to the environments obtained after applying
Saaltink+E-REDUCE+d-REMOVE for d ∈ {1, 2, 3}. These tables report the found significance
level when comparing the reduction of |V| (Table (a)), |E| (Table (a)) and |O| (Table (a)).
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A.3 de vertigo

ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL t HsL HdevL
Original 367 . --- 642 . --- 37 . --- --- ---

Saaltink 269. 0. 543. 0. --- --- 0. 0.

Saal.+E-REDUCE 264. 0. 499. 0. --- --- 0. 0.

1-REMOVE --- --- --- --- 27.55 0.51 0. 0.01

2-REMOVE --- --- --- --- 26.6 0.5 0.01 0.

3-REMOVE --- --- --- --- 26.5 0.51 0.03 0.

Saal.+E-R.+1-R. 256. 0. 487. 0. 27.2 0.41 0.01 0.01

Saal.+E-R.+2-R. 255.45 0.51 485.9 1.02 26.45 0.51 0.01 0.

Saal.+E-R.+3-R. 255.4 0.5 485.8 1.01 26.7 0.92 0.03 0.01

Table A.11: The absolute results of applying different reduction operations on the environ-
ment de vertigo. The columns |V|, |E|, |O| and t (s) list the average results for each exper-
iment. The columns with the header (dev) give the standard deviation of the attribute in
the previous column. All results are given within two decimal places. ‘—’ signifies that that
particular set of operations did not effect that particular attribute.

ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL
Saaltink 0.733 0. 0.846 0. --- ---

Saal.+E-REDUCE 0.719 0. 0.777 0. --- ---

1-REMOVE --- --- --- --- 0.745 0.014

2-REMOVE --- --- --- --- 0.719 0.014

3-REMOVE --- --- --- --- 0.716 0.014

Saal.+E-R.+1-R. 0.698 0. 0.759 0. 0.735 0.011

Saal.+E-R.+2-R. 0.696 0.001 0.757 0.002 0.715 0.014

Saal.+E-R.+3-R. 0.696 0.001 0.757 0.002 0.722 0.025

Table A.12: The relative results of applying different reduction operations on the environment
de vertigo. The columns |V|, |E| and |O| list the average results for each experiment. The
columns with the header (dev) give the standard deviation of the attribute in the previous
column. All results are given within three decimal places. ‘—’ signifies that that particular
set of operations did not effect that particular attribute.

Original Saaltink

Saaltink 0.01

Saal.+E-REDUCE 0.01 0.01

(a)

Original Saaltink

Saaltink 0.01

Saal.+E-REDUCE 0.01 0.01

(b)

Table A.13: Results for the Anova significance test using Tukey as post-hoc analysis, com-
paring the original environment to the environments obtained after applying Saaltink and
Saaltink+E-REDUCE. Table (a) gives the found significance levels when comparing |V| and
Table (b) gives the found significance levels when comparing |E|.
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Original 1-REMOVE 2-REMOVE

1-REMOVE 0.01

2-REMOVE 0.01 0.01

3-REMOVE 0.01 0.01

Table A.14: Results for the Anova significance test using Tukey as post-hoc analysis, com-
paring the original environment to the environments obtained after applying d-REMOVE for
d ∈ {1, 2, 3}. This table reports the found significance level when comparing the reduction of
|O|.

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01

(a)

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01

(b)

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.05

(c)

Table A.15: Results for the Anova significance test using Tukey as post-hoc analy-
sis, comparing the original environment to the environments obtained after applying
Saaltink+E-REDUCE+d-REMOVE for d ∈ {1, 2, 3}. These tables report the found significance
level when comparing the reduction of |V| (Table (a)), |E| (Table (a)) and |O| (Table (a)).

A.4 de vertigo scaled

ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL t HsL HdevL
Original 1196 . --- 1480 . --- 409 . --- --- ---

Saaltink 652. 0. 936. 0. --- --- 0. 0.

Saal.+E-REDUCE 626. 0. 894. 0. --- --- 0. 0.

1-REMOVE --- --- --- --- 219.25 7.2 0.13 0.02

2-REMOVE --- --- --- --- 202.75 7.08 0.25 0.02

3-REMOVE --- --- --- --- 191.95 5.78 0.49 0.01

Saal.+E-R.+1-R. 581.05 2.26 849. 2.34 204. 5.34 0.13 0.01

Saal.+E-R.+2-R. 579. 2.55 847. 2.55 189.15 6.11 0.22 0.01

Saal.+E-R.+3-R. 577.75 1.55 845.75 1.55 184.7 5.27 0.42 0.01

Table A.16: The absolute results of applying different reduction operations on the environ-
ment de vertigo scaled. The columns |V|, |E|, |O| and t (s) list the average results for each
experiment. The columns with the header (dev) give the standard deviation of the attribute
in the previous column. All results are given within two decimal places. ‘—’ signifies that
that particular set of operations did not effect that particular attribute.
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ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL
Saaltink 0.545 0. 0.632 0. --- ---

Saal.+E-REDUCE 0.523 0. 0.604 0. --- ---

1-REMOVE --- --- --- --- 0.536 0.018

2-REMOVE --- --- --- --- 0.496 0.017

3-REMOVE --- --- --- --- 0.469 0.014

Saal.+E-R.+1-R. 0.486 0.002 0.574 0.002 0.499 0.013

Saal.+E-R.+2-R. 0.484 0.002 0.572 0.002 0.462 0.015

Saal.+E-R.+3-R. 0.483 0.001 0.571 0.001 0.452 0.013

Table A.17: The relative results of applying different reduction operations on the environment
de vertigo scaled. The columns |V|, |E| and |O| list the average results for each experiment.
The columns with the header (dev) give the standard deviation of the attribute in the
previous column. All results are given within three decimal places. ‘—’ signifies that that
particular set of operations did not effect that particular attribute.

Original Saaltink

Saaltink 0.01

Saal.+E-REDUCE 0.01 0.01

(a)

Original Saaltink

Saaltink 0.01

Saal.+E-REDUCE 0.01 0.01

(b)

Table A.18: Results for the Anova significance test using Tukey as post-hoc analysis, com-
paring the original environment to the environments obtained after applying Saaltink and
Saaltink+E-REDUCE. Table (a) gives the found significance levels when comparing |V| and
Table (b) gives the found significance levels when comparing |E|.

Original 1-REMOVE 2-REMOVE

1-REMOVE 0.01

2-REMOVE 0.01 0.01

3-REMOVE 0.01 0.01 0.01

Table A.19: Results for the Anova significance test using Tukey as post-hoc analysis, com-
paring the original environment to the environments obtained after applying d-REMOVE for
d ∈ {1, 2, 3}. This table reports the found significance level when comparing the reduction of
|O|.

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01

(a)

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01

(b)

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.05

(c)

Table A.20: Results for the Anova significance test using Tukey as post-hoc analy-
sis, comparing the original environment to the environments obtained after applying
Saaltink+E-REDUCE+d-REMOVE for d ∈ {1, 2, 3}. These tables report the found significance
level when comparing the reduction of |V| (Table (a)), |E| (Table (a)) and |O| (Table (a)).
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A.5 max

ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL t HsL HdevL
Original 5933 . --- 8034 . --- 112 945 . --- --- ---

Saaltink 5919. 0. 8020. 0. --- --- 0. 0.

Saal.+E-REDUCE 5919. 0. 8018. 0. --- --- 0. 0.

1-REMOVE --- --- --- --- 54 235.4 384.19 270.62 11.59

2-REMOVE --- --- --- --- 49 381.5 246.42 437.89 25.05

3-REMOVE --- --- --- --- 44 859.5 235.79 778.72 58.04

Saal.+E-R.+1-R. 5792.95 6.11 7891.6 6.06 53 933. 355.8 291.74 24.76

Saal.+E-R.+2-R. 5758.2 8.35 7856.75 8.48 48 827. 198.9 491.38 2.92

Saal.+E-R.+3-R. 5689.25 8.4 7787.75 8.69 44 243.4 100.52 913.43 34.12

Table A.21: The absolute results of applying different reduction operations on the environ-
ment max. The columns |V|, |E|, |O| and t (s) list the average results for each experiment.
The columns with the header (dev) give the standard deviation of the attribute in the previ-
ous column. All results are given within two decimal places. ‘—’ signifies that that particular
set of operations did not effect that particular attribute.

ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL
Saaltink 0.998 0. 0.998 0. --- ---

Saal.+E-REDUCE 0.998 0. 0.998 0. --- ---

1-REMOVE --- --- --- --- 0.48 0.003

2-REMOVE --- --- --- --- 0.437 0.002

3-REMOVE --- --- --- --- 0.397 0.002

Saal.+E-R.+1-R. 0.976 0.001 0.982 0.001 0.478 0.003

Saal.+E-R.+2-R. 0.971 0.001 0.978 0.001 0.432 0.002

Saal.+E-R.+3-R. 0.959 0.001 0.969 0.001 0.392 0.001

Table A.22: The relative results of applying different reduction operations on the environment
max. The columns |V|, |E| and |O| list the average results for each experiment. The columns
with the header (dev) give the standard deviation of the attribute in the previous column.
All results are given within three decimal places. ‘—’ signifies that that particular set of
operations did not effect that particular attribute.

Original Saaltink

Saaltink 0.01

Saal.+E-REDUCE 0.01

(a)

Original Saaltink

Saaltink 0.01

Saal.+E-REDUCE 0.01 0.01

(b)

Table A.23: Results for the Anova significance test using Tukey as post-hoc analysis, com-
paring the original environment to the environments obtained after applying Saaltink and
Saaltink+E-REDUCE. Table (a) gives the found significance levels when comparing |V| and
Table (b) gives the found significance levels when comparing |E|.
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Original 1-REMOVE 2-REMOVE

1-REMOVE 0.01

2-REMOVE 0.01 0.01

3-REMOVE 0.01 0.01 0.01

Table A.24: Results for the Anova significance test using Tukey as post-hoc analysis, com-
paring the original environment to the environments obtained after applying d-REMOVE for
d ∈ {1, 2, 3}. This table reports the found significance level when comparing the reduction of
|O|.

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(a)

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(b)

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(c)

Table A.25: Results for the Anova significance test using Tukey as post-hoc analy-
sis, comparing the original environment to the environments obtained after applying
Saaltink+E-REDUCE+d-REMOVE for d ∈ {1, 2, 3}. These tables report the found significance
level when comparing the reduction of |V| (Table (a)), |E| (Table (a)) and |O| (Table (a)).

A.6 tf1

ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL t HsL HdevL
Original 9190 . --- 12 000 . --- 130 536 . --- --- ---

Saaltink 8337. 0. 11 147. 0. --- --- 0. 0.

Saal.+E-REDUCE 8307. 0. 11 096. 0. --- --- 0. 0.

1-REMOVE --- --- --- --- 57 942.6 956.72 438.6 17.43

2-REMOVE --- --- --- --- 50 002.1 96.72 687.85 51.21

3-REMOVE --- --- --- --- 47 098.8 68.56 1162.83 81.

Saal.+E-R.+1-R. 7834.05 8.86 10 622.1 8.86 56 736.2 409.94 650.65 48.7

Saal.+E-R.+2-R. 7725.7 7.68 10 510. 7.84 49 415.5 286.57 892.18 112.63

Saal.+E-R.+3-R. 7651. 8.97 10 432.5 9.59 46 510. 95.28 1536.14 16.32

Table A.26: The absolute results of applying different reduction operations on the environ-
ment tf1. The columns |V|, |E|, |O| and t (s) list the average results for each experiment.
The columns with the header (dev) give the standard deviation of the attribute in the previ-
ous column. All results are given within two decimal places. ‘—’ signifies that that particular
set of operations did not effect that particular attribute.
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ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL
Saaltink 0.907 0. 0.929 0. --- ---

Saal.+E-REDUCE 0.904 0. 0.925 0. --- ---

1-REMOVE --- --- --- --- 0.444 0.007

2-REMOVE --- --- --- --- 0.383 0.001

3-REMOVE --- --- --- --- 0.361 0.001

Saal.+E-R.+1-R. 0.852 0.001 0.885 0.001 0.435 0.003

Saal.+E-R.+2-R. 0.841 0.001 0.876 0.001 0.379 0.002

Saal.+E-R.+3-R. 0.833 0.001 0.869 0.001 0.356 0.001

Table A.27: The relative results of applying different reduction operations on the environment
tf1. The columns |V|, |E| and |O| list the average results for each experiment. The columns
with the header (dev) give the standard deviation of the attribute in the previous column.
All results are given within three decimal places. ‘—’ signifies that that particular set of
operations did not effect that particular attribute.

Original Saaltink

Saaltink 0.01

Saal.+E-REDUCE 0.01 0.01

(a)

Original Saaltink

Saaltink 0.01

Saal.+E-REDUCE 0.01 0.01

(b)

Table A.28: Results for the Anova significance test using Tukey as post-hoc analysis, com-
paring the original environment to the environments obtained after applying Saaltink and
Saaltink+E-REDUCE. Table (a) gives the found significance levels when comparing |V| and
Table (b) gives the found significance levels when comparing |E|.

Original 1-REMOVE 2-REMOVE

1-REMOVE 0.01

2-REMOVE 0.01 0.01

3-REMOVE 0.01 0.01 0.01

Table A.29: Results for the Anova significance test using Tukey as post-hoc analysis, com-
paring the original environment to the environments obtained after applying d-REMOVE for
d ∈ {1, 2, 3}. This table reports the found significance level when comparing the reduction of
|O|.

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(a)

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(b)

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(c)

Table A.30: Results for the Anova significance test using Tukey as post-hoc analy-
sis, comparing the original environment to the environments obtained after applying
Saaltink+E-REDUCE+d-REMOVE for d ∈ {1, 2, 3}. These tables report the found significance
level when comparing the reduction of |V| (Table (a)), |E| (Table (a)) and |O| (Table (a)).
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A.7 tf2

ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL t HsL HdevL
Original 11 574 . --- 15 300 . --- 38 562 . --- --- ---

Saaltink 10 861. 0. 14 587. 0. --- --- 0. 0.

Saal.+E-REDUCE 10 847. 0. 14 558. 0. --- --- 0. 0.

1-REMOVE --- --- --- --- 15 916.1 45.28 133.88 5.24

2-REMOVE --- --- --- --- 13 803.2 35.87 195.86 0.7

3-REMOVE --- --- --- --- 12 704.8 31.71 342.24 1.72

Saal.+E-R.+1-R. 9677.85 11.89 13 373.8 11.96 15 320.1 55.73 226.75 9.73

Saal.+E-R.+2-R. 9371.15 10.4 13 064.7 10.6 13 104.1 51.04 321.16 20.7

Saal.+E-R.+3-R. 9179.2 9.79 12 868.8 10.2 11 904.5 35.09 528.67 30.71

Table A.31: The absolute results of applying different reduction operations on the environ-
ment tf2. The columns |V|, |E|, |O| and t (s) list the average results for each experiment.
The columns with the header (dev) give the standard deviation of the attribute in the previ-
ous column. All results are given within two decimal places. ‘—’ signifies that that particular
set of operations did not effect that particular attribute.

ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL
Saaltink 0.938 0. 0.953 0. --- ---

Saal.+E-REDUCE 0.937 0. 0.952 0. --- ---

1-REMOVE --- --- --- --- 0.413 0.001

2-REMOVE --- --- --- --- 0.358 0.001

3-REMOVE --- --- --- --- 0.329 0.001

Saal.+E-R.+1-R. 0.836 0.001 0.874 0.001 0.397 0.001

Saal.+E-R.+2-R. 0.81 0.001 0.854 0.001 0.34 0.001

Saal.+E-R.+3-R. 0.793 0.001 0.841 0.001 0.309 0.001

Table A.32: The relative results of applying different reduction operations on the environment
tf2. The columns |V|, |E| and |O| list the average results for each experiment. The columns
with the header (dev) give the standard deviation of the attribute in the previous column.
All results are given within three decimal places. ‘—’ signifies that that particular set of
operations did not effect that particular attribute.

Original Saaltink

Saaltink 0.01

Saal.+E-REDUCE 0.01 0.01

(a)

Original Saaltink

Saaltink 0.01

Saal.+E-REDUCE 0.01 0.01

(b)

Table A.33: Results for the Anova significance test using Tukey as post-hoc analysis, com-
paring the original environment to the environments obtained after applying Saaltink and
Saaltink+E-REDUCE. Table (a) gives the found significance levels when comparing |V| and
Table (b) gives the found significance levels when comparing |E|.
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Original 1-REMOVE 2-REMOVE

1-REMOVE 0.01

2-REMOVE 0.01 0.01

3-REMOVE 0.01 0.01 0.01

Table A.34: Results for the Anova significance test using Tukey as post-hoc analysis, com-
paring the original environment to the environments obtained after applying d-REMOVE for
d ∈ {1, 2, 3}. This table reports the found significance level when comparing the reduction of
|O|.

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(a)

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(b)

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(c)

Table A.35: Results for the Anova significance test using Tukey as post-hoc analy-
sis, comparing the original environment to the environments obtained after applying
Saaltink+E-REDUCE+d-REMOVE for d ∈ {1, 2, 3}. These tables report the found significance
level when comparing the reduction of |V| (Table (a)), |E| (Table (a)) and |O| (Table (a)).

A.8 tf3

ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL t HsL HdevL
Original 5179 . --- 6871 . --- 18 387 . --- --- ---

Saaltink 4768. 0. 6459. 0. --- --- 0. 0.

Saal.+E-REDUCE 4760. 0. 6438. 0. --- --- 0. 0.

1-REMOVE --- --- --- --- 8306.3 46.03 31.12 2.79

2-REMOVE --- --- --- --- 7368.65 33.41 49.96 2.73

3-REMOVE --- --- --- --- 6840.45 28.56 98.13 1.05

Saal.+E-R.+1-R. 4310.7 8.74 5981.3 9.12 8059.55 46.3 59.35 2.66

Saal.+E-R.+2-R. 4206.3 7.65 5876.05 7.8 7093.8 27.86 63.18 4.62

Saal.+E-R.+3-R. 4142.5 7.77 5810.3 8.47 6552.4 19.58 132.28 8.45

Table A.36: The absolute results of applying different reduction operations on the environ-
ment tf3. The columns |V|, |E|, |O| and t (s) list the average results for each experiment.
The columns with the header (dev) give the standard deviation of the attribute in the previ-
ous column. All results are given within two decimal places. ‘—’ signifies that that particular
set of operations did not effect that particular attribute.
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ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL
Saaltink 0.921 0. 0.94 0. --- ---

Saal.+E-REDUCE 0.919 0. 0.937 0. --- ---

1-REMOVE --- --- --- --- 0.452 0.003

2-REMOVE --- --- --- --- 0.401 0.002

3-REMOVE --- --- --- --- 0.372 0.002

Saal.+E-R.+1-R. 0.832 0.002 0.871 0.001 0.438 0.003

Saal.+E-R.+2-R. 0.812 0.001 0.855 0.001 0.386 0.002

Saal.+E-R.+3-R. 0.8 0.002 0.846 0.001 0.356 0.001

Table A.37: The relative results of applying different reduction operations on the environment
tf3. The columns |V|, |E| and |O| list the average results for each experiment. The columns
with the header (dev) give the standard deviation of the attribute in the previous column.
All results are given within three decimal places. ‘—’ signifies that that particular set of
operations did not effect that particular attribute.

Original Saaltink

Saaltink 0.01

Saal.+E-REDUCE 0.01 0.01

(a)

Original Saaltink

Saaltink 0.01

Saal.+E-REDUCE 0.01 0.01

(b)

Table A.38: Results for the Anova significance test using Tukey as post-hoc analysis, com-
paring the original environment to the environments obtained after applying Saaltink and
Saaltink+E-REDUCE. Table (a) gives the found significance levels when comparing |V| and
Table (b) gives the found significance levels when comparing |E|.

Original 1-REMOVE 2-REMOVE

1-REMOVE 0.01

2-REMOVE 0.01 0.01

3-REMOVE 0.01 0.01 0.01

Table A.39: Results for the Anova significance test using Tukey as post-hoc analysis, com-
paring the original environment to the environments obtained after applying d-REMOVE for
d ∈ {1, 2, 3}. This table reports the found significance level when comparing the reduction of
|O|.

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(a)

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(b)

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(c)

Table A.40: Results for the Anova significance test using Tukey as post-hoc analy-
sis, comparing the original environment to the environments obtained after applying
Saaltink+E-REDUCE+d-REMOVE for d ∈ {1, 2, 3}. These tables report the found significance
level when comparing the reduction of |V| (Table (a)), |E| (Table (a)) and |O| (Table (a)).
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A.9 uulib

ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL t HsL HdevL
Original 298 . --- 421 . --- 813 . --- --- ---

Saaltink 289. 0. 412. 0. --- --- 0. 0.

Saal.+E-REDUCE 289. 0. 411. 0. --- --- 0. 0.

1-REMOVE --- --- --- --- 391.2 9.38 0.08 0.

2-REMOVE --- --- --- --- 369.9 7.74 0.13 0.01

3-REMOVE --- --- --- --- 346.55 5.65 0.25 0.02

Saal.+E-R.+1-R. 264.3 2.25 386.3 2.25 390.2 7.88 0.09 0.01

Saal.+E-R.+2-R. 257.75 1.55 379.75 1.55 359.2 5.92 0.17 0.02

Saal.+E-R.+3-R. 251.15 0.81 372.8 1.01 338.05 3.9 0.3 0.02

Table A.41: The absolute results of applying different reduction operations on the environ-
ment uulib. The columns |V|, |E|, |O| and t (s) list the average results for each experiment.
The columns with the header (dev) give the standard deviation of the attribute in the previ-
ous column. All results are given within two decimal places. ‘—’ signifies that that particular
set of operations did not effect that particular attribute.

ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL
Saaltink 0.97 0. 0.979 0. --- ---

Saal.+E-REDUCE 0.97 0. 0.976 0. --- ---

1-REMOVE --- --- --- --- 0.481 0.012

2-REMOVE --- --- --- --- 0.455 0.01

3-REMOVE --- --- --- --- 0.426 0.007

Saal.+E-R.+1-R. 0.887 0.008 0.918 0.005 0.48 0.01

Saal.+E-R.+2-R. 0.865 0.005 0.902 0.004 0.442 0.007

Saal.+E-R.+3-R. 0.843 0.003 0.886 0.002 0.416 0.005

Table A.42: The relative results of applying different reduction operations on the environment
uulib. The columns |V|, |E| and |O| list the average results for each experiment. The columns
with the header (dev) give the standard deviation of the attribute in the previous column.
All results are given within three decimal places. ‘—’ signifies that that particular set of
operations did not effect that particular attribute.

Original Saaltink

Saaltink 0.01

Saal.+E-REDUCE 0.01

(a)

Original Saaltink

Saaltink 0.01

Saal.+E-REDUCE 0.01 0.01

(b)

Table A.43: Results for the Anova significance test using Tukey as post-hoc analysis, com-
paring the original environment to the environments obtained after applying Saaltink and
Saaltink+E-REDUCE. Table (a) gives the found significance levels when comparing |V| and
Table (b) gives the found significance levels when comparing |E|.
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Original 1-REMOVE 2-REMOVE

1-REMOVE 0.01

2-REMOVE 0.01 0.01

3-REMOVE 0.01 0.01 0.01

Table A.44: Results for the Anova significance test using Tukey as post-hoc analysis, com-
paring the original environment to the environments obtained after applying d-REMOVE for
d ∈ {1, 2, 3}. This table reports the found significance level when comparing the reduction of
|O|.

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(a)

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(b)

Orig 1-REM 2-REM

1-REM 0.01

2-REM 0.01 0.01

3-REM 0.01 0.01 0.01

(c)

Table A.45: Results for the Anova significance test using Tukey as post-hoc analy-
sis, comparing the original environment to the environments obtained after applying
Saaltink+E-REDUCE+d-REMOVE for d ∈ {1, 2, 3}. These tables report the found significance
level when comparing the reduction of |V| (Table (a)), |E| (Table (a)) and |O| (Table (a)).

A.10 Reduced environments

ÈVÈ ÈEÈ EW ÈOÈ ÈTFÈ O�V

as_oilrig_min 496 798 816 892 2 1.8

as_oilrig_scaled_min 1245 1562 1562 1888 4 1.52

de_vertigo_min 255 485 518 26 4 0.1

de_vertigo_scaled_min 575 843 845 175 5 0.3

max_min 5679 7777 7779 44 092 1 7.76

tf1_min 7648 10 430 10 436 46 345 14 6.06

tf2_min 9161 12 849 12 862 11 842 46 1.29

tf3_min 4144 5813 5824 6574 11 1.59

uulib_min 252 374 375 329 1 1.31

Table A.46: Statistics of the reduced environments used for further experimentation. The
column EW contains the sum of all edge capacities for that environment.
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Appendix B

SPH results

ÈTÈ HdevL Johnson HdevL t HsL HdevL
as_oilrig min. 20.5 1.67 0.04 0.01 0.07 0.

as_oilrig or. 25.2 0.62 0.06 0.01 0.1 0.01

as_oilrig_scaled min. 93.95 0.83 0.24 0. 0.58 0.01

as_oilrig_scaled or. 98.85 1.23 0.41 0. 7.53 0.01

de_vertigo min. 6.15 0.37 0.01 0. 0.01 0.01

de_vertigo or. 6.45 0.51 0.02 0. 0.02 0.

de_vertigo_scaled min. 15. 0. 0.06 0. 0.06 0.

de_vertigo_scaled or. 14. 0. 0.19 0.01 0.28 0.

max min. 113.55 1.76 6.03 0.06 36.51 0.17

max or. 119.1 1.59 6.34 0.08 275.66 0.54

tf1 min. 1185.8 8.21 10.77 0.08 592.63 109.22

tf1 or. 1183. 8.31 14.43 0.11 7316.26 7.14

tf2 min. 1222.65 8.54 13.98 0.1 21.31 0.09

tf2 or. 1276.95 6.8 20.69 0.21 53.52 4.14

tf3 min. 702.25 8.94 2.95 0.03 13.71 1.87

tf3 or. 707.95 6.74 4.29 0.02 113.35 22.19

uulib min. 10.2 1.01 0.01 0. 0.02 0.

uulib or. 13.6 0.5 0.02 0.01 0.04 0.

Table B.1: The results for the shortest path heuristic. The column Johnson lists the time
spent in Johnson’s all pair shortest path algortihms, while t (s) lists the total running time.
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Appendix C

HH results
C.1 Results for each phase

ÈTÈ C HdevL t HsL HdevL ÈTÈ M HdevL t HsL HdevL ÈTÈ R HdevL t HsL HdevL
as_oilrig min. 67. 0. 0. 0. 24.6 1.27 0. 0. 19.8 0.41 0.01 0.

as_oilrig or. 61. 0. 0. 0. 23.6 1.19 0. 0. 19.45 0.51 0.01 0.

as_oilrig_scaled min. 66. 0. 0.01 0.01 31.7 0.66 0. 0. 30.7 0.66 0.02 0.01

as_oilrig_scaled or. 84. 0. 0.01 0. 29.9 0.91 0. 0. 28.8 0.77 0.04 0.

de_vertigo min. 4. 0. 0. 0. 4. 0. 0. 0. 2. 0. 0. 0.

de_vertigo or. 4. 0. 0. 0. 4. 0. 0. 0. 2. 0. 0. 0.

de_vertigo_scaled min. 5. 0. 0. 0. 2. 0. 0. 0. 2. 0. 0. 0.

de_vertigo_scaled or. 4. 0. 0. 0. 2. 0. 0. 0. 2. 0. 0.01 0.

max min. 28. 0. 0.03 0.01 28. 0. 0. 0.01 28. 0. 0.09 0.01

max or. 28. 0. 0.06 0. 28. 0. 0. 0. 28. 0. 0.15 0.

tf1 min. 161. 0. 0.05 0. 93.4 1.05 0.01 0. 78. 0. 0.36 0.07

tf1 or. 166. 0. 0.08 0.01 74.7 0.8 0.02 0. 72.4 0.5 0.62 0.12

tf2 min. 1494. 0. 0.06 0. 490. 22.68 0.02 0. 348.9 1.86 2.69 0.56

tf2 or. 1780. 0. 0.09 0.01 486. 24.74 0.03 0. 340.65 3.01 3.46 0.9

tf3 min. 547. 0. 0.03 0.01 173.15 3.63 0.01 0. 155.6 0.75 0.44 0.09

tf3 or. 635. 0. 0.03 0. 171.15 3.36 0.01 0. 156.75 1.29 0.56 0.15

uulib min. 11. 0. 0. 0. 9. 0. 0. 0. 9. 0. 0. 0.

uulib or. 12. 0. 0. 0. 9. 0. 0. 0. 9. 0. 0. 0.

Table C.1: This table lists the results of the HH experiments after each different phase. In column |T |C and the three following
columns the results for the cluster and component creation phase are given. |T |M and subsequent columns show information about
the merge phase. The last four columns show the results for the redistribution phase.
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C.2 Relative change for each phase

ÈTÈ C ÈTÈ M Change ÈTÈ R Change
as_oilrig min. 67. 24.6 42.4 19.8 4.8

as_oilrig or. 61. 23.6 37.4 19.45 4.15

as_oilrig_scaled min. 66. 31.7 34.3 30.7 1.

as_oilrig_scaled or. 84. 29.9 54.1 28.8 1.1

de_vertigo min. 4. 4. 0. 2. 2.

de_vertigo or. 4. 4. 0. 2. 2.

de_vertigo_scaled min. 5. 2. 3. 2. 0.

de_vertigo_scaled or. 4. 2. 2. 2. 0.

max min. 28. 28. 0. 28. 0.

max or. 28. 28. 0. 28. 0.

tf1 min. 161. 93.4 67.6 78. 15.4

tf1 or. 166. 74.7 91.3 72.4 2.3

tf2 min. 1494. 490. 1004. 348.9 141.1

tf2 or. 1780. 486. 1294. 340.65 145.35

tf3 min. 547. 173.15 373.85 155.6 17.55

tf3 or. 635. 171.15 463.85 156.75 14.4

uulib min. 11. 9. 2. 9. 0.

uulib or. 12. 9. 3. 9. 0.

Table C.2: This table show the average change after each phase.

C.3 Significance of change for each phase

C.3.1 as oilrig
Original Minimized

C M C M
M 0.01 0.01

R 0.01 0.01 0.01 0.01

Table C.3: Results for the Anova significance test using Tukey post-hoc analysis, comparing
the relevance of the change in score after each phase in the HH algorithm.

C.3.2 as oilrig scaled
Original Minimized

C M C M
M 0.01 0.01

R 0.01 0.01 0.01 0.01

Table C.4: Results for the Anova significance test using Tukey post-hoc analysis, comparing
the relevance of the change in score after each phase in the HH algorithm.

C.3.3 de vertigo
Original Minimized

C M C M
M
R 0.01 0.01 0.01 0.01

Table C.5: Results for the Anova significance test using Tukey post-hoc analysis, comparing
the relevance of the change in score after each phase in the HH algorithm.
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C.3.4 de vertigo scaled
Original Minimized

C M C M
M 0.01 0.01

R 0.01 0.01

Table C.6: Results for the Anova significance test using Tukey post-hoc analysis, comparing
the relevance of the change in score after each phase in the HH algorithm.

C.3.5 max
Original Minimized

C M C M
M
R

Table C.7: Results for the Anova significance test using Tukey post-hoc analysis, comparing
the relevance of the change in score after each phase in the HH algorithm.

C.3.6 tf1
Original Minimized

C M C M
M 0.01 0.01

R 0.01 0.01 0.01 0.01

Table C.8: Results for the Anova significance test using Tukey post-hoc analysis, comparing
the relevance of the change in score after each phase in the HH algorithm.

C.3.7 tf2
Original Minimized

C M C M
M 0.01 0.01

R 0.01 0.01 0.01 0.01

Table C.9: Results for the Anova significance test using Tukey post-hoc analysis, comparing
the relevance of the change in score after each phase in the HH algorithm.

C.3.8 tf3
Original Minimized

C M C M
M 0.01 0.01

R 0.01 0.01 0.01 0.01

Table C.10: Results for the Anova significance test using Tukey post-hoc analysis, comparing
the relevance of the change in score after each phase in the HH algorithm.

C.3.9 uulib
Original Minimized

C M C M
M 0.01 0.01

R 0.01 0.01

Table C.11: Results for the Anova significance test using Tukey post-hoc analysis, comparing
the relevance of the change in score after each phase in the HH algorithm.
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Appendix D

Genetic results

D.1 as oilrig

Valid Valid Cut HdevL Cuts HdevL t HsL HdevL
Def. Min. 4. 22. 1.83 18. 6.63 924.3 159.73

Def. Orig. 4. 22.25 1.71 18.33 6.41 1516.47 263.5

Incr. mut. Min. 6. 28. 4.47 28. 4.47 1436.72 248.23

Incr. mut. Orig. 5. 35.8 3.96 33. 7.72 1758.48 101.79

Def.+B0.3 Min. 6. 20.83 2.48 20.83 2.48 1800.03 0.03

Def.+B0.3 Orig. 5. 20.4 0.55 18.33 5.09 1723.04 188.58

Def.+B0.5 Min. 4. 21.5 1.29 15.83 9.28 1652. 362.59

Def.+B0.5 Orig. 5. 21.2 3.42 19.5 5.17 1656.29 352.11

Table D.1: This table describes the result for the genetic algorithm experiments done on
environment as oilrig. In the column ‘Valid’ the number of runs resulting in a valid decom-
position (i.e. a residual flow of 0) of the environment is listed. The column ‘Valid Cut’
lists the average value of all valid cuts. Under ‘Cuts’ the average number of cuts of all best
solutions (i.e. minimal residual flow) is listed.

D.2 as oilrig scaled

Valid Valid Cut HdevL Cuts HdevL t HsL HdevL
Def. Min. 0. --- --- 262.5 173.35 1800.22 0.27

Def. Orig. 0. --- --- 436.83 175.51 1800.36 0.38

Incr. mut. Min. 3. 410.33 38.84 359.17 145.67 1800.42 0.48

Incr. mut. Orig. 2. 561.5 62.93 400. 241.11 1800.78 0.62

Def.+B0.3 Min. 0. --- --- 230.5 121.55 1800.37 0.48

Def.+B0.3 Orig. 0. --- --- 480.33 137.03 1800.84 0.85

Def.+B0.5 Min. 1. 281. 0. 302.5 61.19 1800.31 0.32

Def.+B0.5 Orig. 0. --- --- 407. 200.95 1801.1 1.09

Table D.2: This table describes the result for the genetic algorithm experiments done on
environment as oilrig scaled. In the column ‘Valid’ the number of runs resulting in a valid
decomposition (i.e. a residual flow of 0) of the environment is listed. The column ‘Valid
Cut’ lists the average value of all valid cuts. Under ‘Cuts’ the average number of cuts of all
best solutions (i.e. minimal residual flow) is listed.
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D.3 de vertigo
Valid Valid Cut HdevL Cuts HdevL t HsL HdevL

Def. Min. 2. 6.5 0.71 4.83 1.72 19.38 4.87

Def. Orig. 4. 8.25 0.96 7.33 1.63 25.57 2.88

Incr. mut. Min. 4. 9. 3.46 7.67 3.44 25.69 12.05

Incr. mut. Orig. 3. 11.67 2.52 8. 4.77 33.44 10.27

Def.+B0.3 Min. 6. 6. 0. 6. 0. 1800. 0.

Def.+B0.3 Orig. 6. 6. 0. 6. 0. 1800. 0.

Def.+B0.5 Min. 5. 6. 0. 5.5 1.22 1501.79 730.46

Def.+B0.5 Orig. 4. 6. 0. 4.83 2.4 1800. 0.

Table D.3: This table describes the result for the genetic algorithm experiments done on
environment de vertigo. In the column ‘Valid’ the number of runs resulting in a valid de-
composition (i.e. a residual flow of 0) of the environment is listed. The column ‘Valid Cut’
lists the average value of all valid cuts. Under ‘Cuts’ the average number of cuts of all best
solutions (i.e. minimal residual flow) is listed.

D.4 de vertigo scaled
Valid Valid Cut HdevL Cuts HdevL t HsL HdevL

Def. Min. 6. 15.33 2.34 15.33 2.34 294.17 80.8

Def. Orig. 4. 16.75 2.22 14.5 4.32 999.87 290.3

Incr. mut. Min. 5. 20.8 3.9 19.5 4.72 391.74 122.57

Incr. mut. Orig. 5. 30.6 5.98 28.67 7.15 1546.56 317.32

Def.+B0.3 Min. 6. 14.5 1.64 14.5 1.64 1800.01 0.01

Def.+B0.3 Orig. 6. 13.67 0.82 13.67 0.82 1800.04 0.06

Def.+B0.5 Min. 3. 13.33 1.15 9. 4.82 1643.19 384.13

Def.+B0.5 Orig. 5. 15. 2.35 12.83 5.71 1800.06 0.06

Table D.4: This table describes the result for the genetic algorithm experiments done on
environment de vertigo scaled. In the column ‘Valid’ the number of runs resulting in a valid
decomposition (i.e. a residual flow of 0) of the environment is listed. The column ‘Valid
Cut’ lists the average value of all valid cuts. Under ‘Cuts’ the average number of cuts of all
best solutions (i.e. minimal residual flow) is listed.

D.5 max
Valid Valid Cut HdevL Cuts HdevL t HsL HdevL

Def. Min. 0. --- --- 2681. 574. 1803.21 3.01

Def. Orig. 0. --- --- 1904.83 1015.69 1802.81 2.31

Incr. mut. Min. 0. --- --- 1641.5 773.85 1803.12 2.24

Incr. mut. Orig. 0. --- --- 2107.5 905.6 1804.13 2.66

Def.+B0.3 Min. 0. --- --- 1763.33 930.3 1801.98 1.35

Def.+B0.3 Orig. 0. --- --- 1286.17 969.13 1801.54 1.05

Def.+B0.5 Min. 0. --- --- 1784. 1006.66 1803.22 2.26

Def.+B0.5 Orig. 0. --- --- 1911.17 1219.48 1803.27 1.38

Table D.5: This table describes the result for the genetic algorithm experiments done on
environment max. In the column ‘Valid’ the number of runs resulting in a valid decomposition
(i.e. a residual flow of 0) of the environment is listed. The column ‘Valid Cut’ lists the
average value of all valid cuts. Under ‘Cuts’ the average number of cuts of all best solutions
(i.e. minimal residual flow) is listed.
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D.6 tf1
Valid Valid Cut HdevL Cuts HdevL t HsL HdevL

Def. Min. 0. --- --- 3541.67 1346.77 1807.92 10.45

Def. Orig. 0. --- --- 3093. 1773.62 1819.41 14.39

Incr. mut. Min. 0. --- --- 3736.33 734.61 1807.34 8.07

Incr. mut. Orig. 0. --- --- 3252.83 1594.49 1813.27 9.18

Def.+B0.3 Min. 0. --- --- 3328.67 985.08 1809.21 7.22

Def.+B0.3 Orig. 0. --- --- 4451. 601.32 1814.68 12.47

Def.+B0.5 Min. 0. --- --- 3447. 1269.62 1809.2 10.55

Def.+B0.5 Orig. 0. --- --- 3065. 916.66 1803.99 6.67

Table D.6: This table describes the result for the genetic algorithm experiments done on
environment tf1. In the column ‘Valid’ the number of runs resulting in a valid decomposition
(i.e. a residual flow of 0) of the environment is listed. The column ‘Valid Cut’ lists the
average value of all valid cuts. Under ‘Cuts’ the average number of cuts of all best solutions
(i.e. minimal residual flow) is listed.

D.7 tf2
Valid Valid Cut HdevL Cuts HdevL t HsL HdevL

Def. Min. 0. --- --- 4479.33 873.21 1815.63 24.19

Def. Orig. 0. --- --- 4097.33 1655.54 1821.34 28.08

Incr. mut. Min. 0. --- --- 4116.5 1651.07 1814.07 15.61

Incr. mut. Orig. 0. --- --- 4649.83 1419.57 1822.19 19.82

Def.+B0.3 Min. 0. --- --- 3244.5 1594.77 1818.38 11.95

Def.+B0.3 Orig. 0. --- --- 2985.67 2017.91 1828.5 34.64

Def.+B0.5 Min. 0. --- --- 4581.83 537.62 1809.02 9.07

Def.+B0.5 Orig. 0. --- --- 4447. 1209.25 1824.87 32.76

Table D.7: This table describes the result for the genetic algorithm experiments done on
environment tf2. In the column ‘Valid’ the number of runs resulting in a valid decomposition
(i.e. a residual flow of 0) of the environment is listed. The column ‘Valid Cut’ lists the
average value of all valid cuts. Under ‘Cuts’ the average number of cuts of all best solutions
(i.e. minimal residual flow) is listed.

D.8 tf3
Valid Valid Cut HdevL Cuts HdevL t HsL HdevL

Def. Min. 0. --- --- 1828.67 316.69 1805.24 4.25

Def. Orig. 0. --- --- 1952.83 1307.68 1807.38 6.25

Incr. mut. Min. 0. --- --- 1763.67 770.08 1803.46 3.18

Incr. mut. Orig. 0. --- --- 2142.83 703.44 1810.22 7.85

Def.+B0.3 Min. 0. --- --- 1958. 444.11 1806.74 3.98

Def.+B0.3 Orig. 0. --- --- 2152.33 850.47 1804.47 4.27

Def.+B0.5 Min. 0. --- --- 1625.33 887.56 1805.53 3.7

Def.+B0.5 Orig. 0. --- --- 1601. 940.25 1807.26 4.15

Table D.8: This table describes the result for the genetic algorithm experiments done on
environment tf3. In the column ‘Valid’ the number of runs resulting in a valid decomposition
(i.e. a residual flow of 0) of the environment is listed. The column ‘Valid Cut’ lists the
average value of all valid cuts. Under ‘Cuts’ the average number of cuts of all best solutions
(i.e. minimal residual flow) is listed.
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D.9 uulib
Valid Valid Cut HdevL Cuts HdevL t HsL HdevL

Def. Min. 3. 10. 1. 8.5 2.81 183.98 68.88

Def. Orig. 5. 9.8 1.1 9. 2.19 244.34 74.22

Incr. mut. Min. 2. 11.5 3.54 8.67 3.93 163.62 46.19

Incr. mut. Orig. 5. 13.2 2.17 12.17 3.19 336.26 56.31

Def.+B0.3 Min. 5. 9.4 0.89 8.17 3.13 1800. 0.

Def.+B0.3 Orig. 4. 9. 0. 7.83 2.4 1800.01 0.01

Def.+B0.5 Min. 5. 10.4 1.34 9.83 1.83 1528.88 664.11

Def.+B0.5 Orig. 6. 9.83 1.33 9.83 1.33 1800.01 0.01

Table D.9: This table describes the result for the genetic algorithm experiments done on envi-
ronment uulib. In the column ‘Valid’ the number of runs resulting in a valid decomposition
(i.e. a residual flow of 0) of the environment is listed. The column ‘Valid Cut’ lists the
average value of all valid cuts. Under ‘Cuts’ the average number of cuts of all best solutions
(i.e. minimal residual flow) is listed.
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Appendix E

LS results

E.1 as oilrig

ÈTÈ HdevL TTB HdevL ITB HdevL TTE HdevL ITE HdevL
Tabu 5 15. 0. 4.17 3.17 990.6 330.18 60.56 13.93 11 990.6 330.18

Tabu 10 15. 0. 4.01 3.1 754.2 159.99 229.03 21.03 10 754.2 159.99

Sim. 27.7 3.83 3.16 2.01 8354.3 4012.75 6.49 1.97 18 354.3 4012.75

Sim. L 15.2 0.42 0.18 0.06 936. 334.01 1.95 0.1 10 936. 334.01

Sim. I 15. 0. 0.21 0.06 1117.1 327.84 1.93 0.13 11 117.1 327.84

Sim. Tmin 16.7 1.77 10.66 6.8 16 561.9 9595.81 16.64 7.07 26 561.9 9595.81

Sim. Tmin L 15. 0. 0.21 0.09 1100.4 529.05 1.95 0.13 11 100.4 529.05

Sim. Tmin I 15. 0. 0.18 0.04 903.7 200.35 1.92 0.11 10 903.7 200.35

Table E.1: Results of the different local search tests on environment as oilrig. |T| is the number of transfers for the best solution,
TTB is the time in seconds it took to find this solution. ITB, TTE and ITE are the iterations needed to reach the best solution,
the total runtime and the total number of iterations.
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Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim. 0.01 0.01

Sim.L 0.01

Sim.I 0.01

Sim.T 0.01

Sim.T.L 0.01

Sim.T.I 0.01

(a)

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim.

Sim.L 0.1 0.1

Sim.I 0.1 0.1

Sim.T 0.01 0.01 0.01 0.01 0.01

Sim.T.L 0.1 0.1 0.01

Sim.T.I 0.1 0.1 0.01

(b)

Table E.2: Results for the Anova significance test using Tukey as post-hoc analysis, comparing the different versions of local search.
In Table (a) the scores of the best solutions are compared and in Table (b) the differences in runtime are compared.

E.2 as oilrig min

ÈTÈ HdevL TTB HdevL ITB HdevL TTE HdevL ITE HdevL
Tabu 5 25. 4.22 1.05 0.52 612. 88.7 19.75 3.47 11 612. 88.7

Tabu 10 19.2 1.93 2.52 1.63 588.7 109.36 61.31 15.98 10 588.7 109.36

Sim. 46. 2.98 1.35 0.66 6115.6 2422.48 3.38 0.59 16 115.6 2422.48

Sim. L 32.8 0.42 0.14 0.05 900.5 294.31 1.59 0.13 10 900.5 294.31

Sim. I 33. 0. 0.13 0.07 879.2 563.26 1.55 0.05 10 879.2 563.26

Sim. Tmin 37.8 2.57 2.84 1.68 8812.5 5296.84 5.75 1.37 18 812.5 5296.84

Sim. Tmin L 32.8 0.63 0.13 0.06 813.1 379.11 1.61 0.16 10 813.1 379.11

Sim. Tmin I 32.9 0.32 0.12 0.03 760.1 233.3 1.55 0.1 10 760.1 233.3

Table E.3: Results of the different local search tests on environment as oilrig min. |T| is the number of transfers for the best solution,
TTB is the time in seconds it took to find this solution. ITB, TTE and ITE are the iterations needed to reach the best solution,
the total runtime and the total number of iterations.
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Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10 0.01

Sim. 0.01 0.01

Sim.L 0.01 0.01 0.01

Sim.I 0.01 0.01 0.01

Sim.T 0.01 0.01 0.01 0.01 0.01

Sim.T.L 0.01 0.01 0.01 0.01

Sim.T.I 0.01 0.01 0.01 0.01

(a)

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10 0.01

Sim. 0.1

Sim.L 0.01 0.1

Sim.I 0.01 0.1

Sim.T 0.01 0.01 0.01 0.01

Sim.T.L 0.01 0.1 0.01

Sim.T.I 0.01 0.05 0.01

(b)

Table E.4: Results for the Anova significance test using Tukey as post-hoc analysis, comparing the different versions of local search.
In Table (a) the scores of the best solutions are compared and in Table (b) the differences in runtime are compared.

E.3 as oilrig scaled

ÈTÈ HdevL TTB HdevL ITB HdevL TTE HdevL ITE HdevL
Tabu 5 37.1 1.52 144.63 65.93 7736.2 2895.39 285.37 44.3 18 736.2 2895.39

Tabu 10 40.2 3.12 190.09 192.7 4672.6 2997.6 822.51 198.1 14 672.6 2997.6

Sim. 92.6 11.34 9.81 5.68 18 898.9 7736.03 15.52 5.66 28 898.9 7736.03

Sim. L 42.5 2.64 1.47 0.26 2910.6 812.63 4.58 0.37 12 910.6 812.63

Sim. I 41.6 2.01 1.44 0.15 2874. 469.45 4.52 0.16 12 874. 469.45

Sim. Tmin 39.3 2.91 90.82 37.65 33 006.8 8452.36 132.81 41.04 43 006.8 8452.36

Sim. Tmin L 43.5 2.32 1.34 0.08 2515.4 268.13 4.5 0.18 12 515.4 268.13

Sim. Tmin I 42.2 2.35 1.82 0.83 4070.2 2615.89 4.96 0.89 14 070.2 2615.89

Table E.5: Results of the different local search tests on environment as oilrig scaled. |T| is the number of transfers for the best
solution, TTB is the time in seconds it took to find this solution. ITB, TTE and ITE are the iterations needed to reach the best
solution, the total runtime and the total number of iterations.
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Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim. 0.01 0.01

Sim.L 0.01

Sim.I 0.01

Sim.T 0.01

Sim.T.L 0.1 0.01

Sim.T.I 0.01

(a)

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim. 0.01 0.01

Sim.L 0.01 0.01

Sim.I 0.01 0.01

Sim.T 0.1

Sim.T.L 0.01 0.01

Sim.T.I 0.01 0.01

(b)

Table E.6: Results for the Anova significance test using Tukey as post-hoc analysis, comparing the different versions of local search.
In Table (a) the scores of the best solutions are compared and in Table (b) the differences in runtime are compared.

E.4 as oilrig scaled min

ÈTÈ HdevL TTB HdevL ITB HdevL TTE HdevL ITE HdevL
Tabu 5 37.9 3.07 17.94 8.39 3168.9 1082.96 53.43 4.51 14 168.9 1082.96

Tabu 10 35.8 2.1 72.6 43.57 4617.7 2183.79 150.68 23.76 14 617.7 2183.79

Sim. 92.3 5.96 3.82 1.48 15 015.1 6352.96 6.32 1.49 25 015.1 6352.96

Sim. L 41.3 2. 0.78 0.24 2575.9 1164.88 2.57 0.36 12 575.9 1164.88

Sim. I 42.5 4.14 0.76 0.31 2430.4 1534.23 2.57 0.37 12 430.4 1534.23

Sim. Tmin 43.4 4.22 18.28 9.93 24 511.9 9837.11 28.12 10.47 34 511.9 9837.11

Sim. Tmin L 40.3 3.16 0.99 0.53 3722. 2847.94 2.74 0.58 13 722. 2847.94

Sim. Tmin I 42.1 3.78 0.7 0.16 2171.1 843.71 2.45 0.25 12 171.1 843.71

Table E.7: Results of the different local search tests on environment as oilrig scaled min. |T| is the number of transfers for the best
solution, TTB is the time in seconds it took to find this solution. ITB, TTE and ITE are the iterations needed to reach the best
solution, the total runtime and the total number of iterations.
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Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim. 0.01 0.01

Sim.L 0.05 0.01

Sim.I 0.01 0.01

Sim.T 0.05 0.01 0.01

Sim.T.L 0.01

Sim.T.I 0.01 0.01

(a)

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10 0.01

Sim. 0.01

Sim.L 0.01

Sim.I 0.01

Sim.T 0.01

Sim.T.L 0.01

Sim.T.I 0.01

(b)

Table E.8: Results for the Anova significance test using Tukey as post-hoc analysis, comparing the different versions of local search.
In Table (a) the scores of the best solutions are compared and in Table (b) the differences in runtime are compared.

E.5 de vertigo

ÈTÈ HdevL TTB HdevL ITB HdevL TTE HdevL ITE HdevL
Tabu 5 2. 0. 0.89 0.47 403.7 9.37 542.36 95.86 11 403.7 9.37

Tabu 10 2. 0. 1.94 1.13 372.4 5.89 1560.45 19.34 10 372.4 5.89

Sim. 2. 0. 2.34 1.3 1793. 458.98 39.49 4.62 11 793. 458.98

Sim. L 2. 0. 0.04 0.01 393.3 20.07 2.08 0.02 10 393.3 20.07

Sim. I 2. 0. 0.04 0. 382. 6.57 2.07 0.03 10 382. 6.57

Sim. Tmin 2. 0. 0.82 0.57 1435. 90.2 69.84 9.35 11 435. 90.2

Sim. Tmin L 2. 0. 0.04 0. 386.4 12.11 2.07 0.02 10 386.4 12.11

Sim. Tmin I 2. 0. 0.04 0.01 389.3 13.31 2.05 0.01 10 389.3 13.31

Table E.9: Results of the different local search tests on environment de vertigo. |T| is the number of transfers for the best solution,
TTB is the time in seconds it took to find this solution. ITB, TTE and ITE are the iterations needed to reach the best solution,
the total runtime and the total number of iterations.
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Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim.

Sim.L

Sim.I

Sim.T

Sim.T.L

Sim.T.I

(a)

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10 0.02

Sim. 0.01

Sim.L 0.01 0.01

Sim.I 0.1 0.01 0.01

Sim.T 0.01 0.01

Sim.T.L 0.1 0.01 0.01

Sim.T.I 0.1 0.01 0.01

(b)

Table E.10: Results for the Anova significance test using Tukey as post-hoc analysis, comparing the different versions of local search.
In Table (a) the scores of the best solutions are compared and in Table (b) the differences in runtime are compared.

E.6 de vertigo min

ÈTÈ HdevL TTB HdevL ITB HdevL TTE HdevL ITE HdevL
Tabu 5 11. 3.46 0.34 0.16 277.6 8.88 59.22 10.37 11 277.6 8.88

Tabu 10 6.9 2.56 0.68 0.42 258.3 8.34 136.15 10.17 10 258.3 8.34

Sim. 30.3 2.31 3.98 3.63 5112.2 4683.94 10.51 2.73 15 112.2 4683.94

Sim. L 25.5 9.68 0.02 0. 261.9 5.88 1.49 0.08 10 261.9 5.88

Sim. I 22.2 10.4 0.02 0. 260.8 3.68 1.51 0.01 10 260.8 3.68

Sim. Tmin 29.6 6.55 2.9 3.22 2711.5 2149.1 15.13 2.96 12 711.5 2149.1

Sim. Tmin L 16.2 9.74 0.02 0. 264. 4.19 1.51 0.01 10 264. 4.19

Sim. Tmin I 19.8 6.75 0.02 0. 260.7 5.08 1.51 0.01 10 260.7 5.08

Table E.11: Results of the different local search tests on environment de vertigo min. |T| is the number of transfers for the best
solution, TTB is the time in seconds it took to find this solution. ITB, TTE and ITE are the iterations needed to reach the best
solution, the total runtime and the total number of iterations.
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Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim. 0.01 0.01

Sim.L 0.01 0.01

Sim.I 0.02 0.01

Sim.T 0.01 0.01

Sim.T.L 0.1 0.01 0.1 0.01

Sim.T.I 0.01 0.05 0.1

(a)

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim. 0.01 0.01

Sim.L 0.01

Sim.I 0.01

Sim.T 0.05 0.1 0.01 0.01

Sim.T.L 0.01 0.01

Sim.T.I 0.01 0.01

(b)

Table E.12: Results for the Anova significance test using Tukey as post-hoc analysis, comparing the different versions of local search.
In Table (a) the scores of the best solutions are compared and in Table (b) the differences in runtime are compared.

E.7 de vertigo scaled

ÈTÈ HdevL TTB HdevL ITB HdevL TTE HdevL ITE HdevL
Tabu 5 2. 0. 42.3 32.78 1386.9 64.95 1181.04 124.28 12 386.9 64.95

Tabu 10 2.4 1.26 150.16 221.38 1362.8 259.02 1801.57 1.35 3723.2 492.03

Sim. 2. 0. 39.09 31.89 5884.8 1464.54 243.41 39.64 15 884.8 1464.54

Sim. L 3.2 1.55 0.41 0.02 1252.8 32.97 5.49 0.64 11 252.8 32.97

Sim. I 4.6 1.84 0.41 0.01 1241.7 9.51 5.47 0.74 11 241.7 9.51

Sim. Tmin 2. 0. 26.77 24.31 4525.7 493.08 435.09 45.84 14 525.7 493.08

Sim. Tmin L 3.9 1.66 0.41 0.01 1252.1 31.69 5.39 0.61 11 252.1 31.69

Sim. Tmin I 3.5 1.58 0.42 0.01 1255.7 20.46 5.56 0.8 11 255.7 20.46

Table E.13: Results of the different local search tests on environment de vertigo scaled. |T| is the number of transfers for the best
solution, TTB is the time in seconds it took to find this solution. ITB, TTE and ITE are the iterations needed to reach the best
solution, the total runtime and the total number of iterations.
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Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim.

Sim.L

Sim.I 0.01 0.01 0.01

Sim.T 0.01

Sim.T.L 0.05 0.05 0.05

Sim.T.I

(a)

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10 0.1

Sim. 0.1

Sim.L 0.01

Sim.I 0.01

Sim.T 0.05

Sim.T.L 0.01

Sim.T.I 0.01

(b)

Table E.14: Results for the Anova significance test using Tukey as post-hoc analysis, comparing the different versions of local search.
In Table (a) the scores of the best solutions are compared and in Table (b) the differences in runtime are compared.

E.8 de vertigo scaled min

ÈTÈ HdevL TTB HdevL ITB HdevL TTE HdevL ITE HdevL
Tabu 5 3.6 0.7 10.53 15.42 754.2 170.51 117.78 13.67 11 754.2 170.51

Tabu 10 3.6 0.7 4.16 2.44 588.4 8.68 187.34 16.03 10 588.4 8.68

Sim. 4. 0. 4.62 3.5 2842.5 451.05 38.25 4.2 12 842.5 451.05

Sim. L 6.2 1.99 0.1 0. 608.2 10.93 2.05 0.3 10 608.2 10.93

Sim. I 4.9 1.29 0.1 0. 604.3 10.89 2.12 0.28 10 604.3 10.89

Sim. Tmin 4. 0. 3.1 2.99 2464.7 237.96 49.33 6.26 12 464.7 237.96

Sim. Tmin L 5.6 1.78 0.1 0. 609. 13.31 2.23 0.23 10 609. 13.31

Sim. Tmin I 4.9 2.13 0.1 0. 611.7 13.62 2.12 0.29 10 611.7 13.62

Table E.15: Results of the different local search tests on environment de vertigo scaled min. |T| is the number of transfers for the
best solution, TTB is the time in seconds it took to find this solution. ITB, TTE and ITE are the iterations needed to reach the
best solution, the total runtime and the total number of iterations.

104



Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim.

Sim.L 0.01 0.01 0.02

Sim.I

Sim.T 0.02

Sim.T.L 0.05 0.05

Sim.T.I

(a)

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim.

Sim.L 0.01

Sim.I 0.01

Sim.T 0.1

Sim.T.L 0.01

Sim.T.I 0.01

(b)

Table E.16: Results for the Anova significance test using Tukey as post-hoc analysis, comparing the different versions of local search.
In Table (a) the scores of the best solutions are compared and in Table (b) the differences in runtime are compared.

E.9 max

ÈTÈ HdevL TTB HdevL ITB HdevL TTE HdevL ITE HdevL
Tabu 5 71.5 0.85 385.32 301.15 9712.9 3246.89 1373.39 240.87 20 354.4 2522.62

Tabu 10 72. 0. 529.82 382.85 8054.1 2022.58 1800.22 0.15 14 814.7 153.3

Sim. 200.5 30.01 72.7 27.55 30 432.3 4263.6 135.59 31.1 40 432.3 4263.6

Sim. L 72.1 0.32 22.44 5.04 9052.5 2302.39 44.58 5.11 19 052.5 2302.39

Sim. I 72.3 0.48 26.01 6.02 10 645.3 2750.64 48.46 5.98 20 645.3 2750.64

Sim. Tmin 72.3 0.67 249.44 50.29 34 380.9 2633.42 432.2 53.09 44 380.9 2633.42

Sim. Tmin L 72.1 0.32 27. 6.54 11 123.7 2975.7 49.15 6.68 21 123.7 2975.7

Sim. Tmin I 72.1 0.32 22.27 5.64 8939.3 2567.53 44.36 5.71 18 939.3 2567.53

Table E.17: Results of the different local search tests on environment max. |T| is the number of transfers for the best solution, TTB
is the time in seconds it took to find this solution. ITB, TTE and ITE are the iterations needed to reach the best solution, the total
runtime and the total number of iterations.

105



Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim. 0.01 0.01

Sim.L 0.01

Sim.I 0.01

Sim.T 0.01

Sim.T.L 0.01

Sim.T.I 0.01

(a)

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim. 0.01 0.01

Sim.L 0.01 0.01

Sim.I 0.01 0.01

Sim.T 0.02 0.1 0.1

Sim.T.L 0.01 0.01 0.1

Sim.T.I 0.01 0.01 0.1

(b)

Table E.18: Results for the Anova significance test using Tukey as post-hoc analysis, comparing the different versions of local search.
In Table (a) the scores of the best solutions are compared and in Table (b) the differences in runtime are compared.

E.10 max min

ÈTÈ HdevL TTB HdevL ITB HdevL TTE HdevL ITE HdevL
Tabu 5 73.9 1.85 532.02 562.04 12 129.5 7160.7 1263.8 334.12 21 587.5 4108.98

Tabu 10 74.4 0.7 470.46 246.95 7931.3 1580.25 1799.41 2.3 16 311.4 207.23

Sim. 211.9 16.86 69.68 28.71 31 707.5 5524.19 125.72 31.63 41 707.5 5524.19

Sim. L 74. 0. 16.75 1.6 8732.4 1290.76 29.25 1.6 18 732.4 1290.76

Sim. I 74.3 0.67 17.88 3.7 9648.9 2990.17 30.61 3.68 19 648.9 2990.17

Sim. Tmin 75.2 0.63 218.63 55.75 33 878. 4935.92 374.83 53.06 43 878. 4935.92

Sim. Tmin L 74. 0. 18.3 2.98 10 022. 2451.73 30.61 3. 20 022. 2451.73

Sim. Tmin I 73.8 0.79 15.31 1.3 7559.2 1066.28 27.77 1.36 17 559.2 1066.28

Table E.19: Results of the different local search tests on environment max min. |T| is the number of transfers for the best solution,
TTB is the time in seconds it took to find this solution. ITB, TTE and ITE are the iterations needed to reach the best solution,
the total runtime and the total number of iterations.
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Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim. 0.01 0.01

Sim.L 0.01

Sim.I 0.01

Sim.T 0.01

Sim.T.L 0.01

Sim.T.I 0.01

(a)

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim. 0.01 0.01

Sim.L 0.01 0.01

Sim.I 0.01 0.01

Sim.T 0.05

Sim.T.L 0.01 0.01

Sim.T.I 0.01 0.01

(b)

Table E.20: Results for the Anova significance test using Tukey as post-hoc analysis, comparing the different versions of local search.
In Table (a) the scores of the best solutions are compared and in Table (b) the differences in runtime are compared.

E.11 tf1

ÈTÈ HdevL TTB HdevL ITB HdevL TTE HdevL ITE HdevL
Tabu 5 756.9 6.56 353.44 51.04 18 991.6 3129.95 534.45 56.49 29 991.6 3129.95

Tabu 10 743. 6.83 913.33 404.58 21 988.9 8492.61 1339.76 366.41 31 328.2 7540.52

Sim. 1791. 86.3 58.21 5.73 67 063.6 13 532.5 61.96 5.72 77 063.6 13 532.5

Sim. L 744.4 6.92 45.14 3.59 24 728. 5967.35 51.4 3.56 34 728. 5967.35

Sim. I 743.3 6.73 47.46 2.14 28 059.9 3482.19 53.64 2.12 38 059.9 3482.19

Sim. Tmin 738. 9.88 126.73 35.67 62 301. 8574.77 162.64 39.66 72 301. 8574.77

Sim. Tmin L 743.9 5.38 47.67 3.45 28 034.3 5342.43 53.91 3.46 38 034.3 5342.43

Sim. Tmin I 746.3 7.87 46.44 3.83 26 564.6 6227.09 52.72 3.8 36 564.6 6227.09

Table E.21: Results of the different local search tests on environment tf1. |T| is the number of transfers for the best solution, TTB
is the time in seconds it took to find this solution. ITB, TTE and ITE are the iterations needed to reach the best solution, the total
runtime and the total number of iterations.
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Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim. 0.01 0.01

Sim.L 0.01

Sim.I 0.01

Sim.T 0.01

Sim.T.L 0.01

Sim.T.I 0.01

(a)

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10 0.01

Sim. 0.01 0.01

Sim.L 0.01 0.01

Sim.I 0.01 0.01

Sim.T 0.02 0.01

Sim.T.L 0.01 0.01

Sim.T.I 0.01 0.01

(b)

Table E.22: Results for the Anova significance test using Tukey as post-hoc analysis, comparing the different versions of local search.
In Table (a) the scores of the best solutions are compared and in Table (b) the differences in runtime are compared.

E.12 tf1 min

ÈTÈ HdevL TTB HdevL ITB HdevL TTE HdevL ITE HdevL
Tabu 5 739.8 7.9 154.46 10.86 13 347.8 1665.62 208.84 16.17 24 347.8 1665.62

Tabu 10 689.9 7.52 505.19 219.1 27 693.4 14 728.1 642.19 202.65 37 693.4 14 728.1

Sim. 1684.4 95.02 30.93 3.38 61 079.6 16 697.9 32.66 3.29 71 079.6 16 697.9

Sim. L 705.7 7.7 29.08 2.18 23 643.3 5735.75 33.02 2.13 33 643.3 5735.75

Sim. I 707. 4.19 29.96 2.74 25 845.6 6799.23 33.92 2.79 35 845.6 6799.23

Sim. Tmin 690.4 5.68 52.31 12.23 59 869. 9869.68 63.66 12.03 69 869. 9869.68

Sim. Tmin L 706.4 6.42 29.51 2.48 24 484.1 6212.95 33.5 2.51 34 484.1 6212.95

Sim. Tmin I 705.2 7.96 28.51 2.63 22 001.1 6542.66 32.47 2.7 32 001.1 6542.66

Table E.23: Results of the different local search tests on environment tf1 min. |T| is the number of transfers for the best solution,
TTB is the time in seconds it took to find this solution. ITB, TTE and ITE are the iterations needed to reach the best solution,
the total runtime and the total number of iterations.
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Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10 0.05

Sim. 0.01 0.01

Sim.L 0.01

Sim.I 0.01

Sim.T 0.05 0.01

Sim.T.L 0.01

Sim.T.I 0.01

(a)

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10 0.01

Sim. 0.02 0.01

Sim.L 0.02 0.01

Sim.I 0.02 0.01

Sim.T 0.1 0.01

Sim.T.L 0.02 0.01

Sim.T.I 0.02 0.01

(b)

Table E.24: Results for the Anova significance test using Tukey as post-hoc analysis, comparing the different versions of local search.
In Table (a) the scores of the best solutions are compared and in Table (b) the differences in runtime are compared.

E.13 tf2

ÈTÈ HdevL TTB HdevL ITB HdevL TTE HdevL ITE HdevL
Tabu 5 726.7 12.09 1475.91 213.07 21 097.1 3151.73 1831.93 29.31 22 441.6 2877.07

Tabu 10 710.6 13.21 1616.99 153.88 14 623.4 533.54 1825. 22.36 15 234.1 670.06

Sim. 2020.1 75.62 71.77 10.7 73 711.8 12 856.6 80.4 11.29 83 711.8 12 856.6

Sim. L 711. 8.39 58.84 4.16 28 812.6 6326.62 64.99 4.2 38 812.6 6326.62

Sim. I 711. 8.59 58.68 5.05 28 442. 8597.97 64.84 4.95 38 442. 8597.97

Sim. Tmin 716.9 14.56 894.99 366.35 66 806. 6083.07 1309.55 446.25 76 557.4 6184.19

Sim. Tmin L 702.5 8.21 59.05 4.22 28 917.6 6539.98 65.19 4.29 38 917.6 6539.98

Sim. Tmin I 713.1 11.23 58.03 2.33 27 227.1 3711.68 64.23 2.37 37 227.1 3711.68

Table E.25: Results of the different local search tests on environment tf2. |T| is the number of transfers for the best solution, TTB
is the time in seconds it took to find this solution. ITB, TTE and ITE are the iterations needed to reach the best solution, the total
runtime and the total number of iterations.
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Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim. 0.01 0.01

Sim.L 0.01

Sim.I 0.01

Sim.T 0.01

Sim.T.L 0.01

Sim.T.I 0.01

(a)

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim. 0.01 0.01

Sim.L 0.01 0.01

Sim.I 0.01 0.01

Sim.T 0.01 0.01 0.01 0.01 0.01

Sim.T.L 0.01 0.01 0.01

Sim.T.I 0.01 0.01 0.01

(b)

Table E.26: Results for the Anova significance test using Tukey as post-hoc analysis, comparing the different versions of local search.
In Table (a) the scores of the best solutions are compared and in Table (b) the differences in runtime are compared.

E.14 tf2 min

ÈTÈ HdevL TTB HdevL ITB HdevL TTE HdevL ITE HdevL
Tabu 5 724.2 8.43 1207.36 398.9 20 405.4 3608.65 1809.28 53.49 26 831.1 3256.48

Tabu 10 700.4 12.15 1498.68 183.92 13 585.1 1397.66 1824.28 19.7 14 636.6 1288.47

Sim. 1955.6 128.64 47.12 8.45 70 774.3 14 790.3 54.58 11.07 80 774.3 14 790.3

Sim. L 710.5 10.38 37.22 2.11 25 568.2 4377.55 41.98 2.16 35 568.2 4377.55

Sim. I 716.5 11.87 36.73 3.5 24 813.5 7502.89 41.45 3.5 34 813.5 7502.89

Sim. Tmin 710.4 15.34 613.22 201.72 62 049.4 6802.13 834.94 192.64 72 049.4 6802.13

Sim. Tmin L 714.3 11.98 36.64 2.66 24 508.4 5584.18 41.37 2.64 34 508.4 5584.18

Sim. Tmin I 711.6 8.26 37.89 3.47 27 126.1 7465.69 42.55 3.51 37 126.1 7465.69

Table E.27: Results of the different local search tests on environment tf2 min. |T| is the number of transfers for the best solution,
TTB is the time in seconds it took to find this solution. ITB, TTE and ITE are the iterations needed to reach the best solution,
the total runtime and the total number of iterations.
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Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim. 0.01 0.01

Sim.L 0.01

Sim.I 0.01

Sim.T 0.01

Sim.T.L 0.01

Sim.T.I 0.01

(a)

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10 0.01

Sim. 0.01 0.01

Sim.L 0.01 0.01

Sim.I 0.01 0.01

Sim.T 0.01 0.01 0.01 0.01 0.01

Sim.T.L 0.01 0.01 0.01

Sim.T.I 0.01 0.01 0.01

(b)

Table E.28: Results for the Anova significance test using Tukey as post-hoc analysis, comparing the different versions of local search.
In Table (a) the scores of the best solutions are compared and in Table (b) the differences in runtime are compared.

E.15 tf3

ÈTÈ HdevL TTB HdevL ITB HdevL TTE HdevL ITE HdevL
Tabu 5 366.9 7.82 171.83 39.7 15 453.8 2750.92 283.22 39.13 26 453.8 2750.92

Tabu 10 363.3 6.07 799.4 455.38 30 454.5 14 639.6 1049.04 393.28 39 496.3 12 700.4

Sim. 893.6 47.02 16.93 2.86 43 290. 8285.55 20.49 2.9 53 290. 8285.55

Sim. L 377.9 7.92 12.15 0.72 12 877.5 2433.08 15.04 0.77 22 877.5 2433.08

Sim. I 373.4 7.9 12.4 1.24 13 684.4 4197.84 15.32 1.25 23 684.4 4197.84

Sim. Tmin 358.6 8.24 58.42 17.75 41 334.5 6092.57 86.14 18.63 51 334.5 6092.57

Sim. Tmin L 376.2 10.54 11.93 0.72 12 170. 2509.2 14.82 0.75 22 170. 2509.2

Sim. Tmin I 376.4 7.68 11.71 0.44 11 266.7 1530.7 14.6 0.44 21 266.7 1530.7

Table E.29: Results of the different local search tests on environment tf3. |T| is the number of transfers for the best solution, TTB
is the time in seconds it took to find this solution. ITB, TTE and ITE are the iterations needed to reach the best solution, the total
runtime and the total number of iterations.
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Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim. 0.01 0.01

Sim.L 0.01

Sim.I 0.01

Sim.T 0.01

Sim.T.L 0.01

Sim.T.I 0.01

(a)

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10 0.01

Sim. 0.01

Sim.L 0.01

Sim.I 0.01

Sim.T 0.01

Sim.T.L 0.01

Sim.T.I 0.01

(b)

Table E.30: Results for the Anova significance test using Tukey as post-hoc analysis, comparing the different versions of local search.
In Table (a) the scores of the best solutions are compared and in Table (b) the differences in runtime are compared.

E.16 tf3 min

ÈTÈ HdevL TTB HdevL ITB HdevL TTE HdevL ITE HdevL
Tabu 5 383.7 5.52 86.16 26.83 12 607.7 4874.36 147.14 16.12 23 607.7 4874.36

Tabu 10 356.4 11.73 488.5 329.42 29 710.7 23 415.3 657.46 301.28 39 710.7 23 415.3

Sim. 909.8 50.03 11.64 1.84 42 838.3 10 887.1 13.53 1.82 52 838.3 10 887.1

Sim. L 379. 7.12 8.42 0.8 14 103. 3703.21 10.61 0.81 24 103. 3703.21

Sim. I 380.2 11.68 7.8 0.7 11 447.2 3286.14 9.98 0.7 21 447.2 3286.14

Sim. Tmin 363.9 15.94 39.16 6.17 42 373.3 5183. 53.96 8.48 52 373.3 5183.

Sim. Tmin L 379.6 15.19 7.7 0.44 10 730.8 2123.18 9.88 0.42 20 730.8 2123.18

Sim. Tmin I 380.6 11.06 8.14 0.65 12 877.7 2963.02 10.29 0.63 22 877.7 2963.02

Table E.31: Results of the different local search tests on environment tf3 min. |T| is the number of transfers for the best solution,
TTB is the time in seconds it took to find this solution. ITB, TTE and ITE are the iterations needed to reach the best solution,
the total runtime and the total number of iterations.
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Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10 0.1

Sim. 0.01 0.01

Sim.L 0.01

Sim.I 0.01

Sim.T 0.01

Sim.T.L 0.01

Sim.T.I 0.01

(a)

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10 0.01

Sim. 0.01

Sim.L 0.01

Sim.I 0.01

Sim.T 0.01

Sim.T.L 0.01

Sim.T.I 0.01

(b)

Table E.32: Results for the Anova significance test using Tukey as post-hoc analysis, comparing the different versions of local search.
In Table (a) the scores of the best solutions are compared and in Table (b) the differences in runtime are compared.

E.17 uulib

ÈTÈ HdevL TTB HdevL ITB HdevL TTE HdevL ITE HdevL
Tabu 5 8.5 0.53 4.24 6.05 2197.2 3034.21 23.68 7.11 13 197.2 3034.21

Tabu 10 9. 0. 0.39 0.02 296. 6.09 58.86 6.32 10 296. 6.09

Sim. 9.6 0.84 1.05 0.51 6671.9 3347.9 2.27 0.3 16 671.9 3347.9

Sim. L 9. 0. 0.04 0. 317.4 8.98 1.38 0.11 10 317.4 8.98

Sim. I 9. 0. 0.03 0.01 324.9 13.34 1.41 0.07 10 324.9 13.34

Sim. Tmin 8.7 0.48 0.78 0.55 4345.1 3195.23 2.1 0.32 14 345.1 3195.23

Sim. Tmin L 8.9 0.32 0.04 0. 323. 8.58 1.34 0.08 10 323. 8.58

Sim. Tmin I 8.9 0.32 0.04 0.01 321.9 7.59 1.3 0.09 10 321.9 7.59

Table E.33: Results of the different local search tests on environment uulib. |T| is the number of transfers for the best solution, TTB
is the time in seconds it took to find this solution. ITB, TTE and ITE are the iterations needed to reach the best solution, the total
runtime and the total number of iterations.
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Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim. 0.01 0.05

Sim.L 0.05

Sim.I 0.05

Sim.T 0.01

Sim.T.L 0.01

Sim.T.I 0.01

(a)

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10 0.01

Sim. 0.05

Sim.L 0.01

Sim.I 0.01

Sim.T 0.02

Sim.T.L 0.01

Sim.T.I 0.01

(b)

Table E.34: Results for the Anova significance test using Tukey as post-hoc analysis, comparing the different versions of local search.
In Table (a) the scores of the best solutions are compared and in Table (b) the differences in runtime are compared.

E.18 uulib min

ÈTÈ HdevL TTB HdevL ITB HdevL TTE HdevL ITE HdevL
Tabu 5 9.2 0.42 2.18 3.73 1476.7 2402.4 15. 8. 12 476.7 2402.4

Tabu 10 9. 0. 0.29 0.02 249.1 3.14 45.12 5.56 10 249.1 3.14

Sim. 10.2 0.79 0.59 0.53 6119.6 5873.48 1.43 0.32 16 119.6 5873.48

Sim. L 9.6 0.7 0.02 0.01 281. 16.13 1.05 0.08 10 281. 16.13

Sim. I 9.8 0.42 0.02 0. 274.5 12.01 1.1 0.06 10 274.5 12.01

Sim. Tmin 9.5 0.53 0.57 0.34 4903.1 3722.12 1.38 0.25 14 903.1 3722.12

Sim. Tmin L 9.9 0.32 0.03 0. 280.9 12.82 1.08 0.09 10 280.9 12.82

Sim. Tmin I 9.7 0.48 0.02 0. 281. 14.74 1.04 0.1 10 281. 14.74

Table E.35: Results of the different local search tests on environment uulib min. |T| is the number of transfers for the best solution,
TTB is the time in seconds it took to find this solution. ITB, TTE and ITE are the iterations needed to reach the best solution,
the total runtime and the total number of iterations.
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Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10

Sim. 0.01 0.01

Sim.L

Sim.I 0.02

Sim.T 0.1

Sim.T.L 0.1 0.01

Sim.T.I 0.1

(a)

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L

Ta. 10 0.05

Sim.

Sim.L 0.02

Sim.I 0.02

Sim.T

Sim.T.L 0.02

Sim.T.I 0.02

(b)

Table E.36: Results for the Anova significance test using Tukey as post-hoc analysis, comparing the different versions of local search.
In Table (a) the scores of the best solutions are compared and in Table (b) the differences in runtime are compared.
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E.19 Reason for termination

Ta. 5 Ta. 10 Sim. Sim.L Sim.I Sim.T Sim.T.L Sim.T.I
oil. min. 0. 0. 0. 0. 0. 0. 0. 0.

oil. or. 0. 0. 0. 0. 0. 0. 0. 0.

oil. sc. min. 0. 0. 0. 0. 0. 0. 0. 0.

oil. sc. or. 0. 0. 0. 0. 0. 0. 0. 0.

vert. min. 0. 0. 0. 0. 0. 0. 0. 0.

vert. or. 0. 0. 0. 0. 0. 0. 0. 0.

vert. sc. min. 0. 0. 0. 0. 0. 0. 0. 0.

vert. sc. or. 0. 1. 0. 0. 0. 0. 0. 0.

max min. 0.2 0.9 0. 0. 0. 0. 0. 0.

max or. 0.2 1. 0. 0. 0. 0. 0. 0.

tf1 min. 0. 0. 0. 0. 0. 0. 0. 0.

tf1 or. 0. 0.3 0. 0. 0. 0. 0. 0.

tf2 min. 0.9 1. 0. 0. 0. 0. 0. 0.

tf2 or. 1. 1. 0. 0. 0. 0.2 0. 0.

tf3 min. 0. 0. 0. 0. 0. 0. 0. 0.

tf3 or. 0. 0.1 0. 0. 0. 0. 0. 0.

uulib min. 0. 0. 0. 0. 0. 0. 0. 0.

uulib or. 0. 0. 0. 0. 0. 0. 0. 0.

Table E.37: This table lists the fraction of local searches that did not finish within 1800 seconds (one half hour) for each individual
environment.
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Appendix F

Saaltink’s results

Flood CutÈTÈ HdevL t HsL HdevL ÈTÈ HdevL t HsL HdevL
as_oilrig 59. 0. 0. 0. 21. 0. 5.21 0.01

as_oilrig_scaled 240. 0. 0.03 0.01 205. 0. 601.81 0.29

de_vertigo 6. 0. 0. 0. 6. 0. 0.06 0.01

de_vertigo_scaled 133. 0. 0.01 0.01 109. 0. 16.35 0.01

max 195. 0. 1.04 0.01 --- --- --- ---

tf1 1877. 0. 2.05 0.01 --- --- --- ---

tf2 1607. 0. 1.07 0.01 --- --- --- ---

tf3 832. 0. 0.23 0.01 --- --- --- ---

uulib 31. 0. 0. 0. 13. 0. 1.34 0.01

Table F.1: The results found for the original environments using Saaltink’s Flood-Fill and
flow-based approach. For the environments max, tf1, tf2 and tf3 no results were obtained for
the flow-based approach. The reason is that running the algorithm a single time lasted very
long.
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Appendix G

ILP results

G.1 LS Pricer Results

G.1.1 Score

as_oilrig as_oilrig_min uulib uulib_min

Score HdevL Score HdevL Score HdevL Score HdevL
Tabu 1 u1 -177.759 147.925 -228.101 228.809 -49.125 35.91 -43.802 36.46

Tabu 2 u1 -347.568 101.488 -448.319 128.154 -69.629 32.235 -76.738 39.75

Sim. u1 -457.312 7.619 -584.697 6.83 -124.424 7.074 -144.29 6.2

Tabu 1 u2 -198.077 206.305 -194.852 400.876 -60.305 49.48 -61.675 64.715

Tabu 2 u2 -427.208 115.416 -543.65 161.012 -86.968 38.165 -99.988 46.394

Sim. u2 -559.821 13.748 -725.219 18.104 -149.354 10.116 -176.691 10.097

Tabu 1 u3 -254.055 275.13 -218.007 423.528 -63.122 60.28 -60.591 61.954

Tabu 2 u3 -507.082 151.021 -619.528 197.91 -109.173 47.046 -127.467 48.213

Sim. u3 -663.437 9.155 -859.667 16.737 -184.343 9.269 -216.958 12.011

Table G.1: The average scores for the different LS Pricer experiments. The value under the
columns Score is calculated by subtracting the optimal score (found using the ILP Pricer)
from the score found by the LS.

as_oilrig as_oilrig_min uulib uulib_min

Tabu 1 Tabu 2 Tabu 1 Tabu 2 Tabu 1 Tabu 2 Tabu 1 Tabu 2
Tabu 2 0.01 0.01 0.01 0.01

Sim. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

(a)

as_oilrig as_oilrig_min uulib uulib_min

Tabu 1 Tabu 2 Tabu 1 Tabu 2 Tabu 1 Tabu 2 Tabu 1 Tabu 2
Tabu 2 0.01 0.01 0.01 0.01

Sim. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

(b)

as_oilrig as_oilrig_min uulib uulib_min

Tabu 1 Tabu 2 Tabu 1 Tabu 2 Tabu 1 Tabu 2 Tabu 1 Tabu 2
Tabu 2 0.01 0.01 0.01 0.01

Sim. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

(c)

Table G.2: Results for the Anova significance test using Tukey as post-hoc analysis, comparing
the different scores of the LS Pricers. Table (a) through (c) describe the results for u = 1
through u = 3.
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G.1.2 Time

as_oilrig as_oilrig_min uulib uulib_min

Runtime HdevL Runtime HdevL Runtime HdevL Runtime HdevL
Tabu 1 u1 0.145 0.066 0.148 0.076 0.093 0.031 0.151 0.046

Tabu 2 u1 0.037 0.018 0.045 0.028 0.044 0.018 0.057 0.029

Sim. u1 0.01 0.006 0.009 0.005 0.009 0.007 0.01 0.006

Tabu 1 u2 0.139 0.066 0.168 0.073 0.095 0.026 0.145 0.045

Tabu 2 u2 0.039 0.021 0.034 0.018 0.041 0.018 0.051 0.028

Sim. u2 0.009 0.005 0.009 0.007 0.01 0.007 0.011 0.006

Tabu 1 u3 0.117 0.071 0.178 0.071 0.092 0.031 0.141 0.046

Tabu 2 u3 0.041 0.02 0.042 0.022 0.038 0.016 0.054 0.026

Sim. u3 0.01 0.007 0.009 0.006 0.01 0.007 0.01 0.005

Table G.3: The average time used for each LS Pricer experiments. The time is measured in
seconds.

as_oilrig as_oilrig_min uulib uulib_min

Tabu 1 Tabu 2 Tabu 1 Tabu 2 Tabu 1 Tabu 2 Tabu 1 Tabu 2
Tabu 2 0.01 0.01 0.01 0.01

Sim. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

(a)

as_oilrig as_oilrig_min uulib uulib_min

Tabu 1 Tabu 2 Tabu 1 Tabu 2 Tabu 1 Tabu 2 Tabu 1 Tabu 2
Tabu 2 0.01 0.01 0.01 0.01

Sim. 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01

(b)

as_oilrig as_oilrig_min uulib uulib_min

Tabu 1 Tabu 2 Tabu 1 Tabu 2 Tabu 1 Tabu 2 Tabu 1 Tabu 2
Tabu 2 0.01 0.01 0.01 0.01

Sim. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

(c)

Table G.4: Results for the Anova significance test using Tukey as post-hoc analysis, comparing
the different runtimes of the LS Pricers. Table (a) through (c) describe the results for u = 1
through u = 3.
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G.2 Branch-and-Price results

ðLSP cLSP t LSP ðLPP cLPP tLPP kick branch coll
as_oilrig_min 771 3204 683.81 277 5605 30 924. 15 15 15

as_oilrig_orig 684 3933 698.54 211 4150 30 643.7 15 15 15

as_oilrig_scaled_min 498 6281 828.12 76 7193 28 710.6 40 37 37

as_oilrig_scaled_orig 403 7802 854.67 28 2421 29 429.1 43 43 42

de_vertigo_min 145 1585 217.69 27 61 1098.72 2 2 2

de_vertigo_orig 171 2258 281.71 26 122 4385.53 2 2 2

de_vertigo_scaled_min 980 4701 907.62 314 13 789 29 663.8 5 5 5

de_vertigo_scaled_orig 530 6791 866.89 80 6314 28 697. 2 2 2

max_min 363 19 321 1505.48 362 362 0.36 74 74 74

max_orig 319 18 558 1508.1 319 319 0.32 72 72 72

tf1_min 2410 35 562 4718.16 2206 2206 2.21 689 511 498

tf1_orig 1596 36 785 4173.74 1521 1521 1.52 739 630 621

tf2_min 269 16 395 1139.74 270 270 0.27 722 722 722

tf2_orig 272 17 823 1166.39 273 273 0.27 707 707 707

tf3_min 1967 22 680 3178.57 1719 1719 1.72 371 216 214

tf3_orig 1729 24 738 3178.69 1 100 47 697.9 384 274 267

uulib_min 2361 1975 1261.03 1643 86 540 26 466.5 9 9 8

uulib_orig 1481 2355 919.13 782 30 077 64 402.6 9 9 8

Table G.5: Results for the ILP experiments using the LS Pricer. Columns #LSP, cLSP and tLSP show the number of executions,
columns generated and time spent in the LS Pricer, whereas the columns #LPP, cLPP and tLPP show the number of executions,
columns generated and time spent in the ILP Pricer. Under the columns kick, branch and coll the different scores obtained after
the different phases are shown.
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ðLSP cLSP t LSP ðLPP cLPP tLPP kick branch coll
as_oilrig_min 767 3011 665.82 293 6320 30 461.6 18 18 18

as_oilrig_orig 790 4116 793.17 220 4400 30 244.9 18 18 18

as_oilrig_scaled_min 587 6397 896.9 86 7982 29 285.7 76 30 30

as_oilrig_scaled_orig 377 7400 799.03 27 2548 29 239.1 75 29 29

de_vertigo_min 120 1536 195.3 21 55 924.75 6 2 2

de_vertigo_orig 220 2376 327.5 26 123 3936.71 6 2 2

de_vertigo_scaled_min 39 2121 153.19 39 39 0.04 14 2 2

de_vertigo_scaled_orig 588 6901 917.03 78 6661 28 312. 12 2 2

max_min 371 19 422 1523.74 372 372 0.37 81 28 28

max_orig 354 19 589 1621.28 353 353 0.35 107 84 28

tf1_min 349 19 168 1474.53 349 349 0.35 878 78 78

tf1_orig 1094 32 404 3388.79 1070 1070 1.07 962 343 79

tf2_min 262 16 122 1147.31 263 263 0.26 1001 347 347

tf2_orig 278 17 881 1170.09 279 279 0.28 1006 337 337

tf3_min 1990 22 319 3175.6 1735 1735 1.74 559 156 156

tf3_orig 1828 25 831 3290.56 1635 1635 1.64 558 154 154

uulib_min 2453 2018 1307.3 1686 82 377 27 800.4 10 9 9

uulib_orig 1863 2546 1134.53 1086 33 987 27 249.7 9 9 9

Table G.6: Results for the ILP experiments using the LS Pricer in combination with the HH algorithm. Columns #LSP, cLSP and
tLSP show the number of executions, columns generated and time spent in the LS Pricer, whereas the columns #LPP, cLPP and
tLPP show the number of executions, columns generated and time spent in the ILP Pricer. Under the columns kick, branch and
coll the different scores obtained after the different phases are shown.
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Appendix H

TF results

ÈTÈ HdevL ÈVÈ HdevL ÈEÈ HdevL ÈOÈ HdevL t HsL HdevL
oil. min. 29.15 0.59 279. 0. 475. 0. 183.75 1.86 1.27 0.04

oil. or. 24.45 1.96 412. 0. 633.6 0.5 231.3 0.57 1.42 0.04

oil. sc. min. 88.45 1.82 287.2 1.44 411.5 1.76 164.05 4.7 9.21 0.29

oil. sc. or. 89.55 4.12 611.15 1.04 753.85 2.03 336.7 4.17 7.6 0.51

vert. min. 6. 0. 237. 0. 452. 0. 12. 0. 2.22 0.01

vert. or. 6. 0. 346. 0. 603. 0. 12. 0. 2.1 0.01

vert. sc. min. 12. 0. 450. 0. 683. 0. 24. 0. 3.61 0.01

vert. sc. or. 12. 0. 997. 0. 1234. 0. 16. 0. 4.44 0.04

max min. 80. 0. 112.35 0.75 130.2 1.11 879.8 13.34 156.35 3.16

max or. 80. 0. 67.6 0.6 80.4 1.19 623.15 11.15 253.5 9.91

tf1 min. 889.9 2.85 1363.85 3.96 1818.25 4.42 8290.75 56.48 228.23 21.13

tf1 or. 883.35 4.34 2080.9 4.48 2502.75 4.28 11 090.3 106.73 237.32 26.12

tf2 min. 1048.8 4.75 2876. 3.36 4551.95 5.83 1916.4 13.53 97.19 1.97

tf2 or. 1033.45 4.24 3213.55 3.99 4796.6 4.13 2567.15 22.76 142.04 3.74

tf3 min. 576.85 3.2 1071.3 2.66 1664.35 4.23 1047.8 9.89 43.67 2.22

tf3 or. 574.85 4.83 1377.7 1.81 1962.8 3. 1312.35 9.44 59.67 2.78

uulib min. 9.25 0.44 42.3 0.47 54.3 0.47 32.2 1.15 2.53 0.03

uulib or. 9.4 0.5 24.4 0.5 28.4 0.5 32.8 1.79 6.15 0.16

Table H.1: The results for the TF experiments. Column |T| shows the cuts found for the environments. The values listed under |V|,
|E| and |O| are the number of vertices, edges and overlaps in the resulting environments.
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Appendix I

Difference between original and
minimized environments

I.1 SPH

Score sig time sig
as_oilrig 4.7 0.01 0.028

as_oilrig_scaled 4.9 0.01 6.953 0.01

de_vertigo 0.3 0.05 0.009 0.01

de_vertigo_scaled -1. 0.01 0.214 0.01

max 5.55 0.01 239.149 0.01

tf1 -2.8 6723.64 0.01

tf2 54.3 0.01 32.205 0.01

tf3 5.7 0.05 99.646 0.01

uulib 3.4 0.01 0.021 0.01

Table I.1: Difference of |T| (listed under Score) and time between minimized and original
environments for each environment. Positive values mean better results for the minimized
versions of the environments. Under sig the significance level of the difference is listed.

I.2 HH

Score sig time sig
as_oilrig -0.35 0.05 0.003

as_oilrig_scaled -1.9 0.01 0.023 0.01

de_vertigo 0. 0.004 0.02

de_vertigo_scaled 0. 0.005 0.01

max 0. 0.128 0.01

tf1 -5.6 0.01 0.359 0.01

tf2 -8.25 0.01 0.809 0.01

tf3 1.15 0.01 0.144 0.01

uulib 0. -0.001

Table I.2: Difference of |T| (listed under Score) and time between minimized and original
environments for each environment. Positive values mean better results for the minimized
versions of the environments. Under sig the significance level of the difference is listed.
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I.3 Local Search

as as_s de de_s max tf1 tf2 tf3 uu
Tabu 5 -10. -0.8 -9. -1.6 -2.4 17.1 2.5 -16.8 -0.7

Tabu 10 -4.2 4.4 -4.9 -1.2 -2.4 53.1 10.2 6.9 0.

Sim. -18.3 0.3 -28.3 -2. -11.4 106.6 64.5 -16.2 -0.6

Sim. L -17.6 1.2 -23.5 -3. -1.9 38.7 0.5 -1.1 -0.6

Sim. I -18. -0.9 -20.2 -0.3 -2. 36.3 -5.5 -6.8 -0.8

Sim. Tmin -21.1 -4.1 -27.6 -2. -2.9 47.6 6.5 -5.3 -0.8

Sim. Tmin L -17.8 3.2 -14.2 -1.7 -1.9 37.5 -11.8 -3.4 -1.

Sim. Tmin I -17.9 0.1 -17.8 -1.4 -1.7 41.1 1.5 -4.2 -0.8

Table I.3: Difference of |T| between minimized and original environments for each environ-
ment. Positive values mean better results for the minimized versions of the environments.

as as_s de de_s max tf1 tf2 tf3 uu
Tabu 5 0.01 0.01 0.01 0.01 0.01

Tabu 10 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01

Sim. 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02

Sim. L 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Sim. I 0.01 0.01 0.01 0.01 0.01

Sim. Tmin 0.01 0.05 0.05 0.05 0.01 0.01 0.01 0.01 0.01

Sim. Tmin L 0.02 0.02 0.05 0.05 0.01 0.02 0.02 0.01

Sim. Tmin I 0.01 0.01 0.01 0.01 0.01

Table I.4: Test for significance of the differences given in Table I.3

as as_s de de_s max tf1 tf2 tf3 uu
Tabu 5 3.13 126.7 0.55 31.77 -146.7 198.98 268.56 85.67 2.06

Tabu 10 1.49 117.48 1.26 146. 59.36 408.14 118.32 310.91 0.1

Sim. 1.81 5.99 -1.64 34.47 3.02 27.28 24.65 5.29 0.46

Sim. L 0.04 0.69 0.02 0.31 5.68 16.05 21.63 3.73 0.01

Sim. I 0.08 0.69 0.02 0.31 8.13 17.5 21.95 4.6 0.01

Sim. Tmin 7.81 72.54 -2.07 23.67 30.81 74.42 281.77 19.27 0.21

Sim. Tmin L 0.08 0.35 0.02 0.31 8.7 18.16 22.41 4.24 0.01

Sim. Tmin I 0.06 1.12 0.02 0.32 6.96 17.93 20.13 3.58 0.02

Table I.5: Difference of time needed to reach the best solution between minimized and original
environments for each environment. Positive values mean faster results for the minimized
versions of the environments.
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as as_s de de_s max tf1 tf2 tf3 uu
Tabu 5 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01

Tabu 10 0.01 0.01 0.01 0.02 0.02 0.02 0.01

Sim. 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Sim. L 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Sim. I 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Sim. Tmin 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.01 0.01

Sim. Tmin L 0.05 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Sim. Tmin I 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table I.6: Test for significance of the differences given in Table I.5

I.4 TF

Score sig time sig
as_oilrig -4.7 0.01 0.148 0.01

as_oilrig_scaled 1.1 -1.61 0.01

de_vertigo 0. -0.112 0.01

de_vertigo_scaled 0. 0.833 0.01

max 0. 97.151 0.01

tf1 -6.55 0.01 9.089

tf2 -15.35 0.01 44.854 0.01

tf3 -2. 16.006 0.01

uulib 0.15 3.62 0.01

Table I.7: Difference of |T| (listed under Score) and time between minimized and original
environments for each environment. Positive values mean better results for the minimized
versions of the environments. Under sig the significance level of the difference is listed.

125



Appendix J

Comparing results

J.1 as oilrig
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J.2 as oilrig min
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J.3 as oilrig scaled
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J.4 as oilrig scaled min
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J.5 de vertigo
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J.6 de vertigo min
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J.7 de vertigo scaled
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J.8 de vertigo scaled min
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J.10 max min
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J.12 tf1 min
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J.14 tf2 min
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J.16 tf3 min
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J.18 uulib min
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