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Chapter 1

Introduction

1.1 One-way trading

What is the best way for a trader to sell his shares on the stock market? This
is the so-called one-way trading problem. Initially, the trader has his entire
capital K0 invested in shares that he wishes to sell. Each subsequent market
day t = 1, 2, . . . after waking up and drinking a cup of coffee, the trader first
decides how many of his shares he wishes to hang on to. Call this quantity
pt. The market subsequently reveals that day’s share price Xt, and the trader’s
capital changes accordingly

Kt = Kt−1 + pt(Xt −Xt−1). (1.1)

This protocol is summarized in Protocol 1.1.

Protocol 1.1 One-way trading

X0 := 1,K0 := 1, p0 := 1
for t = 1, 2, . . . do

Trader announces pt ≤ pt−1
Market announces Xt ∈ [0,∞)
Kt := Kt−1 + pt(Xt −Xt−1)

end for

Note that in the protocol pt ≤ pt−1, so the number of shares Trader holds
can only decrease.

The one-way trading problem is a very universal problem that can be ap-
plied in various situations. Consider for example a trader who has a capital in
some currency (e.g. euros) and wants to convert it to another currency (e.g.
dollars). Each trading period the trader goes to the currency market, observes
the dollar/euro rate and decides whether to exchange (a fraction of) his euros
for dollars. Another example is a fund manager who has to change the position
in his portfolio to reduce its portfolio risk, by selling one asset (e.g. a share)
and buying another (e.g. gold). One-way trading can be applied by using the
relative price of these two assets. The one-way trading problem can also be used
for buying shares for cash, by considering the reciprocal prices.

7



8 Chapter 1. Introduction

Most investment strategies considered in the literature are analysed under
heavy assumptions on the market dynamics, such as geometric Brownian mo-
tion. In Section 1.3 these assumptions will be further elaborated. However,
the one-way trading problem is interesting in that nontrivial guarantees about
the trader’s final capital can be provided under no assumptions about mar-
ket behaviour whatsoever. The problem was first studied without probabilistic
assumptions in [4] by El Yaniv et al. However, they assume minimum and max-
imum share prices. Vovk et al. [3] were the first to completely characterize what
capital guarantees can be achieved for this setting, and what strategies achieve
this. This will be made more precise in Section 1.2. Their analysis considers the
idealised case where there are no transaction costs. The optimal strategies they
find generally trade whenever the share price attains a new maximum, which is
clearly not realistic.

In this thesis we will extend the one-way trading problem with transaction
costs and derive results with performance close to the results of Vovk et al. for
the transaction cost-free model. In the rest of the introduction we will give an
overview of the results of Vovk et al. and our results in the case of transaction
costs. We will apply these results to some real-world examples. In Chapter 2
we will study the results of Vovk et al. for the idealized one-way trading prob-
lem more extensively. Then in Chapter 3 we extend the problem by including
transaction costs. We will show it is possible to construct strategies which trade
less often but have almost the same capital guarantee as the strategies of Vovk
et al.

1.2 Idealised one-way trading

We now give a short overview of the main results for the one-way trading prob-
lem without transaction costs. Vovk et al. showed for which functions F there
are trading strategies of which the capital Kt (the total value of cash and shares)
for all times t satisfies under any possible sequence of prices,

Kt ≥ F (Mt), (1.2)

where Mt is the observed maximum price until time t. Such a function F is
called a capital guarantee and it has a corresponding trading strategy. Vovk
et al. showed that a capital guarantee F and its corresponding strategy are
optimal in one-way trading if and only if the function F satisfies∫ ∞

1

F (y)

y2
dy = 1. (1.3)

As we will see later, a trader following such an optimal strategy should hold
pt = P(Mt−1,∞) shares at time t, here P is a measure on [1,∞) such that the
capital guarantee F satisfies

F (y) =

∫
[1,y]

uP(du). (1.4)

Because the maximum price Mt can only increase, the number of shares pt =
P(Mt−1,∞) one should hold can only decrease, hence an optimal strategy only
sells shares.
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1.2.1 How Bill Gates could have sold his shares optimally

Let’s apply this result to a concrete situation. Bill Gates is the co-founder of
Microsoft Corporation and one of the world’s richest people. In 1986 Microsoft
went public on the NASDAQ stock exchange at an opening price of $21, which
is after adjustments for splits1 $0.07 in 2012. In Figure 1.1 the split-adjusted,
normalized price of the Microsoft stock is displayed. On 9/7/2012 there were
8.4 billion tradeable Microsoft shares. Suppose Bill Gates owned the half of
these shares in 1986 and he wanted to maximize his total cash by selling his
shares.
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Figure 1.1: Split-adjusted and normalized price of Microsoft shares from
13/3/1986 until 9/7/2012 in $ (blue) and its maximum (green).

We will show how Bill Gates would have sold his shares if he followed an
optimal strategy as described above. Consider the function F (y) = αy1−α with
0 < α < 1. This function corresponds to an optimal strategy as it satisfies (1.3).
One can show using equation (1.4) that the measure of this strategy is defined
by P{1} = 1−α and P (y,∞) = (1−α)y−α for y ≥ 1. Let us take as an example
α = 0.3. According to the optimal strategy Gates should sell 30% of his shares
at the introduction and subsequently hold a fraction P (Mt,∞) = 0.7(Mt)

−0.3

of his initial shares at time t, where Mt is the maximum observed price at that
time. Figure 1.2 displays the fraction of the shares Gates should hold through
time. Observe that after the internet bubble of 2000 the share price never

1Since 1986 the number of Microsoft stocks outstanding was increased several times, conse-
quently lowering the price. If for example every share is divided into two shares the price per
share is also divided by two. The split-adjusted price is the corrected price for such changes
in numbers of shares.
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attained a new maximum, hence the fractions of shares remains fixed after this
time at about 10%.
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Figure 1.2: The fraction of his initial shares Bill Gates would hold if he followed
the optimal strategy.

If Bill Gates followed this strategy his capital satifies inequality (1.2), i.e.
Kt ≥ F (Mt) = 0.3(Mt)

0.7 for all times t. In Figure 1.3 the capital and the
lower bound are given as a function of time. Note that this lower bound F (Mt)
is valid for every possible price path. If the Microsoft stock collapsed to $0
the capital Kt is still at least F (Mt). However, in practice this will probably
not happen and the capital of the optimal strategy is much higher than this
worst-case guarantee F (Mt).

The strategy would turn $1 in 1986 into a capital of $69.76 and has as guar-
antee of $28.09 on 9/7/2012. Hence Bill Gates total capital at that day would
be 293 billion dollar with a guarantee of 118 billion dollar, without considering
things like transaction costs, taxes and reinvestments in other assets. Forbes
Magazine estimates Bill Gates total capital in 2012 at approximately 66 billion
dollar2.

1.3 Transaction costs

The one-way trading problem is an idealized model of reality. In practice a
trader must pay a fee to a broker for every transaction3.

2http://www.forbes.com/profile/bill-gates/
3Brokers use various price structures for transaction costs. Often these transaction costs

are a fixed amount per transaction plus an amount proportional to the transaction value. We
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Figure 1.3: The capital of the optimal strategy Kt (blue) starting with 1$ is
bounded from below by F (Mt) = 0.3(Mt)

0.7 (green). The maximum price Mt

(red) gives the capital of the optimal strategy in hindsight starting with 1$ at
time t.

The optimal strategies by Vovk maximize the cash in the idealized one-way
trading problem. In the trading problem with transaction costs the obtained
cash of the optimal strategies will be lower. Following these strategies may even
result in very large losses, as we will see in the coming example.

According to the optimal strategies a trader should sell shares every day the
maximum observed price has increased. This results in a loss if the value of the
trade is lower than the transaction costs. The loss will accumulate quickly if
there are many of such loss-making trades.

In this thesis we will adjust the optimal strategies such that they trade less
often. We will prove that these adjusted strategies guarantee almost the same
capital in the transaction cost model as in the idealized transaction cost free
model.

Transaction costs are in general difficult to handle in trading models. Espe-
cially fixed transaction costs are challenging because they are subtracted from
the capital while a change in the share price works in a multiplicative sense. In
the context of one-way trading there have been no articles published about the
handling of transaction costs.

will consider this form of transaction costs in this thesis.
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1.3.1 Trading Google every minute

As an example we will consider the one-way trading problem for shares of Google
which are traded at the NASDAQ stock exchange. As described above, transac-
tion costs can result in high losses if a strategy trades very often and the profit
per trade is low. To illustrate this we will consider the share price of Google
with intervals of a minute over a period of eight trading days, as given in Figure
1.4. Observe that in the period considered the share price of Google has many,
relatively small increments.
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Figure 1.4: Share price of Google on the NASDAQ from 12/7/2012 9:30 until
23/7/2012 16:01 with intervals of a minute in $ (blue) and its maximum (green).

Suppose we start with 1000$ of Google shares and we have to pay a fixed
amount of 5$ per transaction. For simplicity we pretend it is possible to trade
fractions of shares. We follow an optimal strategy (explained in the previous
section) with capital guarantee4 F (Mt) = 0.5(Mt)

0.5 and corresponding measure
P (Mt,∞) = 0.5(Mt)

−0.5. This measure gives the fractions of shares a trader
should hold at time t. The blue line in Figure 1.5 shows this fraction of shares
a trader holds if he follows this optimal strategy. Initially he sells 50% of his
shares and subsequently sells 124 times a very small fraction until he finally is
left with 48% of the initial shares.

Because of the large number of transactions the total transactions costs are
large compared to the cash obtained from selling shares. In Figure 1.6 the blue
line gives the capital through time if there were no transactions costs, while the

4This time we used α = 0.5 for the capital guarantee F (y) = αy1−α, this value was choosen
for aesthetic reasons.
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Figure 1.5: The fraction of shares a trader would hold if he followed an optimal
strategy (blue line) or the adjusted strategy (green line).

light-blue line displays the capital with transaction costs subtracted. Because
of the many transactions this last capital decreases very rapidly, even below the
capital guarantee given by the green line (note that this guarantee only holds
in case of zero transaction costs).

In this thesis we will construct a new strategy, which reduces the number
of trades to reduce the total transactions costs. The green line in Figure 1.5
gives the fraction of shares of this strategy. This fraction decreases three times
(note that initially it decreases from 1 to 0.5), so a trader should only sell his
shares three times. The red line in Figure 1.6 gives the capital of this new
strategy, which is as expected much closer to the capital of the strategy with
zero transaction costs (blue line).

We could of course lower the number of transactions even further. But then
there is the risk that the price rises to a certain maximum and will never exceed
this maximum anymore. This maximum is not known beforehand, so if we trade
not frequently enough we do not sell any shares close to the maximum price,
hence we miss a potential profit. It turns out there is a trade-off between the
frequency of trading (and therefore the total transaction costs) and the amount
of missed profit. In this thesis we will show that there is a strategy which
minimizes the sum of these two losses.

We will derive a lower bound for the capital of this new strategy, as we
did for the optimal strategy without transaction costs in equation (1.2). Let
F be the capital guarantee of the optimal strategy in the transaction cost free
settting, then we show that the capital Kt of the new strategy satisfies for all
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Figure 1.6: Capital through time of the optimal strategy without transaction
costs (blue), with transaction costs (light-blue) and of the adjusted strategy
with transaction costs (yellow) in $ starting with 1000$ with a cost per trans-
action of 5$. The capital guarantees of the optimal strategy (light blue) and
the adjusted strategy (lila). The maximum price (red) gives the capital of the
optimal strategy in hindsight.

times t

Kt ≥ F (Mt)−
√

8cF (Mt) + c2, (1.5)

here c is the cost per transaction. For sufficiently large values of F (Mt), the
term

√
8cF (Mt) + c2 is small compared to F (Mt). Hence we can guarantee a

capital for trading with transaction costs, which is close to the guarantee for
trading optimally without transaction costs.

In our example the guarantee F (Mt) is given by the green line in Figure 1.6
and the transaction cost guarantee F (Mt)−

√
8cF (Mt) + c2 is the lila line. As

in the Bill Gates example the actual capital processes (blue and red line) are
much higher than these guarantees. These guarantees however hold under any
market circumstance, even if the price of the share collapses to 0$.

1.4 Other practical considerations

Although we made the one-way trading more realistic by including transaction
costs, there are other phenomena that we have not considered. In our trading
model we suppose it is possible to trade exactly at the price of the market but
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in reality this is not possible, see for example [12]. However, this turns out not
to be a problem for our strategies and their guarantees.

The strategies we consider can be implemented using limit orders, this are
orders that are exercised if a certain price level is reached. Therefore we do
not have to pay a bid-ask spread, this is the difference between the bid and ask
price.

Placing an order can change the price before it is exercised, this phenomenom
is called market impact. The guarantees we give are worst-case so the guarantees
even hold for adverse markets.

The strategies we considered can be implemented using a sequence of limit
orders for which we now the limits beforehand. Problems like a delay in data
connection are therefore not an issue.

1.5 Probability-free models

In one-way trading there are no probabilistic assumptions about the price of
the shares. Such a model is called a probability-free model. In most of the
mathematical finance literature returns of financial securities are modeled using
probabilistic models. There are however two major problems with probabilistic
models.

Probabilistic models are based on so called stylized facts. Stylized facts are
statistical properties obtained from empirical research on returns from financial
markets. Examples of such stylized facts are absence of autocorrelations, heavy
tails and volatility clustering of the returns series. A good probabilistic model
must generate return series having these statistical properties. It turns out
that most existing models are not able to reproduce all known stylized facts, as
argued by Cont in [1].

Another even more fundamental problem with probabilistic models is that
they are fitted on existing data. More advanced probabilistic models are able to
model extreme events like market crashes by using probability distributions with
heavy tails. But there is no guarantee such models will model future extreme
events very well, as they cannot be validated using available data. Especially
events wich are much more extreme than ever observed are a great risk, because
these events will have a very large effect on portfolios of financial securities.
Such events are called Black Swans5 by Thaleb in [2].

Probability free models by definition do not suffer from these two problems.
On the other hand, if one is truly confident that the market will behave according
to certain assumptions, this can sometimes be used to provide more appealing
capital guarantees.

1.6 Related work

A large part of this thesis is based on Vovk et al. in [3]. In fact they do not treat
the one-way trading problem, but the more general two-way trading model. In
the two-way trading model a trader can sell and buy shares every day. Their

5Black swans were discoverd in 1697 in Western Australia by the Dutch explorer Willem
de Vlamingh. Rather ironically, in the centuries before its discovery the term ’black swan’
was used as a metaphor for impossibilities.
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results however also apply in the one-way trading problem as we will see in this
thesis.

El Yaniv et al. [4] also consider the one-way trading model. However they
concentrate on the model where the share price is assumed to have a fixed
minimum and maximum, which is not realistic in real-world application.

Koolen and De Rooij [5] consider the two-way trading model. In the two-
way trading model the optimal strategy in hindsight is selling at local maxima
and buying at local minima. For this more difficult goal the optimal strategy
is not known, but they derive a lower bound for the payoff of certain strategy
in terms of the local maxima and minima. In contrast, we will show as Vovk
et. al that there are strategies with a lower bound on the payoff in terms of the
global maximum.

A problem related to two-way trading problem is the portfolio selection
problem. In this problem a trader can buy and sell multiple assets. An approach
to this problem is the theory of universal portfolios based on the work of Cover
in [7] and [8], and summarized in [6] by Cesa-Bianchi and Lugosi.

Vovk et al. use the results for the two-way trading model to give an upper
bound for so called lookback options in an arbitrage-free market. We will also
study these results. In addition we will give an upper bound for these options in
an arbitrage-free market with transaction costs. A similar approach for option
pricing can be found in [9], here a lower and upper bound for the price of
European call options is derived for the two-way trading model where is assumed
the quadratic variation of the share price is bounded. There are several articles
on the pricing of options using probabilistic models with transactions costs, see
for example [10] and [11].

1.7 Conventions and notations

In this thesis we will make use of probability measures denoted by P which
are defined on some interval I ⊂ R with a Borel sigma-algebra. In the rest
of this thesis we will not mention such sigma-algebras of probability measures,
for convenience. For simplicity we will denote the value of probability measure
P of an interval [a, b] by P[a, b]. For a singleton {x} we denote the value by P{x}.

If not explicitly noted, the results in this thesis are own work.



Chapter 2

One-way trading

2.1 Introduction

In this chapter we will study the results of Vovk et al. [3] on one-way trading.
They showed there are strategies for which it is possible to give a non-trivial
guarantee for the capital. They also characterized the highest possible guaran-
tee a strategy can achieve in the one-way trading problem.

We will first introduce the one-way trading problem. In the one-way trading
problem a trader initially has a capital K0 = 1 which is invested in shares. The
shares have a price X0 = 1, so the initial number of shares the trader holds is
p0 = 1. On day t the trader decides how many shares he wants to hold, denoted
by pt, subsequently the market determines the share price Xt. The capital of
the trader becomes Kt = Kt−1 + pt(Xt − Xt−1). This protocol for one-way
trading is given in Protocol 2.1. In one-way trading the trader may only sell
shares, that is why we require pt ≤ pt−1.

Protocol 2.1 One-way trading

X0 := 1,K0 := 1, p0 := 1
for t = 1, 2, . . . do

Trader announces pt ≤ pt−1
Market announces Xt ∈ [0,∞)
Kt := Kt−1 + pt(Xt −Xt−1)

end for

To get a better understanding of the formula for the capital we can rewrite

17
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it as follows

Kt = Kt−1 + pt(Xt −Xt−1)

= K0 +

t∑
s=1

ps(Xs −Xs−1)

= p0X0 +

t∑
s=1

psXs −
t∑

s=1

psXs−1

= p0X0 +

t∑
s=1

psXs −
t−1∑
s=0

ps+1Xs

= p0X0 +

t−1∑
s=1

(ps − ps+1)Xs − p1X0 + ptXt

=

t−1∑
s=0

(ps − ps+1)Xs + ptXt. (2.1)

At time s the number of shares sold by Trader is ps − ps+1 for the price Xs.
Hence the sum in equation (2.1) represents Trader’s total cash obtained by
selling and borrowing shares until time t. The value of the shares Trader holds
at time t is ptXt, this is the other part of equation (2.1).

At time t Trader can use information about the prices X0, X1, . . . , Xt−1 to
determine pt, the number of shares he wants to hold, such that pt ≤ pt−1.
A strategy S for Trader is a sequence of functions S = (St)t≥1 with St :
[0,∞)t × R → R that determine the number of shares pt he holds if a cer-
tain price sequence is realized, pt = St(X0, X1, . . . , Xt−1, pt−1). In the following
we will, for readability, not use this formal description of a strategy. One has to
keep in mind, however, that every strategy can be described as such a sequence
of functions.

2.2 Capital guarantees

Consider the tragic case the share collapses at day t, which means the price of
the share is Xs = 0 for all days s ≥ t. In this scenario the value of the shares
the trader holds is zero and the trader’s capital Kt (sum of share value and
cash) is equal to the obtained cash so far. Because the shares are worthless the
capital Kt will be the same for all further times, hence Kt = Ks for all s ≥ t.
Therefore we would like to find a strategy that gives a guarantee at any time.

To characterize such guarantees we define the following concepts.

Definition 2.1. Let F,G : [1,∞)→ [0,∞) be functions. We say F dominates
the function G if F (y) ≥ G(y) for all y ∈ [1,∞). The function F strictly
dominates the function G if F dominates G and F (y) > G(y) for some y ∈
[1,∞).

Definition 2.2. An increasing function F : [1,∞) → [0,∞) is a capital guar-
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antee if for some strategy Trader’s capital satisfies

Kt ≥ F (Mt) (2.2)

for all t ≥ 0 where Mt := sups≤tXs. A capital guarantee is an optimal capital
guarantee if it is not strictly dominated by any other capital guarantee.

A capital guarantee F is a function which depends on the maximum price
Mt. This is because the best strategy in hindsight at time t is selling all shares
at the maximum observed price Mt. If Trader followed this strategy he would
have a capital Mt in cash. Hence using F we can measure how close the guar-
anteed capital of a strategy is to the capital of the best strategy in hindsight.

Ideally we would like to find a strategy with a capital guarantee which dom-
inates all other possible capital guarantees. But it is not possible to find such a
guarantee, this can be seen as follows. A basic strategy for Trader is to sell all
shares when the maximum Mt exceeded a certain price level u, this strategy has
a capital guarantee Fu(y) = u1{y≥u}. A strategy with a capital guarantee F
which dominates all other capital guarantees, must dominate for all u the cap-
ital guarantees Fu(y) of the basic strategies. This means the capital guarantee
satisfies F (y) ≥ y for all y, which is as good as the best strategy in hindsight!
Obviously it is not possible to find such a strategy without prior knowledge of
the share prices. Because it is not possible to find a capital guarantee which
dominates all other capital guarantees, we use a somewhat weaker definition for
the optimal capital guarantee.

Rather surprisingly it turns out that capital guarantees and optimal capital
guarantees can be fully characterized as in the following two theorems, due to
Vovk et al. [3]. The proofs are a bit more extensive than the proofs of Vovk’s,
for example Vovk only provides an informal argument for implication (1)→ (3).

Theorem 2.3. Let F : [1,∞) → [0,∞) be an increasing function, then the
following statements are equivalent

1. F is a capital guarantee,

2. For some probability measure P on [1,∞] for all y ∈ [1,∞)

F (y) =

∫
[1,y]

uP(du),

3. F is right-continuous and∫ ∞
1

F (y)

y2
dy ≤ 1. (2.3)

Proof. (2)→ (1)
Let P be a probability measure on [1,∞] and define for all y ∈ [1,∞)

F (y) =

∫
[1,y]

uP(du).
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For u ≥ 1 consider as a strategy for Trader holding one share if Mt−1 < u and

no shares if Mt−1 ≥ u at time t, i.e. p
(u)
t = 1{Mt−1<u}. Let K

(u)
t be the capital

at time t of this strategy. Now consider the mixture of these strategies with

pt =

∫
[1,∞]

p
(u)
t P(du),

then one can show that

Kt =

∫
[1,∞]

K
(u)
t P(du). (2.4)

This follows by induction; at t = 0 for all u ≥ 1, p
(u)
0 = 1 so p0 =

∫
[1,∞]

P(du) =

1 andK0 = 1. On the other hand p
(u)
0 = 1 impliesK

(u)
0 = 1, so

∫
[1,∞]

K
(u)
0 P(du) =

1, hence equation (2.4) holds for t = 0. And if equation (2.4) holds for t− 1, it
holds for t:

Kt = Kt−1 + pt(Xt −Xt−1)

=

∫
[1,∞]

K
(u)
t−1P(du) +

∫
[1,∞]

p
(u)
t P(du)(Xt −Xt−1)

=

∫
[1,∞]

(
K

(u)
t−1 + p

(u)
t (Xt −Xt−1)

)
P(du)

=

∫
[1,∞]

K
(u)
t P(du).

Then

Kt =

∫
[1,∞]

K
(u)
t P(du)

≥
∫
[1,Mt]

K
(u)
t P(du)

≥
∫
[1,Mt−1]

K
(u)
t P(du) +

∫
(Mt−1,Mt]

K
(u)
t P(du)

≥
∫
[1,Mt]

uP(du) = F (Mt)

The last inequality follows because the left integral consists of the strategies that

sold their shares, resulting in K
(u)
t = u. The right integral consists of strategies

that still have all their shares, they have capital worth also K
(u)
t = u.

(1)→ (3)
Let F be a capital guarantee for a strategy with capital sequence (Kt), then for
all t we have Kt ≥ F (Mt). This holds for any price sequence, in the following
we will consider a price sequence Xt which is a random walk starting at X0 = 1
and stopped when it hits zero. Let R = (Rt)t=0,1,2,... be a random walk with

P(Rt −Rt−1 = 1/N) = P(Rt −Rt−1 = −1/N) = 1/2,

R0 = 1 and N ∈ N. Define the stopping time τ = inf{t ≥ 0 : Xt = 0}, the
stopped process Xt = Rmin(τ,t) and its maximum Mt = maxs≤tXs.
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The capital sequence is a martingale

E[Kt|X0, X1, . . . Xt−1] = E[Kt−1 + pt(Xt −Xt−1)|X0, X1, . . . Xt−1]

= Kt−1 + ptE[Xt −Xt−1|X0, X1, . . . Xt−1]

= Kt−1,

therefore

EF
(

lim inf
t→∞

Mt

)
≤ E lim inf

t→∞
Kt ≤ lim inf

t→∞
EKt = EK0 = 1.

This holds for any maximum price sequence (Mt). In the following we will show
that

EF
(

lim inf
t→∞

Mt

)
=

∫ ∞
1

F (y)

y2
dy,

this then completes the proof. Define the (almost surely finite) stopping time

T = inf{t ≥ 0 : Rt = 0 or Rt = k/N for some k ∈ {N + 1, N + 2, . . . , N + t}}

and the stopped process Y = (Yt)t=0,1,2,... defined by

Yt = Rmin(T,t).

Obviously R is a martingale so by Theorem 2.2 in [13] the stopped process Y is
also a martingale. Define

Y∞ = lim
t→∞

Yt,

then by the martingale property of Y and dominated convergence (note that Y
is bounded),

1 = E[Y0] = E[Yt] = lim
t→∞

E[Yt] = E
[

lim
t→∞

Yt

]
= E[Y∞],

and

1 = E[Y∞] = 0 · P{Y∞ = 0}+ k/N · P{Y∞ = k/N},

hence

P{Y∞ = k/N} =
N

k
.

For the processes M and Y we have the relation

P{M∞ ≥ k/N} = P{Y∞ = k/N} =
N

k
,

which implies

P{M∞ = k/N} = P{M∞ ≥ k/N} − P{M∞ ≥ (k + 1)/N} =
N

k
− N

k + 1
=

N

k(k + 1)
.
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We let the increments of the random walk become small by letting N → ∞,
then we have for F ,

lim
N→∞

EF (M∞) = lim
N→∞

∞∑
k=N+1

F

(
k

N

)
P{M∞ = k/N}

= lim
N→∞

∞∑
k=N+1

F

(
k

N

)
N

k(k + 1)

= lim
N→∞

∞∑
k=N+1

F

(
k

N

)
1

(k/N)2
1

N

=

∫ ∞
1

F (y)

y2
dy.

(3)→ (2) Let Q be the measure such that Q[1, y] = F (y) for all y ∈ [1,∞).
Define the measure P on [1,∞] by

P(du) =
1

u
Q(du)

which means for a measurable set A

P(A) =

∫
A

P(du) =

∫
A

1

u
Q(du)

and

P{∞} = 1−
∫
[1,∞)

F (y)

y2
dy.

Then

F (y) = Q[1, y] =

∫
[1,y]

uP(du)

and ∫
[1,∞)

F (y)

y2
dy =

∫
[1,∞)

∫
[1,y]

u

y2
P(du)dy

=

∫
[1,∞)

∫
[u,∞)

u

y2
dyP(du) =

∫
[1,∞)

P(du),

hence P is a probablity measure as P[1,∞] = 1.

Theorem 2.3 is used to prove the following theorem.

Theorem 2.4. Let F : [1,∞) → [0,∞) be an increasing function, then the
following statements are equivalent

1. F is an optimal capital guarantee,

2. For some probability measure P on [1,∞) for all y ∈ [1,∞)

F (y) =

∫
[1,y]

uP(du), (2.5)
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3. F is right-continuous and∫ ∞
1

F (y)

y2
dy = 1. (2.6)

Proof. (1)→ (3)

Let F be an optimal capital guarantee and suppose
∫∞
1

F (y)
y2 dy < 1. Then there

exists a function G : [1,∞)→ [0,∞) dominating F such that∫ ∞
1

F (y)

y2
dy <

∫ ∞
1

G(y)

y2
dy ≤ 1,

but then G is a capital guarantee by Theorem 2.3 that dominates F , this con-
tradicts the fact that F is an optimal capital guarantee.

(3)→ (1)
Let F be right-continous and

∫∞
1
F (y)/y2dy = 1, then by Theorem 2.3 F is a

capital guarantee. Suppose F is strictly dominated by another capital guarantee
G then∫ ∞

1

G(y)

y2
dy >

∫ ∞
1

F (y)

y2
dy = 1,

which cannot be true by Theorem 2.3. Hence there is no capital guarantee
strictly dominating F .

(2)→ (3)

∫
[1,∞)

F (y)

y2
dy =

∫
[1,∞)

∫
[1,y]

u

y2
P(du)dy =

∫
[1,∞)

∫
[u,∞]

u

y2
dyP(du)

=

∫
[1,∞)

P(du) = 1

(3)→ (2)
Let Q be the measure such that Q[1, y] = F (y) for all y ∈ [1,∞). Define the
measure P on [1,∞) by

P(du) =
1

u
Q(du)

which means for a measurable set A

P(A) =

∫
A

P(du) =

∫
A

1

u
Q(du).

Then

F (y) = Q[1, y] =

∫
[1,y]

uP(du)

and

1 =

∫
[1,∞)

F (y)

y2
dy =

∫
[1,∞)

∫
[1,y]

u

y2
P(du)dy

=

∫
[1,∞)

∫
[u,∞)

u

y2
dyP(du) =

∫
[1,∞)

P(du),

hence P is a probablity measure.
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Note the small differences between both results. For a capital guarantee
the measure P is defined on [1,∞], while for an optimal capital guarantee the
measure is defined on [1,∞). Also note (2.3) is an inequality while (2.6) is an
equality.

As one can see from the proofs, Theorem 2.4 follows from Theorem 2.3.
In the following we will mainly use Theorem 2.4 because we are interested in
optimal capital guarantees and their corresponding strategies.

The second statement of Theorem 2.4 can be used to define a strategy for
Trader, this will be shown in Section 2.3. The third statement shows how fast
an optimal capital guarantee F may increase. Equation (2.6) in this statement
shows an optimal capital guarantee can increase almost as fast as the identity
function on [1,∞). In Section 2.4 we will give examples of optimal capital
guarantees and their corresponding strategies.

2.3 Optimal strategy

From Theorem 2.4 it is not clear which strategy corresponds to an optimal
capital guarantee. We can interpret the characterization of F given in equation
(2.5) as a trading strategy, as follows. Consider the basic strategy which initially
holds one share and sells it when the maximum price y reaches the treshold
u. This strategy has as capital guarantee Fu(y) := u1{y≥u}. Now consider a
mixture of these basic strategies by using a probability measure P on u. Such
a mixture is obtained by spreading the initial capital over the basic strategies
according to P. The capital guarantee corresponding to this mixture strategy
is

F (y) =

∫ ∞
1

Fu(y)P(du) =

∫ ∞
1

uP(du).

This capital guarantee is an optimal capital guarantee according to the second
statement in Theorem 2.4.

This mixture of basic strategies requires the Trader to sell shares at every
price level in [1,Mt]. In the protocol however Trader observes not a continuous
stream of prices but the prices are given at discrete time instants. This means
that when Trader observes Mt he has to execute all basic strategies with tresh-
olds u ∈ (Mt−1,Mt]. Notice that the price at which the shares are sold is Mt,
which is higher or equal than the treshold values u ∈ (Mt−1,Mt], see also Figure
2.1.

In terms of the trading protocol this mixture strategy implies that at time t
Trader announces pt = P(Mt−1,∞). This can be seen as follows. The maximum
price observed until time t is Mt−1 therefore P[1,Mt−1] shares should have been
sold, according to the mixture strategy. After selling these shares Trader is left
with pt = P(Mt−1,∞) shares. The following theorem shows that the strategy
with pt = P(Mt−1,∞) at times t corresponds to an optimal capital guarantee.

Theorem 2.5. Let F be an optimal capital guarantee and P be an probability
measure on [1,∞) such that (2.5) holds. If Trader at times s ≤ t has ps =
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P(Mt−1,Mt] P(Mt,Mt+1]

Mt−1

Mt

Mt+1

Figure 2.1: The dark grey area corresponds to optimal capital guarantee F , the
light-grey area is the extra capital Trader obtains by selling at discrete price
levels.
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P(Ms−1,∞) shares then

Kt =

t−1∑
s=1

P(Ms−1,Ms]Ms + P(Mt−1,∞)Mt

≥ F (Mt) + P(Mt−1,∞)Mt (2.7)

Proof. For the capital Kt at time t we have

Kt = Kt−1 + pt(Xt −Xt−1)

=

t−1∑
s=0

(ps − ps+1)Xs + ptXt

=

t−1∑
s=1

P(Ms−1,Ms]Ms + P(Mt−1,∞)Mt

≥
t∑

s=1

P(Ms−1,Ms]Ms + P(Mt−1,∞)Mt

≥
∫
[1,Mt]

uP(du+ P(Mt−1,∞)Mt)

= F (Mt) + P(Mt−1,∞)Mt

The second equality follows from equation (2.1). Only when the maximum
observed price has increased shares are sold, this implies the third equality.
If the maximum price did not increase at time s then P(Ms−1,Ms] = 0, if
it did increase Xs = Ms. The fourth equality follows because P(Mt−1,∞) ≥
P(Mt−1,Mt]. The last inequality holds because the left hand side is an upper
Riemann sum of the integral on the right hand side, see also Figure 2.1.

Equation (2.7) can be understood as follows. At time t Trader sold at times
s < t for price Ms an amount of P(Ms−1,Ms] shares. At time t he still holds
P(Mt−1,∞) shares with a total worth of P(Mt−1,∞)Mt.

2.4 Examples of optimal capital guarantees

We give some examples of optimal capital guarantees F in Table 2.1, they
are plotted in Figure 2.2. In the Appendix we prove these capital guarantees
are indeed optimal and we will derive the measures P corresponding to the
guarantees.

In practice the maximum price Mt is unknown beforehand, so it is better if
the capital guarantee is as high as possible for every possible maximum price.
This means the capital guarantee has to increase as fast as possible for large
maximum prices. Hence we are looking for the capital guarantee wich increases
asymptotically the fastest, in Table 2.1 the capital guarantees are ordered ac-
cording to their asymptotical increasingness.

It is possible to combine these examples of optimal capital guarantees, as
the next corollary shows a convex combination of optimal capital guarantees as
again an optimal capital guarantee.
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αy1−α

α(1 + α)αy log−(1+α)(y)1{y≥e1+α}

Figure 2.2: Some examples of optimal capital guarantees.

F (y) Parameters Asymptotically
u1{y≥u} u ≥ 1 O(1)

αy1−α 0 < α < 1 O
(
y
yα
)

α(1 + α)αy log−(1+α)(y)1{y≥e1+α} α > 0 O
(

y
logα y

)
Table 2.1: Examples of some optimal capital guarantees.
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Corollary 2.6. Let pi ∈ [0, 1] for i = 1, . . . , n such that
∑n
i=1 pi = 1. For

i = 1, . . . , n let Fi be optimal capital guarantees with measures Pi then

F (y) :=

n∑
i=1

piFi(y), (2.8)

is also an optimal capital guarantees with measure defined by

P(A) :=

n∑
i=1

piPi(A), (2.9)

for any measurable set A.

Proof. The functions Fi (i = 1, . . . , n) are optimal capital guarantees, hence by
Theorem 2.4 we have for every y ∈ [1,∞)

Fi(y) =

∫
[1,y]

uPi(du).

Let y ∈ [1,∞) then∫
[1,y]

uP(du) =

n∑
i=1

pi

∫
[1,y]

uPi(du) =

n∑
i=1

piFi(y) = F (y),

we conclude F is an optimal capital guarantee by Theorem 2.4.

2.5 Two-way trading

The two-way trading problem can be formulated as in Protocol 2.2.

Protocol 2.2 Two-way trading

X0 := 1,K0 := 1, p0 := 1
for t = 1, 2, . . . do

Trader announces pt ∈ R
Market announces Xt ∈ [0,∞)
Kt := Kt−1 + pt(Xt −Xt−1)

end for

This protocol is very similar to the one-way trading protocol. The only dif-
ference is that in this protocol there are no restrictions on the number of shares
pt Trader holds. This means Trader can buy and sell shares. Observe that pt
may also be negative, this means Trader can borrow shares1. Trader’s capital
Kt may also be negative, meaning he may borrow money.

In the proofs of Theorems 2.3 and 2.4 the restriction on the number of shares
pt ≤ pt−1 is actually not needed. So these results also hold for the more general
two-way trading problem!

1In financial literature borrowing shares is also called going short, while buying shares is
called going long.
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Compared to the best strategy in hindsight an optimal capital guarantee is in
general not very good guarantee. Let z0 := 1, z1, . . . , zm be the local extrema of
the price sequence X0, . . . , Xt. The best strategy in handsight is buying shares
for all available cash at local minima and selling all shares at local maxima. To
compare a strategy with the best strategy in hindsight one needs a guarantee
in terms of the extrema z0, . . . , zm. Koolen and De Rooij give in [5] a strategy
which gives a bound in terms of the local extrema.

2.6 Lookback options

The results of the optimal capital guarantees for the two-way trading problem
can also be used for the pricing of so called lookback options, as Vovk et al.
showed in [3]. We will present these results here, in the next chapter we will use
a similar analysis to price lookback options in a market with transaction costs.

A lookback option is a contract which gives Trader a payoff G(Mt) when
exercised at time t. Here G : [0,∞) → [0,∞) is assumed to be an increasing
function and M0 > 0. For the pricing of such options we need the notion of
no-arbitrage, which says that it is impossible to make a risk-free profit at zero
cost.

This can be formulated as follows, suppose we have two strategies P and Q
starting with respectively K0 and L0 in cash. If the payoff of strategy P always
dominates that of strategy Q, i.e. Kt ≥ Lt for all t > 0, then in a no-arbitrage
market K0 ≥ L0. Suppose this was not true then K0 < L0 and we could invest
in P and short in Q giving at time zero L0 −K0 > 0 and a profit at all later
times t > 0 given by Kt − Lt ≥ 0.

Lemma 2.7. If in a no-arbitrage market there exists a strategy P with a capital
which satisfies for any time t the bound Kt ≥ G(Mt), then the price L of a
lookback option is at most K0.

Proof. Consider the strategies

1. investing K0 in strategy P ,

2. buying a lookback option costing L.

The payoff of strategy 2 is G(Mt) which dominates the payoff Kt of strategy 1,
so by no-arbitrage L ≤ K0.

So to get an upper bound for the price of a lookback option with payoff
G(Mt) when exercised at time t it suffices to find a strategy with capital sequence
(Kt) such that Kt ≥ G(Mt) for all t ≥ 0. The upper bound for the price is then
given by the initial capital K0 of that strategy. Vovk showed there exists such
a strategy and gave the needed initial capital, which is given in the following
theorem.

Theorem 2.8. Let G : [0,∞)→ [0,∞) be an increasing function and X0 > 0.
An upper bound for the price of an American lookback option that pays G(Mt)
when exercised at time t is

X0

∫ ∞
X0

G(x)

x2
dx.



30 Chapter 2. One-way trading

Proof. Consider the normalized price Yt = Xt/X0, its maximum price Nt =
sups≤t Yt and

F (y) :=
G(X0y)

X0

∫ ∞
X0

G(x)

x2
dx

.

The function F is an optimal capital guarantee by Theorem 2.4, because∫ ∞
1

F (y)

y2
dy =

(
X0

∫ ∞
X0

G(x)

x2
dx

)−1 ∫ ∞
1

G(X0y)

y2
dy

=

(
X0

∫ ∞
X0

G(x)

x2
dx

)−1 ∫ ∞
X0

G(x)

(x/X0)2
1

X0
dx

= 1.

Hence there exists a strategy with a capital process (Kt) such that for any time
t,

Kt ≥ F (Nt) = F (Mt/X0) =
G(Mt)

X0

∫ ∞
X0

G(x)

x2
dx

.

When Trader applies this strategy with initial capital X0

∫∞
X0

G(x)
x2 dx he will

have Kt ≥ G(Mt) for every t, so this initial capital is an upper bound for the
price of the option.

Note that the upper price of the lookback option may be infinite. For exam-
ple this is the case if one considers the classical lookback option which pays Mt

when exercised at time t. This lookback option has G(x) = x and upper price

X0

∫ ∞
X0

1

x
dx =∞.

The hedging strategy that guarantees Kt ≥ G(Mt) at any time t ≥ 0 is the
strategy which starts with initial capital

K0 = X0

∫ ∞
X0

G(x)

x2
dx,

and for all s ≤ t holds ps = P(Ms−1,∞] shares, where P is the measure on
[1,∞) such that for all y,

F (y) :=
G(X0y)

X0

∫ ∞
X0

G(x)

x2
dx

=

∫
[1,y]

uP(du).
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Transaction costs

3.1 Introduction

In the previous chapter we considered the one- and two-way trading problems.
These are idealized models of trading reality. In practice a trader has to pay a
fee for a transaction. In this chapter we will consider the trading problem where
a trader must pay transaction costs. As shown in the Google example of subsec-
tion 1.3.1 transaction costs can have dramatic effects on the capital of optimal
strategies. In this chapter we construct strategies can guarantee a capital for the
trader close to that of the optimal strategies of the transaction cost free settting.

The protocol for two-way trading is adjusted to include transaction costs to
Protocol 3.1. Note that one-way trading is a special case of this protocol in
which only selling is allowed. Because we will consider only strategies that sell
shares all results also hold for the one-way trading problem.

Protocol 3.1 Two-way trading with transaction costs

X0 := 1,K0 := 1, p0 := 1
for t = 1, 2, . . . do

Trader announces pt ∈ R
Market announces Xt ∈ [0,∞)
Kt := Kt−1 + pt(Xt −Xt−1)
if pt 6= pt−1 then

Kt = Kt − C(x)
end if

end for

If Trader changes the number of shares (pt 6= pt−1) he wants to hold, he has
to pay an amount C(x) for the cost of the transaction where x is the value of
the transaction. The value of the transaction is given by x = |pt−1−pt|Xt−1. In
practice there are many different ways how the transaction costs are calculated.
We will consider three different types of transactions costs:

• Proportional transaction costs, C(x) = γx where γ ∈ (0, 1).

• Constant transaction costs, C(x) = c > 0.

31
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• Fixed and proportional transaction costs, C(x) = c+ γx where c ≥ 0 and
γ ∈ (0, 1).

We will now give a short summary of the results from Chapter 2 that are
relevant for this chapter. We derived the following strategy (see Theorem 2.5).

Strategy 1. At time t hold pt = P(Mt−1,∞) shares, where P is a measure on
[1,∞) of an optimal capital guarantee F .

When Trader follows this strategy the capital Kt at all times t satisfies

Kt =

t−1∑
s=1

P(Ms−1,Ms]Ms + P(Mt−1,∞)Mt ≥ F (Mt) + P(Mt−1,∞)Mt,

where Mt is the observed maximum price. From Theorem 2.5 we know that F
is an optimal capital guarantee if and only if for some measure P on [1,∞) we
have

F (y) =

∫
[1,y]

uP(du). (3.1)

In two-way trading with transaction costs the capital of Strategy 1 will be ob-
viously lower than in the transaction cost free model. We will see that for
proportional transaction costs the above strategy is still optimal, while for con-
stant transactions costs this strategy can result in big losses.

In this chapter we make the assumption that optimal capital guarantees
F : [1,∞) → [1,∞) are continuous on the interval [1,∞). In the previous
chapter we gave examples of optimal capital guarantees which are continuous
(cf. Section 2.4).

3.2 Proportional transaction costs

If the transactions cost are proportional, the cost per transaction is given by
C(x) = γx where γ ∈ (0, 1) and x = |pt−1 − pt|Xt−1 is the value of the transac-
tion.

Theorem 3.1. If F an optimal capital guarantee in the transaction cost free
model, then (1− γ)F is an optimal capital guarantee in the model with propor-
tional transaction costs given by C(x) = γx.

Proof. Let F be an optimal capital guarantee from the transaction cost free
model. Suppose there exists a capital guarantee G in the model with propor-
tional transaction costs that strictly dominates (1− γ)F . Then also G/(1− γ)
strictly dominates F . Let (pt) be the sequence of the number of shares Trader
holds according to the strategy which has as capital guarantee G. At any time
t the share price can become zero and stay zero, hence the amount of cash at
time t must be at least G(Mt). The amount of cash satisfies

(1− γ)

t−1∑
s=1

(ps − ps+1)Xs ≥ G(Mt),
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for any t. Suppose the transaction costs are zero, following the same strategy
results in cash

t−1∑
s=1

(ps − ps+1)Xs ≥
G(Mt)

1− γ
,

by the previous inequality. Hence in the transaction cost free model this same
strategy has capital guarantee G/(1− γ). This capital guarantee strictly dom-
inates the optimal capital guarantee F , but this is in contradiction with the
assumptions. So there is no capital guarantee dominating (1− γ)F .

Finally consider the strategy with optimal capital guarantee F (with zero
transaction costs). Applying this strategy in the model with transaction costs
results in cash reduced by a factor 1− γ, while the share value stays the same.
Hence the capital of this strategy is at least (1−γ)F , which shows (1−γ)F is a
capital guarantee for the model with transactions costs. We conclude (1− γ)F
is an optimal capital guarantee.

3.3 Constant transaction costs

Suppose Trader has to pay a positive constant amount C(x) = c ≥ 0 for every
trade. Following Strategy 1 can result in a very high loss for Trader, as was
shown in the Google example in the introduction. Suppose Mt increases very
slowly, then at time t the value of the trade P(Mt−1,Mt]Mt may be lower than
the cost c of the trade. To solve this Trader should use a strategy that trades
more economically. In this section we will define such a strategy for which
we show it guarantees a capital not much lower than the capital guarantee of
Strategy 1.

3.3.1 Continuous price process

The protocol for trading is defined in discrete time. In the following we will
consider trading in continous time, which allows us to consider continuous price
processes. As it turns out continuous price processes are more convenient for
deriving capital guarantees. Later on we will translate the results back to the
discrete time setting. We will denote a continuous price process by Y and its
maximum by Nt = sups≤t Ys.

As noted before constant transaction costs can lower the capital guarantee
significantly. This is a consequence of selling a too small amount of shares too
often. To solve this we will adjust Strategy 1 such that there will be fewer
transactions.

To this end we define a sequence of increasing price levels (νi)i≥0 with νi >
νi−1 ≥ 1 for all i ≥ 1 and ν0 = 1. The new strategy will only sell at these price
levels (νi), see Figure 3.1. The resulting capital Kt at time t is

Kt =

n∑
i=1

P(νi−1, νi]νi + P(νn,∞)νn − nc

where n is the number of price levels below Nt excluding ν0. Note that we
assume the price function Y is continuous and therefore also its maximum Nt



34 Chapter 3. Transaction costs

νi−1 → sell P(νi−2, νi−1] shares

νi → sell P(νi−1, νi] shares

νi+1 → sell P(νi, νi+1] shares

Nt

Figure 3.1: Sell shares at sequence of price levels (νi).

is continuous, hence every price level below Nt in the sequence (νi) is attained
before time t .

By not selling at every price level but at a sequence of price levels (νi), the
capital guarantee is reduced by another quantity in addition to the transaction
costs. Suppose at time t the last selling price was νi with νi < Nt, then Strategy
1 sold P(νi, Nt] shares but the strategy with the sequence of price levels did not
sell shares for those prices. Compared to Strategy 1 the capital is reduced by
selling too late because νi+1 > Nt, this extra loss is called the slippage cost1.

If the difference between selling prices is very small, the difference between
the last trade and the current price level is small. Hence the slippage cost is
small, but on the other hand there are a lot of transactions so the total trans-
action costs are large. Hence there is a trade-off between the total transaction
costs and the slippage cost. This trade-off will be made more precise later.

To control the value of this slippage cost we define the following strategy.
This strategy has as input a sequence of positive real numbers (pi), where pi is
determines the value of the ith transaction. Suppose the selling prices ν0, . . . , νi
are determined, then we will define the next selling price νi+1 such that the
value of the (i+ 1)st transaction equals pi+1:

νi+1P[νi, νi+1) = pi+1.

To derive a capital guarantee it turns out is easier to approximate the left-hand

1In finance slippage cost is the difference between the expected price of a trade and the
price of the actual trade. In our case we would like to trade at the current price Nt, but we
trade only at the last price level νi
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side by∫
(νi,νi+1]

uP(du) ≈ νi+1P[νi, νi+1),

this is a good approximation if the selling prices are close together. This ap-
proximation results in the following strategy.

Strategy 2. Let (pi)i≥1 be a sequence of positive real numbers. Suppose the
selling prices ν0, . . . , νi are determined, let the next selling price νi+1 be deter-
mined by solving∫

(νi,νi+1]

uP(du) = pi+1, (3.2)

and sell a fraction P(νi, νi+1] for price νi+1.

We can rewrite the left side of equation (3.2) by using the expression for F
in equation (3.1) into∫

(νi,νi+1]

uP(du) = F (νi+1)− F (νi). (3.3)

We assumed the capital guarantees F are continuous and the price function N is
continuous, therefore there exists a price level νi+1 which solves equation (3.2).

The following theorem gives a capital guarantee for Strategy 2.

Theorem 3.2. Let n be the number of transactions done by Strategy 2 before
maximum price Nt, then the resulting capital Kt of Strategy 2 at any time t
satisfies

Kt ≥ F (Nt)−
∫
(νn,Nt]

uP(du)︸ ︷︷ ︸
slippage cost

−
transaction costs︷︸︸︷

nc . (3.4)

Proof.

Kt =

n∑
i=1

νiP(νi−1, νi] + P(νn,∞)νn − nc

≥
n∑
i=1

νiP(νi−1, νi]− nc

=

n∑
i=1

νi

∫
(νi−1,νi]

P(du)− nc

≥
n∑
i=1

∫
(νi−1,νi]

uP(du)− nc

=

∫
[1,νn]

uP(du)− nc

=

∫
[1,Nt]

uP(du)−
∫
(νn,Nt]

uP(du)− nc

= F (Nt)−
∫
(νn,Nt]

uP(du)− nc.
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p1

p2 + c

p3 + 2c

p4 + 3c

t→

Figure 3.2: A typical loss function.

3.3.2 Optimal guarantee in hindsight

Theorem 3.2 gives a capital guarantee for Strategy 2, in this section we find the
sequence (pi) for which the guarantee would be maximized at time t. For this
we define the loss function

Lt :=

∫
(νn,Nt]

uP(du) + nc.

Because F (Nt) is a constant at time t, maximizing the guarantee is the same as
minimizing the loss function L. Figure 3.2 displays a typical loss function given
a sequence (pi). The loss function has a certain saw-tooth behaviour: as the
maximum price Nt increases, the slippage cost

∫
(νn,Nt]

uP(du) increases until Nt
reaches the next selling price νn+1, then the slippage cost becomes zero while
the transaction costs increase by c.

The following theorem shows which sequence of (pi) results in the lowest loss,
assuming the number of transactions n is fixed for the time being. In Theorem
3.4 we will optimize the capital guarantee with respect to n.

Theorem 3.3. Using pi = p1− (i− 1)c such that
∑n
i=1 pi = F (Nt) in Strategy

2 results in the lowest loss among all possible sequences (pi) at time t.

Proof. In the worst case for Trader after choosing (pi), Nt equals the value
for which the loss attains its maximum. Setting pi = p1 − (i − 1)c such that∑n
i=1 pi = F (Nt) gives local maxima of the loss function which are all equal to

p1, hence the maximum is equal to p1.



Chapter 3. Transaction costs 37

(n− 1)c

nc

(n+ 1)c

pn+1 + nc

p′n + (n− 1)c = p′n+1 + nc

pn + (n− 1)c

Figure 3.3: Selling later.

Suppose there exists a sequence (pi) with a lower worst-case loss and the
loss function has local maxima which are not all equal. Consider a maximum
pn+(n−1)c and assume next to it is a local maximum pn+1+nc which is lower,
so pn > pn+1 + c. Such a local maximum can also lie on the left side, in that
case the following analysis is similar. The situation is shown in Figure 3.3.

In this situation the strategy sold shares twice. Consider selling the first
time such that we have equal maxima p′n + (n − 1)c = p′n+1 + nc, note that
the second time we sell for the same price. The first maximum lies lower, hence
p′n + (n − 1)c = p′n+1 + nc < pn + (n − 1)c. If p′n + (n − 1)c was the only
maximum of the loss function, the maximum can be lowered and hence a lower
loss is possible. If there are more maxima the procedure can be applied for
all such maxima, which will lead ultimately to a lower maximum and a lower
worst-case loss. But this is in contradiction with the assumption, we conclude
that all maxima must be equal.

The number of transactions n depends on the value of p1, the following
theorem optimizes the guarantee with respect to p1.

Theorem 3.4. The capital guarantee of Strategy 2 with pi = p1− (i− 1)c such
that

∑n
i=1 pi = F (Nt) is maximized by p1 =

√
2cF (Nt) + 1

2c and guarantees a
capital

Kt ≥ F (Nt)−
√

2cF (Nt) +
1

2
c.

Proof. We have

F (Nt) =

n∑
i=1

pi =

n∑
i=1

(p1 − (i− 1)c) = np1 −
1

2
n(n− 1)c,
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or

p1 =
F (Nt)

n
+

1

2
nc− 1

2
c.

By Theorem 3.2 the capital Kt of Strategy 2 satisfies

Kt ≥ F (Nt)−
∫
(νn,Nt]

uP(du)− nc

≥ F (Nt)−
∫
(νn,νn+1]

uP(du)− nc

= F (Nt)− pn+1 − nc (3.5)

= F (Nt)− p1

= F (Nt)−
F (Nt)

n
− 1

2
nc+

1

2
c.

The guarantee is maximized by n =
√

2F (Nt)/c with maximum

F (Nt)−
√

2cF (Nt) +
1

2
c.

We showed the lowest worst-case loss is obtained for Strategy 2 by pi =
p1 − (i− 1)c such that

∑n
i=1 pi = F (Nt). The lowest possible loss for Strategy

2 is
√

2cF (Nt) − c/2. To achieve this loss F (Nt) must be known beforehand,
hence this is not a practical strategy. However, in the following section we will
show that it is possible to come very close to this ideal loss.

3.3.3 A practical strategy

In Theorem 3.2 we gave a capital guarantee which can be further bounded like
in the proof of Theorem 3.4 in (3.5) by

Kt = F (Nt)− pn+1 − nc.

As discussed before there is a trade-off between the slippage cost and the trans-
action costs, here we bounded the slippage costs by pn+1. If we want a small
number of transactions, to reduce the total transaction costs nc, the transaction
value sequence (pi) must be increasing quickly. But this leads to a high value
of pn+1. If we on the other hand let (pi) be slowly increasing such that pn+1 is
small, the number of transactions is high and therefore also nc.

In the proof of Theorem 3.4 the optimal number of transactions is n =√
2F (Nt)/c, by using pi = ci we get the same number of transactions with-

out prior knowledge of F (Nt). The following theorem shows to which capital
guarantee this leads.

Theorem 3.5. Let (pi) be given by pi = ci in Strategy 2. The resulting capital
Kt at any time t satisfies

Kt ≥ F (Nt)−
√

8cF (Nt) + c2. (3.6)
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Proof. Let n be the number of transactions done by Strategy 2 before Nt, then

F (Nt) =

∫
[1,Nt]

uP(du)

≥
∫
[1,νn]

uP(du)

=

n∑
i=1

∫
(νi−1,νi]

uP(du)

=

n∑
i=1

pi = c

n∑
i=1

i =
1

2
cn(n+ 1),

from which we get a upper bound on the number of transactions

n ≤
√

2F (Nt)

c
+

1

4
− 1

2
.

Then by Theorem 3.2

Kt ≥ F (Nt)− pn+1 − nc
= F (Nt)− c(n+ 1)− nc
= F (Nt)− 2nc− c

≥ F (Nt)− 2c

(√
2F (Nt)

c
+

1

4
− 1

2

)
− c

= F (Nt)−
√

8cF (Nt) + c2.

By using pi = ci in Strategy 2 we get a loss of√
8cF (Nt) + c2 ≈ 2

√
2cF (Nt).

The best possible loss in hindsight for Strategy 2 (cf. Theorem 3.4) is√
2cF (Nt)− c/2 ≈

√
2cF (Nt).

These two approximations hold for large F (Nt). We conclude that pi = ci leads
only to an extra factor of approximately two, compared to the best choice of
(pi) in hindsight.

3.3.4 Selling prices

Strategy 2 determines the selling prices by solving recursively equation (3.2).
From this equation it is possible to explicitly determine the selling prices. Equa-
tion (3.2) can be written as∫

(νi,νi+1]

uP(du) = F (νi+1)− F (νi) = pi+1,

by rearranging

F (νi+1) = F (νi) + pi+1

= F (νi−1) + pi+1 + pi

= · · · = F (ν0) +

i+1∑
j=1

pj .
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M N

Figure 3.4: From the discontinuous price process M we construct a continous
price process N by pasting linear interpolations at the discontinuities.

Because F : [1,∞) → [0,∞) is assumed to be a continuous and increasing
function its inverse F−1 exists on [0,∞), so the selling prices are given by

νi+1 = F−1

F (ν0) +

i+1∑
j=1

pj

 .

For the optimal capital guarantee F (y) = βy1−β with β ∈ (0, 1) and pi = αi
one obtains

νi =

 1

β

F (1) +

i∑
j=1

pi

 1
1−β

=

1 +
α

β

i∑
j=1

j

 1
1−β

=

[
1 +

α

2β
i(i+ 1)

] 1
1−β

.

3.3.5 Discontinuous price process

In the previous section we derived capital guarantees for the continuous price
process Y with maximum price N , which is also continuous. In this section we
consider a price process X : [0,∞)→ [0,∞) which may contain a finite number
of discontinuities, as we will later embed this price process in discrete time. The
maximum price process M is defined by Mt = sups≤tXt and can also contain
a finite number of discontinuities.

From the price process M we construct a continuous price process N by
pasting a linearly interpolated part between discontinuities, see Figure 3.4. By
pasting parts between discontinuities the time scale of N changes but this does
not change the analysis. In the following we will refer to the time scale of the
original price process M and will assume for every time t of M that Nt = Mt.

We can apply Strategy 2 to the price process N . The resulting sequence of
selling prices of this strategy is used in the following strategy for price processM .
The strategy will sell at a sequence of prices denoted by (µi)i≥0 with µi+1 > µi
for all i ≥ 0 and µ0 = 1.

Strategy 3. Let (pi)i≥1 be a sequence of real numbers. Let (νn) be the con-
tinuous selling prices determined using Strategy 2 using price process N and



Chapter 3. Transaction costs 41

M N

µi
νj

νj+1

νk
µi+1

sell P(νj , νk] shares

Figure 3.5: The next selling level µi+1 is defined as the lowest price after the
discontinuity of N . At this price P(νj , νk] shares are sold.

sequence (pi). Suppose µ0, . . . , µi are determined. Let νj be the highest contin-
uous selling price such that νj ≤ µi. Let µi+1 = inf{Mt : Mt ≥ νj+1} and let νk
be the highest continuous selling price such that νk ≤ µi+1. Sell P(νj , νk] shares
at price µi+1.

Figure 3.5 shows how the next selling price µi+1 is determined in Strategy
3. We have the following result for Strategy 3.

Theorem 3.6. Let (Lt) be the capital sequence of Strategy 2 on the continuous
maximum price process N (constructed using M) and let (Kt) be the capital
sequence of Strategy 3 on the piecewise-constant maximum price process M .
Then at any time t ≥ 0,

Kt ≥ Lt ≥ F (Mt)−
√

8cF (Mt) + c2. (3.7)

Proof. We will proof this by induction on the selling levels (µi) constructed by
Strategy 3 on M . Let µ0, . . . , µi be the selling levels determined and let Ks

be the capital at the time µi was determined. Let Ls be the capital at the
same time of Strategy 2, for the inductive step assume Ks ≥ Ls. Let (νi) be
the sequence of selling prices determined by Strategy 2. Let µi+1 be the next
selling level determined by Strategy 3 and let νj be Strategy 2’s highest selling
price such that νj ≤ µi and let νk be Strategy 2’s highest selling price such that
νk ≤ µi+1. Then at the time when Mt = Nt = µi+1 the capital Lt of Strategy
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2 satisfies

Lt = Ls +

k∑
l=j+1

νlP(νl−1, νl]

≤ Ls +

k∑
l=j+1

νkP(νl−1, νl]

= Ls + νkP(νj , νk]

≤ Ks + µi+1P(νj , νk]

= Kt.

Hence the Kt capital of Strategy 3 is higher than the capital Lt of Strategy 2
at the next selling price µi+1. By choosing the sequence (pi) like in Theorem
3.5, i.e. pi = ci, the right hand side of equation (3.7) is obtained. Note that
F (Mt) = F (Nt) for every time t.

Remark 3.7. Strategy 3 applied to a continuous price function results in
precisely the same trades as if Strategy 2 is applied. If this continuous price
function had some discontinuities, by Theorem 3.6 a higher capital guarantee
could be given than for the continuous price function. Hence Theorem 3.6 states
that for Trader it is better that the price functions contains jumps than that
the price function is continuous.

3.3.6 Discrete time

The trading protocol is defined in discrete time, but it can be embedded in
continuous time by a piecewise constant price process. Let X : N → [0,∞] be
the price process in discrete time, then it can be embedded by a price function
in continuous time X ′ : [0,∞) → [0,∞) by defining X ′t = Xbtc. Note that at
time t the price process X ′ has a finite number of discontinuities. Strategy 3
can be applied to the price process X ′. Since this strategy only trades when the
price process changes it will only trade at times t = 1, 2, . . ., hence the strategy
can also be applied in discrete time. Therefore we can apply Theorem 3.6 to
the trading protocol (which is defined in discrete time), which shows Strategy
3 has a capital sequence (Kt) such that

Kt ≥ F (Mt)−
√

8cF (Mt) + c2. (3.8)

3.3.7 Optimal capital guarantee

We did not show that Strategy 3 gives an optimal capital guarantee for the
trading protocol with transaction costs. We can however give bounds for such
an optimal capital guarantee. Let F ∗ be an optimal capital guarantee for the
trading protocol with transaction costs, then there exists an optimal capital
guarantee F in the transaction cost free protocol such that for all t

F (Mt) ≥ F ∗(Mt) ≥ F (Mt)−
√

8cF (Mt) + c2.

This can be reasoned as follows. Obviously there exists such an F which domi-
nates F ∗, as the presence of transaction costs can only lower the guarantee. By
(3.8) we know that F ′(Mt) := F (Mt)−

√
8cF (Mt) + c2 is a capital guarantee.

Because F ∗ is an optimal capital guarantee, it dominates F ′.
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3.4 Mixed transaction costs

The results for proportional and fixed transaction costs can be combined to get
a capital guarantee for transaction costs of the form C(x) = c+γx where c > 0,
γ ∈ (0, 1) and x is the value of the transaction.

Theorem 3.8. If Trader follows Strategy 3 with pn = c
1−γn then at any time

t ≥ 0 his capital Kt satisfies

Kt ≥ (1− γ)F (Mt)−
√

8F (Mt)(1− γ)c+ c2.

The precise proof of this theorem can be found in the Appendix. We can
also obtain this result in an informal way by reasoning as follows. Suppose first
c = 0, then we have by Theorem 3.1 for every t

Kt ≥ (1− γ)F (Mt).

Define F ′(Mt) = (1−γ)F (Mt), suppose c > 0, and use Strategy 2 then we have
similarly to Theorem 3.2 after n transactions

Kt ≥ F ′(Mt)− (1− γ)pn+1 − nc.

Because we can guarantee at most F ′(Mt) by the proportional costs, we have
to pay nc constant costs and in the worst case lose (1 − γ)pn+1. To minimize
the loss we equate the last two terms, so pn = c

1−γn. Analoguously to the case
without proportional costs this leads to

Kt ≥ F ′(Mt)−
√

8F ′(Mt)c+ c2

= (1− γ)F (Mt)−
√

8F (Mt)(1− γ)c+ c2.

3.5 Lookback options with transaction costs

In the previous chapter we reasoned that an upper price for the lookback option
with return G(Mt) when exercised at time t, is the initial capital K0 needed for
a strategy such that the capital sequence (Kt) satisfies Kt ≥ G(Mt) for all t ≥ 0.
This of course still holds for the two-way trading problem with transaction costs.

The following theorem gives an upper bound for the price of a lookback
option in the two-way trading problem with mixed transaction costs given by
C(x) = c+ γx where c > 0 and γ ∈ (0, 1).

Theorem 3.9. Let G : [0,∞)→ [0,∞) be an increasing function and X0 > 0.
An upper bound for the price of an American lookback option that pays G(Mt)
when exercised at time t is the value of α which solves

X0

1− γ

∫ ∞
X0

[
G(x)

α
+ 4c+

√
17c2 +

8cG(x)

α

]
1

x2
dx = 1 (3.9)

Proof. Consider the normalized price Yt = Xt/X0, its maximum price Nt =
sups≤t Yt and

F (y) :=
1

1− γ

[
G(X0y)

α
+ 4c+

√
17c2 +

8cG(X0y)

α

]
.



44 Chapter 3. Transaction costs

The function F is an optimal capital guarantee, because
∫∞
1
F (y)/y2dy = 1 by

Equation 3.9. Consider the equation

(1− γ)f −
√

8c(1− γ)f + c2 =
g

α
, (3.10)

we will solve f in this equation. Substitute h :=
√

8c(1− γ)f + c2 for which

f =
h2 − c2

8c(1− γ)
,

holds. Then we get

(1− γ)f −
√

8c(1− γ)f + c2 = (1− γ)
h2 − c2

8c(1− γ)
− h =

g

α
,

or

h2

8c
− h−

( c
8

+
g

α

)
= 0.

This quadratic equation has as only positive solution

h = 4c+

√
17c2 +

8gc

α
.

Substituting this back into f gives

f =

(
4c+

√
17c2 +

8gc

α

)2

− c2

8c(1− γ)

=
16c2 + 8c

√
17c2 +

8gc

α
+ 17c2 +

8gc

α
− c2

8c(1− γ)

=
1

1− γ

[
g

α
+ 4c+

√
17c2 +

8cg

α

]
.

By Theorem 3.8 there exists a strategy with a capital process (Kt) such that
for any time t,

Kt ≥ (1− γ)F (Nt)−
√

8c(1− γ)F (Nt) + c2 =
G(Mt)

α

The right-hand side follows by taking f = F (Mt) in Equation 3.10. When
Trader applies this strategy with initial capital α he will have Kt ≥ G(Mt) for
every t, so this is an upper bound for the price of the option.

By multiplying equation (3.9) with α and some rearranging we obtain

α =
1

1− γ︸ ︷︷ ︸
≥1

X0

∫ ∞
X0

G(x)

x2
dx︸ ︷︷ ︸

cost-free upper price

+
X0

1− γ

∫ ∞
X0

[
4c+

√
17c2 +

8cG(x)

α

]
1

x2
dx︸ ︷︷ ︸

>0

.
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Hence the upper price of the the lookback option it at least the price of the
option in the transaction cost free trading model, which was to be expected.

The hedging strategy which guarantees Kt ≥ G(Mt) at any time t ≥ 0 is the
strategy which starts with initial capital K0 = α which solves equation (3.9)
and for all s ≤ t holds ps = P(Ms−1,∞] shares, where P is the measure on
[1,∞) such that for all y,

F (y) :=
1

1− γ

[
G(X0y)

α
+ 4c+

√
17c2 +

8cG(X0y)

α

]
=

∫
[1,y]

uP(du).
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Chapter 4

Conclusion

4.1 Summary

For the one-way trading problem Vovk et al. showed in [3] it is possible to give
non-trivial guarantees for the capital a trader holds. They showed there are
strategies for which the capital Kt at any time t satisfies

Kt ≥ F (Mt),

where F is an increasing function of the maximum price Mt = sups≤tXt. They
found that such capital guarantees F are optimal if and only if they satisfy∫ ∞

1

F (y)

y2
dy.

In this thesis we considered the trading problem with transaction costs, which
is more realistic. First we considered proportional transaction costs C(x) = γx,
for which we showed the optimal strategies still give optimal capital guarantees,
but they are scaled down by a factor 1− γ.

For constant transaction costs the optimal strategies cannot guarantee a
similar capital anymore. We modified the strategies in such a way that they
trade more economically. The new strategies trade when the transaction value
reached a certain value: trade i is exercised if the trade value equals pi. We
showed a good choice was pi = ci as it results in only a factor two in loss (the
diffence in the capital guarantee with or without transactionc costs) compared
to the best (pi) in hindsight. If a strategy had as capital guarantee F in the
transaction cost free model, then this modified strategy has a capital Kt which
satisfies

Kt ≥ F (Mt)−
√

8cF (Mt) + c2.

4.2 Future work

Vovk et al. characterized the optimal capital guarantees for the transaction free
trading problem. The question is whether it is possible to find optimal capital
guarantees in the model with transaction costs. And furthermore whether it is
possible to characterize these optimal capital guarantees.
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We did not find such optimal capital guarantees, but we found bounds for
them. Suppose F ∗ is an optimal capital guarantee in the model with transac-
tion costs, we showed that there exists an optimal capital guarantee F in the
transaction cost free model such that for all y ≥ 1,

F (y) ≥ F ∗(y) ≥ F (y)−
√

8cF (y) + c2.

It would also be interesting to see if a similar approach for handling trans-
action costs is possible for the strategies of Koolen and De Rooij [5] for the
two-way trading problem.

We considered proportional and fixed transaction costs and a mixed form
of both. Other types of transaction costs could also be studied. For example
transaction costs which are proportional to the number of shares.



Appendix A

Some proofs

A.1 Examples of optimal capital guarantees

The following functions F are optimal capital guarantees:

1. For u ≥ 1

F (y) = u1{y≥u}.

2. For α ∈ (0, 1)

F (y) = αy1−α.

3. For α > 0

F (y) = α(1 + α)α
y

log1+α y
1{y≥e1+α}.

With measures P defined by respectively:

1. P{u} = 1.

2. P{1} = α and for y ≥ 1

P(y,∞) = (1− α)y−α.

3. P{e1+α} = α/(1 + α) and for y ≥ e1+α

P(y,∞) = (1 + α)α log−α y − α(1 + α)α log−(1+α) y.

Proof. Using the third statement of Theorem 2.4 we will check these are indeed
optimal capital guarantees. For this we have to check the condition∫ ∞

1

F (y)

y2
dy = 1.

For u ≥ 1 we have∫ ∞
1

u1{y≥u}

y2
dy = u

∫ ∞
u

1

y2
dy = u

1

u
= 1.
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for α ∈ (0, 1)

∫ ∞
1

αy1−α

y2
dy = α

∫ ∞
1

y−1−αdy = α

[
−y
−α

α

]∞
1

= 1.

Finally for α > 0 consider

∫ ∞
1

α(1 + α)αy log−(1+α)(y)1{y≥e1+α}

y2
dy

= α(1 + α)α
∫ ∞
e1+α

(
1

y log1+α y

)
dy

= α(1 + α)α
[
− 1

α logα y

]∞
e1+α

= α(1 + α)α
1

α(1 + α)α
= 1.

It is clear the first two examples (F (y) = u1{y≥u} and F (y) = αy1−α) are
right-continous and increasing, from which we conclude they are optimal capital
guarantees. The last example is also right-continuous, to show it is increasing on
[e1+α,∞) it is sufficient to show that its derivative is nonnegative on [e1+α,∞),

d

dy

[
α(1 + α)αy log−(1+α) y

]
= α(1 + α)α

[
log−(1+α) y − (1 + α) log−(2+α) y

]
= α(1 + α)α

(
1− 1 + α

log y

)
log−(1+α) y ≥ 0,

for all y ∈ [e1+α,∞). Hence F (y) = α(1 + α)αy log−(1+α)(y)1{y≥e1+α} is also
an optimal capital guarantee.

How to derive a strategy from a given optimal capital guarantee was ex-
plained in the previous section. At time t Trader should sell a fraction P[Mt−1,Mt)
of his shares, this measure P is uniquely defined by the optimal capital guar-
antee F . For the examples given in Table 2.1 we will derive the corresponding
measure P. From the proof of Theorem 2.4 we have the following relations,
from which it is possible to obtain the measure P. Define the measure Q by
Q[1, y] := F (y) for all y ∈ [1,∞). The measure P is then defined for every
measurable set A by

P(A) =

∫
A

1

u
Q(du).

For the guarantee F (y) = u1{y≥u} we have the point measure P{u} = 1.
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The guarantee F (y) = αy1−α has as corresponding measure for all y ∈ [1,∞)

P[1, y) =

∫
[1,y)

1

u
Q(du)

=

∫ y

1

1

u

d

du
F (u)du

=

∫ y

1

1

u
α(1− α)u−αdu

= α(1− α)

∫ y

1

u−(1+α)du

= α(1− α)

[
−u
−α

α

]y
1

= (1− α)(1− y−α).

The guarantee F (y) = α(1 + α)αy log−(1+α)(y)1{y≥e1+α} has a point measure
at e1+α

P{e1+α} =

∫
{e1+α}

1

u
Q(du) =

Q{e1+α}
e1+α

=
α

1 + α
.

For y ∈ (e1+α,∞) we have

P[1, y) =

∫
[e1+α,y)

1

u
Q(du)

=

∫ y

e1+α

1

u

d

du
F (u)du

=

∫ y

e1+α

1

u
α(1 + α)α

(
log−(1+α) u− (1 + α) log−(2+α) u

)
du

= α(1 + α)α
∫ y

e1+α

1

u log1+α u
du− α(1 + α)1+α

∫ y

e1+α

1

u log2+α u
du

= α(1 + α)α
[
− 1

α logα u

]y
e1+α

− α(1 + α)1+α
[
− 1

(1 + α) log1+α u

]y
e1+α

= (1 + α)α
[

1

(1 + α)α
− 1

logα y

]
− α(1 + α)α

[
1

(1 + α)1+α
− 1

log1+α y

]
=

1

1 + α
+ α(1 + α)α

1

log1+α y
− (1 + α)α

1

logα y
.

A.2 Proof of Theorem 3.8

If Trader follows Strategy 3 with pi = c
1−γ i then at any time t ≥ 0 his capital

Kt satisfies

Kt ≥ (1− γ)F (Mt)−
√

8F (Mt)(1− γ)c+ c2.
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Proof. Let (Lt) be the capital of Strategy 2 on the continuous maximum price N
constructed from M by pasting linear interpolations at the discontinuities. Let
(νi) be the sequence of sellin prices constructed by Strategy 2, then analoguously
to Theorem 3.2 we obtain for the capital Lt after n transactions

Lt =

n∑
i=1

(1− γ)νiP(νi−1, νi] + P(νn,∞)νn − nc

≥ (1− γ)

n∑
i=1

νiP(νi−1, νi]− nc

= (1− γ)

n∑
i=1

νi

∫
(νi−1,νi]

P(du)− nc

≥ (1− γ)

n∑
i=1

∫
(νi−1,νi]

uP(du)− nc

= (1− γ)

∫
[1,νn]

uP(du)− nc

= (1− γ)

∫
[1,νn+1]

uP(du)− (1− γ)

∫
(νn,νn+1]

uP(du)− nc

≥ (1− γ)

∫
[1,Nt]

uP(du)− (1− γ)pn+1 − nc

= (1− γ)F (Nt)− (1− γ)pn+1 − nc.

Then like in Theorem 3.5 we choose pi = c
1−γ i to get

n ≤
√

2(1− γ)F (Nt)

c
+

1

4
− 1

2

and

Lt ≥ (1− γ)F (Nt)− 2c

√
2F (Nt)(1− γ)

c
+

1

4

= (1− γ)F (Nt)−
√

8F (Nt)(1− γ)c+ c2.

Now consider Strategy 3 applied to the price process M and let (Kt) be the
capital sequence then by Theorem 3.6

Kt ≥ Lt ≥ (1− γ)F (Nt)−
√

8F (Nt)(1− γ)c+ c2

= (1− γ)F (Mt)−
√

8F (Mt)(1− γ)c+ c2.
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