
Bachelor thesis

On the NP-completeness of the logic
puzzle irasuto

Author
Shi Yi Butter

Supervisor Second reader
Dr. Benjamin Rin Colin Caret

7,5 ECTS
Bachelor Kunstmatige Intelligentie

Faculty of Humanities
Utrecht University

2 July 2021

Abstract

This thesis investigates the computational complexity of the Japanese pen-and-paper
puzzle irasuto. We show that the problem is NP-complete by presenting a polynomial
time reduction from Planar Circuit SAT containing only NOR gates to irasuto.

1

Contents

Introduction 3

1 Irasuto 4
1.1 Rules . 4
1.2 Planar Circuit SAT . 5
1.3 Proof NP-completeness . 5

Conclusion and discussion 20

Appendix 22

2

Introduction

In computer science, problems are distinguished by the class of polynomial time computable
problems (P), the class of nondeterministic polynomial time computable problems (NP),
and the class of problems that are beyond NP. Multiplication or sorting a list in order can
be done in a reasonable amount of time and these are in P. The well known puzzles sudoku
and minesweeper are known to be NP-complete [1][2]. An n× n sudoku grid can take a
considerable amount of time to solve, however verifying if a solution is correct is done in
polynomial time by a deterministic Turing machine. Additionally, the NP-completeness
of the pen-and-paper puzzles latin squares, number link, pipe link, and zig-zag numberlink
has been proven [3][4][5][6]. It is known that P ⊆ NP , but the question whether P is
equivalent to NP, known as the P versus NP problem introduced by Stephen Cook, still
remains [7].

Artificial intelligence (AI) is developing rapidly. Therefore, it is essential to study the
complexities of algorithms when implementing them, in the interest of their efficiency.
The importance of logic in AI is not to be underestimated. Many sub fields in AI, for
instance, knowledge representation, planning, and problem solving, all require logic. The
aim of the thesis is to show that the logic puzzle irasuto [8] is NP-complete. The proof
of irasuto will hopefully give more insight into and provide a better understanding of
NP-completeness since the P versus NP problem is still not solved.

The following definitions are given by Michael Sipser in Introduction to the Theory of
Computation [9].

Definition 0.0.1. A language B is NP-complete iff

1. B is in NP, and

2. every A in NP is polynomial time reducible to B.

Definition 0.0.2. A language A is polynomial time time reducible to a language B,
written A ≤P B, if a polynomial time computable function f : Σ∗ −→ Σ∗ exists, where
for every w, we have w ∈ A⇐⇒ f(w) ∈ B.

Thus, a reduction is desired for the second step of the proof. There are various
problems that are known to be NP-complete. In case of irasuto, we show a reduction
from the planar circuit satisfiability problem (Planar Circuit SAT).

3

Chapter 1

Irasuto

Irasuto is a pen-and-paper puzzle named after the Japanese word for ‘illustration’. Many
instances of iratuto of varying difficulty can be found on the Janko website (see [8]).

1.1 Rules

The goal of irasuto is to colour each cell 1 in the grid black or white and the rules are as
follows:

• A number in a white cell or a black cell indicates how many cells of that colour can
be seen from the numbered cell.

• A cell can look only in the four directions north, east, south, and west up to a cell
with a different colour, a numbered cell or the edge of the grid.

a b c d e f g h

1 2 2 4 0

2 1 2 2

3 1

4 4 5

5 2 2 1

6 3 1 1 4

7 2 1 3

8 3 2 1

a b c d e f g h

1 2 2 4 0

2 1 2 2

3 1

4 4 5

5 2 2 1

6 3 1 1 4

7 2 1 3

8 3 2 1

Figure 1.1: Example of an instance of irasuto on the left and a solution on the right

Here are some examples to demonstrate the rules. The black 0 in h1 in figure 1.1 has
to see zero black cells, thus g1 and h2 are forced to be white. Therefore, the black 2 in
g2 sees two white cells g1 and h2. The only cells left are f2 and g3 for the reason that
a numbered cell cannot see other numbered cells, in this case e2 and g5, and a cell can
only look into the cardinal directions. Thus, to satisfy the black 2 in g2, the cells f2 and

1The terms ‘cell’ and ‘square’ are used interchangeably but they have the same meaning. They both
refer to a position on the grid e.g. e4.

4

g3 must be black. As a last example, c2 is black. Suppose c2 is white, then the white 1
in a2 sees two white cells, which is against the rules.

a b c d

1 3 2

2 3 2

3 1 2

4 2

a b c d

1 3 2

2 3 2

3 1 2

4 2

Figure 1.2: Example of an unsolvable instance

Figure 1.2 shows an unsolvable instance. The white 3 in b1 can only see the three
cells a1, b2 and c1. To satisfy white 3, all these cells must be white. However, the black
2 in d1 forces c1 and d1 to be black. Cell c1 cannot be white and black at the same time.
Hence, this instance is unsolvable.

1.2 Planar Circuit SAT

Planar Circuit SAT is the decision problem that tests whether there exists an assignment
to variables of an formula such that a Boolean circuit C is satisfiable, i.e. an interpretation
of the variables that makes the circuit output TRUE [9]. Let

Planar Circuit SAT = {〈C〉 | C is a satisfiable planar Boolean circuit}

The boolean operators are AND, OR, and NOT, and they are represented as ∧,∨, and ¬
respectively.

1.3 Proof NP-completeness

Proof idea. To show that irasuto is NP-complete, we must show that it is in NP and that
all NP-problems are polynomial time reducible to it. To show that every NP-problem
is polynomial time reducible to irasuto, we show that Planar Circuit SAT is polynomial
time reducible to irasuto. We do this by taking various features of the circuit and we
convert them into corresponding features of irasuto.

Proof. First, we show that irasuto ∈ NP. Thus, there exists a polynomial time verifier
that verifies if a solution of the puzzles is correct. Let V be verifier for irasuto. Given a
certificate c where c is a solution of the puzzle, test if the algorithm visits each numbered
cell and check if the number of coloured cells of the adjacent cells of the numbered cell
corresponds to the number of the numbered cell. The algorithm has to look for each cell
if the cells in its row and its column obey the rules. If the test passes, accept ; otherwise,
reject. The number of cells is n×n. Checking the adjacent row and column cells of a cell
takes 2n− 1 computations. Thus, the number of calculations is n2 · (2n− 1) = 2n3 − n2.
The big O notation disregards the coefficient 2 and the term n2 because n2 is dominated
by n3. Therefore, the worst case running time of V is O(n3), which is cubic polynomial
time. Hence, irasuto ∈ NP.

Now we show that Planar Circuit SAT ≤P irasuto. We do this by building gadgets.
A gadget is part of a problem B instance that corresponds to a part of a problem A

5

instance. The following gadgets are constructed to give a reduction from Planar Circuit
SAT : wire gadget, split gadget, turn gadget, crossover gadget, gadget simulating the
gates of the circuit, and TRUE terminator gadget. The gadget simulating the gates of the
circuit is the NOR gadget. The NOR operator is, similar to the NAND operator, functional
complete, i.e., combining NOR operators can generate all Boolean operators. The NOR is
represented as ↓ and its truth table is shown in table 1.1. Additionally with respect to
the puzzle, the white cells represent TRUE and the black cells represent FALSE.

Table 1.1: The truth table of the NOR gate

Input Output
A B A ↓ B
1 1 0
1 0 0
0 1 0
0 0 1

Wire gadget

a b c d e f g h i j k l m n o p q r

1 … 1 1 1

2 … 1 x 10 x' x …

3 … 1 1 1 1 1 0 1 1

4 … x 1 x'

5 1

…

…

a b c d e f g h i j k l m n o p q r

1 … 1 1 1

2 … 1 x 10 x …

3 … 1 1 1 1 1 0 1 1

4 … x 1

5 1

…

…

a b c d e f g h i j k l m n o p q r

1 … 1 1 1

2 … 1 x 10 x …

3 … 1 1 1 1 1 0 1 1

4 … x 1

5 1

…

…

Figure 1.3: Wire gadgets

Figure 1.3 shows three wire gadgets. Wire gadgets can also be vertical. The purpose
of a wire gadget is to simulate the wires of a circuit. Circuit wires copy a Boolean value
and transport it from one location in the circuit to another. The wire gadgets are all
straight in one direction, but in combination with turn gadgets (see below), values can
be copied and redirected to any direction we need. The cells with the three dots could be
anything as long as they are consistent with the gadget. We read this wire from left to
right. The first wire is labeled, but there is no value assigned to the variable. The x is to
label the cell and to show that all x’s have the same value. The x′ stands for a value that

6

is not equal to the value of x. Since the squares have a Boolean value, the x′ have the
opposite value of x. To make the wires easy to read, the x′ is only used in the first wire
gadget. In practice, no cells are labeled when solving the puzzle. They are only used in
order to explain the gadgets. Let’s now look at the second wire gadget. Suppose we have
an input x in c2 on the left hand side (LHS) and x is TRUE (thus the cell is white). The
white 1s diagonal of x block off the possibility that the adjacent cells of x see two white
cells. The white 10 in c1 sees that x is TRUE. Based on the rules, the white 10 has to
see nine other white cells. Since the white 10 already sees x and the north and west cells
are numbered cells, the white 10 can only look to the east. The adjacent cells e2 −m2
are therefore white. At this point, the white 10 is satisfied and therefore cell n2 is forced
to be FALSE (thus n2 is black), otherwise the white 10 sees eleven white cells. It follows
that n4 is TRUE because the white 1 in n3 sees n2 with value FALSE. The white 0 in o3
forces o2 to be always FALSE. Next to n4 is a white 1 in o4 which forces p4 to be FALSE.
Then again, p3 sees a p4 with value FALSE and therefore p2 is TRUE. Note that n4 and
p2 have the same value as input x as desired. Both these two cells can be used as output
which is shown later. In this example, the x in p2 is assigned as the output.

Suppose input x is FALSE (this is illustrated in the third wire), then the ten cells,
e2− n2, next to the white 10 are TRUE. In this case, the white 1 in n3 sees a white cell
in n2 which forces n4 to be FALSE. The white 1 in o4 then forces p4 to be TRUE which
subsequently forces p2 to be FALSE as desired 2.

The cells e2 − m2 are always TRUE. The output is depending on the value of n2.
Note that the wire can be extended or shortened by increasing or decreasing the number
of the white 10.

Split gadget

a b c d e f g h i j k l m n o p q r

1 … 1 1 1

2 … 1 x 10 x …

3 … 1 10 1 1 1 0 1 1

4 … x 1

5 1

6

7

8

9

10

11

12 1

13 1 x …

14 0 1 1

15 … x 1

16 1

17

…

…

…

…

Figure 1.4: Split gadget with TRUE input

Figure 1.4 shows a split gadget. This gadget splits input x into two wires. The output
of the horizontal wire is in p2 and the output of the vertical wire is in c15. The two

2At first sight, this gadget seems cumbersome because of the rotation of the alternating TRUE and
FALSE cells in n2, n4, p3 and p4. However, we first attempted to create a simpler wire gadget but in the
end the gadget did not obey the rules of the puzzle. See appendix 1.3 for further explanation.

7

output x’s have the same value as the input x. They can be used as input for a new
split gadget. A single split gadget can split an input into four output wires at most by
increasing the number of b2 and c1 in this case. Observe that the parts at the end of the
wires can be rotated as well as mirrored. This is illustrated in 1.5

1 1

… x 1 1 x …

1 1 0 0 1 1

1 x … … x 1

1 1

…

…

…

…

…

…

…

…

Figure 1.5: The value x that is carried can rotate to the left or to the right.

Turn gadget

a b c d e f g h i j k l m n

1 … 1 1 1

2 … 1 x 5 x …

3 … 1 1 1 1 1 0 1 1

4 1 x 1

5 1 5 1

6

7

8

9 1

10 … x 1

11 1 1 0

12 1 x …

13 1

14

…

…

…

…

Figure 1.6: Turn gadget

Figure 1.6 shows a gadget where input x in c2 is TRUE and comes from the LHS. It
is a horizontal wire and the x in j4 at the end of the horizontal wire is the input of the
vertical wire. The x in j12 3 at the bottom is the output of the vertical wire and has the
same value as the input x of the horizontal wire.

3Again, h10 can be designated as output since h10 and j12 always have the same value as the input.

8

Crossover gadget

a b c d e f g h i j k l

1 1 1 1

2 1 y 1

3 1 6 1

4

5 1 1 1

6 1 x 6 x' x …

7 1 1 1 1 1 0 1 1

8 1 … x 1 x'

9 … y 1 y' 1

10 1 1 0

11 y' 1 y …

12 1

…

…

…

…

Figure 1.7: Crossover gadget

Figure 1.7 shows the crossover gadget where the cells that have the same value as the
inputs and the cells that have the opposite value as the inputs are labeled. The purpose
of the crossover gadget is that two wires can cross each other without interacting. In
this case, the x-wire crosses the y-wire, without interacting, i.e. the value of x or y do
not change. Although, the reduction is from Planar Circuit SAT, it is still useful to have
available (see figure 1.21).

a b c d e f g h i j k l

1 1 1 1

2 1 y 1

3 1 6 1

4

5 1 1 1

6 1 x 6 x …

7 1 1 1 1 1 0 1 1

8 1 … x 1

9 … y 1 1

10 1 1 0

11 1 y …

12 1

…

…

…

…

Figure 1.8: Crossover gadget in which input x and input y are both TRUE

Figure 1.8 shows a gadget where input x in b6 and y in f2 are TRUE. The x in b6 is
the input for the horizontal wire gadget. The y in f2 is the input for the vertical wire
gadget. The two wires cross each other and the white cross in the middle, generated by

9

the white 6s, prevents the wires from interacting. Consequently, the output x in k6 and
output y in f11 have the same value as their respective inputs.

a b c d e f g h i j k l

1 1 1 1

2 1 y 1

3 1 6 1

4

5 1 1 1

6 1 x 6 x …

7 1 1 1 1 1 0 1 1

8 1 … x 1

9 … y 1 1

10 1 1 0

11 1 y …

12 1

…

…

…

…

Figure 1.9: Crossover gadget in which input x is TRUE and input y is FALSE

Figure 1.9 shows the TRUE − FALSE case. A horizontal wire with input x is TRUE
crosses a vertical wire with input y is FALSE. The cells of the cross in the middle are all
TRUE, the same way as the cross in figure 1.8. As a result, the two wires do not interact
with each other.

The FALSE−TRUE case as shown in figure 1.10, is similar to theFALSE−TRUE case.

a b c d e f g h i j k l

1 1 1 1

2 1 y 1

3 1 6 1

4

5 1 1 1

6 1 x 6 x …

7 1 1 1 1 1 0 1 1

8 1 … x 1

9 … y 1 1

10 1 1 0

11 1 y …

12 1

…

…

Figure 1.10: Crossover gadget in which input x is FALSE and input y is TRUE

10

a b c d e f g h i j k l

1 1 1 1

2 1 y 1

3 1 6 1

4

5 1 1 1

6 1 x 6 x …

7 1 1 1 1 1 0 1 1

8 1 … x 1

9 … y 1 1

10 1 1 0

11 1 y …

12 1
…

…

…

…

Figure 1.11: Crossover gadget in which input x and input y are both FALSE

Figure 1.11 shows the crossover gadget for the FALSE− FALSE case. A wire in a
crossover gadget in which an input is FALSE is explained above in the TRUE− FALSE
case. Having another wire whose input is FALSE does not affect the cross in the middle.
Regardless of the input values, the cross remains white and therefore the wires can
crossover safely without interfering.

NOR gadget
Squares b2 and n2 respectively represent the inputs x and y of the NOR gate, and h6
represents the output, see 1.12 for a NOR gate without a value assigned to the inputs.
Note that the gadget can be enlarged as needed, much like the wire gadget (see figure
1.21).

We now argue that the input and output values obey the truth table for the NOR

function—that is, for each of the four possible truth assignments V for the input squares,
the puzzle can be solved only if the output has value V (x) NOR V (y).

Below, the figures 1.12, 1.14, 1.15, and 1.17 show an unsolved NOR gadget, and three
out of the four input cases.

a b c d e f g h i j k l m n o

1 1 1 1 1 1 1 1 1 1 1

2 1 x 2 2 2 2 2 2 y 1

3 1 1 2 2 x 2 y 2 2 1 1

4 2 2 x y 2 2

5 1 2 1

6 x y

7

…

…

…

…

Figure 1.12: NOR gadget simulating the gates of the circuit

11

a b c d e f g h i j k l m n o

1 1 1 1 1 1 1 1 1 1 1

2 1 x 2 2 2 2 2 2 y 1

3 1 1 2 2 x 2 y 2 2 1 1

4 2 2 x y 2 2

5 1 2 1

6 x y

7

…

…

…

…

Figure 1.13: The squares d2 and l2 are in all the four cases TRUE

a b c d e f g h i j k l m n o

1 1 1 1 1 1 1 1 1 1 1

2 1 x 2 2 2 2 2 2 y 1

3 1 1 2 2 x 2 y 2 2 1 1

4 2 2 x y 2 2

5 1 2 1

6 x y

7

…

…

…

…

Figure 1.14: NOR in which input x and input y are both TRUE

For the case in which both inputs are true, suppose that b2 and n2 are both white
squares and assume that the instance is solvable. We argue that the puzzle solution must
be as depicted in figure 1.14. Let’s begin from the LHS. Since x is TRUE in b2 and
therefore the white 1 in b3 is satisfied, c3 must be FALSE. This means that d2 is TRUE in
order that the white 2 in c2 sees two white cells. Observe that the white 2 in d3 requires
that precisely one of d4 and e3 is TRUE, since d2 is TRUE and c3 is FALSE. We now
argue that, in particular, d4 must be TRUE and e3 must be FALSE.

Suppose for contradiction d4 is FALSE and e3 is TRUE. We will show that this implies
that n2 must be FALSE, contradicting our earlier assumption that n2 is TRUE. In what
follows, figure 1.15 will be a useful reference. Observe that the white 2 in e2 forces f2
to be FALSE, and the black 2 in e4 forces f4 to be FALSE. Therefore, the white 2 in g2
requires that g3 and h2 are TRUE, and therefore h4 and i3 are FALSE to satisfy the white
2 in h3. Now the black 2s in g4 and i4 force g5 and i5 to be TRUE, making h6 FALSE
because of h5. The white 2 in i2 now makes j2 TRUE. The black 2 in i4 already sees two
black cells, thus j4 is TRUE. Thus k4 makes k3 and l4 FALSE. Now l2 and m3 must be
white to satisfy the white 2 in l3. Hence, m2 makes n2 FALSE, as required. Thus d4 is
TRUE and e3 is FALSE, as claimed.

We now define some shorthand. Let α → β denote that the number in square α,
together with known truth values of some adjacent squares, forces the value in square β
to be as in figure 1.15. Thus the reasoning in the above paragraph can be abbreviated
e2→ f2, e4→ f4, g2→ g3, g2→ h2, . . . , m2→ n2.

12

Having shown that d4 is TRUE and e3 is FALSE, we now continue to argue that
figure 1.14 depicts the unique solution for the case in which x and y are both TRUE. (In
what follows, the → notation now refers to figure 1.14 rather than 1.15.)

e2 → f2
e4 → f4
f3 → g3
g2 → h2
i2 → i3
i2 → j2
h3 → h4
g4 → g5
j3 → j4
j3 → k3
i4 → i5
h5 → h6
k2 → l2
k4 → l4
l3 → m3

(1.1)

This establishes the claim for the TRUE− TRUE case. For the TRUE− FALSE case,
suppose that b2 is TRUE and n2 is FALSE and assume the instance is solvable. We argue
that the solution must be as in figure 1.15 on the next page (here the → notation refers
again to figure 1.15).

e2 → f2
e4 → f4
f3 → g3
g2 → h2
h3 → h4
h3 → i3
g4 → g5
i4 → i5
h5 → h6
i2 → j2
i4 → j4
j3 → k3
k2 → l2
k4 → l4
l3 → m3

(1.2)

13

a b c d e f g h i j k l m n o

1 1 1 1 1 1 1 1 1 1 1

2 1 x 2 2 2 2 2 2 y 1

3 1 1 2 2 x 2 y 2 2 1 1

4 2 2 x y 2 2

5 1 2 1

6 x y

7

…

…

…

…

Figure 1.15: NOR gadget in which input x is TRUE and input y is FALSE

a b c d e f g h i j k l m n o

1 1 1 1 1 1 1 1 1 1 1

2 1 x 2 2 2 2 2 2 y 1

3 1 1 2 2 x 2 y 2 2 1 1

4 2 2 x y 2 2

5 1 2 1

6 x y

7

…

…

…

…

Figure 1.16: NOR gadget in which input x is FALSE and input y is TRUE

Figure 1.16 shows a NOR gadget where input x is FALSE and y is TRUE. This instance
is the mirrored version of figure 1.15 and the argument is essentially the same.

a b c d e f g h i j k l m n o

1 1 1 1 1 1 1 1 1 1 1

2 1 x 2 2 2 2 2 2 y 1

3 1 1 2 2 x 2 y 2 2 1 1

4 2 2 x y 2 2

5 1 2 1

6 x y

7

…

…

…

…

Figure 1.17: NOR gadget in which input x and input y are both FALSE

Figure 1.17 shows a NOR gadget where input x is FALSE and y is FALSE. It is easy to
see that c3 and d2 are white and therefore d4 and e3 are black. This makes f2 and f4

14

white. Consequently, g3 is black because the white 2 in f3 already sees two white cells,
and h2 is white to satisfy the white 2 in g2. Verify that the RHS is symmetrical to the
LHS.

Now, g3 and i3 are black and they have the same value as the input, and we know
from above that h2 is white. Therefore h4 is white because of the white 2 in h3. The
black 2s in g4 and i4 see two white cells and one black cell, thus g5 and i5 are black.
Hence the output x ↓ y in h6 is TRUE.

TRUE terminator gadget
Before the figure for the terminator gadget: The purpose of the TRUE terminator gadget
is to force the simulated circuit to have TRUE final output. We need this because a
correct proof requires that a circuit be satisfiable if and only if the corresponding puzzle
is solvable. With the TRUE terminator gadget, the puzzle becomes unsolvable unless the
final output of the simulated circuit (which is wired to the input of the TRUE terminator
gadget) is TRUE.

a b c d e

1

2 x

3 2

4 1 1 x 1 1

5 1 1 1

6 1

…

…

…

…

…

Figure 1.18: TRUE terminator gadget

Figure 1.18 shows a gadget where input x is forced to be always TRUE.

The white 1 in c5 forces c4 to be TRUE. The black 1s in b4 and d4 respectively force
b3 and d3 to be FALSE. Thus c3 forces the input in c2 to be TRUE.

NOR formula

A

B

A

C

B

A

[(A ↓ B) ↓ (A ↓ C)] ↓ (B ↓ A)

Figure 1.19: Planar circuit consisting entirely of NOR gates. This output is TRUE only
when A is FALSE, B is TRUE and C is FALSE.

15

a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw

1 1 1 1 1 1 1 1

2 1 A 3 1 1 A 1

3 1 31 1 1 1 0 1 1 1 2

4 1 2

5 1 1 2 2 1

6 2

7 1 2 A 2 1 1 1 1

8 2 A B 2 x 1 1 x 1

9 1 2 B 2 1 1 4 1

10 2

11 1 2 2 1

12 2 1

13 1 1 1 1 1 2 1

14 1 B 10 1 1 B 1 1 1 0

15 1 30 1 1 1 0 1 1 1 1 1 1 x

16 1 1 1 1

17 1

18 1 1 1

19 1 x 1

20 1 2

21 2

22 1 2 2 1

23 2

24 1 2 x 2 1 1 1 1

25 2 x y 2 w 1 1 w 1

26 1 2 y 2 1 1 23 1

27 2

28 1 2 2 1

29 2

30 1 2

31 1 y 1

32 1 1 1

33 1

34 1 1 1 1

35 1 1 0 1 1 1 1 1 y

36 1 A 3 1 1 A 1 1 1 0

37 1 74 1 1 1 0 1 1 1 2 1

38 1 2 1

39 1 1 2 2 1

40 2

41 1 2 A 2 1 1 4 1

42 2 A C 2 y 1 1 y 1

43 1 2 C 2 1 1 4 1

44 2

45 1 2 2 1

46 2

47 1 1 1 1 1 2

48 1 C 17 1 1 C 1 1

49 1 1 1 1 1 0 1 1 1 1 1 1

50 1 1 1 0

51 1 1 w

52 1 1 1

53

54 1 1 1

55 1 w 1

56 1 2

57 2

58 1 2 2 1

59 2

60 1 2 w 2 1 1

61 2 w z 2 w z 1 1

62 1 2 z 2 1 1

63 2

64 1 2 2 1

65 2

66 1 2

67 1 z 1

68 1 1 1

69

70 1 1 1

71 1 z

72 1 1 0

73 1

74 1

75

76

77 1

78 1

79 1 1 0 1 1 1 1

80 1 B 18 1 1 B 1

81 1 1 1 1 1 0 1 1 1 4 1

82 1

83 1

84 1

85 1

86 1 1 0

87 1 B

88 1 1 1

89

90 1 1 1

91 1 B 1

92 1 2

93 2

94 1 2 2 1

95 2

96 1 2 B 2 1 1 23 1

97 2 B A 2 z 1 1 z 1

98 1 2 A 2 1 1 1 1

99 2

100 1 2 2 1

101 2

102 1 2

103 1 A 1

104 1 1 1

105

106 1 1

107 1 A

108 1 1 0

109 1

110 1

111 1

112 1

113 1 1 0 1 1 4 1

114 1 A 11 1 1 A 1

115 1 1 1 1 1 0 1 1 1 4 1

116 1

117 1

Figure 1.20: Illustration of an unsolved grid consisting of gadgets that express together [(A ↓ B) ↓ (A ↓ C)] ↓ (B ↓ A)

16

a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw

1 1 1 1 1 1 1 1

2 1 A 3 1 1 A 1

3 1 31 1 1 1 0 1 1 1 2

4 1 2

5 1 1 2 2 1

6 2

7 1 2 A 2 1 1 1 1

8 2 A B 2 x 1 1 x 1

9 1 2 B 2 1 1 4 1

10 2

11 1 2 2 1

12 2 1

13 1 1 1 1 1 2 1

14 1 B 10 1 1 B 1 1 1 0

15 1 30 1 1 1 0 1 1 1 1 1 1 x

16 1 1 1 1

17 1

18 1 1 1

19 1 x 1

20 1 2

21 2

22 1 2 2 1

23 2

24 1 2 x 2 1 1 1 1

25 2 x y 2 w 1 1 w 1

26 1 2 y 2 1 1 23 1

27 2

28 1 2 2 1

29 2

30 1 2

31 1 y 1

32 1 1 1

33 1

34 1 1 1 1

35 1 1 0 1 1 1 1 1 y

36 1 A 3 1 1 A 1 1 1 0

37 1 74 1 1 1 0 1 1 1 2 1

38 1 2 1

39 1 1 2 2 1

40 2

41 1 2 A 2 1 1 4 1

42 2 A C 2 y 1 1 y 1

43 1 2 C 2 1 1 4 1

44 2

45 1 2 2 1

46 2

47 1 1 1 1 1 2

48 1 C 17 1 1 C 1 1

49 1 1 1 1 1 0 1 1 1 1 1 1

50 1 1 1 0

51 1 1 w

52 1 1 1

53

54 1 1 1

55 1 w 1

56 1 2

57 2

58 1 2 2 1

59 2

60 1 2 w 2 1 1

61 2 w z 2 w z 1 1

62 1 2 z 2 1 1

63 2

64 1 2 2 1

65 2

66 1 2

67 1 z 1

68 1 1 1

69

70 1 1 1

71 1

72 1 1 0

73 1

74 1

75

76

77 1

78 1

79 1 1 0 1 1 1 1

80 1 B 18 1 1 B 1

81 1 1 1 1 1 0 1 1 1 4 1

82 1

83 1

84 1

85 1

86 1 1 0

87 1 B

88 1 1 1

89

90 1 1 1

91 1 B 1

92 1 2

93 2

94 1 2 2 1

95 2

96 1 2 B 2 1 1 23 1

97 2 B A 2 z 1 1 z 1

98 1 2 A 2 1 1 1 1

99 2

100 1 2 2 1

101 2

102 1 2

103 1 A 1

104 1 1 1

105

106 1 1 1

107 1 A

108 1 1 0

109 1

110 1

111 1

112 1

113 1 1 0 1 1 4 1

114 1 A 11 1 1 A 1

115 1 1 1 1 1 0 1 1 1 4 1

116 1

117 1

Figure 1.21: Solvable solution where A is FALSE, B is TRUE, and C are FALSE.

17

a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw

1 1 1 1 1 1 1 1

2 1 A 3 1 1 A 1

3 1 31 1 1 1 2 1 1 1 2

4 1 2

5 1 1 2 2 1

6 2

7 1 2 A 2 1 1 1 1

8 2 A B 2 x 1 1 x 1

9 1 2 B 2 1 1 4 1

10 2

11 1 2 2 1

12 2 1

13 1 1 1 1 1 2 1

14 1 B 10 1 1 B 1 1 1 0

15 1 30 1 1 1 0 1 1 1 1 1 1 x

16 1 1 1 1

17 1

18 1 1 1

19 1 x 1

20 1 2

21 2

22 1 2 2 1

23 2

24 1 2 x 2 1 1 1 1

25 2 x y 2 w 1 1 w 1

26 1 2 y 2 1 1 23 1

27 2

28 1 2 2 1

29 2

30 1 2

31 1 y 1

32 1 1 1

33 1

34 1 1 1 1

35 1 1 0 1 1 1 1 1 y

36 1 A 3 1 1 A 1 1 1 0

37 1 74 1 1 1 0 1 1 1 2 1

38 1 2 1

39 1 1 2 2 1

40 2

41 1 2 A 2 1 1 4 1

42 2 A C 2 y 1 1 y 1

43 1 2 C 2 1 1 4 1

44 2

45 1 2 2 1

46 2

47 1 1 1 1 1 2

48 1 C 17 1 1 C 1 1

49 1 1 1 1 1 0 1 1 1 1 1 1

50 1 1 1 0

51 1 1 w

52 1 1 1

53

54 1 1 1

55 1 w 1

56 1 2

57 2

58 1 2 2 1

59 2

60 1 2 w 2 1 1

61 2 w z 2 w z 1 1

62 1 2 z 2 1 1

63 2

64 1 2 2 1

65 2

66 1 2

67 1 z 1

68 1 1 1

69

70 1 1 1

71 1

72 1 1 0

73 1

74 1

75

76

77 1

78 1

79 1 1 0 1 1 1 1

80 1 B 18 1 1 B 1

81 1 1 1 1 1 0 1 1 1 4 1

82 1

83 1

84 1

85 1

86 1 1 0

87 1 B

88 1 1 1

89

90 1 1 1

91 1 B 1

92 1 2

93 2

94 1 2 2 1

95 2

96 1 2 B 2 1 1 23 1

97 2 B A 2 z 1 1 z 1

98 1 2 A 2 1 1 1 1

99 2

100 1 2 2 1

101 2

102 1 2

103 1 A 1

104 1 1 1

105

106 1 1 1

107 1 A

108 1 1 0

109 1

110 1

111 1

112 1

113 1 1 0 1 1 4 1

114 1 A 11 1 1 A 1

115 1 1 1 1 1 0 1 1 1 4 1

116 1

117 1

Figure 1.22: Failed solution where A,B, and C are TRUE.

18

Figure 1.19 is an example of a planar circuit consisting of only NOR gates with as input
A, B and C, and as output the formula [(A ↓ B) ↓ (A ↓ C)] ↓ (B ↓ A). Figure 1.20 shows
how to convert a planar circuit to a irasuto configuration using the gadgets as described
earlier. There are no Boolean values assigned to the variables in this grid. In figure 1.21,
the orange input squares A,B and C are TRUE. The output is in au61. The NOR gadgets
are 90 degrees rotated. This does not affect the functioning of the gadgets. Note the
similarity of the formation of the NOR gates of the two figures 1.19 and 1.21. This grid is
to show how the gadgets are connected to correspond to the planar circuit. Figure 1.21
can be seen as a binary tree but turned a quarter clockwise. The inputs of the formula
are in q2, j14 and c48 and they are at the same time used as input for the split gadget.
They are derived from the first appearance of that variable in the formula, read from left
to right. For clarity, the inputs are marked in bold: [(A ↓ B) ↓ (A ↓ C)] ↓ (B ↓ A). The
inputs are carried to the input cells of the NOR gadgets through the wire and the turn
gadgets, and eventually become the inputs of the NOR gadgets. The inputs of the NOR

gadgets are marked yellow in aa2, aa14, aa36, aa48, ai80 and aa114, and these are the
leaves of the tree. The outcome of the NOR gadget with inputs A and B, thus A ↓ B in
ae8, is assigned to the variable x. The variables x, y, w and z are used for the purpose
of readability. Eventually, the root is in au61. The root is at the same time the input
for the TRUE terminator gadget which tests if this irasuto configuration is solvable. We
can see that the final output in au61 is white, thus TRUE. Figure 1.22 shows that the
particular assignment, A, B and C are TRUE, does not produce a solution to the puzzle.

Now, the question arises if there exists an algorithm computed by a polynomial Turing
machine that converts a planar circuit to an irasuto configuration that is consistent if and
only if the planar circuit is satisfiable. First, we place the inputs. These are coloured
orange in this example. The distance (the number of cells) between an input and the
NOR gadget can be expressed as 7k, where k is the counter of unique appearances in the
formula. Input A is the first appearance of the formula, thus the distance of A is 7 ·1 = 7.
Input B is the second unique appearance in the formula, the distance of B is 7 · 2 = 14.
Lastly, the distance of C is 7 · 3 = 21. Note that it is possible to make the distance larger
by increasing the 7 in 7k.

Additionally, the length of the NOR gadget is at least 15 cells, see the two NOR gadgets
with inputs A and B, and A and C. These two gadgets are vertically separated from each
other by nineteen cells. This does not necessarily have to be nineteen cells. The number of
cells can be smaller or bigger. The separation results in extended NOR gadgets in the next
layer to ensure there is enough space to place (other) gadgets. The NOR gadgets closer to
the root are potentially larger. The length of a NOR gadget increases polynomially, when
more layers are added.
By constructing multiple gadgets, we gave a reduction from Planar Circuit SAT to
irasuto. We have shown that a planar circuit is satisfiable if and only if the irasuto
instance is solvable. Thus, we have proved that irasuto is in NP and it is NP-hard. It
follows that irasuto is NP-complete.

19

Conclusion and discussion

In this thesis, we presented a proof of the NP-completeness of irasuto by providing a
reduction from Planar Circuit SAT . For this reduction, we built irasuto gadgets in a
way that these correspond to parts of a planar circuit. We have shown that the gadgets
can be connected such that the final output of the irasuto configuration corresponds to
whether a Boolean circuit consisting of NOR operators is satisfiable or not. The proof we
have provided, shows that irasuto is at least as hard as Planar Circuit SAT. In addition,
we can establish that irasuto is at least as hard as any NP-complete problem.

There are two things we would have done differently in this paper if we had had
more time. First, we could provide an in-depth analysis of the growth in the size of the
grid when more layers are added but the growth is clearly polynomial in the size of the
circuit. Second, the wire gadget is perhaps not the most efficient or elegant gadget. It is
interesting to investigate if such a gadget can be constructed. If that is the case, then the
wires in the split gadget, turn gadget and crossover gadget should be adjusted to conform
to the new wire gadget.

Now it is known that irasuto is NP-complete, this problem can be used to prove
as a basis for future reductions. Furthermore, other puzzles on the Janko website can
be proven to be NP-complete for future research [10]. For example, yakuso is a pen-
and-paper puzzle involving a partially completed grid as well however the puzzle has a
different set of rules [11]. Therefore, instead of a reduction from a variant of SAT, it might
be easier to consider other NP-complete problems. With regard to yakuso, we consider
Subset Sum Problem to be a promising known NP-complete problem to reduce from.

Finally, reduction from variations of Planar Circuit SAT are likely possible for many
pen-and-paper puzzles on the Janko website, however others may be more intuitive and/or
more conveniently solved by other kinds of reductions (e.g., Hamiltonian grid graph path
or Vertex-Cover) depending on the characteristics of the puzzles.

20

Bibliography

[1] Takayuki Yato and Takahiro Seta. “Complexity and completeness of finding another
solution and its application to puzzles”. In: IEICE transactions on fundamentals of
electronics, communications and computer sciences 86.5 (2003), pp. 1052–1060.

[2] Richard Kaye. “Minesweeper is NP-complete”. In: The Mathematical Intelligencer
22.2 (2000), pp. 9–15.

[3] Charles J Colbourn. “The complexity of completing partial latin squares”. In:
Discrete Applied Mathematics 8.1 (1984), pp. 25–30.

[4] Kouichi Kotsuma and Yasuhiko Takenaga. “NP-completeness and enumeration of
number link puzzle”. In: IEICE Technical Report COMP2009–49, IEICE (2010).

[5] Akihiro Uejima, Hiroaki Suzuki, and Atsuki Okada. “The complexity of generalized
pipe link puzzles”. In: Journal of Information Processing 25 (2017), pp. 724–729.

[6] Aaron Adcock et al. “Zig-zag numberlink is NP-complete”. In: Journal of Information
Processing 23.3 (2015), pp. 239–245.

[7] Stephen Cook. “The P versus NP problem”. In: The millennium prize problems
(2006), pp. 87–104.

[8] Otto Janko. Irasuto. url: https://www.janko.at/Raetsel/Irasuto/index.htm.
(accessed: 08-05-2021).

[9] Michael Sipser. “Introduction to the Theory of Computation”. In: (2012).

[10] Otto Janko. Rätsel, Puzzles und anderer Denksport. url: https://www.janko.at/
Raetsel/index.htm. (accessed: 08-05-2021).

[11] Otto Janko. Irasuto. url: https://www.janko.at/Raetsel/Yakuso/index.htm.
(accessed: 02-07-2021).

21

https://www.janko.at/Raetsel/Irasuto/index.htm
https://www.janko.at/Raetsel/index.htm
https://www.janko.at/Raetsel/index.htm
https://www.janko.at/Raetsel/Yakuso/index.htm

Appendix

As stated earlier, we attempted to build a simpler gadget which is shown in figure 1.23.
This gadget is functioning when the input is TRUE. However, when the input x is FALSE,
the white 1 left from output x sees ten white cells. Clearly, this is against the rules. The
solution for this is to pivot around the white 0 as we did in the final wire gadget 1.3.

… 1 1 1 1 …

… 1 10 1 …

… 1 1 1 1 …

… 1 1 1 1 …

… 1 x 10 1 x …

… 1 1 1 1 …

… 1 1 1 1 …

… 1 x 10 1 x …

… 1 1 1 1 …

Figure 1.23: Incorrect wire gadgets

22

	Introduction
	Irasuto
	Rules
	Planar Circuit SAT
	Proof NP-completeness

	Conclusion and discussion
	Appendix

