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Abstract

Seasonal influenza is an easily transmittable disease which causes up to 500,000 deaths annually.
There are three types of seasonal influenza, of which influenza A is the most common. The best
protection against an influenza infection is vaccination. Due to the fast evolution of influenza,
vaccines can become non-functional and therefore have to be updated regularly. Understanding the
global circulation of seasonal influenza helps deciding which strains should be included in the vaccine.
In contrast, for novel influenza strains that cause an influenza pandemic a vaccine will not always be
immediately available. Other strategies are necessary to buy time for the development of a vaccine.
For both seasonal and pandemic influenza, mathematical models are useful tools to simulate their
global dynamics and methods to prevent their spreading. This thesis discusses the global dynamics
of seasonal and pandemic influenza, obtained from experimental data and mathematical modeling,
and the way in which this information can be used to reduce influenza infections.

1 Introduction

Worldwide, influenza epidemics are responsible for three to five million cases of severe illness and 250,000
to 500,000 deaths annually [WHO, 2009]. In temperate regions, influenza epidemics occur seasonally and
peak in the winter and are almost absent in the summer. Three types of influenza circulate in humans
(A, B and C), and of these three, influenza A is the most virulent. Influenza A is not only found in
humans but also in a variety of animals, of which pigs and birds are the most noteworthy [Webster et al.,
1992]; pigs for being the source of the swine influenza pandemic in 2009 and birds for being considered
the most likely source of novel influenza pandemics prior to the pandemic of 2009. Distinct influenza A
subtypes infect different species, although all influenza A subtypes appear in waterfowls [Webster et al.,
1992].

Influenza A is subtyped according to two virus surface proteins, hemaegglutinin (HA) and neu-
raminidase (NA). Currently, 16 types of HA [Fouchier et al., 2005] and 9 types of NA have been identified
[WHO, 1980]. HA binds to host cell receptors containing the appropriate saliac acid moieties and there-
fore is important in determining the virus tropism [Medina and Garca-Sastre, 2011]. NA is necessary for
the proper budding and release of novel virions from the host cell surface as it cleaves the bond between
HA and the host cell receptor [Medina and Garca-Sastre, 2011].

Of all influenza A subtypes, H1N1 and H3N2 are the strains currently circulating in humans and are
the cause of seasonal influenza epidemics [WHO, 2009], although occasional infection of humans with
other strains, e.g. highly pathogenic avian influenza (HPAI) A H5N1 strains, occurs. The H1N1 subtype
already circulated in the human population prior to the influenza pandemic of 1957, when it was replaced
by H2N2 [Hay et al., 2001, Medina and Garca-Sastre, 2011]. H2N2, subsequently, was replaced by H3N2
in the 1968 pandemic. H3N2 hereafter remained in the human population causing seasonal influenza
epidemics, and H1N1 was reintroduced in the human population in 1977 [Hay et al., 2001, Medina and
Garca-Sastre, 2011]. Since then, H1N1 and H3N2 co-occur in the human population [Hay et al., 2001].
Interesting to note is that pandemic influenza strains do not necessarily belong to a novel subtype, as
illustrated by the influenza virus that was the cause of the 2009 pandemic which also was an influenza
A H1N1 virus.
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Being the virus’ two major surface proteins, HA and NA are the main targets of the host’s humoral
immune system and therefore antigenic HA and NA data provide crucial information about vaccine
strain selection. Because HA and NA are the main targets, changes in their antigenicity are considered
to be a driving force in influenza evolution. Each season, changes in the amino acid composition of HA
and NA are found which potentially change the antigenic properties of the influenza strain, a process
known as antigenic drift. This causes influenza to partially evade immunity acquired in the human
population and influenza therefore is able to keep causing epidemics. Antigenic drift also causes the
need for the influenza vaccine to be updated frequently; over 20 updates of the H3N2 virus component
of the influenza vaccine have been made since the virus’ introduction in humans in 1968 [Fouchier and
Smith, 2010].

Another, potentially more dramatic, process in influenza evolution is antigenic shift. In this process,
viral genomes of different strains are reassorted and novel influenza subtypes are created which, due
to a possible lack of immunity against these strains, can cause an influenza pandemic. This explains
the major concern that, among the avian influenza strains that occasionally infect humans, eventually
a variant emerges that is transmittable from human to human, as happened during the 1957 and the
1968 pandemics [Hsieh et al., 2006, Hay et al., 2001]. The 2009 influenza outbreak, originating in pigs,
shows that species other than birds are also potential sources of human to human transmittable influenza
strains. The 2009 pandemic strain went undetected for over a decade in pigs, where it was created by
multiple reassortment events [Garten et al., 2009].

To ensure the availability of sufficient amounts of seasonal influenza vaccine, the composition of the
vaccine has to be decided almost a year before the season in which the vaccine will be administered [Rus-
sell et al., 2008a]. This calls for reliable prediction methods for the influenza evolution but also for insight
in the spread of seasonal influenza around the world. The latter is true as seasonal influenza epidemics
are subject to global dynamics (discussed below), where the knowledge about the dynamics gives impor-
tant insight in the development of epidemics. In contrast, novel potentially pandemic influenza strains
call for immediate action to prevent spreading around the world, and different vaccination strategies are
needed than in the case of seasonal influenza epidemics.

This thesis discusses views on the global dynamics and evolution of the seasonal influenza virus.
Furthermore, this thesis illustrates the use of mathematical models to predict the dynamics of a pandemic
influenza strain. With these models, the question of how to efficiently mitigate a pandemic, e.g. via
vaccination or via travel bans to prevent spreading of the virus, is addressed. Based on these insights,
this thesis suggests strategies for efficiently mitigating the impact of seasonal influenza epidemics as well
as pandemic influenza.

2 Seasonal influenza is re-introduced annually

The exact factors that cause influenza epidemics to occur only in the winter season are unknown, however,
it means that influenza has to bridge the summer season in which outbreaks do not occur. Knowing how
influenza is capable of re-emerging each winter season aids in vaccine development by giving information
about which influenza strains should be included in the vaccine. Two hypotheses have been proposed
for the way in which influenza epidemics re-emerge annually: a) novel influenza strains are seeded from
different regions annually and go locally extinct; and b) low levels of influenza virus persist locally
over the summer season and seed the epidemic in the following winter season. These two possibilities
are distinguishable in a phylogenetic analysis (see Figure 1). Virus samples from a certain region do
not necessarily cluster together and are interspersed by samples from other regions if influenza is re-
introduced annually (Figure 1A), because virus isolates from one region originate from another region.
Virus samples from different seasons from the same region are expected to cluster together if influenza
persists locally during the summer season (Figure 1B). Nowadays, a semi-annual meeting is held by
the WHO to discuss the need for an update of the influenza vaccine [Russell et al., 2008a]. Hereto,
genetic, antigenic, serological and epidemiological data are analyzed and the understanding for which
of the two mechanisms underlies the seasonality of annual influenza epidemics helps the development
of vaccines. Some of the analyses that lead to the hypothesis of the global circulation of influenza are
briefly addressed in this section. The global circulation of influenza means that for the development of
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Figure 1: Phylogenetic trees for the two influenza seasonality hypotheses in temperate regions. (A) A hypo-
thetical tree for virus samples from three different regions (red, blue and green) where the influenza virus is
reintroduced annually, the influenza strains from the three different regions are more related to each other annu-
ally than to samples of the same region in another influenza season. (B) If the virus persists locally during the
non-influenza season and seeds the next influenza epidemic in that region, virus samples from within a region
cluster together. (Adapted from Nelson et al. [2007] and Russell et al. [2008b])

a vaccine global monitoring of influenza is requested to accurately predict which strains cause the next
epidemic.

To distinguish between the local persistence and global circulation of influenza, H3N2 virus samples
were taken in New York state and other localities. In a phylogenetic tree constructed for these samples,
the strains sampled in New York state did not form a monophyletic group [Nelson et al., 2006, 2007].
The samples from New York state were interspersed by virus samples from other localities, which is in
favour of the hypothesis of annual re-introduction of influenza (Figure 1A). Analyzing the time to the
most recent common ancestor (MRCA) of the different influenza A genes of strains sampled in New York
state revealed that, in many cases, the MRCA of the different genes dated back to several years before
the season in which the strains were sampled [Rambaut et al., 2008]. The long time to the MRCA implies
that genetic diversity in influenza is maintained over many years, something which is not expected if the
virus would persist locally during the summer season.

Besides phylogenetic analyses, antigenic evolution analyses have also been used to elucidate whether
influenza is re-introduced annually or persists locally. Where in phylogenetic methods viral sequences,
e.g. viral RNA sequences, are used to reveal differences between the viruses, antigenic analyses use the
difference in efficiency at which an immune system, primed on a specific influenza variant, targets another
influenza variant. Such priming of the immune system is reached by vaccination with or being infected
by this specific strain. Similar to the change in RNA sequence, the antigenicity of a virus changes during
its evolution. These changes in the antigenicity over multiple influenza seasons are measurable, like the
changes in RNA sequences, and are used to reconstruct the ancestry of strains (Box 1) [Smith et al.,
2004]. The antigenic changes between influenza A H3N2 strains in subsequent seasons was monitored to
reveal between-season and between-region differences. This was done for virus samples collected around
the world from 2002 to 2007. The antigenic distances of these viruses to influenza A/Sydney/5/1997,
a strain that dominated in 1998 and which was used as a reference strain because subsequent influenza
strains were shown to evolve away from this strain [Russell et al., 2008b], were measured. These analyses
showed that there is a lot of heterogeneity in antigenicity between regions in the same influenza season,
but also in the same region between different influenza seasons [Russell et al., 2008b]. Despite the large
heterogeneity within seasons and regions, a global trend of influenza evolving away from the reference
strain was observed [Russell et al., 2008b]. Such a global trend is an indication for influenza to circulate
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globally instead of persisting locally [Russell et al., 2008b].
Phylogenetic and antigenic analyses suggest that, in temperate regions, influenza strains causing

seasonal influenza epidemics do not persist locally over summer [Russell et al., 2008b, Rambaut et al.,
2008, Nelson et al., 2007, 2006]. Rather, influenza is annually re-introduced in temperate regions. Such
an annual re-introduction implies that seasonal influenza circulates on a global scale.

3 Annual influenza epidemics do not originate from one specific
region

Figure 2: Timing of influenza epidemics in East (Northern Hemisphere, upper panel) and Southeast Asia
(tropical region, middle panel) and Oceania (Southern Hemisphere, lower panel). Per two week intervals, the
number of H3N2 infections, as a fraction of the total number of H3N2 infections at a specific location over the
whole study period, are plotted. Peaks in the number of influenza infections in the Northern as well as the
Southern Hemisphere coincide with peaks during the winter season on the Northern Hemisphere (red boxes) and
on the Southern Hemisphere (blue boxes). Original picture from Russell et al. [2008b].

The observation that influenza circulates globally raises the question what the dynamics that govern
this process are. By answering that question it is not only known that influenza circulates globally but
also how it circulates globally. This knowledge helps in adequately predicting future epidemics but might
also help in adequately intervening with the global circulation.

The relatively long time to the MRCA, as shown by Rambaut et al. [2008], suggests the presence of
a source population where the virus circulates continuously and where the viral diversity is not limited
by annual bottlenecks. If the latter would happen, strains would likely have an MRCA at the time of
the most recent bottleneck; an MRCA multiple years ago would be highly unlikely. A source population
may be fixed in one location, but can also consist of populations in different locations where the virus
continuously circulates such that the source region consists of a network of locations. Non-source regions
are referred to as sinks, meaning that they are seeded with influenza strains from elsewhere. A sink,
on its turn, can seed other regions and thereby also act as a source. Antigenic and genetic analyses
by Russell et al. [2008b] have suggested that strains causing the annual influenza epidemics originate in
East-Southeast (E-SE) Asia, whereas Bedford et al. [2010] and Bahl et al. [2011] suggested that viral
strains circulate globally and that every region acts both as a source and as a sink of seasonal influenza.
Since knowing if the source is fixed or circulates among regions is important for vaccine development,
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more reliable predictions of which strains will likely circulate in the next influenza season are possible if
the spreading pattern of influenza is known.

Bahl et al. [2011] reasoned that if a single region were the source of seasonal influenza, a high genetic
diversity of influenza would be expected in such a region. This was tested by measuring the genetic
diversity of influenza samples collected in different regions. Temperate regions showed increases and
decreases in their genetic influenza diversity over time which correlated with the season [Bahl et al.,
2011]. Regions in E-SE Asia showed only little genetic diversity, which, according to Bahl et al. [2011],
makes them unlikely to be the source of seasonal influenza. Because temperate regions also did not show
a constant high level of genetic diversity, this supports the hypothesis that influenza circulates globally
between regions with the appropriate influenza season.

Russell et al. [2008b], in contract, monitored the antigenicity of influenza strains to reveal the source
of the annual influenza epidemics. By measuring the antigenic distance of strains collected around the
world to a reference strain, a mean global antigenic distance was retrieved. By grouping strains by the
region where they were sampled, the mean antigenic distance of strains from a specific region to the
reference strain was calculated. The difference between the mean antigenic distance of a region and the
mean global antigenic distance to the reference strain was used to indicate regions with a lower or a
higher antigenic distance than the global mean [Russell et al., 2008b]. Regions that are antigenically
above the global mean are antigenically advanced and thus a likely source, whereas regions that are
antigenically below the global mean are antigenically lagging and thus likely sinks of seasonal influenza.

Making use of antigenic and genetic distances, Russell et al. [2008b] showed that strains collected in
Southern American regions are antigenically below the global mean and that viral strains collected in
eastern Asian regions, except for Japan, are above the global mean. Furthermore, due to the absence
of a winter season, the seasonal influenza pattern as seen in temperate regions is absent in tropical
regions in Asia [Viboud et al., 2006, Nelson and Holmes, 2007] and influenza may be expected to be
endemic in eastern Asian regions. However, several studies showed a pattern of influenza epidemics in
tropical regions occurring during periods of high rainfall [Dosseh et al., 2000, Chew et al., 1998, Rao and
Banerjee, 1993] and the continuous circulation of influenza in one region is therefore unlikely. Russell
et al. [2008b] therefore propose that influenza epidemics occur at different time points in different regions
in east and Southeast Asia (E-SE) Asia (Figure 2, middle panel) and that E-SE Asian regions therewith
act as the source of seasonal influenza epidemics.

There may also be another interpretation of the occurrence of epidemics at different time points in E-
SE Asian regions. Peaks in the influenza incidence in Southeast Asia appear to coincide with peaks in the
influenza incidence in regions located on the Northern Hemisphere (east Asia, Figure 2, upper panel) and
regions located on the Southern Hemisphere (Oceania, Figure 2, lower panel). It is at least conceivable
that such biannual fluctuations arise because of the spreading of influenza from temperate regions, via
tropical regions, to temperate regions on the opposite hemisphere. Similar biannual fluctuations were
also shown in the genetic diversity of influenza in Hong Kong [Bahl et al., 2011]. An increase in the
influenza incidence and diversity is then observed when influenza crosses trough tropical regions. In
contrast to the fixed source that Russell et al. [2008b] propose, this opens the possibility for many
regions to occasionally be the source of the annual influenza epidemics.

The spreading pattern as discussed above is consistent with other models that do not consider an
influenza source fixed in one location [Bedford et al., 2010, Bahl et al., 2011]. Moreover, the absence of a
fixed source for seasonal influenza epidemics is also supported by the network of influenza spreading that
Kenah et al. [2011] reveal. In this network, Hong Kong and Southeast Asia are located central between
regions from the northern and southern hemisphere, serving as a bridge between those two [Kenah et al.,
2011].

Further suggestions that not only regions in E-SE Asia act as the source of annual influenza epidemics
comes, unintendedly, from Russell et al. [2008b] themselves. In their analysis of the antigenic distance
of a region to the global mean they showed that regions in eastern Asia are antigenically above the
global mean, however, regions in Southeast Asia are antigenically around the global mean. Different
other regions, including the USA, are antigenically more above the global mean than Southeastern Asian
regions. Therefore, Bedford et al. [2010] suggest that this shows that regions such as the USA could also
act as the source of annual influenza epidemics, despite the fact that Southeast Asia is often mentioned
as the source for annual influenza epidemics [Russell et al., 2008b, Chan et al., 2010, Russell et al.,
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Figure 3: Genealogies which show the location of sampling. In two hypothetical genealogies that are constructed
with the coalescence theory, timing of coalescence events and sampling locations are shown (different colours of
the branches depict different localities). Coalescence events occur where, going backwards in time, two branches
of the tree merge; the lineages share a common ancestor at this node. The location of the node also shows a)
when this common ancestor was present and b) where this common ancestor was present. The trunk of the tree,
from where each subtree originates, shows the source region, viral strains sampled world wide after all originate
from this region. (A) If the annual influenza epidemics originate from a single source region (red), this region
is most of the time found at the trunk of each subtree. (B) If different regions are the source of the annual
epidemics, then the trunk of each subtree is occupied by different regions at different times.

In addition to the phylogenetic and antigenic analyses that have been discussed, the so-called coa-
lescence method has been used to establish the genetic relationship between virus samples. In creating
a phylogeny, one often considers genetic distances between sequences and orders the sequences in a tree
according to the genetic differences. The branches of the tree are drawn such that the observed genetic
differences are explained by the tree. Another way to construct a tree is by looking at the direct related-
ness between strains. To explain this method, consider a population of N haploid individuals in which
every individual has a specific allele a. In a sample of n individuals from the population, n copies of the
allele a are present. Now, time is reversed, as one would do in constructing one’s family tree, to reveal
the ancestry of each of the n alleles. There is a chance that two of the alleles in the sample share the
same parent (a common ancestor), which means that in the previous generation n−1 copies of the allele
a were present (the chance that at a certain time point multiple alleles share a parental allele is assumed
to be negligible [Otto and Day, 2007]). This event, where n alleles only have n − 1 parent alleles, is
known as a coalescence event [Otto and Day, 2007].

The n alleles are sampled in the present (t=0) and via simple statistic rules the chance of two alleles,
from a sample n = 2, coalescing in the previous generation (t=1) is calculated. In the same way, the
chance of these two alleles coalescing not in the previous generation but two generations ago (t=2) is
calculated. Repeating this process gives a probability distribution for the coalescence of the two strains
[Otto and Day, 2007]. Similarly, a distribution for a sample of n alleles to coalesce into n − 1 alleles is
found. This expression can be used iteratively to calculate the time to all coalescence events if a sample
of size n is taken; n→ n−1, n−1→ n−2 . . . → 1. In a tree, a coalescence event is represented as
two lineages coming together, revealing the common ancestor of these lineages. However, because of the
probability distribution underlying a coalescence event, an immense amount of trees can be constructed
using the basic idea described above.

The power of the coalescence method is that now a tree which shows the time, in terms of generations,
to the ancestor of alleles is constructed; a genealogy instead of a phylogeny is constructed. The time
can be used when mutations are taken into account; alleles that are very similar to each other share an
ancestor (coalesce) very recently in the past and alleles that are not very similar to each other share an
ancestor (coalesce) more distant in the past [Otto and Day, 2007]. The large number of possible trees
that are constructed using the coalescence theory can thus be reduced, only the most likely trees are
selected by using such information [Durbin et al., 2006, Fu and Li, 1999, Kuhner, 2009]. In such a tree,
the distance between individuals gives the relatedness instead of the genetic distance between individuals
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Box 1. Antigenic cartography
Influenza evolution may be better depicted by anti-
genic evolution than by genetic evolution, because
antigenic changes have a direct effect on the recog-
nition of an influenza strain by the immune system,
whereas genetic changes do not necessarily change the
recognition of the strain. For this, antigenic differ-
ences between viral strains are measured in a haemag-
glutination inhibition (HI) assay, which makes use
of the ability of HA to agglutinate red blood cells.
This agglutination is blocked by the presence of in-
fluenza antibodies. For different antibody-influenza
strain combinations, different titers for which the ag-
glutination is blocked are found and these give anti-
genic distances between the different influenza strains
[Hirst, 1943].
Every HI titer is seen as a one dimensional representa-
tion of a vector of numbers (i.e. coordinates) that de-
scribes the binding between the HA and the antibody,
where each entry of the vector describes a property,
e.g. physic-chemical characteristics, of the binding
between the HA and the antibody [Lapedes and Far-
ber, 2001]. Differences in HI titer represent the dis-
tance between the coordinates, thus having sufficient
HI data enables one to compute the relative coordi-
nates for every HA and antibody [Lapedes and Far-
ber, 2001]. All the coordinates are represented in an
antigenic map, where the distances between any HA
and antibody is visualized. Indeed, Smith et al. [2004]
showed, with a model based on the idea described
above, that vice-versa an HI titer can be predicted
based on the distance between HA and an antibody
on the antigenic map. Also, the antigenic distance
is used to determine the necessity for the influenza
vaccine to be updated. If the distance between the
current vaccine strains and the strains expected to
circulate is more than two units, the vaccine is up-
dated.
To demonstrate the concept of antigenic cartography,
the antigenic evolution of influenza A H3N2 is briefly
discussed. Smith et al. [2004] developed a model
based on the idea described above and used the model
on influenza A H3N2 data from 1968, when it was in-
troduced in humans, until 2003 to track its evolution.
Over this period, several clusters of antigenically sim-
ilar strains, instead of a gradual antigenic drift, were
found (Figure 4). These clusters are chronologically
ordered, with large antigenic distances between clus-
ters and small antigenic distances within clusters.

Figure 4: Antigenic evolution of influenza A H3N2 from
1968 to 2003. With the method developed by Smith et al.
[2004], the relative positions of influenza strains (coloured
surfaces) and antibodies (circles) are calculated and plot-
ted. The distance between a strain and an antibody is
representative of the HI titer between those two, where a
distance of x units corresponds to a 2x-fold lower titer.
The colours represent different antigenic clusters and each
cluster is named after the first strain in that cluster used
in a vaccine. The location of isolation of the vaccine-strain
(Hong Kong, England, Victoria, Texas, Bangkok, Sichuan,
Beijing, Wuhan, Sydney and Fujian) is referred to by the
two letters and the year of isolation is referred to by the
two digits. Note that, as in an ordinary map, the x- and
the y-axis represent distance and therefore the orientation
of the map is free. Picture from Smith et al. [2004].

and therefore the time, in generations, to its ancestors.
Since the original formulation of the coalescence theory, the method has been expanded to include,

among others, sampling region and sampling date in the construction of the genealogy. The tree then
also shows the location where samples have been collected; locations that always appear at the trunk
of the tree are likely source regions and regions that always appear at the tips of the tree are likely
sink regions (Figure 3). Moreover, the genealogy constructed with the coalescence method is based on
multiple trees that are concordant with the available data. Together, the genealogy created with this
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method provides more information than the one based on phylogenetic methods; due to the incorporation
of time and location in the genealogy, the spread of influenza around the globe can be inferred from
such a genealogy. Therefore, the coalescence method is perfectly suitable to reveal the global dynamics
of seasonal influenza (Figure 3).

The genealogy of the HA domain of influenza A H3N2 has been constructed using the coalescence
method [Bedford et al., 2010]. In agreement with the hypothesis of annual reintroduction of influenza
in a region, this analysis showed that locally influenza diversifies over the course of an epidemic and
does not persist during the non-influenza season [Bedford et al., 2010]. However, opposed to a single
influenza source region as suggested by Russell et al. [2008b], this analysis suggested that every region is
able to act both as a sink and as a source in the global network (Figure 3B) [Bedford et al., 2010, Bahl
et al., 2011]. In such a network where every region can act as a sink or as a source, influenza migrates
between regions of different seasonality and thereby temperate regions, like the USA, are capable of
seeding future epidemics worldwide. Note that, although every region may act both as a sink and as
a source, not all regions need to contribute equally to the global network. Especially China, Southeast
Asia and the USA are important regions where many epidemics originate [Bedford et al., 2010]. An
explanation why earlier studies pointed to regions in E-SE Asia as being the sole source of the annual
influenza epidemics is that these regions indeed are a major source of the annual influenza epidemics,
although not the only one.

The dominant source-role of E-SE Asian and USA regions is an explanation for the long time to the
MRCAs of influenza strains as found by Rambaut et al. [2008]. The virus does not experience severe
bottlenecks because it continuously circulates through these regions. Therefore, a high viral diversity
is maintained and lineages coalesce far back in time. Furthermore, a careful comparison of the time to
the MRCA estimates of the HA segment based on a phylogenetic tree [Rambaut et al., 2008] and based
on a genealogy constructed with the coalescence method [Bedford et al., 2010] shows high resemblance
in terms of the time to the MRCA between those two. This shows that the large time to the MRCA
estimates, at least for the HA segment, are not in conflict with the absence of a localized influenza
source.

More evidence that not a single region is the source of the seasonal influenza comes from mathematical
modeling. For this, the spreading of influenza was modeled using a Susceptible-Infectious-Recovered
(SIR) model (Box 2). In this model, susceptible individuals can be infected by infectious individuals,
thereby becoming infectious themselves. Infected individuals recover over time and then have immunity
to the infection, which wanes over time, and recovered individuals become susceptible again. In such
a SIR model, different regions can be included where each region consists of its own population, but
individuals are allowed to travel between the regions. A simple model to simulate the global spreading of
influenza includes the three major regions on the globe: the Northern Hemisphere, Tropical regions and
the Southern Hemisphere [Bedford et al., 2010]. With this simple model, two scenarios were simulated.
In the first scenario, influenza was only able to spread from the tropics to the two other regions but
not between the temperate regions directly, therewith simulating the source-sink model. In the second
scenario, the equal contact scenario, the contact rates between all three regions were equal and influenza
was able to spread between all regions. Data was taken from these simulations to construct, with the
coalescence theory, a genealogy which was compared with the genealogy from the experimental data.

The genealogy of the equal contact scenario matched the genealogy of the experimental data best,
indicating that this scenario is more likely that the source-sink scenario [Bedford et al., 2010]. As seen
in the experimental data, different regions source the annual influenza epidemics in the equal contact
scenario (Figure 3B). Again, these analyses support the hypothesis that there is not a localized source
for the annual influenza epidemics.
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Box 2. The SIR model
Mathematical models are often used to describe disease dynamics. The Susceptible-Infectious-Recovered model
is a simple mathematical model that assumes a closed population of size N . This population is subdivided in
three compartments; individuals who are susceptible, S; individuals who are infected and are thereby infectious,
I; and individuals who are recovered from the infection and are thereby no longer susceptible, R. In this model,
all individuals are equal in terms of their susceptibility and infectiousness and are assumed to be well mixed.
Infectious individuals infect susceptible individuals at rate β and are infectious for a period of 1

α
days. These

assumptions translate into the following set of differential equations [Wu and Cowling, 2011]:

dS

dt
= −βSI

dI

dt
= βSI − αI

dR

dt
= αI
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Figure 5: Dynamics of the SIR model. Initially, the number
of susceptible individuals (solid line) decreases as the num-
ber of infectious individuals (dotted line) increases. Finally,
infectious individuals recover and become immune (dashed
line).

Although the model is simple, it shows the characteristics of an epidemic [Wu and Cowling, 2011]. The infectious
population initially increases exponentially but reaches a peak as the number of susceptible individuals decreases
(Figure 5).
The SIR model can easily be expanded by including other compartments [Wu and Cowling, 2011, Coburn et al.,
2009]. Susceptible individuals can be vaccinated, thereby becoming less susceptible or immune to the infection.
Infectious individuals can be treated and thereby decrease their time of infectiousness, or they can even be
held in quarantine and are then unable to infect other individuals. Recovered individuals, on their turn, can
become susceptible again. These are just a few examples to illustrate the flexibility of the model.
Besides adding other compartments to the SIR model, SIR models can be coupled [Coburn et al., 2009]. A
single SIR model represents the population in a specific region and individuals can travel between the different
regions. On top of that, seasonality can be added by e.g. oscillating the infectiousness α, where a high
infectiousness represents the winter season and a low infectiousness represents the summer season. In this way,
the global spreading of a disease can be modeled.
The basic SIR model is convenient to demonstrate the principle of the Basic Reproductive Number R0, a
measure for the severity of an epidemic. For an infection to spread in an entirely susceptible population,
S = N , the initial growth rate of infectious individuals has to be larger than their recovery rate, βNI−αI > 0.
The latter gives the condition R0 = βN

α
> 1 for an epidemic to occur. For R0 < 1 the disease is unable to

spread. Although the specific solution R0 = βN
α

is only true for the simple SIR model, the concept of R0 is
widely applicable and is an important parameter in estimating the severeness of the outbreak of a disease.
An important insight for vaccination is that only a fraction of the population has to be vaccinated to prevent
the spreading of a disease. If in the SIR model V individuals are vaccinated, then R0 = β(N−V )

α
. The fraction

of the population that has to be vaccinated to prevent the spreading of a disease then is

β(N − V )

α
< 1

V > N − α

β

V

N
> 1 − 1

R0

where 1 − 1
R0

is known as the critical coverage [Wu and Cowling, 2011].
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4 Pandemic influenza dynamics

In the last century, four influenza pandemics (in 1918, 1957, 1969 and 2009) have plagued the earth.
The 1918 pandemic was the most devastating, with approximately 40 million deaths, while the 1957
and 1969 pandemics caused approximately two and one million deaths, respectively [WHO, 2005]. The
2009 pandemic was relatively mild, causing approximately 20,000 deaths [WHO, 2010]. These numbers,
especially from the 20th century pandemics, show the need for an adequate response upon the outbreak
of a potentially pandemic influenza strain. Mathematical models are useful to predict the circulation of
such strains around the world and to help design methods to contain a pandemic.

Prior to the 2009 H1N1 pandemic, the focus was on the potential outbreak of the pandemic HPAI
H5N1 virus. One of the mathematical models constructed to predict the spread of such a pandemic
around the world is an extensive model based on the Susceptible-Infected-Recovered model [Colizza
et al., 2007] (Box 2). In this model, 3100 airports were incorporated, thereby acounting for 99% of the
worldwide air traffic. Each airport in the model represented the surrounding urban area and hence had
its own set of equations. Seasonality was taken into account by changing the infectiousness of individuals
according to the seasonality of the region where the airport was located. The spread of the pandemic
strain was simulated by “introducing“ the strain in one of the urban areas of the model [Colizza et al.,
2007].

Not surprisingly, the potential of a novel strain to become pandemic turned out to depend on its R0

(Box 2). R0 gives the number of secondary cases that one infected individual generates in an entirely
susceptible population and thus is a measure for the severeness of an epidemic. For a low R0, influenza
rarely spreads outside the region of origin of the novel influenza strain, and if so, only very few individuals
are infected in those regions [Colizza et al., 2007]. For a moderate R0, where influenza often does become
pandemic, the pandemic potential also depends on the season and on the location of the region of origin
of the novel influenza strain. The location of origin, the source, is important because an outbreak in a
non-tropical region in its spring or summer season is unlikely to spread and become pandemic. Likewise,
if the influenza strain arrives in a region, the sink, during the region’s spring or summer season, the virus
is unlikely to spread in that region [Colizza et al., 2007]. The latter case buys some time to develop a
vaccine before the influenza season starts. Thus, the potential of an influenza strain to become pandemic
does not only depend on the R0, which is a trivial indicator, but also the season when and the location
where the virus originates.

With the outbreak of the 2009 influenza H1N1 pandemic (H1N1pdm) virus, mathematical models
were used to predict the spreading of the H1N1pdm virus and to predict the efficacy of containment
strategies. Models that were first used to simulate the outbreak of a hypothetical pandemic influenza
strain, e.g. the SIR model discussed above [Colizza et al., 2007], are suitable for this purpose. In the case
of the 2009 outbreak, the location and time of origin of the pandemic virus were known, however, the R0

was unknown. For a moderate R0 = 1.5, the model predicted that a pandemic would occur in two phases
[Flahault et al., 2009]. The H1N1pdm strain originated in the northern hemisphere (Mexico) when the
influenza season of the northern hemisphere was at its end (April). This also meant that the influenza
season in the southern hemisphere just commenced, and therefore a first disease wave would strike the
southern hemisphere, followed by a large wave in the northern hemisphere in its subsequent influenza
season. A small virus reservoir would remain in the tropics, seeding a second wave in the southern
hemisphere in the following year [Flahault et al., 2009]. In agreement, such a two-wave pattern was
also observed in other studies [Colizza et al., 2007, Kenah et al., 2011] and multiple waves have indeed
been observed in past pandemics [Miller et al., 2009]. However, for a high R0, R0 = 2.2, the first wave
would be much larger and, because little susceptible individuals would remain, a second wave would be
absent. The difference between the spreading pattern of a pandemic for different R0’s demonstrates the
importance of correctly estimating virological parameters.

Indeed, a first peak of H1N1pdm infections occurred in the 2009 winter season of the southern
hemisphere [Kenah et al., 2011]. Already in November of 2009, regions in the northern hemisphere
showed an H1N1pdm infection peak [Kenah et al., 2011]. A second wave in the southern hemisphere,
as predicted for a moderate R0, was not observed. For the R0 of the H1N1pdm a wide range of values
were estimated, 1.2 < R0 < 2.1, depending on the data and the method used [Kenah et al., 2011, Fraser
et al., 2009, Yang et al., 2009, Balcan et al., 2009]. Mathematical modeling of the pandemic showed that
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R0 = 1.85 reflected the observed dynamics of the pandemic best [Kenah et al., 2011].
To model the spreading of a pandemic in even more detail, the models discussed above can be

extended to include, among others, within-host influenza dynamics and subpopulations based on the
host’s age [Kenah et al., 2011]. The latter was done because in past pandemics children were at a higher
risk of getting infected than adults [Miller et al., 2009]. Moreover, the age subpopulations were split in
a low and a high risk group. With this model, in retrospective, the spread of the 2009 influenza H1N1
virus was modeled and this demonstrated the effectiveness of this model. Pandemic outbreaks in different
regions, including Mexico, and at different time points, including the time of the suspected outbreak
of the H1N1pdm (end March), were modeled to study the effect of the starting location and date of a
pandemic on its global spread. In agreement with the results by Colizza et al. [2007], the starting date
and location play a large role in the global dynamics of the pandemic. A pandemic starting early in the
influenza season causes an immediate large peak, while a pandemic starting late in the influenza season
may occur in two peaks, a small peak in the current influenza season and a large peak in the following
influenza season [Kenah et al., 2011].

The pandemic virus is only capable of spreading to other regions if these regions are in their influenza
season, as is the case with the seasonal influenza. Moreover, the region of origin is key in the capacity of
the virus to become pandemic. A virus with pandemic potential originating in the tropics is more likely
to cause a pandemic than virus originating in other regions [Colizza et al., 2007] because an influenza
virus with pandemic potential originating in the tropics has the benefit of being close to both hemispheres
which increases the chance of spreading to regions that are currently in their influenza season. If an
influenza virus with pandemic potential originates in a temperate region then it will only spread if this
region is in its influenza season. If the region is not in its influenza season, infectivity is low and the virus
is unable to spread. The general spreading pattern that arises due to location and seasonal constraints
is that in both hemispheres a wave of infections occurs in their respective influenza season, where the
tropical regions serve as a bridge between the two hemispheres.

5 How to contain pandemic influenza

Not only the dynamics, but also strategies to mitigate the effects of or to contain pandemic influenza
can be modeled. To this end, the models discussed above (Section 4) have been expanded with different
vaccination strategies and the use of antiviral (AV) drugs. Other strategies to prevent the spreading
of influenza are contact-reducing strategies (e.g. school or workplace closure or isolation of infected
individuals) or travel restrictions [Ferguson et al., 2006, Hollingsworth et al., 2011].

Although it takes time to develop a vaccine that is antigenically close to the pandemic virus, vaccines
that partially mismatch may still be beneficial. Indeed, a simple SIR model showed that a partially
mismatching vaccine still leads to an epidemic that develops slower and has fewer cases [Hollingsworth
et al., 2011]. Combining this strategy with contact-reducing strategies has been shown to be fairly
effective in delaying the epidemic, which buys time for the development of an antigenically matching
vaccine [Hollingsworth et al., 2011]. However, these results were obtained with a simple SIR model which
did not take multiple regions nor seasonality into account and therefore the results obtained with this
model merely indicate a trend of contact-reducing strategies.

Workplace closure is economically not a favourable contact-reducing strategy and a more elaborate
model showed that by implementing other strategies the need to close workplaces, in order to prevent the
spreading, would be reduced [Ferguson et al., 2006]. Other strategies include school closure or targeting
households containing an infected individual. For the latter, Ferguson et al. [2006] investigated two
options: prophylaxis using AV drugs and quarantine, in which the members of an infected household are
requested to stay at home. Both strategies have their own (dis)advantages. Where both strategies are
effective in controlling the pandemic, the former strategy requests a large stockpile of AV drugs and the
latter strategy increases the risk of individuals in a household with one infected individual to become
infected as well. Therefore, a combination of AV drug, vaccination and contact-reducing strategies is
best in reducing the spread of a pandemic influenza strain [Ferguson et al., 2006].

The more elaborate models discussed above (Section 4) are able to predict the effect of different
regions and seasonality on the efficacy of vaccines. Moreover, these models have the possibility to
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investigate containment strategies, such as the distribution of AV drugs among regions. A strategy that
immediately comes to mind is travel restriction from and to infected regions, however, modeling the
effect of travel restriction on the containment of a pandemic showed that this effect is minimal [Colizza
et al., 2007, Ferguson et al., 2006]. Colizza et al. [2007] reason that the chance of an infectious individual
traveling, even though travel restrictions are implemented, are still high due to the large number of
infectious individuals. Furthermore, an individual may be infected but is still latent. Such an individual
can spread the disease to other regions unnoticed. Therefore, the main containment strategies should
focus on the use of AV drugs or reducing the chance of contact with an infectious individual [Colizza
et al., 2007, Kenah et al., 2011, Ferguson et al., 2006, Longini et al., 2004].

In the case of a severe influenza pandemic, where many individuals are infected, the global AV drug
supply will likely be insufficient to treat everyone [Colizza et al., 2007]; only a few countries have an
AV drug supply. Therefore, different scenarios are feasible in which the global AV drug supply that is
available are distributed in different ways around the world. Modeling has shown that the most efficient
way to contain a pandemic, and buy time until a vaccine is available, is that the countries who do have
an AV drug supply donate a fraction of their supply to countries who do not have an AV drug supply
[Colizza et al., 2007]. Sharing their supply is also beneficial for the countries who do have an AV drug
supply due to an effect that is similar to herd immunity; the other countries experience a lower outbreak
of the pandemic virus and hence fewer virus will spread to other countries, including those with an AV
drug supply. Only focusing treatment on the region of origin of the pandemic strain, in an attempt to
prevent spreading to other regions, is insufficient. As soon as the virus does reach another region the
virus will spread uncontrolled [Colizza et al., 2007].

Besides the use of AV drugs, the effect of vaccination according to age and risk group with a vaccine
that is available six months after the outbreak of an influenza pandemic has been modeled by Kenah
et al. [2011]. The amount of vaccine that is available to a country is assumed to be related to the
wealthiness of a country, measured as the gross domestic product, as it is likely that wealthy countries
are able to buy more vaccine than poor countries [Kenah et al., 2011]. Similar to the administration of
AV drugs, the most efficient vaccination strategy is to prioritize individuals in a high risk group [Kenah
et al., 2011]. Also, the effect of vaccination is dependent on the location of a region. If a pandemic
outbreak occurs at the beginning of the influenza season on the southern hemisphere, then a vaccine
will arrive too late to offer protection on the southern hemisphere. However, the vaccine will then be
available at the beginning of the influenza season on the northern hemisphere, which is just in time to
have a substantial effect [Kenah et al., 2011].

It would be interesting to see the effect of AV drug administration, e.g. as studied by Colizza
et al. [2007], in the more detailed model by Kenah et al. [2011] that was used to model the efficacy of
vaccination. The effect of different age and risk groups then is apparent, which would lead to an even
better policy for drug administration. Presumably, a pandemic virus would be better contained if risk
groups were prioritized in AV drug administration. The effect of AV drug administration, to delay the
spread of the pandemic, followed by the deployment of a vaccine would be an interesting scenario to
model, since this is what intuitively is expected to happen. Likely, this will lead to less spread of the
virus and fewer infected individuals than one of the two strategies alone.

6 Discussion

Understanding the dynamics of influenza spreading helps containing it. For seasonal influenza, a clear
understanding of its dynamics aids in optimizing vaccines. After all, deciding which strains should be
included in the vaccine is easier if the spread of influenza variants can be accurately predicted. Upon
the outbreak of an influenza pandemic, designing strategies to efficiently control the pandemic is easier
if the pattern of spreading of the pandemic is known.

Different studies showed that seasonal influenza strains are seeded into temperate region every season
[Nelson et al., 2006, 2007], which prompted the investigation of the dynamics that underlie this global
circulation of influenza. Tropical regions appeared to be perfect candidates to seed the temperate regions
with influenza annually, especially those regions in E-SE Asia [Russell et al., 2008b]. However, more
recent studies suggest that every region is a potential source for the annual influenza epidemics, although
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regions in E-SE Asia and the USA are the main sources [Bedford et al., 2010, Bahl et al., 2011]. In these
latter studies, techniques that include region and date of sampling are used to construct a genealogy.
The trees thus constructed provide more information than a phylogeny based on genetic information
alone and are better suited to reveal the global spreading pattern of the seasonal influenza virus.

The global circulation of influenza, where no single region is the source of the annual epidemics,
toughens the prediction of which influenza variants will cause the next epidemic. Where the study by
Bahl et al. [2011] only covers three years of influenza data, and therefore no trends in the global circulation
of influenza are shown, the study by Bedford et al. [2010] covers over a decade of influenza data. Although
no single source can be pinpointed, global trends in the circulation of influenza are apparent. Global
trends in influenza evolution can be used to predict which influenza strains to incorporate in a vaccine
[Russell et al., 2008a], since strains worldwide are expected to be antigenically similar enough for the
vaccine to be effective. However, vaccination could be optimized be taking into account the strains
circulating in likely sources of a specific region.

The development of a vaccine against pandemic influenza takes time as the vaccine can only be
developed once the strain causing the pandemic is known. Several methods to reduce the spreading of
the pandemic virus, e.g. AV drug administration or contact-reducing strategies, are available to buy
time for the development of the vaccine. Important in the administration of vaccines is that a coverage
of the entire population is not necessary, as herd immunity is achieved by vaccinating a part of the
population (see also critical coverage, Box 2). Extensive models indeed show that only vaccinating a
part of the population is already beneficial [Kenah et al., 2011]. The dynamics of pandemic influenza
indicate which regions should receive the highest attention concerning vaccination, because vaccination
in regions where the pandemic has not struck yet has the most effect [Kenah et al., 2011].

Important to note is that for all the studies that are discussed here no or only limited data from
Africa and India, the latter having over 1.2 billion inhabitants (almost 20% of the world population)
[United Nations, 2010], is available. The role of these regions in the global influenza network is unknown
although these regions may be important in the global dynamics of influenza. To better understand
the global influenza dynamics, these regions have to be taken into account and therefore more data is
necessary from these regions. Also, only little data is available from seasonal influenza A H1N1, and its
global dynamics are unknown, although it has been suggested that its dynamics are similar to those of
H3N2 [Chan et al., 2010].

A factor not studied is the possibility of antigenic shift during an influenza strain’s circulation. Such a
shift could render a vaccine useless. Therefore, constant monitoring of the circulating viral strains, both
the annual seasonal influenza and other influenza strains, which may harbor the potential to become
pandemic, is vital to detect possible antigenic shifts and to immediately react, if necessary, to such
changes. Yet, even simple mathematical models help in determining strategies to contain influenza and,
as the 2009 influenza pandemic showed, help predicting how the pandemic will develop.

A lot of studies have looked into the global spreading of influenza. These suggest that there is no
single source where seasonal influenza epidemics originate, rather, every region has the potential to seed
the next seasonal epidemic. The recent outbreak of a pandemic influenza strain demonstrated that
knowing the spreading pattern of influenza aids in adequately responding to such an outbreak. Where
to deploy vaccines first and to which groups of a population vaccines should be administered can be
determined better with such knowledge. The recent pandemic outbreak originating in pigs showed that
the next influenza pandemic can come unexpected, but that by being well-prepared a pandemic outbreak
can be contained.
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