
Reflection in Agda
Paul van der Walt

M.Sc. thesis ICA-3120805
[Supervisors] Wouter Swierstra and Johan Jeuring

rev. 58b3ae3, October 4, 2012

Department of Computing Science

https://github.com/toothbrush/reflection-proofs/commit/58b3ae35c30447c6aa0a9862ae6376bef50ded16

Abstract

This project explores the recent addition to Agda enabling reflection, in the style
of Lisp, MetaML, and Template Haskell. It illustrates several possible applica-
tions of reflection that arise in dependently typed programming, and details the
limitations of the current implementation of reflection. Examples of type-safe
metaprograms are given that illustrate the power of reflection coupled with a
dependently typed language. Among other things the limitations inherent in
having quote and unquote implemented as keywords are highlighted. The fact
that lambda terms are returned without typing information is discussed, and a
solution is presented. Also provided is a detailed users’ guide to the reflection
API and a library of working code examples to illustrate how various common
tasks can be performed, along with suggestions for an updated reflection API
in a future version of Agda.

“Using Coq is like doing brain surgery over the telephone.”
– Peter Hancock

Contents

1 Introduction 3

2 Introducing Agda 5
2.1 First Steps in Agda . 5
2.2 More on Pattern Matching . 8
2.3 A Programming Language and Proof Assistant 10
2.4 Implicit Record-type Arguments 12

3 Reflection in Agda 14
3.1 The Basics . 14
3.2 The Structures of Reflection . 16
3.3 Automatic Quoting . 19

4 Proof by Reflection 25
4.1 Simple Example: Evenness . 25
4.2 Second Example: Boolean Tautologies 27
4.3 Adding Reflection . 34

5 Type-safe Metaprogramming 39
5.1 Preamble . 40
5.2 Type Checking . 44
5.3 Example: CPS Transformation . 48
5.4 Example: SKI Combinators . 57
5.5 Afterword: Parameters to Modules 63

6 Generic Programming 64
6.1 Limitations . 64

7 Discussion 68

A Modifications to the Agda Compiler 73
A.1 Annotating Lambda Abstractions with Type 73
A.2 Automated Highlighting for Literate Agda 74

B Guide to Source Code 75

2

Chapter 1

Introduction

Since the inception of computer programming, one of the aims has been to write
code as concisely as possible, while achieving the most powerful effect. One of
the holy grails ofwriting programs is also being able to reuse pieces of code, after
having written them once, as opposed to continually writing small variations
on existing code. Reinventing the wheel is something the programmer should
not relish doing.

One of the many techniques for writingmore effective code is that ofmetapro-
gramming, which refers to the ability of a program to inspect1 its own code and
modify it. To the uninitiated, this sounds rather magical [54], but it has long
been a favourite feature of users of such languages as Lisp [46]. In many cases,
this allows code to be a lot more concise and general, and thus reusable, than
usually is possible in simple languages.

The dependently typed programming language Agda [42, 43] has recently
been extendedwith a reflection mechanism for compile timemetaprogramming in
the style of Lisp [46], MetaML [56], Template Haskell [51], and C++ templates [3].
Agda’s reflection mechanisms make it possible to convert a program fragment
into its corresponding abstract syntax tree andvice versa. In tandemwithAgda’s
dependent types, this has promising new programming potential.

The main questions we aim to answer during this project are:

“What are interesting applications of the new reflection API? Which
tedious tasks can we automate? What advantages does the com-
bination of dependent types and reflection give us? Finally, is the
reflection API adequate as it stands to facilitate our needs or does
it require extension? If extension is necessary, what kind and how
much?”

This project starts to explore the possibilities and limitations of this new
reflection mechanism. It describes several case studies, exemplative of the kind
of problems that can be solved using reflection. More specifically it makes the
following contributions:

• A short introduction to Agda as a programming language is given in Chap-
ter 2.

1or reflect upon

3

• The current status of the reflection mechanism is documented. The exist-
ing documentation is limited to a paragraph in the release notes [1] and
comments in the compiler’s source code. In Chapter 3 we give several
short examples of the reflection API2 in action.

• How to use Agda’s reflection mechanism to automate certain categories of
proofs is illustrated in Chapter 4. The idea of proof by reflection is certainly
not new, but still worth examining in the context of this new technology.

• We show how to write type-safe metaprograms. To illustrate this point, we
will develop a type-safe translation from the simply typed lambda calculus
to programs in continuation-passing style (CPS), followed by a type-safe
translation of closed lambda terms into SKI combinator calculus (Chap-
ter 5). In doing this, structurally recursive, total, type preserving CPS and
SKI transformations are defined.

• Finally, we also discuss some of the limitations of the current implementation
of reflection (Chapter 6), brought to light by attempts to automate certain
aspects of generic programming.

The code and examples presented in this paper all compile using the latest
development version of Agda (currently 2.3.1), with some minor modifications
to the compiler (see Appendix A.1). All code, including this report, is available
on GitHub3. This thesis is also a Literate Agda file, which means the code
snippets can be extracted, compiled and played around with.

2API stands for application programming interface. The reflection API is an interface to Agda’s
internal representation of terms.

3https://github.com/toothbrush/reflection-proofs

4

https://github.com/toothbrush/reflection-proofs

Chapter 2

Introducing Agda

Besides being a common Swedish female name and alluding to a certain hen1 in
Swedish pop culture2, Agda is an implementation of Martin-Löf’s type theory
[35], extended with records and modules. Agda is developed at the Chalmers
University of Technology [42]; thanks to the Curry–Howard isomorphism, it is
both a functional3 functional4 programming language and a proof assistant for
intuitionistic logic. It is comparable with Coquand’s calculus of constructions,
the logic behind Coq [13]. Coq is similarly both a programming language and
proof assistant.

In informal terms, the Curry–Howard isomorphism states that there is a cor-
respondence between types and propositions on the one hand, and programs
and proofs on the other hand [53]. The interpretation of a programming lan-
guage as a logic is that types express theoremswhich can be proven byproviding
an implementation. This correspondence is outlined further in Sec. 2.3.

In Agda, types of functions are allowed to depend upon values – the main
difference between a dependently typed programming language and a simply
typed language is that the divide between the world of values and that of types
is torn down.

This chapter aims to provide a crash course onAgda. The reader is presumed
to be fluent in GHC Haskell; the fact that Agda’s syntax is inspired by Haskell
makes it a reasonable choice to explain most of the concepts here from a Haskell
programmer’s point of view. Consequently, users familiar with programming
in Haskell should be able to hit the ground running in Agda.

2.1 First Steps in Agda
Our short tutorial starts slowly; we will look at how textbooks define natural
numbers, in so-called Peano style. A single colon means “is of type”, so in
Fig. 2.1, zero is of type Natural. The constructor suc has type Natural → Natural,
which means that it takes a natural as argument and produces a new natural.

1. . . bearing in mind that coqmeans rooster in French. . .
2See Cornelis Vreeswijk’s song about Agda, a hen, at http://youtu.be/zPY42kkRADc.
3Functional as in practically usable.
4Functional as in Haskell.

5

http://youtu.be/zPY42kkRADc

This new natural is also the successor of the old natural. This inductive style of
data type definitions is a frequently used technique in both Haskell and Agda.

data Natural : Set where
zero : Natural
succ : Natural → Natural

Figure 2.1: The definition of natural numbers as an inductive data type.

The definition of naturals here looks a lot like the GADT (generalised alge-
braic data type [9]) rendition in Haskell would; this is no coincidence. Notice
that we have to define that Natural is of type Set. In Agda, Set is the type of
types: types are also simply values.

Just as in Haskell, we can also use pattern matching to do operations on
natural numbers. Let us look at the definition of addition of natural numbers.

_ + _ : Natural → Natural → Natural
zero + m = m
(succ n) + m = succ (n + m)

Mixfix Notice howwewrite_+_ for the name of the function, then later drop
the underscores. This notation is referred to as mixfix – in Agda we are allowed
to define operators using underscores to denote where they expect arguments.
Other than that, addition is fairly straightforward, using the inductive style of
programming we will come to know and love.

We will now look at the definition of lists in Agda. This is already starting
to look slightly different to the corresponding Haskell implementation.

data List (A : Set) : Set where
[] : List A

:: : A → List A → List A

The first thing to note is that we are allowed to use Unicode symbols for
function and constructor names – the combination ofmixfix andUnicodemakes
Agda very liberal in what is accepted as an identifier. The next thing to note is
that the List data type is parameterised by an argument, A, of type Set. Recall
that Set is the type of types, so List is parameterised by a type for the values it
should contain.

Our shiny new data types are clamouring to be used, so why not define a
head function on List? The function head is supposed to give the first element of
a list. A Haskell programmer would probably write something like head0.

head0 : List A → A
head0 (x :: xs) = x

6

Telescopes There are a number of problems with the definition of head0! The
first thing Agdawill complain about, is thatA is undefined in the type signature.
The solution is simple: we introduce a telescope. A telescope is like a lambda
function, except that it is a function on types (also known as values of type Set).
The result of this attempt is head1.

head1 : {A : Set} → List A → A
head1 (x :: xs) = x

Implicit Arguments This is getting somewhere, andwe have again introduced
a new concept: implicit arguments. The distinction between explicit (usual ar-
guments to functions, as seen in Haskell, for example) and implicit arguments
is merely that the latter are tagged as hidden, and do not have to be provided
if they can be inferred from the context. Arguments are marked hidden by sur-
rounding them with curly braces in the telescope; in head1, A is an example of
such an argument. This often reduces the number of “obvious” arguments that
have to be explicitly passed around, reducing visual clutter. Compare this to
the way class constraints on Haskell functions cause a dictionary to be passed
around implicitly. In the head1 example, we need not give the type of the ele-
ments of the list, since Agda can infer this information from whatever list we
pass.

Totality In spite of our enthusiasm, this definition of head1 still will not be
accepted by Agda. Another important concept is that of totality: a function is
total when it is both terminating and defined on all inputs. All functions are
required to be total. Termination is checked by making sure that recursive calls
are always done on structurally smaller arguments – as is the case in the addition
example. Furthermore, a function is considered to be defined on all inputs when
the patterns it matches on cover all the possibilities. What we mean by this is
that an alternative should be given for each possible constructor – something
which is violated by the head1 attempt: it is missing a case for the empty list.
This is something Haskell does not care about; it simply smirks and throws an
exception if we try to normalise the expression head [].

If we have to define head2 for the empty list too, we will have to resort to a
Maybe type. The definition of Maybe is omitted, because it is hardly surprising
to a Haskell programmer.

head2 : {A : Set} → List A → Maybe A
head2 [] = nothing
head2 (x :: xs) = just x

Of course, this Maybe is something of an annoyance; it would be preferable
to guarantee that the empty list is not valid input to the head2 function. This is
where a dependently typed language really comes into its own. We will now
move on to the de facto example of a dependent type, the vector – like a list, but
with a fixed length.

7

data Vector (A : Set) : Natural → Set where
[] : Vector A zero

:: : {n : Natural} → A → Vector A n → Vector A (succ n)

Indexed data types We now have an argument both to the left and the right of
the colon in the type signature of the data definition. Left-hand arguments are
called parameters, and scope over all the constructors. Right-hand arguments
are called indices, and only scope over single constructors, and as such need
to be introduced per constructor using a telescope. The :: constructor has a
size parameter, which is an example of such an index. This dependent type has
the advantage that we can distinguish vectors of different sizes by their type, at
compile time, without knowing their value.

Nowwe canwrite functions like the following, ourfinal (andmost successful)
attempt: head3.

head3 : {A : Set} {n : Natural} → Vector A (succ n)→ A
head3 (x :: xs) = x

We see that only vectors with a value n such that succ n is the length of the
vector, are valid inputs. This way, we guarantee that empty vectors cannot be
beheaded. Agda is also convinced that this function is total, so we are done: we
have a safe head function.

This is probably the most common example of why DTP5 is the best thing
since sliced bread: we cannot ask for the head of an empty vector, since we will
get a compile time error that there is no possible value of n such that succ n ≡
zero. Compare this to the head function defined in Haskell’s Prelude, where a
run time exception is generated if an empty list is passed in. How primitive!

Now that we have seen the basics of Agda, we will introduce a few tricks
used in the rest of this project which may not be completely intuitive.

2.2 More on Pattern Matching
So far we have seen the very basics of Agda. A few aspects deserve more atten-
tion, though, one prime example being Agda’s pattern matching facilities.

One of Haskell’s selling points is the ability to do pattern matching. This
makes writing structurally recursive functions both easy and the Natural Way
of Doing Things™. Agda shares this idiomatic programming style, but has a
much more powerful version of pattern matching, namely dependent pattern
matching.

2.2.1 Absurd Patterns
Something that the Agda pattern matching system has which is completely dif-
ferent from Haskell, is the idea of absurd patterns. The pattern matching in

5DTP stands for dependently typed programming.

8

Agda is dependent. This means that based on the (rich) type information avail-
able about terms, certain combinations of arguments are automatically regarded
as impossible, or absurd, to use Agda lingo.

We will see what this means by way of an example. Another interesting data
type is that of finite natural numbers. The usual definition of naturals, Natural,
has no maximum value, but we can define a data type, called Fin n, that only
contains values smaller than n.

data Fin : Natural→ Set where
zero : {n : Natural} → Fin (succ n)
succ : {n : Natural} (i : Fin n)→ Fin (succ n)

We might want to convert a value in Fin n to a value in Natural, since every
value that can be expressed in Fin n has a cousin in Natural. The function natural
performs this conversion. Note the use of the absurd pattern, ().

natural : (n : Natural)→ Fin n→ Natural
natural zero ()
natural (succ n) zero = zero
natural (succ n) (succ m) = succ (natural n m)

Basically, the dependent in dependent pattern matching refers to the fact that
given the specialisation of the function in the case where zero is the first argu-
ment, it can be inferred that the next argument should be of type Fin zero, which
obviously has no inhabitants (no natural numbers are strictly smaller than zero).
This is why we need not provide this branch.

We now can convince Agda that even though there are no alternatives pro-
vided for the n ≡ zero case, the function is still total.

This is somethingwhich is not necessary inHaskell, sincewe are not required
to write total functions. There, we are left to our own devices, and should be
responsible programmers that do not write code that may trigger pattern match-
ing failures.

2.2.2 Inferable Patterns
Another Agda pattern matching feature we will often encounter is dotted pat-
terns. Because pattern matching is dependent, information about certain argu-
ments can often be inferred from others. Using a dotted pattern means certain
parameters are inferable or equal to others.

For purposes of illustration, we will define an equality type.

data Equal {A : Set} (x : A) : A→ Set where
refl : Equal x x

The type Equal only contains values constructed using refl (which stands for
reflexive), and refl can only be used when the arguments to Equal are identical.
This is because the same x is used as both first and second argument to Equal.

9

We might use the equality type as follows; we are writing a function which
is only defined on equal naturals. Here we pattern match on whether some
naturals are equal, and if so, we can use this information on the left-hand side of
the equation too. Note how repeated variables on the left-hand side are allowed,
if their value is inferable.

weird : (n m : Natural) → Equal n m → List Natural
weird .m m refl = zero :: []

Other than the features explicitly mentioned in this chapter so far, the usual
constructs such as records, modules and let-bindings are present and behave
as expected. Bear in mind that type signatures may also include let-bindings.
Definitions of functions and data types are also very similar to those found in
Haskell, except that in contrastwithHaskell, you have to useGADT-like notation
for data constructors.

Agda is, practically speaking, like Haskell with a type system on steroids6.
The discussion of how and why this is so is considered out of the scope of this
project, but suffice it to say that tearing down the distinction between values
and types allows powerful new techniques, such as invariant-guaranteeing data
types. We will see many examples of these in the following chapters.

After Haskell though, looking at Agda for the first time can be confusing,
since a number of foreign concepts are introduced. In the remainder of this
chapter, we will pay attention to a number of tricks, the utility or sense of which
might not at first be apparent.

2.3 A Programming Language and Proof Assistant
It has already been briefly mentioned that Agda is both a proof assistant and a
programming language, as a result of the Curry–Howard isomorphism. This
correspondence defines a relationship between programs as proofs and types
as theorems.

In this section, I will give a short explanation of how this correspondence
works, and what it means for programmers. I refrain from attempting to give a
comprehensive explanation of intuitionistic logic and why the exact correspon-
dence between natural deduction and simply typed λ-calculus exists. The disil-
lusioned reader is advised to take a look at the Lectures on the Curry–Howard
isomorphism by Sørensen and Urzyczyn [53].

Programs as Proofs Intuitionistic logic is at the heart of Agda as a proof assis-
tant. It is similar to classical logic, andworks as expected (including implication,
conjunction, etc.), but there is a big difference: A = ¬¬A is not a theorem7. In
intuitionistic logic, only once one provides a constructive proof of a proposition,
is it regarded as a theorem.

By the Curry–Howard isomorphism, propositions are types. A logical propo-
sition, such as a ⇒ b translates to a type a → b. Now, a ⇒ b is a theorem if

6For example, theAgda type systemdoesβ-reduction on terms – evaluation –which is something
seen as possible, but quite exotic, in Haskell-land.

7In mathematical parlance, a theorem is a true and proven proposition, whereas a nontheorem is a
false proposition.

10

and only if the type a → b is inhabited. One of the most intuitive illustrations
of this is the proposition A ⇒ B ⇒ A. This can be read as “if we assume A
is true, and we furthermore assume that B is true, then we can conclude A.”
Obviously this is a theorem, but let us translate the proposition to a type. It
becomes a → b → a; an example of a function with such a type is const, the
function that returns its first argument regardless of what its second is. Clearly,
if we see the first argument with type a as a proof ofA, then it is obvious that re-
gardless of what is given as the second argument, we fulfil our proof obligation
a by returning the first argument unchanged. It was, after all, a proof of A.

Keeping this correspondence in mind, we can give analogues of mathemati-
cal logic in type theory. The trivial theorem, true, translates to the type>, which
has one inhabitant, tt. The simplest nontheorem false translates to ⊥, the type
with no inhabitants. Therefore, a proof for ⊥ can never be constructed. Other
equivalents are_∧_ and_×_ (Pair in Haskell), which are only proven if both
left and right components are inhabited. Disjunction (a.k.a. the _∨_ operator
in logic) translates to the _]_ data type (known as Either in Haskell), which
has constructors for left or right. This interpretation of types as propositions
is also known as the Brouwer–Heyting–Kolmogorov interpretation, and was
proposed by Brouwer and Heyting and independently by Kolmogorov [57]. For
an interesting history of logic in computer science, and a clear explanation of
the Curry–Howard isomorphism, Wadler’s article is a good bet [59].

Now that we have an intuition for the Curry–Howard isomorphism, we can
continue looking at various aspects of Agda as a proof assistant. One point
worth noting is that in Agda, one directly manipulates and constructs proof
objects in the same language as is used to express computation. In many other
theorem proving systems, such as Coq, there is a separate tactic language for
writing proofs [12]. However, both systems are based on intuitionistic logic,
therefore the same concepts hold.

Termination In the previous section, the necessity of defining total functions
was mentioned. This is no arbitrary choice, for without this property, Agda’s
logicwould not be sound. Not enforcing the termination aspect of totalitywould
make it easy to define a proof of falsity, as we have done in the function falsity.

falsity : ⊥
falsity = falsity

This is why the termination criterion is that at least one of the arguments to
the recursive call be structurally smaller. Compare the addition of naturals exam-
ple where suc n is pattern matched, and n is passed as a recursive argument – n
is indeed structurally smaller than suc n.

Covering Being defined on all possible inputs is also an aspect of totality. If
this requirement were dropped, a number of desirable properties for a logic
would not hold any longer. The most obvious example is that all of a sudden,
run time exceptions are possible: if a function is not defined on a given input but
we apply that argument anyway, bad things will happen (compare Haskell and
a run time pattern matching failure). Because functions can also return types
(which are also simply values) and thus be used in type signatures, we would

11

not want it to be possible for type checking to break as a result of an incomplete
function definition.

Finally, Agda allows us to define functions and proofs side-by-side, allowing
concurrent development of programs and proofs of properties about those pro-
grams hand-in-hand. The Emacs mode, which is typically used to interactively
develop proofs and programs, has a concept of holes – we are free to place a
question mark anywhere in the file, and compile. This question mark turns into
something which looks a bit like { }n , which we call a goal. When the cursor
is placed inside a goal, queries such as the type of the value expected there or
the objects in the environment at that point are available.

Admittedly, this section is by no means a comprehensive explanation of the
Curry–Howard isomorphism. More information about how to use Agda as
a proof assistant is available [43, 12]. For background reading on the Curry–
Howard isomorphism a reference should again be made to Sørensen et al. [53].
We will now look at some tricks which are peculiar to Agda; hopefully dealing
with those now will make code snippets introduced later a little more compre-
hensible.

2.4 Implicit Record-type Arguments
Previously, in Sec. 2.1, we saw how certain arguments which are considered
obvious, can be marked implicit. This technique makes calls to functions more
concise, since some arguments are not explicitly listed. When the value of an
argument can be inferred, this technique becomes particularly useful. Further-
more, it turns out that records have advantageous properties when it comes to
inferring their values. This section demonstrates the technique.

If a particular argument is a record, and it has only one possible inhabi-
tant, Agda can automatically infer its value. Thus, it also need not be passed
as an explicit argument at the call-site. The code snippet in Fig. 2.2 illustrates
how record-type arguments having only one alternative can be automatically
inferred.

foo : > × > → N
foo u = 5
bar : N
bar = foo

Figure 2.2: Illustrating the automatic inference of record-type arguments.
Note that it is possible to replace u in foo with the irrefutable pattern u1, u2,
since, as has been mentioned before, this is the only valid constructor for the
type _×_.

The function foo expects a value of type> × >, and returns a natural number.
We know, however, that _×_ is a record and only has the constructor , :
A→ B→ A × B. Therefore, the only possible value is one using the constructor
, . If we next look at the values for A and B here, namely the left and right-

12

hand arguments’ types, we see that in both cases they have type >. The unit
type is also defined as a recordwith only one constructor, namely tt. This means
that the only value possible is tt, tt, which is why we can use the underscore
notation, meaning Agda should infer the argument for us.

The fact that pairs and unit are defined as records in the standard library
is pretty crucial here. The type system does some work for us in these cases;
η-reduction is done on record types, which allows Agda to infer that there is
exactly one inhabitant of a certain type. This η-reduction is not done on general
data types, since this would increase the complexity of the work the compiler
needs to do as well as potentially introduce unsound behaviour [11].

Also, it means that it is possible to assert to Agda that values of a certain
type are always inhabited. We call this assertion an irrefutable pattern, see Fig. 2.3.
Here, we pattern match on (tt, tt), and Agda is convinced that no other options
are possible.

Since inference is possible, we can also make this argument implicit, which
effectively hides from the user that a value is being inferred and passed, as in
Fig. 2.3. This saves us an underscore.

foo : {u : > × >} → N
foo {tt, tt} = 5
bar : N
bar = foo

Figure 2.3: Implicit (or hidden) arguments are inferred, if possible.

This is possible, since the type > × > only has one inhabitant. If multiple
values were valid, the above code would have resulted in an unsolved meta8
in the definition of bar. That brings us to one of the drawbacks of this solution
which has been used quite often. Mainly, the technique has been used to “hide”
a proof witness of, for example, an input term being of the right shape. The
problem with this trick is that if an implicit argument is ambiguous, or worse, if
it is a type with no inhabitants9, the compiler will not fail with a type error, but
merely with a warning that there is an unsolved meta. The corresponding piece
of code will be highlighted yellow in the Emacs Agda mode, but the user will
not be given any fatal error. The problem is then that an inattentive programmer
might miss this innocuous-looking error, while it actually represents an error
in a proof. Luckily Agda prevents us from importing modules with unsolved
metas, mitigating the danger of hiding proofs this way.

Now that we have seen some idiosyncrasies which could otherwise cause
confusion later on, it is time to move on to the real reason for introducing Agda.
Let us start using the possibilities we have thanks to dependent types! Of course,
a full introduction to the Agda language including all its curiosities and features
is out of the scope of such a crash course. In closing, the inquisitive reader is
invited to work through Norell’s excellent tutorial [43].

8An unsolved meta can be thought of as an argument which cannot be inferred.
9A type with no inhabitants represents a false proposition.

13

Chapter 3

Reflection in Agda

Since version 2.2.8, Agda includes a reflection API [1], which allows converting
parts of a program’s code into abstract syntax, in other words a data structure
in Agda itself, that can be inspected or modified like any other data structure.
The idea of reflection is old: already in the 1980s Lisp included a similar feature,
called quoting and unquoting, which allowed run time modification of a pro-
gram’s code, by the program itself. This has given rise to powerful techniques
for reusing code and generating frequently needed but slightly different expres-
sions automatically. What can be donewith Lisp, can be done better using Agda;
at least, so we hope. This chapter looks at the current state of the admittedly
work-in-progress reflectionAPI, and illustrates how to use it. It should be a good
starting point for someone already comfortable with Agda to find inspiration
on how to make reflection work to their advantage.

Agda’s reflectionAPI defines several data typeswhich represent terms, types,
and sorts. These definitions take into account various features, including hid-
den arguments and computationally irrelevant terms. An overview of the core
data types involved is included in Sec. 3.2. In addition to these data types that
represent terms, there is limited support for reflecting definitions. Inspection of
definitions is detailed in Sec. 3.2.1. Continue reading Sec. 3.1 for a practical
guide to reflection.

3.1 The Basics
Before going into too much detail about how reflection works and what data
types are involved, we will look at a few simple code snippets which should
serve to illustrate the basics of using the reflection API.

Caveat One rather serious word of admission is to be made here. The code
presented in this thesis does not work out of the box as advertised. For this code
to compile, someminor changes to the Agda compiler are necessary. For reasons
which will be made clear in Chapter 5, the abstract data type representing terms
inside the Agda compiler (the one in Fig. 3.1) needed to be extended with an
extra argument to the constructor representing a lambda abstraction, denoting
the type (or more accurately, a representation thereof in terms of Type) of the
argument bound in that abstraction. There is a high likelihood that the changes

14

to the Agda reflection API detailed in Appendix A.1 will be adopted in a future
version of Agda, but at the time of writing a personal fork of the compiler’s
repository was used1.

The Keywords There are several new keywords that can be used to quote
and unquote Term values: quote, quoteTerm, quoteGoal, and unquote. The quote
keyword allows the user to access the internal representation of any identifier,
or name. This internal representation can be used to query the type or definition
of the identifier.

The easiest example of quotation uses the quoteTerm keyword to turn a frag-
ment of concrete syntax into a Term value. Note that the quoteTerm keyword
reduces like any other function in Agda. As an example, the following unit test
type checks:

example0 : quoteTerm (λ (x : Bool) → x)
≡ lam visible (el (def (quote Bool) [])) (var 0 [])

example0 = refl

Dissecting this, we introduced a lambda abstraction, so we expect the lam
constructor. Its one argument is visible, and the body of the lambda abstraction
is just a reference to the nearest-bound variable, thus var 0, applied to an empty
list of arguments.

The el constructor The test example0 also shows us that the quoted lambda
binds a variable with some type. The el constructor we see represents the type
of the argument to the lambda. The first argument to el represents the sort, if it
is known. In example0, it is unknown. Furthermore the type of x is Boolean, rep-
resented as def (quote Bool) []. This means the Bool type (which is a definition,
hence def) with no arguments.

Furthermore, quoteTerm type checks and normalises its term before return-
ing the required Term, as the following example demonstrates:

example1 : quoteTerm ((λ x→ x) 0) ≡ con (quote N.zero) []
example1 = refl

See how the identity function is applied to zero, resulting in only the value
zero. The quoted representation of a natural zero is con (quote zero) [], where
con means that we are introducing a constructor. The constructor zero takes no
arguments, hence the empty list.

The quoteGoal keyword is slightly different. It is best explained using an
example:

exampleQuoteGoal : N
exampleQuoteGoal = quoteGoal e in { }0

1This fork, along with a version of the Agda standard library with the modifications necessary
to work with it, is available at https://darcs.denknerd.org.

15

https://darcs.denknerd.org

The quoteGoal keyword binds the variable e to the Term representing the type
of the current goal. In this example, the value of e in the hole will be def N [],
i.e., the Term representing the type N.

Another function that deals with types is the aptly named type function.
Given a Name, such as the result of quote example0, type returns the Type value
representing the type of that identifier. This indeed implies one cannot ask the
type of an arbitrary Term, since one would need to introduce it as a definition
first, to be able to get a Name associated with it. In example2 we see what type
returns when asked about the successor function (a function with type N→ N),
and in example3 we verify that the term shown is in fact the same as a function
from naturals to naturals. The el constructor is illustrated clearly here. The first
argument to el is the sort of the type, where in example2 the lit 0 term denotes a
type in Set0 (which is equal to Set). The second argument to el is, as we already
saw, the Term-representation of the type.

example2 : type (quote N.suc)
≡ el (lit 0) (pi (arg visible relevant

(el (lit 0) (def (quote N) [])))
(el (lit 0) (def (quote N) [])))

example2 = refl

example3 : type (quote N.suc)
≡ el (lit 0) (quoteTerm (∀ (n : N)→ N))

example3 = refl

The unquote keyword converts a Term data type back to concrete syntax. Just
as quoteTerm and quoteGoal, it type checks and normalises the Term before it is
spliced into the program text.

This short introduction should already be enough to start developing simple
reflective programs. The rest of this chapter goes into more detail regarding
the data structures involved in Agda’s reflection API, and later, gives a detailed
account of real-world use-case.

3.2 The Structures of Reflection
After having seen an informal introduction to practical reflection, we will look
at the data types involved in reflection. After all, it is a good idea to be aware of
what values one might expect as a result from quoteTerm. The full definitions
of Term, Type and their helpers are presented in Fig. 3.1.

The first structure we will look at step-by-step is Term, which represents
concrete Agda terms.

A variable has a De Bruijn index, represented by a natural number, and
may be applied to arguments. The constructors con and def are introduced
for constructors and definitions, respectively, applied to a list of arguments.
Lambda abstractions bind one variable. Included is the type signature of the
argument, represented by a Type. The pi constructor represents function types,
or telescopes (the dependent equivalent of an arrow). It can be seen as a lambda
abstraction for types instead of terms. Finally the constructor unknown stands

16

postulate Name : Set
-- Arguments may be implicit, explicit, or inferred
data Visibility : Set where

visible hidden instance : Visibility

-- Arguments can be relevant or irrelevant.
data Relevance : Set where

relevant irrelevant : Relevance

-- Arguments.
data Arg A : Set where

arg : (v : Visibility) (r : Relevance) (x : A)→ Arg A
-- Terms.
mutual
data Term : Set where
-- A bound variable applied to a list of arguments
var : (x : N) (args : List (Arg Term)) → Term
-- Constructor applied to a list of arguments
con : (c : Name) (args : List (Arg Term)) → Term
-- Identifier applied to a list of arguments
def : (f : Name) (args : List (Arg Term)) → Term
-- Lambda abstraction (typed – see Appendix A.1).
lam : (v : Visibility) (σ : Type) (t : Term)→ Term
-- Dependent function types
pi : (t1 : Arg Type) (t2 : Type) → Term
-- Sorts
sort : Sort → Term
-- Anything else
unknown : Term

data Type : Set where
el : (s : Sort) (t : Term) → Type

data Sort : Set where
-- A Set of a given (possibly neutral) level.
set : (t : Term)→ Sort
-- A Set of a given concrete level.
lit : (n : N) → Sort
-- Anything else.
unknown : Sort

Figure 3.1: The data types for reflecting terms.

17

for things which are not or cannot be represented in this AST2, such as function
definitions or holes.

As explained in the previous section, the el constructor constructs values in
Type. It has two arguments: one for the sort of the type, the other for the Term
representing the type.

Aside from the necessary data structures, the Reflectionmodule of the Agda
standard library3 also exports a number of functions. We provide a list of them
in Fig. 3.2, along with a description of their use.

_ ?
=-Name_ : Decidable {A = Name} _≡_
-- The other decidable properties are omitted for
-- brevity, but are similarly named.

type : Name → Type
definition : Name → Definition
constructors : Data-type→ List Name

Figure 3.2: The functions exported by the Reflectionmodule of the Agda stan-
dard library, as of version 0.6.

The definition function returns the definition of a given identifier. The type
Definition is defined as follows.

data Definition : Set where
function : Function → Definition
data-type : Data-type→ Definition
record′ : Record → Definition
constructor′ : Definition
axiom : Definition
primitive′ : Definition

At the time of writing the only constructor we can do anything with is
data-type: using it we can get a list of constructors, by calling the suitably named
constructors function. See the illustration in Sec. 3.2.1.

Finally, we have decidable equality on the following types: Visibility, Relevance,
List Args, Arg Types, Arg Terms, Names, Terms, Sorts and Types. Typically, this is
useful for deciding which constructor is present in some expression, by compar-
ing to known Names. Such a comparison is illustrated in the function convert,
below.

convert : Term→ Something
convert (def c args) with c ?

=-Name quote foo

... | yes p = { }0 -- foo applied to arguments

... | no ¬p = { }1 -- a function other than foo

2AST stands for abstract syntax tree; this abbreviation will be used hereafter.
3The standard library version 0.6 was used here; later versions might expose more functionality.

18

Aside from these functions and types, the Reflection module also contains a
few lemmas for decidable equality on terms and types. These are rather boring,
and the user will probably never have to use them directly.

3.2.1 Inspecting Definitions
With the functions provided by Reflection we can get a little more insight into
definitions of data types. For example, we can get a list of constructors for some
data type. The following code snippets illustrate how this is done, and what the
format of the answer is.

giveDatatype : (d : Definition)→ {pf : isDatatype d} → Data-type
giveDatatype (data-type d) { } = d
giveDatatype (function x) {()}
...

The helper function giveDatatype assumes that the constructor present is,
in fact, data-type, which saves some elimination of uninteresting cases. With
this helper, we can get the Data-type to feed to the constructors function. The
following unit test shows an example, where we ask for all the constructors of
the natural numbers.

Ncons : List Name
Ncons = constructors (giveDatatype (definition (quote N)))

consExample : Ncons ≡ quote N.zero ::
quote N.suc :: []

consExample = refl

Nowwe have in Ncons a list of the names of the constructors of the data type
N, which we could use to domore interesting things depending on the structure
of a data type. One example might be to compute a generic representation
which is isomorphic to the naturals, as is often done using Template Haskell.
For example, in the Regular library for generic programming [58], a translation
to a sum-of-products view is made. This possibility is explored in Chapter 6.

That wraps up all the functionality available from the reflection API. Con-
templating what we might want to do using these new tools, it becomes clear
that a common task will be casting a raw Term into some AST of our own. I de-
veloped a library, Autoquote, which might serve as both an instructive example
in how to pull apart Terms, as well as a useful and reusable function, since it
can automatically convert a Term into some AST type. All that is needed is a
mapping from concrete Agda Names to constructors of this AST. An explanation
of its implementation application is given in Sec. 3.3, and an example use-case
is given in 4.3.1.

3.3 Automatic Quoting
If, each time we wanted to quote a term, we had to write a huge function, with
many pattern matching cases and nested with statements to handle different

19

shapes of ASTs, we would quickly become discouraged. This nearly happened
while doing this project, which is why Autoquotewas conceived. Quoting some
expression with a given grammar is a mundane task we are frequently faced
with if we are foolhardy enough to use reflection. The (partial) solution to this
problem – something which at least mitigates the agony – is presented in this
section.

Imagine we have some AST, for example Expr, in Fig. 3.3. This is a rather
simple inductive data structure representing terms which can contain Peano
style natural numbers, variables (indexed by an Agda natural) and additions.

data Expr : Set where
Var : N → Expr
Pl : Expr→ Expr→ Expr
S : Expr → Expr
Z : Expr

Figure 3.3: The toy expression language Expr. We would like support for
automatically quoting such terms.

We might conceivably want to convert a piece of Agda concrete syntax, such
as 5 + x, to this AST, using reflection. This typically involves ugly and verbose
functions like the one from Sec. 4.2 with many with clauses and frankly, too
much tedium to be anything to be proud of.

We need to check that the Term has a reasonable shape, and contains valid op-
erators. Ideally, we would provide a mapping from concrete constructs such as
the_+_ function to elements of our AST, and get a conversion function for free.
This motivatedmy development of Autoquote in the course of this project. What
Autoquote does is abstract over this process, and provide an interface which,
when provided with such a mapping, automatically quotes expressions that fit.
Here, fitting is defined as only having variables, or names that are listed in this
mapping. Other terms are rejected. The user provides an elegant-looking map-
ping and Autoquote automatically converts concrete Agda to simple inductive
types. The mapping table for Expr is shown in Fig. 3.4.

exprTable : Table Expr
exprTable = (Var,

2 # (quote _+_) 7→ Pl ::
0 # (quote N.zero) 7→ Z ::
1 # (quote N.suc) 7→ S :: [])

Figure 3.4: The mapping table for converting to the imaginary Expr AST.

How this should be interpreted is that any variables encountered should
be stored as Vars, and the _+_ operator should be a Pl constructor. In each
case we are required to manually specify the arity of the constructor: howmany

20

arguments it expects. A zero, from the Data.Nat standard library, should be
treated as our Z constructor, and a suc translates to S. These constructors expect
0 and 1 argument, respectively.

We will now look at the implementation of this library.

Implementation The type Table a, in Fig. 3.5, is what we use for specifying
what the AST we are expecting should look like. The function N-ary provides
a way of storing a function with a variable number of arguments in our map,
and _$n_ is how we apply the “stored” function to a Vec n of arguments, where
n is the arity of the function. Note that this is a copy of the standard library
Data.Vec.N-ary, but has been instantiated here specifically to contain functions
with types in Set. This was necessary, since the standard library version of N-ary
can hold functions of arbitrary level (i.e. Set n). Therefore, the level of the N-ary
argument inside ConstructorMapping could not be inferred (since this depends
on which function one tries to store in that field). This yields an unsolved con-
straint which prevented the module from being imported without using the
unsound type-in-type option.

Using this N-ary we can now define an entry in our Table as having an arity,
and mapping a Name (which is Agda’s internal representation of an identifier,
see Fig. 3.1) to a constructor in the AST to which we would like to cast the
Term. The definition of N-ary restricts the possible function types to zero or
more arguments of type A to an element of type B. In ConstructorMapping, we
further specialise this function to zero or more arguments of type astType to
astType, which forces us to stick to simple inductive types, such as our Expr
example.

N-ary : (n : N)→ Set→ Set→ Set
N-ary zero A B = B
N-ary (suc n) A B = A→ N-ary n A B
$n : ∀ {n} {A : Set} {B : Set} → N-ary n A B→ (Vec A n→ B)
f $n [] = f
f $n (x :: xs) = f x $n xs
data ConstructorMapping (astType : Set) : Set1 where

7→ _ : (arity : N)
→ Name
→ N-ary arity astType astType
→ ConstructorMapping astType

Table : Set→ Set1
Table a = (N→ a) × List (ConstructorMapping a)

Figure 3.5: The types and helper functions associated with the Autoquote
library.

With the above ingredients we can now define the function convert shown
in Fig. 3.6. It takes a mapping of type Table a, and a Term obtained from one
of Agda’s reflection keywords, and produces a value which might be a prop-

21

erly converted term of type a. Here, a is the type we would like to cast to, for
example Expr. We also have the helper function lookupName, which finds the
corresponding entry in the mapping table. If nothing usable is found, nothing
is returned.

An example of such a mapping would be the one required for our Expr ex-
ample, presented in Fig. 3.4.

Note that convert is not intended to be called directly; a convenience function
doConvert is defined later.

lookupName : {a : Set} → List (ConstructorMapping a)
→ Name
→ Maybe (ConstructorMapping a)

mutual
convert : {a : Set} → Table a→ Term→ Maybe a
convert (vc, tab) (var x args) = just (vc x)
convert (vc, tab) (con c args) = appCons (vc, tab) c args
convert (vc, tab) (def f args) = appCons (vc, tab) f args
convert (vc, tab) = nothing

Figure 3.6: The function convert.

If convert encounters a variable, it just uses the constructor which stands for
variables. Note that the parameter is the De Bruijn index of the variable, which
might or might not be in scope. This is something to check for afterwards, if a
just value is returned.

In the case of a constructor or a definition applied to arguments, the function
appCons is called, which looks up a Name in themapping and tries to recursively
convert its arguments, then applies the corresponding constructor to these new
arguments. Before this is done, the number of arguments is also compared to
the defined arity of the function.

The function convertArgs takes a list of term arguments (the type Arg Term)
and tries to convert them into a list of AST values.

22

appCons : {a : Set} → Table a→ Name→ List (Arg Term)→ Maybe a
appCons (vc, tab) name args with lookupName tab name
... | just (arity # x 7→ x1) with convertArgs (vc, tab) args
... | just (arity # x1 7→ x2) | just x with length x ?

=-N arity
... | just (.(length x) # x1 7→ x2) | just x | yes

= just (x2 $n fromList x)
... | just (arity # x1 7→ x2) | just x | no = nothing
... | just (arity # x 7→ x1) | nothing = nothing
... | nothing = nothing

convertArgs : {a : Set} → Table a→ List (Arg Term)→ Maybe (List a)
convertArgs tab [] = just []
convertArgs tab (arg v r x :: ls) with convert tab x
... | just x1 with convertArgs tab ls
... | just x2 | just x1 = just (x2 :: x1)
... | just x1 | nothing = nothing
... | nothing = nothing

Note that we will probably need to post-process the output of convert, but
this will be illustrated later, in Sec. 4.3.1.

If all of these steps are successful, the converted Term is returned as just e,
where e is the new, converted member of the AST. For example, see the unit test
in Fig. 3.7. Convenience functions for dealing with failing conversions are also
provided. The doConvert function makes the assumption that the conversion
succeeds, which enables it to return a value without the just. Furthermore, this
assumption, defined in convertManages, is an inferable proof. This is on account
of it being a record type, which is explained in Sec. 2.4.

convertManages : {a : Set} → Table a→ Term→ Set
convertManages t term with convert t term
convertManages t term | just x = >
convertManages t term | nothing = ⊥
doConvert : {a : Set} → (tab : Table a)

→ (t : Term)
→ {man : convertManages tab t}
→ a

doConvert tab t {man} with convert tab t
doConvert tab t {man} | just x = x
doConvert tab t {() } | nothing

The use of convertManages and doConvert is illustrated in Fig. 3.7. This ap-
proach, using convertManages as an assumption, is a lot simpler than writing by
hand a predicate function with the same pattern matching structure as convert.
Adding to the complication, with clauses are often expanded unpredictably in
practice. The net effect of writing a pair of functions in this style is the same as
the “usual” way of writing a predicate function by hand, in that a compile time
error is generated if the function doConvert is invoked on an argument with
the wrong shape. Compare these relatively elegant functions to the verbose

23

term2boolexpr and isBoolExprQ functions in Sec. 4.3.

something : {x y : N} → doConvert exprTable
(quoteTerm ((1 + x + 2) + y))

≡ S (Pl (Pl (Var 1)
(S (S Z)))

(Var 0))
something = refl

Figure 3.7: An example of Autoquote in use. See Fig. 3.4 for the definition of
exprTable, a typical Name-to-constructor mapping.

The format of the translation Table required could most probably be made
a little simpler, by not requiring the user to provide the arity of the function,
but using the tools explained in Sec. 3.2.1 (the section on inspecting data defini-
tions, and specifically the function constructors in combination with type) to try
and discover the arity of the various constructors. Because of time constraints,
however, this is left as a suggestion for future work on the Autoquote library.

The BoolExpr AST used in Sec. 4.2 provides a good motivating example for
using Autoquote, therefore a more realistic example of Autoquote in use can
be found in Sec. 4.3.1. One might also use the ability of quoting arithmetic
equations shown here in combinationwith amonoid solver, such as the example
in Norell et al. [7].

Further examples of Autoquote functionality can be found in the module
Metaprogramming.ExampleAutoquote. The module Metaprogramming.Autoquote
contains what could serve as a basis for a system for quoting concrete Agda into
a more complex user-defined AST. Now that we have had a quick introduction
to Agda in Chapter 2, and defined this library, it is time to move on to putting it
all to use.

24

Chapter 4

Proof by Reflection

The idea behind proof by reflection is simple: given that type theory is both a
programming language and a proof system, it is possible to define functions
that compute proofs. Reflection is an overloaded word in this context, since
in programming language technology reflection is the capability of converting
some piece of concrete code into an abstract syntax tree object that can bemanip-
ulated in the same system. Reflection in the proof technical sense is the method
of mechanically constructing a proof of a theorem by inspecting its shape. Here
we will see two case studies illustrating proof by reflection and how Agda’s
reflection mechanism can make the technique more accessible.

4.1 Simple Example: Evenness
Sometimes, the best way to explain a complicated topic is to start by giving some
simple examples. Proof by reflection is no different: it is not a difficult technique,
but can initially be counter intuitive.

To illustrate the concept of proof by reflection, wewill cover an example taken
from Chlipala [10], where a procedure is developed to automatically prove that
a number is even. We start by defining the property Even below. There are two
constructors: the first constructor says that zero is even; the second constructor
states that if n is even, then so is 2 + n.

data Even : N→ Set where
isEven0 : Even 0
isEven+2 : {n : N} → Even n→ Even (2 + n)

Using these rules to produce the proof that some large number n is even
is tedious: the proof that 2 × n is even requires n applications of the isEven+2
constructor. For example, here is the proof that 6 is even:

isEven6 : Even 6
isEven6 = isEven+2 (isEven+2 (isEven+2 isEven0))

To automate such proofs, we will show how to compute the proof required.

25

We start by defining a predicate even? that returns the unit type when its input
is even and bottom otherwise. In this context, > and ⊥ can be seen as the
analogues of true and false, just as presented in Sec. 2.3. The meaning of such a
decision function is that there exists a proof that some number is even, if it is
0 or 2 + n, for even n. Otherwise, no proof exists. We will have to prove this,
though. The idea of “there exists” is perfectly modelled by the unit and empty
types, since the unit type has one inhabitant, the empty type none.

even? : N→ Set
even? 0 = >
even? 1 = ⊥
even? (suc (suc n)) = even? n

Next we need to show that the even? function is sound; that our claim holds.
To do so, we prove that when even? n returns >, the type Even n is inhabited,
and since we are working in a constructive logic, the only way to show this is
to give some witness. This is done in the function soundnessEven. What we are
actually doing here is giving a recipe for constructing proof trees, such as the
one we manually defined for isEven6.

soundnessEven : {n : N} → even? n→ Even n
soundnessEven {0} tt = isEven0
soundnessEven {1} ()
soundnessEven {suc (suc n)} s = isEven+2 (soundnessEven s)

Note that in the case branch for 1, we do not need to provide a right-hand
side of the function definition. The assumption, even? 1, is uninhabited, and we
discharge this branch using Agda’s absurd pattern, ().

Now that this has been done, if we need a proof that some arbitrary n is
even, we only need to call soundnessEven. Note that the value of n is an im-
plicit argument to soundnessEven. The only argument we need to provide to our
soundnessEven lemma is a proof that even? n is inhabited. For any closed term,
such as the numbers 28 or 8772, this proof obligation reduces to >, which is
proven by the single constructor it has, tt.

isEven28 : Even 28
isEven28 = soundnessEven tt

isEven8772 : Even 8772
isEven8772 = soundnessEven tt

Now we can easily get a proof that arbitrarily large numbers are even, with-
out having to explicitly write down a large proof tree. Note that it is not possible
to write something with type Even 27, or any other uneven number, since the
parameter even? n is equal to ⊥, thus tt would not be accepted where it is in
the Even 28 example. This will produce a > !=< ⊥ type error at compile time.
Note that it is possible to generate a user-friendly “error” of sorts, by replacing
the ⊥ constructor in even? with a type with a descriptive name such as NotEven.

26

Of course it should still be an empty type, but possibly parameterised with a
natural to indicate which value is odd. This makes the soundness proof a little
less straightforward, but in return the type error generated if an odd number is
used becomes more informative. This enhancement is demonstrated in Fig. 4.2,
in the Boolean tautologies example.

Since the type > is a simple record type, Agda can infer the tt argument, as
explained in Sec. 2.4. This means we can turn the assumption even? n into an
implicit argument, so a user could get away with writing just soundnessEven as
the proof, letting the inferrer do the rest. For the sake of exposition this is not
done here, but the final implementation available on GitHub does make use of
this method. A detailed explanation of this technique, which is used extensively
in the final code, is given in Sec. 2.4. Note that it still has the minor danger of
making errors look like innocuous warnings.

An implementation of the above, including detailed comments, is to be found
in the module Proofs.IsEven.

This concludes the example of proving that certain naturals are even using
proof by reflection. The next step will be to use the same approach for a more
involved and realistic problem.

4.2 Second Example: Boolean Tautologies
Obviously, the first example of proof by reflection, the evenness of natural num-
bers, was a rather trivial one. There was a good reason for studying it, though,
since we will now apply the same technique to a more interesting problem,
making the relationship to the previous example clear at each step.

Another application of proof by reflection is Boolean expressions which are
a tautology. We will prove this by evaluation of the formulae. We will follow
the same recipe as for even naturals, with one further addition. In the previous
example, the input of our decision procedure even? and the problem domain
were both natural numbers. As we shall see, this need not always be the case:
more complex structures and properties may be used.

Take as an example the Boolean formula in equation 4.1.

(p1 ∨ q1) ∧ (p2 ∨ q2)⇒ (q1 ∨ p1) ∧ (q2 ∨ p2) (4.1)

It is trivial to see that this is a tautology, but proving this using deduction
rules for classical logic would be rather tedious. It is even worse if we want to
check if the formula always holds by trying all possible variable assignments,
since this will give 2n cases, where n is the number of variables.

To automate this process, we will follow a similar approach to the one given
in the section on even natural numbers (Sec. 4.1). We start by defining an induc-
tive data type to represent Boolean expressions with at most n free variables in
Fig. 4.1.

There is nothing surprising about this definition; we use the type Fin n to
ensure that variables (represented by Atomic) are always in scope. If we want
to evaluate the expression, however, we will need some way to map variables
to values. Enter Env n: it has fixed size n since a BoolExpr n has at most n free
variables.

27

data BoolExpr (n : N) : Set where
Truth : BoolExpr n
Falsehood : BoolExpr n
And : BoolExpr n→ BoolExpr n→ BoolExpr n
Or : BoolExpr n→ BoolExpr n→ BoolExpr n
Not : BoolExpr n → BoolExpr n
Imp : BoolExpr n→ BoolExpr n→ BoolExpr n
Atomic : Fin n → BoolExpr n

Figure 4.1: Inductive definition of Boolean expressions with n free variables.

Env : N→ Set
Env = Vec Bool

Now we can define a decision function, which tells us if a given Boolean ex-
pression is true or not, under some assignment of variables. It does this by eval-
uating the formula’s AST, filling in for Atomic values the concrete values which
are looked up in the environment. For example, And is converted to the Boolean
function _∧_, and its two arguments in turn are recursively interpreted.

J_`_K : ∀ {n : N} (e : Env n)→ BoolExpr n→ Bool
J env ` Truth K = true
J env ` Falsehood K = false
J env ` And be be1 K = J env ` be K ∧ J env ` be1 K
J env ` Or be be1 K = J env ` be K ∨ J env ` be1 K
J env ` Not be K = ¬ J env ` be K
J env ` Imp be be1 K = J env ` be K⇒ J env ` be1 K
J env ` Atomic n K = lookup n env

Recall our decision function even? in the previous section. It returned >
if the proposition was valid, ⊥ otherwise. Looking at J_`_K, we see that we
should just translate true to the unit type and false to the empty type, to get the
analogue of the even? function.

We call this function So, the string parameter serving to give a clearer type
error to the user, if possible.

28

data Error (e : String) : Set where
So : String→ Bool→ Set
So true = >
So err false = Error err
P : Bool→ Set
P = So "Argument expression does not evaluate to true."

Figure 4.2: Helper type Error, enabling clearer type errors.

Now that we have these helper functions, it is easy to define what it means to
be a tautology. We quantify over a few Boolean variables, and wrap the formula
in our P decision function. If the resulting type is inhabited, the argument to P
is a tautology, i.e., for each assignment of the free variables the entire equation
still evaluates to true. An example encoding of such a theorem is Fig. 4.3 – no-
tice how similar it looks to the version expressed in mathematical notation, in
equation 4.1.

One might wonder why propositions are not encoded in the slightly more
intuitive propositional equality style, for example (b : Bool)→ b ∨ ¬ b ≡ true,
since that notation more obviously reflects the meaning of “being a tautology”,
as opposed to one having to understand the So function; this is justified in
Sec. 4.2.1.

exampletheorem : Set
exampletheorem = (p1 q1 p2 q2 : Bool)→

P ((p1 ∨ q1) ∧ (p2 ∨ q2)⇒ (q1 ∨ p1) ∧ (q2 ∨ p2))

Figure 4.3: Encoding of an example tautology.

Here a complication arises, though. We are quantifying over a list of Boolean
values outside of the decision function P, so proving P to be sound will not
suffice. We just definedan evaluation function J_`_K to take an environment, an
expression, and return a Boolean. In Fig. 4.3, though, we effectively quantified
over all possible environments. We are going to need a way to lift our decision
function to arbitrary environments.

The way we do this is the function foralls, in Fig. 4.4. This function repre-
sents the real analogue of even? in this situation: it returns a type which is only
inhabited if the argument Boolean expression is true under all variable assign-
ments. This is done by generating a full binary tree of > or ⊥ types, depending
on the result of J_`_K under each assignment. This corresponds precisely to
the expression being a tautology if and only if the tree is inhabited.

The Diff argument is unfortunately needed to prove that forallsAcc will even-
tually produce a tree with depth equal to the number of free variables in an
expression.

29

forallsAcc : {n m : N} → BoolExpr m→ Env n→ Diff n m→ Set
forallsAcc b acc (Base) = P J acc ` b K
forallsAcc b acc (Step y) =

forallsAcc b (true :: acc) y × forallsAcc b (false :: acc) y
foralls : {n : N} → BoolExpr n→ Set
foralls {n} b = forallsAcc b [] (zeroleast 0 n)

Figure 4.4: The function foralls, which decides if a proposition is a tautology.
Compare to the even? function in Sec. 4.1.

What Is This Diff You SpeakOf? In Fig. 4.4, we just saw that the Diff argument
is necessary. Here, a short description of what it is and why it is needed is given.

The function forallsAcc (among others) has a parameter of type Diff n m.
Recalling the function’s definition from Fig. 4.4, note that there are two variables,
n andm, giving the current size of the environment and the maximum number
of bound variables in the proposition, respectively.

This is wrong, since our interpretation function J_`_K requires that these
m and n are equal. We cannot, however, make them equal in the type signature
for forallsAcc, since we are recursively building up the environment with an
accumulating parameter. Because of this, we introduce Diff – see Fig. 4.5.

data Diff : N→ N→ Set where
Base : ∀ {n} → Diff n n
Step : ∀ {n m} → Diff (suc n) m→ Diff n m

zeroleast : (k n : N)→ Diff k (k + n)

Figure 4.5: The definition of the Diff data type.

The Diff data type is necessary because given a term of type BoolExpr m,
being a proposition with at mostm variables, it should be ensured that in the
end an environment of sizem is produced. The necessity ofm ≡ n is obvious
considering that the evaluation function needs to be able to look up the variables
in the Boolean expression. As forallsAcc is a recursive function that introduces
new variables to the environment one at a time, we need some way to “promise”
that in the endmwill be equal to n. As can be seen in the definition of the Base
constructor, this is exactly what happens.

The same thing is necessary in some of the other functions, given that they
also recursively construct or look up proofs that need to have the same size as
their BoolExpr argument. Because they use the same technique in a slightly less
overt manner they are not separately detailed here.

We also provide the simple lemma zeroleast, which shows that for any two
k and n, n steps are needed to count from k to k + n.

30

Soundness Since Diff has been explained, and we now know our real decision
function foralls, we can set about proving its soundness. Following the evens
example, we want a function something like this.

sound : {n : N} → (b : BoolExpr n)→ foralls b→ ...

What should the return type of the sound lemma be? We would like to prove
that the argument b is a tautology, and hence, the sound function should return
something of the form (b1 ... bn : Bool) → P B, where B is an expression in the
image of the interpretation J_`_K. For instance, the statement exampletheorem
is a proposition of this form.

The function proofGoal, given a BoolExpr n, generates the corresponding
proof obligation. That is, it gives back the type equivalent to the theorem un-
der scrutiny. It does this by first introducingm universally quantified Boolean
variables. These variables are accumulated in an environment. Finally, when
m binders have been introduced, the BoolExpr is evaluated under this environ-
ment.

proofGoal : (n m : N)→ Diff n m→ BoolExpr m→ Env n→ Set
proofGoal .m m (Base) b acc = P J acc ` b K
proofGoal n m (Step y) b acc =

(a : Bool)→
proofGoal (1 + n) m y b (a :: acc)

Now that we can interpret a BoolExpr n as a theorem using proofGoal, and
we have a way to decide if something is true for a given environment, we still
need to show the soundness of our decision function foralls. That is, we need to
be able to show that a formula is true if it holds for every possible assignment
of its variables to true or false.

soundnessAcc : {m : N} → (b : BoolExpr m)→
{n : N} → (env : Env n)→
(d : Diff n m)→ forallsAcc b env d→
proofGoal n m d b env

soundnessAcc bexp env Base H with J env ` bexp K
soundnessAcc bexp env Base H | true = H
soundnessAcc bexp env Base H | false = Error-elim H
soundnessAcc {m} bexp {n} env (Step y) H =
λ a→ if {λ b→ proofGoal (1 + n) m y bexp (b :: env)} a

(soundnessAcc bexp (true :: env) y (proj1 H))
(soundnessAcc bexp (false :: env) y (proj2 H))

Ifwe look closely at the definition of soundnessAcc, we see that it builds up the
environment by assigning some configuration of true and false to the variables.
It eventually returns the leaf from foralls which is the proof that the formula is
a tautology in that specific case.

31

soundness : {n : N} → (b : BoolExpr n)→ foralls b
→ proofGoal 0 n (zeroleast 0 n) b []

soundness {n} b i = soundnessAcc b [] (zeroleast 0 n) i

The function soundness calls soundnessAcc with some initial input, namely
the BoolExpr n, an empty environment, and the Diff proof that soundnessAcc will
be called (n− 0) times. This results in an environment of size n everywhere the
expression is to be evaluated.

Now, we can prove theorems by calling soundness b p, where b is the rep-
resentation of the formula under consideration, and p is the evidence that all
branches of the proof tree are true. Agda is convinced that the representation
does in fact correspond to the concrete formula, and also that soundness gives
a valid proof. In fact, we need not even give p explicitly; since the only valid
values of p are nested pairs of tt, the argument can be inferred automatically, if
its type is inhabited.

If the module passes the type checker, we know our formula is both a tautol-
ogy and that we have the corresponding proof object at our disposal afterwards,
as in the example of Fig. 4.6.

rep : BoolExpr 2
rep = Imp (And (Atomic (suc zero)) (Atomic zero))

(Atomic zero)

someTauto : (p q : Bool)→ P (p ∧ q⇒ q)
someTauto = soundness rep

Figure 4.6: An example Boolean formula, along with the transliteration to a
proposition and the corresponding proof.

Having said that, the trick of letting Agda infer the proof argument to pass
to soundness is still a little dangerous, as explained in Sec. 2.4. The thing is, we
do not want a user to get away with being able to prove that something which
is not a tautology, is a tautology. Since the proof that under all environments
the theorem evaluates to true is an inferred argument in this style, one is merely
left with an unsolved meta (with an uninhabitable type, to be fair), which might
seem a triviality if you do not read the compiler’s output carefully. Luckily
Agda disallows importing modules with unsolved metas, which means such a
spurious proof will not be usable elsewhere in a real-life development.

Other than that potential pitfall, the only part we still have to do manually
is to convert the concrete Agda representation (p ∧ q ⇒ q, in this case) into
our abstract syntax (rep here). This is unfortunate, as we end up typing out the
formula twice. We also have to count the number of variables ourselves and
convert them the to De Bruijn indices. This is error-prone given how cluttered
the abstract representation can get for formulae containing many variables.

It would be desirable for this process to be automated. In Sec. 4.3 a solution
is presented that uses Agda’s recent reflection API.

32

4.2.1 Why Not Propositional Equality?
The question of why the So operator is used here to denote that a formula is a
tautology, as opposed to just writing the literal definition of tautology, namely
∀ (b : Bool)→ Q (b) ≡ true, was asked in the previous section. The reason for
this is mainly a technical one. While it is possible to prove tautologies of this
form, using this format for reasoning about Boolean formulae becomes rather
awkward.

The reason for this is that the So operator returns a type, namely either>, ⊥
or other record types, which can be passed around as an automatically inferred
implicit value (see Sec. 2.4 for a detailed explanation about implicit inferred
arguments), removing the need to put refl everywhere such a proof is needed –
a unit or pair type can be inferred if it exists1. Because of this, the recursive cases
of soundness become a lot simpler: the interpretation of a sub-expression being
true becomes the same as a unit type being inhabited, and the and-operator
corresponds to a pair. If the propositional equality way was being used, many
lemmas such as that a ∧ b ≡ true⇒ a ≡ true ∧ b ≡ true need to be proven, and
they are continually needed to pull apart such propositions for recursive calls.
Using a type that allows patternmatchingwith irrefutable patterns to obtain left-
truth and right-truth, to then be passed to the recursive calls, is much simpler
in this case.

4.2.2 Why Not Enumerate Environments?
A reasonable question to pose, after seeing the interface to the tautology prover,
is why we have to separately introduce fresh variables. Why can we not just
write something like ∀ (e : Env n)→ P someprop?

One of the reasons for not enumerating environments is that referring to
variables inside someprop becomes a bit of a problem. Some new syntax would
have to be introduced, such as a constructor Var : Fin n → Bool which could
be used to refer to an element of the environment by number. This is rather less
elegant than the current implementation, which simply brings a few Boolean
variables into scope in the native Agda manner, using a telescope (i.e. (p q r :
Bool) → P (p ∧ q ⇒ r), as defined in Sec. 2.1). This has another advantage,
namely that when writing down a proposition, you are forced to use only valid
variables, which translate to in-scope De Bruijn indices.

Another difficulty of enumerating environments is the generation of the
proof goal. Currently, a telescope with Boolean variables can be generated eas-
ily via recursion (see the function proofGoal), as opposed to having to generate
all possible lists of assignments. Some investigation was done to try and show
that environments (lists of Booleans) of length n are enumerable, but the results
were not as elegant as those presented here. Also, generating the environments
by quantifying over fresh variables and adding them to an accumulating envi-
ronment saves the hassle of creating a large binary tree with all the possible
environments in the leaves.

1Compare the example implementation of a ring solver in Agda, which has refls all over the place
[31], which cannot be made implicit and thus omitted.

33

4.3 Adding Reflection
It might come as a surprise that in a project focusing on reflection in Agda, in
the programming language technology sense, has not yet found an application
for reflection in this chapter. This is about to change. We can get rid of the dupli-
cation seen in Fig. 4.6 using Agda’s reflection API. In that figure we see the same
Boolean formula twice: once in the type signature as an Agda proposition and
once in the BoolExpr AST. More specifically, we will use the quoteGoal keyword
to inspect the current goal. Given the Term representation of the goal, we can
convert it to its corresponding BoolExpr automatically.

The conversion between a Term and BoolExpr is achieved using the function
concrete2abstract.

concrete2abstract : (t : Term)→ (n : N)
→ {pf : isSoExprQ (stripPi t)}
→ {pf2 : isBoolExprQ n (stripPi t) pf}
→ BoolExpr n

Note that not every Term can be converted to a BoolExpr. Looking at the type
signature of the concrete2abstract function, we see that it requires additional
assumptions about the Term: it may only contain functions such as _∧_ or
∨, and bound variables. This is ensured by the predicates isBoolExprQ and
friends. The functions stripPi and stripSo remove the quantified variables and P
wrapper, respectively.

The concrete2abstract function is rather verbose, and is mostly omitted. A
representative snippet is given in Fig. 4.7. The attentive reader will notice that
the function in the referenced figure is called term2boolexpr; this is because we
also unwrap the outermost call to P and the telescope quantifying over the
variables before doing the conversion, since these elements are unnecessary
in the BoolExpr representation. The function term2boolexpr can be seen as a
helper function to concrete2abstract where the “interesting” work happens. The
functions in the type signature, isBoolExprQ and isSoExprQ, simply traverse the
Term to see if it fulfils the requirements of being a Boolean expression enclosed
in a call to P, preceded by a series of universally quantified Boolean variables.

term2boolexpr n (con tf []) pf with tf ?
=-Name quote true

term2boolexpr n (con tf []) pf | yes p = Truth
...
term2boolexpr n (def f []) ()

term2boolexpr n (def f (arg v r x :: [])) pf with f ?
=-Name quote ¬_

... | yes p = Not (term2boolexpr n x pf)

... | no ¬p with f ?
=-Name quote _∧_

...

Figure 4.7: The gist of the conversion of a Term into a BoolExpr n.

All these pieces are assembled in the proveTautology function.

34

proveTautology : (t : Term)→
{pf : isSoExprQ (stripPi t)} →
let n = freeVars t in
{pf2 : isBoolExprQ n (stripPi t) pf} →
let b = concrete2abstract t n {pf} {pf2} in
{ i : foralls b} →
proofGoal 0 n (zeroleast 0 n) b []

proveTautology t { } { } { i} =
soundness (concrete2abstract t (freeVars t)) i

The proveTautology function converts a raw Term to a BoolExpr n format and
calls the soundness lemma. It uses a few auxiliary functions such as freeVars,
which counts the number of variables (needed to be able to instantiate the n in
BoolExpr n), and stripSo & stripPi, which peel off the universal quantifiers and
the function So with which we wrap our tautologies. These helper functions
have been omitted for brevity, since they are rather cumbersome and add little
to the understanding of the subject at hand.

These are all the ingredients required to automatically prove that formulae
are tautologies. The following code illustrates the use of the proveTautology
functions; we can omit the implicit arguments for the reasons outlined in Sec. 2.4.

exclMid : (b : Bool)→ P (b ∨ ¬ b)
exclMid = quoteGoal e in proveTautology e
peirce : (p q : Bool)→ P (((p⇒ q)⇒ p)⇒ p)
peirce = quoteGoal e in proveTautology e
fave : exampletheorem -- defined in Fig. 4.3
fave = quoteGoal e in proveTautology e

This shows that the reflection capabilities recently added to Agda are quite
useful for automating certain tedious tasks, since we now need not encode the
Boolean expression twice, in slightly different formats. The conversion now
happens automatically, without loss of expressive power or general applicability
of the proofs resulting from soundness. Furthermore, by using the proof by
reflection technique, the proof is generated automatically.

It seems conceivable to imagine that in the future, using techniques such as
those presented here, a framework for tactics might be within reach. Eventually
we might be able to define an embedded language in Agda to inspect the shape
of the proof that is needed, and look at a database of predefined proof recipes to
see if one of themmight discharge the obligation. An advantage of this approach
versus the tactic language in Coq, would be that the language of the propositions
and tactics is the same.

The attentive reader will remember that we previously studied a system
capable of automatically quoting concrete Agda to a simple user-defined AST.
Would that not be perfectly suited to quoting to the BoolExpr type used here?
This turns out to be the case: we exploit this possibility in the rest of this chapter.

35

4.3.1 An Aside: Real-world Example of Automatic Quoting
The process of quoting to a BoolExpr n outlined in Sec. 4.3 quickly becomes an
ugly mess, with functions checking properties of an expression (such as only
certain functions like _∧_ or ¬_ occurring in the Term) being repetitive and
verbose. The code summarised in Fig. 4.7 is an example of such a mess. If one
then wanted to quote to some other AST, the whole process would have to be
modified, which, I can guarantee, is a painful process.

The actual conversion function also ends uphavingmany branches, checking
if all the constructors and definitions are recognised, etc. This process can be
made a lot less ugly and a lot more reusable. Recall the Autoquote module
developed in Sec. 3.3; the same can be used here, both as an illustration of its
use, and to avoid code duplication, thusmaking the code for term2boolexpr more
concise.

Autoquote only supports simple inductive data types, so the first problem
we encounter is that BoolExpr n has an argument of type Fin n to its constructor
Atomic (see Fig. 4.1). To work around this, we introduce a simpler, intermediary
data structure, to which we will convert from Term. This type, called BoolInter,
is presented in Fig. 4.8. It has no such constraints.

data BoolInter : Set where
Truth : BoolInter
Falsehood : BoolInter
And : BoolInter→ BoolInter→ BoolInter
Or : BoolInter→ BoolInter→ BoolInter
Not : BoolInter → BoolInter
Imp : BoolInter→ BoolInter→ BoolInter
Atomic : N → BoolInter

Figure 4.8: An intermediary data type, which is a simplified (constraint-free)
version of BoolExpr n.

Themapping needed forAutoquote is as follows: wementionwhich construc-
tor represents De Bruijn-indexed variables and what the arity is of the different
constructors. This way only Terms containing variables or the operators and, or,
not, implication, true or false are accepted. Using this mapping, we can con-
struct the function term2boolexpr that, for suitable Terms, gives us an expression
in BoolInter. See Fig. 4.9.

Once we have a BoolInter expression, we just need to check that its variables
are all in scope (this means that ∀ Atomic x : x < n, if we want to convert to
a BoolExpr n). This is done in bool2fin, assuming that bool2finCheck holds (the
latter simply expresses the in-scope property).

36

boolTable : Table BoolInter
boolTable = (Atomic,

2 # (quote _∧_) 7→ And
:: 2 # (quote _∨_) 7→ Or
:: 1 # (quote ¬_) 7→ Not
:: 0 # (quote true) 7→ Truth
:: 0 # (quote false) 7→ Falsehood
:: 2 # (quote _⇒_) 7→ Imp :: [])

term2boolexpr : (t : Term)
→ {pf : convertManages boolTable t}
→ BoolInter

term2boolexpr t {pf} = doConvert boolTable t {pf}

Figure 4.9: The mapping table for quoting BoolInter.

bool2finCheck : (n : N)→ (t : BoolInter)→ Set
bool2finCheck n Truth = >
bool2finCheck n (And t t1) = bool2finCheck n t × bool2finCheck n t1
...
bool2finCheck n (Atomic x) with suc x 6? n
bool2finCheck n (Atomic x) | yes p = >
bool2finCheck n (Atomic x) | no ¬p = ⊥
bool2fin : (n : N) (t : BoolInter) (bool2finCheck n t)→ BoolExpr n
bool2fin n Truth pf = Truth
bool2fin n (And t t1) (p1, p2) = And (bool2fin n t p1) (bool2fin n t1 p2)
...
bool2fin n (Atomic x) p1 with suc x 6? n
bool2fin n (Atomic x) p1 | yes p = Atomic (fromN6 {x} p)
bool2fin n (Atomic x) () | no ¬p

With these ingredients, our concrete2abstract function presented in Sec. 4.3
can be rewritten to the following drop-in replacement, illustrating how useful
such an abstraction can be. It uses the function term2boolexpr defined in Fig. 4.9.

37

concrete2abstract’ :
(t : Term)
→ {pf : isSoExprQ (stripPi t)}
→ let t’ = stripSo (stripPi t) pf in
{pf2 : convertManages boolTable t’}
→ (bool2finCheck (freeVars t) (term2boolexpr t’ {pf2}))
→ BoolExpr (freeVars t)

concrete2abstract’ t {pf} {pf2} fin = bool2fin (freeVars t)
(term2boolexpr

(stripSo (stripPi t) pf)
{pf2})

fin

Clearly, the Autoquotemodule can save a lot of repetitive coding for convert-
ing Terms into some more structured AST, such as BoolExpr n.

Finally, all developments regarding the proof by reflection technique, in-
cluding the quoting code can be found in the modules Proofs.TautologyProver
and Metaprogramming.Autoquote, respectively. There are also examples of us-
ing the tautology prover as a library in Proofs.ExampleTautologies, as well as
two examples of using Autoquote in Metaprogramming.ExampleAutoquote. The
more extensive illustration of what is possible using Autoquote can be found in
Proofs.TautologyProver.

38

Chapter 5

Type-safe Metaprogramming

Another area in which an application for the new reflection API was found is
that of type-safe metaprogramming, taking advantage of Agda’s powerful type
system.

Metaprogramming is a technique which is already widely used, for example
in the Lisp community, and involves converting terms in the concrete syntax
of a programming language into an abstract syntax tree that can be inspected
and/or manipulated, and possibly be made concrete again. Afterwards it can
be evaluated as if it were code the programmer had written directly. In Agda
the reflection happens at compile time, allowing for the strong static typing we
have come to know and love. If run time reflection were possible, any program
compiled with Agda would need to include the complete typing system, a prob-
lemwhich does not exist in Lisp, since it is dynamically typed, whichmakes run
time reflection possible. In Agda, therefore, a compromise of sorts is required.

Reflection is well-supported and widely used in Lisp and more recently in
Haskell, using the Template Haskell compiler extension [51]. It has enabled
much automation of tasks otherwise requiring boilerplate1 code, such as gener-
ating embedding-projection function pairs for generic programming. One such
example is due to Norell and Jansson [41].

Clearly, metaprogrammingwith Template Haskell is a very useful technique,
but it does have a conspicuous cumbersomeness (or should we say, potential
pitfall). Developing a piece of Template Haskell code which should generate
some function often results in debugging type errors in the resulting machine-
generated code. This is a tedious and painful process, since, typically, generated
code is much less self-explanatory or readable than hand-written code.

Here we propose a new way of looking at metaprogramming, namely type-
safe metaprogramming. It would be great to be able to define some data struc-
ture for, say, lambda calculus, and have the guarantee that any term constructed
in this AST is type-correct. The obvious advantage is then that the type checker
will catch errors in whichever method tries to build an invalid piece of abstract
syntax at compile time. This is preferable to the type checker giving an obscure
error pointing at some generated code, leaving the programmer to figure out
how to solve the problem.

1According to the Oxford English Dictionary, boilerplate is defined as “standardised pieces of text
for use as clauses in contracts or as part of a computer program.”

39

In this chapter wewill explore how one can leverage the power of dependent
types to achieve more type safety when writing metaprograms.

5.1 Preamble
In this section aboutmetaprogramming, the object languagewewill be studying
is the simply typed lambda calculus (STLC). Although the reader is assumed
to be familiar with the rules and behaviour of STLC, the definitions and rules
which will be relevant later on are briefly repeated here.

We first introduce the idea of contexts. A context is a stack of types, in which
one can look up what type a variable is supposed to have. We have empty
contexts, [], and the possibility of adding a new type to the top of the context
stack. We denote extension of the context by :: , so x :: xsmeans x pushed on
the context xs. There are also typing assumptions, of the form x : σ. This means
the variable x has type σ. We also introduce the notion of a typing relation, or
judgement, Γ ` t : σ, meaning that given some context Γ, the term t has type σ.

The typing rules are written using horizontal bars. Above the bar are the
assumptions, and below the bar are conclusions we may draw if those assump-
tions hold. The validity of a typing judgement is shown by providing a typing
derivation, constructed using the typing rules. See Fig. 5.1 for the typing rules.

[var] x : σ ∈ Γ
Γ ` x : σ

[lit]
c constant of type σ

Γ ` c : σ

[lam] x : σ :: Γ ` e : τ
Γ ` (λx : σ.e) : σ → τ

[app]

Γ ` e1 : σ → τ
Γ ` e2 : σ

Γ ` e1e2 : τ

Figure 5.1: The typing rules for simply typed lambda calculus.

Of special interest are terms which we call closed. Closed is defined as being
typable under the empty context, []. Such terms do not refer to variables which
were not introduced by lambda abstractions in that same term (a.k.a. terms free
of free variables), and are also sometimes referred to as combinators.

Here we have used named variables, but in the following section these will
be replaced in favour of De Bruijn indices.

5.1.1 De Bruijn Indices
Since we assume familiarity with lambda calculus in general, only a short intro-
duction will be given here regarding nameless De Bruijn-indexed lambda terms
[17], as opposed to the “usual” named representation which is surprisingly
enough still the standard for most textbooks on the subject. Named representa-
tion of lambda terms has all sorts of intricate issues such as preventing capture of
free variables after α-conversion, and needing to generate fresh variable names
when adding abstractions, to name but a few difficulties. Algorithms for trans-
forming and generating lambda terms are often riddled with “bookkeeping” to
prevent such unwanted behaviour. For example, whole libraries [62] have been

40

developed to work out of the box and do these sort of operations generically. On
the other hand, De Bruijn representation has the drawback that variable names
are context sensitive. This discussion is, however tempting it may be to speak
derisively about named lambda representation, rather outside the scope of this
project, so we will restrict ourselves to a short presentation of the De Bruijn
representation.

Usually, terms are denoted with a lambda abstraction binding a variable,
and then later, in their bodies, referring to these bound values by name. Not
so with De Bruijn indices, where a variable is represented by a natural number
counting the number of abstractions between its occurrence and binding λ. To
illustrate the concept we present some example terms in Table 5.1.

Named De Bruijn
λx.x λ.0

λx.λy.xy λ.λ.1 0

Table 5.1: A few sample translations from named lambda terms to De Bruijn-
indexed terms.

Obviously, λy.y and λx.x are essentially the same lambda term, but repre-
sented differently. This is a “problem” we do not encounter using De Bruijn
indices, since lambda expressions have one canonical representation. Also, be-
cause of the fact that a variable’s index may not be higher than its depth, it is
trivial to check that terms are closed, which makes the De Bruijn representation
ideal for representing combinators. In all of the algorithms presented in this
chapter, De Bruijn representation will be used.

5.1.2 Modelling Well-typed λ-calculus
For the running example in this section, wewill look at simply typed lambda cal-
culus (STLC)with the usual type and scoping rules, as defined in Fig. 5.2. All the
modules that dealwith lambda expressions (everything in theMetaprogramming
name space of the project) work on this WT (which stands for well-typed) data
type. Notice how the constructors are basically a transliteration of the STLC
typing rules introduced in Fig. 5.1, save the addition of a size parameter.

The first thing to notice is that all terms in WT are annotatedwith a context, a
type (the outer type of the lambda expression), and a size. The size is an arbitrary
measure which should be strictly larger for terms which are structurally larger.
This will become useful later, when we need to show that certain functions
preserve the size of terms, but other than that the size has no interestingmeaning.
It is tempting to make the size parameter implicit, in the hope that this will hide
a lot of clutter. Unfortunately, in most of the functions in this chapter, the size of
terms needs to be specified to enable Agda to solve constraints between input
and output of transformation functions. This is why the choice has been made
to keep the size argument explicit, and occasionally use the underscore to tell
Agda to infer the size when possible. After all, if we need to pattern match on
implicit parameters and pass them along anyway, the clutter is only worse than
if they were explicit.

The type annotations are elements of U′, defined in Fig. 5.3, which mod-
els base types and arrows. Contexts are simply lists of types, the position of

41

data WT : Ctx→ U′ → N→ Set where
Var : ∀ {Γ} {τ }

→ τ ∈ Γ
→WT Γ τ 1

Lam : ∀ {Γ} σ {τ } {n}
→WT (σ :: Γ) τ n
→WT Γ (σ => τ) (suc n)

〈〉 : ∀ {Γ} {σ τ } {n m}
→WT Γ (σ => τ) n
→WT Γ σ m
→WT Γ τ (suc n + m)

Lit : ∀ {Γ} {x}
→ Uel x
→WT Γ (O x) 1

Figure 5.2: The simply typed lambda calculus with De Bruijn indices.

elements of the list corresponding to their De Bruijn indices.

data U′ : Set where
O : U → U′

_⇒ _ : U′ → U′ → U′

Cont : U′ → U′

Ctx : Set
Ctx = List U′

Figure 5.3: The universe used inside the metaprogramming libraries, with
base and arrow types, parameterised by a user-defined universe U.

The O constructor, which stands for base types, is parameterised by an ar-
gument of type U. This is the user-defined universe by which all the library
modules in Metaprogramming are parameterised. This would allow a user to
instantiate the type checking module,Metaprogramming.TypeCheck, with a uni-
verse which has a representation of natural numbers, or Booleans, or both. Fi-
nally there is the Cont constructor, which will be used and explained later, in
Sec. 5.3. In the following snippets of code we will present the other helper func-
tions a user needs to define as we encounter them, summarising finally what is
necessary and why in Sec. 5.5.

Finally there are the arguments of type τ ∈ Γ to the Var constructor. These
are evidence that the variable identifier in question points to a valid entry of
type τ in the context, Γ. Values of this type are basically annotated naturals
corresponding to the De Bruijn index of the variable. This data type is defined
in Fig. 5.4, and from such a value, one can query either the index (as a natural
or Fin s, s being the length of the list) in the context (which is equal to their

42

De Bruijn index, given how entering the body of a lambda abstraction pushes
a new entry onto the context) or the type of the variable they represent. Note
that because of this the Var constructor is not parameterised with an explicit
argument other than the _∈_ parameter.

data _ ∈ _ {A : Set} (x : A) : List A→ Set where
here : {xs : List A} → x ∈ x :: xs
there : {xs : List A} {y : A} → x ∈ xs→ x ∈ y :: xs

Figure 5.4: The definition of the _∈_ data type, used as a witness that a
variable with some type points to a valid location in the context. Note that

:: binds more strongly than _∈_.

It should be clear that a term in WT [] is closed, since if the context of a term
is empty and given that all WT terms are well-scoped, the only way to introduce
variables (remembering that they require a proof of being in the context) is to
first introduce an abstraction which extends the environment. This leads us to
define the following alias for closed well-typed terms.

Well-typed-closed : U′ → N→ Set
Well-typed-closed = WT []

Looking at the WT data type constructor by constructor, we first encounter
Var. The Var constructor stands for variables. A variable only has one argument,
namely a proof that its index points to an entry in the context somewhere. Con-
texts are defined as lists of types, therefore τ is the type of the WT expression
constructed by Var. Note that in particular, a variable cannot occur on its own
within an empty context. There is no proof possible that a variable inhabits the
empty context.

Next, we encounter abstractions, modelled by the Lam constructor. Here
we are introducing a new variable with type σ into the context. Since we al-
ways push type variables on top of the context whenever we enter the body of a
lambda abstraction, the index of the types in the context always corresponds to
the De Bruijn-index of that variable. Intuitively, the deeper a variable in the list,
the further away (in terms of lambda’s) it is towards the outside of the expres-
sion, as seen from the point of view of the variable in question. Finally, a Lams
second argument is its body, which is a well-typed term with type τ , given the
abstraction’s context extended with the type of the variable the lambda binds.
This now produces a term of type σ => τ , since we bind something of type σ
and return something with the body’s type.

The application constructor, _〈_〉, is next. It takes two arguments, namely
well-typed terms which “fit” in terms of application. That is, if the second
argument has type σ, then the first argument should have a type σ => τ , for any
τ . This application then produces a term of type τ .

There is also a Lit constructor, for introducing literal values (such as the num-
ber 5) into expressions. Among other things, this is useful for testing purposes.

43

We will explain the other elements present in Lit, such as the O-constructor and
the Uel function, in Sec. 5.2.2.

Given these constructors, terms of type WT can only be instantiated if they
are well-scoped, thanks to the proofs τ ∈ Γ in the variable constructors. They
are also guaranteed to be well-typed, because all the terms are required to “fit”
(for example in the outer types of lambda abstractions and applications).

5.2 Type Checking
Because it usually is impractical to require direct construction of WT terms, we
would also like to offer away of translating from some less constrained data type
to WT, if possible. To this end, we introduce the data type Raw, given in Fig. 5.5,
which is a model of lambda terms with De Bruijn indices that should look a
lot more familiar to Haskell users, since most models of lambda expressions in
Haskell-land are untyped (although this is possible using GADTs, see Cheney
and Hinze [9]).

data Raw : Set where
Var : N → Raw
Lam : U′ → Raw → Raw
App : Raw → Raw → Raw
Lit : (x : U)→ Uel x→ Raw

Figure 5.5: The Raw data type, or amodel of simply typed lambda expressions
without any typing or scoping constraints.

We do include some typing information in Raws, but it is unverified. We
require lambda terms and literals to be annotated with their type, because oth-
erwise the type checker would become a type inferrer. While this is possible
(AlgorithmW [15] would suffice), it is a pain to implement in a language where
only structural recursion is allowed by default. The difficulty is that the unifica-
tion algorithm typically used with AlgorithmWmakes use of general recursion.
This is in fact a topic of research in its own right, and therefore outside the scope
of this project [37].

We choose instead to use the relatively straightforward, structurally recur-
sive algorithm for type checking lambda terms presented in Norell’s tutorial
on Agda [43]. This algorithm was adapted from McBride’s work in Epigram
[38]. The function infer – defined in the following paragraph, incrementally –
provides a view on Raw lambda terms showing whether they are well-typed or
not. This view is aptly called Infer, and is defined in Fig. 5.6.

The Infer view makes use of the erase helper function, which returns the
erasure of a WT term. The erasure of a typed term is simply the same term with
typing information erased. Because erase is implemented exactly as expected,
its definition is omitted.

The Infer view expresses that a term is either incorrectly typed using bad,
which can be used on any term in Raw, or well-typed, which is shown using the
ok constructor. The constructor ok also requires the corresponding witness in

44

erase : ∀ {Γ τ n} →WT Γ τ n→ Raw

data Infer (Γ : Ctx) : Raw→ Set where
ok : {n : N} (τ : U′) (t : WT Γ τ n)→ Infer Γ (erase t)
bad : {e : Raw} → Infer Γ e

Figure 5.6: The view on Raw lambda terms denoting whether they are well-
typed or not.

WT; we have already agreed that if a term can be represented in WT, it must
be both well-scoped and well-typed. Moreover, this correspondence is enforced
by defining the view on erase t, the erasure of t, as opposed to an arbitrary Raw
term.

The infer algorithm, which provides the Infer view and therefore must gen-
erate WT terms corresponding to Raw terms, is presented here, in sections.

infer : (Γ : Ctx) (e : Raw)→ Infer Γ e
infer Γ (Lit ty x) = ok (O ty) (Lit {x = ty} x)

Of course, a literal on its own is always well-typed, and corresponds to a WT
with whatever type the literal has. A variable is similarly easy to type check,
except that it should not point outside the context. That is, it should have a De
Bruijn index smaller than or equal to its depth. Here we look up the variable
and return whatever type the context says it has, or, if it is out of scope, bad.

infer Γ (Var x) with Γ ! x
infer Γ (Var .(index p)) | inside σ p = ok σ (Var p)
infer Γ (Var .(length Γ + m)) | outside m = bad

Abstractions are well-typed if the body of the lambda is well-typed, under
a context extended with the type of the variable the lambda binds. Indeed,
binding a variable adds it to the context for the body of the abstraction, with
index 0, since it is the “most recent” binding. This can be seen in the term σ :: Γ
in the Lam constructor of WT. The type of the abstraction is, as argued above, a
function from the type of the binding to the type of the body, σ => τ here.

infer Γ (Lam σ e) with infer (σ :: Γ) e
infer Γ (Lam σ .(erase t)) | ok τ t = ok (σ => τ) (Lam σ t)
infer Γ (Lam σ e) | bad = bad

The application case is the most verbose, since we need to check the type of
the applicand (called e in the code), and assuming it has an arrow type (other-
wise something is wrong), we then have to check that the argument (called e1
in the code) has the same type as the left-hand side of the arrow. If all goes well,
we are done.

45

infer Γ (App e e1) with infer Γ e
infer Γ (App .(erase t) e1) | ok (Cont a) t = bad
infer Γ (App .(erase t) e1) | ok (O x) t = bad
infer Γ (App .(erase t) e1) | ok (τ => τ1) t with infer Γ e1
infer Γ (App .(erase t1) .(erase t2))

| ok (σ => τ) t1
| ok σ’ t2 with σ =? = σ’

infer Γ (App .(erase t1) .(erase t2))
| ok (.σ’ => τ) t1
| ok σ’ t2
| yes = ok τ (t1 〈 t2 〉)

infer Γ (App .(erase t1) .(erase t2))
| ok (σ => τ) t1
| ok σ’ t2
| no = bad

infer Γ (App .(erase t) e1) | ok (τ => τ1) t
| bad = bad

infer Γ (App e e1) | bad = bad

The code which does all of this can be found inMetaprogramming.TypeCheck,
the views and data type definitions are in Metaprogramming.Datatypes.

5.2.1 Quoting to Raw

It is a fine coincidence that the data type Raw closely matches the Term AST
defined in the Agda compiler limited to lambda-related constructors, so it is
relatively simple to massage the output of quoteTerm into an element of Raw,
if it contains only a lambda expression. The code which does this (mostly the
function term2raw) is to be found inMetaprogramming.TypeCheck. Since the con-
version code is uninteresting and quite similar to the code presented in Sec. 3.3,
it is omitted.

Since we have a conversion function from Term to Raw at our disposal, as
well as a type checker, it is tempting to write something like typed1.

testgoal1 : Raw
testgoal1 = term2raw (quoteTerm λ (b : N→ N)→ (λ (x : N)→ b x))
typed1 : Well-typed-closed (typeOf testgoal1)
typed1 = raw2wt testgoal1

seeTyped1 : typed1 ≡
Lam (O Nat => O Nat)

(Lam (O Nat)
(Var (there here) 〈 Var here 〉))

seeTyped1 = refl

What we now have, is an automatic quoting of lambda terms into well-typed
WT terms. Note thatwe are required to annotate the binderswith types, because
otherwise the quoteTerm keyword will return a lambda term with unknown as

46

the type annotation, which our type checker will not accept. In seeTyped1 we
can inspect the resulting WT term.

5.2.2 Unquoting WT

Previously we saw how to quote lambda expressions to WT and then type check
them. Conversely, we would also like to be able to construct a term in WT and
use the unquote keyword to turn it back into concrete syntax, otherwise there
would not be much practical use in being able to do transformations on WT
terms.

The interpretation function for WT terms is mostly unsurprising; it must
take a WT and return a Term, Agda’s abstract representation, which we can then
unquote. Note that we are discarding the type information; Term is represents
untyped expressions.

The first few clauses are precisely what one would expect, except maybe
for the Lit case. Here we see the first signs of the universe model which is
implemented, namely a call to an undefined function quoteBack. The idea is
that all the types in the U′ universe we are using (arrows and base types denoted
with the constructor O) are parameterised by a user-defined universe U , which
is used for the base types. We cannot know what types a user has modelled
in their universe, so we have to require that they also provide a method which
knows how to unquote values in their universe.

The value pleaseinfer is simply set to el unknown unknown, which means an
unknown sort and unknown type. In this case, Agda will just infer the type
before splicing the term into the concrete code. We know this will succeed,
since WT terms are well-typed.

lam2term : {σ : U′} {Γ : Ctx} {n : N} →WT Γ σ n→ Term
lam2term (Lit { } {σ} x) = quoteBack σ x
lam2term (Var x) = var (index x) []
lam2term (Lam σ t) = lam visible pleaseinfer (lam2term t)

The application case on the other hand is curious. Unfortunately this is
motivated by practical limitations. The Term AST only allows introduction of
applications with the var and def constructors, which stand for variables or def-
initions applied to a list of variables, respectively. Therefore, we use a function
Apply, which just applies its first argument to its second, which gives us the
possibility of introducing a def, giving it the actual application-arguments in
the expected list-format.

lam2term (t1 〈 t2 〉) = def (quote Apply)
(arg visible relevant (lam2term t1) ::
arg visible relevant (lam2term t2) :: [])

We alsowould like to be able to recover the type of the term in concrete Agda.
We first reconstruct a term of type Type, Agda’s representation of types. These
functions are also unsurprising: arrows are translated to arrows, and for base
types we must once again invoke a user-defined function which can interpret

47

their universe values to Agda types. The Cont case should be ignored for now,
since it has to do with the CPS transformation, which is introduced in Sec. 5.3.

el : U′ → Set
el (O x) = Uel x
el (u => u1) = el u→ el u1
el (Cont t) = ⊥
lam2type : {σ : U′} {Γ : Ctx} {n : N} →WT Γ σ n→ Set
lam2type {σ} t = el σ

Oncewe have these functions, it is easy to introduce a concrete function from
a WT term as follows, using unquote and lam2term.

concrete : lam2type typed1
concrete = unquote (lam2term typed1)

unittest : concrete ≡ λ (a : N→ N)→ λ (b : N)→ a b
unittest = refl

Note that the types are also preserved, since, even though we drop the an-
notations on the lambda terms when interpreting, we do give concrete a type
signature which reflects the intended type of the lambda term. The unit test
would have failed if we omitted the N annotations on the variables, or changed
them to another type.

It would be nice to also have included the call to unquote inside the definition
of lam2term, which would result in a more concise definition of concrete, but
unfortunately, unquote does its magic at compile time, and if it were used inside
lam2term, then the value of its argument would not be known at compile time.
This is why a user will have to use the unquote keyword explicitly each time a
value (and not an argument) of type Term is to be cast back to concrete Agda.

5.3 Example: CPS Transformation
Given the fact that we can now easily move from the world of concrete Agda
syntax to a well-typed lambda calculus and back, the obvious next step is to
do something with these well-typed terms. Doing anything with these terms
constitutes a program transformation, since lambda terms represent simple
programs. An additional bonus featurewe nowhave at our disposal is the ability
to do these transformations while ensuring that certain properties (notably the
well-typed property of our terms) are preserved.

The first case study in this area is that of transforming lambda terms into
continuation-passing style (CPS). The idea of CPS is not new; it is what happens
when one takes the primitive idea of computer programming, which essentially
involves calling functions and returning values after their completion, and re-
move the notion of returning [5]. This seems both profound and unusable, since
how will we get an answer from a function which is not allowed to return? Yet,
it turns out to be a useful paradigm for many applications [33]: consider the
example where one wants to print an integer, but before doing so, would like

48

to call, on that number, the function which increases integers by 1. That might
look something like this fictional functional code.

main = print (suc 5)

If the idea of returning values is forbidden, how then must one use the result
of suc? The answer is to do a transformation on the code; a continuation-passing
style transformation. This name refers to the fact that functions which would
normally do something analogue to issuing a return statement, are passed, as
an additional parameter, a function to call on the result, instead of return.

The following translation provides an example.

factorial : N→ N
factorial 0 = 1
factorial (suc n) = (suc n) ∗ (factorial n)

factCPS : {a : Set} → N→ (N→ a)→ a
factCPS 0 k = k 1
factCPS (suc n) k = factCPS n (λ f → mult f (suc n) k)
where

mult : {a : Set} → N → N → (N→ a)→ a
mult n m k = k (n ∗ m)

Here we have translated the function by adding a new parameter (called k)
which is called on the original result of the computation, instead of just returning
that result. In the base case the translation was trivial, but in the inductive
case we have to do a little more work. There, we immediately call the function
recursively, asking for the factorial of the next smaller number, but providing a
continuation which combines the result of that computation with the “current”
value of n. We multiply the result of the recursive call with the current value of
n by calling the mult function, which is also in continuation passing style; the
result of this multiplication is what we would like to return, which is why we
provide k as the continuation function.

We can now use this function in the traditional way if we pass the identity
function as our continuation. This way, the result of the computation is returned
unchanged. Notice, though, that the type of the CPS-transformed function is
necessarily different from the original function.

Some anecdotal evidence that our CPS-transformed function does, indeed,
perform as we expect it to is provided by equivFact1 and equivFact5.

equivFact1 : factorial 1 ≡ factCPS 1 id
equivFact1 = refl
equivFact5 : factorial 5 ≡ factCPS 5 id
equivFact5 = refl

This transformation can be done in a mechanical way, too. Also the type we
expect the new function to have can be derived. This is discussed at length by
Might [40], whose implementation was also used as inspiration for this type-

49

safe version. Weirich also presented a version of CPS in Agda during a course
in 2009 [61], which was instructive during these developments.

Reynolds’ overview [47] provides a good source of information on the his-
tory of the CPS transformation, which turns out to have been independently
discovered in many fields. The CPS transformation of lambda terms was appar-
ently first documented for Lisp programs by Fischer [20]. More references can be
found in Danvy et al. [16], who present work on one-pass CPS transformations.

Pseudo code We will start by generalising the previous example, and giving
an informal definition of the CPS transformation. The code in Fig. 5.7 is pseudo-
Haskell, and should clarify the rough approach to doing a CPS transformation,
before we add visual noise in the form of type preservation and termination
guarantees.

M : Expr → Expr
M (Lam var expr) = Lam var (Lam k’ (T expr k’)) -- with k’ fresh
M expr = expr
T : Expr → Expr → Expr
T (App f e) cont = T f (Lam f’ -- with f’ fresh

(T e (Lam e’ -- with e’ fresh
(App (App f’ e’) cont))))

T expr cont = App cont (M expr)

Figure 5.7: Pseudo-Haskell implementation of CPS transformation on a sim-
ple lambda language.

The function M adds a continuation parameter to lambda abstractions, and
the T function takes an expression and continuation, and applies the continua-
tion to the CPS-converted version of the expression.

In the function T, we see that applications are the only constructs which
need realmodification. Both applicand and argument (f and e here, respectively)
are recursively CPS transformed, and the recursive call is given new lambda
abstractions as the continuation term. These continuations simply bind the CPS-
transformed f and e, called f’ and e’ here, and apply them as before, but now
applying the cont continuation term, too.

To make things more transparent, this pseudo code still uses a named vari-
able representation; the algorithm in this section will finally use the De Bruijn
representation, as defined earlier in this chapter (see Sec. 5.1.2).

Type transformation Since we are mechanically transforming terms, we can
predict the type of transformed terms from their original type. After fixing the
types, wewill be sure that the transformation is correct, since the resulting terms
will have the expected type.

The type of a CPS-transformed function can be computed as follows, where
RT stands for return type. This RT is some base type, i.e. O σ for some σ, and is
a user-defined parameter to the moduleMetaprogramming.CPS (as well as to the

50

Datatypesmodule, but this parameter is automatically passed along toDatatypes
in the CPSmodule). It denotes the desired return type from continuation func-
tions.

Here we see the Cont constructor again. It is a tag we use to mark a type as
going from some t => RT, where the cpsType function will be called recursively
on t. Without this tag, it is difficult to keep track of which side of the function
arrow to transform. It might be possible to get rid of this constructor, but so far
I have not been able to do this. It is also a minor detail that does not make the
application of reflection more or less relevant.

The types we get back from the cpsType function are to be interpreted as
doing nothing in the base type case, since the CPS transformation of an atomic
value will still be the atomic value, and in the arrow case, we transform the left
of the arrow, then assume that the second argument will be a function from the
original result type to our new result type, and finally dictate that the resulting
function will also return a value in RT if given the correct first and second
arguments.

cpsType : U′ → U′

cpsType (O x) = O x
cpsType (t => t1) = cpsType t => (cpsType t1 => RT) => RT
cpsType (Cont t) = cpsType t => RT

The type we would like our transformation function to have is something
which takes as input a term with some environment and type (WT Γ σ), a con-
tinuation (necessarily of type WT (map cpsType Γ) (cpsType (Cont σ)), namely
an updated type context and a continuation-function for σ) and returns a se-
mantically equal term with type WT (map cpsType Γ) RT, the return type. In
other words, the continuation function must not rely on any variables which are
not in the scope of the to-be-transformed function, and must produce a value
of type RT. If these are then applied to each other, a value of type RT will be
returned.

The algorithm We will now see the type-preserving algorithm. Below, it is
presented case by case. It should be noted that this is still not the final version,
since the WT type also has a size parameter. It is omitted here to keep clutter to
a minimum; it will be added later, in Sec. 5.3.1.

T′ : {σ : U′} {Γ : Ctx} →WT Γ σ
→WT (map cpsType Γ) (cpsType (Cont σ))
→WT (map cpsType Γ) RT

The case for literals and variables is, as usual, not very difficult. All that hap-
pens here is that the continuation function is applied to the original term. The
size arguments to WT have been omitted for brevity and the reader is assured
that nothing exciting happens there.

Note that in the case of variables, some housekeeping needs to be done. We
are actually changing all the values in the context (by applying cpsType to them),
and we need to show that the same type, but CPS transformed, will be in the

51

same spot as the old type was. Therefore, a proof is given that if some variable
with type σ is inside the environment Γ, then it will also be inside the new
environment map cpsType Γ at the same index, but having value cpsType σ. The
signature of cpsvar is given for reference; its proof is trivial.

cpsvar : ∀ {t g} → t ∈ g→ cpsType t ∈ map cpsType g
T′ (Lit x) cont = cont 〈 Lit x 〉
T′ (Var inpf) cont = cont 〈 Var (cpsvar inpf) 〉

The case for abstractions is slightly more involved: when T sees a lambda
term, it adds a fresh continuation parameter, having type Cont t2, and then
transforms the body of the lambda term into continuation passing style, asking
it to invoke Var 0 on the result, which is the newly introduced continuation
parameter. Variables are unchanged, except that their indices all need updating,
since we have introduced a new lambda, so all the variables under that new
lambda need an index-increase of 1. The function shift1 does this. This is a
special case of a process calledweakening, which refers to adding newvariables to
the context without changing the semantics of the term. Generalisedweakening
is implemented in a function called weak, which is excluded for brevity. This
function adds a variable in an arbitrary position of the context, not just the top,
as shift1 does, and adjusts the De Bruijn indices.

Note that even though we are introducing two abstractions, only one is new,
since we are rebuilding the original lambda term but assigning the argument a
new type, namely cpsType t1.

shift1 : ∀ {Γ τ n} → (τ0 : U′)→WT Γ τ n→WT (τ0 :: Γ) τ n
T′ {t1 => t2} (Lam .t1 expr) cont

= cont 〈 Lam (cpsType t1)
(Lam (cpsType (Cont t2))

(T′ (shift1 (Cont t2) expr)
(Var here)

)
)

〉

Finally, we have the application case. Here, the values of both the applicand
and the argument have to be converted into CPS.

The transform converts each with T′, and then catches their results in newly
created continuations; note that both of the lambda abstractions are continua-
tions.

T′ .{σ2} {Γ} (_〈_〉 .{ } {σ1} {σ2} f e) cont =
T′ f (Lam (cpsType (σ1 => σ2))

(T′ (shift1 (σ1 => σ2) e) (Lam (cpsType σ1)
(Var (there here) 〈 Var here 〉
〈 shift1 (cpsType σ1) (shift1 (cpsType (σ1 => σ2)) cont) 〉))))

52

First f, the applicand, is transformed, with a new abstraction as the contin-
uation. This abstraction must have a variable of the type of f, since it is the
continuation which is to be invoked on f. The body of the abstraction is then
the CPS transformation of e (after having shifted all the De Bruijn-indices up
by 1 to compensate for the new abstraction), with again a continuation, this
time binding a variable of the type of the argument (albeit transformed) and
applying the transformed f (bound to Var 1) to the transformed e (here Var 0).
Finally the original continuation, the one which was the argument called cont,
is applied to the new f and e, but only after two shifts, resulting from the two
lambda abstractions we introduced.

That wraps up the CPS algorithm. The full transformation algorithm can be
seen in Metaprogramming.CPS, and examples of use, including a user-defined
universe, are to be found in Metaprogramming.ExampleCPS.

5.3.1 Termination Bliss
Unfortunately, as the observant reader might have noticed, the algorithm T′

as presented in Sec. 5.3 is not structurally recursive, since in the recursive calls
to T′ in the abstraction and application cases, we are applying shift1 to the con-
stituent components of the input first. We can trivially see that the shift1 function
does nothing to the size of the expression, but Agda’s termination checker does
not possess such intuition. As such, we will have to prove, by hand, that the
algorithm is structurally recursive on its call graph.

Luckily, Bove and Capretta [6] come to the rescue by providing a recipe for
this proof. Theirmethod formechanically taking a generally recursive algorithm
and producing an auxiliary data type on which the algorithm is structurally
recursive (the call graph, basically), whichdepends on a proof that the algorithm
terminates on whatever input the user would like to call it on, is perfectly suited
to this sort of situation. The curious reader is referred to Bove and Capretta’s
work for a thorough guide to this useful method.

After inspecting the recursive structure of the algorithm T′ we come to the
conclusion that the data type TAcc presented below will do the job just fine.

data TAcc : {Γ : Ctx} {σ : U′} {n : N} →WT Γ σ n→ Set where
TBaseLit : ∀ {Γ σ x} → TAcc (Lit {Γ} {σ} x)
TBaseVar : ∀ {Γ σ x} → TAcc (Var {Γ} {σ} x)
TLam : ∀ {Γ t1 t2 n} {a : WT (t1 :: Γ) t2 n}

→ TAcc (shift1 (Cont t2) a)
→ TAcc {Γ} {t1 => t2} (Lam {Γ} t1 a)

TApp : ∀ {Γ σ σ1 sza szb}
{a : WT Γ (σ => σ1) sza}
{b : WT Γ σ szb}

→ TAcc {Γ} {σ => σ1} a
→ TAcc (shift1 (σ => σ1) b)
→ TAcc (a 〈 b 〉)

In TAcc, each constructor of WT finds its analogue, and these proof terms
are built having as arguments the proofs that TAcc can be constructed from the
similar proofs on the arguments. Notice that the type TAcc has an index of type

53

WT, which is a term we promise the T′ algorithm will terminate on.
We can now add this TAcc argument to all the calls in T′, and Agda is now

convinced the function terminates. All that is left is to prove that for all elements
of wt ∈WT we can construct a TAcc wt. The proof is as obvious as the data type
was: we simply do recursion on the arguments of the constructors.

allTsAcc : ∀ {Γ σ n} → (wt : WT Γ σ n)→ TAcc wt
allTsAcc (Var x) = TBaseVar
allTsAcc (Lit x1) = TBaseLit
allTsAcc { } {τ => σ} (Lam .τ wt) =

TLam (allTsAcc (shift1 (Cont σ) wt))
allTsAcc (_〈_〉 {Γ} {σ} {σ1} wt wt1) =

TApp (allTsAcc wt)
(allTsAcc (shift1 (σ => σ1) wt1))

But, horror! Agda now is suspicious that this function, allTsAcc, which is
meant to give us the proof that T′ terminates given any WT term, does not
terminate either! We also cannot apply Bove and Capretta’s trick again, since by
the construction of TAcc that would give us a data type isomorphic to TAcc.

Well-foundedness As it turns out, there is another trick up our sleeve: that
of well-founded recursion. What we need to do is show that even though the
recursion here is not structural, the terms do strictly decrease in size for some
measure. Luckilywe introduced ameasure onWT long ago, the last argument of
typeN. FollowingMertens’ example [22] we can build awell-foundedness proof
for WT in terms of our measure, which we can then add as an extra argument to
the allTsAcc function. The idea of proving well-foundedness in this fashion was
first presented in Martin-Löf type theory by Paulson [45]; the implementations
of the less-than ordering and inverse image relations in Agda’s standard library,
which we will use, are based on his work.

The first pitfall we encounter is that we want to define some Rel Awhich we
will prove is well-founded on our data structure. The problem is that Rel is of
type Set → Set1 (not exactly, but for the purposes of argument), but WT is
not of type Set, but Ctx → U′ → N → Set. If we try to define something like
λ {Γ σ n} → Rel (WT Γ σ n), things also become sticky rather quickly.

We can, however, circumvent this problem by defining a wrapper which is
isomorphic to WT, but at the same time an element of Set. We will define this
wrapper, WTwrap, as follows.

WTwrap : Set
WTwrap = Σ N (λ n→ Σ U′ (λ σ → Σ Ctx (λ Γ→WT Γ σ n)))

What is happening here is that we have defined a few nested dependent
pairs, thus “hiding” the pi-type, which is what was causing us the headache.
We will also need a function to inject WT into our wrapper type WTwrap, called
to, but it is rather mundane. The function sz projects the size of the expression
from WTwrap.

54

to : ∀ {Γ σ n} →WT Γ σ n→WTwrap
to {Γ} {σ} {n} wt = Γ, σ, n,wt
sz : WTwrap→ N

Now that we have this small bit of machinery, we can import the standard
library’s notion ofwell-foundedness and show that ourmeasure, namely smaller
than or equal to for WT elements, is well-founded.

We begin by showing that smaller-than is a well-founded relation on natu-
rals.

<-N-wf : Well-founded _<_
<-N-wf x = acc (aux x)
where

aux : ∀ x y→ y < x→ Acc _<_ y
aux zero y ()
aux (suc x1) .x1 <-base = <-N-wf x1
aux (suc x1) y (<-step m) = aux x1 y m

Now we use a lemma called inverse image from the Induction.WellFounded
standard library module which shows that if we have some measure on a car-
rier, and a way to map some new type to this carrier type, we can lift the well-
foundedness to the new type. We instantiate this lemma using our WTwrap
wrapper, less-than on naturals, and a function sz which simply reads the size
index which we already included in WT in Fig. 5.2.

module <-on-sz-Well-founded where
open Inverse-image { } {WTwrap} {N} {_<_} sz public

≺ : Rel WTwrap
x ≺ y = sz x < sz y
wf : Well-founded _≺_
wf = well-founded <-N-wf

Next wemust show that recursion on smaller or equal arguments is also fine,
and that shifting the De Bruijn indices does not change the relative ordering of
two WTpack elements (shift-pack-size). Note that weak is the generalised weak-
ening function, which shift1 uses to add one type variable on top of the context
stack and increase the De Bruijn indices by 1.

4 : Rel WTwrap
x 4 y = sz x < (1 + sz y)
shift-pack-size : ∀ {τ Γ Γ’ σ n} → (x : WT (Γ’ ++ Γ) σ n)

→ to (weak {Γ’} {σ} {Γ} x τ) 4 to x
shift-pack-size = ...

Note that for this towork, the natural numberparameter toWT, which stands
for a measure of expression size, is necessary, since if this wasmissing wewould

55

have to define a fold on WT resulting in size instead of the simple projection
the measure currently is, and my intuition says that this would make our well-
foundedness proofs rather more involved (and possibly nonterminating too,
bringing the problem full-circle). This is the motivation for adding such a N
parameter to WT. It might be possible to eliminate this parameter from WT, but
it was challenging enough to develop the well-foundedness proof as it is, so this
further refinement is left as future work.

Once we have these ingredients, we can assemble it all to show that all calls
to T′ with any WT terminate, and that the function allTsAcc also terminates. Our
allTsAcc function now looks like this, showing only the “interesting” clauses.

allTsAcc : ∀ {Γ σ n} → (wt : WT Γ σ n)
→ Acc _≺_ (to wt)
→ TAcc wt

...
allTsAcc { } {τ => σ} (Lam .τ wt) (acc x) =

TLam (allTsAcc (shift1 (Cont σ) wt)
(x (to (shift1 (Cont σ) wt)) <-base))

allTsAcc (_〈_〉 { } {σ} {σ1} {n} {m} wt wt1) (acc x) =
TApp (allTsAcc wt

(x (to wt) n<1+n+m))
(allTsAcc (shift1 (σ => σ1) wt1)

(x (to (shift1 (σ => σ1) wt1)) (n<1+m+n { } {n})))

We now can export the final T′ translation function as T, so the user of the
library need not worry about termination proofs. The function T′ terminates on
all inputs anyway.

T : {σ : U′} {Γ : Ctx} {n m : N}
→ (wt : WT Γ σ n)
→WT (map cpsType Γ) (cpsType (Cont σ)) m
→WT (map cpsType Γ) RT (sizeCPS n wt (allTsAcc wt (wf (to wt))) m)

T wt cont = T′ wt (allTsAcc wt (wf (to wt))) cont

The developments mentioned here, as well as termination proofs, can be
found inMetaprogramming.CPS andMetaprogramming.WTWellFounded. Because
terms tend to become pretty large, the examples are not shown here, but are
presented in the module Metaprogramming.ExampleCPS.

Note that the final implementation of T now includes the size parameters
on WT and the termination predicate defined here. As is suggested by all the
auxiliary parameters to T, such as sized WT terms, termination predicates, etc.
it was indeed less than trivial to get the CPS transformation working in a depen-
dently typed setting. Although the development process was rather painful, we
do now have a verified type-preserving CPS transformation.

56

5.4 Example: SKI Combinators
Another interesting application of our new type preserving program transforma-
tion framework is the proof of a rather old result in computer science, revisited.
This result says that any closed lambda term (meaning being typable under the
empty environment) can be translated to a simple combinatorial logic, having
only a few primitives, and application. One such basis exists, using three combi-
nators2, {S,K, I}, as proven by Curry [14]. The 3 combinators of the SKI calculus
are presented in Fig. 5.8. As shown by Fokker [21], it is possible to cut down
this basis even further, resulting in a 1-element basis. Since this only makes the
combinator terms more verbose, we will stick to the basis {S,K, I}.

s : ∀ {a b c : Set} → (a→ b→ c)→ (a→ b)→ a→ c
s = λ f → λ g → λ x → f x (g x)
k : ∀ {a b : Set} → a→ b→ a
k = λ c → λ v → c
i : ∀ {a : Set} → a→ a
i = λ x → x

Figure 5.8: The three combinators which make up SKI combinator calculus.

Note that each of these 3 combinators are equivalent to closed lambda terms,
but they form the basic building blocks of the SKI language. Basically, the SKI
language is the same as the simply typed lambda calculus, except without the
possibility of introducing new lambda abstractions, just the option to use one
of these 3 predefined combinators. The fact that any closed lambda term can
be translated to SKI may seem counter intuitive, but that is all the more reason
to go ahead and, in the style of programs as proofs, prove that one can always
translate a closed lambda term into SKI by defining this translation on the type
Well-typed-closed. Because Agda is a sound proof assistant, we will have the
guarantee that our function is total, and that the types of the terms are precisely
preserved, which is a big advantage compared to the textbook implementations
of SKI translation one finds written in Haskell, where there is nothing that
says those functions cannot fail, except possibly a proof on paper. We prefer a
machine-checked proof of the actual function at hand, since even if one has such
a paper-proof, you have to trust that the semantics of the function on paper and
the implementation are the same. Being used to programs as proofs tends to
make you paranoid about using other programming paradigms.

Pseudo code We will first present and explain a pseudo-Haskell implemen-
tation of this translation; afterwards we will formalise it in Agda. The hand-
waving implementation is provided in Fig. 5.9.

2In fact, even I can be expressed in terms of S and K: I ≡ S 〈 K 〉 〈 x 〉, where the x may be an
arbitrary combinator term, making the minimal basis S,K. This was noted by Schönfinkel [49].

57

compile : Lambda → Combinatory
compile (Var x) = VarC x
compile (Apply t u) = ApplyC (compile t) (compile u)
compile (Lambda x t) = lambda x (compile t)
lambda : String → Combinatory → Combinatory
lambda x t | x /∈ vars t = ApplyC K t
lambda x (VarC y) | x ≡ y = I
lambda x (ApplyC t u) = ApplyC (ApplyC S

(lambda x t))
(lambda x u)

Figure 5.9: A pseudo-Haskell implementation of conversion from lambda
terms to SKI calculus, using named variables.

Compared to the pseudo code implementation, we have the added compli-
cation that our WT type uses De Bruijn indices. This means that each time we
replace a lambda abstraction with some other construction, we are potentially
breaking the variable references, since some of them (exactly those in the body
of the destroyed lambda) will need decrementing. Also, it sounds difficult to
do a check on the variable’s name to see if we should introduce an I or K in the
variable case, but we will see that it is actually not so bad if we exploit the same
context in the target language as in WT.

Formalisation Wewill first define a data type Comb in Fig. 5.10which captures
the SKI combinator language, extendedwith variables. Onemight be justified in
starting to protest at this point, since we are introducing nonclosedness into the
language, but notice that, in the same way as the WT type, we require variables
to point to valid entries in the context, so that if we have a term of type Comb [],
we know it contains no variables and thus is closed. We need these variables for
intermediate results from the translation algorithm. This is also why we define
the alias Combinator, which stands for a closed term in Comb, i.e. with an empty
environment.

Note also that we have as much type safety in Comb as we have in WT, on
account of the types of the arguments to the constructors needing to have sensi-
ble types. We could have chosen to use an untyped combinator language, and
only do type checking after the translation is complete. In fact, type inference
for SKI calculus has already been researched by Hindley [29]. The way we do it
though, we are forced to have all intermediate terms preserve the types.

The translation of lambda terms into SKI presented in Fig. 5.11 is actually
surprisingly (that is, if one is used to spending days grappling with the Agda
compiler to get something seemingly trivial proven) straightforward. Since lit-
erals, variables and applications are supported, those can just be translated into
the Comb equivalents without a problem, preserving the input context and type.
The more complicated case occurs when we encounter a lambda abstraction.

If we were using named representation of STLC, we could write a function,
called lambda, to be invoked with its corresponding variable name and the SKI-
translated body, wheneverwe encountered an abstraction (our version of lambda

58

data Comb : Ctx→ U′ → Set where
Var : ∀ {Γ} → (τ : U′)→ τ ∈ Γ → Comb Γ τ
〈〉 : ∀ {Γ σ τ }

→ Comb Γ (σ => τ)→ Comb Γ σ → Comb Γ τ
S : ∀ {Γ A B C}

→ Comb Γ ((A => B => C) => (A => B) => A => C)
K : ∀ {Γ A B} → Comb Γ (A => B => A)
I : ∀ {Γ A} → Comb Γ (A => A)
Lit : ∀ {Γ} {x} → Uel x → Comb Γ (O x)

Combinator = Comb []

Figure 5.10: The data type Comb, modelling SKI combinator calculus. The Var
constructor is less dangerous than it may seem.

is in Fig. 5.12). What we would like it to do is pattern match on this new trans-
lated body, and if it encounters a Var constructor, check if the variable has the
same name. If it does, we evidently have encountered a λt.t somewhere in the
expression, which should just translate to the I combinator. If the variable has
another name, apply the variable to a K combinator, since we have encountered
a λt.s, and if s is just a variable, then it doesn’t depend on the abstraction. In
case we encounter an application as the body, we should recursively do the
lambda-modification on the applicand and argument, then apply them both
to the S combinator, since that will restore the analogue of the λx. s 〈 t 〉 (bear-
ing in mind that initially s and t might depend on x, being expressions and
not necessarily atomic variables). Note that S 〈 s 〉 〈 t 〉 indeed evaluates to
λ f → λ g → λ x → f x (g x) applied to s then t, which gives λ x → s x (t x)
which precisely reflects that we want s applied to t, and that they each might
depend upon x.

compile : {Γ : Ctx} {τ : U′} {n : N} →WT Γ τ n→ Comb Γ τ
compile (Lit x) = Lit x
compile { } {τ } (Var h) = Var τ h
compile (wt 〈 wt1 〉) = compile wt 〈 compile wt1 〉
compile (Lam σ wt) = lambda (compile wt)

Figure 5.11: The proof that any WT term can be translated into the Comb
language.

In our version of lambda, in Fig. 5.12, we see that when we encounter a vari-
able as the only thing in the body of the lambda, and if it is not the variable
which is bound by the lambda under consideration, we decrement the De Bruijn
index as promised, by peeling off a there constructor off the index-proof. If it is
the variable bound by the lambda in question, we can replace the whole lambda
expression with the identity combinator. Note also that the type of lambda is

59

Comb→ Comb, so we will never encounter a Lam in its result.

lambda : {σ τ : U′} {Γ : Ctx} → Comb (σ :: Γ) τ
→ Comb Γ (σ => τ)

lambda {σ} (Var .σ here) = I
lambda {σ} {τ } (Var .τ (there i)) = K 〈 Var τ i 〉
lambda (t 〈 t1 〉) = let l1 = lambda t

l2 = lambda t1
in S 〈 l1 〉 〈 l2 〉

lambda (Lit l) = K 〈 Lit l 〉
lambda S = K 〈 S 〉
lambda K = K 〈 K 〉
lambda I = K 〈 I 〉

Figure 5.12: The function we invoke whenever we encounter a lambda ab-
straction during translation to SKI calculus.

It would not have been possible to define a total translation to SKI if the
Comb data type did not have the same notion of variables and their restricted
connection to contexts. Either that, or we would not have been able to guarantee
that a closed lambda term induces a closed SKI term. Also, if names had been
used to identify variables, one might have used the same mechanism of guar-
anteeing presence of the variables in the context, _∈_, but then an additional
concept of uniqueness would have been necessary, both of which the De Bruijn
representation provide for free. There also exist a fewmethods for directly trans-
lating from lambda terms to SKI combinators based only on De Bruijn variable
identifiers [19], but apart from producing bloated SKI terms (since at least n K
combinators are introduced if the variable’s index is n – a sort of n-ary constant
function is built up), implementing this algorithm in a well-typed setting is
nearly impossible as a result of the fact that the intermediary terms returned by
the recursive calls when abstractions or variables are encountered have radically
different (although predictable) types. These reasons lead to the belief that the
algorithm presented here is the most elegant of the options explored.

With thismachinery in place, we can now successfully convert closed lambda
expressions to SKI combinator calculus.

testTermWT : Well-typed-closed (typeOf (
term2raw (quoteTerm λ (n : N→ N)→ λ (m : N)→ n m)))

testTermWT = raw2wt (
term2raw (quoteTerm λ (n : N→ N)→ λ (m : N)→ n m))

unitTest1 : compile testTermWT ≡
S 〈 S 〈 K 〈 S 〉 〉 〈 S 〈 K 〈 K 〉 〉 〈 I 〉 〉 〉 〈 K 〈 I 〉 〉

unitTest1 = refl

Here we see how the existing lambda expression quoting system is used to
read a concrete Agda lambda expression into aWT value, which is then compiled
to produce an SKI term. The function unitTest1 displays what the end result is.

60

The resulting terms are sometimes rather unwieldy, as is illustrated in the
examples provided in themoduleMetaprogramming.ExampleSKI, but this is to be
expected, since the SKI calculus is obviously not very concise. If more readable
terms are desired, one option to consider is adding extra combinators, called
super-combinators, such as the o combinator, defined as follows [19].

o : ∀ {A B C} → Combinator ((B => C) => (A => B) => A => C)
o = S 〈 K 〈 S 〉 〉 〈 K 〉

Notice that the o super-combinator is really just function composition, as can
be seen by the type signature. We take a function f and a function g as the first
two arguments, then a value of type A, and then apply to this value f after g,
precisely the definition of function composition, usually denoted _◦_.

Introducing such super-combinators could considerably shorten the repre-
sentations of SKI terms, but being outside the scope of this example, we will
stick with only the S, K and I previously defined. It is, however, interesting to
note that because all lambda expressions can be translated to expressions us-
ing only S, K and I, these new super-combinators would simply be aliases for
various combinations of the already-defined combinators.

5.4.1 From SKI to Concrete Agda
Once we have converted some lambda term to SKI, we might want to use it as
a function on concrete Agda values. This is slightly pointless, since we already
had some term to SKI-convert, so we might as well use that directly, but for
completeness we do provide a translation from SKI back to WT, which we know
we can unquote, as shown in Sec. 5.2.2.

Since the SKI combinators are themselves defined in terms of lambda ex-
pressions, it is trivial to first encode them as WT values (see Fig. 5.13), and then
use those to assemble a traditional WT term from a value of type Comb. The
unsurprising code, which is just a fold, can be found in Fig. 5.14.

Srep : ∀ {A B C Γ} →WT Γ ((A => B => C) => (A => B) => A => C)
Srep {A} {B} {C} = Lam (A => B => C) (Lam (A => B) (Lam A

(Var (there (there here)) 〈 Var here 〉 〈 Var (there here) 〈 Var here 〉 〉)))
Irep : ∀ {A Γ} →WT Γ (A => A)
Irep {A} = Lam A (Var here)

Krep : ∀ {A B Γ} →WT Γ (A => B => A)
Krep {A} {B} = Lam A (Lam B (Var (there here)))

Figure 5.13: The SKI combinators as represented in the WT data type.

Note that because WT is just as strictly typed as the Comb type, we are not
losing any type safety on the way. The function combsz which can be seen in the
ski2wt type signature simply calculates the natural representing the size of the
final expression in WT. This is necessary because the value cannot be inferred.

61

ski2wt : {Γ : Ctx} {σ : U′} → (c : Comb Γ σ)→WT Γ σ (combsz c)
ski2wt (Var σ h) = Var h
ski2wt (c 〈 c1 〉) = ski2wt c 〈 ski2wt c1 〉
ski2wt S = Srep
ski2wt K = Krep
ski2wt I = Irep
ski2wt (Lit x1) = Lit x1

Figure 5.14: Translating SKI calculus back to lambda terms in the WT type.

In closing We have now defined a round-trip, automatic translation from con-
crete Agda lambda terms, to well-typed lambda terms in ourWT representation,
to SKI combinators as another data structure but preserving the type and scope
guarantees provided by WT, back into concrete Agda terms, which are the se-
mantic equivalent of the original terms.

By way of closing remarks, it is true to say that this chapter makes a persua-
sive argument to embrace the strong guarantees one can make using rich data
types in a dependently typed language. Like many things in life, this advantage
is something of a trade-off: the construction of a total, simply recursive algo-
rithm which at the same time preserves types of terms at every step can be quite
challenging. For example, the SKI algorithm shown here is pieced together from
various sources, and initially, it seemed as if using De Bruijn representation was
going tomake things very complicated. The reason for this was that some imple-
mentations [19] simply remove all lambda abstractions, and when encountering
a variable, use the index to determine howmany K’s should be used to produce
a Frankensteinian indexing term. This is unfavourable for the large terms it
generates, but also because the return type of the compile algorithm is, though
predictable, very changeable. In the case of the CPS transformation, the type
of the algorithm was less of a stumbling block, but as we saw in this chapter,
termination posed rather a problem. This is something we take for granted
when using dependent types to prove strong properties about our algorithms:
the safety we get comes at the price of having to think a lot harder about each
function, return type, clause, etc.

For those interested in looking at the full source in more detail, these devel-
opments can be found in the moduleMetaprogramming.SKI, and a few example
translated terms as well as a guide to how to use the provided code as a library,
reside in Metaprogramming.ExampleSKI.

62

5.5 Afterword: Parameters to Modules
Aspromised, weprovide a summaryof the parameters to themodulesDatatypes,
TypeCheck, SKI and CPS here, because these are designed to work with a user-
defined universe. Aside from the universe, though, the user is also required to
provide a few easy-to-define helper functions. These functions are necessary
because invariably, they rely on pattern matching, which is something which is
only possible if the to-be-used universe and all of its constructors are in scope.

The following list describes all the necessary parameters to the modules
(note that not all modules require all parameters).

U : Set
A data type representing the universe. It might have such elements as Nat
and Bl which might stand for natural numbers and Boolean values.

returnType : U

The return type for a CPS transformed function, detailed in Sec. 5.3.

?type : U→ Name

A functionwhich, given an element of the universe, gives back the concrete
Agda identifier which it stands for, such as quote N.

Uel : U→ Set
An interpretation function, which returns the Agda type corresponding
to some element of the universe.

equal? : (x : U)→ (y : U)→ Equal? x y
A function which implements decidable equality between elements of the
universe.

type? : Name→ Maybe U

A function which translates Agda identifiers into elements of the universe.
Since failure is possible (the quoted term may be of some invalid shape),
a Maybe U is expected.

quoteBack : (x : U)→ Uel x→ Term

A function which can turn a value in the universe into an Agda Term.

quoteVal : (x : U)→ Term→ Uel x
Finally, a function which, given an Agda term standing for a basic value,
such as a natural, translates it into the universe.

An example of implementing such functions and instantiating the param-
eterised modules is found in Metaprogramming.ExampleUniverse. Defining an
arbitrary universe should be straightforward after looking at that example.

63

Chapter 6

Generic Programming

Considering that Haskell and Agda, on the surface at least, seem like similar
languages, it is not surprising that one of the inspirations for this project came
from the (Template) Haskell world. As has been mentioned before, Template
Haskell is a GHC compiler extension first described by Sheard and Peyton Jones
[51]. It allows compile time metaprogramming, not unlike Agda’s recent reflec-
tion API. One of the many useful applications of Template Haskell has been
the automatic generation of embedding-projection function pairs for generic
programming, saving on boilerplate code whenever a programmer wants to lift
a new data structure to some generic universe [30]. Unfortunately, as wewill see
in Sec. 6.1, the reflection API in Agda is not yet powerful enough, in a number
of ways, to be able to accomplish similar feats.

Another source of inspiration comes from Epigram, and McBride’s idea of
ornamentation of data structures [36]. This idea, which is to be implemented
in a future version of Epigram, can be summarised as arguing that data type
definitions are something one does not want to allow in a language, since they
seem to drop out of the sky [39], and that actually, data type definitions should
be no different from other value definitions. Ideally, there would only be one
canonical data type definition, that can express all possible inductive data types;
the data keyword we are used to would only be syntactic sugar for introducing
a new value in this canonical data type. This way, reflection would not even be
necessary, since, like in Lisp, data and functions are expressed in the same object
language. Data type generic programming becomes normal programming. In
work by Chapman, Dagand, McBride and Morris this idea is explored, hinting
at implementation in Epigram 2 [8]. This idea has not been investigated in Agda,
but some of the necessary components are available, which was another factor
prompting the explorations detailed in this chapter.

6.1 Limitations
This section details what the limitations of the current reflection API are. In-
spired by the ideas for automatic generic programming mentioned in the in-
troduction to this chapter, we will try and see how far we get before running
into trouble. Let us start with an example. Imagine a user has the following
definition for a data type Col.

64

data Col : Set where
Red Green Blue : Col

Obviously, this data type is isomorphic to Fin 3, the usual data type of natural
numbers with an upper bound. It would be nice if we had a function which
could, given the definition of Col, or at least a pointer to that definition, return
the data type (if any) which is isomorphic to the user’s type. For now we will
assume we have such a function – we will call it isoDT. It is definable using the
current reflection machinery, but because we do not use it, we will omit it as
being an exercise to the reader to fill in. The idea would be to look at the list of
constructors, and try and categorise them. If they have no arguments, then the
type is simply an enumeration, which can bemodelled using Fin. If they do have
arguments, a sum-of-products representation could be generated, depending
on how many there are and how many parameters they have.

isoDT : Name → Set
isoDT = { }0

The next logical move would be to write a function, which, given the pointer
to Col’s definition, and a value in Col, automatically returns the corresponding
value in the isomorphic data type. This is possible, since we have shown in
Sec. 3.2.1 that we can get a list of the constructors of a data type. At the very least,
a naive implementation of this function, which we will call to, could return the
element in Fin n which corresponds to the index of the given constructor in the
list of constructors. Note that this would only work for trivial enumeration data
types without parameters or indices. However, even this simple idea quickly
gets stuck. Let us try and write down a type signature for the to function.

Whatwewant is, given theName of a type obtainedwith quote Col, a function
from that type to the generic type which is isomorphic to it. This means that
to (quote Col) yields a function with type Col → Fin 3, assuming that Fin 3 is
the isomorphic generic counterpart to Col.

Our first attempt might be as follows.

to : (n : Name)→ unquote (def n [])→ isoDT n

The problem here, though, is that even though Col is indeed a definition
taking no arguments, we cannot unquote def n [], since at compile time n is un-
known, or as the Agda compiler aptly puts it, n not a literal qname value.

Another attempt might be the following, where we are not unquoting things
at compile time, but rather ask the user to provide both the reference to the data
type in question and its concrete Agda representation.

to : (n : Name)→ (s : Set)→ quote s ≡ def n []→ s→ isoDT n

Here we run into another problem: we are not allowed to call quote s, since
at compile time s is not a defined name, but some argument. A final attempt

65

seems to work a little better, and at least compiles, although we are clutching at
straws.

to : (n : Name)→ (s : Set)→ quoteTerm s ≡ def n []→ s→ isoDT n
to nm s pf x = { }0

testValue = to (quote Col) Col { }1

Here, the problem is that quoteTerm does manage at compile time, but pro-
duces a useless term, for the same reason that the last attempt failed. It returns
var 0 [], in other words a reference to the nearest-bound variable, which results
in a proof obligation var 0 [] ≡ def Col [] in hole 1 which we obviously cannot
fulfil.

A similar problem arises ifwewant to be able to ask for the list of constructors
of some type which is passed into a function as a parameter.

cs : (A : Set)→ List Name
cs type = ... quoteTerm type ...

This causes the same problem as the previous snippet, where hole 1 was
impossible, since the result from quoteTerm is simply var n [], for some n. What
would be more useful, is if the result were a Name, such as Col, assuming that
were the original parameter to cs. The call to quote would also not work here,
because where it is used, type is not a defined identifier, but a variable, and quote
can only handle definitions.

We are now forced to conclude that, even though certain elements necessary
for generation of embedding-projection functions are attainable, we are blocked
relatively early in the development process by such minor issues as arguments
to quoting functions having to be known at compile time, which almost imme-
diately precludes generic functions parameterised by a data type. We might
work around this by making the process of building embedding functions more
interactive. For example, we could let the user ask for the data type isomorphic
to theirs, then write down the type signature manually, thus sidestepping the
unquote at compile time problem. Unfortunately, we would still run into the
same problem later on, if we wanted to make a projection function.

Another problem is that the fact that quote and cohorts are implemented as
keywords, causing a problem with abstraction in general, because something
like map quoteTerm is impossible. Enabling this would make the reflection
system quite a bit more powerful, since currently the reflection system is only
two-stage [50]. We have programs and metaprograms, but no way of writing
metaprograms resulting in metaprograms. This would require being able to
quote the quoting keywords. Maybe the Term structure should be expanded
with another constructor, keyword, although a cleaner solution can probably be
devised.

Probably all theseminor issues couldbeworkedout so that automatic generic
programming becomes possible, but the expectation is that this will require
some changes to the reflection API. Possibly a future version of Agda will sup-
port this.

The other motivation for looking at Agda from a generic programming per-

66

spective was the data type of data types idea mentioned earlier [8]. It would be
rather exciting if we could use the reflection API to automatically convert data
type definitions which already had been declared by the user, to values of this
data type of data types. The expectation is that this should be possible, since
we can easily inspect the constructors of data types, and that the use of unquote
should be limited, since the type-of-types values are just Agda values. If one
would like to have embedding and projection pairs, however, the same problem
outlined previously would arise: unquoting is not flexible enough. Because of
this and a lack of time, no further research was done to ascertain whether this
is, in fact, feasible.

Because the findings in this chapter were negative, and no usable pieces of
code were developed, the source distribution does not include any code related
to generic programming.

67

Chapter 7

Discussion

This project’s main innovations are novel combinations of existing techniques;
as a result, quite a number of subjects are relevant to mention here.

As far as reflection in general goes, Demers and Malenfant [18] wrote an
informative historical overview on the topic. What we are referring to as reflec-
tion dates back to work by Brian Smith [52] and was initially presented in the
Lisp family of languages in the 80s. Since then, many developments in the func-
tional, logic as well as object-oriented programmingworlds have been inspired –
systems with varying power and scope.

People sometimes jokingly say that themore advanced a given programming
language becomes, the more it converges towards Lisp [25], and that the more
complex some piece of software becomes, the higher the likelihood of discover-
ing somewhere in the source a badly defined, ad hoc implementation of a Lisp
interpreter. The fact is, though, that it is becoming increasingly common to gen-
erate pieces of code from a general recipe, possibly giving rise to a more efficient
specific implementation, or at the very least not having to reinvent the wheel.
Reflection is becoming more common, to various extents, in industry-standard
languages such as Java, Objective-C, as well as theoreticallymore interesting lan-
guages, such as Haskell [55]. Smalltalk, an early object-oriented programming
language with advanced reflective features [23], is the predecessor of Objective-
C. As such, it is surprising that industry programming does not use more of
these advanced reflective features which have already been around for a long
time.

This would seem to be the inspiration for the current reflection system re-
cently introduced in Agda, although we shall see that it is lacking in a number
of fundamental capabilities. If we look at the taxonomy of reflective systems in
programming language technology written up by Sheard [50] we see that we
can make a few rough judgements about the metaprogramming facilities Agda
currently supports1.

• Agda’s current reflectionAPI leansmore towards analysis than generation,
1Of course, having been implemented during a single Agda Implementors’ Meeting [4], the

current implementation is more a proof-of-concept, and is still far from being considered finished,
so it would be unfair to judge the current implementation all too harshly. In fact, I hope that this
work might motivate the Agda developers to include some more features, to make the system truly
useful.

68

• it supports encoding of terms in an algebraic data type (as opposed to a
string, for example),

• it involves manual staging annotations (by using keywords such as quote
and unquote),

• it is neither strictly static nor run time, but compile time. It behaves much
like a static system (one which produces an object program, as does for
example YAcc [32]) would, but does not produce intermediate code which
might bemodified later by the user. Note that this fact is essential for Agda
to remain sound.

• It is homogeneous, because a representation of the object language lives
inside the metalanguage (as a native data type),

• it is only two-stage: we cannot as yet produce an object program which is
itself a metaprogram. This is because we rely on built in keywords such
as quote, which cannot themselves be represented.

Other related work includes the large body of publications in the domain
of data type generic programming [48, 36], where we found the inspiration to
try and implement prior techniques in a dependently typed setting. Especially
work by McBride, et al. involving ornamentation and levitation [8] is intriguing,
and something which would have been very interesting to do is to embed the
data type of data types in Agda and automatically convert existing data declara-
tions (which we can inspect) into values of this type. This whole step would be
unnecessary in a language which supports this data type of data types a priori, so
that the conversion to and from this type would be unnecessary, and data type
generic programming becomes normal programming.

Program transformations and their correctness (by various definitions) have
long been a subject of research [44], and given more advanced languages with
more powerful generative programming techniques, this will likely prove a con-
tinuing trend. For example, Guillemette and Monnier have researched various
type preserving transformations in Haskell, using GADTs [26, 27]. This work
has even led to a type preserving compiler for System F in Haskell, where the
GHC type checker mechanically verifies that each phase of the compiler pre-
serves types properly [28]. Type preserving CPS transformations have also been
studied, for example in Watanabe’s thesis [60]. His work presents, among other
things, a type preserving CPS transformation ofDe Bruijn-style lambda calculus,
implemented in Coq.

As such, the contribution made in this project of a type-safe and total transla-
tion of simply typed lambda calculus to a language of SKI combinator calculus,
as well as the continuation-passing style transformation, are interesting case
studies. We have shown that these translations are usable in combination with
a reflective language, making the process of translation of programs straightfor-
ward for users. Possible future work includes extending the body of available
translations using the well-typed model of lambda calculus presented here as
an intermediary language (or at least as inspiration for some other, more spe-
cialised data structure). It might also serve as a motivation to make the unquote
keyword type-aware. Currently, even if all the steps in a transformation are type-
safe, at the last step the typing information is still thrown away, which seems

69

like a wasted opportunity. Probably it would be easy to make unquote aware of
the expected type, thereby making the final link in the program transformation
framework type-safe.

As far as the proof techniques used in the section on proof by reflection
(Chapter 4) are concerned, Chlipala’s work [10] proved an invaluable resource,
both for inspiration and guidance. One motivating example for doing this in
Agda was Wojciech Jedynak’s ring solver [31], which is the first example of
Agda’s reflection API in use that came to our attention. Compared to Jedynak’s
work, the proof generator presented here is more refined in terms of the inter-
face presented to the user. The expectation is that approaches like these will
become more commonplace for proving mundane lemmas in large proofs. The
comparison to tactics in a language like Coq is a natural one, and we see both
advantages and disadvantages of each style. Of course, the tactic language in
Coq is much more specialised and sophisticated when it comes to generating
proofs, but it is a pity that there are two separate languages in one, instead of
the way it is in Agda, where metaprograms are written directly in the object lan-
guage. Also, the fact that proof generation in Agda is explicit may be something
some people appreciate. (Far) future work might be to implement some sort
of tactic framework for Agda, possibly with a DSL in the style of Coq’s tactic
language, around the reflection API. The Ssreflect extension for Coq [24] should
also be mentioned here; because of a lack of experience with Ssreflect, I refrain
from making concrete statements, but the expectation is that the developments
presented here should also be possible using Ssreflect.

Returning to our research question, repeated here to jog the memory, a sum-
mary of findings is made.

“What are interesting applications of the new reflection API? Which
tedious tasks can we automate? What advantages does the com-
bination of dependent types and reflection give us? Finally, is the
reflection API adequate as it stands to facilitate our needs or does
it require extension? If extension is necessary, what kind and how
much?”

This paper has presented two simple applications of proof by reflection,
the latter using Agda’s reflection API. Also, type-safe metaprogramming tech-
niques have been demonstrated, offering automatic conversion and translation
of programs, while preserving typing safety along the way. We have managed
to automate generation of a certain class of proofs, which certainly would count
as mundane. The clear advantage of Agda’s reflection system is that it lever-
ages the power of Agda’s dependent types, leading to, among other yet to be
described methods, the technique of type-safe metaprogramming presented
here. Unfortunately, though, the reflection API itself is still rather primitive, so
we find ourselves unable to define things such as an automatic Bove-Capretta
transformation of a given function, or the generation of generic programming
embedding and projection functions. The reasons for not being able to do all
that we would like with the API as it stands are best summarised as follows.

• One cannot call unquote on nonconstructor terms, i.e. unquote (lam2term t)
where t is some parameter or variable.

• It is impossible to introduce definitions, and therefore also impossible to

70

define pattern matching, since pattern matching is only allowed in defini-
tions. Pattern matching lambda expressions in Agda are simply syntactic
sugar for local definitions. This precludes automating the Bove-Capretta
method, andmakes generic programming techniques all the more painful.

• Inspection of functions (e.g. clauses) is not implemented, although inspec-
tion of data type definitions is quite comprehensive.

• By default, untyped terms are returned from the quoteTerm keyword. This
has been solved in the patches presented in Appendix A.1, but these are
yet to be included in the main development version of Agda.

• The unquote keyword is unaware of types, so even if a program transfor-
mation is type-safe, in the end unquoting is still hit-and-miss.

Having said all of that, though, a number of things are possible with the
reflection mechanism as it stands, and the expectation is that it should be possi-
ble to define quite a few more examples of program transformations and proof
generators which will likely turn out to be useful for various niche applications.

71

Acknowledgements

Obviously, a formidable number of people deserve thanks here, but I will
refrain from mentioning everyone. Foremost, I would like to thank Wouter, my
supervisor, for his infinite patience in explaining things, giving sound and com-
plete advice, and his generally pleasant way of doing things. Marleen bravely
proofread this work, gave much-needed moral support, was long-suffering:
much appreciated. Tim deserves ample thanks for noticing overworkedness
and nipping it in the bud, taking me on an epic hike through the forest. Justin
did his bit by convincing me to go hitchhiking, which was surprisingly inspir-
ing – a portion of this thesis was eventually written in a foreign city. The Friday
Pie Day group is of course also worthy of mention, if only because of the added
motivation I felt near the end of my project to catch up on all the wasted time
spent drinking coffee and consuming calorific treats.

The rest of you know who you are; tolerating an atypically stressed-out me.
Thanks.

72

Appendix A

Modifications to the Agda
Compiler

During the course of this project, a few modifications were made to the Agda
code base, to facilitate various processes. Since these modifications have not yet
been included in the main code repository, anyone interested in trying out the
changes is invited to make a clone of the forked repository where the develop-
ment was done.

The compiler can be found at https://darcs.denknerd.org/Agda, and the
modified standard library (modified to work with the updated data types in the
compiler) can be found at https://darcs.denknerd.org/agda-stdlib. The
instructions for installation of Agda from source, on the Agda wiki [2], can be
followed unmodified. The modifications made are the following.

• The output of the reflection system (in other words the Term data type)
was modified to include type annotations on lambda abstractions. See
Sec. A.1.

• The compiler was extended to output a list of formatting rules based on
the identifiers currently in scope. This is useful for producing syntax-
highlighted documents from Literate Agda. See Sec. A.2.

A.1 Annotating Lambda Abstractions with Type
As mentioned in Sec. 3.1 it was necessary to slightly modify the representation
of Terms that the reflection system returns to the user. What was needed was
to annotate lambda abstractions with the type of their argument, since with-
out this, type inferencing would be necessary. Even though this is possible, it
would introduce unneeded complexity and open the can of worms that is type
unification. As it turns out, the termination of type unification algorithms is
something rather nontrivial to prove, even if solutions such as McBride’s [37]
do exist. To avoid this, the Term data structure internal to the Agda compiler
was augmented with an optional field of type Type, which allowed two advan-
tages. Firstly, it is now possible to distinguish between, for example, N and Bool
variables in the same expression. Secondly, it allowed us to suffice with only

73

https://darcs.denknerd.org/Agda
https://darcs.denknerd.org/agda-stdlib

providing a type checker, as opposed to a full type inferencing function along
with a type unifier, which poses a problem to the termination checker.

The changes required to theAgda compilerwere rather small; themain thing
that was needed was to extend the Term data type with a Maybe Type field to
hold the extra parameter, and at most points where pattern matching on, or
generation of such terms was done, an extra field needed to be added. Only the
checkExpr function, which does type checking when a concrete Agda lambda
term is encountered, needed to be adjusted, so that the inferred type of the
argument to the lambda would be attached to the abstract syntax tree.

The actual code changes can be browsed on https://darcs.denknerd.org1,
but are not included here for brevity. You can also clone the complete modified
compiler fork from there.

A.2 Automated Highlighting for Literate Agda
In the Emacs Agda mode, highlighting Agda source code currently only works
after a module has been loaded, since then the rôle of various identifiers is
known – be it constructor, function or type. Because of this, Löh’s great LHS2TEX
system [34] does not support automatic syntax highlighting of Agda code, but
the documentation suggests using formatting rules, which are basically LATEX
preprocessing macros. For example, %format x = "\something{x}".

A small modification to the Agda compiler added an extension, available
via the --lagda flag, which first loads the desired module, then if the module
passes type checking, outputs a list of identifiers which are in scope, as a list of
LHS2TEX format rules. The output of such a command, invoked using the usual
parameters plus the --lagda flag can be piped into some file and then included
in the main lagda file, as is done for this report. The user is expected to define
a number of LATEX commands, though, which specify how the various source
code tokens are to be formatted. The required commands are:

\defin the formatting for a definition like a function name,

\id the formatting for an identifier,

\fld the formatting for a field name, such as proj1,

\con, \consym, \consymop formatting of a constructor or constructor opera-
tor, such as suc or , , and

\ty the formatting rule for a type.

Once again, the actual code changes can be browsed on https://darcs.
denknerd.org2. Examples of using this system are to be found in the code for
this paper: the Makefile specifies how to generate the formatting rules, and the
main LATEX file shows how they are used.

1The following patches are interesting as far as typed lambda expressions go: from
20120724095751-a1717-7409480a0680c0e9b220070a0265970cb403c87e.gz to 20120802164956-a1717-
213a839b6a17498d7fb0da67ea64c9603ca5409c.gz.

2The patches 20120621153102-a1717-bcec6bef23583acfb7fd06e3291a57e90d1b4c0b.gz to
20120625101400-a1717-6363a79683af6ad0752729ee24250e87d7af066b.gz are interesting as far as
highlighting goes.

74

https://darcs.denknerd.org
https://darcs.denknerd.org
https://darcs.denknerd.org
https://darcs.denknerd.org/darcsweb.cgi?r=Agda;a=commit;h=20120724095751-a1717-7409480a0680c0e9b220070a0265970cb403c87e.gz
https://darcs.denknerd.org/darcsweb.cgi?r=Agda;a=commit;h=20120802164956-a1717-213a839b6a17498d7fb0da67ea64c9603ca5409c.gz
https://darcs.denknerd.org/darcsweb.cgi?r=Agda;a=commit;h=20120802164956-a1717-213a839b6a17498d7fb0da67ea64c9603ca5409c.gz
https://darcs.denknerd.org/darcsweb.cgi?r=Agda;a=darcs_commitdiff;h=20120621153102-a1717-bcec6bef23583acfb7fd06e3291a57e90d1b4c0b.gz;
https://darcs.denknerd.org/darcsweb.cgi?r=Agda;a=darcs_commitdiff;h=20120625101400-a1717-6363a79683af6ad0752729ee24250e87d7af066b.gz;

Appendix B

Guide to Source Code

This project is currently hosted at GitHub1. There you can find a few files con-
taining the implementations of the presented algorithms, as well as the source
for this paper, which is itself Literate Agda. Here a short summary is given of
what each source file contains; see the directory tree presented in Fig. B.1 on
page 76.

The doc directory contains the sources for this paper, which compile using
the Emacs mode for Agda. The paper can also be generated again by running
make in the doc directory. The file ReflectionProofs.lagda is the main LATEX
file used to generate this paper.

The Metaprogramming directory contains all the code relating to metapro-
gramming, namely the modules for CPS transformation (CPS.agda), SKI trans-
lation (SKI.agda), quoting (Autoquote.agda) and type checking (TypeCheck.-
agda), all in the appropriately named files. Examples of use for all the relevant
modules are also provided, in the Example... modules. The Util folder con-
tains a few helper functions. In WTWellfounded.agda, finally, the well-founded-
ness of the WT data type, under the natural measure, is proven.

The Proofs directory contains the proof by reflection experiments. The file
IsEven.agda is where one can find the first example implementation of the
even natural numbers proof generator, explained in Sec. 4.1. The file Tautology-
Prover.agda implements the system described in Sec. 4.2 for quoting and prov-
ing Boolean tautologies. The Util folder contains some modules with boring
lemmas and alias definitions.

1https://github.com/toothbrush/reflection-proofs

75

https://github.com/toothbrush/reflection-proofs

/
doc

ReflectionProofs.lagda
Metaprogramming

Autoquote.agda
CPS.agda
Datatypes.agda
ExampleAutoquote.agda
ExampleCPS.agda
ExampleSKI.agda
ExampleTypeCheck.agda
ExampleUniverse.agda
SKI.agda
TypeCheck.agda
Util

Apply.agda
ConcreteSKI.agda
Equal.agda
ExampleShow.agda
PropEqNat.agda

WTWellfounded.agda
Proofs

ExampleTautologies.agda
IsEven.agda
TautologyProver.agda
Util

Handy.agda
Lemmas.agda
Types.agda

Figure B.1: Directory listing of the source distribution for this project.

76

Bibliography

[1] Agda developers. Agda 2.2.8 release notes. The Agda Wiki: http:
//wiki.portal.chalmers.se/agda/agda.php?n=Main.Version-2-2-8,
2012. [Online; accessed 6-April-2012].

[2] Agda developers. Agda installation instructions. The Agda Wiki: http://
code.haskell.org/Agda/README, 2012. [Online; accessed 6-April-2012].

[3] A. Alexandrescu. Modern C++ design. Addison Wesley, 2001.

[4] Thorsten Altenkirch. [Agda mailing list] More powerful quoting and
reflection? mailing list communication, https://lists.chalmers.se/
pipermail/agda/2012/004127.html, 2012. [online; accessed 14-Sep-
2012].

[5] K. Asai and O. Kiselyov. Introduction to programming with shift and
reset. online, http://pllab.is.ocha.ac.jp/~asai/cw2011tutorial/
main-e.pdf, 2011. [accessed 21-Aug-2012].

[6] A. Bove and V. Capretta. Modelling general recursion in type theory. Math-
ematical Structures in Computer Science, 15(4):671–708, 2005.

[7] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda – a
functional language with dependent types. In Stefan Berghofer, Tobias
Nipkow, Christian Urban, andMakariusWenzel, editors, TPHOLs, volume
5674 of Lecture Notes in Computer Science, pages 73–78. Springer, 2009.

[8] JamesChapman, Pierre-ÉvaristeDagand, ConorMcBride, andPeterMorris.
The gentle art of levitation. In Proceedings of the 15th ACM SIGPLAN in-
ternational conference on Functional programming, ICFP ’10, pages 3–14, New
York, NY, USA, 2010. ACM.

[9] James Cheney and Ralf Hinze. First-Class Phantom Types. Technical
report, Cornell University, 2003.

[10] A. Chlipala. Certified programming with dependent types. MIT Press, 2011.

[11] Conor McBride. [Haskell-cafe] What’s the motivation for η rules? mes-
sage to Haskell-cafe mailing list, 30-Dec-2010, http://www.haskell.org/
pipermail/haskell-cafe/2010-December/087850.html. [online, ac-
cessed 20-Aug-2010].

77

http://wiki.portal.chalmers.se/agda/agda.php?n=Main.Version-2-2-8
http://wiki.portal.chalmers.se/agda/agda.php?n=Main.Version-2-2-8
http://code.haskell.org/Agda/README
http://code.haskell.org/Agda/README
https://lists.chalmers.se/pipermail/agda/2012/004127.html
https://lists.chalmers.se/pipermail/agda/2012/004127.html
http://pllab.is.ocha.ac.jp/~asai/cw2011tutorial/main-e.pdf
http://pllab.is.ocha.ac.jp/~asai/cw2011tutorial/main-e.pdf
http://www.haskell.org/pipermail/haskell-cafe/2010-December/087850.html
http://www.haskell.org/pipermail/haskell-cafe/2010-December/087850.html

[12] Catarina Coquand, Dan Synek, and Makoto Takeyama. An
Emacs interface for type directed support constructing proofs and
programs. ENTCS, https://mailserver.di.unipi.it/ricerca/
proceedings/ETAPS05/uitp/uitp_p05.pdf, 2006. [online; accessed 3-
Sep-2012].

[13] Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf.
Comput., 76(2/3):95–120, 1988.

[14] H.B. Curry and R. Feys. Combinatory logic, volume 2. North-Holland, 1972.

[15] Luís Damas and Robin Milner. Principal type-schemes for functional pro-
grams. In Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’82, pages 207–212, New York,
NY, USA, 1982. ACM.

[16] Olivier Danvy, Kevin Millikin, and Lasse R. Nielsen. On one-pass CPS
transformations. J. Funct. Program., 17(6):793–812, November 2007.

[17] N.G. De Bruijn. Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the Church-
Rosser theorem. In Indagationes Mathematicae (Proceedings), volume 75,
pages 381–392. Elsevier, 1972.

[18] F.N. Demers and J. Malenfant. Reflection in logic, functional and object-
oriented programming: a short comparative study. In Proceedings of the
IJCAI, volume 95, pages 29–38, 1995.

[19] Dan Doel. Haskell Hacking, Agda Enjoyment. online, http://code.
haskell.org/~dolio/agda-share/html/SKI.html#131, 2012. [online; ac-
cessed 12-Sep-2012].

[20] Michael J. Fischer. Lambda calculus schemata. In Proceedings of ACM
conference on Proving assertions about programs, pages 104–109, New York,
NY, USA, 1972. ACM.

[21] Jeroen Fokker. The systematic construction of a one-combinator basis for
lambda-terms. Formal Asp. Comput., 4(6A):776–780, 1992.

[22] Eric Mertens (Galois). Introducing well-founded recursion. online,
http://code.galois.com/talk/2010/10-06-mertens.pdf, 2010. [slides;
accessed 31-Aug-2012].

[23] Adele Goldberg and David Robson. Smalltalk-80: the language and its im-
plementation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1983.

[24] Georges Gonthier and Assia Mahboubi. An introduction to small scale
reflection in Coq. Journal of Formalized Reasoning, 3(2):95–152, 2010. RR-
7392 RR-7392.

[25] Paul Graham. Hackers and Painters: Big Ideas from the Computer Age. O’Reilly,
May 2004.

78

https://mailserver.di.unipi.it/ricerca/proceedings/ETAPS05/uitp/uitp_p05.pdf
https://mailserver.di.unipi.it/ricerca/proceedings/ETAPS05/uitp/uitp_p05.pdf
http://code.haskell.org/~dolio/agda-share/html/SKI.html#131
http://code.haskell.org/~dolio/agda-share/html/SKI.html#131
http://code.galois.com/talk/2010/10-06-mertens.pdf

[26] Louis-Julien Guillemette and Stefan Monnier. A type-preserving closure
conversion inHaskell. InGabriele Keller, editor,Haskell, pages 83–92. ACM,
2007.

[27] Louis-Julien Guillemette and Stefan Monnier. Type-safe code transforma-
tions in Haskell. Electronic Notes in Theoretical Computer Science, 174(7):23
– 39, 2007. Proceedings of the Programming Languages meets Program
Verification (PLPV 2006).

[28] Louis-Julien Guillemette and Stefan Monnier. A type-preserving compiler
in Haskell. In James Hook and Peter Thiemann, editors, ICFP, pages 75–86.
ACM, 2008.

[29] R. Hindley. The principal type-scheme of an object in combinatory logic.
Transactions of the American Mathematical Society, 146:pp. 29–60, 1969.

[30] Stefan Holdermans, Johan Jeuring, Andres Löh, and Alexey Rodriguez.
Generic views on data types. In Tarmo Uustalu, editor,MPC, volume 4014
of Lecture Notes in Computer Science, pages 209–234. Springer, 2006.

[31] Wojciech Jedynak. Agda ring solver using reflection. online, GitHub,
https://github.com/wjzz/Agda-reflection-for-semiring-solver,
2012. [Online; accessed 26-June-2012].

[32] S.C. Johnson. Yacc: Yet another compiler-compiler. Bell Laboratories, Inc.,
1975.

[33] Shriram Krishnamurthi. Programming languages - application and interpreta-
tion. e-book, 2003.

[34] Andres Löh. LHS2TEX, a preprocessor to generate LATEX code from Literate
Haskell sources. online, http://www.andres-loeh.de/lhs2tex/, 2004.
[online; accessed 11-Sep-2012].

[35] P. Martin-Löf. Constructive mathematics and computer programming. In
Proc. of a discussion meeting of the Royal Society of London onMathematical logic
and programming languages, pages 167–184, Upper Saddle River, NJ, USA,
1985. Prentice-Hall, Inc.

[36] C. McBride. Ornamental algebras, algebraic ornaments. Journal of Func-
tional Programming, 2010.

[37] Conor McBride. First-order unification by structural recursion. Journal of
Functional Programming, 13(6):1061–1075, 2003.

[38] Conor McBride. Epigram: practical programming with dependent types.
In Proceedings of the 5th international conference on Advanced Functional Pro-
gramming, AFP’04, pages 130–170, Berlin, Heidelberg, 2005. Springer-
Verlag.

[39] Conor McBride. Outrageous but meaningful coincidences: dependent
type-safe syntax and evaluation. In Bruno C. d. S. Oliveira and Marcin
Zalewski, editors, ICFP-WGP, pages 1–12. ACM, 2010.

79

https://github.com/wjzz/Agda-reflection-for-semiring-solver
http://www.andres-loeh.de/lhs2tex/

[40] Matt Might. How to compile with continuations. http://matt.might.
net/articles/cps-conversion/. [online, accessed 20-Aug-2012].

[41] U. Norell and P. Jansson. Prototyping generic programming in Template
Haskell. In Mathematics of Program Construction, pages 314–333. Springer,
2004.

[42] Ulf Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Department of Computer Science and Engineering,
Chalmers University of Technology, SE-412 96 Göteborg, Sweden, Septem-
ber 2007.

[43] Ulf Norell. Dependently typed programming in Agda. In Proceedings of
the 4th international workshop on Types in language design and implementation,
TLDI ’09, pages 1–2, New York, NY, USA, 2009. ACM.

[44] H. Partsch and R. Steinbrüggen. Program transformation systems. ACM
Comput. Surv., 15(3):199–236, September 1983.

[45] Lawrence C. Paulson. Constructing recursion operators in intuitionistic
type theory. J. Symb. Comput., 2(4):325–355, December 1986.

[46] K. Pitman. Special forms in Lisp. In ACM Symposium on Lisp and Functional
Programming, 1980.

[47] John C. Reynolds. The discoveries of continuations. Lisp Symb. Comput.,
6(3-4):233–248, November 1993.

[48] Alexey Rodriguez, Johan Jeuring, Patrik Jansson, Alex Gerdes, Oleg Kise-
lyov, and Bruno C. d. S. Oliveira. Comparing libraries for generic program-
ming in Haskell. SIGPLAN Not., 44(2):111–122, September 2008.

[49] M. Schönfinkel. Über die Bausteine der mathematischen Logik. Mathema-
tische Annalen, 92(3):305–316, 1924.

[50] Tim Sheard. Staged programming. online, http://web.cecs.pdx.edu/
~sheard/staged.html. [accessed 20-Aug-2012].

[51] Tim Sheard and Simon Peyton Jones. Template meta-programming for
Haskell. In Proceedings of the 2002 ACM SIGPLAN workshop on Haskell,
pages 1–16, 2002.

[52] Brian Cantwell Smith. Reflection and semantics in LISP. In Proceedings
of the 11th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, POPL ’84, pages 23–35, New York, NY, USA, 1984. ACM.

[53] M.H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard isomor-
phism. 1998.

[54] Stackoverflow user maddy. “hey can’t understand this piece of code”
– a question about reflection. online, http://stackoverflow.com/
questions/11965535/hey-cant-understand-this-piece-of-code. [ac-
cessed 20-Aug-2012].

80

http://matt.might.net/articles/cps-conversion/
http://matt.might.net/articles/cps-conversion/
http://web.cecs.pdx.edu/~sheard/staged.html
http://web.cecs.pdx.edu/~sheard/staged.html
http://stackoverflow.com/questions/11965535/hey-cant-understand-this-piece-of-code
http://stackoverflow.com/questions/11965535/hey-cant-understand-this-piece-of-code

[55] Aaron Stump. Directly reflective meta-programming. Higher-Order and
Symbolic Computation, 22(2):115–144, 2009.

[56] Walid Taha and Tim Sheard. Multi-stage programming with explicit an-
notations. In Proceedings of the 1997 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation, PEPM ’97, 1997.

[57] A. S. Troelstra. From constructivism to computer science. Theor. Comput.
Sci., 211(1-2):233–252, 1999.

[58] T. van Noort, A. Rodriguez Yakushev, S. Holdermans, J. Jeuring, B. Heeren,
and J.P. Magalhães. A lightweight approach to datatype-generic rewriting.
Journal of Functional Programming, 20(3-4):375–413, 2010.

[59] P. Wadler. Proofs are programs: 19th century logic and 21st century com-
puting. Dr Dobb’s Journal, page 313, 2000.

[60] Yuki Watanabe. Study on proof of type preservation in CPS transfor-
mation. online, http://web.yl.is.s.u-tokyo.ac.jp/~ywtnb/master/
thesis-submitted.pdf, 2011.

[61] Stephanie Weirich. Advanced Topics in Programming Languages: De-
pendent Type Systems. online, http://www.seas.upenn.edu/~sweirich/
cis670/09/index.html, 2009. [online course material; accessed 23-Sep-
2012].

[62] Stephanie Weirich, Brent A. Yorgey, and Tim Sheard. Binders unbound.
SIGPLAN Not., 46(9):333–345, September 2011.

81

http://web.yl.is.s.u-tokyo.ac.jp/~ywtnb/master/thesis-submitted.pdf
http://web.yl.is.s.u-tokyo.ac.jp/~ywtnb/master/thesis-submitted.pdf
http://www.seas.upenn.edu/~sweirich/cis670/09/index.html
http://www.seas.upenn.edu/~sweirich/cis670/09/index.html

	Introduction
	Introducing Agda
	First Steps in Agda
	More on Pattern Matching
	A Programming Language and Proof Assistant
	Implicit Record-type Arguments

	Reflection in Agda
	The Basics
	The Structures of Reflection
	Automatic Quoting

	Proof by Reflection
	Simple Example: Evenness
	Second Example: Boolean Tautologies
	Adding Reflection

	Type-safe Metaprogramming
	Preamble
	Type Checking
	Example: CPS Transformation
	Example: SKI Combinators
	Afterword: Parameters to Modules

	Generic Programming
	Limitations

	Discussion
	Modifications to the Agda Compiler
	Annotating Lambda Abstractions with Type
	Automated Highlighting for Literate Agda

	Guide to Source Code

