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ABSTRACT 
 

Cellular characteristics are determined by molecular interactions. These interactions 
are complex, forming multi-layered networks that influence each other. One way to 
analyze these networks is by analyzing their constituent motifs. There have been 
several transcription regulatory motifs thought to have been selected by evolution 
that confers specific traits to the cell, one example being the feed forward loop (FFL) 
motif. It is a motif formed by three distinct nodes consisting of two regulators and 
one target. Depending on the type of interaction between the nodes, the motif 
enables the target node to have distinct dynamics advantageous to the cell as a 
whole, making them interesting study subjects. These motifs were initially studied in 
simple unicellular organisms. Comprehensive motif studies on more complex 
organisms have been hampered by the lack of important data sets, notably the gene 
expression data and transcription factor binding data. FFLs have nevertheless been 
described in several small-scale studies in more complex eukaryotes. This thesis 
presents an overview of these small-scale studies by discussing their proposed FFL 
motifs and their relation to the initial proposed FFL motif in simpler organisms.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



INTRODUCTION 
 

Inside living cells, we find a myriad of chemical reactions take place between many 
different types of molecules. Together, these chemical reactions define a cell‟s 
behavior and its possible developmental trajectory. At the core of this multilayered 
network of chemical interactions, we find the transcriptional regulatory network. The 
transcriptional regulatory network is made up of interactions among transcription 
factor proteins and the genes that they regulate. The interactions in this network 
ultimately determine what proteins or other molecules is expressed at any given 
time. Thus, if we are to understand and control the behavior of a cell, we must 
understand the transcriptional regulatory network. 
 
Such understanding is not an easy feat, however, as they are notoriously complex. 
For any given gene, several transcription factors could be involved in determining its 
expression level. The expression of these transcription factors themselves are in turn 
also regulated by other transcription factors, increasing their regulatory complexity. 
Moreover, many loops exist within the network, where the downstream products of a 
gene could be involved in its upstream regulation as well. Finally, for a given time or 
environmental condition, there could be different sets of regulators involved in 
determining a gene's expression level. 

 
How then, can we start to understand the dynamics of a transcription network? Alon 
and colleagues proposed a reductionistic approach of analyzing smaller functional 
patterns that are found within the complete network1. They have discovered that 
some patterns, also called network motifs, occur more frequently than one would 
expect if the network in question were truly random. A random network, in this case, 
is defined as a network with a similar number of nodes but with its edges distributed 
randomly. One explanation behind the discrepancy of the motifs‟ occurrence in 
random versus real networks is that these motifs are products of natural selections. In 
other words, their apparent abundance is believed to confer one or more functional 
advantages that influence the cell‟s survival. Thus, understanding these motifs could 
help understand the behavior of network in which they are imbedded. 
 
Alon‟s and colleagues approach is simple in essence, but quite revealing. A network 
motif consisting of n number of nodes (n=1, 2, 3, and so on) may be discovered by 
counting the occurrence of a network pattern consisting of the same number of 
nodes and comparing that number to the number it is expected to appear if the 
network is random. If a pattern occurs more times than expected, it is then deemed a 
recurrent network motif. This approach has been applied on a large-scale fashion to 
the whole known transcription network of the bacterium Escherichia coli2 and the 
single-celled eukaryote Saccharomyces cerevisiae3, yielding several network motifs 
with distinct characteristics. Importantly, these network motifs have proven useful in 
characterizing the behavior of the biological system they regulate.  
 
A prime example is the bacterial flagella motor motif4. It is a simple motif consisting 
of three nodes: two transcription factors (FlhDC and FliA) and their target genes 
(fliLMNOPQR). Both FlhDC and FliA can activate the target genes, while FliA is also 
activated by FlhDC. Together they form a motif dubbed the type 1 feed-forward 
loop. As will be discussed later, the expression dynamics of fliLMNOPQR can indeed 
be predicted by the characteristics of this particular motif.  
 



How far can these analyses be applied to other organisms? This is currently an open 
question, as our knowledge about gene regulation in more complex organisms is still 
very limited. Network motifs analyses require not only the knowledge about the 
interaction of transcription factors and their target genes, but also how much a 
presence or absence of a given transcription factor influences their target gene‟s 
expression levels. Additionally, given that organisms express a different set of genes 
in different environmental and/or developmental stages, these analyses are ideally 
performed in as many environmental and developmental stages as possible. All of 
this requires a vast amount of data to be generated. 
 
Analyses on E. coli and yeast are already possible because of the wealth of 
transcription factor binding and gene expression data available on these organisms. 
They are arguably unmatched in the levels of gene expression data coverage 
compared to other organisms. There have been some attempts to characterize 
network motifs in complex organisms, such as human cells5,6, but such studies is best 
considered preliminary at the moment given the sparseness of the underlying 
dataset. Finally, as a hint of how much information there is still left to discover, even 
the gene expression data for E. coli still receives continous updates7,8. 

  
Of course, that is not to say that the motifs found in E. coli and yeast do not exist in 
other cells. It is hard to resist thinking that such simple yet powerful motifs are not 
present in other organisms, conferring similar traits to the ones seen in E. coli and 
yeast. In this study, I aim to extend the analysis of network motifs to other organisms 
by drawing evidence from scientific literature. The focus will be specifically on a 
network motif called the feed-forward loop, a relatively simple motif that has been 
identified in E. coli and yeast. Given that no definitive studies on network motif 
identification have been performed on more complex organisms, the analyses will 
center on scientific literature discussing several gene circuits and how well these 
circuits fit the description of a feed-forward loop. Non-transcriptional networks 
comprising of RNA binding proteins and membrane proteins will also be discussed, 
to see whether it is possible to extrapolate findings from the transcriptional 
regulatory network into other networks if the topology is similar. Before going into 
these analyses, a brief introduction to the feed-forward loop motif is presented first. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



THE FEED-FORWARD LOOP MOTIF 
 

The feed-forward loop (FFL) motif is a simple network motif. It consists of three 
nodes: X, Y, Z, with X regulating the expression of Y and Z, and Y regulating the 
expression of Z (Figure 1)1,9. The regulators, X and Y, could either activate or repress 
transcription of their target genes, giving rise to a possible combination of eight 
different FFL motifs. These eight motifs can be categorized into two groups: coherent 
and incoherent loops, based on the coherence of input to the final product Z. In 
coherent loops, the input to Z that goes from both X and Y perform the same action, 
either activation (C1, C4) or repression (C2, C3). In incoherent loops, Z receives 
opposing signals from X and Y. 

 

 
 

Figure 1  The eight possible feed-forward loop motif. Arrowheads denote activation, rounded ends 
denote repression. C: coherent, I: incoherent. 

 
The utility of the network motif lies in its ability to predict the expression dynamics of 
the final target, Z. The prediction, however, has to take into account the kinetic 
parameters that govern the components‟ interactions. As will be shown below, the 
initial characterization done by Alon and colleagues assume a set of kinetic 
parameters that simplify modeling and calculation9. How far these assumptions 
always apply to all motifs remain to be shown. 

 
Assuming X already reached its steady-state level, the expression level of Z (dZ/dt) 
then depends on its basal expression level (Bz), the concentration of Y and whether it 
is bound to its site or not (Y*); whether it is available above the threshold level 
required to regulate Z expression (Kyz), and its decay rate (αZ). The concentration of Y 
(dY/dt), similarly, depends on its basal expression level (By), whether X is activated 
and available above its decay rate (X*), and its decay rate (αY). Expressed formally, 
these two terms are: 

 
𝑑𝑌

𝑑𝑡
=  𝐵𝑦 + 𝛽𝑦𝑓 𝑋

∗, 𝐾𝑥𝑦  − 𝛼𝑦𝑌 



 
𝑑𝑍

𝑑𝑡
=  𝐵𝑧 + 𝛽𝑧𝐺 𝑋

∗, 𝐾𝑥𝑧 , 𝑌∗, 𝐾𝑦𝑧  − 𝛼𝑍𝑍 

 
Where βy and βz are the expression level that will be integrated with the following 
functions f(u, K) or G(u1, K1, u2, K2). Additionally, the rate of X and Y activation is 
sometimes determined by another molecule, Sx or Sy (not shown in the formula). For 
example, X could be the phosphorylated by a kinase Sx before it can regulate 
transcription. 
 
The first function depends on whether X is an activator or repressor, and the second 
function integrates the input of X and Y into Z, according to whether one 
transcription factor alone is sufficient to regulate Z (similar to an OR gate) or whether 
both transcription factors are needed (similar to an AND gate). Here, the output of 
the function is binary (yes or no), depending on whether the concentration of the 
active regulator (X* or Y*) is above or below the dissociation constant (Kxy, Kxz, or Kyz). 
In reality, however, transcription does not necessarily proceed in a binary fashion. 
Rather, its rate may change gradually as its regulators‟ concentration increase.  

  
Still, using the above model, several prominent characteristics of the network motifs 
have been described. The C1-FFL, for example, has been shown to provide sign-
sensitive delay response to the expression level of Z. Depending on whether the 
integration of X and Y into Z follows an AND or an OR gate, the expression level of Z 
may be delayed compared to when Z is simply regulated by X, without Y. If the 
integration, or sign, follows an AND gate, we see a delay during the rise of Z 
expression level. If the sign follows an OR gate, the delay is seen during the decay 
level of Z after the input X is deactivated. An example of the C1-FFL with an AND 
gate is the arabinose system in E. coli, where arabinose producing enzymes are  
produced only when the CRP protein is active and the protein AraC is present above 
the threshold10. The bacterial flagella motor, as mentioned earlier, is an example of a 
C1-FFL with an OR gate function. 

 
An example of the incoherent loops is the I1-FFL. The network motif has been shown 
to generate pulses of transcription levels, in which the initial expression level is high 
and then reduced after a certain period. The initial high expression is because the Z 
protein is expressed due to X‟s activating action, but after Y reaches its threshold for 
regulating Z, Y acts as a repressor that reduces Z expression to its steady state. An 
example of this motif is the galactose system in E. coli, where the initial production of 
the galactose metabolizing enzyme is high but then toned down11,12. 
 
As mentioned earlier, the FFL characterization in E. coli and yeast benefit from the the 
presence of many transcription factor binding and gene expression datasets. In more 
complex organisms, such interaction databases are not yet sufficiently 
comprehensive, limiting the study of network motifs. However, there have been 
several published studies which investigated individual FFL motifs in different 
multicellular animals and tried to characterize their properties in relation to the 
biological phenomenon they regulate. Here, these examples are discussed in detail, 
beginning with the discussion of network motifs composed of transcription factor 
proteins (hereafter termed canonical FFL). 
 
 



CANONICAL FEED-FORWARD LOOP MOTIFS 
 

The first example of a known FFL discussed in eukaryotes is the FFL responsible for 
mouse skeletal muscle differentiation13. Here, the components involved are the 
transcription factors MyoD, Mef2D, several muscle-specific genes, and the protein 
kinase p38 (Figure 2). The p38 protein may seem oddly placed at first, but it is really 
the Sy component of the motif that was also described in the previous section. Its 
role is to activate the Y node, in this case Mef2D, and may be considered part of the 
network motif as well. 

 

 
 

Figure 2  The FFL consisting of MyoD, Mef2D, p38, and their target genes. Orange arrows denote 
transcriptional regulation, green arrow denotes phosphorylation. 

 
Before looking into the FFL, we first look into the biological process it is involved in 
regulating. MyoD and Mef2D are two transcription factors regulating skeletal muscle 
differentiation. The differentiation process occurs in several stages that can be 
broadly divided into two: the early stage and the late stage14. In the early stage, 
myoblasts start to express muscle-specific cells under the control of several 
transcription factors, MyoD and MEF2D among them. These cells then become a 
differentiated cell type called myocytes. Several myocytes then fuse together to form 
multinucleated myotubes in the late differentiation stage. 

  
Several lines of evidences support the hypothesis that MyoD, Mef2D, and p38 forms 
a FFL to regulate the expression of muscle specific genes13. First is the physical 
interaction of the motifs‟ nodes. Using chromatin immunoprecipitation, MyoD and 
Mef2D have been shown to bind and activate the muscle specific genes14. These 
target genes are only expressed when MyoD is present in its activated form. 
Interestingly, the timing of this binding is influenced by the activation of p38. Earlier 
p38 activation was shown to result in an earlier binding of Mef2D. This suggests that 
MyoD, Mef2D, and p38 form a network that results in a multi-step activation of its 
target genes. 
 
The second line of evidence is the expression and activity of the three nodes. Mef2D 
is a known phosphorylation target of p38. When p38 phosphorylation is inhibited, 
the expression of late-stage, muscle-specific genes are inhibited as well. Conversely, 
precocious overexpression of p38 resulted in the precocious expression of Mef2D 
and its target genes. When this precocious expression of p38 is combined with early 
expression of Mef2D, an even earlier expression of the late-stage genes are 
observed. However, early expression of Mef2D without p38 did not result in a similar 
precocious expression of early target genes, suggesting that Mef2D needs to be 



phosphorylated before it can activate its targets. Finally, both p38 and Mef2D seems 
to be dependent on MyoD expression for their own expression.  

 
Taken together, this suggests that the transcription factor MyoD, Mef2D, and the 
protein kinase p38 is involved in an FFL. The proposed motif can be further grouped 
into the coherent type 1 FFL based on each element‟s interaction with each other. 
This particular motif has a characteristic of introducing delay in the expression or 
repression of the final product. The delay is present because Mef2D needs time to be 
expressed and activated. If the time it takes for Mef2D to be activated is shortened, 
the target genes will also be expressed sooner. Indeed, this is what was shown in the 
study. 
 
However, even though the authors reach the conclusion that MyoD, Mef2D, and the 
target genes are involved in a type 1 FFL, it was never directly shown that MyoD 
binds directly to the promoter of Mef2D even though Mef2D expression increases 
when MyoD is active. How then, can the behavior of the network be similar to a type 
1 FFL? As mentioned earlier, the behavior of the network‟s final node depends not 
only on the network topology but also on the reaction kinetics. According to Alon‟s 
model, the long path of the FFL (the path that goes from MyoD, Mef2D, and the 
targets) increases the amount of time it takes for the final target genes to be affected 
by Mef2D. Thus, adding an extra node to this path essentially increases its delay. In 
other words, MyoD may not have to interact directly with the Mef2D promoter in 
order for the network motif to show characteristic type 1 FFL behavior. 
 
Finally, it is worth considering what benefits the type 1 FFL motif here endows the 
cell or organism as a whole. As mentioned earlier, network motifs are thought to 
confer one or several advantages since they are selected by natural selection. For the 
MyoD motif, the clue might be found in an earlier experiment. It was found that 
different clusters of target genes could be made according to the timing of 
expression relative to MyoD. The early gene cluster has a higher representation of 
nuclear regulatory factors and genes involved in extracellular matrix processing. The 
late gene clusters, on the other hand, have a higher representation of structural and 
cytoskeletal genes specific to skeletal muscle cells. Delaying the expression of genes 
in the late cluster is a possible mechanism for the cell to allow genes expressed in the 
early cluster to complete their function.  
 
The next motif that will be analyzed is involved in the neuronal subtype specification 
network in the fruit fly Drosophila melanogaster15. In this case, several FFLs are 
involved, creating an elegant cascade of temporal gene expression that regulates cell 
differentiation. The approaches employed by the authors are different from the 
previous motif discussed; using knockout mutants and immunostaining in vivo. This 
approach has the advantage of eliminating in vitro artifacts but comes at the cost of 
having reduced quantitative power. These approaches can also be used to infer the 
underlying network topology, albeit with some drawbacks. 
 
Before examining the network, it is useful to consider the biological phenomenon in 
question. In D. melanogaster, the ventral nerve cord of the developing embryo 
contains a lateral cluster of four neurons that develop from a single neuroblast15. 
There are two cells in the four neural cluster that produce neuropeptides: the 
Ap1/Nplp1 cell, producing the FMRFa neuropeptide and the Ap1/FMRFa cell that 
produces the Nplp1 neuropeptide. The other two cells are called Ap2 and Ap3 and 



are considered similar. Thus, from a single neuroblast, four cells of three different 
types are formed. How were these cells specified?  

 
A combination of knockout mutants and immunofluorescence allows the analysis of 
transcription factors known to be involved in the neuronal specification by counting 
the number of cells expressing a given marker in a knockout mutant. It was found 
that three different FFL are involved in the cell type specification and that the 
specification events hinge on the characteristic of the apparent feed-forward loop 
motifs (Figure 3). The first network specifies the Ap1/Nplp1 cell, the second network 
suppresses the first network and specifies the Ap2/3 cells, while the third one 
specifies the Ap4/FMRFa cell. From the initial asymmetric division of the neuroblast, 
the resulting daughter cell express the col gene, which will activate the FFL required 
for the Ap1/Nplp1 cell specification. The gene upstream of col, on the other hand, 
also activates sqz and nab, forming another FFL. Both sqz and nab can repress col, 
but this do not happen in the first daughter cell of the neuroblast because nab is not 
expressed as early as col. When nab does get expressed, it suppresses col and results 
in the specification of the Ap2/3 cells, which emerge later than the Ap1/Nplp1 cell. 
Finally, the Ap4/FMRFa cell is specified by the action of grh that inhibits cas 
expression and activates other targets required for Ap4/FMRFa fate. 

 
 

 
Figure 3  The FFLs the specify the D. melanogaster Ap neuron cluster. 

 
At a glance, each of these FFL seems to be similar to the FFL described in yeast and E. 
coli. However, the proposed model here was made based on the expression of the 
genes without checking if any physical contact between the transcription factors and 
their target genes‟ regulatory region occurs. Without taking this into account, the full 
extent of the network remains to be seen since there might be other intermediate 
factors that exist between a transcription factor expression and the expression of 
their targets. Indeed, it seems rather odd that the final FFL that specifies the 
Ap4/FMRFa are activated later than the second FFL, even though the author indicates 
a direct regulation of the FFL through grh. There could be other factors or even other 
FFL motifs that delay the expression of grh.  Nevertheless, their argument on the 
involvement of two FFLs on the specifications of Ap1/Nplp1, Ap2, and Ap3 stands. 
Their proposed network possesses similar characteristics to the FFL, which in this case 
is the C1-FFL. 
 



The final example of this section  provides another view on how FFLs can be utilized 
for cell differentiation. Similar to the neuronal subtype specification, the animal is 
Drosophila and the biological process involves different FFLs that are interconnected 
together. However, different from the neuronal subtype specification, this example 
shows how the incoherent FFL can also be used to specify cells. The biological 
phenomenon in this example is the differentiation of the photoreceptors in the 
Drosophila eye16.  

 
During the course of embryonic development, the animal‟s eyes are specificied from 
a single layer of epithelium cells. The process that has been known to utilize 
transcription factors arranged in multiple FFL is the specification of photoreceptors. 
The fully developed eyes of Drosophila are actually composed of about 800 single 
unit eyes, called ommatidia. A single ommatidium, is composed of eight 
photoreceptors (PRs) that can be grouped into six outer PRs (R1-6) and two inner 
PRs (R7-8). The outer PRs are distinguished by their expression of the light-sensitive 
protein Rhodopsin 1 (Rh1) which is mainly used for motion detection. On the basis of 
Rhodopsin expression, the inner PRs are also further divided into two groups: the 
“pale” (p) group and the “yellow” (y) group. It is this grouping that determines the 
subtype of the whole ommatidia. Pale group inner cells (pR7 and pR8) express the 
Rhodopsin Rh3 and Rh5 respectively, while the yellow group inner cells (yR7 and 
yR8) express Rh4 and Rh6 respectively. Both Rh3 and Rh4 are ultraviolet-sensitive 
Rhodopsins while Rh5 and Rh6 each detect a different range of the visible light wave 
spectrum. The location of these cell subtypes are random, although they both occur 
at a relatively fixed proportion, 35:65 for pale:yellow.  

 
Using a series of knockout mutants and gel-shift assays, it has been proposed that 
the specification of a subset of these photoreceptors is controlled by series of 
interconnected FFL (Figure 4). The subset in question includes the outer PRs and the 
inner pale R7. Here, the two regulators are the transcription factors Orthodenticle 
(Otd) and Defective proventriculus (Dve), since they are both present in all the FFLs 
that govern the expression of various Rhodopsins in different PRs. Otd on its own 
could activate the expression of Dve and Rhodopsins Rh3, Rh5, and Rh6. Dve, on the 
other hand acts as a repressor for these Rhodopsins. Thus, we see that Otd and Dve 
forms an incoherent FFL type 1 (I1-FFL), given their different action on the 
Rhodopsins. This is indeed what was observed in the R1 to R6 cells, where Rh3, Rh5, 
and Rh6 are all repressed.  

 



 
Figure 4  Scheme of gene regulatory networks involved in Drosophila ommatidia subtype 

specification. The FFLs are present in boxes B, C, D. For each level, blue color indicates a 
new component compared to the previous level. 

 
In the PR7 cells, the repression of Rh3 by Dve is alleviated by the presence of another 
transcription factor called Sal. Sal can also function as an activator of Rh3, thus 
effectively overriding the initial I1-FFL with a new network motif. The new motif, 
consisting of Sal, Dve, and Rh3, is a coherent type 4 FFL, given the similar outcome of 
Rh3 expression by the action of Sal. However, given that Dve initially also represses 
Rh5 and Rh6, one might wonder how pR7 cells maintain repression of Rhodopsins 
when Dve is not expressed anymore.  Here, it was found out that the cells actually 
express another repressor called Pros, that is able to repress Rh5 and Rh6 without 
affecting Rh3 expression. In the other PRs, a similar logic of overriding the initial I4-
FFL to allow for Rh5 or Rh6 expression is also present. However, they do not form 
new FFLs since the regulators that repress Dve and activate the Rhodopsins have not 
been shown to be the same protein.  
 
 
EXTENDED FEED-FORWARD LOOP MOTIFS IN EUKARYOTES 

 
After looking at several studies on regular FFLs, which are FFLs whose X and Y nodes 
are transcription factors, several „extended‟ FFLs are presented. Extended here means 
that one or more components of the FFL is not a transcription factor. They could be 
membrane proteins, RNA-binding proteins, or some other proteins. Although these 
FFLs are not FFLs in the proposed definition, it will be shown that they in fact behave 
similarly to regular FFLs. 

 



The first example discussed is a simple motif found in yeast consisting of the RNA-
binding protein KHD1, the transcription factor ASH1, and the cell wall protein 
FLO1117 (Figure 6). This loop controls the transition of yeast cells into its filamentous 
form. In yeast cells, the cells can reversibly differentiate into a filamentous form when 
they are placed under nitrogen stress. In this FFL, the first component of the FFL is 
KHD1, which is able to repress FLO11 and ASH1 translation. ASH1 itself can activate 
the transcription of FLO11. It is apparent that this FFL is of the coherent type 2 
subtype (C2-FFL), given the arrangements of the components.  

 

 
 

Figure 5  The FFL consisting of the RNA-binding protein Khd1, transcription factor Ash1, and cell wall 
protein Flo11. 

 
How was this network motif deduced? The interaction between khd1 and flo11 
(Figure 6, arrow 1) was deduced by knocking out khd1 and observing that flo11 
mRNA levels increases as a result. The second interaction, between KHD1 and ash1 
mRNA, was deduced by using CLIP (cross-linking immunoprecipitation). Using this 
method, the authors of the study found the binding motif of KHD1 and showed 
using a GFP construct that the motif can be used to repress expression. Finally, the 
last interaction was uncovered by knocking out ash1, which resulted in a drop of 
flo11 mRNA levels. 

 
How similar is this network to the regular FFL consisting of only transcription factors? 
The regular C2-FFL model9 predicts that the final product, FLO11, should have an 
initial delay in expression after the activity of the first component, KHD1, is gradually 
lost. Unfortunately, no such measurement was made in the study. Instead, the 
authors postulated that the FFL topology here was present to ensure that transitions 
between the filamentous form to non-filamentous cells is bistable; either the yeast 
becomes filamentous or not. In the FFL motif, it is apparent that KHD1 regulates the 
translation of FLO11 directly and its transcription indirectly through ASH1. When a 
mother cell detects that it should produce progenies with the regular cellular form, 
then expressing KHD1 would ensure that FLO11 is not expressed anymore. In this 
case, the initial condition is different from the one described in the regular C2-FFL 
model since at the steady state, KHD1 is not present. It is still possible that during the 
switch from regular cell morphology to filamentous form there is an initial delay as 
predicted by the model. However, further experimental data is required to confirm 
this. 
 
Finally, it should be noted that some of the interactions shown in this model may not 
be direct physical interactions as well. The only physical interaction suggested by the 
experiments was that of KHD1 and ash1 mRNA. The interactions between KHD1 and 



flo11 and/or ash1 and flo11 may have other intermediaries. Although this does not 
prevent the motif from behaving like a canonical FFL, as has been shown in previous 
examples, it does not conform to the initial FFL motif description. 
 
The second extended FFL that will be discussed is present in the social Amoeba 
Dictyostelium discoideum18. The social Amoeba is a model organism that has been 
commonly used to study morphogenesis and cell differentiation. Though able to live 
its entire life as a single-celled organism, D. discoideum can aggregate to form 
multicellular structures when environmental conditions are adverse. This multicellular 
structure then undergoes several steps of morphogenesis until it forms a fruiting 
body that is able to disperse aerosol spores, sending its progeny to live in another 
place.  

 
A feed-forward loop motif has been indicated to regulate the initial differentiation 
event that takes place after D. discoideum cells aggregate19. It consists of the 
proteins GBF, a transcription factor, and LagC, a membrane protein, both regulating 
the expression of 16 other genes (Figure 2). Several lines of evidence point to the 
conclusion that GBF and LagC are part of an FFL. The initial evidence is the difference 
of expression times. GBF mRNA is expressed after 4 hours of aggregation 
stimulation, while LagC is expressed after 8 hours. The second line of evidence comes 
from the knockout mutant expression patterns. LagC is not expressed when GBF was 
knocked out, but GBF is still expressed even though LagC is knocked out, indicating 
that GBF is required for LagC expression but not vice versa (Figure 7, arrow 2). 
Furthermore, both GBF and LagC are required for the expression of the 16 target 
genes. When LagC is knocked-out, these 16 genes are not expressed (Figure 7, arrow 
3). Similarly, when GBF is knocked-out and LagC expressed under a GBF-independent 
regulatory region, the target genes are not expressed (Figure 7, arrow 1). 
Overexpression of either LagC or GBF when the other is knocked-out also did not 
result in the expression of their target genes. The target genes are only expressed 
when both GBF and LagC are expressed, suggesting that they both regulate the 
target genes. Finally, the 16 target genes of GBF and LagC are expressed after both 
proteins are expressed, in line with the idea that GBF and LagC form an FFL. 
 

 
 

Figure 6  The FFL of D. discoideum that controls the expression of post-aggregation genes
19

.  

 
In the case of GBF and LagC, the FFL in question seems to be the Type 1 Coherent 
FFL (C1-FFL). The property of this type of FFL is that it introduces delay in 
transcription, depending on its logic. The fact that both GBF and LagC is required for 
the expression of the target genes shows that their operational logic is similar to the 



AND gate.  Indeed, the delay of transcription is apparent in the study that was done. 
This is useful to the organism because it needs to be sure that genes required for its 
post-aggregation phase are expressed after aggregation has occurred.   

 
Going back to the motif, it is apparent that there are similarities between the regular 
and extended FFL. How is this achieved? Looking closer at this network‟s 
components, it is clear that LagC is a membrane protein. This necessitates the 
presence of downstream signaling molecules that in turn will interact with the 
regulatory region of the target genes to activate its expression. In essence, this is still 
similar to the path from the first protein (protein X) to the final component (protein 
Z) through protein Y. In the regular FFL, it is that path that introduces delay of 
expression in the first place, given the model‟s assumption. Here, the path from LagC 
to its target molecules is basically extending the number of steps already present 
between GBF to its target genes. One can assume that the presence of signaling from 
LagC then increases the delay time similar to a regular FFL. 
 
 
LARGE SCALE NETWORK MOTIF STUDIES 
 
The examples given so far represent only a minute subset of the possible FFL 
interactions in eukaryotes. However, it is apparent from these examples that 
understanding simple network motifs is useful for understanding or predicting the 
behavior of a larger system. There have been attempts to characterize eukaryotic 
network motifs in a more comprehensive manner. One study investigated the 
regulatory circuitry formed by the transcription factors Oct4, Sox2, and Nanog in 
human embryonic stem cells20. Using chromatin immunoprecipitation and microarray 
analysis, the study found two distinct motifs: the autoregulatory loop, where the 
product of a gene regulates its own expression, and the feed-forward loop. 
Approximately 353 protein coding genes and 2 miRNA were found to be part of 
these motifs. Another study looked at the network motifs that might exist in human 
hepatocytes with similar approaches21. Here, six transcription factors with known 
roles in hepatocyte biology were investigated. Similar to the network in human 
embryonic stem cells, this study also found the feed-forward loop network motifs 
with at least 246 distinct genes involved. While these studies only investigated a 
small subset of the network in the respective model cells, the fact they identified the 
FFL motif suggest that the motif is indeed important for higher organisms as well. 

 
One important aspect to remember regarding these high-throughput, large-scale 
studies is that they only investigate a portion of the network motifs‟ characteristics. In 
the case of the two previous studies, the conclusion was obtained from transcription 
factor binding data and large-scale gene expression measurement. In order to 
characterize the network better, the specific biological processes regulated by these 
motifs should also be characterized so the relation between the network motif and 
the actual biological process can be established. Until now, the current eight FFL 
subtypes‟ characteristics are made with several assumptions. More experimental data 
to validate these predicted behavior would only be needed. 

 
Finally, a critical point to remember is that these smaller and simple networks in 
reality are inseparable from the larger networks. In order to make sense of the larger 
network, one needs to integrate the smaller network motifs. This integration itself 



might introduce problems when conflicting predictions are found. An example is 
presented here, based on the data obtained by Alon and colleagues9 (Figure 5). 
 

 
 

Figure 7  Integration of separate FFLs into the larger circuit. Notice that GAP1 has two different input 
types: repression from DAL80 and activation from GAT1 and GLN3. 

 
Here, four FFL that are actually part of the same bigger network are presented. Two 
of these FFLs are of the C1-FFL subtype (2 and 4), while the others are of the I1-FFL (1 
and 3). Considered separately, one might be able to predict the behavior of the final 
component (Z) of each network. However, when combined into the larger network, a 
problem arises. In the larger network, it is unclear how GAP1 behaves: does it have a 
delayed expression timing, as predicted by the C1-FFL, or is it expressed in a pulse-
like manner, as predicted by the I1-FFL? The answer can be obtained if we also 
consider the kinetic parameters of the real interaction. In reality, GAP1 has to behave 
in a certain way. Our current FFL models assume that interaction between a motif‟s 
components is either present or not. These assumptions do not capture the natural 
condition, where instead of a present/not condition we find a more gradual 
condition.  
 
 
CONCLUSIONS 

 
The examples of FFL presented here are far from exhaustive. Despite that, some 
general trends may be derived. In eukaryotic cells, it seems that regular FFL are 
employed during cellular differentiation processes that involve multiple steps or 
temporal control. Here, the most frequent FFL is the coherent FFL, since it is the 
subtype capable of introducing transcription time delays and thus imbue the network 
with temporal control. It is unclear how far the other FFL subtypes may play a role. 
This might be caused by publication bias, as most published FFLs seem to be 
coherent FFLs. 
 
Large-scale studies, where the network motifs are determined based on protein 
binding and expression data, needs complementary data on the interaction kinetics if 
we are to characterize the resulting motifs. This is because integration of the motifs 
alone could lead to conflicting conclusions given the assumptions in the current 



model. Thus, quantitative interaction kinetics are important in understanding the 
data as well.  
 
In the extended FFL example, it was shown that sometimes the networks that contain 
non-transcription factor proteins can also behave similarly to regular FFL. This hints 
to a possible use of network motifs in analyzing different molecules that have similar 
interaction characteristics.   
 
 
REMARKS AND FUTURE DIRECTIONS 
 
Network motifs analysis is a relatively recent development in the field of biology. Its 
emergence was a response to increasingly complex biological interactions that we 
have only begun to appreciate. In a way, it embodies the classical reductionist 
paradigm, where it is believed that one can deduce general characteristics of a 
complex system by analyzing representative parts of it. Indeed, the approach has 
shown its usefulness in analyzing several transcription regulation systems in simple 
organisms and its utility is expected to increase as various transcription data sets for 
more complex organisms are created. 
 
Initial analysis in the early 2000s focused on identification of important motif and 
their characterization. Such analyses, as mentioned earlier, depend on a well-defined 
interaction datasets. For organisms more complex than E. coli or yeast, we have yet 
to gather enough datasets. Thus, it is clear that the path forward must involve the 
collection of more datasets, particularly gene expression and transcription factor 
binding datasets, under as many conditions as possible. 
 
Moreover, it is also important that correct terminology is applied during this data 
collection phase. For example, the author found that many papers claiming to have 
found a feed forward loop motif are not entirely correct. If we take the initial study 
from Alon and colleagues as a reference, then by definition an FFL should only 
contain three nodes with direct interaction among them that goes in one direction. 
Other authors frequently use the term loosely, claiming that a certain motif is an FFL 
even though a feedback loop is clearly present. Other authors claim their motif is an 
FFL even though it contains many more than three nodes with more complex 
interaction as well. The latter could behave similarly to an FFL, as shown in some 
early examples in this thesis. However, it still deviates from the original FFL 
description given by Alon and colleagues. 

 
The study of network motifs is still in its infancy. It is poised to grow, given the 
increasing ease and decreasing costs of performing high throughput experiments. It 
is likely that we will discover more functionally important motifs in the future. With 
the advance of analyses methods, we may also be able to discover more complex 
motifs with their own unique characteristics.  
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