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Introduction
RNA sequencing is a hot topic. The vision used to be that determining genetic code (DNA) would explain 
organisms and diseases. However it’s clear now that there is a large layer of regulation on top of the 
genetic code. Measuring which genes are actually transcribed to RNA gives insight to the path to proteins 
that are the next step down the line. Differences between the rate of transcription between multiple 
conditions, differential expression, give great insights in the origins and effects of these conditions.
 
To determine differential expression between different genes, different samples and different experiments 
quantified data should be normalized using a uniform method. Many protocols and algorithms have 
been developed over the last years to analyze RNA-seq data, although the field is still in its early days of 
standardization. A complicating factor in RNA-seq analysis is the existence of genes with multiple splice 
variants. These variants complicate the task of assigning reads to unique transcripts.
 
In this thesis we will give an overview of the tools and methods available in the literature for analyzing 
RNA-seq data including differential expression of splice variants for organisms that have a reference 
genome.

Measuring differential gene expression
With great advances in genome sequencing more and more full genomes are unraveled. However the 
genetic code is only part of the story, as the functioning of each cell is determined by the genes that are 
actually transcribed. To determine which genes are expressed within a sample and in order to quantify 
RNA levels within the cell can be measured. To achieve this on a genome wide scale many different 
methods have been developed, starting with the popular microarray.

Microarrays
Microarrays have short DNA or RNA sequences hybridized to wells on a plate. The mRNA that is isolated 
from a sample is reverse-transcribed to cDNA or cRNA and a fluorescent label is attached. By bringing 
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these fragments in contact with the complementary sequences spotted on the microarray they bind 
to their counterparts on the wells. After washing, and therefore removing any sequences that did not 
hybridize, the abundance of a binding sequence is measured by determining the level of fluorescence per 
spot. Brighter spots correspond to a higher abundance of a sequence and in this way represent a higher 
gene expression level.
 
Microarray experiments are high throughput and relatively inexpensive. Arrays with libraries of exon-
spanning sequences even make it possible to determine relative abundance of known splice variants.
However, they have several limitations towards quantification of expression. It relies on previously known 
genome sequence to construct the array and only these sequences properly represented on the array are 
detected. Microarrays have a high background level of detection, due to sequences binding at multiple 
probes and background fluorescence that interferes with quantification of genes with a low expression 
level. And finally the method used to determine the quantity of highly expressed genes based upon the 
fluorescent signal makes saturation of the signal possible and makes it hard to compare relative levels 
between different experiments without complicated normalization (Wang et al., 2009).

Sequence-based approaches
Sequence-based approaches such as serial analysis of gene expression (SAGE), cap analysis of gene 
expression (CAGE) and massive parallel signature sequencing (MPSS), also referred to as digital gene 
expression (DGE), isolate and quantify a specific tag within each sequence. In contrast to microarrays 
these methods directly determine part of the cDNA or cRNA sequence. By mapping these tags back on 
to the genome the origin can be determined. Quantitative analysis can be achieved by separating and 
quantifying the tags on an electrophoresis gel and determining the origin of a band by isolating it and 
multiplying it with Sanger sequencing or in case of massive parallel sequencing, the sequence of each 
tag is directly determined.
These methods are high throughput and provide precise, digital levels of expression with no saturation.
However, a significant fraction of the short tags cannot be uniquely mapped to the genome and most 
methods are based on the per base pair relatively expensive Sanger sequencing. Furthermore, since the 
analyzed tags are only part of the transcript, isoforms cannot be distinguished. (Wang et al., 2009)

RNA sequencing
As a relatively recent advancement RNA sequencing makes transcription analysis on a large scale 
possible with many advantages. RNA-seq refers to the experimental procedures that generate DNA 
sequence reads derived from the entire RNA molecule (Garber et al., 2011). It benefits from the 
introduction of next-generation and high throughput sequencing of DNA.
 
Before sequencing the mRNA is fragmented and reverse transcribed into cDNA with adaptor sequences 
ligated to one or both ends (Figure 1; Wang et al., 2009). After sequencing, the reads are mapped back 
to the reference genome or transcriptome. The reference genome can be the coding sequences or ORF’s 
within a known genome (Genome guided protocol) or a reference genome may be constructed de novo 
(Genome independent protocol). The total amount of reads mapped to a gene is a direct measure of its 
transcription level.
 
RNA-seq is, unlike microarrays, not bound to detecting transcripts that correspond to existing genomic 
sequences. Also, RNA-seq has very low, to none, background signal because DNA sequences can 
be unambiguously mapped to their unique regions of the genome. It does not have an upper limit 
in detection which gives it a large dynamic range of expression levels over which transcripts can be 
detected. RNA-seq has also been shown to be highly accurate for quantifying expression levels and have 
very high levels of technical reproducibility. Furthermore, as single molecule sequencers like the Helicos 
technology and iontorrent semiconductor sequencing become available RNA-Seq analysis requires a 
lower input amount of RNA sample and biased library amplification before sequencing can be omitted 
(Wang et al., 2009).
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▲ Figure 1. A typical RNA-experiment (Wang et al., 2009). First the library of full length mRNAs is 
converted to cDNA fragments. Fragmentation can be done either at the RNA or DNA level. Sequencing 
adaptors are ligated to the fragments and a short sequence (read) is obtained from them, using high-
throughput sequencing. The reads are then mapped back to the reference genome or transcriptome, 
either as a exonic read or as a junction reads spanning an intron. Based on this a base-resolution 
expression profile is assembled of which an example is shown at the bottom for a yeast ORF with one 
intron.
 
In general a higher coverage, the amount of reads on average mapping on a single location, will return 
a higher resolution and will detect more low expressed transcripts. In RNA-seq paired-end sequencing, 
where also the complementary strand of a read is sequenced, both sides of a read are determined 
with high confidence. This advantage gives a higher resolution too and this makes it a good choice for 
complex genomes with a highly repetitive genomic sequence. To convert the sequenced reads into 
differential gene expression a number of steps need to be taken: e.a. read alignment, normalization and 
quantification of differences in transcript levels. These methods will be reviewed in the next chapter.

Analysis of RNA-seq data
In this chapter the path from raw RNA-seq data, the nucleotide code of the many reads, to differential 
expression is reviewed. In this analysis four steps can be distinguished: the mapping of the reads to the 
reference genome, the reconstruction of the transcriptome, the quantification of the expression and the 
determination of differential expression. Many tools have been developed for each step, with each having 
its own advantages and limitations.
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Read mapping
One of the most basic tasks after sequencing the RNA reads is mapping these reads back to the 
genome. The reads of RNA-seq pose an extra challenge to the typical bioinformatics problem of aligning 
sequence reads because of their limited size (~36–125 bases), considerable error rates, reads spanning 
exon-exon junctions and the large number of reads (Garber et al., 2011).
 
Two major classes of read alignment algorithms exist: ‘unspliced aligners’, which map reads directly 
to the transcriptome and don’t allow for large gaps, and ‘spliced aligners’, which map their reads to the 
entire genome allowing for large gaps over intron-spanning regions.
 
Unspliced aligners use two main strategies. Seed methods map short subsequences, the seeds, to the 
transcriptome. When a seed matches other more sensitive methods, such as Smith-Waterman alignment 
(Smith & Waterman, 1981), are used to extend to a full alignment. Examples of seed methods are 
Efficient Large-Scale Alignment of Nucleotide Databases (ELAND, part of the analysis pipeline bundled 
by Illumina with its sequencing instruments; Li & Homer, 2010), mapping and assembly with quality 
(MAQ; Li et al., 2008) and Stampy (Lunter & Goodson, 2011). Burrows-Wheeler transformation methods 
store the reference in an efficient data structure and search for perfect matches of the whole read on this. 
These include Burrows-Wheeler alignment (BWA), Bowtie and Short Oligonucleotide Analysis Package 
2 (SOAP2, where the first SOAP was a seed method; Li & Homer, 2010). The speed of these methods 
decreases exponentially with the number of mismatches allowed. Since unspliced read aligners map 
to the known transcriptome they are limited to detecting known exons and junctions. Splicing events 
involving novel exons, for example after intron retention, are not identified.
 

▲ Figure 2. The two types of spliced alignment methods (Garber et al., 2011). a. In the exon-
first approach reads are first mapped unspliced to the reference genome. Initially unmapped reads 
are fragmented and these seeds are mapped and extended to find spliced reads. b. The seed-extend 
approach splices all reads in to seeds, maps these and extends from there.
 
Spliced aligners align their reads to the full genome. Seed-extend algorithms (Figure 2a) in this are 
equivalent to the seed methods above and include ‘genomic short-read nucleotide alignment program’ 
(GSNAP; Wu & Nacu, 2010) and ‘computing accurate spliced alignments’ (QPALMA; De Bona et al., 
2008). Their first step is to break reads up in to small seeds and map these to the genome. Next these 
candidate regions are extended with more sensitive alignment methods. The Exon-first methods (Figure 
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2b) on the other hand first map full reads with unspliced aligners. For example, exon-first method TopHat 
invokes Bowtie for this. Next the unmapped reads are broken up into seeds and mapped independently to 
the full genome. The surroundings of mapped reads are then searched for possible connections between 
spliced reads. These exon-first methods further include ‘RNA-Seq unified mapper’ (RUM; Grant et al., 
2011), MapSplice and SpliceMap (Garber et al., 2011).
Exon-first methods map reads first to the transcriptome and only splice the remaining reads to align 
these to the full genome. A risk in this procedure is that retrotransposed pseudogene copies of a gene 
might exclude an intron. Mapping reads spanning this intron using an exon-first method will give a biased 
mapping to the pseudogene because here the read will map already unspliced (Figure 3). In contrast 
seed-extend methods do not impose this bias to mapping unspliced versions first and they outperform 
exon-first approaches when mapping reads from polymorphic species (Garber et al., 2011).
 

▲ Figure 3 - Potential limitations of exon-first approach (Garber et al., 2011) - Mapping reads 
using the exon-first approach has potential limitations in the case where a gene with an intron has a 
retrotransposed pseudogene without this intron. Reads from the gene spanning the splice junctions will 
map to the pseudogene.

Transcriptome reconstruction
Once the reads are mapped to the reference it is important to determine which transcripts were present 
within the sample. To achieve this transformation of the read alignments to transcription units is needed, 
called transcriptome reconstruction (Garber et al., 2011).
 
If no reference genome or transcriptome is available for the organism at study, it is possible to construct 
the transcriptome de novo with a reconstruction algorithm such as Trans-ABySS (Robertson et al., 2010). 
For organisms whose genome or transcriptome is available the genome-guided route it the obvious 
choice.
These genome-guided methods include Cufflinks (Trapnell et al., 2010) and Scripture (Guttman et al., 
2010), which both use TopHat as their read mapper. Both methods make a directed graph of bases or 
exons based on the mapped reads. Each fragment has one node in the graph and an edge is placed 
between each pair of compatible fragments. This graph is traversed to identify individual transcripts (Haas 
and Zody, 2010). Scripture reports the full set of all transcripts compatible with this graph, while Cufflinks 
reports only the minimal set needed to connect all nodes in the graph at least ones (Garber et al., 2011).
 
There are several factors making reconstruction of the transcriptome a challenging task. There can be 
several orders of magnitude difference between expression of transcripts, with some only represented by 
a few reads. Reads are short and genes can have many isoforms, making it hard to detect which isoforms 
were originally present within the sample (Garber et al., 2011). This issue will be covered in more depth in 
the next chapters.
 
The last problem to consider is the unequal distribution of reads along a transcript, called the 
fragmentation bias (Figure 4). Given the procedure of breaking the RNA molecules in to small reads 
the chance for a read to cover the edges of a gene is much smaller then further away. Using cDNA 
fragmentation this bias is strongly to the 3’ end of the transcripts (Wang et al., 2009).
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▲ Figure 4: The fragmentation bias (Wang et al., 2009). mRNA fragmentation (red) leads to low 
coverage of the ends of a transcript, cDNA fragmentation leads to a bias of coverage to the 3’ end.

Expression quantification
Now the actual transcripts that were expressed are determined the task is to quantify the expression 
of each transcript. How do the number of mapped reads translate to the relative number of mRNA 
molecules present in the sample. Normalization steps should be taken to control for multireads, relative 
changes in abundance due to changes in overabundant transcripts, differences in the total amount of 
reads and differences in gene length.
 
The challenge in quantifying expression is the significant portion of sequence reads that match multiple 
locations within the genome. One solution is to split the number of reads over all matching positions, 
however as depicted in Figure 5, this can lead to incorrect conclusions about differential expression. 
Ultimately the best solution to the multi-mapping problem is using longer sequence reads or paired-end 
sequencing (Wang et al., 2009).
 
Longer genes will have a higher coverage of reads compared to smaller genes at the same expression 
level. Also, the difference in total amount of reads produced in each sequencing run will cause 
fluctuations in the number of fragments at each position. To normalize for this the reads per kilobase 
of transcript per million mapped reads (RPKM) can be calculated. However, as Bullard et al. (2010) 
demonstrates this metric is greatly influenced by changing levels of overabundant transcripts. Without 
proper normalization, a  slightly higher expression of an overabundant gene will make less abundant 
transcripts seem to be strongly down regulated. Applying this normalization method, the sensitivity of 
RNA-seq for detecting differential expression is only as good or slightly better compared to microarray 
data. Instead they propose to scale the gene counts by a quantile (the upper-quartile) of the gene-count 
distribution, which greatly increases sensitivity without introducing noise and losing specificity.
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▲ Figure 5: Complications when using multi-reads for determining differential expression. 
When dividing reads with multiple matching locations equally over all matching positions a skewed 
representation of the actual differential expression can arise. Especially when one of the matching gene 
consists almost fully out of multi-reads the expression of this gene can appear to be only 2 fold lower, as 
in the upper picture, when actually all reads should have been mapped to the other gene and the real 
difference in expression was 20 fold. Figure taken from http://bioinformatics.ucdavis.edu.

Differential expression
The last analysis step, after the transcript levels are quantified and, if not already included in the used 
differential expression method, normalized, is calculating the differential expression between different 
conditions. Many tools for evaluating differential expression in microarrays already existed, however, 
microarray data is continuous of nature (fluorescence of a spot) and RNA-seq data is in essence count 
data (number of mapped reads). Also, in RNA-seq the power to detect differential expression depends on 
the read count, and therefore on the sequencing coverage of the sample, the expression of the gene, and 
even the length of the gene (Garber et al., 2011; Bullard et al. 2010).
 
The Poisson distribution is the obvious choice for count data. It is shown that this distribution is indeed 
a good fit when technical replication is considered. However when biological replicates are included 
the Poisson distribution is a poor fit (Langmead et al., 2010). This leads to a high false positive rate in 
data sets with biological replicates due to underestimation of the sampling error (Oshlack et al., 2010). 
Ideally this error could be estimated using enough biological replicates, however few RNA-seq expression 
studies have enough replicates to achieve this (Garber et al., 2011).
 
To overcome this, methods try to model the biological variation in the count data and give a measure of 
significance. The count variation is modeled over replicates as a nonlinear function of the mean counts 
mostly using negative binomial distributions. These methods include EdgeR (Robinson & Oshlack, 2010), 
differential expression analysis of count data (DESeq; Anders & Huber, 2010) and Cuffdiff (Garber et al., 
2011).

Alternative splicing
Functional, fully processed and spliced mRNA is preceded by precursor mRNA (pre-mRNA). In the 
steps toward its final form parts of the sequence, called introns, are removed from the pre-mRNA, 
leaving a sequence of only exons. Most exons are constitutive; they are always spliced or included in the 
final mRNA. However, many genes have multiple combinations of exons composing multiple different 
transcripts, a concept called alternative splicing. These multiple splice variants have different sequences 
and can result in different protein folding and function.
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Abundance
Alternative processing of pre-mRNA is an important mode of genetic regulation in higher eukaryotes. 
Variation in splicing patterns is a major source of protein diversity from the genome. The estimated 
minimum level of human gene products that undergo alternative splicing is as high as 60%. Further, many 
transcripts have more than one alternative splice variant and some even up to thousands (Black, 2003).
In Arabidopsis 79% of genes include introns (Eckardt, 2002), and in 61% of these intron-containing genes 
AS was observed (Syed et al., 2012).

Function
Alterations in splice sites can result in many different effects on the mRNA and protein products of a 
gene. Given that these products include or exclude parts of a sequence, the resulting isoforms can have 
different chemical and biological activity. Effects of small changes in peptide sequence include altered 
ligand binding, enzymatic activity, allosteric regulation, or protein localization.
AS variants can also behave as genetic switches, changing the effect of the product between multiple 
states based on the particular splice variant. These genetic switches are important in many cellular and 
developmental processes, including sex determination, apoptosis, axon guidance, cell excitation and 
contraction, and many others. Errors in the regulation of splicing have also been implicated as the basis 
for multiple diseases (Black, 2003).

Types
Classically five types of AS events are defined (Figure 6; Breitbart et al., 1987; Sammeth et al., 2008; 
Black, 2003):

● Skipped exon (SE) / Cassette / Exon skipping (ES) - An exon is included in some versions of the 
transcript, but not in another.

● Alternative 5’ splice site (A5SS) / Internal donor site / Alternative donor site (AD) - An alternative 
splice junction is used at the 5’ end (donor site), changing the 3' boundary of the upstream exon.

● Alternative 3’ splice site (A3SS) / Internal acceptor site / Alternative acceptor (AA) - An alternative 
splice junction is used at the 3’ end (acceptor site), changing the 5' boundary of the downstream 
exon.

● Mutually exclusive exons (MXE/ME) - An exon is included in one transcript, but another exon 
instead is included in another transcript.

● Retained intron (RI) / Intron retention (IR) - An intron is retained in some variants of a transcript. 
Distinguished from SE, because the retained intron is not flanked by introns itself.

 
While these five events conceptually cover most splicing events, many more complex events are 
found combining parts of above events (Sammeth et al. 2008). Alternative start and polyadenylation 
sites in mRNA transcription are no splice variants since the differencing step occurs already before 
splicing. However, these events give similar effects for mRNA and protein transcripts having parts of 
their sequences altered (Black, 2003). Alternative splicing poses difficulties for analyzing the RNA-seq 
data. However, RNA-seq also gives great opportunities to study this important regulatory mechanism in 
unprecedented detail.
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▲ Figure 6 - Variants of alternative splicing. In a skipped exon event one exon is, in some splice 
variants, not included. In alternative 5’ splice sites the 5’ end of a junction is different for splice variants, 
in alternative 3’ splice sites this is true for the 3’ end. With mutually exclusive exons some splice 
variants have exon A included, some variants exon B, but not both. A retained intron is an intron 
that would normally be spliced out, but is included in some variants. Image taken from http://rnaseq-
mats.sourceforge.net/.

Measuring differential expression of splice variants
Alternative splice variants pose a problem for measuring differential expression in all of the four above 
mentioned steps from mapping sequence reads to statistical analysis of differential expression. These 
steps will be reviewed again to see how alternative splicing complicates the analysis of RNA-seq data, 
how these hurdles can theoretically be overcome and how currently available tools implement these 
solutions.

Read mapping
For mapping RNA-seq reads a difference is made whether or not the complete reference transcriptome is 
available. If the transcriptome would be fully known unspliced alignment algorithms are faster in mapping 
the sequence reads. However, RNA-seq experiments frequently discover many new splice variants (e.g. 
Pan et al., 2008; Filichkin et al., 2010). The availability of the complete transcriptome regarding splice 
variants is thus for now a utopia. Unspliced aligners are limited to identifying known exons and junctions 
since they don’t allow for large gaps in mapping reads to the genome or transcriptome. Analysis with 
an interest in splice variants is thus bound to spliced aligners. Furthermore, the problem with exon-first 
alignment algorithms described above gives a preference for seed-extend methods.
 
Read mapping algorithms with the ability to detect splice sites de novo have only been released for the 
last three years. Seven algorithms for this purpose are compared below: Seed-extend methods GSNAP 
and QPALMA, and the exon-first aligners RUM, MapSplice, SpliceMap, TopHat and SOAPsplice (Grant et 
al., 2011; Huang et al., 2011).
 
GSNAP (Wu & Nacu, 2010) is a seed-extend aligner basing its splice junction prediction on two factors. 
For evaluating possible splice events it uses both a probabilistic model, to score the chance for an 
acceptor and donor site, and a user submitted database of known splice exon-intron boundaries. 
The model is implemented as a maximum entropy model, which uses frequencies of nucleotides 
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neighboring a splice site to discriminate between true and false splice sites. GSNAP can handle not only 
short distance splicing events, but also long-distance intrachromosomal deletions or inversions, and 
interchromosomal translocations. It does suggest new combinations of known exons, but does not infer 
new splice sites.
 
QPALMA (De Bona et al., 2008) is also a seed-extend algorithm. One nice part is that it does take in to 
account the read’s quality score given by the sequencer. However, it is limited to determining local exon–
exon junctions and not unanticipated distant or interchromosomal gene fusion events (Wu & Nacu, 2010). 
The training set used for this is a set of previously known splice sites and thus the algorithm is biased 
to detecting only sites similar to these. This limits the detection of novel splice variants (Trapnell et al., 
2009).
 
A well covered example of an exon-first algorithm able to detect splice sites de novo is TopHat (Trapnell 
et al., 2009; part of the Tuxedo suite; see also Figure 8a). TopHat first aligns full reads to the genome 
using Bowtie, with a main focus on matching the first 28 bp with high quality closest to the 5’ end, 
because these are the most reliable in the Illumina sequencer. The mapped reads are clustered as 
putative exons.
Tophat can infer splice sites on the fly (Trapnell et al., 2012). The edges of these islands are searched 
for canonical introns (GT–AG exon-intron boundaries). The initially unmapped reads are tested to fit over 
these possible splice sites with a seed-extend method.
Recognition of introns and their splice sites by scanning for this canonical signatures is a wide spread 
practice. The dinucleotides splicing signal GT and AG for donor and acceptor sites appears in 98% 
known mammalian splice sites (Burset et al., 2000) and is also conserved in virtually all naturally 
occurring plant introns (Simpson & Filipowicz, 1996). TopHat is known to miss splicing events spanned by 
individual reads at a low level (Huang et al., 2011; Wu & Nacu, 2010).
 
SpliceMap (Au et al., 2010) does not use existing exon annotation and takes advantage of longer 
sequence reads. Reads are split in two halves and mapped to the genome with mappers like ELAND or 
SeqMap. Reads spanning splice junctions must have at least one half that maps to an exon. These seeds 
are then extended per base to find the canonical splice site (GT-AG) and matched to hits on the other site 
of the intron within range.
 
MapSplice (Wang et al., 2010) is not dependent on splice site features or intron length, consequently 
it can detect novel canonical as well as non-canonical splices. First reads are split in to smaller tags of 
typically 20-25 bp. These are mapped to the genome with any unspliced aligner, returning candidate 
alignments for each. If tags are not aligned, but the two tags upstream and downstream can be aligned 
these two are extended inwards to align the middle (unaligned) tag. If start or end tags are not aligned a 
short sequence of the respective start or end of the tag is searched in the direction where it should lie and 
the same extension starts from there. Wang et al. (2010) demonstrates that the algorithms performance 
is more sensitive and specific in a shorter amount of time on two synthetic data sets than TopHat and 
SpliceMap.
 
SOAPsplice (Huang et al., 2011; previously called SOAPals) first maps full reads to the genome. Initially 
unmapped reads are separated in two segments, so that the longest sequence at the 5’ can be mapped 
to the reference. The boundary of the intron should be in the form of “GT-AG”, “GC-AG” or “AT-AC”, with 
preference for the first, canonical one. Paired-end and long reads can be used for additional filtering for 
false positives. Huang et al. demonstrates an advantage of SOAPsplice over TopHat, MapSplice and 
SpliceMap in a higher detection rate and a lower false positives rate at low coverage on two simulated 
data sets.
 
Finally, RUM (RNA-seq unified mapper; Grant et al., 2011) uses the speed of Bowtie to map reads to 
both the transcriptome and the full genome. These alignments are merged, with a preference for the 
transcriptome mapping. Next the initially unmapped sequences are aligned to the genome with BLAT 
(Blast Like Alignment Tool) and all results are merged into one final alignment. Junctions are found in 
aligned reads that have a large gap (by default 15 bp or more) and a known splice signal.
 

11



Grant et al. (2011) compared all above (except for QPALMA) on two artificially synthesized data sets of 
RNA-seq data, with the first set having low and the second set having moderate levels of polymorphisms 
and error rates. Consistently GSNAP and RUM performed with the highest base accuracy (the 
percentage of bases aligned to the right location) and lowest levels of false negative and false positive 
splice junctions in their mappings. MapSplice followed and TopHat, SOAPsplice and SpliceMap scored 
even lower.
The lower accuracy of SpliceMap, SOAPsplice and TopHat is especially visible in the second data set 
with moderate levels of polymorphisms and error rates, indicating a lower robustness against these 
variations.
Tests on mouse retina RNA-Seq analysis showed that most algorithms were able to accurately identify 
novel splice variants, except for a poor performance of TopHat. When comparing the runtimes the two 
most accurate algorithms where on the heavy side, with RUM outperforming GSNAP, especially in the 
data set with low levels of polymorphisms and errors.
 
Concluding, the seed-extend method GSNAP (no exon-first bias) or exon-first method RUM (higher 
speed and inferring new splice junctions) are the current read mapping algorithms with the best 
performance in de novo detection of splice junctions.

Transcriptome reconstruction
Alternative splicing makes the task of reconstructing a step harder. Mapped reads on the same genomic 
region might now be assigned to multiple different transcripts. To combine the correct reads to form a 
transcript a graph approach is taken by multiple algorithms. The only two detecting novel isoforms, not 
based on previous annotation are presented below.

 
Cufflinks (Figure 8b-c) starts by finding mapped reads that are mutually exclusive. Incompatible reads that 
display different splice junctions must have originated from different transcripts. Mutually exclusive reads 
are represented as points in a graph with edges to the left and right to compatible reads. The graph is 
traversed to make sure that every node is in at least one path, representing unique transcripts.
 
Scripture also represents the mapped reads as a graph, starting with the spliced reads. Splice site 
information is used to detect the direction of transcripts. The connectivity graph is build drawing edges 
between any two bases connected by a spliced read gap. After this all paths are scored for their 
significance, comparing the coverage of it to the total coverage. Using the remaining significant paths all 
possible graphs are constructed. Finally, information from paired-end reads can be used to join graphs 
and remove unlikely ones.
 
One of the earlier algorithms taking this graph based approach is G-Mo.R-Se (Denoeud et al., 2008). 
This algorithm does detect many types of alternative splice variants, except for intron retentions, making it 
inferior to Cufflinks and Scripture.
 
The largest difference between Scripture and Cufflinks is that the former returns all possible transcripts 
and the latter returns the minimal set needed to explain the reads (Garber et al., 2011). Choosing the 
right method depends on whether you want maximum sensitivity or maximum precision.

Expression quantification
Reads mapping to multiple locations in the genome, referred to as gene multireads, are a problem in 
regular expression quantification because the choice needs to be made to which location they should be 
assigned to. The same is true for isoforms with overlapping exons; the choice that needs to be made is to 
which transcript a read in these overlapping regions, called an isoform multiread, belongs.
 
One solution, which is used by alternative expression analysis by RNA sequencing (Alexa-seq; Griffith et 
al., 2010) is to only take in to account the expression of exons which are unique to an isoform. However, 
alternatively spliced genes with only non-unique exons can not be quantified this way.
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An alternative approach is to model the sequencing process and apply a maximum likelihood estimation 
(MLE) model to estimate the contribution of the different isoforms as shown in Figure 7. This statistical 
model, developed by Jiang and Wong (2009), describes how the counts mapped to the exons of a gene 
are related to the isoform-specific expression. By optimizing the MLE, the isoform abundance estimates 
are found that explain best the reads obtained. Since MLE is not an accurate expression estimate for 
genes expressed at low levels, Bayesian inference is used to sample alternative abundance estimates 
around the MLE and to calculate a confidence interval for it.

▲ Figure 7: Quantification of splice variants with maximum likelihood estimation (MLE) (Garber 
et al., 2011). Above two isoforms are shown with their mapped reads. Reads for which the origin is clear 
are color coded, uncertain reads are depicted in black. In optimizing the MLE with the estimation of the 
abundance of both isoforms the uncertain reads are divided such that their distribution is as much in 
accordance with the reads with clear origin.
 
Furthermore, the methods described in more detail below take advantage of paired-end reads 
in combination with the distribution of fragment size to advance the likelihood calculation. In the 
preparation of the RNA-seq library a size-selection step is used to control the mean length of inserted 
cDNA fragments. Using paired-end sequencing the total distribution of the selected fragments can be 
determined from read pairs that map to large, intron-less regions, like 3’ UTRs.
This length distribution can then be used to enhance the inference of the quantity of different isoforms. If, 
for example, a read pair maps upstream and downstream of an alternatively spliced exon, the fragment 
distribution can be used to predict which read pairs belong to the inclusion and exclusion isoforms. This 
adds more reads of which can be determined from which isoform they originate, making for a better 
prediction of their abundance.
 
Cufflinks (Figure 8d-e), already mentioned above as a transcriptome reassembler, is one of the methods 
that use an extension of the model proposed by Jiang and Wong (2009) to quantify the abundance 
of isoforms. Expression of each transcript is determined by a statistical model using combinatorial 
optimization. Combinatorial optimization searches for an optimum object in a finite set of objects. Typically 
this set of object has a concise representation, like a graph, and the number of objects is so big that 
scanning all one by one is not an option. Solving the traveling salesman problem is an example of this 
(Schrijver, 2003).
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▲ Figure 8: Overview of Cufflinks and the Tuxedo suite (Trapnell et al., 2010). a. Cufflinks is part 
of the Tuxedo suite, just like TopHat which can be used to provide the input for Cufflinks. b. and c. are 
the transcriptome reconstruction part of Cufflinks. b. A graph is constructed where every read is a node 
and non-excluding reads are connected. c. This graph is traversed to construct the minimal number of 
transcripts needed to explain the reads. d. and e. are the expression quantification part of Cufflinks. 
d. The fragments are matched to the transcripts they could have originated from (represented here 
using colors). Cufflinks estimates transcript abundance using a statistical model in which the chance of 
observing a fragment is linear to the abundance of the transcript it originated from. Some reads (indicated 
by intermediate colors) can be assigned to multiple transcripts. Because in paired-end sequencing both 
ends of a fragment are sequenced their assumed length might differ depending on which transcript 
the read is assigned. Taking the distribution of fragment size this helps to assign a likelihood for the 
originating transcript. e. In the last step the program optimizes the distribution over the transcripts using 
combinatorial optimization. This results in the distribution that best explains the observed fragments, 
depicted here as a pie diagram.
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The program numerically maximizes a function that assigns a likelihood to all possible sets of relative 
abundances of all isoforms. Since the likelihood function is a non-negative linear model, it has a unique 
maximum, representing the abundances that best explain the observed fragments (Trapnell et al., 2010).
To normalise for transcript length and total amount of sample the expression is given as fragments per 
kilobase of transcript per million fragments (FPKM), the fragment-equivalent of RPKM. Cufflinks at first 
assumed a uniform distribution of reads along a transcript. Because of the fragmentation process of RNA, 
read ends of transcripts have a lower coverage than middle parts. Taking this fragmentation bias in to 
account can explain up to 50 percent of the variation in coverage (Li et al., 2010). Cufflinks is later also 
updated to account for fragment bias (Roberts et al., 2011), just like the following algorithms.
 
The MISO (Mixture of Isoforms; Katz et al., 2010; figure 8) model is a stand alone algorithm using the 
same model to estimate isoform expression. However, here optimization is achieved with a technique 
based on Markov Chain Monte Carlo (MCMC) sampling. By starting with a Markov Chain with a default 
set of state transitions and stepwise optimizing these values a most likely distribution is determined 
(Diaconis, 2008).

▲ Figure 8: Quantification of isoforms with MISO (Katz et al., 2010).  Just like Cufflinks, MISO first 
uses reads supporting different isoforms to quantify their relative abundance. The example on the left 
shows reads supporting the inclusion of an exon (above) and the reads supporting the exclusion variant 
(below). It also uses length size distribution (right) of paired-end reads for determining to which transcript 
a read should be assigned. Using this evidence the maximum likelihood estimation model is optimized 
using a technique based on Markov Chain Monte Carlo sampling, resulting in ΨMISO

 , the estimation of 
relative isoform abundances.
 
A third much used method for optimizing the prediction of isoforms is Expectation-Maximization, used by 
RSEM (Li et al., 2010; Li & Dewey, 2011), MMSEQ (Turro et al., 2011) and IsoEM (Nicolae et al., 2011). 
Expectation-Maximization consists of two iterative steps. At first a uniform distribution among transcripts 
is assumed. In the expectation step the log-likelihood of the current predicted distribution is calculated 
based on the data in the reads. In the maximization step the calculated log-likelihood is compared with 
the previous and if there is still a significant improvement the expectation step is started again with slightly 
adjusted distribution.
 
IsoEM is shown to outperform versions of RSEM and Cufflinks at the beginning of 2010 in a variety of 
quality metrics on synthetic and real RNA-Seq data sets (Nicolae et al., 2011). Also MMSEQ showed 
improved isoform estimates over the then latest RSEM for medium to low expression transcripts (Turro 
et al., 2011). The newer version of RSEM, in turn, is demonstrated to outperform IsoEM and Cufflinks 
in prediction quality on a simulated data set; however the best performance on a natural data set was 
achieved by the recent Cufflinks algorithm on a natural data set (Li & Dewey, 2011). There is a need for 
more and objective comparison of all algorithms on a well-controlled synthetic data set.
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Important to note is that the incorrect or misassembled isoforms impact the certainty of the expression 
prediction greatly (Garber et al., 2011). Using a method for transcriptome reconstruction that generates 
the maximal isoform set, like Scripture, it is necessary to filter transcripts before quantification. 
Normalization as described for the general RNA-Seq analysis protocol, for e.a. transcript length, total 
read count and overabundant transcripts, is the same for isoforms as for other transcripts.

Differential expression
In essence the determination of differential expression of RNA-Seq data including alternative splice 
variants is no different from the procedure without. Now transcripts are obtained and read counts for 
each transcript are determined and normalized. Next, in comparing expression between genes and/or 
conditions, statistics should be used to determine whether two read counts are different and to what order 
of magnitude. Algorithms like Cuffdiff (Trapnell et al., 2012), DESeq (Anders & Huber, 2010) and edgeR 
(Robinson & Oshlack, 2010) can be used to achieve this.
 
However, edgeR and DESeq do only take raw gene count in to account and not counts over individual 
isoforms. Next to the fact that this does not yield any insight in the changes of relative isoform 
abundance, it also results in problems for determining the gene expression level in samples with 
alternative splicing. Both tools do not normalize for transcript length in their comparisons, which is no 
problem when comparing expression of two identical transcripts between samples. However, if a gene 
has multiple isoforms with different lengths, comparing the expression of this gene over two samples with 
different relative isoform abundance will indicate a change in gene expression even when the overall 
gene expression is the same. It is also possible, but most likely rare, that a change in relative isoform 
abundance cancels out a real change in gene expression resulting in a false negative.
 
DEXSeq (Anders et al., 2012) is an adjusted version of DESeq that indicates differential exon usage in 
genes, helping to detect differential isoform expression.
 
Cuffdiff tracks changes in the relative abundance of two types of isoforms: transcripts sharing a common 
transcription start site (TSS), and in the relative abundances of transcripts from the same gene but with 
different promoters. The former shows changes in splicing of the same pre-mRNA, and the latter shows 
changes in relative promoter use within a gene (Trapnell et al., 2012). The statistics used to achieve this 
is a little different, taking into account the variance originating from the uncertainty of mapping reads to 
multiple transcripts (Cufflinks; http://cufflinks.cbcb.umd.edu/howitworks.html). Expression of a gene is 
simply calculated by adding up the expression of the splice variants.

Conclusions
In recent years great advances have been made in analyzing the differential expression of alternatively 
spliced transcripts. For all four steps of the analysis path there are suitable tools available to address the 
problems alternative splicing causes.

● For mapping reads on the reference genome the important factor for alternative splicing detection 
is the ability to suggest splice junctions de novo. Two methods stand out with their results and 
approach: RUM, a fast exon-first mapping algorithm, and GSNAP, a seed-extend method.

● For reconstructing the transcriptome and inferring alternative splice variants Cufflinks and 
Scripture are the best options, using a graph based algorithm to return respectively the minimal 
and maximal set of isoforms needed to explain the mapped reads.

● Determining read counts for isoforms is done via optimizing a maximum likelihood estimation 
model to find a distribution over isoforms that most closely matches the data. Many algorithms 
are at hand that implement this MLE with different statistical bases. However, objective 
comparisons of their relative performance on a strictly controlled artificial data set are unavailable.

● Cufflinks seems to be the most extensive method to determine differential expression of isoforms 
and changes in relative isoform abundance between samples.
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Most of the reviewed tools take compatible files as input and output, so theoretically tools at different 
steps of the analysis can be arbitrarily combined. However, the performance of algorithms may depend 
on which tool has provided the input, following from small differences in assumptions and procedure in 
their predecessors.
 
The short reads of RNA-seq pose many problems in recombining the data to find differential expression 
due to placement uncertainty. However, as Li & Homer (2010) note, as the reads sizes increase and their 
cost decreases, in a few years long reads will dominate the sequencing landscape. This will lead to less 
uncertainty for placing reads mapping to repeats, low complexity regions or alternative splice variants and 
will increase the quality of the outcome of our RNA-seq data analysis.
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