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Summary

The funding ratio, calculated as the total assets divided by the total liabilities, is
a frequently used indicator for the financial health of a pension fund. Using six
risk elements the standard model calculates the required funding ratio, which
is an additional buffer on top of a funding ratio of 100% such that there should
exist only a 2.5% chance that within a year the funding ratio will be below
100%.

In this thesis we analyze this model and try to improve the calculation of the
required funding ratio by adding an extra risk element, which we call the active
management risk; the risk of (actively) deviating from a benchmark. We give
measures and methods to calculate this risk element. After analyzing these
measures and methods we try to implement this risk element in the standard
model to see its effect on the required funding ratio.

Keywords: Required funding ratio, Standard model, Active management risk,
Tracking error, Coherent risk measure, Monte Carlo simulation.
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Chapter 1

Introduction

1.1 Pension risk

A pension provides income after a person retires, over his/her working years a
participant makes a monthly contribution to a pension fund in the form of a
percentage of his/her salary, in exchange for this contribution the participant
wants security on his income upon retirement. The pension fund collects all
these contribution and invests it. If a fund does nothing with the contributions
and just saves the money to provide a fixed income after retirement, then this
income will be very meager; the value of the money will have diminished over
time due to inflation. In trying to keep up with the economic growth a pension
fund will have to invest its money in stocks, bonds or other securities. But with
these investments comes risk, one cannot be certain that these investments will
be profitable. But how risky are these securities, how can a fund protect itself
against these risks?

1.2 Required funding ratio

A foolproof protection against these risks is of course not feasible, but risk
management theory provides ways to give some insight in these risks. A fund
should then for itself decide how much risk it wants to take on, or, like in the
Netherlands, the government provides rules and some guidelines to give pension
funds a certain basis of protection against risk. These rules and guidelines are
set up by the Dutch central bank, from now on called DNB1, and focuses among
other things on the funding ratios. The funding ratio is used as an indicator of
the financial situation of a pension fund; it is calculated as the present value of
the assets divided by the present value of the liabilities. For a pension fund the
assets will consist of securities and the liabilities of provision, in the form of the
promised payment for participants after retirement. A funding ratio of 100%

1DNB is short for De Nederlandsche Bank as it is called in Holland.
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1.3. Problem statement

means that the value of ‘everything owned’ is equal to the value of ‘everything
owed’. The DNB wants all funds to have a funding ratio higher then 100% most
of the time, all the time would be infeasible. Therefore DNB has provided a
model, called the standard model, to calculate the required funding ratio. This
required funding ratio is a funding ratio of 100% plus an additional buffer such
that with this buffer there should exists only a 2.5% chance that within a year
the funding ratio will be below 100%.

1.3 Problem statement

But how to make sure that this model calculates the required funding ratio
precise enough to give such a 97.5% confidence level of not falling below a 100%
funding ratio? Analyzing economics is a tricky business. Statistics only give
estimations of probabilities. Furthermore, not all pension funds have similar
investments. Does the standard model give a uniform way to calculate the
required funding ratio? Or are there fund specific risks that should be accounted
for? It’s not realistic to cover all sides of these questions. That’s why in this
thesis we will focus on the risk of active management. And more precisely we’ll
focus on the question:
“How can we adjust the standard model, so that it takes into account the risk of
active management?”

1.4 Thesis structure

The structure of this thesis is as follows. First we give an introduction of the
standard model in Chapter 2. Then we introduce all the risks used in the
standard model and the risk of active management in Chapter 3. To measure
the risk of active management we’ll focus on active returns and in Chapter
4 we give some basic notions and their properties needed to further examine
these active returns. In Chapter 5 we introduce some measures for quantifying
active risk; these measures are based on the assumption that we know the
distribution of the active returns. To get this active return distribution there
exist some methods which we’ll discuss in Chapter 6. Now that we know the
way to calculate active management risk we can try to adjust the standard
model by implementing an active management risk component, for this there
are already a few methods available. We will discuss these methods and try to
work towards a ‘best method’ in Chapter 7.

7



Chapter 2

The standard model

In this chapter we introduce the standard model that is used to calculate the
required funding ratio. We first cover some history in the following section.
Then we’ll discuss how the model was made and the assumptions made to get
the parameters used in the standard model. And lastly we’ll give some variations
of the standard model which DNB has given as possible models to use.

2.1 The financial assessment framework

The financial assessment framework (FTK), which provides supervision over
the Dutch pension funds, was implemented in the Dutch law in 2007. In this
framework the Dutch government gives rules and some guidelines for pension
funds, such that these funds take caution when making investment decisions and
that the financial situation of a fund is transparent. Before the FTK there were
the Actuarial Principles Pension funds (APP), implemented in Dutch law in
1997. In these principles the present value of the provision was calculated with
a fixed interest rate of 4% and the rules for a buffer against risks were minimal as
were the requirements for transparency. When the stock market crashed in the
end of year 2001, the Dutch government began formulating stronger restrictions
in keeping the funding ratios in control. And in 2004 a first version of the
standard model was introduced by (de Geus, 2004)1. In this standard model
a required funding ration was calculated taking into account the risks of an
average pension fund. This form was further developed by (DNB, 2006)2 and
with this document the standard model was ready to be implemented in the law
which happened on the first of January 2007. Thereafter the standard model was
revised by (DNB, 2011)3, this work proposes among other things to work with

1The title of this work “Hoofdlijnen voor een nieuwe Pensioenwet” translates to “Guidelines
for regulating the financial supervision of pension funds”.

2The title of this work “Advies inzake onderbouwing parameters FTK” translates to “Ad-
vice concerning the underpinning of the parameters in the FTK”.

3The title of this work “Uitwerking herziening berekeningssystematiek vereist eigen ver-
mogen” translates to “Revision of the calculation system for the required funding ratio”.
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2.2. The principles

new interest rate factors and to introduce a new risk for active management,
see Section 3.9 for a list. Also the introduction of a partial internal model is
discussed in this work.

2.2 The principles

In forming the standard model the main purpose was to guarantee the confidence
level of 97.5% of not being underfunded within one year. Even if the statistic
used to calculate risks would be very accurate, to make a model that works for
every fund would still be extremely complex, because every fund has its own
fund specific risks. Furthermore the standard model was meant to be fairly
easy implementable. So in forming this model focus was also put for it being a
general and easy to use model. To calculate the required funding ratio the total
risk is divided into 9 risk elements denoted as S1,. . .,S9. These 9 elements are

S1 : Interest rate risk

S2 : Equity (and property) risk

S3 : Currency risk

S4 : Commodity risk

S5 : Credit risk

S6 : Underwriting risk

S7 : Liquidity risk

S8 : Concentration risk

S9 : Operational risk

For each of these elements, parameters that should lead to a 97.5% confidence
level have been estimated, the last 3 risks, however, were assumed to have a
neglectable effect on the required funding ratio and were put to zero. For these
9 risk elements conditions were taken into account which (DNB, 2006, p. 7-8)
nicely put in their work. The Dutch version of this text is included in Appendix
A.4, freely translated it says

The basis is to determine the required funding ratio in such a way
that with a confidence level of 97.5% it is prevented that a pension
funds has less assets then liabilities within a period of one year. Ide-
ally the risk profile of a pension fund is exactly matched. This would
however require an internal model, which is possible only for a few
funds. This is the reason that a relative easy and tractable standard
model is available. This standard model is less refined in comparison
to an internal model and hence requires some prudence. With the
standard model it is tested how sensitive a financial institution is to

9



Chapter 2. The standard model

different scenario’s, like a decline in the stock market or a change
in the interest rate structure. These scenario’s are chosen in such a
way that there exists a 1 in 40 chance it will happen (97.5%). The
parameters in the standard model are therefore ’shock parameters’
calibrated on a risk horizon of one year and a confidence level of
97.5%: they give the change in a risk factor4 (for example a decline
of 25% for developed market equities). The scenario’s should match
the mentioned confidence level of 97.5%. But here it also applies that
an exact relation to the confidence level is not tractable, because this
would suggest a precision that can never be reached. Determining
a scenario that would happen once in 40 years is not easy. This is
mainly due to lack of historic observations to make such an estima-
tion; even for stock and interest rate markets where there is fairly
much historic data available, this is not easy. On top of this, ex-
pected returns, volatility (standard deviation) and correlations are
not stable variables over time.

Principles

With the considerations above a number of conditions are formu-
lated. In choosing the parameters these conditions should be satis-
fied as much as possible.

1. A realistic estimation of the parameters should as much as pos-
sible be made with relevant and reliable historical data.

2. If insufficient relevant and reliable data exist then an assump-
tion can be made on the probability distribution of the returns
with a mean and a standard deviation.

3. Market valuation is an important principle in the pension law.
If historical series are distorted by other valuation principles,
then it could happen that the true risk is underestimated. A
correction to this can be applied. Real property is an example
of this.

4. Lack of transparency entails risk. For hedge funds, for example,
this should lead to an application of a higher risk factor.

5. In changing parameters there is a conservative approach. If
there is a lack of a significant advantage in changing the pa-
rameter, then the original parameter will hold.

6. To avoid the illusion of precision, the parameters are rounded.

With these principles the scenarios for the risk elements were choosen. When
reading “Advies inzake onderbouwing parameters FTK” by (DNB, 2006) and

4In this calibration the expected value of the risk factor is taken into account.
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2.3. A standard pension fund

looking at the proposed adjustments5 and their motivation by (DNB, 2011),
there are, however, implicitly a few more conditions that the parameters can
satisfy. These extra conditions or added principles we formulate as follows

Added principles

7. If further specifications in risk elements does not lead to no-
ticeable changes, then the original model without these spec-
ifications should hold. In order to not make the model too
complex.

8. The determination of a parameter should be consistent with
the determination of the other parameters.

9. Since the parameters are chosen for extreme events (97.5%
confidence), the correlation parameters should be adjusted for
these extreme events and not solely on the average correlation.

10. Correlation parameters should also consider diversification ad-
vantages.

2.3 A standard pension fund

When these scenarios were calculated DNB took into account the average po-
sition of pension funds in the Netherlands. (de Geus, 2004) states that for a
standard fund a position of 50% in bonds and 50% equities is assumed and a
duration6 gap of 11 years, that is, a duration of 5 for bonds and a duration of
16 for the liabilities of the pension fund. (DNB, 2006) specifies this position
even further, in summary this gives an asset allocation of

• 50% in bonds

• 34% in developed market equities

• 3% in emerging market equities

• 3% in unlisted stocks

• 6% in indirect property

• 4% in direct property

If we look at historic data in the period from 2000 to 2006 taken from DNB,
CBS7 or OECD8 we see that the 50/40/10 position in bonds, stocks and property
respectively, holds roughly. Although for DNB the position seems to fluctuate

5These adjustments are discussed in Section 3.9.
6Duration is the weighted mean average of all cash flows, often used as a measure for

interest rate sensitivity.
7Centraal Bureau voor de Statistiek, and in English: Statistic Netherlands.
8Organisation for Economic Co-operation and Development.
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Chapter 2. The standard model

more around9 40/41/10/9, with the last 9 is for ‘remaining’ investments. For
CBS the position seems to fluctuate around 45/50/5. And OECD the position
seems to fluctuate around 43/48/5/4. The specification of equity in developed,
emerging or unlisted equity, and of property in direct or indirect property is
harder to check. This is because pension funds only have the obligation to
report its investments in these specific elements since 2007; hence data about
this before 2007 is not centrally documented.

This standard pension fund is used mainly to give an indication of what the
required funding ratio will be for an average fund10 and how it will change if
parameters are changed. It was also mentioned by (de Geus, 2004) that the
aim of the standard model was to keep the required funding ratio under 130%
which is the required funding ratio in the simplified model discussed in Section
2.4. As we’ve seen in Section 2.2 the scenarios are worked out separately, so
the asset allocation of the fund has little to do with the way the parameters are
chosen. However, (DNB, 2006, p. 37-39) do make one adjustment that is based
on the asset allocation of a fund. When analyzing funds with very large and very
small positions in equities they found that an exchange between the correlation
parameter between S1 and S2, discussed in Section 3.8, and the interest rate
factors, discussed in Section 3.1 would better match these funds.

2.4 Other models

Alongside the standard model, DNB also gives the possibility for a simplified
and an internal model. However, in practice these models are almost never
applied by pension funds. (DNB, 2011) introduces the partial internal model as
a possible alternative in the future.

Simplified model

The simplified model calculates the required funding ratio very straightforward
as 130%, which is the boundary that was set for the required funding ratio
calculated by the standard model. To qualify for use of this model however,
a fund must have a simple pension scheme and its investment policy must be
risk-averse. In practice this means that only small funds can qualify for these
requirements and at the moment no pension funds use this model.

Internal model

With an internal model a pension fund creates its own model to calculate the
required funding ratio. In contrast to the standard model which gives a fixed
way for calculating the required funding ratio, the internal model can be very
flexible and is meant to cover all the fund specific risks appropriately, which

9These positions are calculated as the mean position over the period 2000 to 2006, rounded
to integers.

10Namely 125.64% as calculated by (DNB, 2006) with the then current interest rates.
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2.4. Other models

makes this model complex. Furthermore, an internal model must satisfy some
qualification requirements given by DNB and when in use, funds are required to
inform DNB of its results relative to the standard model. Due to the complexity
and the additional cost for regulatory reasons, this model is only realizable for
large pension funds and even then the benefits are questionable.

Partial internal models

For a fund to go from the standard model to an internal model is a big step, that
funds can not easily make. To offer an intermediate step (DNB, 2011) suggests
introducing another model, or in fact, other models, namely the partial internal
models. These models can be seen as an extension of the standard model in the
following way. A fund uses a priori the standard model to calculate the required
funding ratio, but if a fund deviates too much from the standard then DNB will
advice and can oblige the fund to adjust its model to a partial internal model.
Some possible adjustments, which we will also see further on in this thesis, are
for example

• Adding an active management risk component.

• Using a fund specific currency basket.

• Using a fund specific benchmark and its risk.

With these partial internal models a fund can better match its fund specific risk
profile.

13



Chapter 3

Risks from the standard
model

To understand the standard model better, we here describe the risk elements
that are used in the standard model and we briefly discuss how the parameters
where chosen by (DNB, 2006), keeping in mind the principles stated in Section
2.2. We’ll also mention the square root formula used to calculate the required
funding ratio from the risk elements and we pay some attention to correlations
between certain risks. In Section 3.9 we’ll mention some adjustments that are
suggested by (DNB, 2011). Lastly we’ll discuss the risk of active management
in Section 3.10.

3.1 Interest rate risk

The funding ratio is calculated by dividing the present value of the assets by
the present value of the liabilities. For fixed income securities and liabilities
these present values are calculated using a yield curve. DNB calculates the
yield curve using the euro swap curve based on interest rates swaps, this swap
curve is in Dutch called “rentetermijnstructuur”. For each maturity the level of
the interest rate is given in this swap curve. With these interest rates the fixed
income securities and liabilities are discounted to give the present values.

The risk involved in this risk element is the risk that the interest rate will
change and hence the present value of these securities and provision will change.
This risk is unique in the sense that it gives a change on the asset side and on
the liability side of the balance sheet. Hence the risk taken into account when
calculating the required funding ratio can come from an increase or a decrease
interest rate. Usual for a pension fund is that a decrease in interest rate will give
the most negative effect on the funding ratio since the duration of the liabilities
(16 years on average) is greater then the duration of fixed income securities (5
years on average) and the amount of liabilities is usually bigger than the amount
of fixed income securities.
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3.1. Interest rate risk

In order to calculate this risk element, the standard model uses interest rate
factors. DNB calculated these factors in 2006 using the model

ln(rnt+1)− ln(rnt ) = εnt with εnt ∼ N(0, σ2
n).

Here n stands for the maturity of the risk-free interest rate. So these factors
represent the logarithmic interest changes and a normal distribution around
zero on these logarithmic changes was assumed. In this way a boundary for the
97.5% confidence level follows for every maturity n by 1.96σ2

n. The data used
for maturities up to n = 10 were the German Zinsstrukturkurve on the time
interval 1973 to 2003. For the other maturities 11to 25 the German Zinsstruk-
turkurve was extrapolated and the Euribor curve was interpolated between the
maturities 1, 5, 10, 15, 20, 25 and 30 using data of the Euribor curve on the
time interval 1997 to 2005. These curves were considered to be the most robust
and representative for calculating the interest rate factors.

Lastly it should be noted that the eventual interest rate (increase) factors
presented in the next table have been artificially raised by multiplying with a
factor 1.13. This raise in interest rate factors goes together with a reduction of
the correlation factor between interest rate risk and equity risk. This exchange,
that we mentioned before in Section 2.3, between the correlation and interest
rate factors was done to better match pension funds with relative large or relative
small equity positions. The factors used are

Maturity Increase Decrease
(factor) (factor)

1 1,60 0,63
2 1,51 0,66
3 1,45 0,69
4 1,41 0,71
5 1,37 0,73
6 1,35 0,74
7 1,34 0,75
8 1,33 0,75
9 1,33 0,75

10 1,32 0,76
15 1,29 0,77
20 1,28 0,78
25 1,27 0,79

To calculate the risk element S1 the swap curve is shifted with these factors.
Then the present value of the fixed income securities and the liabilities is calcu-
lated with the shifted swap curve and the actual swap curve and from this the
risk element S1 is calculated as the difference.
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Chapter 3. Risks from the standard model

3.2 Equity (and property) risk

This risk element covers the risk that investments in shares and property will
loose value cause of market dynamics. DNB prescribes that a fund should
account for a loss in value of

S2A : 25% for developed market equities (including indirect property).

S2B : 35% for emerging market equities.

S2C : 30% for unlisted stocks (private equity).

S2D : 15% for direct property.

These scenarios represent an overall decline in the market value of these shares
or properties. That is, if a fund has 20% of their capital in developed market
equities, they have to account for a 20% · 25% = 5% loss of their capital and
therefore should hold a buffer of 5% over a funding ratio of 100%.

These percentages, used to calculate S2A to S2D, have been determined by
(DNB, 2006) by analyzations of data from important indices such as the MSCI
world, etc. These indices are (weighted) combinations of certain developed
market equities which are intended to represent changes in the entire stock
market. Pension funds often use them as a standard also called a benchmark:
it is an index to which a fund compares its performance. A fund follows a
benchmark if it uses this index as a standard. It can outperform or underperform
a benchmark meaning that its return is higher or lower than the return of the
benchmark.

Ideally there should be a scenario percentage for every benchmark that can
be followed, representing the risk in this benchmark. But this would make the
standard model too complex. Therefore, a number of benchmarks are taken
together to form one parameter. Here special attention should be placed on the
criterion of relevant and reliable historical data. The data should be representa-
tive; it should reflect the stocks in which Dutch pension funds invest on average,
and there should be enough available history. Also survivorship bias must be
taken into account; stocks that perform badly are often taken out of the index
or not included, this could lead to an optimistic view of equity risk.

With these consideration in mind 3 datasets were put next to each other to
estimate the scenario for developed market equities, namely the datasets

• the MSCI world index 1970-2002, which due to a relative short history
gives the most optimistic view

• the Dimson dataset 1900-2000, which contains a long history of 16 coun-
tries (one of them the Netherlands) put together to make a world bench-
mark

• the US dataset by Shiller 1871-2002.
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For each the volatility is estimated and assuming a normal distribution around
an expected return of 8% the downside scenario is estimated (and rounded) to
25% for developed market equities.

The downside scenarios for emerging market equities, unlisted equities and
direct and indirect property have been determined in a similar way. Here how-
ever there exists fewer historical observations and survivorship bias plays a more
important role. Furthermore due to autocorrelation the volatilities could be
underestimated. The market value of stocks, driven by supply and demand,
are (almost) constantly available, but for private equity and real property the
returns are based on book values or other less frequent valuation methods, re-
ported on monthly, quarterly or a yearly basis. For periods in between the value
of such an investment is estimated or set equal to the book value. Because of
this, the returns on these investments over time are dependent on each other,
that is, they have a positive autocorrelation. With all these considerations in
mind DNB came to the scenarios mentioned above.

To get the risk element S2 from the elements S2A to S2D (DNB, 2006) uses a
“a strong, but not perfect correlation” between these elements of ρ′ = 0.75. This
represents the view that, especially in extreme events, the equity market tends to
‘move together’, but that diversification advantages exist between the different
types. With this correlation the equity risk element can now be calculated as

S2 =

√
S2A

2 + S2B
2 + S2C

2 + S2D
2 + 2ρ′(cross terms)

with

cross terms = S2AS2B + S2AS2C + S2AS2D + S2BS2C + S2BS2D + S2CS2D.

3.3 Currency risk

Currency risk is the risk that the value of investments in foreign currency will
diminish due to movements in foreign exchange rates. The 20% parameter for
this risk element is based on the exchange rates of a basket of foreign currencies
against the euro. This basket is based on the average position of pension funds
in foreign currencies and the exchange rate is the weighted average of these
foreign currency exchange rates. By (DNB, 2006) the parameter was estimated
(and rounded) to 20% using the basket

Currency Weight
US Dollar 35%
British Pound 24%
Argentine Pesos (with a correction) 13%
Japanese Yen 8%
Swedish Crown 7%
Swiss Franc 7%
Australian Dollar 6%
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Chapter 3. Risks from the standard model

The correction takes into account investments in emerging markets; the volatil-
ity of these investments is similar to the volatility of the peso. To calculate S3

for a fund, this 20% is used for all its investment in foreign currencies, making
the assumption that the funds investments in foreign currencies is diversified
according to the basket above.

3.4 Commodity risk

Commodity risk is the risk that the value of investments in commodities will
decrease. Here the 30% parameter was determined using the Goldman Sachs
Commodity Index (GSCI) which is a basket of 24 commodities. And for a
fund this 30% fall is used for all its investment in commodities, making the
assumption that the funds investments in commodities is diversified according
to the GSCI. With this 30% parameter the element S4 can be calculated.

3.5 Credit risk

Credit risk plays a role when investing in bonds, it is the risk that the creditwor-
thiness of counterparties will diminish and that the credit spread will increase.
(DNB, 2012) defines credit spread by

Credit spread:

“Credit risk is reflected in the interest margin on credits (i.e. the
credit spread). This is the difference between the redemption yields
on a collection of cash flows whose payment depends upon the credit-
worthiness of counterparties and the redemption yields on the same
collection of cash flows where they are certain to be paid. The
risk-free redemption yield is a consequence of the prescribed term
structure of interest rates.”

So the credit spread is a measure for the creditworthiness of the counterparty,
i.e. the confidence that the counterparty will make the payments as promised.
In the model the credit risk element is then determined by assuming that the
average credit spread will increase by 40% which will affect the value of in-
vestments. This 40% is estimated using the credit spread on investment grade
corporate bonds1 in the period 1999-2004. The risk element S5 is calculated
as the difference between the present value of the bonds using the actual credit
spread and the present value of the bonds using the 40% increased credit spread.

1Rating BBB or higher
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3.6. Underwriting risk

3.6 Underwriting risk

For pension funds the underwriting risk consists of mortality related risks, i.e.
the risks that the life expectations of the participants don’t match with reality.
Deviations from the expected mortality rate are considered and deviations from
the expected mortality trend (longevity risk). For more on mortality rates and
mortality trends see (Schaeffers, 2010).

When there is such a deviation from the expected mortality the calculated
provisions will not match with the actual provisions, the risk that the calculated
provisions are too low is called the underwriting risk. With the characteristics
of a fund the risk element S6 can be calculated using parameters determined
by DNB.

3.7 Other risks

Beside these 6 risk elements, DNB also mentions 3 other risks, namely liquidity
risk, concentration risk and operational risk. These risks are assumed to have
a neglectable effect and (DNB, 2006) puts these parameters to 0%. A fund is,
however, required to monitor these risks. In this section we’ll shortly explain
these risks.

3.7.1 Liquidity risk

An asset is called liquid if it can easily and quickly be converted into cash.
Liquidity risk is then the risk that a fund does not have sufficient liquid assets
to meet their liabilities at some point. If this happens, the fund can be obliged
to sell an illiquid asset for less than its market price. For most pension funds
the pension contribution to be received in a certain period is higher then the
pension liabilities to be paid in the same period. Therefore this risk is set to
zero.

3.7.2 Concentration risk

Concentration risk is the risk that the investments of a fund are not diverse
enough. If, for example, a fund invests mainly in Dutch companies, then it will
be highly dependent on the performance of the Dutch market. If some external
event affects only these Dutch companies, for example a change in government
rules and regulations, then this will have a great effect for this fund and only
a small effect on a diversified fund. Concentration risk can also be present if a
fund is (relatively) concentrated in one company or one sector, but also on the
liability side, if the average age of the participants of a pension fund is high or
the age dispersion is low, then this can be seen as a form of concentration risk.
However, if a fund uses the standard model it is assumed that its investments,
and liabilities, are well diversified, so the concentration risk can be set to 0%.
If a fund is not well diversified then DNB advises the use of an internal model.
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3.7.3 Operational risk

Operational risk is the risk that arises from failures or defects in the operational
process. It should be taken very broad, so fraud and miscalculations are in-
cluded, internal events like the breakdown of an IT system is included and also
external events like a natural disaster is included. This risk is hard to model
and therefore cannot be easily included in the standard model. Although this
risk is inevitable, its effect is often minimal, therefore this risk is set to 0%.

3.8 Square root formula and correlation

When each risk element S1 to S6 has been calculated, then the total buffer
needed for all risks St is calculated by the square root formula

St =

√
S1

2 + S2
2 + 2ρS1S2 + S3

2 + S4
2 + S5

2 + S6
2.

Here we see that most risk elements are assumed to happen independently,
without correlation. The only correlation here is between interest rate risk
and equity risk, with ρ = 0.5. This correlation represents the expectation
that these risks can happen at the same time, a decline in the swap curve
indeed often goes together with a decline in the stock market when analyzed.
This correlation is based on the adjustment mentioned in Section 2.3, before
this exchange between correlation and interest rate factors the correlation was
assumed to be 0.65. Another reason to change this correlation from 0.65 to 0.5
was to avoid the illusion of precision, see principle 6. However, the historical
correlation varies over time, (Andersson et al., 2004) shows evidence and reasons
for this phenomenon. The mean of the historical correlation can be shown to
be lower then 0.65. The reason why a higher (than the mean) correlation is
assumed, is because the 97.5% scenario is based on an extreme event and in
extreme events the correlations often rises.

3.9 Proposed adjustments

After reviewing the risk scenarios (DNB, 2011, p. 3) proposes a list of ad-
justments. These are not yet included in the standard model, but for further
discussion it’s good to keep them in mind. Here’s the list
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scenario risk factor sub factor current new
S1 interest rate risk 15 year decrease factor 0.77 0.75

S2 equity risk

developed market equities 25% 30%
emerging market equities 35% 40%

unlisted stocks 30% 40%
property 15% 15%

S3 currency risk 20% 15%
S4 commodity risk 30% 35%

S5 credit risk

AAA 40% 60 bps
AA 40% 80 bps

A 40% 130 bps
BBB 40% 180 bps
≤BB 40% 530 bps

The bps in this list stands for basis point, 1 basis point equals 0.01%. For
correlations the adjustments are

scenario scenario ρcurrent ρnew

S1 (interest rate) S2 (equity) 0.5 0.4 if S1 is based on a decrease

S1 (interest rate) S5 (credit) 0 0.4 if S1 is based on a decrease

S1 (equity) S5 (credit) 0 0.5

After evaluating the model, it came to light that some risk elements were un-
derestimated. These changes should, therefore, better fit the 97.5% confidence
criteria. Further proposals made in this document are the introduction of a
partial internal model, discussed in Section 2.4 and the introduction of a new
risk element, namely active management risk, which will be discussed in the
following section.

3.10 Active management risk

Active management, in general, is any investment strategy where a fund actively
buys and sells securities. Usually this is done in comparison to a benchmark; a
fund tries to deviate from a benchmark, using analytic research, forecasts, and
their judgment and experience, in the hope of outperforming the benchmark.
Active management can, however, also exist for other reasons then outperfor-
mance for example a fund can invest actively when it wants to

• Lower the volatility of the benchmark and hence reducing the risk.
This can be done by buying securities in the benchmark with low volatility,
which is called low volatility investing.

• Lower the volatility of the total portfolio.
Securities that have a low correlation with the benchmark can be bought
to give a greater diversification effect which lowers the volatility of the
total portfolio.
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• Invest ethically also called socially responsible investing.
Here a fund seeks out companies that are engaged in environmental sus-
tainability, human rights, consumer protection, etc. and it avoids invest-
ments in companies that are involved with alcohol, tobacco, gambling,
weapons, etc.

As a counterpart of active management there is passive management. This
management style often takes the form of index tracking where a fund tries to
mirror a benchmark. In this way a fund can profit from market growth with
minimal costs. In theory it will get the exact same return as the benchmark,
however, the composition of the benchmark is not kept constant; sometimes
weights are changed or securities are left out and new securities are put in.
If a fund wants to mimic these changes there will be transaction costs and,
furthermore, these changes can’t be done immediately. Hence the return of
the index tracking fund will never be exactly the same as the return of the
benchmark and there will be an error between these returns. This error is
called the tracking error2.

For any benchmark there exists the risk that the value of this benchmark
drops. Active management risk is the additional risk that comes from active
investing in this benchmark. If no benchmark is followed then, because we are
investigating the standard model for the required funding ratio, the additional
active management risk could be calculated relative to the benchmark(s) on
which the scenario for the risk in question is based. But we must keep in mind
that these scenarios are rough estimations of the risk in the market, therefore it
is better to measure active management risk relative to the benchmark in which
actively is invested, then relative to a benchmark on which the standard model
is based, provided of course that the former benchmark is representable enough
for the market. However, not for all scenarios in the standard model there exist
good benchmarks. That’s why in herziening uitwerking (2011) it is suggested
that active management risk is applied at first only to

• Investments in developed market equities.
The majority of the pension funds use the MSCI or S&P500 as benchmark,
these benchmarks fit the way the equity risk scenario is calculated for
developed market equities.

Active management risk could later on also be applied for other categories as

• Investments in emerging market equities.
For this the MSCI Emerging Markets is fairly representable as a bench-
mark. Therefore we can quite easily include an active management risk
component.

• Investments in private equity or unlisted stock.
This part of a pension fund is often already actively managed. Hence the

2Note that the tracking error is essentially a notion for funds that track a benchmark, but
we’ll see that it can also be used for active investing.
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3.10. Active management risk

30% scenario in the standard model in some sense already includes an
active management risk component.

• Investments in direct property.
Like unlisted stock, this is also often already actively managed. And hence
an active management risk part is in some sense already included in the
15% scenario.

• Active currency management.
A fund can actively manage its currency risk and in doing so it will deviate
from the basket given in Section 3.3.

• Investments in commodity.
This is often already done actively. Hence the commodity risk scenario of
30% in some sense already includes an active management risk component.

• Investments in bonds.
Since bonds are fixed income securities, there is a great part of interest
rate risk. But here active management risk doesn’t play a role because 2
comparable bonds have by construction the same interest rate risk. There
is only additional active management risk on top of the credit risk of the
bond. (DNB, 2006) based the risk scenario for credit risk on bonds with
credit rating BBB or higher. (DNB, 2011) suggests to further specify this
credit risk using all the ratings, see Section 3.9. This specification already
covers most of the active management risk on top of credit risk.

• Asset allocation.
Even if the strategic asset allocation is fixed, the floating asset allocation
will not be constant. For suppose a fund invest 50% in bonds and 50%
in stocks then after some time, if one of them has a higher return, the
allocation will become for example 49%/51% if no transactions are made.
There are several ways to deal with this phenomenon; there is the buy-
and-hold strategy and the constant-weight (rebalancing) strategy, which
are passive management strategies. But there are also active management
strategies like a dynamic asset allocation strategy or a tactical asset allo-
cation strategy, where managers are given some freedom to deviate from
the strategic asset allocation in order to respond to market movements.

Since the risk in these types of active management is harder to evaluate we will
keep our focus, like (DNB, 2011) suggests, mainly on the active management
risk in developed market equities.

Total Expense Ratio

An important part of active management is the TER (Total Expense Ratio)
of a fund. It is calculated as the total costs (management fees, administration
costs, etc.) divided by the total assets. Or it can be more specified to, for
example developed market equities: the total costs in developed markets divided
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by the total developed market equities. The TER gives the percentage of the
investments which is lost to the costs. If for example the return in a year on
the developed market equities is 2%, but the TER (costs) is 1% then these
investments will only have a net return of 1%. It should be clear that for an
active strategy the TER will be often higher than for a passive strategy.
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Chapter 4

Returns

To analyze the performance of a fund portfolio compared to a benchmark over
time we define 2 notions of returns: linear returns and logarithmic or log returns.
We also give some properties of these returns and some basic notions used for
evaluating these returns.

4.1 Linear and log returns

Let P (t) be the value of a portfolio or a security at time t, suppose that P (t) ≥ 0
for all t, i.e. we only analyze long positions, and let us assume that the value is
adjusted for dividend. Then the linear return is defined as

R(t) =
P (t)− P (t− 1)

P (t− 1)
=

P (t)

P (t− 1)
− 1,

such that
P (t) = (1 +R(t))P (t− 1).

The log return is defined as

r(t) = ln (1 +R(t)) = ln
P (t)

P (t− 1)
= lnP (t)− lnP (t− 1) = p(t)− p(t− 1)

where p(t) := lnP (t) is the natural logarithm of the portfolio value. For log
returns we have

P (t) = exp (r(t))P (t− 1)

or
p(t) = p(t− 1) + r(t).

4.2 Properties

The linear return has a very handy property when analyzing portfolios and
the log return has a very handy property. Unfortunately one return does not

25



Chapter 4. Returns

have both properties. In this section we’ll give these properties and we’ll see
that approximately these returns are equivalent, which makes it possible to use
these notions interchangeably.

4.2.1 Aggregation over securities

An important property of the linear returns is that they aggregate over secu-
rities. Let Si(t) (i = 1, 2, . . . ,m) be m securities and Ri(t) there returns. Let
portfolio P (t) equal

∑m
i=1 niSi(t) with holdings ni, we define weights wi by

wi =
niSi(t)

P (t)
.

Then if weights are kept constant over time

1 +R(t) =
P (t)

P (t− 1)
=

m∑
i=1

niSi(t)

P (t− 1)

=

m∑
i=1

niSi(t− 1)

P (t− 1)

Si(t)

Si(t− 1)

=

m∑
i=1

wi(1 +Ri(t))

=

m∑
i=1

wi +

m∑
i=1

wiRi(t)

= 1 +

m∑
i=1

wiRi(t).

So it follows that

R(t) =

m∑
i=1

wiRi(t).

If we work this out for the log return with ri(t) the return for security i, we get

r(t) = ln

[
P (t)

P (t− 1)

]
= ln

[
m∑
i=1

niSi(t− 1)

P (t− 1)

Si(t)

S(t− 1)

]
= ln

[
m∑
i=1

wi exp ri(t)

]
.

This we can’t simplify further.
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4.2.2 Aggregation over time

The linear returns do not aggregate over time, to see this let Rk(t) = P (t)
P (t−k) −1

be the return over k time intervals t, so that R1(t) = R(t). Then we have

1 +Rk(t) =
P (t)

P (t− k)

=
P (t)

P (t− 1)

P (t− 1)

P (t− 2)
· · · P (t− (k − 1))

P (t− k)

= (1 +R(t))(1 +R(t− 1)) · · · (1 +R(t− (k − 1))),

which we can’t simplify further. For the k-interval log return rk(t) = ln(1 +
Rk(t)) we get from the definition of the logarithm that

rk(t) = ln
[
1 +Rk(t)

]
= ln [(1 +R(t))(1 +R(t− 1)) · · · (1 +R(t− (k − 1)))]

= ln [1 +R(t)] + ln [1 +R(t− 1)] + . . .+ ln [1 +R(t− (k − 1))]

= r(t) + r(t− 1) + . . .+ r(t− (k − 1))

=

k−1∑
j=0

r(t− j).

So log returns do aggregate over time.

4.2.3 Taylor approximation

We’ll now show that the linear return and the log return are approximately the
same. Looking at the Taylor series for the log return

r(t) = ln (1 +R(t)) =

∞∑
n=1

(−1)n+1

n
R(t)n

= R(t)− (R(t))2

2
+

(R(t))3

3
− . . .

= R(t) +O(R(t)2)

we see that approximately we have

r(t) ≈ R(t)

if R(t) is small, which will be the case for short time horizons. Since linear
returns and log returns are nearly equivalent and both have useful properties
they are often used interchangeably. But great care should be taken when these
returns are used in formulas or are quoted in research. For a further discussion
see (Meucci, 2010).

Note: In the following chapters we will use the log return in our
definitions. But keep in mind that linear returns could also be used
and that then the results would be somewhat different.
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4.3 Basic notions and assumptions

Basic notions

To analyze the return distribution we summarize some basic notions from statis-
tics. Let X be a random variable and let x1, x2, . . . , xn be any sample1 of
this random variable. We have the following notions when dealing with random
variables

Notion Notation Random variable X (and Y )

Mean µ(X) = µx = µ = E(X)

Variance /
σ2(X) = σ2

x = σ2 = E
[
(X − µ)2

]
(St.dev.)

2

Skewness S = γ1(X) = γ1 = E
[
(X−µσ )3

]
Kurtosis2 K = γ2(X) = γ2 = E

[
(X−µσ )4

]
− 3

Covariance Σxy = Cov(X,Y ) = E [(X − µx)(Y − µy)]

Correlation ρxy = Corr(X,Y ) =
Σxy
σxσy

In samples we have for the estimators of the above notions, using the definitions
that have been adjusted for bias,

1When calculating with returns the index will usually be related to the time giving the
notation x(t) for t over some interval.
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Notion Notation Sample x1, . . . , xn (and y1, . . . , yn)

Mean x̄ = µ̂ = 1
n

∑n
i=1 xi

Variance /
s2 = σ̂2 = 1

n−1

∑n
i=1(xi − x̄)2

(St.dev.)
2

Skewness g1 = γ̂1 = n
(n−1)(n−2)

∑n
i=1( (xi−x̄)

s )3

Kurtosis g2 = γ̂2 = n(n+1)
(n−1)(n−2)(n−3)

∑n
i=1( (xi−x̄)

s )4 − 3 (n−1)2

(n−2)(n−3)

Covariance cxy = Σ̂xy = 1
n−1

∑n
i=1(xi − x̄)(yi − ȳ)

Correlation rxy = ρ̂xy =
cxy
sxsy

Quantiles

We define quantiles as follows. Let F (x) = P (X ≤ x) denote the cumulative
distribution function of a random variable X. For α ∈ (0, 1) the lower α-quantile
is defined as

x(α) = qα(X) = qα(F ) = inf
x∈R
{F (x) ≥ α} .

The upper α-quantile is defined as

x(α) = qα(X) = qα(F ) = inf
x∈R
{F (x) > α}

or = sup
x∈R
{F (x) ≤ α} .

The lower α-quantile function infx∈R {F (x) ≥ α} is usually seen as the quantile
function which is a special case of the generalized inverse, this generalized inverse
is further discussed in (Embrechts and Hofert, 2010) , and is defined as follows.

Given an increasing function

T : R→ R,

then the generalized inverse of T is defined by

T←(y) := inf
x∈R
{T (x) ≥ y} ,

with the convention inf {∅} = ∞. If T : R → [0, 1] is a distribution function
then T← defined above is called the quantile function of T and it calculates the
lower quantiles of the distribution.
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Independent and identically distributed assumption

A common assumption is that the returns are i.i.d. (independent and identically
distributed) over time. This assumption comes down to the following. Let X
and Y be independent and identically distributed. The independence assump-
tion implies that there is no correlation between the two random variables, so
Cov(X,Y ) = 0. The identical distribution assumption implies that the two
random variables have the same distribution, so X ∼ Y . From this follows that

σ2(X + Y ) = σ2(X) + σ2(Y ) + 2 Cov(X,Y ) = σ2(X) + σ2(Y ) = 2σ2(X).

This can be generalized to n random variables. With the aggregation over time
property of log returns discussed in Section 4.2.2 we get that if r(t) is a random
variable for any t and the log returns are i.i.d. we have

σ2(rk(t)) = σ2(

k−1∑
j=0

r(t− j)) =

k−1∑
j=0

σ2(r(t− j)) = kσ2(r(t)).

From this follows the square-root-of-time rule which will be discussed in Section
5.4. A reason why we use log or linear returns instead of the portfolio value
P (t) itself or the absolute return D(t) = P (t)−P (t−1) is the portfolio value or
the absolute return seriously lack the i.i.d. property. The portfolio value today
is highly dependent on the portfolio value yesterday. Also the variance will be
greater if the portfolio value is high. The absolute return does not give the price
change relative to a given value. A 10 euro return is high if the value of the
portfolio is 100, but fairly low if the value is 100.000, therefore a portfolio with
value 100.000 is expected to have higher absolute returns than a portfolio with
value 100. Besides being non-identical because of this, the absolute return is also
non-comparable, if 2 portfolios have the same absolute return of 10 euro, with
one portfolio value equal to 100 and the other portfolio value equal to 100.000,
it’s not possible to say which portfolio performed better by just looking at the
absolute return of 10.

For linear returns and log returns the assumption of i.i.d. is roughly plausi-
ble; there have been many objections, however, including returns showing signs
of volatility clustering: there are periods where the returns have high volatility
and there are periods with low volatility, this would contradict the assumptions
of an identical distribution. Or the claim is made that the returns show mean
reversion. This claim is made if one believes that the stock prices will tend to
move to an average price over time or, with a more optimistic view, the returns
will tend to move around an average positive return. In these cases after a low
return it will be more likely that a high return follows and vice versa. When
returns show mean reversion then the returns are clearly not independent. Also
the identical assumption is contradicted.

Returns that show signs of the above mentioned objections against being
i.i.d. can be modeled with time series using a varying standard deviation for
volatility clustering or a lag can be added for the mean reversion. This we will
discuss in Section 6.8.2.
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Normal distribution assumption

Since we assumed
P (t) ≥ 0

we have
D(t) ≥ −P (t− 1)

and

R(t) =
P (t)

P (t− 1)
− 1 ≥ −1,

giving lower bounds for these returns. A normal distribution however is un-
bounded; hence these returns cannot be normally distributed. And, when an-
alyzed, the portfolio value and absolute returns are often clearly not normally
distributed having a high kurtosis and often a positive skew3. Also the lin-
ear and log returns are often not normally distributed; sometimes they have a
slight skew and very often they have a higher kurtosis then normal. However,
the normal distribution is, even then, often assumed for easy of computation.
A frequently used alternative is assuming a student-t distribution instead of a
normal distribution.

3A positive skew is sometimes called ‘a skew to the right’. And a negative skew is called
‘a skew to the left’.
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Chapter 5

Active Management Risk

In this chapter we will investigate ways to quantify active management risk.
Our main purpose will be to do this for the standard model, this means that
we have a risk horizon of 1 year and a confidence level of 97.5%. We’ll first
define the active returns in Section 5.1, then we’ll give some measures we can
use given these active returns. Then in Section 5.3 we’ll discuss some desirable
properties of such a measure. In Section 5.4 we give a frequently used rule to
adjust the risk horizon.

5.1 Active Returns

Let rb(t) denote the benchmark return and rp(t) denote the portfolio return.
The active return is the return of the portfolio relative to a benchmark.

Active return = return portfolio− return benchmark.

So for any t, we have

ra(t) = rp(t)− rb(t)

with ra(t) the active returns.

Now let us assume that the returns are known up to time t = T with the
time in years. For examining the risk with a risk horizon of 1 year we want to
know ra(T + 1). So with the returns to time T known we make a forecast for
time T + 1 keeping in mind a confidence level of 97.5%. We can do this directly
by using a point forecast or we can look at the forecast distribution of ra(T +1).
When the distribution is forecasted we denote for convenience ra(T + 1) := ra
and we see ra as a random variable. Furthermore, when a sample is taken from
this random variable we’ll denote this by ri with 1 ≤ i ≤ n. When the history
for t ≤ T is analyzed the active returns are denoted by r(t), without subscript.
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5.2. Measures of active risk

5.2 Measures of active risk

5.2.1 Tracking Error

The tracking error is the main measure used for active management risk, and
funds often mention their tracking error in their reports. That’s why in this
thesis we’ll focus mainly on this active risk measure. If ra is the forecast distri-
bution of the active returns then we define the tracking error as the standard
deviation of this distribution. Which is the square root of

σ2
tracking error = σ2(ra) = E

[
(ra − E(ra))2

]
or in a sample

σ̂2
tracking error =

1

n− 1

n∑
i=1

(ri − r̄)2.

The 97.5% risk will be 1.96 × σtrackingerror if the active return distribution is
assumed to be normally distributed. The tracking error calculates the deviation
around the mean of the active return. So it takes into account the downward
risk but also the upward risk. This can be misleading if the active return
distribution is skewed. Instead of the normal tracking error we can also look at
the mean-adjusted tracking error

mean-adjusted σ2
tracking error = E

[
(ra)2

]
or in sample

mean-adjusted σ̂2
tracking error =

1

n

n∑
i=1

(r2
i ).

This calculates the deviation around zero, and hence makes the implicit assump-
tion of an expected return of zero. Arguably this is the better assumption for
the risk since it reflects the view that there is no way to structurally outperform
the market.

5.2.2 Value at Risk

(Morgan and Reuters, 1996) provides a detailed description of how RiskMetrics
works. This Technical Document is mainly based around the calculation of
Value at Risk. Since this document Value at Risk is widely used as a measure
for risk. It is mainly used for the risk in a portfolio and the definition in words
says that it calculates what the potential loss over a target horizon is, given
a predetermined confidence level. As an example: if the daily VaR given a
confidence level of 95% equals 200 euro, then there is only 5% chance that over
one day the loss will be 200 or more. Notation for this will be 95%VaR = 200
or VaR0.05 = 200 . Note the way the percentages are used and note that the
VaR is presented as a positive number.

Instead of portfolio risk we are, however, investigating active risk, that is,
the risk of the portfolio relative to the benchmark. (Alexander, 2008c) calls this
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Chapter 5. Active Management Risk

type of VaR the Benchmark VaR and (Mina and Xiao, 2001) calls it the relative
VaR, However it is often clear from context which type of VaR is used. For
α ∈ (0, 1) the mathematical definition of VaR is

[(1− α)× 100%] VaR(ra) = VaRα(ra) = −qα(ra).

Here qα(ra) is the quantile function defined in Section 4.3. The minus is there
to make the VaR positive.

Note that for a 97.5% confidence interval we’ll investigate VaR0.025(ra). In
many situations the tracking error will have a 1 to 1 correspondence with the
VaR. For example if we assume a normal distribution of the active returns
than VaR given a confidence level of 97.5% will just be 1.96 × σtracking error

and in general there will be a similar 1 to 1 correspondence for any symmetric
distribution. However, if there is a skew in the distribution then the VaR will
differ from the corresponding measure found with the tracking error.

Note: In practice this 1 to 1 correspondence is frequently used. This
means that tracking errors can be and are calculated using VaR tech-
niques and vice versa.

An interesting modification of VaR, if there is a skew or a kurtosis not equal
to zero, is given by (Favre and Galeano, 2002). If we express the normal VaR
with standard deviation σ and with cp depending on the confidence interval, as
follows

VaRp = cpσ.

Then (Favre and Galeano, 2002) extends this to the modified VaR, using the
skewness S and kurtosis K of the distribution, by

MVaRp =

[
cp +

1

6
(c2p − 1)S +

1

24
(c3p − 3cp)K−

1

36
(2c3p − 5cp)S

2

]
σ.

With VaR there also exists a mean-adjusted type, which is defined as

mean VaRα(ra) = VaRα(ra)− E(ra).

.

5.2.3 Expected shortfall

The expected shortfall1 measure is an extension of the VaR and in words it is
defined as the expected loss given the fact that the VaR level is exceeded. The
formula for expected shortfall (ES) is

ESα(ra) =
1

α

∫ α

0

VaRu(ra) du

1Other names are Conditional VaR, Expected tail loss or Average VaR. However, (Alexan-
der, 2008d) uses expected shortfall specifically when measuring the returns relative to a bench-
mark and Expected tail loss when measuring the returns of a portfolio.
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which, in the continuous case, is equal to

ESα(ra) = −E(ra | ra ≤ qα(ra)) = E(−ra | −ra ≥ VaRα(ra)).

For a risk manager this measure can be very useful. While VaR only measures
the risk level which will not be exceeded with a given confidence, ES measures
how high this risk will be if this level is exceeded. However, for our standard
model the ES will not be very useful; the standard model explicitly looks at
scenarios that can happen with a 97.5% confidence level, not at what will happen
if we are in the 2.5% part of the scenario.

5.2.4 Other measures

Other measures are also possible. For example (Alexander, 2008d) mentions the
semi-standard deviation, calculated as the square root of the semi-variance

SV(X) = E(min(X − E(X), 0)2),

which calculates the variance on the condition that X is less then it’s expecta-
tion.

(McNeil et al., 2005) extends this semi-variance to what he calls the lower
partial moment

LPM(k, q) = (−1)k
∫ q

∞
(x− q)k dF (x)

with F (x) the distribution function. Notice that for k = 2 and q = E(X) this
is the semi-variance.

5.3 Coherent risk measure

Until now we looked at measures acting on the active return distribution ra =
ra(T+1). In this section we generalize this to any active return random variable
X in a measurable space (Ω, F , P ). Where Ω is the set of all outcomes, F is
the collection of all events that are considered and P (A) is the probability that
an event A ∈ F happens. A random variable X is now a function on this space,
notation: X ∈ L0(Ω, F , P ) or simply X ∈ L0. Here L0(Ω, F , P ) is the set
of all random variables on (Ω, F , P ) that are almost surely finite. For active
risk we can see the random variable as an active position and when an outcome
ω ∈ Ω is realized we have the active return X(ω). On this random variable we
have the measures discussed in Sections 5.2. (Artzner et al., 1999) introduces
the notion of coherent risk measures, which is defined as follows: A mapping
ρ : L0(Ω, F , P )→ R is called a coherent risk measure if the following holds

1. Monotonicity : if X, Y ∈ L0 and X ≤ Y almost surely then ρ(X) ≥ ρ(Y )
The monotonicity property states that if for any outcome the position X
has less return compared to Y , then X should be considered as riskier.
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2. Subadditivity : if X, Y, X + Y ∈ L0 then ρ(X + Y ) ≤ ρ(X) + ρ(Y )
The subadditivity property states that if we combine 2 positions then the
risk will not be greater then the risk of the 2 positions separately. This is
the diversification principle.

3. Positive homogeneity : if X ∈ L0 and λ ≥ 0 we have ρ(λX) = λρ(X)
The positive homogeneity property states that if we double the size of the
position then the risk is doubled.

4. Translation invariance : if X ∈ L0 and c ∈ R we have ρ(X+c) = ρ(X)−c
The translation invariance property states that adding a quantity c to the
position will reduce the risk by exactly c. In particular we have ρ(X +
ρ(X)) = ρ(X)− ρ(X) = 0.

The tracking error is not coherent

The tracking error is subadditive since for the standard deviation we have

σ2(X + Y ) = σ2(X) + σ2(Y ) + 2 Corr(X,Y )σ(X)σ(Y )

≤ σ2(X) + σ2(Y ) + 2σ(X)σ(Y )

= (σ(X) + σ(Y ))2

and subadditivity follows since both are positive. The tracking error is also
positive homogeneous

σ(λX) = λσ(X) for λ ≥ 0.

However, the tracking error is not monotone, for a counterexample we look at
X and Y defined on 3 events. X gives a return of −1 in the first event which
happens with probability 0.1, a return of 0 in the second event which happens
with probability 0.8 and a return of 1 in the last event which happens with
probability 0.1. Y gives the same returns with the only difference that in the
last event the positive return is 2 instead of 1. Clearly we have X ≤ Y , but if
we calculate the tracking error we have

σ(X) =

√√√√ 3∑
i=1

pi(xi − µ)2 =
√

0.1 · (−1)2 + 0.8 · 02 + 0.1 · 12 =
√

0.2 ≈ 0.45

and for Y we have

σ(Y ) =
√

0.1(−1− 0.1)2 + 0.8(0− 0.1)2 + 0.1(2− 0.1)2 =
√

0.49 = 0.7.

So σ(X) ≤ σ(Y ) in this case. Also the translation property fails to hold since

σ(X + c) = σ(X) 6= σ(X)− c if c 6= 0.

Hence the tracking error is not a coherent risk measure.
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VaR is not coherent

Let α ∈ (0, 1), then VaRα satisfies the monotonicity property since for quantiles
we have

qα(X) ≤ qα(Y ) ifX ≤ Y

and hence

VaRα(X) ≥ VaRα(Y ) ifX ≤ Y.

VaRα is also positive homogeneous since

qα(λX) = λqα(X) for λ ≥ 0

and VaRα is translation invariant since

qα(X + c) = qα(X) + c forλ ≥ 0.

However, VaRα is not subadditive, for suppose X and Y are independent but
X and Y both gives a return of −1 with a probability of 0.04 and zero return
otherwise. Then the 5% VaR for X and Y separately is equal to

VaR0.05(X) = VaR0.05(Y ) = 0,

however the 5% VaR for holding both X and Y at the same time equals

VaR0.05(X + Y ) = 1.

Since there exists 0.0016 chance that both will give a return of −1 and a 0.0784
chance that at least one of them has a return of −1. So in this example we have

VaR0.05(X + Y ) > VaR0.05(X) + VaR0.05(Y ).

From this follows that VaR is also not a coherent risk measure. However, this
counterexample seems fabricated and only has 2 discrete random variables. If
we take a large and arbitrary collection of random variables, we will see that
the VaR measure often is subadditive.

Expected shortfall is coherent

Expected shortfall, on the other hand, is a coherent risk measure. To see this we
use the definition of ES in Section 5.2.3. Let α ∈ (0, 1), then for monotonicity
we have

X ≤ Y ⇒ VaRu(X) ≥ VaRu(Y ) for 0 ≤ u ≤ α

since VaR is monotone, and hence

ES(X) =
1

α

∫ α

0

VaRu(X) du ≥ 1

α

∫ α

0

VaRu(Y ) du = ES(Y ).
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Translation invariance we also get from the translation invariance property of
VaR,

ES(λX) =
1

α

∫ α

0

VaRu(λX) du

=
1

α

∫ α

0

λVaRu(X) du

=λ
1

α

∫ α

0

VaRu(X) du

=λES(X)

and positive homogeneity follows in the same way

ES(X + c) =
1

α

∫ α

0

VaRu(X + c) du

=
1

α

∫ α

0

VaRu(X)− cdu

=
1

α

∫ α

0

VaRu(X) du − 1

α

∫ α

0

cdu

=
1

α

∫ α

0

VaRu(X) du − c

= ES(X)− c.

For the subadditivity of Expected Shortfall we refer to a detailed proof given
by (Acerbi and Tasche, 2002).

5.4 Square-root-of-time rule

In our standard model we typically have a 1 year risk horizon and therefore we
want 1 year (or annual) risk measures. The 1 year risk measure is also often
preferred since then risk measures can easily be compared. However, returns
on short horizons often have better statistical properties and therefore the risk
estimation will be more precise. Also data-availability plays a role. For these
reasons the tracking error and VaR are usually estimated using a 1 day risk
horizon instead of a 1 year risk horizon and afterwards they are scaled to a 1
year risk horizon. There are sophisticated ways to do this, but all procedures
rely on assumptions made for the returns. In this section we’ll only present the
simple square-root-of-time rule. This procedure makes the assumption that the
active returns are i.i.d. and relies on the time aggregation property discussed in
Section 4.2.2. We have seen in Section 4.3 that if ra(T + 1) and ra(T + 2) are
i.i.d. then

σ2(ra(T + 1) + ra(T + 2)) = 2σ2(ra(T + 1)) = 2σ2(ra).

This can be extended to s active returns to get for the s time units ahead active
return ra(T + s)

σ2(ra(T + s)) = sσ2(ra),
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5.4. Square-root-of-time rule

this gives the rule
σ(ra(T + s)) =

√
sσ(ra).

For the VaR case, if we assume we have the 1 on 1 correspondence discussed
in Section 5.2 which gives VaRα(ra) = cα σ(ra), with cα depending on the
distribution and the confidence level, we get the rule

VaR(ra(T + s)) =
√
sVaR(ra).

This rule is often used as a simple approximation for the 1 year tracking error
or 1 year VaR.
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Chapter 6

Methods for getting the
active return distribution

In this Chapter we look at the methods to derive the active return distribution.
This distribution is needed to calculate the tracking error and the VaR or other
measures discussed in Chapter 5. The methods we introduce are usually applied
to portfolio returns, but we will use it for active returns. First we give some
notation, and then we’ll discuss the methods.

6.1 General setting and notation

We begin with the general setting for portfolio returns and some notation before
we introduce the methods. Here we make the distinction between finding the
distribution of the portfolio value, i.e. the profit-loss distribution and finding
the distribution of the portfolio return using a factor model.

Profit loss distribution

Let P (t) ≥ 0 be the portfolio value at time t and let P (T ) be the current portfolio
value. Now our objective is to predict the portfolio value 1 time unit ahead.
So we’ll assume that at time T the portfolio value is observable and a forecast
is made for the distribution P := P (T + 1), using the same notation for the
forecasted distribution as in Section 5.1. If we have forecasted the distribution
P then the profit-loss distribution or P&L-distribution is defined as

P&L = P (T + 1)− P (T )(= D(T + 1))

If we have this P&L distribution we can calculate the tracking error and the VaR
of this portfolio. Note that this P&L distribution is just the absolute return of
the portfolio.
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Risk factors

To make a forecast of the portfolio value P , we’ll assume that the portfolio value
is a function f of certain risk factors, which are values like

• interest rates

• stock prices

• foreign exchange rates

• spreads

• etc.

The risk factors are denoted by X(t) = (X1(t), . . . , Xn(t))′, so we have

P (t) = f(X(t)).

In order to simplify the forecasting process we want a linear function. Therefore
the risk factors are usually given with a certain sensitivity θ = (θ1, . . . , θn)′, this
sensitivity explains the relation between a risk factor and the portfolio, so we
have

P (t) = f(X(t)) =

n∑
i=1

θiXi(t).

For more on risk factors and risk factor sensitivities see (Alexander, 2008b).
For equity portfolios we will generally already have a linear function of stock
prices1. For n stocks we have

P (t) =

n∑
i=1

θiXi(t)

with θi, the sensitivity, denoting the number of holdings of stock i with price
Xi(t). For the profit-loss distribution we then get

P&L =

n∑
i=1

θiXi(T + 1)−
n∑
i=1

θiXi(T ).

If we now have forecast distributions of stock prices Xi := Xi(T + 1) we can get
a forecast distribution of the profit-loss distribution.

If f is not linear we can use a linearization of f using the gradient g of f .

g(x) = (f1(x), . . . , fn(x))′ with fi(x) =
∂f(x)

∂xi
.

With this gradient we have the linear Taylor approximation

f(x) ≈ f(0) + x′g(0) =

n∑
i=1

xifi(0).

In this linearized setting, we have xi as risk factors and fi(0) as the sensitivities.

1Foreign exchange rates can be included when the portfolio also invests in equity valued
in foreign currencies and interest rates can be included when the discounted profit-loss distri-
bution is examined.
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Factor model

In this setting we look at a factor model which explains the portfolio return2.
The factor model is a generalization of the capital asset pricing model (CAPM)
which is as follows

E(ri)− rf = βi(E(rb)− rf )

where E(ri) is the expected return of asset i, rf is the risk free return, E(rb)
is the expected return of the market or benchmark and βi is the sensitivity of
the expected asset return to the expected market return3. From this we get the
relation

E(ri) = α+ βiE(rb).

This relation we generalize to the single factor model, where X denotes the
return on a risk factor,

ri(t) = α+ βiX(t) + εi(t) εi(t) ∼ i.i.d.N (0, σ2
i ).

We also assume that X(t) is independent to εi(t). Note that this is just a linear
regression. For a k-multiple factor model we get

ri(t) = α+

k∑
j=1

βijXj(t) + εi(t) εi(t) ∼ i.i.d.N (0, σ2
i ).

Here α is the expected return relative to the return of the risk factor, Xj is the
return on the j-th risk factor, βij is the sensitivity of risk factor j to asset i and
εi(t) is the error term, also called the specific return, which is independent to
Xj(t).

This regression can be made for any asset return ri(t). For our interest we
will look at the portfolio return or the active return. And the risk factors will,
for a simple equity fund, be the stock returns, but in general any risk factor can
be used. Our model for active returns can now be formulated as

ra(t) = α+

k∑
j=1

βjXj + ε(t) ε(t) ∼ i.i.d.N (0, σ2).

Now when we forecast the distribution of ra we see that this distribution depends
on the distribution of the risk factors and of the distribution of the error term.
In risk terminology this is usually called systematic risk or market risk and
specific risk respectively.

Notice that this factor model is also a linearization of a possible non-linear
function

ra(t) = f(X(t)).

But this time we use a linear regression to get the linearization.

2The return can be linear as well as log, but as stated earlier we will use the log return.
3If β is measured as the sensitivity of a stock to a benchmark then this is called the beta

of a stock and α is called the alpha of a stock.
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In general

There are many variations to these models, but the process remains the same,
namely

• We have a risk factor mapping function ra(t) = f(X(t))

• If this mapping is non-linear, then linearize this function using an approx-
imation or a regression.

• Estimate the distribution of the risk factors or the risk factor returns and,
when regressing, the specific returns.

• With these distributions, calculate the distribution of the active returns
ra(t)

• Make a forecast of the distribution ra at time T + 1.

When we have the forecasted distribution of ra we can calculate the tracking
error and the VaR.

6.2 Ex-post and ex-ante methods

There is a distinction of getting the active return distribution ex-post or ex-ante.

Ex-post

In the ex-post setting, which stands for ‘after the event’, we look directly at
active returns that happened in the past. In this setting we have the method
named

• Empirical Method.

In this method we’re not really forecasting the active return distribution, but
we’re using the empirical distribution over some history. We will see that this
is a very easy and straightforward method and works good to show the per-
formance of a fund, however, if we’re measuring risk this is not a very useful
method because a good performance in the past is not a guarantee for a good
performance in the future. It is possible that a fund has a strategy that worked
well for past events, but performs badly in some market conditions.

Ex-ante

Ex-ante stands for ‘before the event’; here we make a prediction of what the
active return distribution will be in the future. Historic data is used to measure
the market conditions in the past and with these measurements a prediction
is made for the market condition in the future and through a mapping proce-
dure the active return is predicted. We will make the distinction between the
following methods:
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• Parametric linear method (or Variance-Covariance method)

This method assumes that the active return distribution is a linear function
or a linearized function (linear approximation) of the risk factors or risk factor
returns. With this linear function and with the covariance matrix (also called
variance-covariance matrix) of the risk factors an analytic expression is given
for the Value at risk or the tracking error.

Terminology:

The terminology used for the first method has not been consistent
over the years since it was introduced by (Morgan and Reuters,
1996). They call it the parametric method since it assumes that
the data comes from a fixed distribution. However in the Monte
Carlo method simulations are drawn from a fixed distribution and
this method can therefore also be called parametric.

Also the name variance-covariance method is given emphasiz-
ing the link to the portfolio theory started by (Markowitz, 1952),
he was one of the first who used the variance-covariance matrix in
economic situations. The core of the calculation in the parametric
linear method relies on this variance-covariance matrix. (McNeil
et al., 2005), (Crouhy et al., 2000) and many other papers still use
this name. Critique of this term by (Holton, 2003) and (Alexander,
2008d) is that the Monte Carlo method is also based on the variance-
covariance matrix. They propose to call it the linear method, em-
phasizing the linear risk factor mapping which is needed to calculate
the risk measures. This naming extends to the quadratic method,
which uses a quadratic function. This term, as opposed to the term
delta method, seems to exclude the case were we have an approxima-
tion.

Some works like (Jorion, 2000) and others use the term delta-
normal method when the method explicitly uses an approxima-
tion and assumes a normal distribution. This naming extends to the
delta-gamma method, where we use a quadratic approximation of the
risk factor function. This term, however, seems to exclude the case
were we have a pure linear function and not an approximation.

In general many combinations of parametric, analytic, delta, normal,
linear, variance, covariance, modeling, etc. have been used. We will
use the term parametric linear method since for equity funds the
mapping will often be linear.

• Historical simulation method

This method uses historical realizations of risk factors to derive the active re-
turn distribution. For every realization of the risk factors the active return is
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calculated given the (active) position of a fund. Notice the difference between
the empirical and the historical simulation method: while the empirical method
only uses the realizations of the active returns in the past, it implicitly includes
changing fund positions in calculating the active returns. The historical sim-
ulation method, however, looks at the realizations of the risk factors and the
active returns are calculated with the current position of the fund.

• Monte Carlo method

This method generates possible realizations of risk factors to derive the active
return distribution. Using the covariance matrix of the risk factors or other
assumptions on the distribution a large sample is randomly generated from
the risk factor distributions. With this generated sample the active return is
calculated in the same way as in the historical simulation.

6.3 Used dataset

For illustrative purpose we have the following dataset, see Figure 6.1, with the
daily time series of 5 stocks, S1(t) to S5(t), from the MSCI Europe benchmark
and the time series of the benchmark itself, denoted by B(t). With these 5 stocks
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Figure 6.1: The scaled down stocks and benchmark time series.

we’ll construct a hypothetical portfolio. Since the MSCI Europe has around
500 stocks, holding 5 stocks will replicate only a small part of the benchmark,
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therefore we expect a high tracking error. To support this we look at Figure
6.2 taken from (Fabozzi and Focardi, 2004), with only 5 stocks we can expect a
tracking error above 10%.

Figure 6.2: Tracking Error versus the Number of Benchmark Stocks in the
Portfolio.

Our data covers 3 years of history running from 01-07-2006 to 30-06-2009,
this gives 764 data points and 763 returns. On average this is 2541

3 returns per
year4. The returns are denoted by ri(t) with 1 ≤ i ≤ 5 for the stocks and rb(t)
for the benchmark, with t ranging from 1 to 763.

6.4 Empirical method

To get a good idea about how tracking error and Value at Risk are calculated we
first look at the empirical method before we look at the other methods. Here
we don’t look at the risk factors, but we look directly at the active returns,
that is, the portfolio returns minus the benchmark returns. However, we don’t
have an actual portfolio in our dataset. Therefore, we’ll construct a hypothetical
portfolio by using the buy-and-hold strategy, which means that at the beginning
one share of each stock, 1 to 5 is bought and there are no further transaction
made in these 3 years. So, we have that our portfolio equals

P (t) =

5∑
i=1

Si(t)

With this constructed portfolio, see Figure 6.3, the active returns can then be
calculated as

ra(t) = rp(t)− rb(t).

4Not all 365 days in a year are trading days, on average a year consists of 252 trading days.
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Figure 6.3: The scaled down portfolio and benchmark time series.

Note that in general we have

rp(t) = lnP (t)− lnP (t− 1) 6=
5∑
i=1

ri(t).

These active returns give an empirical distribution as depicted in the histogram,
see Figure A.1 in Appendix A.2. With these active returns we calculate the
(daily) tracking error as

daily σ(ra) =

√√√√ 1

n− 1

763∑
i=1

(ra(i)− r̄a)2 = 0.873%.

The annual tracking error we get using the square-root-of-time rule

σ(ra) =

√
254

1

3
· 0.873% = 13.92%.

The daily 97.5% VaR we get, using the percentile function of Excel5 which
approximates the 0.025% quantile,

daily VaR0.025% = 1.740%.

5This percentile function is somewhat different from the quantile function discussed in
Section 4.3.
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Again using the square-root-of-time rule, the annual 97.5% VaR is

VaR0.025% =

√
254

1

3
· 1.74% = 27.75%.

Notice that this is close to the 97.5% VaR calculated using the standard devia-
tion

1.96 · 13.92% = 27.28%

6.5 Parametric linear method

Model

As mentioned earlier the parametric linear method is based on the assumption
that the mapping function is a linear function (or a linearized function). There-
fore we can write ra = f(X) = θ′X =

∑n
i=1 θiXi. With X = (X1, . . . , Xn)′ the

risk factors and θ = (θ1, . . . , θn)′ the sensitivities. If we assume a distribution
for X, for example the multivariate normal distribution: X ∼ N (µ,Σ), we have
that ra ∼ N (θ′µ, θ′Σθ). Where in practice the µ and Σ need to be estimated
and µ is often assumed to be zero. These estimations can be made using the
formulas in Section 4.3. And with these estimations we have

ra ∼ N (θ′µ̂, θ′Σ̂θ).

From this we get that the tracking error equals

σ(ra) =

√
(θ′Σ̂θ)

and using that the distribution is normal the 97.5%VaR equals

VaR0.025 = −q0.025 = 1.96

√
(θ′Σ̂θ)− θ′µ̂.

In general with the assumption on the distribution of X we can try to get an
exact formula for the tracking error or the VaR. This will however not work for
all distributions.

Example

In our example we use the dataset from Section 6.3. We want to calculate the
risk that is taken over a risk horizon from T = 763 to T + 1. To calculate this
risk we again have to construct a hypothetical portfolio, we do this by assuming
that on time T the portfolio has certain weights for every stock and that these
weights are kept constant, a constant-weighting strategy. For our portfolio we
take these weights to be the last buy-and-hold position on 30-06-2009,

Stock 1 Stock 2 Stock 3 Stock 4 Stock 5
Price 38.48 49.16 16.12 25.74 16.85

Weight
ω1 = ω2 = ω3 = ω4 = ω5 =

26.29% 33.59% 11.01% 17.59% 11.51%
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6.5. Parametric linear method

With these weights we have as risk factor mapping function, formulating the
straightforward approach,

ra = f(X(t)) = f(r1, . . . , r5, rB) = ω1r1 + . . .+ ω5r5 − rB .

The sample covariance matrix Σ̂ of the dataset is
0.046% 0.040% 0.023% 0.017% 0.041% 0.029%
0.040% 0.076% 0.028% 0.017% 0.040% 0.036%
0.023% 0.028% 0.028% 0.013% 0.023% 0.021%
0.017% 0.017% 0.013% 0.093% 0.015% 0.016%
0.041% 0.040% 0.023% 0.015% 0.050% 0.029%
0.029% 0.036% 0.021% 0.016% 0.029% 0.027%


So with ω = (ω1, ω2, ω3, ω4, ω5,−1)′ and assuming normality around zero, we
have that ra is distributed as

ra ∼ N (0, ω′Σ̂ω).

We calculate the annual tracking error, while using the square-root-of-time-rule,
as

σ(ra) =

√
(ω′Σ̂ω) ·

√
254

1

3
= 0.865% ·

√
254

1

3
= 13.80%.

The VaR we can only calculate using the assumed distribution, which in this
case is the normal distribution, and hence

VaR0.025 = 1.96σ(ra) = 27.05%.

These results are very close to the results calculated in Section 6.4.

Advantages, disadvantages and extensions

The parametric linear method gives a quick way to calculate the tracking error
and the VaR; furthermore it gives the tracking error and VaR in an explicit
formula. The downside to this method is that we need quite strong and often
unrealistic assumptions of which only some can be relaxed. The assumption
of a normal distribution can be relaxed to a student-t distribution or elliptical
distribution (of which the student-t is a special case). But even with these
distributions we must assume that the covariance matrix is fixed.

Furthermore we assume that the risk factor mapping is a linear function,
this assumption is only accurate if the time horizon is small. We can extend the
parametric linear method to quadratic functions; this is also called the delta-
gamma method. For quadratic functions there are also explicit formulas, see
for examples (Holton, 2003). This quadratic function method can give a better
approximation.
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6.6 Historical simulation

Model

This method is based on the assumption that history will repeat. Let ra = f(X)
be the risk factor mapping and let

X(t) for T − k + 1 ≤ t ≤ T

be k realizations of the risk factors in the past. These realizations of risk factors
we can map to active returns using the risk factor mapping. So f(X(t)) gives
the active return that will be experienced over the next period if the risk factor
change is X(t). This will give a sample of k active returns. Now we can proceed
like in the empirical method and compute VaR with a quantile of this sample
and we can calculate the tracking error as the standard deviation of the sample.

Example

For the historical simulation example we use the same hypothetical portfolio,
using the current weights of

ω = (ω1, ω2, ω3, ω4, ω5,−1)′ = (26.29%, 33.59%, 11.01%, 17.59%, 11.51%,−1)′.

With these weights we calculated active returns using the 1 ≤ t ≤ 763 realiza-
tions of the risk factors

ra(t) = ω1r1(t) + . . .+ ω5r5(t)− rb(t).

These active returns are now distributed as follows, see the histogram in Figure
A.2 in Appendix A.2. We calculate the annual tracking error as the standard
deviation of these active returns and using the square-root-of-time-rule we get

σ(ra) =

√√√√ 1

n− 1

763∑
i=1

(ra(i)− r̄a)2 ·
√

254
1

3
= 0.878% ·

√
254

1

3
= 14.00%

and we have
1.96 · σ(ra) = 27.44%

The annual 97.5% VaR of these active returns is

VaR0.025 = 1.805% ·
√

254
1

3
= 28.76%.

Again notice the difference between the empirical method and the historical
simulation method, while the empirical method calculates the active return for
every position in the past, the historical simulation method only uses the current
position to calculate active returns. In this setting, however, the results differ
only slightly. But if we’ll use more stocks and a more active position then it can
differ more.
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6.7. Monte Carlo method

Advantages, disadvantages and extensions

The main advantage of the historical simulation method is that there’s no need
to make any assumption about or calculations of the distribution of the risk
factors. Characteristics of the active return distribution, such as volatilities
and correlations are captured implicitly in the realizations of the risk factor
changes. However this method is highly dependent on which data set is used.
Extreme events such as market crashes or other outliers can seriously distort
the historical simulation risk measures. Especially the VaR for high quantiles
is sensitive to such events.

Another problem is the lack of available data, one year of data corresponds
to only 252 data points, the number of trading days on average. This means
that we need a few years of data to get a good measure for the daily tracking
error and the daily VaR. If we use one year of history the 97.5% VaR measure
will only be based on the 6-th and/or 7-th lowest return, since 2.5% of 252 is
6.3. For weekly or monthly measures we need even more years. If we use more
years of data, then there’s a greater chance that we include years with ‘polluted
data’ because of structural changes in the market6. It’s not very clear if and
how we can use such data for predicting the risk which is taken now.

A way to partly deal with these drawbacks is using exponential weighting of
the returns instead of equally weighting. We do this by including a decay factor
that gives more weight to the more recent observations. (Alexander, 2008d)
gives another method, volatility weighting: here the weights for the returns are
dependent on the volatility, this gives the adjusted returns

r̃(t, T ) = (
σ̂T
σ̂t

)r(t)

with σ̂T the volatility estimated at the current time and σ̂t the volatility esti-
mated at time t < T .

6.7 Monte Carlo method

Model

For the Monte Carlo method we simulate possible risk factors X1, . . . ,XN for
large N (e.g. 1.000 or 10.000). These simulations are generated from the
multivariate distribution of the risk factors which is estimated using histori-
cal data. So suppose we have estimated the distribution of the risk factors
X = (X1, . . . , Xn) to be X ∼ N (µ̂, Σ̂), where, for simplicity we assume the
distribution to be normal. Now we need to generate risk factors with the same
distribution. First of all, in any mathematical or statistical program there’s a
way to generate random numbers and there is an inverse of the normal proba-
bility density function. With this we can generate Z1 to Zn, with Zi ∼ N (0, 1)

6A nice example is the introduction of the euro in 1999.
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i.i.d. and hence Z = (Z1, . . . , Zn) is distributed as

Z ∼ N (0, I),

with I the (n × n) identity matrix. Since we have for any (n × n) matrix C,
that

C ′Z ∼ N (0, C ′C),

our aim is now to find a matrix C such that

C ′C = CC ′ = Σ̂.

Note that if we need to do this when µ̂ 6= 0 the matrix C doesn’t change. We will
discuss two methods for finding such a matrix C that decomposes the covariance
matrix Σ̂, both methods use the fact that a covariance matrix is symmetric and
positive definite. An (n× n) matrix A is positive definite if

x′Ax > 0 ∀x ∈ Rn non-zero.

Cholesky

(Golub and van Loan, 1996) prove that an (n × n) matrix A has a unique
factorization into a lower triangular (n × n) matrix L with strictly positive
diagonal elements and its transpose L′ an upper triangular matrix, such that

A = LL′

This is called the Cholesky decomposition of A. An algorithm for finding L is
easily found by writing out the equation above and using that the matrix is
symmetric and positive definite. For a (3× 3) matrix we havea11 (symmetric)

a21 a22

a31 a32 a33

 =

l11 0 0
l21 l22 0
l31 l32 l33

l11 l21 l31

0 l22 l32

0 0 l33


=

 l211 (symmetric)
l21l11 l221 + l222

l31l11 l31l21 + l32l22 l231 + l232 + l233


and we obtain from this equation, the formulas

l11 =
√
a11

l21 =
a21

l11

l22 =
√
a22 − l221

l31 =
a31

l11

l32 =
a32 − l31l21

l22

l33 =
√
a33 − l231 − l232.
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6.7. Monte Carlo method

This can easily be extended to the general formulas for (n× n) matrices

lii =

√√√√aii −
i−1∑
k=1

l2ik

lij =
aij −

∑j−1
k=1 likljk
ljj

for i > j.

With this Cholesky decomposition we have decomposed Σ̂ = CC ′ using a lower
triangular matrix, this will make the calculation of C ′Z simple.

Spectral decomposition or eigen decomposition

An n-dimensional eigenvector e of a square (n×n) matrix A and its correspond-
ing eigenvalue d are defined by the property

Ae = de.

Now if A is symmetric then we have n eigenvalues, not necessarily distinct,
which are all positive if A is positive definite. We order the eigenvalues from
largest to smallest. That is, d1 ≥ d2 ≥ . . . ≥ dn. Since A is symmetric the
corresponding eigenvectors e1 to en can be chosen to be orthogonal to each
other and have norm one. Let

D = diag(d1, . . . dn)

be the diagonal matrix with the eigenvalues on its diagonal, we have the ob-
vious property for diagonal matrices that DT = D. Let E = (e1, . . . , en) be
the orthogonal matrix with the eigenvectors as columns, an orthogonal matrix
satisfies the property that

E′ = E−1.

Now since we have Aei = diei for all 1 ≤ i ≤ n, we have that

AE = A(e1, . . . en) = (Ae1, . . . , Aen) = (d1e1, . . . , dnen) = ED.

From this equality we get the spectral or eigen decomposition

A = EDE′.

Because A was assumed to be positive definite the eigenvalues are all posi-
tive which means that the square root of the diagonal matrix is well-defined√
D = diag(

√
d1, . . .

√
dn), such that D =

√
D
√
D. From this we can get the

decomposition we want for the covariance matrix, if we set A = Σ̂, this decom-
position is

A = EDE′ = E
√
D
√
DE′ = E

√
D(
√
D)′E′ = (E

√
D)(E

√
D)′.
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The Choleksy decomposition is more straight forward and is easier to use in
the calculation then the eigen decomposition, the disadvantage to the Cholesky
decomposition is that it fails if the covariance matrix is not positive-semidefinite,
because then the algorithm tries to take the root of a negative number. In the-
ory every covariance matrix is positive-semidefinite, but in practice when using
big matrices a simple miscalculation or using a hypothetical covariance matrix,
can lead to a non positive-semidefinite covariance matrix so that the Cholesky
decomposition fails. It’s not easy to find a workaround for this problem. For the
Eigen decomposition this can be done easily by setting any negative eigenvalue
to zero.

Now with the simulations generated using the Cholesky decomposition or
the eigendecomposition of the covariance matrix, we can, in the same way as
in the historical simulation method, calculate the losses that will occur, using
these generated risk factors, by ri = f(Xi) for i = 1, . . . , N . And again, VaR
can be calculated with the quantile and the tracking error as the standard error
of the sample.

Example

For the Monte Carlo method, with 1000 simulations, we use the same port-
folio as for the parametric and historical simulation methods. First of all we
generate 6 × 1000 random drawings from a normal distribution, 1000 for each
stock and 1000 for the benchmark. We’ve already seen the covariance matrix
Σ for the parametric linear method in Section 6.5. Then using the Cholesky
decomposition C of Σ

0.021 0 0 0 0 0
0.019 0.020 0 0 0 0
0.011 0.004 0.012 0 0 0
0.008 0.001 0.003 0.029 0 0
0.019 0.002 0.001 0.000 0.011 0
0.014 0.005 0.004 0.001 0.001 0.007


or the eigen decomposition D of Σ

0.0013 0.0058 0.0021 0.0066 0.0040 0.0189
0.0010 -0.0004 0.0026 -0.0119 0.0071 0.0237
0.0019 -0.0007 -0.0104 0.0007 0.0019 0.0129
0.0002 -0.0001 0.0006 -0.0007 -0.0267 0.0146
0.0004 -0.0053 0.0031 0.0081 0.0046 0.0193
-0.0055 0.0008 -0.0024 0.0002 0.0022 0.0153


we can transform these 6×1000 drawings from a normal distribution to 6×1000
drawings ri(1) to ri(1000) for i = 1, . . . , 5, b from a distribution N (0,Σ), these
drawings represent the simulated risk factors. Now with the portfolio position
we calculate the active returns by

ra(n) = ω1r1(n) + . . .+ ω5r5(n)− rb(n) for 1 ≤ n ≤ 1000.
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These active returns depend, of course, on the generated drawings from the nor-
mal distribution. Also, using the Cholesky decomposition or the eigen decompo-
sition leads to (slightly) different, but similar results. For one of the simulation
done, using the Cholesky decomposition, the active returns are distributed as
follows, see the histogram in Figure A.3 in Appendix A.2. We calculate the
annual tracking error as the standard deviation of these active returns, while
using the square-root-of-time-rule,

σ(ra) =

√√√√ 1

n− 1

1000∑
i=1

(ra(i)− r̄a)2 ·
√

254
1

3
= 0.828% ·

√
254

1

3
= 13.20%

and we have
1.96 · σ(ra) = 25.88%.

The annual 97.5% VaR of these active returns is

VaR0.025 = 1.581% ·
√

254
1

3
= 25.21%.

Advantages, disadvantages and extensions

This is the most versatile method. We can assume any distribution for the risk
factors and any function can be used. But we still rely on estimations of the
risk factor distributions. The main drawback is that if N is chosen to be a large
number and the risk factors and function is complex the computation time can
become very large. And although with extensions this method seems to be able
to model the active return distribution very accurately, the results are only ‘as
good as the model’.

This method can and has been extended in many ways. See (Jäckel, 2002)
or (Glasserman, 2003) for a rich analysis on the techniques that can be used to
enhance the Monte Carlo method.

6.8 Further extension

Here we cover some further extensions with regard to calculating the volatilities,
covariances and sensitivities.

6.8.1 Principal components analysis

Not all risk factors influence the active return in the same way. Some risk
factors explain more of the variance in active returns than other risk factors.
Principal component analysis is a way to order the risk factors according to their
influence. Furthermore it can be used to reduce the dimension of the covariance
matrix used in the parametric linear model and the Monte Carlo model. Here
we’ll discuss the principal components analysis, for an elaborate example and
application see (Alexander, 2008a).
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Let X = (X1, . . . Xn)′ the (n × t) matrix with n risk factors and Xi =
(Xi(1), Xi(2), . . . , Xi(t)) the t realizations of these risk factors, for simplicity
we assume a zero mean. Let Σ̂ be the covariance matrix of X. The principal
components analysis also uses the spectral decomposition discussed in Section
6.7. So we have

Σ̂ = EDE′,

with E and D as in Section 6.7. The principal components matrix P of X is
now defined by

P = E′X

and the j-th principal component is defined as the j-th row of this matrix, given
by

pj = e′jX

With ej the j-th eigenvector. This matrix has the property that

Cov(P ) = E′ Cov(X)E = E′Σ̂E = E′EDE′E = D.

Here we used, E′ = E−1 and hence EE′ = E′E = I the (n × n) identity
matrix. This covariance matrix means that the principal components of X are
uncorrelated to each other and that the variance of pj is equal to dj . Since the
eigenvalues dj are ordered from largest to smallest, the principal components
are ordered by variance from large to small. It can be shown that if we maximize
the variance of p1 = y1X over all y1 with norm one, then this maximum will be
the first eigenvector e1 corresponding to the largest eigenvalue. And the second
eigenvector e2 maximizes p2 = y2X over all y2 with norm one and orthogonal
to y1. And so on to the last eigenvector en.

Now, since P = E′X and E′ = E−1 we can define the principal component
representation of X as

X = EP.

If we work out this multiplication, we have for each risk factor Xi with 1 ≤ i ≤ n
the representation

Xi = e1ip1 + e2ip2 + . . .+ enipn

here we use the notation for the j-th eigenvector as

ej = (ej1, ej2, . . . , ejn)′.

The principal components reduction is now as follows: since we ordered the
eigenvalues, the principal components pi are ordered by variance, from largest
to smallest. So a major part of the variance is explained by the first k principal
components, usually k is taken small like 3 or 5, and therefore the risk factor
Xi can be approximated by

Xi ≈ e1ip1 + . . .+ ekipk.

And in matrix notation
X ≈ EkPk
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With Ek the adjusted (n × k) matrix with the first k eigenvectors as columns
and Pk the adjusted (k × t) matrix with the first k principal components as
rows. And from this approximation of X we get an approximation of Σ̂ by

Σ̂∗ = Cov(EkPk) = Ek Cov(Pk)ETk = EkDkE
T
k

with Dk = diag(d1, . . . , dk). We can use this approximation of Σ̂ to simplify the
calculations, without loosing much of the underlying information.

6.8.2 Using time series

Random walk model

Until now we made the approach that the risk factor returns are randomly drawn
from some overlying distribution and that their mean and variance is fixed over
time. This comes down to the assumption that the risk factor distributions are
unconditional, which means that if (Xt)t∈N is a time series that the distribution
FXt+1|Ft = FX for all t with Ft the sigma field (the information available on
time t). In the conditional case this equality does not necessarily hold. This
means we can have a varying mean and covariance matrix over time in the
conditional case. In this section we will further investigate this using as basis
the random walk model with drift7 for the time series (Xt)t∈N which is

Xt = c+Xt−1 + εt εt ∼ i.i.d.N (0, σ2).

The property that εt is distributed as N (0, σ2) and i.i.d. is usually referred to
as εt following a white noise process. A white noise process can be described by
the properties

E[εt] = 0 for all t,

E[ε2
t ] = σ2 for all t,

Cov(εs, εt) = E[εsεt] = 0 for all s 6= t.

If in this model Xt are the log prices of a stock, then we have for the log return
the basic model

rt = Xt −Xt−1 = c+ εt

with εt a white noise process. Notice that in this basic model the return is
independent on past returns, and all the returns are i.i.d. normal distributed.
This boils down to the unconditional approach where the risk factor returns are
randomly drawn from a normal distribution

7In all the models introduced in this section we include a drift, which is just a constant
c in the model. In many works, however, this constant is omitted or assumed to be zero for
simplicity.
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Stylized facts

Before we extend this model we first look at some stylized facts regarding daily
return series, these are empirical findings that generally hold for a majority of
daily return series. (McNeil et al., 2005) state these as follows, in their work
also a motivation can be found,

• Return series are not i.i.d. although they show little serial correlation.

• Series of absolute or squared returns show profound serial correlation.

• Conditional expected returns are close to zero.

• Volatility appears to vary over time.

• Return series are leptokurtic or heavy-tailed.

• Extreme returns appear in clusters.

With these ‘facts’ in mind, we can enhance our basic model for return series
(rt)t∈N.

Autoregressive-moving average models

Autoregressive-moving average models, or ARMA models, focus mainly on data
where the return series show signs of autocorrelation or serial correlation. First
of all, there is the autoregressive model that makes the returns dependent on
past returns. An autoregressive model of order p, denoted as AR(p), with εt a
white noise process, is written as

rt = c+ φ1rt−1 + . . .+ φprt−p + εt.

Next we can make the returns dependent on past errors εt. This is called the
moving average model of order q, denoted as MA(q), with εt a white noise
process,

rt = c+ εt + θ1εt−1 + . . .+ θqεt−q.

These two models can also be combined to the autoregressive moving average
model with p autoregressive components and q moving average components.
This is denoted as ARMA(p, q), with εt a white noise process,

rt = c+ φ1rt−1 + . . .+ φprt−p + εt + θ1εt−1 + . . .+ θqεt−q.

Notice that ARMA(p, 0) = AR(p) and ARMA(0, q) = MA(q).

Autoregressive conditional heteroskedasticity model

Until now we have assumed that εt has constant variance σ2 over time. The
generalized autoregressive conditional heteroskedasticity (GARCH) model, in-
troduced by (Bollerslev, 1986), assumes a time-varying variance σ2

t . With a
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6.8. Further extension

GARCH(p, q) model this variance is modeled with p error terms and q variance
terms as follows

σ2
t = α0 + α1ε

2
t−1 + . . .+ ε2

t−q + β1σ
2
t−1 + . . .+ βqσ

2
t−q.

If we set q = 0, then we have GARCH(p, 0) = ARCH(p), which is the ARCH
model, or autoregressive conditional heteroskedasticity model, introduced by
(Engle, 1982). The εt in these models often come from the basic model

rt = µ+ εt

But also an ARMA(p, q) model, including the possibilities p = 0 or q = 0, can
be used.
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Chapter 7

Implementing active
management risk in the
standardmodel

In this chapter we’ll discuss the possible ways there are of implementing an
active management risk component in the standard model. We’ll focus mainly
on an active management risk component when investing in developed market
equities. First we’ll give 3 implementation methods that are already known,
then we’ll discuss all the important elements that should be considered when
implementing active management. Lastly we’ll see what the impact is on the
required funding ratio, using some artificial fund positions.

7.1 Possible ways of implementing active man-
agement risk

There are already some implementation methods in use. These methods can be
divided into two main categories. Namely,

Category 1

Adding an extra risk element in the standard model. This will form
an extra risk element S7 or S10, depending on if liquidity, concentra-
tion and operational risk are included as risk elements. When this
risk element is valued, using the tracking error or the VaR or another
type of valuation1, it can be taken into the square root formula.

1Not necessarily a risk measure has to be used, we’ll see this in Section 7.2.2.
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Category 2

Incorporating an active management component to the equity risk
element S2 and specifically to the risk element for developed market
equities S2A, which is 25% in the standard model. With the measure
of the active risk this 25% can be raised (or lowered) to give a buffer
against equity risk plus active management. This adjustment is
usually done by adding the active management risk volatility to the
benchmark volatility, keeping in mind some correlation. From this
we get an adjusted S′2A.

Now we’ll give the three methods in use, or suggested to be used. All three
methods use the ex-ante tracking error, but as we’ve seen in Section 5.2, this
ex-ante tracking error can also be calculated using the VaR technique. For easy
of discussion we’ll from now on focus only on the tracking error.

Method A

This method belongs to the first category and the formula for the extra risk
element S7 is as follows

S7 = −
∑
bc

Amountbc · (Φ−1(1− α) ·TEbc −TERbc)

with

Amountbc :the amount invested in equities

Φ−1(1− α) :the inverse of the normal cumulative distribution function,

for α = 0.975 we have Φ−1(1− α) = −1.96

TEbc :the tracking error of the amount invested in equities

TERbc :the total expense ratio of the amount invested in equities.

We can simplify this formula to

S7 =
∑
bc

Amountbc · (1.96TEbc + TERbc).

This sum should be interpreted as follows: suppose 20% of the total capital is
invested in developed market equities with a tracking error of 4% and a TER of
0.5% and 10% of the total capital is invested in developed market equities with
a tracking error of 6% and a TER of 1% then the risk element for developed
market equities is

S2A = 25% ∗ 30% = 7.5%

and the active management risk is

S7 = 20% ∗ (1.96 · 4% + 0.5%) + 10% ∗ (1.96 · 6% + 1%) = 2.94%.
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Notice that in this calculation the correlation between investments with different
tracking errors and total expense ratio is assumed to be 0.

The square root formula for the required funding ratio discussed in Section
3.8 will in this method change to

St =

√
S1

2 + S2
2 + 2ρ1S1S2 + S3

2 + S4
2 + S5

2 + S6
2 + S7

2 + 2ρ2S2S7.

Here ρ1 is the usual correlation between S1 and S2, which is 0.5, and ρ2 is the
correlation between S2 and S7. In this method the assumption is made that the
active management risk element is uncorrelated to the equity risk element, this
means ρ2 = 0, when analyzing this method we will, however, also investigate
the possibility of other values for ρ2. In this square root formula the active
management risk element is also uncorrelated to the other risk elements.

Method B

The next method belongs to category 2 and uses three steps. For the first step
the volatility (or standard deviation) of the benchmark is needed, which we’ll
denote by σbenchmark. And we need the volatility around the benchmark, which
is the tracking error: σtracking error. Now the volatility for the active investment
is calculated using the formula

σ2
active investment = σ2

benchmark + σ2
tracking error + 2ρσbenchmarkσtracking error

with ρ the correlation between the benchmark and the tracking error, in this
method this correlation is assumed to be zero. But again, we’ll also analyze
other values.

In the next step we calculate Fa, which is called the active management
factor, by the formula

Fa =
σactive investment

σbenchmark
.

In the last step the adjusted scenario Dadjusted is calculated from the scenario in
the standard model Dstandard, which is 25% for developed market equities, by

Dadjusted = Fa ·Dstandard.

With this adjusted scenario the risk element S′2A is calculated and the adjusted
required funding ratio follows from the square root formula.

Method C

Another method that also falls under category 2, where we again use the factor
1.96 for the 97.5% confidence interval of a normal distribution, can be formulated
as follows

Dadjusted = 1.96

√
(
Dstandard

1.96
)2 + σ2

tracking error + 2ρ(
Dstandard

1.96
)σtracking error.
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Where ρ is the correlation between the tracking error and the scaled down
standard scenario Dstandard, which is 25% for investments in developed market
equities. In this method ρ is assumed to be 0.5.

Although this method looks different from Method B, these methods are
very similar. If we take σbenchmark = Dstandard

1.96 we have for method B

Dadjusted = Fa ·Dstandard

=
σactive investment

σbenchmark
·Dstandard

=
σactive investment

Dstandard/1.96
·Dstandard

= 1.96σactive investment

with σactive investment defined in Method B. For Method C we have the same
formula for Dadjusted if σbenchmark = Dstandard

1.96 .

7.2 Considerations

Before we discuss these ways of implementing an active risk component, we
first discuss some elements that should be considered. First of all, we’ve seen
in Section 2.2 that the standard model is based on some basic principles. For
active management risk these principles could play a role when deciding on the
choice of implementation. We will use the numbering of these principles used
in that section.

7.2.1 Correlation

As we’ve seen in Section 3.8 and Section 3.9 there are correlations between risk
elements that should be taken into account. If we choose category 1 should there
be a correlation between the active management risk element S7 and the equity
risk element S2? And in category 2, when the 25% scenario for developed
market equities is raised, what should be the correlation between the active
management risk and the benchmark risk? These questions boil down to the
general question: “Are active returns and benchmark returns correlated?” And
more importantly are they correlated when, in extreme events, we have negative
benchmark returns?

This is a hard question. If we look back at Section 3.10 we see that there
can be different goals for active management. With 2 opposite goals being:

• Reducing the risk by lowering the volatility of the benchmark.

• Trying to outperform the benchmark by selecting volatile stocks, if the
benchmark goes up (positive return) then these stocks tend to go up more.
But there exists the risk of underperforming the benchmark when the
benchmark goes down.
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If in the first goal the benchmark return is positive our strategy aims at a lower
portfolio return and hence a negative active return, since ra = rp − rb. And if
the benchmark return is negative our strategy aims at a higher portfolio return
and hence a positive active return. This would lead to a negative correlation
between the benchmark return and the active return.

For the second goal we have the opposite. If a benchmark return is positive
the fund wants to outperform it, giving an active return that is positive. If,
on the other hand, the benchmark return is negative the fund has the risk of
underperforming, making the active return also negative. This would lead to a
positive correlation.

So what we see is that a fund can use an active strategy to manipulate the
correlation between the benchmark return and the active return. Therefore it
will be hard to say what effect this strategy has on the correlation.

Another complication is stated in the 9-th principle of Section 2.2. Suppose
it can be shown that the correlation between benchmark returns and active
returns for a fund is on average 0.1. How can we tell if this correlation holds in
extreme events when the benchmark returns are highly negative?

We can, however, distinguish between a few possibilities for this correlation,
of which some are in use as we’ve seen in Section 7.1. We’ll discuss some
possibilities there are, with ρ being the correlation between benchmark returns
and active returns,

−1 ≤ ρ < 0:

Although strategies do exist that would have a negative correlation,
there is no guarantee that this will hold in extreme events. Further-
more, the main reason that the standard model is revised is that the
required funding ratio calculated with the current standard model
is too low and therefore an active management component should
raise this required funding ratio. With a negative correlation there
exists a possibility that the required funding ratio is lowered.

ρ = 0:

This assumption is made in Method A and Method B. It comes from
the view that the correlation will fluctuate over time, sometimes it
will be positive, sometimes negative, but on average it will be zero.
Starting from this point, the correlation can be altered for funds that
have a very different strategy which would suggest an correlation
above or below 0.

0 < ρ < 1:

Method C makes this assumption, with a correlation of 0.5. This
view is bit more conservative; the average correlation between bench-

64



7.2. Considerations

mark returns and active returns tends to be slightly positive for most
pension funds and it can be taken into account that in extreme events
the correlation can become higher, see principle 9, and that there-
fore a fund should take into account the possibility of a correlation
above 0. Also the risk that is added by active management is not
very transparent, see principle 4. Therefore, depending on how con-
servative the view on this risk is, the correlation is assumed to be
somewhere between 0 and 1 and preferably it is rounded to a simple
fraction like 1

2 , 1
4 or 3

4 , see principle 6.

ρ = 1:

An extremely conservative possibility is setting the correlation equal
to 1. This comes down to just adding the active risk component to
the equity risk or adding the tracking error to the standard deviation
of the benchmark. This option has the disadvantage that it very well
could make funds very careful in their active management and even
could stimulate funds to stop managing actively, which would lessen
their diversification, see principle 10.

In this thesis we focused on active management risk when investing in developed
market equities. But active management risk also plays a part in other types
of investments as we’ve seen in Section 3.10. This means that we can have a
tracking error for bonds, for developed market equities, for emerging market
equities, etc. and on top of that there can be a dynamic or tactical asset
allocation. Furthermore, it is not uncommon to have multiple managers for
investing in developed market equities, each one of them investing a part of the
capital with its own strategy, giving multiple tracking errors2. What then will
be the total tracking error of a portfolio? Between all these tracking error there
will be correlations and it’s hard to say what will happen in extreme events.

7.2.2 Which tracking error?

We’ve seen that all three methods in Section 7.1 use the annual ex-ante tracking
error3 to calculate an active management risk component. However, this ex-ante
tracking error is not a measure that remains constant over time; if the (active)
position changes, then also the ex-ante tracking error changes. Should we use
an average ex-ante tracking error over time? Furthermore, there are many
different ways of calculating this tracking error, for instance we must choose
one of the 3 different methods discussed in Chapter 6, we also need to choose
between linear returns and log returns, like we discussed in Chapter 4, and we
must make assumptions on their distributions. A fund can also differ in using

2This we saw in the example for method A, were a correlation of 0 is assumed between
these different managers.

3The ex-ante measure is used since we’re measuring the risk of what will happen over a
1-year horizon and not what did happen in the past.
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a history with daily, weekly or monthly returns covering a past of 1 month, 1
year, 3 years, etc. And when using the Monte Carlo method, the number of
simulations can vary. Typical for a pension fund of Syntrus would be using the
Monte Carlo method with a history of weekly returns over 3 years and with
around 5000 or 10000 simulations.

A solution for a varying tracking error is using the maximum tracking error.
This maximum tracking error is usually given in the policy guideline plan of
a pension fund. A fund manager may not take on a strategy that exceeds
this maximum tracking error. So if on one day the calculated ex-ante tracking
error is above this maximum tracking error, then the manager should change
his investment positions. The advantage of using the maximum tracking error
is that it’s a very constant element; typical for a Syntrus fund is a maximum
tracking error between 3% and 6% for equities and it only changes after a year
or more. A disadvantage is that it’s not really a tracking error, but already an
extremum of possible tracking errors and already takes into account a certain
confidence level, not necessarily 97.5%. If we treat the maximum tracking error
as a standard deviation, which is done in all three methods discussed in Section
7.1, the risk will be overestimated. We could of course adjust this maximum
tracking error in some way to get a useful standard deviation. But in Appendix
A.1 we show that the distribution of the estimator for the tracking error only
approaches normality for large samples, for small samples this distribution is
not normal so the extremum in the form of the maximum tracking error is hard
to manipulate.

A solution for the many varying ways to calculate tracking error is somewhat
harder. Often the tracking error is reported, while giving only little information
about the way it has been calculated and what assumptions have been made.
A possibility for DNB could be to prescribe the exact method, including the
amount of history and the number of simulations etc., to be used.

7.2.3 TER and alpha

In method A we see that the total expense ratio (TERbc), which is calculated as
the total costs made to actively manage the amount invested in equities divided
by the total amount invested in equities, is also included in the formula. And
more specifically it is added to the risk without a factor. So extra costs lead to
extra risk, or more precisely, to extra required funding ratio.

In none of the methods the alpha is included. Remember that α is the
constant in the regression of the active return against the individual asset returns
or market return. This alpha can be seen as the (ex-ante) expected active return.
If a fund tries to outperform the benchmark then of course they want this alpha
to be positive and it can simply choose an active strategy with positive alpha.
Should this alpha be included in the formula for the active risk element?

If we look again at the principles, then the 9-th principle which says that
“the determination of a parameter should be consistent with the determination
of the other parameters” should be considered here. Remember the way the
parameters for equity risk were obtained in Section 3.2. The volatility of the
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benchmark was estimated to be approximately 17% and a normal distribution
was assumed around an expected return of 8%, this gave the 25% ≈ 8%− 1.96 ·
17% parameter for S2A. So in line with this calculation the alpha should be
included.

It should be noted that the TER and the alpha are usually quite small,
around 1%. So including these elements in the calculation of S7 will not give a
significant change in this risk element. And hence according to the 5-th principle
these elements can be excluded in the calculation. Another argument for leaving
out the TER and the alpha is that it is possible that they cancel out. Ideally
with extra costs one can expect a higher alpha4, so they have an opposite effect
making the total effect even less significant.

7.2.4 Consistent

We just mentioned that the determination of an active management risk ele-
ment should be consistent with the determination of the other elements, and in
particular with the determination of the developed market equity risk element
S2A, which was done by the expected return minus 1.96 times the benchmark
volatility. In method A the expected active return (or alpha) is not included
in the calculations of S7, but otherwise this method seems ‘in line’ with the
calculation of S2A.

The other 2 methods on the other hand are not in line with the calculation
of S2A. In method B a factor is calculated using the current volatility of the
benchmark, not necessarily 17%, and the tracking error. But then the 25%
scenario is multiplied with this active investment volatility factor. In line with
the calculation of S2 this method could be adjusted to

Method B’

The active volatility is

σ2
active investment = σ2

benchmark + σ2
tracking error + 2ρσbenchmarkσtracking error

with ρ = 0. The active management factor is then

Fa =
σactive investment

σbenchmark
.

And the adjusted scenario Dadjusted is

Dadjusted = −(8%− 1.96 · (Dstandard + 8%

1.96
) · Fa).

We emphasize that we calculate the factor using the current benchmark volatil-
ity instead of the for S2A assumed volatility of Dstandard+8%

1.96 ≈ 16.837%. Method
C can be adjusted in a similar way.

4Although some studies claim that actively managed funds more often underperform a
benchmark then outperforming it, meaning that they have a negative alpha and a positive
TER.
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Method C’

Dadjusted = −(8%− 1.96 · σactive investment)

with σactive investment equal to√
(
Dstandard + 8%

1.96
)2 + σ2

tracking error + 2ρ(
Dstandard + 8%

1.96
)σtracking error).

This is again equal to a method B’ type, now with a benchmark volatility of
Dstandard+8%

1.96 and a correlation ρ = 0.5 instead of 0.

7.2.5 Impact and the ‘look-through principle’

In the 3 methods we’ve discussed the tracking error gives but a minor factor in
the calculation of the required funding ratio. Often the impact on the required
funding ratio is not more then 1%, if the tracking error is not too large. If we
look at principle 5 then we could choose to ignore this risk element.

On the other hand (DNB, 2011) takes into account the look-through princi-
ple5. This says that for every investment it should be clear what the risks are.
With more data on tracking errors and total expense ratios the risk of active
investment can better be analyzed. Hence, one can choose to include tracking
error in the standard model for this reason.

7.3 What is the impact?

To give an indication of the impact of including an active management risk
element we calculate the impact active management risk has on the required
funding ratio for some asset allocations and tracking errors. For this we will use
the mean risk elements calculated by (DNB, 2011)

Risk element S1 S2 S3 S4 S5 S6

Mean risk 8.9% 14.9% 2.3% 1.1% 1.1% 3.5%

This mean was taken over all the funds in their analysis covering about 90%
of the pension funds in terms of technical provision. And it gives a required
funding ratio of 21.3%.

Assumptions for calculating the impact with category 1

First we look at the square root formula for a category 1 implementation

St =

√
S1

2 + S2
2 + 2ρ1S1S2 + S3

2 + S4
2 + S5

2 + S6
2 + S7

2 + 2ρ2S2S7.

We will simplify this model to

St =

√
S1

2 + S2
2 + 2ρ1S1S2 + S3−6

2 + S7
2 + 2ρ2S2S7

5In Dutch called ‘Doorkijkbeginsel’.
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and we calculate S3−6 from the means reported by (DNB, 2011) as

S3−6 =

√
S3

2 + S4
2 + S5

2 + S6
2 ≈ 4.5%.

For S1 we also use the mean reported by (DNB, 2011) to be 8.9%. For S2

we will look at 3 types of investment strategies. Type 1 with 25% in equities,
type 2 with 50% in equities and type 3 with 75% in equities. We assume that
all these investments in equity are in developed market equities S2A, with a
downward scenario of 25%. For many funds the majority of their investment in
equities is in developed market equities and the effect of having a small part of
the investments in riskier equities like emerging markets or private equity will
be, roughly, diversified away by the correlation of 0.75 between these equities.
For S7 we will vary the tracking error between 0%, 2%, 4% and 8%. And the
Total expense ratio will vary between 0%, 1.5% and 3%. For the correlation
between active risk and equity risk we will take ρ2 = 0, ρ2 = 0.5 or ρ2 = 1.

Assumptions for calculating the impact with category 2

For category 2 we take a similar approach. Now we have the simplified square
root formula with the adjusted S′2,

St =

√
S1

2 + S′2
2 + 2ρ1S1S′2 + S3−6

2.

Again we take S3−6 ≈ 4.5% and S1 = 8.9%. For calculating S′2 we also look at
the 3 types of investments with 25%, 50% and 75% developed market equities.
And we take the tracking errors to be 0%, 2%, 4% and 8%. The benchmark
volatilities, for Method B, we set equal to 14%, 17% and 20%. And the correla-
tion between the tracking error and the benchmark volatility is again 0, 0.5 or
1. The total expense ratio is not used in these methods.

Results

Since there are many variables we only represent a part of the results, namely
we’ll show the added required funding ratio with varying tracking error and
varying investments in equity for Method A with a TER of 1.5%6; changing the
TER only gives a small change in added required funding ratio. The results for
this method are shown in Figures A.4, A.5 and A.6 in Appendix A.3.1. Also
we’ll show the added required funding ratio for Method B with a benchmark
volatility of 17%; changing the benchmark volatility leads to weird results. The
reults for this method are shown in Figures A.7, A.8 and A.9 in Appendix A.3.2.
For Method C we only show the added required funding ratio for the adjusted
type; the non-adjusted type is similar to a Method B type with benchmark
volatility 25%

1.96 ≈ 12.755% and we leave out the adjusted Method B, since with a

benchmark volatility of 25%+8%
1.96 ≈ 16.837% this type is similar to the adjusted

6For this method we assume that if we have a tracking error of 0% then also the TER is
0%.
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Method C. The results for Method C’ are shown in Figures A.10, A.11 and A.12
in Appendix A.3.3.

Summary of the Main Results

Method C as discussed in Section 7.1 with a correlation of 0.5 calculates the
highest added required funding ratio, but this is mainly due to the correlation.
If we keep the correlation fixed then all the methods give roughly similar results.
There are, however, a few remarks that can be made

• Influence of the investment type, 25%, 50% or 75% in equities.
It is clear that a higher investment amount in equities leads to higher
added required funding ratio if the tracking error is raised. Firstly we
remark that if S1 and S3−6 are set to zero, then the ratio between the
results of 25% equity, 50% equity and 75% equity is exactly 1 : 2 : 3, this
is clear when we look at the formulas. When S1 and S3−6 are set to 8.9%
and 4.5%, we notice that for Method A a change in investment type has
the most influence, on average a ratio of approximately 1 : 2.83 : 4.82,
only changing a little if the tracking error or the correlation is changed.
For the other methods these ratios are almost similar to each other and
on average 1 : 2.29 : 3.60.

• Influence of the correlation.
The correlation is a great influence on the added required funding ratio.
Even for small tracking errors changing the correlation from 0 to 0.5 and
1 will give very different results. Relatively this change is only mildly
dependent on the investment in equities, but highly dependent on the
tracking error. One other thing we can say about the influence is that it’s
relatively more for Method A then for the other methods. However, if we
look at the influence of the correlation if smaller changes are made, like
from 0 to 0.1 or 0.1 to 0.2 for example, then we only see small changes in
added required funding ratio, ranging from a few basis points to at most
1% if the tracking error is 8% and 75% in equities.

• Influence of the tracking error.
With a small tracking error the added required funding ratio is not very
high. But if the tracking error rises to 8% then this added required funding
ratio can become substantial, even more so if the correlation is high and
the investment in equities is high. It should be noted that between the
methods the effect of changing the tracking error is not very different and
with a correlation of 0.5 or 1 the effect is almost linear; doubling the
tracking error almost doubles the added required funding ratio.

Other Results

• Influence of TER.
The influence of TER is minimal, ranging from only a few basis points if
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the correlation is 0 and with 25% in equities to 1% with tracking error
8%, a correlation of 1 and 75% in equities.

• Influence of the benchmark volatility.
The influence of the benchmark volatility, 12.755% (Method C’), 14%,
16.837% (Method C), 17% or 20%, is more significant. Relatively this
influence is higher if the correlation is low. Also we can remark that
the lower the benchmark volatility the higher the added required funding
ratio, this is because the tracking error has relatively more influence on
a 14% benchmark volatility, then on a 20% benchmark volatility. This
is a weird result, since the standard model treats these benchmarks the
same for the calculation of S2. So by investing in a benchmark with a low
volatility, the active management risk is higher while the equity risk stays
equal.

• A negative correlation.
With a negative correlation of, for example, ρ = −0.5 the added required
funding ratio will generally be negative. Only for large tracking errors the
added required funding ratio will then be positive. For Method A with ρ =
−0.5 the added required funding ratio becomes positive when the tracking
passes 25%

1.96 or somewhat lower if the TER is positive, approximately 11%
for a TER = 3%. In general for category 1 this boundary is passed if

2ρS2S7 + S7
2 = 0.

For Method B and Method B’, with a correlation of −0.5, the added
required funding ratio becomes positive when the tracking error passes the
volatility of the benchmark. For Method C, with a correlation of −0.5,
this is 25%

1.96 and for Method C’ this is 25%+8%
1.96 . In general for category 2

this boundary is passed if

σ2
tracking error + 2ρσbenchmarkσtracking error = 0.

These tracking error boundaries are high; for a pension fund a tracking
error above 10% is rare. And even if a fund has a tracking error above such
a border, then the impact will be low. The negative correlation could be
set to ρ = −0.1 or ρ = −0.2, giving some lower boundaries. This, however,
does not give much different results than the results with ρ = 0.

• Influence of the other risk elements.
A change in the parameters S1 and S3−6 leads to small changes in the
added required funding ratio. In general we have that the larger these
parameters the smaller the added required funding ratio is and vice versa,
this can be explained that the required added funding ratio is relative to
the funding ratio calculated with 0% tracking error which is dependent
on these 2 parameters. For changing S1 there is an additional effect in
category 2 methods, which comes from the component 2ρ1S1S′2. If S1

is raised then also the effect of an higher tracking error is raised via this
component. This gives a small dampening effect on the first effect.

71



Chapter 8

Discussion

Now we’ll discuss some conclusions we’ve done throughout this thesis. We’ll
also make some suggestions for future research.

8.1 Conclusions

In this thesis we’ve focused first on methods for calculating and quantifying
active management risk and then on ways to implement this risk element in the
standard model.

Quantifying active management risk

We’ve seen that there are many varying methods to calculate active management
risk. Therefore it is important to be very clear about which measure is used,
which method is used to come to a distribution, which assumptions are made,
how much history is used, etc. when reporting the active management risk.
A pension fund is free to use any of the available options, however from the
DNB point of view it is important that the calculation of active management
risk is done in an uniform way, because only then it is meaningful to compare
fund performances. It is advisable for the DNB to come up with certain rules
and guidelines, so that every fund calculates its risk in a similar way. These
guidelines can include some of the following recommendations

• Since the majority of the available programs to calculate risk use the log
return it is advisable to use the log return for the calculations.

• It is preferable to use daily or weekly returns and calculate the active risk
using a 1 or 7 day risk horizon. This is because there are more of these
returns, which improves the estimation, and these returns are less skewed
and have a mean very close to zero.
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• A history of around 3 years is preferred. This gives enough data to make
meaningful estimation and using a larger history can give data which is
not relevant for today’s market.

• Although normality is the standard assumption for the distribution of the
returns it is often not a valid one, this is mainly due to the high kurtosis.
If it is possible to use a t-distribution instead then this can lead to better
results.

• Although the tracking error and VaR are not coherent risk measures, they
are more useful than other measures if we want to implement active man-
agement risk in the standard model.

• These measures will change if the investment position of a fund changes,
therefore a mean of tracking errors over, for example, 60 days can be used
to give more stable results.

• It is possible to quantify active management risk using for example the
maximum tracking error, which is not a measure but a given maximum
for the tracking errors. This has the advantage that it gives stable results.

• In almost all cases one should use an ex-ante method to calculate the risk.
However, if a fund has a very passive strategy like index tracking, then
also the empirical method, which is ex-post, can be used.

• The parametric linear method gives the quickest way to calculate active
management risk, however, it offers very few possibilities to extend and
enhance the computation.

• The historical simulation method can give good results if the history is
relevant, but if the market changes, then it’s unclear if the results are
useful. Furthermore, a dataset covering a large history is needed to give
stable results.

• The Monte Carlo method is by far the most diverse method and can be
extended in many ways. The main drawback is that computation time
can become large. But in most cases this method should be preferred.

Active management risk in the standard model

If we want to implement this active management risk in the standard model,
there are some methods available, which we discussed in Chapter 7. In that
chapter we already discussed many aspects that should be considered and we
showed the impact these methods have on the required funding ratio. Here are
the main conclusions, first we’ll discuss the 2 available categories, and then we’ll
discuss other conclusions.
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Category 1

This category adds a risk element S7, a main advantage to this is that we isolate
the active management risk part and therefore later on it will be easy to monitor
the effect this risk element has. Another advantage is that it can easily add a risk
component for active management in investments other then developed market
equities, if we have the tracking error relative to a benchmark, the amount
invested in this benchmark and optionally the total expense ratio, we can easily
implement it in the calculations. Even a dynamic asset allocation could possibly
also be implemented. From the results we’ve seen that this category gives a bit
more weight on the investment type; funds with great amounts invested actively
will see their required funding ratio raise relatively more if this category is used
instead of category 2.

Category 2

This category adjusts the scenarios used in the standard model. Therefore
only if the underlying calculations of these scenarios are clear these scenarios
can appropriately be adjusted. Of course developed market equities fits this
criteria, as we’ve seen, and possibly also emerging market equities, but the
calculations for other investment categories are much less clear and therefore
it’s not really appropriate to adjust these scenarios. Also, a dynamic asset
allocation will be hard to implement. The most interesting part of this category
we see in Method B and B’, where the volatility of the benchmark is used in the
calculation. For developed market equities there are quite a few benchmarks a
fund can use, but the standard model treats every benchmark similar. In this
method, however, the benchmark volatility does play a role. But this gives a
weird result; benchmarks with a low volatility give higher results for the active
management risk, while giving the same results for equity risk. In other words,
active management risk is benchmark specific, but equity risk is not. To keep
this category consistent with the calculation of equity risk we therefore have to
use Method C’, which is equivalent to Method B’ with a volatility of around
17%. Method C’ does not give very different results in comparison to Method
A; the influence of the correlation or the investment type is somewhat different.
In this category the risk element S2 is increased, while in category 1 the active
management risk is isolated. Therefore, for later research on the impact of
active management risk using category 1 will be preferable.

Other conclusions

• We’ve seen that the correlation between active management risk and eq-
uity risk has a great effect on the results; the added required funding ratio
is higher for ρ = 1 than for ρ = 0 and the effect of the correlation differs
if different tracking errors are chosen. In the results we also see that these
effects are somewhat different for the two categories. But it remains a
question what correlation we should use to get closest to the 97.5% confi-
dence interval. We should also note that for fixed tracking errors changing
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the correlation by 0.1 doesn’t give very noticeable changes. Therefore, if
we follow the principles from Section 2.2, we should round this correla-
tion to avoid the illusion of precision. This leads to the two more evident
options: a correlation of 0 or 0.5.

• If the correlation is set to 0 then there are many cases where the added
required funding ratio is only a few basis points. Only with excessive
positions, like 75% in equity and a 8% tracking error over these investments
the added required funding ratio becomes more than 1%. Even with a
correlation 0.5 there are still some positions with a small added required
funding ratio. In these cases one can choose to ignore active management
risk since the impact is minimal, however, even then it can be included to
give more insight (look-through principle).

• Besides the correlation mentioned above, there are also the correlations
between different managed investments and different types of active in-
vestments. Also for these correlation it is unclear if it should be set to
zero, or if it should be set to something positive.

• Adding the total expense ratio or TER in the calculation doesn’t give very
significant changes in the impact. However, it could be included to give
more insight in this element (look-through principle). Furthermore, it is
not yet clear if the implementation of the TER, as it is done in Method
A, is the right way. Does adding costs, lead to a bigger risk? Or can it
also lessen the risk?

• The α of the active investment doesn’t have a place in any of the methods.
The reason for this is that it is not a very reliable measure and its impact
will be minimal. However, like the TER, it could be included to give more
insight.

8.2 Future research

The following list states some open problems that I’ve come across while working
on this thesis.

• We’ve seen many ways to come to an active management risk, what ex-
actly are the differences between their results? And is it possible to say
something about the optimal way to calculate active management risk?

• The correlation between active management risk and equity risk is still
one of the main unknowns. How high is this correlation on average for a
standard fund? And what happens in extreme events? The same holds
for the correlations between different investments.

• What effect does the TER have on the performance of the investments?
Does it, in general, add to the riskiness, or does it lessen the risk?
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Chapter 8. Discussion

• We’ve seen that the returns are often non-normal, how can we find a
uniform way to adjust the standard model so that it accounts for this
non-normality?

• What is the impact of applying a dynamic asset allocation? And how can
we implement this in the standard model?
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Appendix

A.1 Estimated distribution of the tracking error

Supposing we are estimating the mean and the variance of a random variable X
with realizations xi and suppose the underlying distribution is normal, that is
X ∼ N (µ, σ2) and for the realizations xi ∼ N (µ, σ2) and i.i.d.. What, then, can
we say about the estimators for the mean x̄ = 1

n

∑n
i=1 xi and for the standard

deviation squared σ̂2 = 1
n−1

∑n
i=1(xi − x̄)2?

Mean of an estimator

The mean of an estimator θ̂ of θ can be calculated by E(θ̂), we already mentioned
in Section 4.3 that these estimators of µ and σ2 are unbiased, so this would mean
E(x̄) = E(µ̂) = µ and E(σ̂2) = σ2, we check this by evaluating1

E(x̄) = E(
1

n

n∑
i=1

xi) =
1

n
E(

n∑
i=1

xi) =
1

n
nE(xi) = µ.

1Here we use var for the variance and not for the Value at Risk, which is VaR.
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And for σ2 we have

E(σ̂2) = E

(
1

n− 1

n∑
i=1

(xi − x̄)2

)

=
1

n− 1
E

(
n∑
i=1

(xi − µ+ µ− x̄)2

)

=
1

n− 1
E

(
n∑
i=1

(xi − µ)2 + 2(µ− x̄)

n∑
i=1

(xi − µ) +

n∑
i=1

(µ− x̄)2

)

=
1

n− 1
E

(
n∑
i=1

(xi − µ)2 + 2(µ− x̄)(nx̄− nµ) + n(µ− x̄)2

)

=
1

n− 1
E

(
n∑
i=1

(xi − µ)2 − 2n(µ− x̄)2 + n(µ− x̄)2

)

=
1

n− 1
E

(
n∑
i=1

(xi − µ)2 − n(µ− x̄)2

)

=
1

n− 1

(
n∑
i=1

E(xi − µ)2 − nE(x̄− µ)2

)

=
1

n− 1

(
nσ2 − nvar (x̄))

)
=

1

n− 1

(
nσ2 − nvar

(
1

n

n∑
i=1

xi)

))

=
1

n− 1

(
nσ2 − n 1

n2

n∑
i=1

var(xi)

)

=
1

n− 1

(
nσ2 − σ2

)
= σ2.

Variance of an estimator

Using the means of these estimators we can calculate the variance of an estimator
θ̂ by var(θ̂) = E(θ̂−θ)2. For the estimator of µ we’ve seen this expression worked
out in the last lines of the proof for the mean of σ̂, that is,

var(x̄) = var(
1

n

n∑
i=1

xi) =
1

n2
var(

n∑
i=1

xi) =
1

n2
nσ2 =

σ2

n
.

To get the variance of the estimator for σ2 we first define the chi-squared dis-
tribution. Let X1, . . . , Xk be independent random variables with normal distri-
butions and mean 0 and variance 1, then the sum of the squares

Y =

k∑
i=1

X2
i
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A.1. Estimated distribution of the tracking error

is distributed according to the chi-squared distribution with k degrees of free-
dom, and we write Y ∼ χ2(k). The moment generating function, given without
proof, of the chi-squared distribution is equal to

Mχ2(k)(t) = (1− 2t)−
k
2 for t <

1

2
.

The moment generating function has the property that if we differentiate it i
times and set t = 0 then we get the i-th moment µi, that is

µi(χ
2(k)) = M

(i)
χ2(k)(0).

From this we calculate the mean and variance of the chi-squared distribution as
follows

µ(χ2(k)) = µ1(χ2(k)) = M ′χ2(k)(0) = −k
2

(1− 2t)−
k
2−1(−2)|t=0 = k.

And, using that σ2(X) = E(X2)− (E(X))2 = µ2(X)− (µ1(X))2, we get

σ2(χ2(k)) = µ2(χ2(k))− (µ1(χ2(k)))2

= M ′′χ2(k)(0)−M ′χ2(k)(0)

= (−k
2

)(−k
2
− 1)(1− 2t)−

k
2−2(−2)2|t=0 − k2

= k(k + 2)− k2 = 2k.

Now we try to find the variance of the estimator for σ2. We can reformulate

σ̂2 =
1

n− 1

n∑
i=1

(xi − x̄)2

to

(n− 1)σ̂2 =

n∑
i=1

(xi − x̄)2

and we proceed as follows. Since for all i we have xi ∼ N (µ, σ2) we have for
all i

xi − µ
σ

∼ N (0, 1)

and hence

Y =

n∑
i=1

(
xi − µ
σ

)2

∼ χ2(n).
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This expression we can elaborate in a way similar to the way we got the mean
of the estimator of σ2, that is

σ2Y =

n∑
i=1

(xi − µ)2

=

n∑
i=1

(xi − x̄+ x̄− µ)2

=

n∑
i=1

(xi − x̄)2 + 2(x̄− µ)

n∑
i=1

(xi − x̄) +

n∑
i=1

(x̄− µ)2

=

n∑
i=1

(xi − x̄)2 + 2(x̄− µ)(nx̄− nx̄) + n(x̄− µ)2

=

n∑
i=1

(xi − x̄)2 + 0 + n(x̄− µ)2

=

n∑
i=1

(xi − x̄)2 + n(x̄− µ)2.

So, remembering the reformulation of σ̂, we have

Y =

n∑
i=1

(
xi − µ
σ

)2

=

n∑
i=1

(xi − x̄)2

σ2
+
n(x̄− µ)2

σ2

=
(n− 1)σ̂2

σ2
+
n(x̄− µ)2

σ2
.

We’ve seen that the estimator x̄ of the mean µ satisfies

E(x̄) = µ

and

variance(x̄) =
σ2

n
.

Furthermore, since x̄ = 1
n

∑n
i=1 xi this is a sum of normal distributions and

hence normal. So we have

x̄ ∼ N (µ,
σ2

n
).

From this follows that
x̄− µ
σ/
√
n
∼ N (0, 1)

and hence
n(x̄− µ)2

σ2
∼ χ2(1).

So in the equation

n∑
i=1

(
xi − µ
σ

)2

=
(n− 1)σ̂2

σ2
+
n(x̄− µ)2

σ2

82



A.1. Estimated distribution of the tracking error

We have on the left a χ2(n) distribution and on the right, the second term, a
χ2(1) distribution. Now, it can be shown that the first term on the right has
rank (n−1), and then by Cochran’s theorem, which we’ll not proof, the first term

must have a χ2(n − 1) distribution and (n−1)σ̂2

σ2 and n(x̄−µ)2

σ2 are independent.

If we assume this independency we can also quite easily proof that (n−1)σ̂
σ2 has a

χ2(n−1) distribution using moment generating functions. We use the property
that if X and Y are independent, then the moment generating function of their
sum is the product of the 2 moment generating functions

MX+Y (t) = MX(t)MY (t)

and we use that if two distributions have the same moment generating function
then the distributions are the same. Using these properties we get from our
equation

M∑n
i=1(

xi−µ
σ )

2(t) = M (n−1)σ̂2

σ2 +
n(x̄−µ)2

σ2

(t) = M (n−1)σ̂2

σ2

(t)Mn(x̄−µ)2

σ2

(t).

From this follows
Mχ2(n)(t) = M (n−1)σ̂2

σ2

(t)Mχ2(1)(t).

So for t < 1
2

M (n−1)σ̂2

σ2

(t) = Mχ2(n)(t) ·Mχ2(1)(t)
−1

= (1− 2t)−
n
2 · (1− 2t)

1
2

= (1− 2t)−
(n−1)

2 ,

which is the moment generating function for χ2(n− 1). This proves that

(n− 1)σ̂2

σ2
∼ χ2(n− 1).

Now we can finally find the variance of σ̂2. Using (n−1)σ̂2

σ2 ∼ χ2(n−1) and using
var(χ2(n− 1)) = σ2(χ2(n− 1)) = 2(n− 1), we get

var(
(n− 1)σ̂2

σ2
) = 2(n− 1)

(n− 1)2

σ4
var(σ̂2) = 2(n− 1)

var(σ̂2) =
2

n− 1
σ4.

Asymptotics

By the central limit theorem we have asymptotically, taking the limit over k,
that

χ2(k)− µ(χ2(k))

σ(χ2(k))

d→ N (0, 1).
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So for k large enough, we have approximately

χ2(k) ∼ N (k, 2k).

Since we have (n−1)σ̂2

σ2 ∼ χ2(n− 1), we get

σ̂2 ∼ σ2

(n− 1)
χ2(n− 1).

So with µ(χ2(n− 1)) = n− 1 and σ(χ2(n− 1)) = 2(n− 1) this means, that for
n large enough we have

σ̂2 ∼ N (σ2,
2

n− 1
σ4).
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A.2. Histograms of the active return distribution

A.2 Histograms of the active return distribution
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Figure A.1: The active return distribution for the empirical method.
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Figure A.2: The active return distribution for the historical simulation method.
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Figure A.3: The active return distribution for the Monte Carlo method.
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A.3 Results

These are the results of the added funding ratio for Methods A with TER 1.5%,
Method B with benchmark volatility 17% and the adjusted Method C’. Note
that added RFR on the y-axis stands for added required funding ratio and on
the x-axis we have the tracking error ranging from 0% to 8%. The different
colours represent the different investment types of 25%, 50% or 75% in equities.

A.3.1 Method A with a TER of 1.5%
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Figure A.4: The added required funding ratio for Method A with ρ = 0.
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Figure A.5: The added required funding ratio for Method A with ρ = 0, 5.
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Figure A.6: The added required funding ratio for Method A with ρ = 1.
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A.3.2 Method B with a benchmark volatility of 17%
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Figure A.7: The added required funding ratio for Method B with ρ = 0.
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Figure A.8: The added required funding ratio for Method B with ρ = 0, 5.
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Figure A.9: The added required funding ratio for Method B with ρ = 1.
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A.3.3 The adjusted Method C’
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Figure A.10: The added required funding ratio for Method C’ with ρ = 0.
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Figure A.11: The added required funding ratio for Method C’ with ρ = 0, 5.
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Figure A.12: The added required funding ratio for Method C’ with ρ = 1.
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A.4 Dutch version of principles

Het uitgangspunt is om het vereist eigen vermogen zodanig te bepalen dat met
een zekerheid van 97.5% procent wordt voorkomen dat het pensioenfonds bin-
nen een periode van n jaar over minder waarden beschikt dan de hoogte van
de technische voorzieningen (artikel 120 PW). Idealiter wordt daartoe precies
aangesloten bij het feitelijke risicoprofiel van het pensioenfonds. Dit vergt echter
de investering in een intern model, wat vooralsnog slechts voor enkele pensioen-
fondsen is weggelegd. Vandaar dat ook een relatief eenvoudig en gemakkelijk
hanteerbaar standaardmodel beschikbaar is. Dit standaardmodel is minder fi-
jnmazig van opzet dan een intern model en bevat daarom enige prudentie. Met
behulp van het standaardmodel wordt getest in hoeverre een instelling gevoelig
is voor de verschillende scenario’s, zoals een daling van de aandelenmarkt of
een verandering in de rentetermijnstructuur. Deze scenario’s zijn zo gekozen
dat zij met een kans van 1 op 40 voor zullen komen. De parameters voor
het standaardmodel (art. 11) zijn derhalve ’schokparameters’ die gekalibreerd
zijn op een risicohorizon van n jaar en een betrouwbaarheidsniveau van 97.5%:
ze geven de verandering aan in de risicofactor2 (bijvoorbeeld een daling van
25% in aandelen mature markets). De scenario’s moeten aansluiten bij de ge-
noemde zekerheid van 97.5%. Ook hier geldt dat een exacte relatie tot het be-
trouwbaarheidsniveau niet eenvoudig haalbaar is. Het suggereert namelijk een
nauwkeurigheid die nimmer bereikt wordt. Het bepalen van scenario’s die zich
eens in de 40 jaar voordoen is niet eenvoudig. Dit komt vooral omdat er in veel
gevallen onvoldoende historische waarnemingen zijn om dergelijke schattingen te
maken; zelfs voor aandelen- en rentemarkten waar redelijk veel historische data
voor beschikbaar zijn, is dit niet eenvoudig. Bovendien zijn verwachte rende-
menten, volatiliteit (standaarddeviatie) en correlaties geen stabiele grootheden
in de tijd.

2In de kalibratie wordt rekening gehouden met de verwachtingswaarde van de risicofactor.
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