

Oude Waalsdorperweg 63

2597 AK Den Haag

Postbus 96864

2509 JG Den Haag

www.tno.nl

T +31 88 866 10 00

F +31 70 328 09 61

infodesk@tno.nl

Abstract

In the Online UAV1 Mission Planning Problem a reconnaissance mission has to
be planned in a given area that contains both targets that are given beforehand
and new targets that arise during the flight. The goal of the mission is to gather
information from a subset of the targets, in such a way that the gathered amount
of information is maximal, whilst keeping the fuel required for the mission within
predefined limits.
We developed five strategies by which the planned tour can be reoptimized during
the flight, either for the general problem where the new targets appear in the entire
target area, or for the special case where all new targets appear in some prespeci-
fied zone. All strategies were composed of two steps: finding an optimal initial tour
first and adjusting the tour later on during the flight, when information about new
targets was released.
Theoretical as well as empirical performance bounds were found for the strategies
that were developed for the general problem. Finally, the performance of the strat-
egy for the special case was compared to the performance of the other strategies,
when applied to this case.

1Unmanned Aerial Vehicle

Acknowledgements

First and foremost, I would like to thank my supervisors at TNO, Lanah Ev-
ers and Ana Barros. You were always there for me when I needed it, took
your time in helping me and taught me a lot about myself. Thank you again
for giving me the opportunity to come to TNO.
Secondly, I would like to give my gratitude to Erik Balder, my supervisor at
Utrecht University, for making sure that I kept going in the right direction.

A heartfelt thanks goes out to all my colleagues at TNO. You made me feel
very welcome from the start and I really enjoyed my stay, which was of course
livened up by all the coffee breaks and ‘3k-borrels’. In particular, I would like
to mention my fellow interns and officemates Corrinne Luteyn and Arnold
Bakker, and thank you for ‘putting up’ with me all this time. In addition, I
would like to thank Paul Eigeman, Nick van der Poel and Eelco Kuipers for
rescuing me when Java was getting the better of me.

Lots of thanks to my sister Imelda: I really enjoyed spending more time
with you. Thank you for all your advice and for listening to my problems. I
am truly going to miss our daily bike-trips together!
And last, but definitely not least, I would hereby like to thank my parents,
Gelein and Rixt van de Voorde, for supporting me in so many ways during
my education. Without you I really would not have come this far.

5

Contents

1 Introduction 1

2 Literature analysis 4

3 Problem description 7
3.1 Modeling the UAV-MPP . 7
3.2 UAV-MPP with uncertain fuel usage . 8
3.3 UAV-MPP with time-windows . 9
3.4 UAV-MPP with multiple vehicles . 10

4 A changing set of targets 11
4.1 Insert algorithm . 12
4.2 Halfway-reoptimization algorithm . 15
4.3 Repeated-reoptimization algorithm . 16
4.4 Internal target algorithm . 18

5 Performance of the algorithms 21
5.1 Description of the simulation settings . 21
5.2 Evaluation of the results . 23

6 A changing set of rates 31
6.1 Delay algorithm . 31
6.2 Description of the simulation settings . 34
6.3 Evaluation of the results . 36

7 Conclusions and future research 40
7.1 Conclusion . 40
7.2 Future research . 41

A Detailed results of the first four online algorithms 46

B Computation times 47

C Initial solutions for the Delay algorithm 48

D Detailed results of the Delay algorithm 49

E Detailed results of the Delay algorithm (2) 50

F Detailed results of all algorithms 51

1 Introduction

Unmanned Aerial Vehicles (UAVs) provide a valuable information source for both civilian
and military operations, as they can be used to gather imagery about territories that are
hard to scout otherwise; in particular they can be used to gather imagery from the mili-
tary theater. The goal of such reconnaissance missions is to gather as much information
as possible about certain locations in a given area. Those target locations will provide
information of some value, but that value may vary per location. Since it is unlikely that
a UAV will be able to visit all target locations in the area of interest - mainly due to
fuel capacity - it is paramount to find a feasible tour with maximal total information value.

When all target locations, all information values of those locations, and the fuel re-
quirements to go from any target to another are known, this problem reduces to a known
optimization problem. But in real-life situations, not all data might be certain or even
known beforehand. We will mention four characteristics that extend the standard model,
which might occur in a real-life UAV mission planning problem. First of all, weather
conditions may influence the fuel consumption, both positively and negatively, which in
turn can influence the optimality or even the feasibility of a chosen tour. Secondly, tar-
gets may turn out to have decreased information value, they may disappear all together,
or new targets might arise, i.e. there might not be a fixed set of target locations. A
problem with this extension is generally referred to as an online problem. Thirdly, it
might not be possible to collect information from a target all the time. For such targets
a time-window has to be taken into account. Finally, there is the case when multiple
vehicles are available. This may enable a set of flight plans that covers all targets, but for
these flights the same additional factors could be taken into account. And for multiple
vehicles there is another factor that can be considered. It might occur that one of the
vehicles cannot visit all its scheduled targets, due to one or more of the dynamic factors.
Then the flight plan of one of the other vehicles could be altered, if possible, to visit such
a missed target. In short, there are four extensions to the basic problem:

• uncertain fuel consumption

• time windows

• changing target set

• multiple vehicles

There are several problems that are related to the basic UAV Mission Planning Prob-
lem (UAV-MPP). By the UAV-MPP we refer to the problem with deterministic fuel-
consumption, no time-sensitive targets, a fixed target set and a single vehicle. As men-
tioned before, the basic UAV-MPP reduces to a known optimization problem: the Orien-
teering Problem (OP), see [11].This problem is based on the game of ‘Orienteering’, where
cross country runners have to navigate through unfamiliar terrain in which a number of
control posts are located. A value is assigned to each control post and the runners collect

1

the value of a control post by visiting it. The runners have to return to the starting point
within a given time limit. As they will not be able to visit all control posts, their goal
is to construct a tour that passes a subset of the control posts that maximizes the total
collected value.
There even are variants of the OP that can be adapted for the basic problem with some
of the extensions, as is discussed in [43]. For instance, the Team Orienteering Problem
(TOP) could be used for a UAV mission planning problem with multiple vehicles. The
UAV mission planning problem with time-sensitive targets could be modeled using the
Orienteering Problem with Time Windows (OPTW). And in [12] it becomes clear that
the OP can be adapted to model the subproblem with uncertain fuel usage.

Besides the OP, there are more routing problems that can be adapted to model extensions
of the UAV-MPP. There is the widely known Traveling Salesman Problem (TSP), where,
given a set of cities and the distances between all those cities, a single tour of shortest
length has to be planned, that visits each city exactly once. Note that this is a specific
case of a larger problem, the TSP with multiple (m) vehicles, where a set of m tours have
to be found, such that every location (except the depot) is visited by exactly one vehicle.
This problem is denoted by the m-TSP; the well known TSP is therefore just a version
of the m-TSP, with m = 1. Another example is the Vehicle Routing Problem (VRP),
[26], which is similar to the m-TSP, but with an extra constraint: the vehicles now have
load capacities that cannot be exceeded. Goal for the VRP is also to minimize the total
length of all tours.
A disadvantage of both m-TSP and VRP is that they differ from the UAV-MPP on two
important properties. First of all, each city has to be visited, while in the UAV-MPP
it is very likely that not all targets can be visited. Secondly, the goal of both problems
is to minimize the total traveled distance, whereas the UAV-MPP has as objective to
maximize the amount or value of gathered information.
But on the other hand, the VRP can be adapted with real-time elements or time-windows,
as can be seen in [15]. So problems like the VRP could be used to gather insight in how
to include one or more of the extensions into the associated variant of the UAV-MPP.
A question that now arises is whether or not there may be more problems that can be
adapted to model the UAV-MPP with one or more extensions. Another question is which
model should be adapted for which subproblem. Is the OP the best model, or can the
VRP or the TSP be adapted in such a way, that the UAV-MPP can be modeled by it?
We would like to know as well whether the OP can be adapted for any of the extensions,
whether solution methods exists for those extensions, and whether something can be said
about their performance. We also would like to know whether some of the extensions
have been researched already.
Another aspect of the UAV-MPP is that it clearly has practical applications. So while it
is very interesting to find theoretical bounds for the solution methods, it is also important
to determine how well the methods will work in practice.

2

In order to determine which subproblems will be most interesting, the research started
with a literature analysis. During this analysis a number of questions will be answered:

1. Literature analysis

– What research has been done on Orienteering Problems, and possibly on re-
lated problems, that can be of use for the subproblems of the UAV Mission
Planning problem?

– Based on the findings of the literature analysis, which subproblem(s) will be
most interesting for further investigation?

When subproblems have been chosen, the following questions will be answered:

2. How can the chosen subproblems be modeled best? What solution methods can be
used?

3. Can theoretical bounds be found for the performance of the solution methods?

4. How well do the solution methods perform in practice? Are the theoretical bounds
correct, or can better empirical bounds be found?

3

2 Literature analysis

A lot of research has been done on the OP and on related problems. The amount of pub-
lications on this topic is vast, and its range wide - from simple definitions of the problem
and its history to detailed solution algorithms or heuristics and from the basic problem
to versions with multiple extensions. It is therefore important to first get an overview of
the current research, in order to be able to determine which aspects of the problem are
most interesting to study.
As mentioned in the introduction, the basic UAV-MPP can probably be modeled best by
the OP or a similar problem, but it has several extensions that are not necessarily em-
bedded in those problems. These characteristics are uncertain fuel usage, time-sensitive
targets, a set of targets that may change during the flight and use of multiple vehicles.
For a number of papers, we have determined which of those extensions have been taken
into account. Apart from the extensions, the problem type has been noted and for each
article we have checked whether some form of a bound on the performance of the solution
has been found.
Most of these results are summarized in table 1. Some of the papers found only discuss
heuristics for solving the OP; the greater part of those are not listed in the table.

As can be seen in table 1, many of the papers found on the OP focus either on the
extension with time windows, known as the Orienteering Problem with Time Windows
(OPTW), or on the extension with multiple vehicles, known as the Team Orienteering
Problem (TOP). Part of those papers even focus on the combined subproblem in the
Team Orienteering Problem with Time Windows (TOPTW). Those papers only provide
heuristics, not exact solution methods.
A few papers take non-deterministic travel times into account: [9], [39], [12] and [13]. In
the former two papers the travel times are stochastic, that is, the travel times are dis-
tributed according to some specified distribution and the actual travel times only become
known during the flight. This implies that there is a chance that the actual length of a
planned tour exceeds its time limit, so not all planned tours turn out to be feasible. In
[12] the Robust Orienteering Problem (ROP) is introduced. In this problem the travel
and service times are also approximated with random variables, but no assumptions have
been made on the distributions of those variables. Additional variables are introduced
instead, which are used to integrate the uncertainty into the travel times, absorbing cer-
tain deviations from the actual travel times. In [13] the ROP is compared to a stochastic
programming approach of the same problem.

To the best of our knowledge there are very few papers that discuss the third exten-
sion, a changing set of targets. The only paper that we did find is by [28]. In this paper
a combination of 3 of the extensions is made: time windows, multiple vehicles and a
changing set of targets. There is also other research on problems with this extension, but
we have only seen it in combination with either the TSP, as can be seen in [3], [7] and
[19] or the VRP, as in [17] and [30].

For the OP other combinations of the four characteristics have not been found, but
they do exists for the other problems. For instance, the combination of non-deterministic

4

travel times and time-sensitive targets has been researched for both the TSP, as in [7],
and the VRP, as in [17] and [30]. The combination of non-deterministic travel times and
multiple vehicles for the VRP has been researched in [17], [30] and [35]. The former two
papers even take all four characteristics into account, but as they investigate the VRP,
their approaches can not necessarily be applied to the OP.

Whilst most of the found research is concerned with finding heuristics to solve prob-
lems of any size and usually compare their results with benchmark instances, some of the
papers present exact algorithms. In a few cases a performance bound is found. Exact
algorithms for the OP have been found by [27] and [33]; in [8], [18], [24], [39] and [41]
algorithms were found for small instances.
When the problem is an online problem, not all information is known beforehand, so it
is not possible to find an exact algorithm or an exact solution. In order to be able to
say something about the performance of algorithms for online problems, their outcome,
determined by the value of the objective function, is compared to the optimal so-called
offline solution. Note that in the offline problem all targets that are to appear are known
beforehand, and to each target a release date is assigned; some of those release dates are
very likely to be 0. The fraction of online outcome and optimal (offline) outcome is the
performance ratio for the problem. When the performance ratios for all instances of a
problem are compared, a lower bound for all these bounds can be found. This bound is
called the competitive ratio. The notion of a competitive ratio for online algorithms was
developed by [23]. For the online TSP, competitive ratios are presented by [3], [7], [19],
[20] and [21].

Based on these results, we have drawn some conclusions. First of all, neither the OP
with time windows, the Team OP nor the Team OP with Time Windows will be interest-
ing to investigate for this thesis, as a lot of research has been done on those subproblems
already. The same holds for the subproblem with uncertain fuel consumption.
The OP in combination with a changing set of targets will be very interesting for further
study, as - as mentioned before - very little research exists on this subproblem. And while
several theoretical bounds have been found for solution methods for the online TSP, to
the best of our knowledge no research has been done yet on finding theoretical bounds
for solution methods for the online problem. Therefore, the UAV-MPP extended with a
changing set of targets is the subproblem that will be investigated further. Whilst there
are many other combinations of subproblems of the UAV-MPP that might be interesting
to investigate, the second part of the research for this thesis will also concern itself with
the UAV-MPP extended with a changing set of targets. In that case, we will investigate
the cases where the targets appear according to different arrival rates.

5

Table 1: Overview of characteristics in found literature
(a cross signifies that that specific characteristic has been researched in the corresponding
paper. ‘Fuel’ means non-deterministic travel times, ‘TW’ means time windows, ‘online’
means a changing set of targets and ‘team’ means the use of multiple vehicles)

Article Fuel TW Online Team Type Remarks
[2] x OP
[6] x OP
[8] x OP exact algorithm for some cases

[9] x OP
[10] x OP
[12] x OP
[13] x OP
[16] OP
[18] OP exact algorithm for some cases

[22] x OP
[24] OP exact algorithm for some cases

[25] x x OP
[27] OP exact

[29] x x OP
[32] OP
[33] x OP exact

[36] OP
[37] x OP
[38] x OP
[40] x OP
[39] x OP exact algorithm for some cases

[41] x x OP exact algorithm for some cases

[44] x x OP
[45] x OP
[46] x OP
[28] x x x OP
[5] OP/TSP
[3] x TSP competitive ratio

[7] x x TSP competitive ratio

[14] x TSP exact for single vehicles

[21] x TSP competitive ratio

[1] x TSP
[19] x x TSP competitive ratio

[20] x TSP competitive ratio

[17] x x x x VRP
[30] x x x x VRP
[35] x x VRP

6

3 Problem description

3.1 Modeling the UAV-MPP

The basic UAV-MPP will be modeled as the OP. First of all there is a set of targets
V = {1, . . . , n} and a depot 0, so the total set of locations is V + = V ∪ {0}. There
is a set of arcs A = {(i, j)|i 6= j ∈ V +} between all pairs of locations. This implies
that we can construct a graph G = (V +, A) that consists of all locations and all arcs
in between the locations. We assume that this graph is directed, i.e. that for any pair
i, j ∈ V + (i 6= j) of locations both arc (i, j) and arc (j, i) exist. Each of these arcs (i, j)
has a length d(i, j). We assume that the lengths of the two arcs between two vertices are
not necessarily equal, i.e. d(i, j) 6= d(j, i). Therefore, |A| = n(n + 1) and graph G is a
complete directed graph on m+ 1 vertices.
The length of arc (i, j) corresponds to the amount of fuel that is required to get from i
to j. For each mission there is a fuel capacity C. Note that the vehicle travels at unit
speed, so the concepts of time and distance can be interchanged.
Just as for the OP, the solution of the UAV-MPP will be a tour along some of the vertices
from set V +. This tour will be represented as an ordered set of vertices, and is denoted by
T . In order to define the ordering of T , we first need to look at a different representation
of the tour. The tour can be expressed as a sequence AT of arcs from A by which the
vehicle travels when following tour T . Now let (i, j) ∈ AT . Then we can define an
ordering i < j, where the binary relation < stands for “is visited earlier than”. Note that
this ordering holds for any vertex k that is visited after i.
For example, let a tour T consist of vertices 7, 1 and 9. Then we can express the tour as
T = {0, 7, 1, 9} and the set of subsequent arcs is AT = {(0, 7), (7, 1), (1, 9), (9, 0)}. Note
that the arc (9, 0) is added: the vehicle always returns to the depot after visiting the last
target on the tour.
Each tour has a length LT , which is determined by the sum of distances between the
consecutive pairs of vertices on the tour. In case of the example, the length of the tour
will be determined as follows: LT = d(0, 7) + d(7, 1) + d(1, 9) + d(9, 0).
Set xij as a decision variable for whether arc (i, j) is on tour T . Then

xi,j =

{
1 if (i, j) ∈ AT
0 otherwise

Similarly, we can define a decision variable for whether vertex i is in the tour:

xi =

{
1 if i ∈ T
0 otherwise

7

Based on all these definitions, we can now formulate the optimization problem:

(OP) max
∑
i∈V +

xiv(i) (1)

s.t.
∑

(i,j)∈A

xi,jd(i, j) ≤ C (2)

∑
i∈V

x0,i =
∑
i∈V

xi,0 = 1 (3)

xj =
∑
i∈V +

xi,j =
∑
k∈V +

xj,k ≤ 1 ∀j ∈ V (4)

1 ≤ ui ≤ n ∀i ∈ T (5)

ui − uj + 1 ≤ (1− xi,j)n ∀i, j ∈ V (6)

xi ∈ {0, 1} ∀i ∈ V + (7)

xi,j ∈ {0, 1} ∀(i, j) ∈ A. (8)

In this problem, (2) is the fuel constraint, (3) makes sure that the tour start and ends at
the depot. Constraints (4) are the flow conservaton constraints, but they also make sure
that each location gets visited at most once and assign the correct values to all decision
variables xi. Constraints (5) and (6) prohibit subtours.

3.2 UAV-MPP with uncertain fuel usage

For each of the extensions, ways have been found to adapt the nominal OP. As was
mentioned in the introduction, [12] found a formulation for the OP with uncertain fuel
usage: the ROP. This is modeled like the nominal OP, but a few constraints have been
added, such that the following problem has been constructed:

(ROP) max
∑
i∈V

xiv(i),

s.t.
∑

(i,j)∈A

xij d̄ij +
∑
s∈S

ρs‖ys‖∗s ≤ C, (9)

∑
s∈S

ysij = σijxij = (σ ⊗ x)ij, ∀(i, j) ∈ A, (10)∑
i∈V

x0,i =
∑
i∈V

xi,0 = 1,

xj =
∑

i∈V +\{j}

xij =
∑

k∈V +\{j}

xjk ≤ 1, ∀j ∈ V,

ui − uj + 1 ≤ (1− xij)n, ∀i, j ∈ V,
1 ≤ ui ≤ n, ∀i ∈ V,
xij ∈ {0, 1}, ∀(i, j) ∈ A,

ysij ∈ R, ∀s ∈ S, (i, j) ∈ A, (11)

8

Note that in this case, the fuel usage on arc (i, j) is denoted by d̄ij: this is the expected
fuel usage from location i to j. Also, (9) replaces (2) in the nominal OP, together with
(10). For more details on how these constrants were obtained, see [12].

3.3 UAV-MPP with time-windows

The time-window extension can be easily included in the nominal OP, as can be seen in
[43]:

(OPTW) max
∑
i∈V

xiv(i),

s.t.
∑

(i,j)∈A

d(i, j)xij ≤ C,

∑
i∈V

x0i =
∑
i∈V

xi0 = 1,

xj =
∑

i∈V +\{j}

xij =
∑

i∈V +\{j}

xjk ≤ 1, ∀j ∈ V

ti + dij − tj ≤M(1− xij), ∀i, j ∈ V + (12)

ri ≤ ti, ∀i ∈ V + (13)

ti ≤ di, ∀i ∈ V + (14)

xij ∈ {0, 1}, ∀(i, j) ∈ A

In this problem, Constraints (12), (13) and (14) have been added. In these constraints, a
few new variables have been introduced: ti is the moment the vehicle arrives at target i,
ri is the first moment target i can be visited and di the last, so [ri, di] is the time-window
for target i. This implies that Constraints (13) and (14) make sure that target i is visited
within its time-window. Note that when ri = 0 and di = C, target i can always be visited,
i.e. it has no time-window. For i = 0 we set t0 as the time that the vehicle returns at
the depot.
The third new constraint, (12), is a variant of the subtour-elimination constraint; it makes
sure that the order of the targets, timewise, corresponds to the order of the targets in
the tour. Variable M is set to a large constant.

9

3.4 UAV-MPP with multiple vehicles

The OP can be adapted to model the problem with the multiple-vehicle extension as well:

(TOP) max
∑
i∈V

v(i)
P∑
p=1

yip, (15)

s.t.
P∑
p=1

∑
(i,j)∈A

d(i, j)xijp ≤ C, (16)

∑
i∈V

P∑
p=1

x0ip =
∑
i∈V

P∑
p=1

xi0p = P, (17)

P∑
p=1

∑
i∈V +\{j}

xijp =
P∑
p=1

∑
k∈V +\{j}

xjkp ≤ 1, ∀j ∈ V (18)

P∑
p=1

yip ≤ 1, ∀i ∈ V (19)

1 ≤ uip ≤ n, ∀i ∈ V, ∀p ≤ P (20)

uip − ujp + 1 ≤ (2− xijp)n, ∀(i, j) ∈ A,∀p ∈ P (21)

xijp, yip ∈ {0, 1}, ∀i ∈ V, ∀(i, j) ∈ A. (22)

In this problem most of the constraints and variables have been replaced. Say there are
P ∈ tours, then those tours have to be nearly disjoint: they must have vertex 0 in com-
mon, but can’t have any other shared vertices or arcs. The variable xijp denotes whether
arc (i, j) lies on path p, so for each arc (i, j) there can be only one p for which this variable
takes value 1, as can be seen in Constraint (18). A similar constraint is constructed for
the depot in (17). Additional variables yip are introduced to make sure that each vertex
is on at most one tour, in Constraint (19).

For the version with a changing set of targets, a different approach has to be used.
This will be discussed in the next chapter.

10

4 A changing set of targets

In the UAV-MPP with a changing set of targets, also known as the online UAV-MPP,
we assume that there are two types of targets. Targets of the first type, ‘fixed targets’,
are known in advance, and can be visited at any time. Targets of the second type, ‘new
targets’, are not known at first, but appear at some moment during the flight and become
available the moment they appear. We assume that all new targets appear at time C at
the latest. We also assume that targets do not disappear.
It is not obvious how this online problem should be modeled. Due to the fact that
knowledge about some of the targets is only gained when those targets appear, it is very
difficult to find a programming formulation like the (OP). This means that for the on-
line problem, a different type of solution algorithm has to be found. The performance
of algorithms for online problems is generally measured by comparing the outcomes of
its objective function to the outcome of the objective function of the optimal solution
in the so-called offline case. As mentioned in Chapter 2, these performance ratios are
bounded by their competitive ratio [23], which is a worst-case ratio over all instances
of the problem. For a maximization problem, this implies that we want to find a lower
bound on the performance ratios of all instances. It can be determined as follows: let I
be an instance of some problem. Let I∗ be the optimal offline solution for this instance
and |I∗| its value of the objective function. Let IA be a solution for this instance by some

algorithm, with objective function-value |IA|. Then rc = sup
{
r
∣∣∣ |IA||I∗| ≥ r,∀ instances IA

}
is the competitive ratio for a maximization problem. Note that in case of a minimization
problem, the competitive ratio is an upper bound for the performance ratios. In that

case, we express the competitive ratio as rc = inf
{
r
∣∣∣ |IA||I∗| ≤ r,∀ instances IA

}
.

The offline case differs from the online case in that the release dates of all targets are
given beforehand. But when all required knowledge is known beforehand, a programming
formulation can be used. We can therefore model the offline case of the online UAV-MPP
as an OP with time-windows (OPTW): the n fixed targets have release date 0 and end
date C, the new targets n + i, i ≥ 1 have a release date ri > 0 and end date di = C.
This problem can be solved with an exact algorithm, as was shown in [33].
In case of the online UAV-MPP, there is a set of fixed locations V + = {0, 1, . . . , n}. We
assume that the number of targets that appears before time C is equal to some ran-
dom variable µ ∈ and that the value of both fixed and new targets is equal to 1, i.e.
v(i) = 1, ∀i ∈ {1, . . . , n+µ}.2 This implies that in both the online and the offline version
of the problem we want to maximize the number of targets in the tour. Also, we assume
that no additional fuel is required at any target.
Let’s first take a look at the problem without new targets. This is just a regular OP-like
problem, so we can assume that an optimal solution can be found, as exact algorithms
exist for the OP, see for instance [27]. Let’s denote this tour, that contains m targets,
by Tm and its value of the objective function, i.e. the number of targets it contains, by
|Tm|. Therefore, |Tm| = m. Similarly, when considering the situation where new targets
may appear, the tour found by an online algorithm is denoted by TA and its objective
function-value by |TA|. The optimal offline tour is denoted by T ∗ and its value by |T ∗|.
In this chapter we will present a few algorithms that generate online tours. Each of these

2Note that at the depot no information can be gathered, so v(0) = 0.

11

algorithms only work when the ratio of existing and new targets is not too small: when
the number of new targets is excessively large in comparison to the number of fixed tar-
gets, then these algorithms will probably have suboptimal results. We have not developed
algorithms for such cases, as it is very unlikely that the number of new targets exceeds
the number of existing targets.
For each of the algorithms it is not only important to determine the competitive ratio,
but also to look at the computational time. An algorithm that has a high competitive
ratio, that also takes a lot of computational time is less interesting to use, since some of
the reoptimization steps should take place during the flight. Therefore, for each of the
algorithms we will look at the computational time as well.

4.1 Insert algorithm

The first algorithm is a greedy algorithm, based on the extended model for online vehicle
routing, as presented in [30]. The idea behind it is to insert new targets in the tour at
the ‘best’ location, that is, with the least additional fuel consumption, and only when the
fuel required to finish this adapted tour does not exceed the current remaining amount
of fuel. This algorithm is called the ‘Insert algorithm’ (IA) and is defined below.
For each new target that appears, there is an arc in the tour to which it lies nearest.
There are three decision rules for this nearest arc and the new target. Exactly one of the
rules will be applied. The rules will therefore be checked in the following order, until the
rule is reached that fits the situation:

(i) The tour has already passed the arc completely, so the target will not be visited.

(ii) The new target lies closest to the arc that the vehicle is currently traveling. Let
(i, j) be this arc, k the new target and l the current location. If d(i, l) ≥ d(i, k)
or if d(i, k) ≥ d(i, j), then the target will be ignored. Otherwise, the vehicle will
deviate from the planned route and visit new target k directly, before continuing to
target j and resuming the planned route, provided that the fuel capacities are not
exceeded due to the additional fuel usage.

(iii) The arc has not been passed yet, so the new target will be added to the tour between
targets i and j if the remaining fuel allows the additional fuel usage.

The IA bears most similarities to the extended model in [30] in the rules for adding
targets. The greatest difference between the IA and the extended model, is that the
extended model allows the disappearance of any of the targets, whereas the UAV-MPP
does not.
An example of the algorithm can be seen in figure 1.
In order to determine whether such a new target k can be added to the tour, the ‘remain-
ing fuel’ Cr has to be updated, by subtracting the additional amount fuel that is required
for visiting k from the current remaining fuel Cr. For instance: in case of situation (ii),
target k is visited instead of going directly from target i to target j. Let us assume
that the current location of the vehicle is l, which lies somewhere on arc (i, j). Then
C ′r := Cr + d(l, j)− d(l, k)− d(k, j). If C ′r ≥ 0, new target k can be visited. Note that at
the start of the tour, Cr = C − LT .

12

D

(a) Original tour T

D

(b) Appearance of 2 new tar-
gets (red/blue dot: new tar-
get; red/blue line: moment of
appearance)

D

(c) Adding feasible targets
(red target: infeasible, blue
target: feasible; dashed line:
removed arc)

Figure 1: Example of the Insert algorithm

For each new target v that appears, a certain computation time is needed to determine
if, and, if so, where this target is added to the tour. Let T ′ be the current tour, i.e. the
tour that includes all new targets that have been added to original tour T . Note that
|T ′| ≥ |T |.
First of all, the Euclidean distances from point v to each line (i, j),∀(i, j) ∈ AT ′ (the
set of all arcs on the current tour) are calculated, in order to determine which arc the
new target lies closest to. This takes m · O(1) + O(m log(m)) = O(m log(m)) time. Let
(i′, j′) ∈ AT ′ be the closest arc for point v, then we have to verify whether the tour has
passed (i′, j′) already: this is done by looking at the last passed vertex vlast of the current
tour and comparing it to (i′, j′).

Case (i): vlast ≥ j′ so new target v will be ignored. Note that in comparisons between
vertices, like i < j, the inequality symbols <,>,≤,≥ stand for the binary relations as
defined on ordered set T .

Case (ii): i′ = vlast, then d(i′, v) and d(i′, l), the distance from vertex i′ to current
location l, are compared. If d(i′, l) < d(i′, v) and d(i′, v) < d(i′, j′) and d(l, v) + d(v, j′)−
d(l, j′) ≤ Cr, the target will be added to the tour. The comparisons are all simple com-
putations; this step therefore takes O(1) time in total.

Case (iii): vlast < i′, then we have to determine whether d(i′, v)+d(v, j′)−d(i′, j′) ≤ Cr.
This takes O(1) time.
Determining whether a new target v should be added to the tour takes therefore at most
O(m log(m) +O(1) = O(m log(m)) time.

Let a set of n fixed targets be given and let m be the maximal number of those tar-
gets that can be visited for a given fuel capacity C.

Theorem 1. The competitive ratio for the Insert algorithm is m
m+µ

and this bound is
tight.

Proof. The original tour on the set of fixed targets contains m targets. During the flight
µ new targets will appear, so at most m+ µ targets can be visited within a fuel capacity
C, no matter where the targets are located. The argument for this statement is quite
clear: if m+µ+ 1 targets can be visited, then, since only µ targets have been added, this
implies that a tour along m + 1 targets was possible in the case where the new targets
were not taken into account. But the found tour with m targets was the optimal tour, so
this is a contradiction. Hence, the optimal offline tour consists of at most m+ µ targets,

13

and |T ∗| ≤ m+ µ, so 1
|T ∗| ≥

1
m+µ

.
Also, since the online tour will be based on the route of the tour along the fixed tar-
gets, it is clear that the online tour will consist of at least m targets: in the worst
case, only the m (fixed) targets will be visited. This implies that |TA| ≥ m. Therefore,
|TA|
|T ∗| ≥

m
m+µ

, so for any instance I of this problem, the performance ratio is at least m
m+µ

,

so rc = sup
{
r
∣∣∣ |TA||T ∗| ≥ r, ∀ instances I

}
= m

m+µ
.

By definition, such a bound is tight when there is an instance for which that bound is
attained. Let Tm be the tour along the set of fixed targets that were known beforehand
and LTm the fuel required for this tour. Let i be the first fixed target and j the last
fixed target of tour Tm (so Tm = (0, i, . . . , j, 0)). Based on this tour, ‘reversed’ tour
T ′m can be constructed, in which the targets of Tm are visited in opposite direction, so
T ′m = (0, j, . . . , i, 0). Then the length of this tour is LT ′m . Since Tm was an optimal tour,
LTm ≤ LT ′m . We assume that both tours are feasible, i.e. LTm ≤ LT ′m ≤ C.
Now let each of the µ new targets appear at the time that the vehicle passes one of the fixed
targets of the original tour Tm, at one location l on arc (0, i) of the tour. When µ > m, let
the ‘remaining’ µ−m new targets appear at some time t: d(0, l) < t ≤ LT ′m − d(l, 0). As
mentioned before, the vehicle travels at unit speed, so time can be measured as distances.
Since all new targets appear at location l, at or after time l, the online tour will not add
any of them to the tour, either by rule (i) or rule (ii) of the Insert algorithm, and the
vehicle visits only the m fixed targets, so |TA| = m.
In case of the offline tour it is known that all µ targets arrive at location l before time
LT ′m − d(l, 0). The offline tour will therefore travel backwards along the route of Tm, so
the initial offline tour becomes tour T ′m. Then when the vehicle arrives at location l, all µ
new targets have appeared there, so it can visit all of them. Hence, the number of targets
in the offline tour is |T ∗| = m + µ and the performance ratio of the Insert algorithm is
|TA|
|T ∗| = m

m+µ
for this instance.

Therefore, the bound m
m+µ

on the performance ratios of the instances of the Insert algo-
rithm is tight.

4.1.1 Example of an instance with improved bounds

While the bound of m
m+µ

is tight for the Insert algorithm, we will now show that there are
instances of the problem for which a better performance ratio can be found. Let there
again be a set of n fixed targets and a set of µ new targets, for some unknown µ. On the
set of n targets a feasible optimal tour Tm of m targets can be constructed, so LTm ≤ C.
The set of arcs on tour Tm are again denoted by AT . Let T ′m be again the ‘reversed tour’,
and LT ′m its length. We assume that C > LT ′m ≥ LTm > 1

2
C and that the remaining fuel

is enough to add min{µ,m} new targets to either tour, using the Insert algorithm.

Let the new targets appear in such a way that when half the available time, i.e. 1
2
C, has

passed, half of the new targets have appeared near arcs of the second part of the tour.
Let h be the location of the vehicle on initial tour Tm at time 1

2
C. Then we can define

the second part of the tour: the shortest part of the tour that starts at location h and
continues to depot 0. Note that location h is not necessarily one of the vertices of tour
Tm, it can also lie on one of the arcs in AT . This second part of the tour contains at

14

D

P

(a) Original tour T

D

(b) Arrival of new targets be-
fore 1

2C (red dots: new tar-
gets; red line: 1

2C)

D

(c) Adding new targets to the
tour

Figure 2: Example of the Insert algorithm with a better performance ratio

least b = b(LTm − 1
2
C)/(max(i,j)∈AT

d(i, j))c complete arcs of AT ; we assume that this is
at least 1 complete arc, so b ≥ 1. As at least min{µ,m} new targets can be added to the
tour (fuelwise), this implies that either a new target can be added to each arc of the tour,
or that there are less new targets than existing targets. Then at least min{b, d1

2
µe} new

targets can be added to the online tour, so |TA| ≥ min{b, d1
2
µe}. As at most min{µ,m}

targets can be added in the offline tour, the performance ratio for this special case is:
|IA|
|I∗| =

m+min{b,d 1
2
µe

m+min{m,µ} .
This is a better performance ratio than the general competitive ratio for the Insert al-
gorithm. First of all: m + min{m,µ} ≤ m + µ, so 1

m+min{m,µ} ≥
1

m+µ
. Secondly, as

min{b, d1
2
µe} > 0, m+ min{b, d1

2
µe} > m. Therefore,

m+min{b,d 1
2
µe}

m+min{m,µ} > m
m+µ

.
Hence, instances of the Insert algorithm with a better performance ratio than the com-
petitive ratio of m

m+µ
do exist.

See figure 2 for an example.

4.2 Halfway-reoptimization algorithm

The second algorithm is, just like before, based on the original optimal tour on m tar-
gets, Tm. We also assume that a total of µ new targets will appear over time period C.
The vehicle will travel exactly half of the original tour, and then a reoptimization takes
place. The choice for waiting for half the tour length before reoptimization is a slightly
arbitrary one, but can be explained. If we would wait a longer period, for instance until
3
4

of the tour has passed, there may be more targets to add to the tour, but less possibil-
ities to actually add the targets to the tour, as the remaining fuel capacity is smaller. If
the reoptimization would take place after a shorter time period, for instance at 1

3
of the

tourlength, the remaining fuel capacity would be larger, so there would be more possibil-
ities to add new targets to the tour, but there will probably be less new targets. Waiting
for half the tourlength therefore is a good compromise between remaining fuel capacity
and number of new targets.
Let LTm be the duration of the original tour Tm, then at time t = 1

2
LTm , µ′ new targets

may have appeared, for some 0 ≤ µ′ ≤ µ (and µ′ ∈). Then at time 1
2
LTm we have a

set M(t) of new targets (with |M | = µ′), a set of visited fixed targets S(t) and a set of
unvisited fixed targets U(t). Note that at any time t, |U(t)|+ |S(t)| = n.
In the reoptimization that will take place at time t, a new route will be determined for
the vehicle that starts at the current location on the tour, ends at 0, that visits at least

15

m− |S| targets from the set M ∪ U and that requires at most C − 1
2
LTm fuel.

Due to the fact that only one reoptimization step takes place, approximately halfway
during the tour, we call this the ‘Halfway reoptimization algorithm’ (HRA).For this algo-
rithm, we cannot find a better competitive ratio than m

m+µ
: as neither the locations nor

the release times of the new targets are known, we are unable to say anything about the
performance of the halfway-reoptimization algorithm, except that it is guaranteed that
the vehicle will visit at least m targets in the online tour. A similar argument can be
found for the performance of the offline algorithm: by Theorem 1 we know that the ve-
hicle cannot visit more than m+µ targets in the offline tour. Therefore, the competitive
ratio3 for this algorithm is: m

m+µ
.

This algorithm is based on reoptimizing half of the tour, on a set of targets that can
turn out to be as large as the original set of targets. This new problem could be solved
like the regular OP, but as the OP is NP-hard, it may take up to exponential time. The
computation time for the reoptimization step may therefore be exponentially large. This
implies that it might be necessary to use a heuristic method instead of an exact solution
method and that the found solution may be suboptimal.

D

(a) Original tour T of length
LT

D

(b) New targets that appear
before 1

2LT (red dots: new
targets. Red line: 1

2LT)

D

(c) Reoptimized tour T ′

Figure 3: Reoptimization of a tour according to the HRA

4.3 Repeated-reoptimization algorithm

The third algorithm is called ‘Repeated-reoptimization algorithm’ (RRA) and is again
based on the a-priori tour on the n fixed targets. The idea behind the algorithm is that
when some new targets have appeared, the tour is reoptimized, in order to add new
targets to the tour when possible. This reoptimization step may be repeated several
times.
Let’s first define the algorithm:
We are given an a-priori optimal tour Tm on the set of n fixed targets, that consists of m
targets. We define U as the set of unvisited targets, S as the set of visited targets and T
as the current tour. Note that at the start of the tour, set U consists of all fixed targets,
so U = {1, . . . , n}, set S is empty, so S = ∅, and T = Tm.
The vehicle will start with tour Tm and will visit at least the first original target. The

3Note that this does not imply that this bound is attained by one of the instances.

16

moment that a new target v appears it will be added to set U and a reoptimization step
will be set in motion: tours will be found that start at the current next target i, end at
the depot 0 and that visit as many of the targets from set U\{i} as possible. Such a new
tour T ′ is called feasible if it meets two requirements. First of all, the number of targets
on the new tour must be at least as large as the number of targets on the current tour,
so |T ′| + |S| ≥ |T | ≥ m. Secondly, the fuel required for the current tour up to target i
plus the fuel required for the new tour does not exceed fuel capacity C.

D

(a) Initial tour

D

(b) Two new targets appear
(red dots: new targets. Red
line: moment of appearance)

D

(c) Updated tour

Figure 4: Example of the Repeated-reoptimization algorithm

The reoptimization step continues until either the optimal solution is found or the vehicle
reaches target i. In the former case, the vehicle continues with the optimal tour if it is
feasible. In the latter case, the vehicle continues with the best found tour, if feasible.
This best tour is defined as the tour with the highest objective value, and when there are
multiple tours with the same objective value, the tour that also has the lowest fuel re-
quirements. In both cases: if the chosen tour is not feasible, the current tour is resumed.
This process is repeated for each new target, until the vehicle reaches the depot (0).
Note that it might happen that a new target appears whilst a reoptimization step is
taking place, then that target will be ignored for the time being. As soon as the vehicle
reaches the first planned target i and either continues with a new tour or resumes the
current tour, all new ‘ignored’ targets will be added to set U and the next reoptimization
step will start. An example of the algorithm is shown in figure 4.

The offline problem can be modeled as an OPTW and solved with an exact algorithm,
as we mentioned earlier in this chapter. This will yield optimal solution T ∗ that visits
|T ∗| of the n+ µ targets in LT ∗ time.
It’s easy to see that the online tour will contain at least m targets, up to m + µ tar-
gets. The offline tour can contain at most m + µ targets, by the same argument that
was presented in the proof of Theorem 1. This implies that for this algorithm the same

competitive ratio holds: rc = sup
{
r
∣∣∣r ≤ |TA|

|T ∗| , ∀ instances I
}

= m
m+µ

. Note that this

bound is not necessarily attained by an instance.

In case of this algorithm, it may occur that the tour will be reoptimized for every new
target. The target set available for reoptimization may contain up to m− 1 + µ targets,
so there may be µ steps of finding a new optimal tour along at most m− 1 + µ targets.

17

Finding such a tour may take exponential time, so the computational time for this algo-
rithm is likely to be very large. Since reoptimization takes place during the flight and
there is a limited fuel capacity, this might imply that in some of the optimization steps
a suboptimal tour is chosen; that is, a tour that has the best objective value so far.

4.4 Internal target algorithm

Let Tm again be the tour along m targets that can be found when solving the UAV-MPP
on the n fixed targets to optimality, and AT the set of arcs on this tour. When we take
these m targets and the depot, and take the m+1 arcs that the tour travels along, we get
a simple4 polygon with m+1 vertices and m+1 edges. When this polytope is subdivided
into non-overlapping triangles on sets of three vertices, we create target sets in which the
targets lie relatively close to each other, compared to the whole target set. Note that
those triangles are allowed to have vertices or edges in common. Also, a number of new
targets may appear in each triangle. One such triangle, together with the new targets
that will appear inside it, can be seen as a subproblem of the UAV-MPP, on which the
tour can be reoptimized. Since such target sets are quite small, each reoptimization step
will take little computation time. The algorithm is called the ‘Internal target algorithm’
(ITA) as is only concerns itself with new targets that appear inside the fore mentioned
triangles.
Let P be the polytope on the m+ 1 vertices of the tour. Before polytope P is subdivided
into triangles, the vertices on the boundary of P are renumbered, such that 1 is the first
target on tour Tm, 2 is the second target on the tour, etc. Then the last renumbered
target is m. The set of edges of the polytope AP can now be defined as the set of edges
between adjacent pairs of vertices of P : AP = {(0, 1), (1, 2), . . . , (m− 1,m), (m, 0)}. The
tour will be updated to T ′m = (0, 1, 2, . . . ,m).

The actual subdivision of P is based on the fact that P is very likely to be a concave
polygon. The process of subdividing the polygon is based on cutting off triangles that
‘cause’ non-convexity of P . By causing non-convexity we mean for instance that there is
a triangle of three vertices (i, i+ 1, i+ 2) of the polygon, such that either line (i−1, i+ 1)
or line (i+ 1, i+ 3) does not lie inside P .
The process is as follows. Starting at vertex 0, the vertex with the lowest possible index,
let i, i+ 2 be the first pair of vertices such that line (i, i+ 2) lies inside P . Then the first
triangle is based on vertices i, i + 1, i + 2, creating remaining polygon P ′ = P\{i + 1}.
This process is repeated for k times, until vertex 0 is reached again. Then there is a
remaining polygon P (k). If P (k) still has edges in common with the P , then the process
will be continued for this polygon, again starting at the vertex with the lowest index
possible. Note that triangles that are now created will not have two adjacent pairs of
adjacent vertices as edges. After s steps, for some dm

2
e ≤ s ≤ m, all edges of P will be

an edge of exactly one of the s triangles, creating remaining polygon P (s) that has no
edges in common with original polygon P . We will not divide this polygon further, as
the subsequent triangles will have no edges in common with P . Tours on those triangles
will either involve cutting off part of the original tour or returning to a target that has
already been visited, and are therefore less interesting.

4A polytope is called simple when it has no self-intersecting edges

18

An example of how this subdivision works is shown in figure 5. The original polygon
is given in figure 5a. Then the first possible triangle is P1 = {1, 2, 3}, creating re-
maining polygon P ′ = {0, 1, 3, 4, 5, 6, 7, 8}. The subsequent triangles are P2 = {3, 4, 5},
P3 = {6, 7, 8} and P4 = {8, 0, 1}. As P (4) = {1, 3, 5, 6, 8} still has an edge in common with
P , namely edge (5, 6), the process of creating triangles is repeated. Starting from the ver-
tex with the lowest index, vertex 1, triangle {3, 5, 6} is the first possible triangle on three
adjacent vertices from set P (4) that has an edge in common with P , so P5 = {3, 5, 6}.
Then as P (5) = {1, 3, 6, 8} has no more edges in common with P , all necessary triangles
have been found. Figure 5b shows all constructed triangles.

1

2

3

4 5

6

7

80

P

(a) Initial polytope P of tour
Tm.

P1

P2

P3

P4

P5

P (5)

1

2

3

4 5

6

7

80

(b) Subdivision of P (into tri-
angles P1, . . . , P5)

1

2

3

4 5

6

7

80

(c) Reoptimized tour on P1

(red dots: new targets, ap-
peared early enough for reop-
timization on P1. Red lines:
new tour arcs)

Figure 5: Division of polygon P into triangles and first reoptimizion of the tour

If P is convex, then the subdivision will be quite straightforward, and mostly based on
pairs of adjacent edges of P . The majority of the triangles will have a set {i, i+1, i+2}
as vertices and set {(i, i+1), (i+1, i+2), (i, i+2)} as edges. If m is even, the penultimate
triangle will be based on vertices m− 2, m− 1, m. In that case, the last triangle will be
based on vertices m, 0, 2 and will only have edge (m, 0) in common with the edge set of P .
The remaining polygon will then be P ((m+2)/2) = {0,m+2,m+4, . . . ,m−1}, so there will
be m+2

2
triangles. In case m is odd, the last triangle will be based on vertices m− 1, m, 0

and all m+1
2

triangles will have exactly two edges in common with the edge set of P . Note
that the remaining polygon P ((m+1)/2) = {1, 3, . . . ,m−1} has no edges in common with P .

Before the tour can be reoptimized, the triangles have to be sorted, based on the or-
der of their appearance on the original tour. In case of the example, the visiting order of
the triangles is: P1, P2, P5, P3, P4. The reason for visiting P4 last, instead of first - even
though it contains edge (0, 1), which is the first edge of the tour - will be given later on
in this section.
As before, an unknown number µ of targets will appear in the feasible region, over a time-
period of C; it is unknown where and when the targets will appear. This implies either
all new targets appear inside of P , or that some of the new targets appear outside of P .
Let µ′ ≤ µ be the number of targets that appear inside P . Let there be k subdivisions
of P , then each of the µ′ targets will appear in either one of the k triangles P1, . . . , Pk or
in remaining polygon P (k).

19

The algorithm will be as follows: the tour will start as the planned tour T ′m with length
LTm . When the tour is near the first vertex of some triangle Pi and new targets have
appeared in that triangle, a reoptimization will take place on that triangle. The triangle
has either a single edge or two adjacent edges in common with AP (the set of edges of
polytope P). When following the direction of the tour T ′m, let t be the first vertex on the
(first) edge and u the last vertex on the (last) edge. Let the total length of these edge(s)
of Pi be denoted by LPi

.
In the reoptimization step, a path is found from the vertex t to vertex u that visits at
least as many targets within Pi as the original tour on this triangle, and that uses at
most LPi

+ C − LTm fuel. An example of this can be seen in figure 5c, where 2 new
targets appear in the first subpolytope, and a new tour is constructed that visits both
new targets, but cuts off target 2. This step is repeated for each triangle.
It might occur that the vehicle reaches the first vertex of a triangle, but no new targets
have appeared inside it yet. Then the vehicle will continue the original tour on that
triangle. When new targets appear while the vehicle is travelling the triangle, and the
vehicle is not on the last fixed edge of that triangle, the tour on that triangle will be
reoptimized before the vehicle reaches the second vertex.
A special rule applies for the triangle containing vertex 0, on which 0 is either the first
or the second vertex. In that case, this triangle will very likely contain the first arc of
the tour. For this arc, no reoptimization can take place, as reoptimization for any arc
has to be finished before the vehicle reaches that arc. If the triangle has two edges in
common with P , then some reoptimization is possible. This is the case, if either 0 is the
first vertex of the first triangle, and new targets have appeared inside the triangle whilst
the vehicle is still traveling the first arc, or if 0 is the second vertex of the last triangle
and new targets have appeared inside the triangle before the vehicle has reached its first
vertex. Note that ‘first triangle’ and ‘last triangle’ do not necessarily refer to triangles
P1 and Pk, but to the order of the triangles along the original tour.

For this algorithm a performance ratio has been found as well, in a similar way as for
the previous algorithms. The original tour contains m targets. When a reoptimization
step takes place on one of the subpolytopes, some of the original targets may be left
out of the tour, but the algorithm requires that during that step at least as many new
targets are added to the tour. Hence, the number of targets in the reoptimized tour on
each subpolytope is as least as large as the number of targets in the original tour on that
subpolytope, so the number of visited targets in the total reoptimized tour is at least m.
For the offline case, the same argument holds as in the case of the previous algorithms:
when it is modeled as an OPTW, it can be solved to optimality with an exact algo-
rithm. Therefore, by Theorem 1, at most m + µ′ targets can be visited in the off-
line case. This implies that for the internal point algorithm, the competitive ratio is

cr = sup
{
r
∣∣∣ |TA||T ∗| ≥ r, ∀ instances I

}
= m

m+µ′
.

Note that this bound is not necessarily tight, as there may not be an instance in which
all µ′ new targets appear inside polytope P in such a way that they can be added to the
offline tour, but not to the online tour.
The computational time for this algorithm is relatively small. For each triangle a small
version of the OP has to be solved; this can be done by an exact algorithm in polynomial
time.

20

5 Performance of the algorithms

5.1 Description of the simulation settings

In the previous chapter we described theoretical results for each of the four algorithms.
While such results may be adequate in some cases, it has become clear that the found
results for our algorithms seem to be quite unspecific, as we found similar bounds for
each of the algorithms. This can be explained by the fact that there were too many un-
certainties in the general instance. In order to provide more insight into the performance
of the algorithms, measured by both the objective value and the computational time,
we expanded the research by applying the algorithms to testcase instances, by which
empirical data have been obtained. The used testcase instance was based on benchmark
instances for the OP that were presented in [42], as real data were unavailable. This
instance consists of a depot and 19 targets, located in a 15 × 15-area, that has (0, 5) as
the lower left corner and (15, 20) as the upper right corner. All locations i, 0 ≤ i ≤ 19,
are further specified with a set of coordinates (x(i), y(i)) in the Euclidean plane and a
score s(i). Except for the depot, which has score 0, these scores are multiples of five
between 10 and 50. The exact specifications of the instance can be found in table 2 and
a graphical representation of the target locations is given in figure 6.

Table 2: Target instance, as used for all simulations (i denotes the index of a target,

(x(i), y(i)) denote the coordinates of target i and s(i) denotes its score)

node i x(i) y(i) s(i)
0 4.6 7.1 0
1 5.7 11.4 20
2 4.4 12.3 20
3 2.8 14.3 30
4 3.2 10.3 15
5 3.5 9.8 15
6 4.4 8.4 10
7 7.8 11.0 20
8 8.8 9.8 20
9 7.7 8.2 20

node i x(i) y(i) s(i)
10 6.3 7.9 15
11 5.4 8.2 10
12 5.8 6.8 10
13 6.7 5.8 25
14 13.8 13.1 40
15 14.1 14.2 40
16 11.2 13.6 30
17 9.7 16.4 30
18 9.5 18.8 50
19 4.7 16.8 30

In addition to the set of known targets, sets of new targets were necessary and have been
generated according to the following requirements. First of all, all new targets will appear
inside the fore mentioned 15× 15-area. Secondly, all new targets will appear during the
flight of the vehicle, that is, target that appear either before or after the flight of the
UAV are disregarded. As all the specifications of the new targets were unknown, we used
models to find these specifications. First of all, it is easy to see that the arrival of the
targets can be described as a counting process, as all of the four following requirements
are met with: the number of appeared targets is at least 0 at each time t ≥ 0; the number
of targets is an integer; targets do not disappear, i.e. N(s) ≤ N(t) for any pair s, t ≥ 0
such that s < t; and finally for any pair of moments 0 ≤ s < t, N(t) − N(s) equals the
number of targets that have appeared in the interval (s, t]. Furthermore, we assumed
that the time between any two consecutive appearances is distributed according to an

21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1
2

3

4
5

6

7

8

91011

12

13

14

15
16

17

18

19

D

Figure 6: Location (in the Euclidean plane) of the nodes of the Tsiligirides-instance

exponential distribution with some given mean 1
λ

and that these interarrival times are
independent of each other. The arrival of new targets can therefore be described by a
renewal process. See [34] for more elaborate description of these stochastic processes.
Let, for some i > 0, Xi be the interarrival time between the (i − 1)st and the ith new
target, and Xi ∼ exp(λ). The arrival times of the new targets can be computed when
the interarrival times are known, but for the interarrival times we need to know how
many new targets will arrive. The total number of new targets at some time t > 0 can
be described by Poisson random variable N(t), which has rate per time unit λ. In this
case, the time unit is defined to be equal to the fuel capacity, as we are only interested
in targets that can be added to the tour, i.e. targets that appear before the time limit of
the flight has elapsed.
We generated independent (0, 1)-uniform random variables U1, U2, . . . , such that

N + 1 = min

{
n

∣∣∣∣∣
n∏
i=1

Ui < e−λ

}
.

Then N is the number of targets that have arrived before t. Using this value N , we
determined the arrival times of the targets, by generating a new set of random num-
bers U1, . . . , UN ∼ U(0, 1) and multiplying them by t. The values tU1, . . . , tUN are the
interarrival times of the N new targets. The arrival times t1, . . . , tN can then be deter-
mined by adding the interarrival times of all targets that have appeared at that moment:
ti =

∑i
j=0 tUj, for i ∈ {1, . . . , N}.

In addition to the arrival times, coordinates and scores have been determined for each of
the N new targets. These are all based on (0, 1)-uniform distributions as well. Let i ≤ N
be the index of a new target, then its coordinates (x(i), y(i)) are determined as follows:
let (Xi, Yi) ∼ U(0, 1) × U(0, 1), then x(i) = 15Xi and y(i) = 5 + 15Yi. The coordinates
were rounded to one decimal point, just like the coordinates of the given targets.
For each of the new targets we have generated scores, similar to those of the given targets.

22

Since the new targets are expected to have slightly higher information values, the scores
ranged from 20 to 60 and were determined as follows: let Zi ∼ U(0, 1), ∀i ≤ N , then
s(i) = 20 + 40Zi. By rounding the s(i) to the nearest 5-tuple, we obtained the score for
new target i.

All used distances between pairs of locations were based on, but not necessarily equal
to, the Euclidean metric. We assumed that at each target location some time is required
for locating the actual target and gathering imagery, and have therefore used a so-called
recording time equal to 2 fuel units. Note that this recording time is only necessary
at targets and not at the depot. In order to make the computations easier, we have
added this recording time to the distance between two locations. We assumed that the
recording takes place after the vehicle has flown from one location to the next, so for any
pair i 6= j, 0 ≤ i, j ≤ N + 19 with j 6= 0, the distance d(i, j) is computed as follows:
d(i, j) =

√
(x(i)− x(j))2 + (y(i)− y(j))2 + 2. When j = 0, recording time is not neces-

sary, so in those cases d(i, j) =
√

(x(i)− x(j))2 + (y(i)− y(j))2. Note that N + 19 refers
to the indices of all locations: there were 20 given locations, with indices 0, . . . , 19, and
N new targets, so N + 19 is the index of the new target that appears last.
The fuel capacity was set to 65.0 in each of the simulations. We have considered multiple
rates for the arrival of the targets: in any testcase we set the rate to a value of either 3,
5, 10 or 20.

In addition to the testcases mentioned so far, we had a second, similar set of testcases,
in which all scores, both those of the given targets and those of the new targets, were set
to 1. This means that there were two types of scores, four options for the arrival rate of
the new targets and four algorithms. This results in 32 different testcases; an overview of
the cases is given in table 3. We generated four sets of 10.000 new target instances, i.e.
one set of 10.000 instances for each of the four arrival rates, and used these as new target
instances for the testcases, as to be able to compare the results of similar testcases.
The models have all been implemented in Eclipse 3.7.2, combined with Cplex 12.2 for
the optimization steps.

Table 3: Overview of the settings of all 32 testcases (per algorithm there are 2 scoretypes;
per scoretype there are 4 different rates)

Algorithm IA / HRA / RRA / ITA
Score 1 varying
Rate 3 5 10 20 3 5 10 20

5.2 Evaluation of the results

As mentioned in the previous paragraph, we had two sets of 16 testcases. For both
testcases a solution to the basic problem with only the given targets was found first;
these basic solutions, combined with the original data, were used as input for any of the
instances in any of the testcases. The basic solution for the target set with so-called ‘full
scores’, i.e. the scores ranging from 10 to 50, was a tour with an objective value of 360,
that required 64,94 fuel units and visited 13 targets along the way. The basic solution

23

for the target set with score 1 had an objective value of 15 and had a length of 63,44 fuel
units. See also figure 7 for a graphical representation. Note that these tours are quite
different: in the case where all scores are set to 1, the resulting tour visits two targets more
than the tour for the target set with full scores. Such a result is not quite unexpected
when looking at the data: targets 3 and 14 through 19 may have higher scores, but also
lie relatively far from the depot. When only the number of visited targets, instead of the
values of those targets, is important - as it is in this case - the fore mentioned targets are
less likely to be visited.

0 2 4 6 8 10 12 14

6

8

10

12

14

16

18

20

1
2

3

4
5

6

7
8

91011

12
13

14
1516

17

18

19

D

(a)

0 2 4 6 8 10 12 14

6

8

10

12

14

16

18

20

12

3

4
5
6

7

8

91011

12
13

14
1516

17

18

19

D

(b)

Figure 7: Basic solutions for the cases with score 1 (a) and varying scores (b), shown in
the Euclidean plane

5.2.1 First case: equal scores

The testcases in which all scores were set to 1 were meant first and foremost for the de-
termination of performance ratios of the algorithms. They can also be used for different
analyses, however. First of all, the results show for each of the algorithms whether it is
possible to add targets to the existing tour under the given conditions, and if so, how
many. As all four methods require a solution to be at least as good as the basic solution,
each of the found tours contains at least 15 targets. The methods result in addition of
0 up to 5 targets to the tour. The results of the simulations can be seen in table 4 in
more detail. Note that these results are determined by taking the averages of all 10000
outcomes. The average fuel consumptions, that are mentioned in the fourth column, are
based on the fuel consumptions of the updated tours. The last column contains average
computation times in milliseconds. More detailed results can be found in appendices A
and B.
The fact that the average objective values are equal to the average number of visited
targets is easy to explain: the value of each of the targets is 1, so the objective value is
equal to the number of visited targets for each tour. Hence, the average objective value
is equal to the average number of visited targets.

24

Table 4: Results of the testcases with score 1. (Results in columns 3 up to 7 are averages
over 10000 instances. Fuel consumption of denotes the fuel consumption of a reoptimized
tour; computation time is given in ms)

Algorithm Rate Objective value Fuel consumption Number of visited targets Computation time
IA 3 15 63.448 15 0.0
IA 5 15 63.448 15 0.0
IA 10 15 63.448 15 0.1
IA 20 15 63.448 15 0.2

HRA 3 15.035 59.218 15.035 18.9
HRA 5 15.085 58.448 15.085 24.4
HRA 10 15.253 58.116 15.253 33.9
HRA 20 15.591 58.326 15.591 56.0
RRA 3 15.098 63.611 15.098 710.6
RRA 5 15.227 63.690 15.227 1153.3
RRA 10 15.617 63.802 15.617 2587.1
RRA 20 16.291 63.963 16.291 7633.6
ITA 3 15.000 63.437 15.000 0.3
ITA 5 15.000 63.433 15.000 0.5
ITA 10 15.000 63.418 15.000 0.9
ITA 20 15.000 63.393 15.000 2.1

Table 5: Results of the testcases with varying scores (Results in columns 3 up to 7
are averages over 10000 instances. Fuel consumption denotes the fuel consumption of
reoptimized tour; computation time is given in ms)

Algorithm Rate Objective value Fuel consumption Number of visited targets Computation time
IA 3 360 64.937 13 0.0
IA 5 360 64.937 13 0.0
IA 10 360 64.937 13 0.0
IA 20 360 64.937 13 0.1

HRA 3 372.950 59.213 12.856 29.2
HRA 5 380.782 58.179 12.813 41.1
HRA 10 400.301 57.585 12.880 70.7
HRA 20 434.425 57.534 13.231 187.2
RRA 3 383.677 64.397 12.821 1458.6
RRA 5 397.172 64.074 12.817 1709.1
RRA 10 427.196 64.434 12.946 4118.5
RRA 20 475.109 64.438 13.400 14251.9
ITA 3 361.245 64.907 13.001 0.5
ITA 5 362.107 64.885 13.001 1.0
ITA 10 364.101 64.838 13.002 2.1
ITA 20 368.312 64.745 13.011 5.7

25

5.2.2 Second case: varying scores

An overview of the results of the second set of 16 testcases, with scores ranging from 10
to 50 for the given targets and ranging from 20 to 60 for the new targets, can be found in
table 5. Note that the fuel consumptions in this table are based on the amounts of fuel
required for the reoptimized tours, just as in table 4.
A first impression is that the results of either case are quite similar, that is, when the
two sets of results of an algorithm are compared to each other.
The third algorithm (RRA), that reoptimizes the tour whenever a new target appears,
seems to yield the best results overall: its objective values range from 510 to 675. This
was to be expected, as the remaining part5 of the tour is reoptimized each time a new
target arrives and/or as soon as the current reoptimization is finished, and only solutions
are allowed that have equal or better objective values. The algorithm therefore allows
tours that are quite different from the basic solution. In instances where the arrival rate
is high, the new targets lie relatively close to the depot and their scores are relatively
high, when compared to the scores of the targets in the remaining part of the tour, the
algorithm might produce tours that have relatively high objective values.
The second algorithm (HRA) has relatively good results for the same reasons as the
third algorithm. The average objective values for the instances with either rate 5, rate
10 or rate 20 are relatively high in case of the third algorithm, when compared to the
results of the second algorithm. This is easy to explain: in case of the third algorithms,
many reoptimizations may take place, since many new targets arrive, whilst the second
algorithm allows only one reoptimization step. When looking at the average results for
instances with rate 3, the difference in results is a lot smaller. This could be explained by
the fact that there were only a few new targets, so also only a few reoptimization steps
were possible.
The Internal Target Algorithm also finds better solutions than the original solution,
though those solutions are not as good as those found by either the HRA or the RRA.
This is due to the structure of the algorithm and the fact that the remaining capacity of
the basic solution does not allow addition of new targets to the tour at first. This means
that, in any of the instances, no more than two extra targets have been added to a tour.
The Insert algorithm seems to be performing the worst in either case: it does not produce
any improved solutions at all. This was to be expected: the IA only allows addition of
new targets to the current tour, but for each additional target 2 extra fuel units are nec-
essary for recording. Since the length of original tour is more than 63 fuel units already,
this is not possible, even if the remaining fuel capacity would allow visiting a new target.
The current settings of the testcases are therefore unsuitable for the IA.

With the possible application of the algorithms to real life situations in mind, there
are two more factors that should be taken into account. First of all, the computation
time of the algorithms is important. An algorithm that finds tours with very high objec-
tive values6, may not be so interesting for further research when it also takes a relatively
long time before the tours are found. We therefore have to evaluate the durations of the

5By ‘remaining part’ we imply the part of the current tour that starts at the next target that is to
be visited, i.e. the target that the vehicle is currently traveling to.

6I.e. when the results of specific instances are compared with each other

26

simulations. For this, we measured the time required by the reoptimization process in
each of the algorithms.
As expected, based on the complexity analysis in Chapter 3, the simulations for both the
first (IA) and the fourth (ITA) algorithm took very little time, even for a relatively large
set of new targets. The largest computation time was 121 ms; the average computation
time was less than 6 ms.
For both the second (HRA) and the third (RRA) algorithm, more computation time was
required, as can be seen in tables B.1 and B.2 in appendix B. For both algorithms we
found that the simulations with so-called full scores took more time than the simulations
were all targets had score 1. For the HRA with score 1, the average computation time
ranged from 19 ms, in case of the instances with rate 3, to 56 ms, in case of the instances
with rate 20. For the HRA with full scores, the average computation time ranged from
29 ms for rate 3 to 187 ms for rate 20.
Simulations of the RRA with score 1 took 710 ms to 7633 ms on average, for rate 3 and
rate 20 respectively; simulations for the RRA with full scores took 1459 ms to 14252 ms
on average, for rate 3 and rate 20, respectively.
Secondly, the RRA may yield tours that differ greatly from the basic solution, or even
from tours found in previous reoptimization steps. In real life, for instance in military
situations, this may be an undesirable result and it might make the RRA less interesting.

When comparing all results, the repeated reoptimization algorithm (RRA) seems to yield
the best tours; the theoretical performance of the algorithm is clearly the best. But as
not only the theoretical performance is important, we need to take the computation times
into account as well. As can be seen in appendix B, the maximal measured computation
time was about 143 seconds, for an instance of RRA with full scores and arrival rate 20.
Note that this is the computation time for the entire instance. That particular instance
contained 21 new targets, so the computation time per reoptimization step was about 7
seconds on average. While a reoptimization time of 7 seconds may seem quite acceptable
in real-life situations, we would like to remark that it could also occur that in a worst-
case scenario just one of the steps took 143 seconds. In real life situations there may not
be much time available for reoptimization, so such processes would have to be stopped
prematurely, which could result in less-than-optimal solutions. Both this fact, and the
fact that the optimal tours found by the reoptimization steps in the RRA might differ
greatly from the original tour, lead to the conclusion that the RRA does not seem to
perform well in practice.
The HRA, on the other hand, does. Its computation times are relatively small, the
reoptimized tour cannot differ too greatly from the original one, as the first half overlaps,
and the reoptimized tours have better objective values in more than half the cases. The
HRA therefore seems more a suitable algorithm.

5.2.3 Offline solutions and competitive ratios

For determining the performance ratios, we needed to determine the offline solutions first.
In this case, only four sets of 10000 solutions were necessary: one set per arrival rate.
Finding such a solution is similar to finding online solutions, but in this case, all data
on the new targets were known in advance. The offline variant of the UAV-MPP with a
changing set of targets can be therefore modeled as an OPTW. We used the programming

27

formulation as mentioned in Section 3.3, but made some minor changes to it to improve
its efficiency.
Let set W be the set of new targets. We added a dummy depot to set V +, that coincides
with the original depot, for programming reasons. The dummy depot has index l = |V |+
|W |+1. Then V ++ = V ∪{0}∪{l} denotes the set of all given locations, including both the
actual depot and the dummy depot. Note that not all arcs (i, j) with i, j ∈ V ++∪W, i 6= j
are used. The set of arcs is constructed as follows: A = {(0, i)|i ∈ V ∪W} ∪ {(i, j)|i, j ∈
V ∪W i 6= j} ∪ {(i, l)|i ∈ V ∪W}. As the set of locations has been expanded, we have
adapted most of the constraints:

(OPTW’) max
∑
i∈V

xiv(i),

s.t.
∑

(i,j)∈A

dijxij ≤ C, (23)

x0 =
∑
i∈V

x0i = 1, (24)

xl =
∑
i∈V

xil = 1, (25)

xj =
∑

i∈V +\{j}

xij =
∑

i∈V ∪{l}\{j}

xji ≤ 1, ∀j ∈ V ∪W (26)

ti + dij − tj ≤M(1− xij), ∀i, j ∈ V ∪W (27)

xiri ≤ ti, ∀i ∈ V ++ ∪W (28)

ti ≤ xidi, ∀i ∈ V ++ ∪W (29)

xij ∈ {0, 1}, ∀(i, j) ∈ E

Note that variables dij, v(i), ri and di, constants C and M and decision variables xi and
xij are similar to the ones used in the original OPTW-model. Constraint (3) have been
split up into two new ones: (24) for the original depot and (25) for the dummy depot.
Both constraints now take both sets of targets into account, instead of only set V . This
last change has been made to all constraints of the original OPTW that concerned itself
with set V .
The changes to Constraints (28) and (29) were made mostly for computational reasons.
This way, when the tour does not include location i, ti is automatically set to 0. Note
that both sets of constraints still contain only linear constraints, as all values of ri and
di are input parameters of the OPTW’-model. Also, we defined ti as the time that the
vehicle leaves location i and adapted the values of most of the ri and di. Since the
vehicle cannot leave a target earlier than the Euclidean distance between the depot and
the target plus the recording time, ri = d0i + 2.0, ∀i ∈ V . The vehicle cannot leave a
new target earlier than the moment of arrival of the new target plus recording time, so
ri = t(i) + 2.0, ∀i ∈ W , where t(i) is the arrival time of new target i. The vehicle cannot
leave the last target in the tour later than the fuel capacity minus the distance from that
target back to the depot, so di = C − dil, ∀i ∈ V ∪W . The vehicle has to start at the
depot at t = 0, so r0 = d0 = 0.0, and the vehicle cannot go from the depot directly to
the depot, so rl = 2.0 and dl = C. The value of 2.0 refers to recording time. Note that

28

we deviated from the values ri, di,∀i ∈ {1, . . . , 19}, as they were mentioned in Section
3.3. The reason for this is mainly a practical one: smaller time windows [ri, di] implies
that there are less possibilities for ti and therefore results in less computing time.

The value of constant M has some influence on the efficiency of the solution pro-
cess as well. It is therefore important to pick a value that is not too high, but does
allow any feasible combination of values for ti and tj. As ti − tj ≤ C, ∀(i, j) ∈ A and
dij ≤ 15

√
2 + 2,∀i, j ∈ V ++ ∪W, i 6= j, M can be set to C + 2 + 15

√
2. Note that a

slightly smaller M would suffice as well, as a combination of ti = 65.0, tj = 0.0 and
dij = 15

√
2 + 2 will not occur.

We solved the offline problem with 500 new target instances for each of the arrival rates,
in order to determine the empirical performance ratios. In some cases, finding an exact
solution proved to be rather difficult, which can be explained by the fact that all scores
were equal, some of the sets of new targets were quite large and some the new targets
were located close to each other or close to the given targets. In such a case, the solution
of that particular instance was ignored if an exact solution had not been found after 10
minutes. Also, when the set of new targets is empty, no reoptimization takes place and
the corresponding solution is trivial. Such instances were ignored as well. We therefore
only used the solutions for the first 500 non-empty instances that could be solved in 10
minutes.
The performance ratios were determined per algorithm, per arrival rate, by comparing
the objective value of the online solution and the objective value of the offline solution for
each of the target instances. This means that, for instance, the solution of the HRA for
the fifth set of new targets, generated according to an arrival rate of 10.0, was compared
to the offline solution on the same set of new targets.
For each of the 16 combinations of type of algorithm and arrival rate, we determined the
minimal performance ratio, the maximal performance ratio and the average performance
ratio. The results can be found in tables 6 and 7.

Table 6: Empirical performance ratios for rate 3.0 (left) and rate 5.0 (right) (Results
refer to minimal found performance ratio, maximal found performance ratio and average
of the found performance ratios)

Algorithm Min Max Average

IA 15
18 1 0.979

HRA 15
18 1 0.982

RRA 15
18 1 0.987

ITA 15
18 1 0.979

Algorithm Min Max average

IA 15
18 1 0.957

HRA 15
18 1 0.962

RRA 15
17 1 0.972

ITA 15
18 1 0.957

For each of the algorithms and each of the rates, the maximum performance ratio was
1. While this seems like a good result, we would like to remark that there are cases
where the offline solution does not contain more targets than the original solution of 15
targets. In these cases the online solution will have an equal objective value, as we allow
only online solutions that have an objective value that is as least as large as the original
objective value. This results in a performance ratio of 1, but does not say much about

29

Table 7: Empirical performance ratios for rate 10.0 (left) and rate 20.0 (right) (Results
refer to minimal found performance ratio, maximal found performance ratio and average
of the found performance ratios)

Algorithm Min Max Average

IA 15
19 1 0.917

HRA 15
19 1 0.932

RRA 15
18 1 0.954

ITA 15
19 1 0.917

Algorithm Min Max Average

IA 15
20 1 0.865

HRA 15
19 1 0.897

RRA 15
18 1 0.935

ITA 15
20 1 0.865

the performance of the online algorithm. In some cases, however, both the offline and the
online solution have an equal objective value higher than 15; this has occurred for each
of the rates for both the RRA and the HRA, so we may conclude that both algorithms
perform optimal for some instances.

First of all, there may be circumstances under which the Internal Algorithm (IA) per-
forms better than it has for the given circumstances. Two simple adaptations of the given
settings, that may lead to better performance, are shorter recording times and adding
some slack to the fuel capacity. By adding slack we mean that part of the fuel capacity
will remain reserved for reoptimization purposes, and cannot be used for the initial tour.
Another adaptation that may result in better performance involves an adaptation of the
objective function. While the optimal solutions for either basic problem are tours with
the highest objective value, their tours may not be of ‘minimal’ length, as the length of
the tours are not taken into account in the objective function. There may be tours with
equal objective values of shorter length; such a tour might prove to be more suitable as
a basic solution, since it might create enough slack for adding one or more targets to the
existing tour. When a penalty for fuel consumption is added to the objective function,
the optimal tour will be optimal on both aspects. A slight disadvantage of such objective
functions is that it will take more time to optimize the corresponding problems.

Another part of the research that might be interesting to investigate further, is an adap-
tation of the Internal Target algorithm. When a new target appears close to one of the
arcs of the tour before the vehicle has reached that arc, the remaining fuel is such that
the target could be added to the tour, but the target lies outside of the tour, instead of
inside, this target will be ignored, even though it would lead to an improvement of the
objective value. A way to correct this problem is not to look at triangles that lie ‘inside’
the tour, but find other areas in the vicinity of the arcs, in which we look for new targets.

30

6 A changing set of rates

In the previous chapters we described which solution strategies might be useful for solving
the UAV-MPP with a changing set of targets. For these strategies we assumed that all
new targets appear according to the same arrival rate. But in real-life situations this
might not necessarily be true. The arrival rate might be higher in some reasons, due to
presence or absence of habitation, for instance. For such situations, the found strategies
might not be optimal.
In this part of the thesis we will determine whether the four found strategies can be
successfully applied to instances with both a changing set of targets and varying arrival
rates. We will start by developing a new strategy, designed for the instances where the
new targets appear in one prespecified zone only.

6.1 Delay algorithm

For the new strategy, we assumed that all new targets appear in some zone that is located
inside the area of interest, and that both the fact that all new targets appear in a certain
area and the specific location of this area are known beforehand. The strategy is based
on the idea of delaying the arrival of the vehicle at the specified new target zone, so that
as many new targets can be visited as possible. Our way to model this is by use of the
variables ui, that were used for instance in Constraints (6) of the nominal OP.
These constraints were introduced in the paper on Integer Programming for the TSP, by
Miller et al. [31] and can be seen as an alternative to the subtour elimination constraints
that are more commonly known, i.e. those that were mentioned for instance in [4]. The
commonly known constraints consist of two sets of constraints:∑

e∈δ({i})

xe = 2, i ∈ N (30)

∑
e∈E(S)

xe ≤ |S| − 1, S ⊂ N, s 6= ∅, N (31)

In these constraints, xe ∈ {0, 1} is a decision variable for each edge e ∈ E. E is the
set of edges of some graph G = (N,E), N is the set of nodes, S is a subset of nodes,
E(S) = {(i, j) ∈ E|i, j ∈ S} and δ({i}) denotes the set of edges incident to i. Constraints
(30) ensure that exactly two edges are incident to each node; Constraints (31) ensure that
for each subset of nodes S, there are at most |S| − 1 edges, so no so-called subtours are
possible. Note that the first set of constraints are useless in case of the OP, as it is
very likely in the OP that not all nodes are visited. While both these constraints are
quite straightforward, they are not very efficient: let |N | = n, then (31) consists of∑n−1

k=1

(
n
k

)
= −2 +

∑n
k=0

(
n
k

)
= 2n− 2 ∼ O(2n) constraints. The constraints introduced by

Miller et al., here on after denoted as the MTZ-constraints, are based on the set of arcs:

ui − uj + 1 ≤ |V |(1− xij), ∀(i, j) ∈ A. (32)

In these constraints V is the set of nodes, A is the set of arcs, the xij ∈ {0, 1} are decision
variables for the arcs and 1 ≤ ui ≤ |V |, i ∈ {1, 2, . . . , |V |}. As there is such a constraint
for each of the arcs in A, set (32) consists n(n − 1) ∼ O(n2) constraints. This is a

31

significantly smaller set of constraints for most of the problems, as it is very likely that
n >> 4.
The MTZ-constraints ensure the formation of subtour-free tours as follows: to each of
the ui an integer between 1 and |V | is assigned.
Let’s assume that all MTZ-constraints are satisfied. If some arc (i, j) ∈ A is part of
the tour, the xij = 1, so ui − uj + 1 ≤ 0. Then uj ≥ ui + 1, for each of the arcs
(i, j) in the tour. This implies that when the ui are ordered based on the position of
their corresponding vertex i in the tour, their values form an increasing sequence of
integers. Let {i1, . . . , is} ⊂ V (s ∈ N≥3)), be a subtour on a subset of vertices of V , then
ui1 + 1 ≤ ui2 , ui2 + 1 ≤ ui3 , . . . , uis−1 + 1 ≤ uis . But, as this is a tour, the successor of
vertex is in this tour is i1, so uis + 1 ≤ ui1 . This implies that uis + 1 ≤ ui1 ≤ uis − 1.
Therefore, if the MTZ-constraints are satisfied, subtours cannot exist.
This notion of assigning integer values to the ui forms the basis of the fifth algorithm.
Let the depot be denoted by vertex 0 and let the indices of the targets be 1, . . . , n. Let
N ′ ⊂ N be the set of targets which lie inside the new target zone, or if no targets lie
within this zone, a prespecified set of targets which lie close to the zone of new targets.
Finally, let delay factor k > 0 be some prespecified integer, that denotes the delay of the
visit to the zone of new targets. Note that this integer k indicates how many targets
i ∈ N\N ′ have to be visited before any of the targets j ∈ N ′, located in or near the zone
of new targets, can be visited. The ‘Delay algorithm’ (DA) consists of 2 parts. First an
initial solution is found, that consists of a tour on the set N of vertices of optimal value
and of optimal duration, which requires at most C ′ < C fuel units, for some C ′ > 0.
Let C be the total available amount of fuel. Then the so-called slack in fuel, C − C ′,
is reserved for the reoptimization step. If multiple optimal tours with similar objective
values can be found, then a tour is chosen that has both the optimal value and minimal
length. An additional requirement for the initial solution is that in this tour at least one
of the j ∈ N ′ are visited, in such a way that all of the j ∈ N ′ are either visited as the
kth target or later, or not at all. Finally, the values of the ui, ∀i ∈ V have to be chosen
in such a way that for any target i ∈ V , its corresponding value ui reflects its position in
the tour. This implies that if target i is the mth target in the tour, ui = m. Note that,
as not all vertices are part of the tour, the reverse is not necessarily true and that there
may be i 6= j ∈ V , such that ui = uj. In that case, at least one of the vertices i and j is

D

(a) Initial tour (black
nodes: fixed targets; zone
of new targets: green rect-
angle)

D

(b) New targets (red
nodes) appear before the
vehicle arrives at the
second node

D

(c) Reoptimizing tour, us-
ing slack fuel capacity
(red arcs: new tour; grey
nodes: unvisited targets)

Figure 8: Example of the Delay algorithm

32

not part of the tour.
The second part of the algorithm takes place during the flight: let j be the first target of
the tour that lies in the zone of new targets, and let k′ ≥ k be the position of this target
on the tour. Then a reoptimization step will take place just before the vehicle reaches
the (k′ − 1)st target. Let Cr be the amount of fuel that was required for the part of the
initial tour that started at this target and ended at the depot.
During the reoptimization step a path will be found that starts at the (k′ − 1)st vertex
of the tour and ends at the depot, and that visits a subset of the set of targets that are
available at that moment. This set consists of all new targets that have appeared before
the start of the reoptimization process and all fixed targets that have not been visited
yet and which can be visited without intersecting the first part of the tour. The length
of this path is restricted by the remaining fuel plus the predetermined amount of slack:
C − C ′ + Cr. The objective of the reoptimization process is again to obtain a path of
maximal objective value.
For the first part of the algorithm we used the following model:

(OP’) max
∑
i∈V

xiv(i)− 0.1
∑

(i,j)∈A

yijd(i, j) (33)

s.t.
∑

(i,j)∈A

yijd(i, j) ≤ C ′ (34)

x0 =
∑
i∈V

y0i = 1 (35)

xl =
∑
i∈V

yil = 1 (36)

xj =
∑

i∈V ∪{0}\{j}

yij =
∑

i∈V ∪{l}\{j}

yji ≤ 1, ∀j ∈ V (37)

∑
i∈V ′

xi ≥ i (38)

ui − uj + 1 ≤ |V |(1− yij), ∀(i, j) ∈ A (39)

0 ≤ ui ≤ |V |, ∀i ∈ V ++ (40)

ui ≥ k, ∀i ∈ V ′ (41)

u0 = 0 (42)

ul =
∑

i∈V ∪{l}

xi (43)

yij ∈ {0, 1}, ∀(i, j)inA (44)

xi ∈ {0, 1}, ∀i ∈ V ++ (45)

In this model, V is the set of fixed targets, 0 is the depot and l is a dummy depot, similar
to the one mentioned in Section 5.2.3; V ++ = V ∪{0}∪{l}. Then A is the set of all arcs.
Note that A contains neither (0, l), nor arcs of the type (i, 0), ∀i ∈ V or (l, i), ∀i ∈ V .
As mentioned before, the set V ′ consists of either the fixed targets that lie inside the new
target zone, or, if such targets do not exits, of targets that lie close to the new target
zone. Note that Constraint (38) forces the initial tour to visit at least one of these targets.
Other additional constraints are the constraints (41), which makes sure that if a target

33

i ∈ V ′ is visited, it has at least k predecessors. To the objective value (33), a penalty
function has been added in order to find tours with maximal objective value that have
a minimal fuel consumption. The importance of minimizing the fuel consumption lies
in the fact that when an initial tour requires less fuel, the amount of remaining fuel is
larger, which may result in possibly better reoptimized tours.
The last new Constraint, (43), corrects a problem that arises when not all targets are
visited, as is the case with most instances of the OP. In the TSP all vertices are visited,
so when ui ∈ {1, . . . , |V |}, ∀i ∈ V , all values between 1 and |V | are assigned to exactly
one of the ui. In the OP it is very likely that not all vertices are visited, and consequently
that not all values between 1 and |V | are used. This implies that there may be ‘gaps’
larger than 1 between the values of ui of two vertices that are adjacent in the tour, as
the MTZ-constraints only ensure sure that uj − ui ≥ 1, for any arc (i, j) on the tour. In
such cases, the values of the ui do not reflect the positions of the corresponding targets in
the tour. A way to solve this is to make sure that the value of ul, where l is the dummy
depot, is equal to its position in the tour, i.e. the number of targets in the tour, including
l itself. As the number of targets in the tour can be determined by adding the values of
the xi, ul = xl +

∑
i∈V xi.

The model for the second part of the algorithm is similar to the one for the first part.
Some small changes have to be made: in this case, the set of available targets is not V ,
but V ′′ ∪W ′, where V ′′ is the set of targets that have not been visited in the first part of
the tour and which can be reached without intersecting the first part of the tour. Note
that as before, l /∈ V ′′. W ′ ⊆ W is the subset of new targets that have appeared prior to
the arrival of the vehicle at the (k − 1)st target of the tour. As the vehicle now departs
from the (k−1)st target, and not the depot, Constraints (35) and (42) have to be replaced
by xk−1 =

∑
i∈V ′′ yk−1 i = 1 and uk−1 = 0, respectively. Constraint (41) is superfluous,

as the delay factor was only necessary for determining the initial tour. Furthermore, the
set of arcs A has to be expanded with arcs leading to and coming from all new targets.

6.2 Description of the simulation settings

For determining the performance of the Delay algorithm, the same target set has been
used as for the other algorithms; see Section 5.1 for more details. The set of fixed targets
was again expanded by a set of new targets, but these were generated differently, as the
new targets only appear in a prespecified zone. In this case, the zone of new targets is a
rectangle located between (8.8, 15.9) and (14.2, 19.3); see figure 9. Arrival times and scores
were generated the same way as before; coordinates were generated slightly different, as
the zone in which the new targets appeared was different. Let the number of new targets
be N and 1 ≤ i ≤ N the index of one of the new targets, then its coordinates (x(i), y(i))
are determined as follows: let (Xi, Yi) ∼ U(0, 1) × U(0, 1), then x(i) = 5.4Xi + 8.8 and
y(i) = 3.4Yi + 15.9. The distances between any pair of targets were computed the same
way as before. Let N be the number of new targets and let the number of fixed targets
be 19. Then for any pair 0 ≤ i, j ≤ N + 19, such that i 6= j and j 6= 0, the distance from
target i to target j is d(i, j) =

√
(x(i)− x(j))2 + (y(i) + y(j))2 +2. If j = 0, the distance

from target i back to the depot is d(i, 0) =
√

(x(i)− x(0))2 + (y(i)− y(0))2.

34

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1
2

3

4
5

6

7
8

91011

12
13

14
15

16

17

18

19

D

Figure 9: Location in the Euclidean plane of the nodes of the Tsiligirides-instance and
the zone of new targets (red rectangle).

Just as for the first four algorithms, we determined the performance of the DA on 10000
simulated instances. It is clear that for each of these instances the same initial solution
should be used. There were two additional parameters that had to be taken into account:
the amount of fuel that is reserved for the reoptimization step, here after denoted as
the ‘slack value’, and the number of targets that have to be visited before the vehicle
is allowed to visit a target in the new target zone, here on after denoted as the ‘delay
factor’. It was not obvious which value to choose for either parameter, or whether some
combinations of slack value and delay factor may lead to better initial solutions or better
reoptimized solutions, so for both parameters a number of values was chosen. For the
slack value we choose 10.0, 15.0 or 20.0 fuel units; for the delay factor we chose 5, 6 or 7.
This leads to 9 combinations of parameter settings. Each of these settings were combined
with an arrival rate of 3.0, 10.0 or 20.0, in order to determine how well the DA would
perform under different circumstances. An overview of the settings can be seen in table 8.

Table 8: Overview of all 27 simulation settings for the Delay algorithm (per slack value
there are 3 options for the delay factor, per delay factor there are 3 options for the arrival
rate)

Slack value 3.0 // 10.0 // 20.0
Delay factor 5 6 7
Arrival rate 3 10 20 3 10 20 3 10 20

The total fuel capacity in each case was 65.0, as before, so for the initial tours there
were either 55.0, 50.0 or 45.0 fuel units available. For each of these simulation settings,
we determined the optimal initial solution. These solution tours were optimal on two
accounts, as mentioned before: their objective value was maximal and their fuel con-
sumption relatively minimal. The optimal solutions for all of the settings are depicted in
figures C.1, C.2 and C.3 in appendix C.

35

Table 9: Initial solutions for all simulation settings

Slack value Delay factor Objective value Fuel consumption Number of targets
10 5 290 54.546 9
10 6 290 54.603 9
10 7 285 51.290 9
15 5 250 49.196 8
15 6 250 49.196 8
15 7 245 49.055 8
20 5 210 44.633 6
20 6 205 44.820 7
20 7 205 44.820 7

Apart from these simulation settings, we also determined how well the first four algorithms
perform under these new circumstances, and whether the DA performs better or not. For
this we only chose some combinations of slack value and delay factor, as the reoptimization
process took quite some time in case of the HRA and the RRA. The chosen settings were
a slack value of 15.0 combined with a delay factor of 5 and a slack value of 20.0 combined
with a delay factor of 6. In all cases the arrival rate was set to 20.0. Due to limitations
on the time available for the simulations, we only applied the algorithm to the first 1000
sets of new targets that arrive according to an arrival rate of 20.0. In addition to the
lower number of simulations, the computation time for some of the algorithms had to be
restricted, in order to be able to obtain results within acceptable time periods. For the
HRA, the computation time was restricted to 900 seconds for the entire reoptimization
process of one instance. The time limit for each of the reoptimization steps of the RRA
was set to 15 seconds. Setting a time limit implies that if an algorithm cannot find the
optimal solution within the given time frame, the best found solution so far will be used
as the optimal solution.
In addition to setting a time limit, the computation time of the RRA was reduced further
by removing the fuel-penalty from the objective function.

6.3 Evaluation of the results

6.3.1 Results of the Delay algorithm

An overview of the results of all 27 simulations can be found in table 10. In this table,
only the averages of the results are mentioned; the complete set of results are shown
in appendices D and E, where the data are sorted by slack value and by arrival rate,
respectively. The found results can be analysed from several points of view.
In the table in appendix D we can see that for any combination of slack value and delay
factor, when comparing the average results, the DA seems to find tours with higher ob-
jective values in instances with a higher rate. When all results for one of the slack values
are compared, i.e. when the slack value is fixed, but both delay factor and arrival rate
vary, we obtain sets of results that are quite similar; there does not seem to be a delay
factor for which significantly better results are found.

36

Table 10: Results of the Delay algorithm (‘Targets’: number of visited targets in total,
reoptimized tours. Objective value and fuel consumption refer to the total, reoptimized
tours)

Slack Delay Rate Objective value Fuel consumption Targets Computation time
value factor Average Average Average Average (ms)

10 5 3 368.864 64.253 13.396 76.4
10 5 10 420.903 64.382 13.788 93.7
10 5 20 489.676 64.347 14.533 318.7
10 6 3 377.473 64.162 13.819 75.0
10 6 10 432.294 64.370 14.161 130.4
10 6 20 503.542 64.365 14.975 1070.0
10 7 3 374.933 64.651 13.715 57.1
10 7 10 429.655 64.364 13.838 204.1
10 7 20 486.912 64.441 14.277 2576.2
15 5 3 377.473 64.162 13.819 77.3
15 5 10 432.921 64.381 14.216 300.5
15 5 20 503.542 64.365 14.975 1071.6
15 6 3 377.473 64.162 13.819 74.3
15 6 10 432.921 64.381 14.216 336.8
15 6 20 503.542 64.365 14.975 1065.9
15 7 3 383.749 64.545 14.002 63.8
15 7 10 439.251 64.323 14.649 193.1
15 7 20 507.770 64.379 15.350 1288.4
20 5 3 368.864 64.253 13.396 135.3
20 5 10 420.903 64.382 13.788 127.7
20 5 20 489.676 64.347 14.533 335.1
20 6 3 382.105 64.162 13.435 83.9
20 6 10 441.224 64.367 14.260 323.6
20 6 20 505.577 64.443 14.807 2567.8
20 7 3 382.105 64.162 13.435 84.9
20 7 10 441.224 64.367 14.260 314.4
20 7 20 505.577 64.443 14.807 2371.1

Table 11: Overview of the simulation results of all reoptimization algorithms, based
on the settings for the Delay algorithm (‘Fuel’: average fuel consumption of complete,
reoptimized tours; ‘Targets’: number of visited targets in reoptimized tours)

Algorithm Slack Delay Objective value Fuel Targets Computation time
value factor Min Max Average Average Average Average (ms)

IA
15 5 295 500 387.705 63.977 13.459 0.1
20 6 230 475 329.015 63.833 12.104 0.2

HRA
15 5 350 610 466.965 55.890 12.725 1160.2
20 6 205 615 486.336 59.753 14.646 20976.6

RRA
15 5 405 670 543.020 64.533 14.014 7882.2
20 6 385 660 530.155 64.573 13.792 25427.3

ITA
15 5 250 540 308.675 53.245 10.447 8.6
20 6 205 290 208.589 45.005 8.091 0.7

DA
15 5 360 660 503.080 64.364 14.962 810.7
20 6 380 625 505.576 64.451 14.779 3809.1

37

When looking at the computation times of each of the simulation sets, we see that most
of the reoptimizations take very little time on average. For small sets of new targets, i.e.
in case of arrival rate 3.0, the maximal computation time is 2.5 seconds. When the arrival
rate was set to 10.0, the maximal computation time was approximately 405 seconds, but
for each of the simulation sets with rate 10.0, there were not more than 8 instances with
a computation time higher than 10 seconds. For the instances with arrival rate 20.0, the
maximal computation time was about 3126 seconds.

Similar observation can be made about the results sorted by arrival rate, shown in ap-
pendix E. As previously stated, the results for an arrival rate of 20.0 seem most promising,
but when all results of the simulations with arrival rate 20.0 are compared, it not clear
which settings yield the best results. We can only observe that the results for a combi-
nation of a slack value of 15 and a delay factor of 5, and a slack value of 20 and a delay
factor of 6 seem to the most ‘stable’, that is, the intervals in which the objective values
lie are smallest for these two combinations of settings.

From these results we may conclude that the DA does not perform relatively better
or relatively worse under any of the combinations of settings.

6.3.2 Comparison of all five algorithms

An overview of the averages of the results can be seen in table 11; a more extensive set
of results can be found in tables F.1 and F.2 in appendix F. It is easy to see that all
four algorithms yield tours with objective values that are higher than the initial tours
with objective values 250 and 205, respectively. The IA and the ITA do not perform
very well, when compared to the other three algorithms, but they do find better tours
than the initial solution. The IA finds better tours for all instances; the ITA finds better
tours for about 76% of the instances with slack value 15.0 and delay factor 5, but for the
instances with slack value 20.0 and delay factor 6 it finds a better solution in only 2.5%
of the cases. The RRA seems to yield tours with the highest objective values, on average.
When looking at the computation times for the HRA, RRA and DA, we see that the
DA requires, on average, far less time for its reoptimization step than the other two
algorithms. The maximal computation time for the DA seems quite large, but we must
remark that this concerns a single instance, and that among the used test instances, the
second largest computation time for the DA is about 59 seconds.
Note that, as the computation times were restricted for both the HRA and the RRA,
it is very likely that for some of the instances these algorithms were not able to find
an optimal solution. For the HRA less than 1% of the reoptimizations were cut short
in case of the instances with slack value 20 and delay factor 6. It could reoptimize all
of the instances with slack value 15 and delay factor 5 within the time limit, however.
The RRA finished the entire reoptimization process within 15 seconds for 81.0% of the
instances with slack value 15 and delay factor 5, so at least 81% of the found solutions
were optimal. By a similar argument, in case of the instances with slack value 20.0 and
delay factor 6, at least 31.3% of the instances were solved to optimality.
The fact that the reoptimization by either the HRA or the RRA takes a lot of time
for most instances with slack value 20.0 and delay factor 6 can be easily explained. As

38

mentioned before, during the reoptimization steps a set of both fixed and new targets
are considered, but those targets have to meet some prespecified requirements. For the
instances that were used in this case, the only requirement for the fixed targets is that
they have not been visited yet and that they can be reached without intersecting any of
the arcs that the vehicle has to travel before arriving at the zone of new targets. When
we look at the initial solution for the instances with slack value 20.0 and delay factor 6,
we see that upon arrival at target 16, all unvisited fixed targets meet this requirement, so
the set of targets that will be used for reoptimization consist of all fixed targets, except
8, 9, 13 and 16. This may result in very large target sets for the reoptimization steps.
In table 12 we can see the number of solutions that were found by the DA, HRA or RRA
within certain time periods.

Table 12: Overview of the number of reoptimization instances, out of 1000 instances,
that were solved by the DA, HRA or RRA within time periods of 3, 5, 10 or 15 seconds

Algorithm Slack Delay Time limit (s)
value factor 3 5 10 15

DA
15 5 968 979 989 992
20 6 928 958 978 987

HRA
15 5 941 966 980 986
20 6 752 812 859 879

RRA
15 5 291 546 763 810
20 6 70 121 241 313

From these results we may conclude that the IA and the ITA perform not so well as
the DA. The performances of the HRA and RRA may be similar to or slightly better
than the performance of the DA, but their computation times are a lot longer on average.
A second factor that has to be taken into account is the fact that the tours found by the
RRA may differ greatly from the initial tour, which may be unacceptable in real-life sit-
uations. When taking all the important factors into account, the Delay algorithm seems
to perform best.

39

7 Conclusions and future research

7.1 Conclusion

In this thesis we investigated the Online UAV mission planning problem (UAV-MPP).
The research started with a literature analysis, in which we discovered that the Online
UAV-MPP was one of the extensions of the basic UAV-MPP that was most interesting
to investigate, and that the model for the UAV-MPP could best be based on the ‘Orien-
teering problem’.
We found models for each of the other three extensions of the basic UAV-MPP, based on
the Orienteering Problem and determined that for the Online UAV-MPP a similar model
does not exist. We then developed four strategies for solving this problem: the Insert Al-
gorithm (IA), partly based on a solution approach for the Vehicle Routing Problem with
dynamic travel times [30], the Halfway Reoptimization Algorithm (HRA), the Repeated
Reoptimization Algorithm (RRA) and the Internal Target Algorithm (ITA). Each of the
algorithms was based on first determining an optimal solution for the problem without
new targets, and successively reoptimizing it by either adding new targets to the prede-
termined tour (IA) or replacing part of the predetermined tour (HRA, RRA and ITA)
according to certain rules.
By counting the total number of visited targets in the reoptimized tour, which was
achieved by setting the scores of both given and new targets to 1, and comparing the
scores of the resulting solutions to the scores of the solutions for the same instances by
an offline solution method, we were able to determine theoretical performance bounds
for all four algorithms. These bounds, the so-called competitive ratio, were m

m+µ
for the

IA, HRA and RRA, where m is the number of targets in the original tour on only given
targets, and µ is the number of new targets that have appeared. We proved that the
bound found for the IA is tight. For the ITA a similar bound was found: in that case, we
only looked at the µ′ ≤ µ new targets that would appear ‘inside’ the original tour, and
the competitive ratio was set to m

m+µ′
.

We performed simulations in order to gain insight into the actual performance of all four
algorithms, both in comparison to the found competitive ratios and in real-life situations,
based on a benchmark instance and generated sets of new targets. These simulations
showed us that the RRA yields tours with the highest average objective value, i.e. the
highest sum of target scores, and the HRA yields tours with the second best average ob-
jective value. However, the time required for one of the reoptimization steps of the RRA
could be as much as 140 seconds. Another issue for the RRA is that the reoptimized
tours may differ greatly from the original tour. Both issues might be unacceptable in
real-life situations; the HRA therefore seems more suitable. The IA did not yield any
improved solutions, due to the fact that there was not enough sufficient fuel remaining
to allow addition of new targets to the original tour. A similar argument can be applied
to the ITA, which only yielded improved solutions for a few of the instances.
We performed a second series of simulations in which all scores - both for the fixed tar-
gets and the new ones - were equal, in order to find empirical performance bounds. We
found that the RRA and the HRA yield the best tours, that is, tours that contain the
most targets. Both algorithms found optimal solutions for some of the generated sets of
targets.

40

In the last part of the thesis we presented a solution strategy developed specifically for
cases where all new targets appear in a prespecified, smaller zone inside the target area,
the Delay Algorithm (DA). The strategy was based on the idea of both forcing the tour to
pass through this zone and delaying its arrival there, and reserving part of the fuel for the
reoptimization step. We performed simulations in order to determine the performance
of this algorithm, in which we varied 3 factors: the number of targets that had to be
visited before arriving at the zone of new targets, the amount of fuel that was reserved
for the reoptimization step, and the number of new targets. From these simulations we
concluded that only the last factor had significant influence on the objective value, i.e.
that in instances with more new targets, the objective value is relatively higher.
Finally, we compared the performance of the DA to the performance of the first four
algorithms, based on the initial solutions and simulation settings for the DA. The results
for the DA, RRA and HRA were similar and better than those for the IA or ITA. Whilst
the results for the DA were not significantly higher than those for the HRA or the RRA,
we may conclude, due to secondary factors like computing times and overlap between the
reoptimized tour and initial tour, that the DA performs best.

7.2 Future research

First of all, there may be circumstances for which the IA performs better than it has for
the given circumstances. Two simple adaptations of the given settings, that may lead
to better performance, are shorter recording times and incorporating some slack in the
fuel capacity. By this we mean that part of the fuel capacity will remain reserved for
reoptimization purposes, and cannot be used for the initial tour. A second adaptation of
the IA that may result in improved performance involves an alteration of the objective
function. As mentioned before, tours of optimal value for either basic problem are not
necessarily of minimal length. When a penalty for fuel consumption is added to the ob-
jective function, the optimal tour will be optimal on both aspects, and more fuel remains
for adding new targets to the tour. A slight disadvantage of such objective functions is
that it will take more time to optimize the corresponding problems.
Another part of the research that might be interesting to investigate further, is an adap-
tation of the Internal Target algorithm. When the algorithm is not based on looking for
targets only in triangles ‘inside’ the tour, but on looking for targets in larger regions in
the vicinity of the tour, it will allow the vehicle to visit a possibly larger subset of the
new targets, and thud increase the possibility of yielding tours of higher objective value.
An example of such a larger region is a circle that encloses multiple arcs of the tour.
The Delay algorithm may be adapted to situations where the new targets appear in mul-
tiple zones within the target area. A suggestion for such an adaptation is to visit at
least one given target inside or near each of the zones of new targets, and appointing a
different delay factor to each of the zones. The delay factors could, for instance, be based
on importance of a certain zone or arrival rate of the targets in that zone.

And finally, an aspect of the Online UAV-MPP that was not researched in this the-
sis, but will be very interesting to study, is the case where targets can either appear or
disappear.

41

References

[1] L. Allulli, G. Ausiello, V. Bonifaci, and L. Laura. On the power of lookahead in
on-line server routing problems. Theoretical Computer Science, 408(2/3):116–128,
2008.

[2] C. Archetti, A. Hertz, and M.G. Speranza. Metaheuristics for the team orienteering
problem. Journal of Heuristics, 13(1):49–76, 2007.

[3] G. Ausiello, V. Bonifaci, and L. Laura. The online price-collecting travelling salesman
problem. Information Processing Letters, 107:199–204, 2008.

[4] D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization. Athena
Scientific and Dynamic Ideas, 1 edition, 1997.

[5] A. Blum, S. Chawla, D.R. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approx-
imation algorithms for orienteering and discounted-reward tsp. SIAM Journal on
Computing, 37(2):653–670, 2007.

[6] H. Bouly, D.-C. Dang, and A. Moukrim. A memetic algorithm for the team orien-
teering problem. Quarterly Journal of the French, Belgian and Italian Operations
Research Society, 8(1):49–70, 2010.

[7] B. Brodén, M. Hammar, and B.J. Nilsson. Online and offline algorithms for the
time-dependent tsp with time zones. Algorithmica, 39(4):299–319, 2004.

[8] S.E. Butt and T.M. Cavalier. A heuristic for the multiple tour maximum collection
problem. Computers & Operations Research, 21(1):101–111, 1994.

[9] A.M. Campbell, M. Gendreau, and B.W. Thomas. The orienteering problem with
stochastic travel and service times. Annals of Operations Research, 186(1):61–81,
2011.

[10] I.-M. Chao, B.L. Golden, and E.A. Wasil. Theory and methodology: The team
orienteering problem. European Journal of Operational Research, 88(3):464–474,
1996.

[11] I.-M. Chao, B.L. Golden, and E.A. Wasil. Theory and methodology: A fast and
effective heuristic for the orienteering problem. European journal of Operational
Research, 88(3):475–489, 1996b.

[12] L. Evers, T. Dollevoet, A.I. Barros, and H. Monsuur. Robust UAV mission planning.
Submitted to Annals of Operations Research.

[13] L. Evers, K. Glorie, and S. van der Ster. The orienteering problem under uncertainty,
stochastic programming and robust optimization compared. To be published.

[14] D. Feillet, P. Dejax, and M. Gendreau. Traveling salesman problems with profits.
Transportation Science, 39(2):188–205, 2005.

42

[15] G. Ghiani, F. Guerriero, G. Laporte, and R. Musmanno. Real-time vehicle routing:
Solution concepts, algorithms and parallel computing strategies. European Journal
of Operational Research, 151(1):1–11, 2003.

[16] A. Gupta, R. Krishnaswamy, V. Nagarajan, and R. Ravi. Approximation algorithms
for stochastic orienteering. In Proceedings of the 22nd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 1522–1538. SIAM, Philadelphia, PA, USA, 2012.

[17] S. Ichoua, M. Gendreau, and J.-Y. Potvin. Vehicle dispatching with time-dependent
travel times. European Journal of Operational Research, 144(2):379–396, 2003.

[18] T. Ilhan, S.M.R. Iravani, and M.S. Daskin. The orienteering problem with stochastic
profits. IIE Transactions, 40(4):406–421, 2008.

[19] S. Irani, X. Lu, and A. Regan. On-line algorithms for the dynamic travelling repair
problem. Journal of Scheduling, 7(3):243–258, 2004.

[20] P. Jaillet and M.R. Wagner. Online routing problems: Value of advanced information
as improved competitive ratios. Transportation Science, 40(2):200–210, 2006.

[21] B. Kalyanasundaram and K.R. Pruhs. The online transportation problem. SIAM
Journal on Dirscrete Mathematics, 13(3):370–383, 2000.

[22] M.G. Kantor and M.B Rosenwein. The orienteering problem with time windows.
Journal of the Operational Research Society, 43(6):629–635, 1992.

[23] A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitive snoopy
caching. Algorithmica, 28(2):79–119, 1988.

[24] S. Kataoka and S. Morito. An algorithm for single constraint maximum collection
problem. Journal of the Operations Research Society of Japan, 31(4):515–531, 1988.

[25] N. Labadie, J. Melechvský, and R. Wolfler Calvo. Hybridized evolutionary local
search algorithm for the team orienteering problem with time windows. Journal of
Heuristics, 17(6):729–753, 2011.

[26] G. Laporte. The vehicle routing problem: An overview of exact and approximate
algorithms. European Journal of Operational Research, 59(3):345–358, 1992.

[27] G. Laporte and S. Martello. The selective travelling salesman problem. Discrete
Applied Mathematics, 26(2-3):193–207, 1990.

[28] J.A. Larco, R. Dekker, and U. Kaymak. Coverage consideration for emergencies in
service vehicle routing. To be published.

[29] S.W. Lin and V.F. Yu. A simulated annealing heuristic for the team orienteering
problem with time windows. European Journal of Operational Research, 217(1):94–
107, 2012.

[30] S. Lorini, J.-Y. Potvin, and N. Zufferey. Online vehicle routing and scheduling with
dynamic travel times. Computers & Operations Research, 38(7):1086–1090, 2011.

43

[31] C.E. Miller, A.W. Tucker, and R.A. Zemlin. Integer programming formulation of
traveling salesman problems. Journal of the Association for Computing Machinery,
7(4):326–329, 1960.

[32] V. Nagarajan and R. Ravi. The directed orienteering problem. Algorithmica,
60(4):1017–1030, 2011.

[33] G. Righini and M. Salani. Decremental state space relaxation strategies and ini-
tialization heuristics for solving the orienteering problem with time windows with
dynamic programming. Computers & Operations Research, 36(4):1191–1203, 2009.

[34] S.M. Ross. Introduction to Probability Models. Academic Press, 10 edition, 2010.

[35] M.A. Russel and G.B. Lamont. A genetic algorithm for unmanned aerial vehicle
routing. In H.G. Beyer, editor, Proceedings of the 2005 conference on Genetic and
evolutionary computation, pages 1523–1530. Association for Computing Machinery,
New York, NY, USA, 2005.

[36] J. Silberholz and B. Golden. The effective application of a new approach to the
generalized orienteering problem. Journal of Heuristics, 16(3):393–415, 2010.

[37] W. Souffriau, P. Vansteenwegen, G. vanden Berghe, and D. van Oudheusden. A
path relinking approach for the team orienteering problem. Computers & Operations
Research, 37(11):1853–1859, 2010.

[38] W. Souffriau, P. Vansteenwegen, G. vanden Berghe, and D. van Oudheusden. The
planning of cycle trips in the province of East Flanders. Omega, 39(2):209–213, 2011.

[39] H. Tang and E. Miller-Hooks. A tabu search heuristic for the team orienteering
problem. Computers & Operations Research, 32(6):1379–1407, 2005a.

[40] H. Tang and E. Miller-Hooks. Algorithms for a stochastic selective travelling sales-
person problem. The Journal of the Operational Research Society, 56(4):439–452,
2005b.

[41] F. Tricoire, M. Romauch, K.F. Doerner, and R.F. Hartl. Heuristics for the multi-
period orienteering problem with multiple time-windows. Computers & Operations
Research, 37(2):351–367, 2010.

[42] T. Tsiligirides. Heuristic methods applied to orienteering. The Journal of the Oper-
ational Research Society, 35(9):797–809, 1984.

[43] P. Vansteenwegen, W. Souffriau, and D. van Oudheusden. The orienteering problem:
A survey. European Journal of Operational Research, 209(1):1–10, 2011.

[44] P. Vansteenwegen, W. Souffriau, G. vanden Berghe, and D. van Oudheusden. Iter-
ated local search for the team orienteering problem with time windows. Computers
& Operations Research, 36(12):3281–2390, 2009a.

44

[45] P. Vansteenwegen, W. Souffriau, G. vanden Berghe, and D. van Oudheusden. A
guided local search metaheuristic for the team orienteering problem. European Jour-
nal of Operational Research, 196(1):118–127, 2009b.

[46] C. Zhu, J.Q. Hu, F. Wang, Y. Xu, and R. Cao. On the tour planning problem.
Annals of Operations Research, 192(1):67–86, 2012.

45

A Detailed results of the first four online algorithms

Table A.1: Overview of all data for the instances with varying scores
(Results in columns 5 up to 7 are averages over 10000 instances. Fuel consumption
denotes the fuel consumption of reoptimized tour; computation time is given in ms)

Algorithm Rate Objective value Fuel consumption Computing time
Min Max Average (ms)

IA

3 15 15 15 63.448 0.0
5 15 15 15 63.448 0.0
10 15 15 15 63.448 0.1
20 15 15 15 63.448 0.2

HRA

3 15 16 15.035 59.218 18.9
5 15 17 15.085 58.448 24.4
10 15 17 15.253 58.116 33.9
20 15 17 15.591 58.326 56.0

RRA

3 15 17 15.098 63.611 710.6
5 15 18 15.227 63.690 1153.3
10 15 19 15.617 63.802 2587.1
20 15 20 16.2910 63.963 7633.6

ITA

3 15 15 15 63.437 0.3
5 15 16 15.000 63.433 0.5
10 15 16 15.000 63.418 0.9
20 15 16 15.000 63.393 2.1

Table A.2: Overview of all data for the instances with equal scores
(Results in columns 5 up to 7 are averages over 10000 instances. Fuel consumption
denotes the fuel consumption of reoptimized tour; computation time is given in ms)

Algorithm Rate Objective value Fuel consumption Computing time
Min Max Average (ms)

IA

3 360 360 360 63.937 0.0
5 360 360 360 63.937 0.0
10 360 360 360 63.937 0.0
20 360 360 360 63.937 0.1

HRA

3 360 500 372.950 59.213 29.2
5 360 510 380.782 58.179 41.1
10 360 520 400.301 57.585 70.7
20 360 580 434.425 57.534 187.2

RRA

3 360 510 383.677 64.397 1458.6
5 360 535 397.172 64.074 1709.1
10 360 595 427.196 64.434 4118.5
20 360 675 475.109 64.438 14251.9

ITA

3 360 420 361.245 64.907 0.5
5 360 420 362.107 64.885 1.0
10 360 430 364.101 64.838 2.1
20 360 460 368.312 64.745 5.7

46

B Computation times

Table B.1: Overview of the computation times for the instances with equal scores
(The results in columns 3, 4 and 5 are: minimal found value, maximal found value and
average value over 10000 instances, respectively, all given in ms)

Algorithm Rate Computation time
Min Max Average

IA

3 0 15 0.0
5 0 16 0.0
10 0 16 0.1
20 0 16 0.2

HRA

3 0 157 18.9
5 0 157 24.4
10 0 173 33.9
20 15 407 56.0

RRA

3 0 4529 710.6
5 0 4528 1153.3
10 78 13319 2587.1
20 687 38454 7633.6

ITA

3 0 117 0.3
5 0 119 0.5
10 0 121 0.9
20 0 120 2.1

Table B.2: Overview of the computation times for the instances with varying scores
(The results in columns 3, 4 and 5 are: minimal found value, maximal found value and
average value over 10000 instances, respectively, all given in ms)

Algorithm Rate Computation time
Min Max Average

IA

3 0 15 0.0
5 0 1 0.0
10 0 16 0.0
20 0 16 0.1

HRA

3 0 249 29.2
5 0 298 41.1
10 0 609 70.7
20 16 3028 187.2

RRA

3 0 21790 1458.6
5 0 6854 1709.1
10 63 27129 4118.5
20 422 142740 14251.9

ITA

3 0 98 0.5
5 0 100 1.0
10 0 86 2.1
20 0 82 5.7

47

C Initial solutions for the Delay algorithm

0 2 4 6 8 10 12 14

6

8

10

12

14

16

18

20

1
2

3

4
5

6

7

8

9
1011

12
13

14

1516

17

18

19

D

(a) Delay factor 5

0 2 4 6 8 10 12 14

6

8

10

12

14

16

18

20

1
2

3

4
5

6

7

8

9
1011

12
13

14

1516

17

18

19

D

(b) Delay factor 6

0 2 4 6 8 10 12 14

6

8

10

12

14

16

18

20

1
2

3

4
5

6

7

8

9
1011

12
13

14

1516

17

18

19

D

(c) Delay factor 7

Figure C.1: Initial solutions for the Delay algorithm, with slack value 10.0 and delay
factor 5, 6 or 7.

0 2 4 6 8 10 12 14

6

8

10

12

14

16

18

20

1
2

3

4
5

6

7

8

9
1011

12
13

14

1516

17

18

19

D

(a) Delay factor 5

0 2 4 6 8 10 12 14

6

8

10

12

14

16

18

20

1
2

3

4
5

6

7

8

9
1011

12
13

14

1516

17

18

19

D

(b) Delay factor 6

0 2 4 6 8 10 12 14

6

8

10

12

14

16

18

20

1
2

3

4
5

6

7

8

9
1011

12
13

14

1516

17

18

19

D

(c) Delay factor 7

Figure C.2: Initial solutions for the Delay algorithm, with slack value 15.0 and delay
factor 5, 6 or 7.

0 2 4 6 8 10 12 14

6

8

10

12

14

16

18

20

1
2

3

4
5

6

7

8

9
1011

12
13

14

1516

17

18

19

D

(a) Delay factor 5

0 2 4 6 8 10 12 14

6

8

10

12

14

16

18

20

1
2

3

4
5

6

7

8

9
1011

12
13

14

1516

17

18

19

D

(b) Delay factor 6

0 2 4 6 8 10 12 14

6

8

10

12

14

16

18

20

1
2

3

4
5

6

7

8

9
1011

12 13

14

1516

17

18

19

D

(c) Delay factor 7

Figure C.3: Initial solutions for the Delay algorithm, with slack value 20.0 and delay
factor 5, 6 or 7.

48

D Detailed results of the Delay algorithm

Overview of all simulation results of the Delay algorithm, sorted by slack value.
min: minimal value; max: maximal value; av: average value

S
la

ck
D

el
ay

R
at

e
O

b
je

ct
iv

e
va

lu
e

F
u

el
co

n
su

m
p

ti
o
n

N
u

m
b

er
o
f

v
is

it
ed

ta
rg

et
s

C
o
m

p
u

ta
ti

o
n

ti
m

e
(m

s)
M

in
M

ax
A

v
M

in
M

a
x

A
v

M
in

M
a
x

A
v

M
in

M
a
x

A
v

10
5

3
34

0
50

5
36

8.
86

4
63

.1
53

6
4
.9

9
9

6
4
.2

5
3

1
2

1
5

1
3
.3

9
6

1
5

6
8
6

7
6
.4

10
5

10
34

0
62

0
42

0.
90

3
62

.8
66

6
5
.0

0
0

6
4
.3

8
2

1
2

1
6

1
3
.7

8
8

1
5

1
8
6
0
6

9
3
.7

10
5

20
34

5
70

5
48

9.
67

6
62

.8
64

6
5
.0

0
0

6
4
.3

4
7

1
2

1
7

1
4
.5

3
3

1
5

1
7
9
1
9
4

3
1
8
.7

10
6

3
35

0
53

0
37

7.
47

3
63

.0
05

6
5
.0

0
0

6
4
.1

6
2

1
2

1
6

1
3
.8

1
9

1
5

1
2
5
0

7
5
.0

10
6

10
35

0
64

0
43

2.
29

4
62

.8
65

6
5
.0

0
0

6
4
.3

7
0

1
2

1
7

1
4
.1

6
1

1
5

1
1
3
1
8

1
3
0
.4

10
6

20
35

0
68

5
50

3.
54

2
62

.8
81

6
5
.0

0
0

6
4
.3

6
5

1
3

1
7

1
4
.9

7
5

1
5

1
3
3
7
3
1
1

1
0
6
7
.0

10
7

3
35

5
52

0
37

4.
93

3
62

.8
67

6
5
.0

0
0

6
4
.6

5
1

1
2

1
6

1
3
.7

1
5

1
5

1
2
3
3

5
7
.1

10
7

10
35

5
60

0
42

9.
65

5
62

.8
68

6
5
.0

0
0

6
4
.3

6
4

1
2

1
6

1
3
.8

3
8

1
5

3
9
6
8
2

2
0
4
.1

10
7

20
35

5
62

0
48

6.
91

2
62

.8
75

6
5
.0

0
0

6
4
.4

4
1

1
2

1
6

1
4
.2

7
7

1
5

1
6
4
4
9
7
6

2
5
7
6
.2

15
5

3
35

0
53

0
37

7.
47

3
63

.0
05

6
5
.0

0
0

6
4
.1

6
2

1
2

1
6

1
3
.8

1
9

1
5

1
2
6
4

7
7
.3

15
5

10
35

0
64

0
43

2.
92

1
62

.9
65

6
5
.0

0
0

6
4
.3

8
1

1
2

1
7

1
4
.2

1
6

1
5

6
3
9
7
2

3
0
0
.5

15
5

20
35

0
68

5
50

3.
54

2
62

.8
81

6
5
.0

0
0

6
4
.3

6
5

1
3

1
7

1
4
.9

7
5

1
7

1
3
4
0
8
6
5

1
0
7
1
.6

15
6

3
35

0
53

0
37

7.
47

3
63

.0
05

6
5
.0

0
0

6
4
.1

6
2

1
2

1
6

1
3
.8

1
9

1
5

1
2
1
8

7
4
.3

15
6

10
35

0
64

0
43

2.
92

1
62

.9
65

6
5
.0

0
0

6
4
.3

8
1

1
2

1
7

1
4
.2

1
6

1
5

7
3
1
8
4

3
3
6
.8

15
6

20
35

0
68

5
50

3.
54

2
62

.8
81

6
5
.0

0
0

6
4
.3

6
5

1
3

1
7

1
4
.9

7
5

1
6

1
3
4
4
7
8
2

1
0
6
5
.9

15
7

3
36

0
52

5
38

3.
74

9
62

.9
15

6
5
.0

0
0

6
4
.5

4
5

1
3

1
6

1
4
.0

0
2

1
5

1
1
3
8

6
3
.8

15
7

10
36

0
63

5
43

9.
25

1
62

.9
22

6
5
.0

0
0

6
4
.3

2
3

1
3

1
7

1
4
.6

4
9

1
5

7
1
7
6
1

1
9
3
.1

15
7

20
36

0
66

5
50

7.
77

0
62

.8
90

6
5
.0

0
0

6
4
.3

7
9

1
3

1
8

1
5
.3

5
0

1
5

1
4
7
6
3
1
7

1
2
8
8
.4

20
5

3
34

0
50

5
36

8.
86

4
63

.1
53

6
4
.9

9
9

6
4
.2

5
3

1
2

1
5

1
3
.3

9
6

1
5

1
7
8
5

1
3
5
.3

20
5

10
34

0
62

0
42

0.
90

3
62

.8
66

6
5
.0

0
0

6
4
.3

8
2

1
2

1
6

1
3
.7

8
8

1
5

2
8
1
7
0

1
2
7
.7

20
5

20
34

5
70

5
48

9.
67

6
62

.8
65

6
5
.0

0
0

6
4
.3

4
7

1
2

1
7

1
4
.5

3
3

1
7

1
8
8
4
6
5

3
3
5
.1

20
6

3
35

5
52

0
38

2.
10

5
62

.9
29

6
5
.0

0
0

6
4
.1

6
2

1
3

1
5

1
3
.4

3
5

1
5

2
4
7
2

8
3
.9

20
6

10
35

5
61

5
44

1.
22

4
62

.8
97

6
5
.0

0
0

6
4
.3

6
7

1
3

1
7

1
4
.2

6
0

1
5

4
0
5
4
1
2

3
2
3
.6

20
6

20
35

5
65

5
50

5.
57

7
62

.9
11

6
5
.0

0
0

6
4
.4

4
3

1
3

1
7

1
4
.8

0
7

3
1

3
1
2
6
0
9
1

2
5
6
7
.8

20
7

3
35

5
52

0
38

2.
10

5
62

.9
29

6
5
.0

0
0

6
4
.1

6
2

1
3

1
5

1
3
.4

3
5

1
5

1
7
1
8

8
4
.9

20
7

10
35

5
61

5
44

1.
22

4
62

.8
97

6
5
.0

0
0

6
4
.3

6
7

1
3

1
7

1
4
.2

6
0

1
7

3
9
2
3
9
9

3
1
4
.4

20
7

20
35

5
65

5
50

5.
57

7
62

.9
11

6
5
.0

0
0

6
4
.4

4
3

1
3

1
7

1
4
.8

0
7

3
1

2
4
8
4
6
5
1

2
3
7
1
.1

49

E Detailed results of the Delay algorithm (2)

Overview of all simulation results of the Delay algorithm, sorted by arrival rate.
min: minimal value; max: maximal value; av: average value

R
a
te

S
la

ck
D

elay
O

b
jective

valu
e

F
u

el
co

n
su

m
p

tio
n

N
u

m
b

er
of

v
isited

targets
C

om
p

u
tation

tim
e

(m
s)

M
in

M
ax

A
v

M
in

M
a
x

A
v

M
in

M
ax

A
v

M
in

M
ax

A
v

3
1
0

5
3
40

50
5

368.864
63.153

64.9
9
9

6
4
.2

5
3

1
2

15
13.396

15
686

76.4
3

1
0

6
3
50

53
0

377.473
63.005

65.0
0
0

6
4
.1

6
2

1
2

16
13.819

15
1250

75.0
3

1
0

7
3
55

52
0

374.933
62.866

65.0
0
0

6
4
.6

5
1

1
2

16
13.715

15
1233

57.1
3

1
5

5
3
50

53
0

377.473
63.005

65.0
0
0

6
4
.1

6
2

1
2

16
13.819

15
1264

77.3
3

1
5

6
3
50

53
0

377.473
63.005

65.0
0
0

6
4
.1

6
2

1
2

16
13.819

15
1218

74.3
3

1
5

7
3
60

52
5

383.749
62.915

65.0
0
0

6
4
.5

4
5

1
3

16
14.002

15
1138

63.8
3

2
0

5
3
40

50
5

368.864
63.153

64.9
9
9

6
4
.2

5
3

1
2

15
13.396

15
1785

135.3
3

2
0

6
3
55

52
0

382.105
62.929

65.0
0
0

6
4
.1

6
2

1
3

15
13.435

15
2472

83.9
3

2
0

7
3
55

52
0

382.105
62.929

65.0
0
0

6
4
.1

6
2

1
3

15
13.435

15
1718

84.9
1
0

1
0

5
3
40

62
0

420.903
62.866

65.0
0
0

6
4
.3

8
2

1
2

16
13.788

15
18606

93.7
1
0

1
0

6
3
50

64
0

432.294
62.865

65.0
0
0

6
4
.3

7
0

1
2

17
14.161

15
11318

130.4
1
0

1
0

7
3
55

60
0

429.655
62.868

65.0
0
0

6
4
.3

6
4

1
2

16
13.838

15
39682

204.1
1
0

1
5

5
3
50

64
0

432.921
62.965

65.0
0
0

6
4
.3

8
1

1
2

17
14.216

15
63972

300.5
1
0

1
5

6
3
50

64
0

432.921
62.965

65.0
0
0

6
4
.3

8
1

1
2

17
14.216

15
73184

336.8
1
0

1
5

7
3
60

63
5

439.251
62.922

65.0
0
0

6
4
.3

2
3

1
3

17
14.649

15
71761

193.1
1
0

2
0

5
3
40

62
0

420.903
62.866

65.0
0
0

6
4
.3

8
2

1
2

16
13.788

15
28170

127.7
1
0

2
0

6
3
55

61
5

441.224
62.897

65.0
0
0

6
4
.3

6
7

1
3

17
14.260

15
405412

323.6
1
0

2
0

7
3
55

61
5

441.224
62.897

65.0
0
0

6
4
.3

6
7

1
3

17
14.260

17
392399

314.4
2
0

1
0

5
3
45

70
5

489.676
62.865

65.0
0
0

6
4
.3

4
7

1
2

17
14.533

15
179194

318.7
2
0

1
0

6
3
50

68
5

503.542
62.881

65.0
0
0

6
4
.3

6
5

1
3

17
14.975

15
1337311

1070.0
2
0

1
0

7
3
55

62
0

486.912
62.875

65.0
0
0

6
4
.4

4
1

1
2

16
14.277

15
1644976

2576.2
2
0

1
5

5
3
50

68
5

503.542
62.881

65.0
0
0

6
4
.3

6
5

1
3

17
14.975

17
1340865

1071.6
2
0

1
5

6
3
50

68
5

503.542
62.881

65.0
0
0

6
4
.3

6
5

1
3

17
14.975

16
1344782

1065.9
2
0

1
5

7
3
60

66
5

507.770
62.89

65.0
0
0

6
4
.3

7
9

1
3

18
15.350

15
1476317

1288.4
2
0

2
0

5
3
45

70
5

489.676
62.865

65.0
0
0

6
4
.3

4
7

1
2

17
14.533

17
188465

335.1
2
0

2
0

6
3
55

65
5

505.577
62.911

65.0
0
0

6
4
.4

4
3

1
3

17
14.807

31
3126091

2567.8
2
0

2
0

7
3
55

65
5

505.577
62.911

65.0
0
0

6
4
.4

4
3

1
3

17
14.807

31
2484651

2371.1

50

F Detailed results of all algorithms

Table F.1: Detailed results of objective values and fuel consumptions for all algorithms,
applied to the settings and new target instances for the DA, with arrival rate 20.0.
(Min: minimal value; Max: maximal value; Av: average value; Objective value and fuel con-

sumption refer to the total reoptimized tour)

Algorithm Slack Delay Objective value Fuel consumption
value factor Min Max Av Min Max Av

IA
15 5 295 500 387.705 56.308 64.997 63.977
20 6 230 475 329.015 50.961 64.997 63.833

HRA
15 5 350 610 466.965 54.448 56.494 55.890
20 6 205 615 486.336 44.820 60.352 59.753

RRA
15 5 405 670 543.020 62.999 65.000 64.533
20 6 385 660 530.155 63.059 65.000 64.573

ITA
15 5 250 540 308.675 49.196 64.937 53.245
20 6 205 290 208.589 44.820 49.990 45.005

DA
15 5 360 660 503.080 62.881 64.998 64.364
20 6 380 625 505.576 63.006 65.000 64.451

Table F.2: Detailed results of the number of visited targets and computing times for all
algorithms, applied to the settings and new target instances for the DA, with arrival rate
20.0.
(Min: minimal value; Max: maximal value; Av: average value; number of targets: all visited

targets in the total reoptimized tour; computation time of the entire reoptimization process)

Algorithm Slack Delay Number of targets Computation time (ms)
value factor Min Max Av Min Max Av

IA
15 5 12 16 13.459 0 16 0.1
20 6 10 15 12.104 0 16 0.2

HRA
15 5 10 15 12.725 15 67231 1160.2
20 6 9 17 14.646 0 900140 20976.6

RRA
15 5 12 16 14.014 187 60861 7882.2
20 6 12 16 13.792 359 91610 25427.3

ITA
15 5 9 16 10.447 0 375 8.6
20 6 8 10 8.091 0 171 0.7

DA
15 5 13 17 14.962 31 41766 810.7
20 6 13 17 14.779 31 2549001 3809.1

51

