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Abstract

In literature it is suggested that energy fluxes over forest and grassland have a con-

trasting response during heat-waves. In order to investigate whether this is reproduced

by the H-TESSEL land surface scheme, an 11-year offline run of the model is compared

to observations.

A selection of heat-waves based on the ECA/E-Obs dataset is performed, after which

the surface energy fluxes are compared for the two vegetation types. The number of heat-

waves are then correlated to spring-time and summer-time soil moisture depletion. A

connection is found for summer-time, but not for spring-time water depletion.

Net radiation is compared to observations, and the additional amount received dur-

ing heat-waves is found to be underestimated by the model, which most probably comes

from the low discernibility of the actual observations in the model forcing. Grassland in

general receives the same net radiation with forest in contrast with observations, due to

the similar albedo prescription in the model.

Fluxes are then compared for the two vegetation types. Forests in general compen-

sate for the additional amount of net radiation by increasing sensible heat release, while

grasslands increase latent-heat release. The observed differences in the response of forest

and grassland fluxes to heat-waves are simulated by the model with a small differentia-

tion in the partitioning of net radiation. When only heat-waves with low soil moisture

are selected, there seems to be an improvement to that. Short-duration heat-waves are

then filtered out, which brings the results even closer to observations.

Latent heat is overestimated during heat-waves, especially for grassland, and in

combination with the fact that sensible heat is not differentiated in the same amount,

points to the connection with vapour pressure deficit, which should be further investi-

gated. Ground flux in both vegetation types remains high compared to the observations.

This is potentially a bias in skin temperature calculation connected to sensible and latent

heat through the surface energy balance solver, which was not investigated further.

Fluxes are then examined during the evolution of heat-waves. This shows no dif-

ferentiation from previous results, while extreme water depletion in long-lasting events

was not observed. A CART analysis is performed on the dataset which highlights the

conservative soil water consumption of forest compared to grassland, and points to a

stronger regulation of the evaporation by forests, depending on soil moisture. Finally,

the possibility of using artificial neural networks for reproducing statistical relations in

the model is shortly discussed.
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Chapter 1

Introduction

Earth’s climate is a complex dynamical system which, while experiencing random fluc-

tuations around a steady state on short time periods, has been constantly changing

throughout its history. The global rise in temperature during the last hundred years

though, has justifiably drawn the attention of human societies. The alarm of poten-

tially unbalanced conditions in the climate system, was first sound by scientists, with

governments and lay-people slowly understanding the need to further investigate the

reasoning behind this behaviour. Although there has been an extensive debate on the

actual driving mechanisms (with human-activity induced warming gradually prevailing),

the fact remains that global mean temperature rose by 0.74 ◦C± 0.18 ◦C over the years

1906–2005, with the rate of warming over the last 50 years being almost double of that

over the last 100 years [1]. Moreover this trend is evidently larger than at any 100-year

period in the last 2000 years, as constructed from climate proxies.

A slightly higher global mean temperature alone might not heavily affect life on the

planet, but usually it is not the averages of weather phenomena that cause disastrous

effects to societies, but their extreme counterparts. It is found that extreme weather

events, like heat waves and heavy precipitation, are already observed to increase in

frequency and intensity. In addition, it is considered very likely (more than 90% proba-

bility) that this trend will continue in the future [1]. In order to understand the drivers

of climatic variability and change, one must first understand the different components

of the system, and the interactions between them.

Meteorology and climatology in their short lifespan have managed to evolve the

human understanding of weather phenomena, from a state of quasi-clairvoyance to a

rational science. Knowledge acquired throughout the years is now being applied exten-

sively in numerical models, for short term weather forecast as well as climate projections.

These models are continuously growing in complexity, by gradually incorporating ad-

ditional physical mechanisms, feedbacks and interactions in the earth system. This, in

conjunction with observations, provides the opportunity to test the theory, increase the

accuracy and expand the knowledge.

1
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The surface of the earth (i.e. land and ocean), acts as the lower boundary of the

atmosphere, where all the exchange of energy, water and chemical compounds takes

place. The connection between surface–atmosphere interactions and climatic variability

has been widely reported (e.g. [2] for land and [3] for ocean), making evident the need

for an accurate implementation in GCMs. Studies like this show that feedbacks between

vegetation, ground moisture and atmospheric conditions can have a pronounced impact

on the intensity and/or the probability of occurrence, of extreme events like heat waves.

In the present study, land–surface energy fluxes during heat waves, are examined for

two types of vegetation cover, namely forest (or high–vegetation) and grassland (or low–

vegetation). This is done by analyzing data coming from an offline GCM experiment 1,

and using an observational study as a guide, to assess the performance of the model’s

land–surface scheme during heat wave conditions.

It is considered helpful, to continue with an overview of what is a heat wave and

how it is defined, as well as the atmospheric conditions under which such incidents oc-

cur. Following that, is a brief introduction on the elements of vegetation physiology

affecting and controlling energy/water fluxes, and its response to heat waves. A review

of a selected observational study of land–surface energy fluxes during HWDs is then

presented, concluding with an overview of the representation of land–atmosphere inter-

action in models. The intention for this chapter is to serve as both an introduction and

a rationale for the study.

The second chapter is covering the materials and methods used, starting with a

description of the H-TESSEL land–surface scheme. Then the datasets that where used

are presented, together with a description of the steps to bring them in a more usable

format. Finally some additional tools of the analysis procedure are discussed. The third

chapter is about the process of selecting HWDs out of the 11 years of available data;

how and on which basis this was done, and what was the result of this selection. In the

fourth chapter the results of the analysis for the selected HWDs are presented, ending

with the conclusion chapter, which wraps up the main points of this study.

The overall performance of H-TESSEL has been investigated in depth in [4]. The

main purpose of the present research is to examine whether the energy fluxes modelled

during extreme events like heat-waves correspond to the observations, and whether fluxes

of forest and grassland show the same differentiation during these events, as in reality.

Moreover, as the behaviour of these two vegetation types are defined by parameterisation

in the energy balance and hydrology part of the model, it is important to point out

the parts of this parameterisation that are working in a correct way, and those that

need to be changed, or further examined. Although H-TESSEL demonstrates a good

1Meaning a GCM run forced by atmospheric conditions, but not coupled to the atmosphere. This
is usually done to isolate the model part under examination (in this case the land–surface scheme), for
having a better overview of its functionality.
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overall performance, it has not been examined under extreme temperature conditions,

where the energy flux response of vegetation shows a deviation from the norm. It is

possible that the model will not be able to reproduce accurately the observations for

such periods. Discovering whether this is the case and the reasoning behind it, acts as

the main motivation for this study.

1.1 Definition and occurrence of HWDs

Heat waves are events of prolonged, excessively high temperatures (compared to the

average of the period they occur in). In the common sense they are associated with an

increased level of heat–discomfort, combined with drought and environmental hazards,

so the definition from place to place depends on the norm for that region. In the

scientific community, different meteorological institutes and organizations either adopt

criteria that best fit their area of operation, or use the more generalized criterion of

WMO for a heat wave period. Bellow are some examples of HWD definition for five

different institutes/agencies:

• WMO: A period of more than 5 consecutive days, where the maximum daily

temperature exceeds the average maximum temperature by 5 ◦C, the normal period

being 1961–1990.

• KNMI/KMI: A period of at least 5 consecutive days in which the maximum

temperature in De Bilt, The Netherlands exceeds 25 ◦C, provided that on at least

3 days in this period the maximum temperature in De Bilt exceeds 30 ◦C.

• NOAA: A period of three consecutive days where the temperature reaches or

exceeds 32−−38 ◦C (in the USA depending on the region), with a combination of

humidity threshold, to form a heat index.

• ABM: A period of 5 consecutive days at or above 35 ◦C, or three consecutive days

at or above 40 ◦C.

The definitions of HWDs, emerge from the need to determine and eventually predict

a period of potentially catastrophic events due to high temperatures. In the present day

European climate, a heat wave in these terms is much more probable in summer or

spring time 2. Indeed during the first decade of the 21st century, three major, large

scale incidents took place in Europe. The summer of 2003 was the warmest on record

in Europe according to the WMO, with the consequent heat wave affecting most central

and western European countries, and especially France (figure 1.1). As an example,

2Although winter–time high temperature anomalies can occur, they are not commonly referred to as
heat waves, as their effects are muffled by the generally lower temperatures. Cold wave is a term used
to define low temperature anomalies in winter, when hazards due to freezing conditions are possible
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near the area of Auxerre, central France, 7 days of temperatures higher than 40 ◦C

where recorded during that summer. The human casualties due to this heat wave were

Figure 1.1: Difference in land surface temperature, calculated by subtracting the av-
erage of all cloud free data during 2000, 2001, 2002 and 2004 from the ones measured
in 2003, covering the date range of July 20–August 20 [Image by Reto Stöckli, Robert
Simmon and David Herring, NASA Earth Observatory, based on data from the MODIS

land team].

officially over 35,000, while peer–reviewed analysis estimates this number up to 70,000

[5]. In addition, great economical losses because of massive crop failure, wildfires, and

power outrages from electricity consumption spikes due to increased air conditioning use,

round up the image of destruction during this event. The European heat wave of 2006

affected mostly northern and central countries, again with extraordinary temperatures

and extensive casualties and damages, while the Russian heatwave of 2010, had the

additional characteristic of a huge spatial extent.

Heat waves usually occur due to a combination of reasons. Initially, it is atmo-

spheric circulation anomalies that provide the ground for such events. A persistent

anti–cyclonic anomaly (or blocking), being almost stationary over a region, creates con-

tinuous subsidence, leading to clear skies and subsequent surface warming from solar

radiation and warm air advection [6]. However, studies have shown that coexisting

land–surface/hydrology anomalies, form the amplification factor that ultimately drives

the temperatures so high. Low ground–water levels due to a precipitation deficit oc-

curring in the winter/spring preceding the heat wave, allow for soil moisture depletion

during the warm spell. This leads to reduced latent cooling, and a positive feedback loop

[7]. Figure 1.2 shows results of an observational study for four summers, demonstrating

the connection between spring–time precipitation anomalies and temperature anomalies

in the consequent summer.
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Figure 1.2: Observed summer mean temperature anomalies, and precipitation per-
centages of the averaged over February–May, with respect to the climatological mean of

1970–2000 (Image from [8]).

1.2 Physiological response of vegetation to heat waves

Latent heat release through water evaporation, has an important contribution to the

land–surface’s energy balance. This is crucial during a heat wave, when depletion of

soil moisture due to heat and increased evaporation, can add a considerable feedback to

the high temperatures. Plants can control the rate of their water uptake and release, a

fact that differentiates vegetation canopies from passively–evaporating surfaces like bare

ground or open water. This is achieved by regulating the opening and closing of the

stomata plants have on their leafs, which act as portals to the outer environment. It

is through these pores that chemical elements (like CO2 and O2) are exchanged, and

water is evaporated, so a wider opening favours an increased rate for these procedures.

The propagation of water through a plant, starts at the root level, where it is ab-

sorbed from the soil, but the ultimate driver of this flow is evaporation in the stomata.

This increases the solute concentration inside the plant, and the osmotic pressure gra-

dient forces water to flow in at the roots. The main environmental factors that control

stomatal aperture (or conductance), can be found in any introductory book on plant

physiology, and are, in brief:

• Radiation Light induces photosynthesis, which boosts the nutritional cycle and

in general increases stomatal conductance.



6 Chapter 1. Introduction

• Temperature Higher temperatures cause an increase in evaporation, and elevate

the demand on water, so for most plants a higher temperature is connected with

higher stomatal conductance.

• Relative humidity The rate of evaporation from a surface is depending, among

other, on the relative humidity of the air above it. Usually in plants, larger relative

humidity in the air close to the stomata leads to a decrease in evaporation, and

stomatal aperture.

• Wind Higher winds induce turbulence, which in most cases mixes in dryer air and

lowers the water vapour pressure close to the stomata, decreasing their conduc-

tance.

• Soil water Stomatal conductance is usually not depended on soil moisture when

the later is ample. Bellow a certain threshold though (which depends on the plant

type/species), stomatal aperture decreases with soil moisture in order to preserve

water [9].

• Nutrition Internal and external concentration of elements needed in the plants

nutritional cycle, like CO2, can have an effect on stomatal conductance.

The exact interactions between these factors and plant biochemical mechanisms

(that affect the guard cells in the stomata), is still an active field of research (e.g. [10],

[11]). Coming to the case of stress conditions by elevated temperatures, photosynthesis

is reduced, but the water loss via transpiration may still be high, as plants tend to

trade-off conservation of water for leaf cooling, by increasing stomatal conductance [12].

The exact procedure for this behaviour depends on the plant, and different types of

vegetation (e.g. grassland and forest), may have adopted different strategies for making

this trade-off [13]. In a recent study on the European heat wave of 2003, it was suggested

that grassland and forest responded differently during such events (figure 1.3).

In this figure the contrast between forest and crop-land is obvious. During a regular

summer the vitality of vegetation (chlorophyll levels as red) appears normal in both

forest and crop-land, but during the 2003 heat wave crop-land seems to have wilted (low

chlorophyll levels as azure), while forest is closer to the regular for the season. The same

contrast can be seen in the temperature maps. Soil moisture depletion and a feedback

due to decreased latent cooling during the heat wave, is most probably the main cause

of this behaviour. While evaporative cooling is usually greater over grasslands than over

forests in normal conditions [15], it is likely that the reverse is happening during HWDs.

In order to investigate this, an observational study on European forest and grassland

sites was conducted in [16], outlined in the following.
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Figure 1.3: Satellite images from ASTER. Atmospherically corrected surface infra-red
reflectance of an area in central France (upper), and surface temperature for the same
scenes (bottom), for 1 August 2000 (left) and 10 August 2003 (right). Vegetation in the
upper pictures appears red, because of the high reflectance of chlorophyll in the infra-red.
The red patch on the right of the pictures is a forested area, while the rest is mainly

crop-lands. Scale bar indicates 500 m for all pictures (from [14]).

1.3 A selected observational study on HWDs

An analysis of the surface energy flux partitioning in central-western Europe, was per-

formed in [16], using observations from the FLUXNET network of eddy covariance flux

towers. The goal was to compare surface energy exchange during heat wave conditions,

for two surface types; forest and grassland. For this reason, tower sites were selected on

the criterion of their location being either close to a grassland, or a forest region. The

reference point would be the climatology of summers in the period 1997–2008, and the

HWDs were defined according to the WMO criterion (but for the climatology in hand).

The results demonstrated a contrasting response of forest and grassland energy

fluxes to heat waves. In more detail, the climatology shows large differences in reflected

short-wave and net radiation, between forest and grassland, with forest absorbing more

incoming short-wave radiation, because of its lower albedo (figure 1.4).
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Figure 1.4: Radiation and energy exchange over forest and grassland, for the clima-
tology of summers in 1997–2008 (top), and the anomalies during heat waves in the
same period (bottom). Fluxes are, incoming and outgoing short wave (SW) and long
wave (LW) radiation, net radiation (Rn), latent (λET ), sensible (H) and ground heat

flux (G), and the residual (ε) (Image from [16]).

The partitioning of net radiation on a regular summer day, is in favour of latent heat

than of sensible heat for both vegetation types. Grassland though, displays a smaller

Bowen ratio than forest; in other words, grassland translates a larger portion of energy

into latent heat, compared to sensible heat.

During HWDs, there is a considerable anomaly in the amount of incoming solar

radiation that both forest and grassland sites receive, because of the clear skies that

usually accompany these events, as described previously. This extra energy is then

partitioned in a totally different manner by forest and grassland (figure 1.4). Forest

seems to balance out most of the additional energy through increased sensible heat

release, while grassland uses the additional energy for water evaporation, increasing

latent heat. This behaviour can potentially deplete soil moisture during long-lasting

high temperatures, amplifying the effects of a heat wave in grassland sites, in contrast

with forest sites. However during the observed HWDs, the net radiation anomaly over



1.4 Modelling Land-Atmosphere Interactions in GCM’s 9

forest was substantially larger than over grassland, and combined with the differences

in Bowen ratio, the effect can add up to four times larger heating over forests, making

them the warm spots during a heat wave. Whether or not this image can turn around

due to soil moisture depletion, as models predict, is still to be investigated.

The transition from wet to dry soil conditions can be divided into three stages of

drying, according to this study. In stage I drying, the evapotranspiration is independent

of soil moisture, in stage II drying, evapotranspiration becomes self-limiting, and in

stage III drying evapotranspiration becomes negligible. Figure 1.5 shows these stages as

predicted by a conceptual model. Observations on longer lasting heat wave events are

needed in order to evaluate these predictions.

Figure 1.5: Conceptual model of the evolution of fluxes over grassland and forest. In
the right panel, the relation between latent heat and soil moisture. In the other panels,
the temporal evolution of latent and sensible heat fluxes during the three stages of drying

(Image from [16]).

This study has been a guideline to the present thesis research, as it provided the

motivation to compare the H-TESSEL modelled energy fluxes during heat waves, with

the observed ones reported in it. For this reason, references on this study will be done,

where applicable in the following.

1.4 Modelling Land-Atmosphere Interactions in GCM’s

The land–surface component of general circulation and climate models, is usually re-

ferred to as the land surface scheme. The main purpose of it, is to model the energy

balance, the water balance, the momentum exchange and –where applied– the chemical

element exchange of the surface, and to propagate these information back to the atmo-

spheric circulation part of the model. The energy balance of the surface is driven by the

amount of net radiation:

Rn = SW ↓ −SW ↑ +LW ↓ −LW ↑= SW ↓· (1− α) + LW ↓ −LW ↑, (1.1)

where SW and LW the short wave and long wave radiation (incoming and outgoing

indicated by arrows), and α the surface albedo. The amount of net radiation a certain
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place receives, must be balanced on the surface by the latent heat flux λET , sensible

heat flux H, ground heat flux G and the chemical energy F stored by photosynthesis

and released by respiration (the latter term is often omitted in climate models, as it

accounts for only about 1% of absorbed insolation) [17]:

Rn = λET +H +G+ F (1.2)

Usually the partitioning of sensible heat and latent heat, in conjunction with atmospheric

conditions, is used to calculate changes in the momentum exchange on the surface. A

detailed study on feedbacks of the surface with the atmospheric boundary layer, can be

found in [18].

The water cycle part in land surface schemes, is calculated by balancing out the in-

dividual terms of precipitation P , evapotranspiration E, surface/ground runoff Rs/Rg,

ground water reservoir and interception reservoir change, again in connection with at-

mospheric conditions:
∂W

∂t
= P − E −Rs −Rg, (1.3)

with W being the water reservoir. In some climate models, terms of the carbon and

nitrogen cycle are calculated as well in their surface schemes, to incorporate possible

changes (like land cover) in the terrestrial biosphere within a changing climate.

It comes naturally that land surface schemes (LSS) evolved through time, in order to

better represent the aforementioned processes. Still in this evolution, a certain amount

of complexity distinguishes between different types –or generations– of models.

First generation models

The first generation land models (introduced by Manabe in 1969), used a simple en-

ergy balance equation, ignoring heat conduction into the soil. A globally constant soil

depth and water-holding capacity were set, and evaporation was limited by soil water

content below a threshold; if the soil moisture exceeded a prescribed limit, then further

precipitation generated runoff. This parameterization of hydrology is commonly called

the ”Manabe bucket model” (figure 1.6).

The major conceptual limitation of first-generation schemes is the common simpli-

fication used to simulate evaporation:

λET = β

(
e∗(Ts)− er

ra

)
ρcp
γ
, (1.4)

where e∗(Ts) the saturated vapour pressure at surface temperature Ts, er the vapour

pressure at a reference height, ρ the density of air, cp its specific heat, γ the psychrometric

constant, β a variable describing water availability, and ra denoting the aerodynamic

resistance. If the full complexity of the diurnal variability in λET is required from an
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Figure 1.6: Conceptual design of the first–generation LSS (Image from [17]).

LSS, or if the function of plants is modelled explicitly, this equation fails to capture the

complexity of the real system [19].

Second generation models

In the second generation land–surface models (introduced by Deardorff in 1978), a major

improvement came with the simulation of soil temperature and moisture in two layers,

while vegetation was perceived as a single bulk layer. The Penman-Monteith equation

was used to calculate evapotranspiration, and land was perceived as partially covered

by vegetation, still using a single energy balance equation. Other improvements were

the introduction of an interception layer for precipitation and snow (i.e. by the leaves),

the introduction of the ”effective surface resistance” which simulates the resistance in

transporting water vapour from the surface to air, and the ”force-restore” method (by

Bhumralkar in 1975 and Blackadar in 1976) which allowed for a prognostic equation of

soil temperature and moisture.

Second generation models improved the representation of land–atmosphere interac-

tions on the time scale of days, and the forecasting accuracy of precipitation [20] and

winter–time surface temperatures [21], while emphasising the importance of land–surface

processes in GCMs. Eventually tiled schemes were applied, with each individual grid in

the model being comprised of different tiles to represent the various surface types. This

will be further presented for the case of H-TESSEL in chapter 2.

Third generation models

The need to make land–schemes even more descriptive of surface processes, third genera-

tion land–surface models where developed after 1990. One of the major advances of these

models, is their connection of the leaf stomatal conductance and carbon assimilation by
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Figure 1.7: Conceptual design of the second–generation LSS. Additional (Image from
[17]).

leaves. Conductance is estimated by semi-mechanistic models of leaf photosynthesis,

based on how stomata are believed to function (evidence suggest that stomata try to

maximize the efficiency of plant water use, and that there are limitations on leaf assim-

ilation of carbon dioxide). These models use the same approach of second generation

models to calculate certain variables (e.g. soil temperature, hydrology, runoff, etc.),

while incorporating methods to model the carbon dioxide budget as well. This per-

mits for dynamic vegetation climate models to emerge, which take into account changes

in the global CO2 levels, or changes in land use, thus making them able to simulate

land–surface within a changing climate.
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Figure 1.8: Schematic of the increasing levels of detail being added into surface mod-
elling approaches. Each level of models is introducing new aspects, while still depending

on the ones that previous models already established (Image from [17]).





Chapter 2

Materials and methods

The basic materials and methods used in this study are going to be presented next.

An outline of the H-TESSEL land–surface scheme and its functionality, is considered

essential at this point, as it is the core element under examination. Further on, the

meteorological data that comprised the forcing for the offline run of H-TESSEL, the

output data that came from the runs, as well as additional datasets used throughout

this research, are going to be presented, together with the ways of transforming and

manipulating them to facilitate the analysis. It should be noted here that the simulation

output data were already available, as the offline runs were not part of the present study.

Finally, classification and regression trees and artificial neural networks, were used as

a complementary approach in the analysis, and a small introduction covering these

processes is presented.

2.1 The H-TESSEL scheme

The H-TESSEL scheme belongs theoretically in the second generation of land-surface

schemes, discussed in section 1.4. It is currently used in the operational model of

ECMWF, for the description of processes in soil, vegetation, and snow covering the

continents. The need for an accurate simulation of surface water and energy fluxes in

global circulation models has already been stressed, and H-TESSEL is devised to cover

that part. It is a revised version of the former TESSEL scheme, with an additional

attention on hydrology; in particular surface runoff, infiltration, and soil texture differ-

entiation. This outline will be focused on the parts of H-TESSEL that are more relevant

to this study, and summer conditions (cite for more details cf. Balsamo 2009 and Hurk

2000).

A tiled approach

Numerical spatial models in earth sciences operate by dividing the area under consider-

ation into a raster or array, and calculating the individual terms within each gridbox. In

15
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the case of a land surface scheme, the gridbox size is usually quite large to assume a cer-

tain uniformity of land cover type. In reality forests, crop-lands, bare ground and open

water, while partitioning energy in a different way, can all exist within the same gridbox,

making it difficult to accurately model the surface. For this reason in H-TESSEL each

surface type is represented by a different fraction or tile, within each gridbox. There are

eight tiles in total, six over land (bare ground, low and high vegetation, intercepted wa-

ter, shaded and exposed snow), and two over water (open and frozen water) (figure 2.1).

Figure 2.1: Schematic representation of the structure for the six tiles over land in
H-TESSEL [22].

In this manner, each tile’s energy fluxes can be treated according to the properties of

the surface it represents. The total fluxes in the gridbox, are then calculated by averaging

the fluxes of all tiles, weighted over the surface proportion of each tile. Surface albedo

α is similar for all tiles except for snow, and long-wave emissivity ε is set to 0.99 for all

the tiles. A skin layer, represents a buffering layer of air, forming the interface between

the soil and the atmosphere, with temperature Tsk, while a skin conductivity Λsk, acts

as the parameter for thermal connection to the soil. Especially for high vegetation, the

height of tree trunks in a canopy create a layer that is large enough to be considered

stably or unstably stratified. For this reason Λsk differs for high vegetation, to represent

either an effective convective transport for unstable conditions, or a limited turbulent

exchange for stable conditions.

Vertically, the soil is divided into four layers, which can be covered by a layer of

snow. The depths of these layers increase almost in a geometric relation from the surface

downwards, reaching a total of about 2.9 meters [22]. The energy equation is solved
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following a Fourier diffusion law (taking account of water freezing/melting), with a net

ground heat flux as the top boundary condition and a zero flux at the bottom. Regarding

water balance, when the interception layer is saturated, the remaining precipitation

water is partitioned between surface runoff and infiltration. The boundary conditions

are infiltration plus surface evaporation at the top, while free drainage is taking place at

the bottom, with each layer having its own sink of water in the form of root extraction

(for the tiles that contain vegetation). The water removed in this way, is weighted over

a function that includes root density and has a threshold for water levels bellow the

wilting point.

The two tiles for high and low vegetation are characterised (apart from the area

fraction), by a series of parameters [4]:

• A minimum canopy resistance rs,min

• A vegetation coverage cveg

• A leaf area index (LAI)

• A sensitivity coefficient gd for the dependence of canopy resistance rc on water

vapour pressure deficit

• The root distribution over soil layers, specified by an exponential profile

• A vegetation roughness length z0v, extracted from a global climate database

Energy balance

As mentioned before, the energy balance for the surface is solved for each of the eight

tiles, assuming full coverage of that tile. Skin temperature Tsk, is also calculated for each

tile in a gridbox. The results from each tile, can then be passed on (after weighting)

to the atmospheric part of the model, making up the gridbox’s energy balance. The

input parameters are the same for all tiles, and consist of downward short-wave and

long-wave radiation (Rs and RT ), reference atmospheric temperature (Ta, usually taken

at 2 meters from the surface), specific humidity (qa), and wind speed (Ua). The energy

balance equation is then:

(1− αi)(1− fRs,i)Rs + ε(RT − σT 4
sk,i) +Hi + Lv,sEi = Λsk,i(Tsk,i − T1), (2.1)

where i denotes the tile index, and 1 − fRs,i constitutes a partial absorption of short-

wave radiation by the skin layer. T1 is the temperature of the upper soil layer, σ is the

Stefan-Bolzman constant, Hi is the sensible heat flux, Lv the latent heat of evaporation,

and Lv,sEi the latent heat flux. Sensible and latent heat fluxes, for the high and low
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vegetation tiles, are calculated through:

Hi = ρacp | Ua | CH,i(Ta + gz − Tsk,i), (2.2)

LvEi =
Lvρa
rc + ra

(qa − qsat(Tsk,i)) (2.3)

Here, ra ≡ (| Ua | CH,i)
−1, ρa is the air density, cp the heat capacity of dry air, g the

acceleration of gravity, z height of the lowest model level above the surface, qsat(Tsk,i) the

saturation humidity at temperature Tsk,i, and CH,i the turbulent exchange coefficient.

The resistance rc, is a function of downward short-wave radiation, leaf area index,average

soil moisture content, atmospheric water vapour deficit and rs,min.

The coupling to the ground is working in a similar manner; the net flux into the

soil is a weighted average of fluxes from each tile, and it drives the temperature changes

within the soil. The heat diffusion to the ground is controlled by the right hand side

of equation 2.1, while the residual of net short-wave radiation that is not absorbed by

the skin layer, is also going into the soil. The net heat flux into the soil for each grid

(neglecting snow tiles), can then be expressed as:

Ggrid =
∑
i

Ci{Λsk,i(Tsk,i − T1) + fRs,i(1− αi)Rs}, (2.4)

where the summation is done over all tiles (except snow), with Ci the coverage of each

tile.

Finally, soil moisture transport is controlled by infiltration, surface runoff, gradient

diffusion, gravity and deep water percolation. Plant transpiration is extracting water

from the soil layers using a weighing function that depends on the root density. Moreover

a threshold is set, so that extraction of water by plants stops, if soil moisture is bellow

the wilting point of the specific vegetation type.

2.2 The Datasets and general setup

Princeton forcing dataset

This study made use of already available data from an 11-year offline run of the H-

TESSEL scheme, for the years 1996–2006. The run was forced by a global meteoro-

logical forcing dataset, put together by the land surface hydrology group of Princeton

University [23]. This dataset provides near-surface meteorological data for driving land

surface models and other terrestrial modelling systems. It blends reanalysis data with

observations and disaggregates in time and space. It was available at 1.0 degree, 3-hourly

resolution globally for 1948–2008, and was constructed by combining a suite of global
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observation-based datasets with the NCEP/NCAR reanalysis. For the purposes of this

simulation values from The forcing variables are:

• Atmospheric humidity

• Incoming long-wave radiation

• Incoming short-wave radiation

• Precipitation amount

• Surface air temperature (at 2 meters height)

• Surface pressure

• Surface wind

The variables that were available for the analysis in this report, was surface air temper-

ature (T2), atmospheric humidity (Q) and short-wave radiation (SW). The dataset is

going to be referred to, as ’princeton’ or ’forcing’ in the following.

The only change applied on this dataset, was a transposition in time. The incoming

short-wave radiation curve, can be expressed theoretically in a time-radiation plot as the

positive part of a sinusoidal function, with a maximum around noon (due to maximum

insolation), and the negative part set to zero (expressing night-time insolation). The

dataset has a 3-hourly resolution, or 8 values per day, the first being at midnight and the

last one being at 21.00 hours. These values, are in fact the average of each 3-hour interval

the day is divided in. So, the first value does not represent the beginning of an interval,

but rather the middle of it which is 1.5 hours later. For this reason, all values in the

dataset were transposed by +1.5 hours. Although this is a minor adjustment, it positions

curves in the correct place with a maximum around noon, helping the visualisation

process of daily values (figure 2.2).

Next, the area under consideration (i.e. Europe) was distinguished from the global

dataset. This resulted in a 50 × 50 gridbox raster, ranging in latitude from 30◦N to

80◦N , and in longitude from 10◦W to 40◦E. The selection was made to match the

raster of the output values, which was already ranging over the aforementioned area.

Moreover, values of gridboxes representing sea were masked-out in order to have a better

overview when plotting.

The climatology and anomalies were then calculated for each gridbox. Climatology

refers to the period in hand (i.e. 1 January 1996 – 31 December 2006), and was deduced

by averaging every 3-hourly value with its equivalents in the same day and month,

over the 11 year period. Anomalies were calculated by subtracting every value from

its equivalent climatology in the same day and month. These newly created values are

going to be referred to as ’princeton climatology’ and ’princeton anomalies’ hereafter.
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Figure 2.2: Example of the incoming short-wave radiation transposition by +1.5
hours. Here only one daily cycle is shown; the same was done for air temperature

and specific humidity.

Finally, for facilitating the process of HWD selection, the maximum temperature

(T2max) and maximum short-wave radiation (SWmax) were deduced from the 8 values

of each day, for each single gridbox. The corresponding climatology and anomalies were

then calculated for the 11-year period. The same procedure was done for calculating the

mean diurnal values of temperature, short-wave radiation and specific humidity (T2mdv,

SWmdv and Qmdv). Here, mean diurnal value refers to the mean of the interval between

09.00 hours and 15.00 hours for each day.

Output from H-TESSEL

Output data from the H-TESSEL offline run, were variables available in two temporal

resolutions for the period of 1996–2006, namely daily and 1/2 hourly resolution, and a

spatial resolution of 1 degree, with some of the variables being available in tiled format

(table 2.1). As already discussed, the focus of the analysis will be on the two tiles of

high and low vegetation, which may also be referred to in the following, as forest and

grassland respectively. The variables though, are not sufficient for closing the surface

energy balance for the tiles. Nonetheless, all the additional variables required can be

extracted from the existing ones.

The incoming and outgoing short-wave and long-wave radiation were not explicitly

analysed. Instead the net radiation was used in all cases, as it provides both for energy

balance closure and ease of comparison with the observed one, shown in section 1.3.

The incoming long-wave radiation (LWdown) for each gridbox, was simply deduced by

subtracting LWup from LWnet. At this point, net radiation for forest and grassland was
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Table 2.1: Available variables from the H-TESSEL offline run output.

Abbreviation Variable Temporal–Spatial Resolution

SManom Soil Moisture Anomaly
AvgSurfT Average Surface Temperature
CanopInt Canopy Interception Daily–Gridbox (1◦)
SoilTemp Soil Temperature
SoilMoist Soil Moisture
— Ice/snow variables

SWnet Net Short-wave Radiation
LWnet Net Long-wave Radiation
Qle Latent Heat Flux 1/2 Hourly–Gridbox (1◦)
Qh Sensible Heat Flux
Qg Ground Heat Flux
LWup Up-going Long-wave Radiation

TileFrac Tile Fraction
Tskin Skin Temperature 1/2 Hourly–Each Tile
Qle Latent Heat Flux
Qh Sensible Heat Flux

calculated by:

Rnetf = SWnet+ LWdown− ε · σ · Tskin4f ,

Rnetg = SWnet+ LWdown− ε · σ · Tskin4g,
(2.5)

since SWnet and LWdown are the same for all tiles. Values for this tiled Rnet, were

further confirmed by deducing the grid Rnet, weighing Rneti (with i the tile) over each

tile fraction and comparing to the expected Rnet. With Rnetf and Rnetg available,

the only variable needed to close the forest and grassland energy balance is ground flux,

which was calculated through:

Gi = Rneti −Qlei −Qhi (2.6)

Having all the energy fluxes needed, the same procedure was followed, as with the

princeton dataset. Climatology and anomalies were calculated in the same manner,

the only difference being 48 values per day for each variable, instead of 8 for princeton

(because of the 1/2 hourly resolution). In this case as mentioned before, Europe was

already defined, and the sea-gridboxes were already masked-out. Any further minor

treatment done on the output data will be mentioned, when needed, in the results

(chapter 4).

Finally, daily values of soil moisture were available for each of the 4 levels. The

rooting system of vegetation is able to extract water from all 4 layers for forest, and the

top 3 layers for grassland, consequently, soil moisture was distinguished for high and low

vegetation, by averaging the top 4 and 3 layers respectively. Since mostly anomalies are

used for soil moisture in the following, the simplification of direct averaging is considered
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safe (the potential of extracting water is not equal for each layer). The same procedure

as before was used for making climatology and anomalies.

The ECA E-Obs dataset

The E-Obs dataset was used in order to facilitate HWD selection in Europe (cf. chapter

3). ECA provides datasets derived from observational station data across Europe (figure

2.3), which are available in two formats; raw station data (after a series of tests performed

to identify obvious problems and remove suspicious values), and grided data [24]. The

Figure 2.3: Meteorological observation stations around Europe (as dots), used for
compiling the ECA E-Obs version 1.0 dataset in 2008. Station density has increased in

later versions (Image from [24]).

grided format was constructed using a three step interpolation method, for minimising

the effect of data inhomogeneity. In the final product, the dataset is available in regular

grids of 0.25 and 0.50 degrees resolution, covering the area 25◦N – 75◦N × 40◦W –

75◦E. Variables included are daily mean temperature, daily minimum temperature,

daily maximum temperature, daily precipitation and daily averaged sea level pressure.

Here, the dataset for daily maximum temperature was used, in 0.25 degrees reso-

lution, and was truncated to fit the same spatial extent as the output data (except for

the northern limit at 75 instead of 80◦N). This choice was made because the available

raw data from stations, are temporally sparse in a lot of cases in the period of 1996–

2006, leaving only 174 out of around 5000 stations with fully usable data. Since these

gaps were covered by interpolation and statistical methods by the grided dataset, it was

considered more appropriate to use the latter.

The raster was then converted to 1 degree resolution, by averaging the 16 gridboxes

of 0.25 degrees (4 × 4) that correspond to each gridbox of 1 degree. In figure 2.4 it
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is clear that although the conversion is not adequate for capturing small spatial scale

variations, in the case of heat-waves where the temperature varies over a larger spatial

extent, the conversion seems to give satisfactory results.

Regarding the temporal extent of the E-Obs dataset, the same period was used

as the one of the output data (i.e. 1996–2006). Climatology was again calculated by

averaging the maximum temperature of each day over the same day in the 11-year

period, and anomalies were deduced by subtracting climatology from each day’s value.
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Figure 2.4: Example of maximum daily temperature in ◦C for the 7th of August 2003,
for the E-Obs 0.25 degree resolution and the converted 1 degree resolution.

2.3 Classification and regression trees

In the case of a large dataset with interacting variables, it is often difficult to draw con-

nections between them, by simple linear regression. CART analysis is a non-parametric

decision tree learning technique, that produces either classification or regression trees,

depending on whether the dependent variable is categorical or numeric, respectively.

The procedure of making these decision trees, is by forming a collection of rules

based on the dataset in question. These rules are formed by statistical algorithms that

try to find the best split, in order to differentiate certain dependent variables’ values

in correlation to independent variables. Once a rule splits a node into two, the same

process is applied to each ’child’ node, until no further gain can be made, or some pre-set

stopping rules are met. If the resulting tree is very large to have a good overview, a

procedure called pruning is applied, that reduces the size to a more comprehensible one.

In this way, starting from the main ’trunk’ of the tree, one can move foreword from

branch to branch, making a decision at each node, which depends on the value of the

specific dependent variable of the node. The ending nodes or ’leaves’ represent either

a categorical decision in the case of categorical variables, or the expected value of the
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variable in question that corresponds to the specific route taken, in the case of numeric

variables (usually the mean of all possible values of the variable that fall into that route).

CART is a method with a wide range of applications in medicine, bioinformatics,

climate science, policy and decision making, and wherever large datasets need to be

analysed. An example of CART application in medicine and hospital decision making,

is shown in figure 2.5, while application of CARTs in climate science can be found in

numerous articles (e.g. [25], [26]).

Figure 2.5: A simple classification tree, used in the San Diego Medical Centre, USA,
for assessing the risk level of patients. Left branches in each node indicate a positive
answer to the node question, and yellow boxes indicate the terminal nodes, or ’leaves’.

The process of building a CART algorithm from scratch is an elaborate one, so

several already made materials exist to apply decision trees in datasets. Here, the ’tree’

package of the R-cran statistical computing environment was used [27], which will be

further discussed in chapter 4. A very helpful introduction on the use of CART in

conjunction with R can be found in [28].

2.4 Artificial neural networks

Artificial neural networks are a branch of machine learning, which falls within the field of

artificial intelligence. Inspired by the structure and functional aspects of biological neural

networks, ANNs (or NNs) are non-linear statistical data modelling tools. Computations

are structured in terms of an interconnected group of artificial neurons. A neuron can be

imagined as a computation entity (figure 2.6) that receives values into one or more inputs

and provides one or more output values, defined by an activation (or transfer) function.

The weights applied in each input, can be adjusted in order to receive the desired output

value. They are the basic feature that makes the learning process possible for a NN.

Several neurons combined make a neural network, which may have several input,

output and intermediate (or hidden) neurons, and they come in a variety of different

levels of complexity and functional aspects. The NN architecture chosen for this study,
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Figure 2.6: Example of an artificial neuron with three inputs, the values of which after
weighing, are added by the summing function and then passed on to a sigmoid activation
function, giving the value of the output. Activation functions in most applications are

either linear, threshold-like, or sigmoid.

is one of the most common ones; a layered feed-forward network with a back-propagating

supervised-learning algorithm, so this type will be further explained.

A basic form of such a network can be seen in figure 2.7. Values are fed into the

input layer of neurons, which have outputs to communicate with each neuron of the next

layer. In turn the hidden layer neurons, receive these outputs as weighted inputs, and

propagate the information forward, until the output layer is reached, where the output

value can be obtained.

Figure 2.7: Example of a neural network with four inputs, one hidden layer of 5
neurons, and a single output.

Coming to the application of such a method in a physical system, if in a dataset

some variables are known to be dependent on others, but the exact connections are

either not know, or non-linear, a neural network can be trained to model any statistical

relations that might exist. The procedure is as follows. First the variables that are
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considered as dependent, are set as the output of a NN, and the variables they are

depending on, are set as the input. After defining the number of hidden layers and the

number of neurons within each hidden layer 1, the neural network is trained with a back-

propagating algorithm. This involves providing the NN with a large enough dataset of

input variables and expected outputs 2. The NN then goes through the training process

in steps, by using one set of inputs and adjusting the values of weights in each step, in

order to produce the expected outputs. If the supervised learning is performed correctly,

the neural network can then receive input values that were not used in the training

procedure, and produce the correct output. Due to the nature of this method, it is clear

that the selection of dependent and non-dependent variables is crucial, as the NN will

learn and find interconnections even if variables have no relevance. In this case though,

the results will be disappointing.

In general, neural networks of this type work at their best when input values are in

a range between 0 and 1, or -1 and 1, so in this case the range of flux values had to be

normalised for better performance. Output values also come out in the same range, and

the training process (where output has to be prescribed in normalised intervals) forms

the convention by which non-training-mode values can be converted back to regular

ones.

Neural networks have multiple applications in weather forecasting, climate and en-

vironmental sciences. Several such studies have emerged lately (e.g. [30], [31], [32]),

showing interesting results. In the present research the ’neuralnet’ algorithm of R-cran

statistical computing environment was used, which will be seen in chapter 4.

1This can be done either by applying relevant methods developed in A.I. science, or by a trial-error
approach in which optimisation is achieved by minimising the error of the network. In the second
approach, some rules of thumb can be found on the optimal size of a network, for a given number of
inputs and outputs [29].

2The larger the training dataset, the larger the statistical relevance and accuracy that can be achieved.



Chapter 3

Selection of Heat-Wave Days

In order to make an analysis of energy fluxes during heat-wave days, a subset of the

output dataset must be sorted out that consists of fluxes corresponding to those days.

As discussed in section 1.1 there is not a universal definition of HWDs, a fact that makes

the selection not a straight forward procedure. In the following, the process of making

this subset is going to be presented, preluded by a demonstration of the options available

and the reasoning of the final choices made.

3.1 The selection options

The period in which heat-waves are expected, must be defined to begin with, so in this

study only the spring and summer periods are taken into account, neglecting days that

might fit HWD criteria in autumn and winter-time as non-relevant. Then, the criterion

for selecting HWDs together with the dataset on which to apply it, are needed. As the

study area is covering the whole Europe, the criterion should be as general as possible,

and for that reason the one of WMO was selected as the most adequate (cf. section 1.1).

The forcing dataset of the model run, containing values of atmospheric temperature

at 2 meters from the surface could not be used for the selection. The main reason lies

in the way it is produced (being a merged product of reanalysis data and observations),

which muffles the exact observations, making temperature bursts (or peak values) less

distinguishable. An attempt to characterise HWDs on this dataset applying the WMO

criterion, provided poor results; the percentage of days in the 11-year period where the

temperature exceeds the climatology by more than 5 degrees, was up to 30% in some

areas of central urope –or an average of 60 days in every spring-summer cycle, which

is considered an unacceptable overestimation. A second approach by incorporating a

conjoined highest temperature – highest short-wave radiation criterion on the forcing

dataset proved fruitless, as it inserted an additional uncertainty; no reliable way could

be found for assigning thresholds for both temperature and SW radiation that would

guarantee proper HWD selection and compatibility with the study in [16].

27
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Since the forcing dataset is made from reanalysis and observational data, any dataset

that provides pure observations of maximum daily temperature with an adequate cov-

erage and spatial resolution for the same period, would be compatible for the selection

process. The E-Obs dataset proved to be a good candidate for this purpose.

3.2 Using the E-Obs dataset

Although a sorting of HWDs can now be applied through the E-Obs dataset, the days

selected as heat-waves must be also perceived as so by the H-TESSEL scheme through its

forcing. This is crucial because the analysis of H-TESSEL energy fluxes would have no

significance in this study, if performed for days that do not correspond to the atmospheric

conditions of heat-waves. For this reason the WMO criterion was applied in three steps,

described in the following.

First, by calculating the number of days in E-Obs where the maximum temperature

anomaly exceeds that of climatology by more than 5 degrees, a percentage 1 of ’very

warm days’ is determined (figure 3.1).

In the second step this percentage was used on the forcing dataset, to distinguish the

highest temperatures in the same period. The lowest one in this set, is the threshold of

temperature over which a day might be considered a HWD for each gridbox 2. In figure

3.2 this highest temperature threshold is shown for Europe. It is overall a low threshold

compared to what would be expected for each area, because the calculation was based

on the maximum temperature of the princeton dataset. The maximum temperature

for each day in princeton is usually lower than the true one, due to the dataset’s low

temporal resolution.

Under the condition that the maximum temperature of a day, is both above this

threshold and part of a series of at least 5 consecutive days that do so as well, it is

classified as a HWD. The latter forms the third step in the application of the WMO

criterion.

Once the selection of heat-wave days is complete, it is possible to proceed with the

calculation of energy fluxes for the HWD conditions. In figure 3.3, the final percentage

of HWDs calculated by the above process is shown. Exceptionally high percentages

of heat-wave days, found in northern Scandinavia and Russia, are probably related to

warm summer periods when the ice coverage is highly reduced compared to the normal,

leading to high close-surface temperatures. An example of the selected HWDs for the

spring-summer of 2003, is shown in figure 3.4, for a gridbox in central France.

1Number of very warm days, over total number of days in the spring-summer of the 11-year period.
2Highest temperatures where used instead of highest temperature anomalies, as the latter produced

on average 1 or 2 5-day-lasting HW events during the 11 years, and quite often in spring. Although
the highest temperature anomalies would be the optimal choice, it was discarded in exchange of better
statistics and summer positioning of HWDs
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Figure 3.1: Percentage of ’very warm days’ in Europe for the period of March–August
in 1996–2006, deduced by the E-Obs dataset.
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Figure 3.2: The temperature threshold in ◦C, from the H-TESSEL forcing. Days with
maximum temperature above this limit, are qualified as ’very warm days’.
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Figure 3.3: Final percentage of HWDs in H-TESSEL for the period of March–August
in 1996–2006, after all the criteria have been applied.
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Figure 3.4: Maximum temperature and climatology in the period March-August 2003,
for a gridbox in central France. The periods (shaded with gray) where the temperature is
above the gridbox’s threshold for more than 5 consecutive days, are classified as HWDs.
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Results and discussion

In this chapter, the results of the analysis are presented. Starting with the presentation

of the study area, the bulk energy fluxes during HWDs and normal conditions are shown

and compared to the ones calculated in [16]. The role of soil moisture (being either at

ample or depleted levels), and the effect it has on energy fluxes is then discussed, followed

by a case study, which demonstrates the need for discrimination of heat-wave duration,

which leads to the analysis of the evolution of fluxes during heat-waves, in the form of

time series of mean diurnal values, and for different groups of heat-wave duration. The

chapter finishes with a CART analysis that demonstrates the dependence of latent and

sensible heat, on specific humidity and soil moisture.

The calculations done on energy fluxes in the following, are spatial averages confined

only in a certain area of Europe, in order to reduce the spatial variability of forcings and

consequent outputs. The area was selected on certain criteria; the coverage of grassland

and forest should be in a rather equal proportion, and it would be an advantage if

the area included parts of Europe where heat-wave events are known to have occurred.

For this reason the area shown in figure 4.1 was chosen. In addition, almost all the

FLUXNET towers used for the observational study, fall within this area, which makes

the comparison more relevant.

Major events, like the 2003 heat-wave in central-south France and the 2006 heat-

wave in central-north Europe are captured. The few gridboxes over the alpine region

in Switzerland were excluded from the averaging, as they contained tiles with high per-

centage of a non-relevant surface type (i.e. snow), and different atmospheric conditions

which would bias the results.

The procedure of spatial averaging comes last in any other averaging performed.

This means that energy fluxes for the climatology and HWDs are first averaged for

each gridbox, and then averaged over the area, which will be referred to as west-central

Europe in the following (WCEurope).

31
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Forest

0.0 0.2 0.4 0.6 0.8 1.0

Grassland

0.0 0.2 0.4 0.6 0.8 1.0

Residual

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.1: Average fraction of tile coverage for forest, grassland and the residual tiles
over the 11-year period. The black rectangular marks the selected area.

4.1 The energy fluxes

The bulk energy fluxes are calculated as HWDs anomaly and climatology in WCEurope,

from mean diurnal values of fluxes. Results are shown in figure 4.2. The first noticeable

feature is the almost equal amount of net radiation for forest and grassland, in both

climatology and HWDs. This comes from the similar albedo of the two surface types in

the model, and is most probably the main driver of absolute value differentiation, from

the observational results in [16]. In (1.4), due to the lower albedo forest has a higher net

radiation input than grassland. Also, ground fluxes in all cases seem to be overestimated

in the model for both forest and grassland, compared to observations.

In the climatology, the relative values of fluxes between forest and grassland seem

to be in accordance with observations, with grassland fluxes being somewhat overesti-

mated in that respect, except for sensible heat which is underestimated. The higher net

radiation that grassland receives relatively to observations has probably a share on that,

but the exception of sensible heat mentioned before, suggests that there might also be

a differentiation in the partitioning of fluxes, between the model and observations.

Net radiation anomalies are almost equal for forest and grassland, while relative

values of latent and sensible heat anomalies between forest and grassland are in accor-

dance with the observed ones. An other noticeable feature is that ground flux anomaly

is greater for forest than for grassland (opposed to observations), and that sensible heat

flux anomaly for grassland is negative. Grassland compensates all the extra net radiation

it receives, through latent heat.

The hypothesis that the above behaviour was partly due to the existence of HWDs

with very low net radiation anomaly, was disproved. A differentiation between HWDs
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Figure 4.2: Climatology and HWDs anomaly of net radiation, latent, sensible and
ground heat fluxes for forest (green) and grassland (orange), for the period March-
August 1996–2006, together with confidence intervals of spatial averaging. An average

of 62 HWDs exist in this period for each gridbox.

with high and low net radiation anomaly, although influencing the absolute values, did

not show significant differences from the flux partitioning presented above. This is partly

due to the fact that high net radiation anomalies alone, are not enough to produce effects

that resemble heat-waves in short-term periods, if other conditions are not simultane-

ously present (like soil moisture depletion). The partitioning of net radiation among

latent and sensible heat in normal conditions, shows a clear preference towards latent

heat for grassland, and a slight preference towards sensible heat for forest (figure 4.3).

In heat-wave conditions grassland tends on average to increase latent heat and slightly

decrease sensible heat, and forest –although increasing sensible heat in half of the cases–

it tends on average to partition more of the extra energy on latent than sensible heat.

Table 4.1 shows a comparison of these results with the observations (i.e. combining

figures 4.2 and 1.4). Summarising the findings for H-TESSEL:

1. Latent heat in the climatology, is overestimated for grassland and underestimated

for forest –the opposite holds for sensible heat. However, the differences are within
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Figure 4.3: Partitioning of energy between latent and sensible flux for climatology and
HWD anomalies, with density contours, and one to one line. Each point represents
mean diurnal values for one HWD in one gridbox (forest with green and grassland with

orange).

a reasonable level of ∼ 10%.

2. Ground flux in the climatology, is overestimated for both forest and grassland by

∼ 15%.

3. Latent heat during HWDs, is heavily overestimated in both forest and grassland

by ∼ 40%. On the other hand, sensible heat is heavily underestimated for both

forest and grassland.

4. Ground flux during HWDs, seems to be in reasonable levels for grassland, while it

is overestimated for forest.

5. The residual ε in the observations, is not to be disregarded as it has a major

contribution to the final partitioning.

6. The absolute values of modelled net radiation are similar with the model, while

being heavily underestimated during HWDs.

The aforementioned show that although grassland receives more net radiation in

H-TESSEL due to the effect of similar albedo, this is not enough to explain why H-

TESSEL demonstrates differences in the partitioning of net radiation to heat fluxes,

compared to observations. At this point, a further examination of the output is needed,

to rule out possible biases and understand whether this behaviour is originating from

the nature of H-TESSEL itself, the current HWD selection, or both.
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Table 4.1: Comparison of the energy flux partitioning for the observations and H-
TESSEL relatively to the net radiation, for climatology and anomalies. Net radiation
is set to 100% in both cases to have a better overview of the partitioning. The differ-
ences are those of H-TESSEL compared to observations. ε denotes the residual in the
observations, due to biases and missing balance terms. In the last row, the absolute

differences of net radiation between HWDs and climatology is shown.

Variables Grassland Forest
Observed Modeled Diff. Observed Modeled Diff.

Rnet 100 100 – 100 100 –
LE 49 57 8 % 38 34 -4 %
H 27 22 -5 % 34 46 12 %
G 9 21 12 % 2 20 18 %
ε 19 0 -19 % 30 0 -30 %

Rnet anom. 100 100 – 100 100 –
LE anom. 61 100 39 % 5 51 46 %
H anom. 9 -17 -26 % 68 14 -54 %
G anom. 13 17 4 2 35 33 %

ε -3 0 -3 % 18 0 -18 %

Additional Rnet
in HWDs 39 % 12 % -27 % 45 % 12 % -33 %

4.2 The role of soil moisture

Soil moisture anomalies seem to have an important role in both HWD occurrence and

duration, as discussed in chapter 1. In order to investigate the degree to which this is

influencing H-TESSEL results, soil moisture anomalies are calculated for each gridbox

and year, first as an average of the winter/spring period (February–April), and then

as an average of the consequent summer HWDs. Values of soil moisture anomalies are

then correlated with the number of HWDs that occurred in the same gridbox and year

(figure 4.4).

There seems to be no correlation between spring/winter anomaly and the number

of summer HWDs. An attempt to correlate winter/spring soil moisture anomalies with

maximum heat-wave temperature anomalies in each gridbox, did not demonstrate any

connection as well. However, there is a strong connection between summers where a lot

of HWDs occurred, and low soil moisture levels during those heat-wave events. When

less than 10 HWDs are present in a summer (which means at most 2 heat-wave events of

5 days), the respective soil moisture anomaly can range from highly negative to highly

positive, with no apparent pattern. This, in combination with the fact that conditions

during heat waves are reported to include low levels of soil moisture, suggests that there

needs to be a discrimination between high and low soil moisture levels, which could be

a factor influencing the partitioning of fluxes seen in the previous section.
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Figure 4.4: Total number of summer HWDs as a function of the preceding win-
ter/spring mean soil moisture anomaly (left), and the mean HWDs soil moisture
anomaly of the same summer (right). Each point represents one gridbox in one year.
Contours are density lines, and the horizontal doted line is the mean number of HWDs
for all summers and gridboxes. Soil moisture here is calculated over the 3 top soil layers.

To investigate that, fluxes where calculated again by dividing the range of soil

moisture anomaly in two, and discriminating HWDs belonging to the part bellow the

median of soil moisture anomalies, and HWDs belonging to the higher part of soil

moisture anomalies. Results are shown in figure 4.5. This narrowing of the dataset,

shows large improvements for the case of lower soil moisture anomalies, compared to

observations. The climatology flux partitioning did not improve in most cases, except

for the ground heat flux of grassland. Partitioning during HWDs improved largely for all

energy fluxes. The differences from observations are shown in table 4.2, in comparison

with the ones of table 4.1.

The investigation of the role of soil moisture in this section, suggests for a further

inquiry on the role of HWD duration. The results of figure 4.4, show that there are

gridboxes that may contain a single 5-day heat-wave event, some of which in addition

include highly positive soil moisture anomalies –a situation that is not typical for heat-

waves. This is further investigated in the following by looking at a specific short lasting

heat-wave event.

4.3 A single case example

Here, an example of a 6-day heat wave event in the summer of 2003 is presented, for

a gridbox in central France. The specific incident is selected to be shown, for some

reasons. It occurred in an area which is known for having pronounced heat-waves in

the same period. In addition, it includes negative soil moisture anomalies, and also rain

events that appear as a sudden increase in soil moisture levels.
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Figure 4.5: Same as in figure 4.2, with the dataset divided in two; lower soil moisture
(left), and higher soil moisture (right).

Table 4.2: Same as in table 4.1, but for differences in energy partitioning from the
observations, for the regular selection, and the additional low soil moisture selection.

Bold values indicate improvements.

Variables Grassland Grassland Forest Forest
(low SM) (low SM)

Rnet – – – –
LE 8 % 8 % -4 % -4 %
H -5 % -5 % 12 % 12 %
G 21 % 12 % 18 % 19 %
e -19 % -19 % -30 % -30 %

Rnet anom. – – – –
LE anom. 39 % 16 % 46 % 22 %
H anom. -26 % sin 0 % -54 % -23 %
G anom. 4 % sin 0 % 33 % 26 %

e 3 % 3 % -18 -18 %

Additional Rnet
in HWDs -27 % -26 % -33 % -33 %
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Figure 4.6: Evolution of fluxes in a six-day heat-wave event between 1–6 August 2003
in a gridbox in central France.

Figure 4.6, shows the evolution of this event from one day before the heat-wave,

until one day after its end (31 July – 7 August 2003). The diurnal evolution of energy

fluxes and climatology is shown, together with 2 m air temperature and average soil

moisture for the top two layers.

One day before the heat-wave, soil moisture levels are already bellow the clima-

tology, while temperature is almost normal for the day. The stress from low water

availability, makes both forest and grassland to increase sensible heat while decreasing

latent heat, compared to climatology. However, grassland partitions a greater part of

the net radiation to latent heat, and forest a greater part in sensible heat.

During the first two days of the heat-wave, a positive net radiation anomaly drives

the temperature higher, while soil moisture continues to deplete. Forest and grassland

increase both latent and sensible heat, with grassland having a strong preference towards

latent heat to compensate for the extra amount of forcing. This is also coming from

the fact that grassland has a shorter roughness length, which does not allow for the

same levels of sensible heat release as forest. In its beginning, this heat-wave is indeed

showing HWD-like features.

The situation changes in the third day, as there is a distinct rise in temperature,

and sensible heat drops bellow the normal levels for forest and grassland, and latent heat

increases for both tiles. Grassland manages the extra radiation and heat, by increasing
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latent heat in a great extent, while forest is able to increase ground flux effectively (skin

conductivity can change in forest according to air stability). The jigged lines in the end

of the day together with the increase in soil moisture the day after, suggest a rain event

taking place that afternoon/night. In the next 3 days, soil moisture continues to rise

due to rain events, especially the one on the fifth day. The incoming short-wave and

net radiation during these days show no significant changes. This means that the rain

events where either sudden and short-lasting, with cloud coverage not being captured

by the 3-hourly resolution of radiation, or that this is again a case of low discernibility

of values due to the merging with reanalysis data. The jigged lines are probably due to

numerical fluctuations after the sudden changes in precipitation.

The heat-wave event ends after the sixth day –the noticeable feature being that the

daily maximum anomaly was on average +9.7◦C during the six days, with a minimum

anomaly of +4.2◦C and a maximum anomaly of +15◦C. The range of maximum temper-

ature anomaly, easily classifies these days as HWDs, but in reality they form a bias in the

calculation of HWD fluxes. Although the forcing net radiation has a positive anomaly

during these days and shows no fluctuations, the energy fluxes are highly affected by the

rain events (through changes in the interception layer, and top soil layer). In addition,

rain events are not supposed to be part of HWDs, so a further discrimination depending

on HWD duration is needed.

4.4 HWD duration and energy fluxes

With the current selection of heat waves, longer lasting events are likely to be closer to

the actual conditions of HWDs. It is easier to find short periods that display some HWD-

like features (and are thus classified as heat-waves), without displaying the respective

conditions to support it. If on the other hand an event is within the criteria set for

HWDs, and holds this for an extended period of time, it shows that at least there is a

consistent driving for the anomalous situation.

In order to investigate the evolution in time, HWDs have been grouped and averaged

according to their duration. Here, the criterion for low soil moisture is again used, but

this time all the days belonging to a single event must be bellow the median of soil

moisture anomaly. Judging from figure 4.4, this is expected to exclude mostly short

lasting events (indeed the number of events between 5 and 8 days was reduced by 50 %

due to this criterion, while the exclusion of longer lasting events was between 0 and

15 %).

Anomalies in fluxes for the resulting heat-waves are averaged over the same day

position within the heat-wave, and also calculated as a mean of all days in each specific

duration. Results are shown for 5-day, 9-day and 13-day lasting events, with 77, 17, and
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Figure 4.7: Evolution of averaged daily flux anomalies for 77 events of 5-day lasting
heat-waves, together with the mean for the whole event. Error bars indicate the standard

deviation
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Figure 4.8: Evolution of averaged daily flux anomalies for 17 events of 9-day lasting
heat-waves, together with the mean for the whole event.

5 events respectively in each category (figures 4.7,4.8, and 4.9). Heat-waves of 13 days

were the longest existing.

The results for 5-day events show a rather smooth evolution, with a net radiation

anomaly driving forest to compensate with an increase in sensible heat, while grass-

land increases latent heat and has a negative sensible heat flux throughout the event.

Ground flux anomaly is larger for forest. Soil moisture is constantly negative without

fluctuations.
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Figure 4.9: Evolution of averaged daily flux anomalies for 5 events of 13-day lasting
heat-waves, together with the mean for the whole event.
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As the heat-wave duration increases, the evolution of flux anomalies become less

gradual. Sensible and latent heat remain the main compensation factor for net radiation

anomalies in forest and grassland respectively. In the 13-day heat-waves, there are a

couple of interesting days, where ground flux anomaly increases to the same levels as net

radiation anomaly, while latent and sensible heat anomalies experience a sudden drop.

This behaviour is probably connected to rain events, with a corresponding increase in

soil moisture (which was noted in the heat-wave example in the preceding section). This

also disproves the hypothesis that long lasting events would not contain rainy days, and

points once again to the HWD selection procedure.

Each group of heat-waves was correlated with the observations, and the one that

showed the closest resemblance was the 9-day group (figure 4.10). In general it was

found that the groups of 7-day to 12-day duration are the ones that contribute most to

an improvement of the representation of fluxes, compared to observations. Using only

these heat-waves, which account to sin 45 % of the total HWDs with low soil moisture, the

improvement in the representation of fluxes is shown in table 4.3. In total, the additional

criterion of heat-wave duration, showed an improvement in energy partitioning, only for

the latent heat of forest, but in a large extent.

Table 4.3: Same as in table 4.1, but for differences in energy partitioning from the
observations, for the regular selection, and the additional low soil moisture and low soil

moisture–long duration selection.

Variables Grass. Grass. Grass. Forest Forest Forest
(low SM) (low SM (low SM) (low SM

+ 7-12 dur.) + 7-12 dur.)

Rnet – – – – – –
LE 8.00 % 8.00 % 11.00 % -4.00 % -4.00 % 2.00 %
H -5.00 % -5.00 % -7.00 % 12.00 % 12.00 % 7.00 %
G 21.00 % 12.00 % 11.00 % 18.00 % 19.00 % 21.00 %
e -19.00 % -19.00 % -19.00 % -30.00 % -30.00 % -30.00 %

Rnet anom. – – – – – –
LE anom. 39.00 % 16.00 % 15.00 % 46.00 % 22.00 % 6.00 %
H anom. -26.00 % 0.00 % 4.00 % -54.00 % -23.00 % -4.00 %
G anom. 4.00 % 0.00 % 0.00 % 33.00 % 26.00 % 22.00 %

e 3.00 % 3.00 % 3.00 % -18 -18.00 % -18.00 %

4.5 Analysis with CART

Low soil water levels have a pronounced effect on latent heat release, because of the

stress imposed on evapotranspiration through rc (equation 2.3), affecting the rest of

the fluxes as well. Grassland and forest have a different partitioning for latent heat,

mainly because of this resistance, which also depends on short-wave radiation, leaf area
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|

Grassland

Soil.Moisture.G < 79.0346

Soil.Moisture.G < 51.8926 Specific.Humidity.G < 0.0114078

Specific.Humidity.G < 0.0197524

300.6455 217.1163

206.2160

245.4927 272.5590

|

Forest

Soil.Moisture.F < 239.3

Soil.Moisture.F < 225.437 Soil.Moisture.F < 250.959

Specific.Humidity.F < 0.0149714

Soil.Moisture.F < 285.674
110.4960 128.2700 147.9684

151.3726

168.8263 141.9821
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Figure 4.11: CART of latent heat (mean diurnal values) dependence on soil moisture
and specific humidity, for grassland and forest during HWDs. Left branches in each node
represent a positive answer to the node question. The plot shows values for each day
and gridbox, with red to yellow colour indicating high to low values of LE respectively.

index, root density and water extraction capability, as well as vapour pressure deficit.

In order to investigate the effect of the latter on the energy fluxes, and especially latent

heat, in conjunction with soil water levels, specific humidity is used as a proxy. This

correlation is of course not valid, as vapour pressure deficit depends also on atmospheric

temperature, canopy temperature and pressure, but this crude approximation is used in

the context that HWDs, occur within a limited range of temperature and air pressure

values.

A regression tree was built with a recursive partitioning algorithm, which works

by going through the dataset dividing it into smaller parts, trying to find correlations

between variables within these parts. The procedure is stopped, when the error in the

correlation of each division is minimised, at which point, the average of the dependent

variable is calculated for each division and a construction of a decision tree is done. Here,

latent heat and sensible heat during HWDs were used as the dependent variables in two

distinct runs of the algorithm, while the respective specific humidity and soil moisture

were the independent variables. Results are shown in figures 4.11 and 4.12.

In the case of latent heat, the behaviour of grassland and forest demonstrate some

differences. Grassland evaporation, seams to be independent of soil moisture for the

largest part of soil moisture range. From regions of ample soil moisture down to very
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|

Grassland

Specific.Humidity.G < 0.0118226

Soil.Moisture.G < 247.349
117.00

 90.35  57.79

|

Forest

Specific.Humidity.F < 0.0123805

Specific.Humidity.F < 0.0112939 Soil.Moisture.F < 899.529

282.5 227.3

196.8 148.2
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Figure 4.12: Same as in figure 4.11, for sensible heat.

low levels, grassland does not regulate latent heat depending on water availability, but

instead on specific humidity. When soil moisture levels are on the very low range of their

values, grassland seems to reduce latent heat and disconnect it from the dependence to

specific humidity, only to increase it again up to very high levels when water is almost

depleted. Most of the cases belong to the soil-water-independent range.

Forest on the other hand regulates the amount of latent heat depending on soil

moisture, for the whole lower part of its values, demonstrating a dependence on specific

humidity alone, only at ample moisture levels. The highest values of latent heat release

occur on average in the high soil moisture – high humidity range of values, for both

forest and grassland (if the burst of the values for depleted soil moisture in grassland

are neglected).

In figure 4.12, the behaviour of forest and grassland seems to be very similar regard-

ing sensible heat release, with absolute average values for forest being more than double

the ones of grassland. For very low values of specific humidity, the amount of sensible

heat is not depending on soil moisture, while for higher specific humidity, sensible heat

is depending on soil moisture alone. The lowest values of sensible heat on average, are in

the same region as the highest values of latent heat; high soil moisture and high specific

humidity.
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4.6 Investigating a different approach

In this final section, the possibility of using neural networks in a statistical way is

described. Here, neural networks were build and trained to statistically re-produce the

fluxes of H-TESSEL, depending on some variables produced by the forcing and some

produced by the output of the model. The variables were net radiation, temperature,

specific humidity and soil moisture as inputs, giving as output either one of latent heat,

sensible heat or ground flux in each configuration.

The set-up included four input neurons, five neurons in the first hidden layer, 3

neurons in the second hidden layer, and one output neuron (figure 4.13). The procedure

was to provide the network with a set of mean diurnal values of the input variables,

and train it by also providing it with the expected values for the output. The neural

network then, goes through cycles of weight adjustments in order to reproduce the

expected output, according to the given input. This training, or control dataset included

all summer days, but not HWDs. The testing dataset to check whether the network

performs well, was formed only by HWDs. In this way the two datasets included different

values, and the network did not have any information on the testing dataset after the

training. The only way the network can produce an output in the testing dataset, is

due to existing statistical relations between the input and the output, expressed by the

weights from the training.

Figure 4.13: The neuron configuration that was used, after the training session, for
the case of latent heat in grassland. Input, hidden layers and output neurons can be

seen, together with the weights assigned to them from the training.

After training the networks for reproducing either latent heat, sensible heat or

ground flux, it was found that there was a convergence of the algorithm only for the cases
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of latent heat and ground flux, while the sensible heat algorithm did not converge. This

means that in the dataset of H-TESSEL there is not a significant statistical connection

between the input variables and sensible heat (figure 4.14). Nevertheless, sensible heat

can be deduced, as it is the only unknown term for closing the energy balance.
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Figure 4.14: Comparison of expected and predicted values of latent heat and ground
flux, from the testing sessions of the networks for grassland, and sensible heat deduced

by H = Rnet − LE −G (values during HWDs).

The correlation of predicted with expected values looks promising, taking in mind

the fact that the neural networks were trained by mean diurnal values. Using the

full range of temporal resolution would probably result in better correlations, but the

training time would increase proportionally. It should be made clear here that this is

not an independent simulation; it depends on the statistical relations already existing

in the H-TESSEL dataset. The main idea is that since in H-TESSEL net radiation,

temperature, humidity and soil moisture can be used to statistically deduce the rest of

the energy fluxes, then it might be possible to do so with observational data as well.

Moreover, this approach could be used to assess the effect of changes in the model

constants, without having to perform the whole offline runs each time. However this is

part of future work.
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Conclusion

5.1 Summary of the work

Surface energy flux data of 1/2-hourly resolution from an offline H-TESSEL run output,

were treated to find maximum and mean diurnal values in the period 1996–2006. The

same was done for the 3-hourly resolution forcing dataset of the model, which was then

used to make a selection of heat-wave days in the same period. As it was found difficult

to properly select heat-wave days based on the forcing data alone, a second dataset was

used to add in the procedure. Once the selection was established, an area of the output

was selected in west-central Europe on the basic criterion of containing high and low

vegetation in equal proportion and adequate coverage.

Energy fluxes for forest and grassland during the selected heat-wave days as well as

the climatology of those days, were compared to the equivalent fluxes from observations.

This was done to confirm whether the observed differences in the response of forest and

grassland fluxes to heat-waves are simulated by the model. The role of soil moisture was

assessed, as an aiding factor to the occurrence of heat-wave events, as well as a factor

influencing the results of the model. A single event was used to investigate further the

behaviour of the model on days that may have not been properly classified as HWDs,

followed by an analysis of the evolution of energy fluxes depending on the duration of the

events. Finally, the role of soil moisture in conjunction with air humidity is examined

with a regression tree analysis.

5.2 The main points

The procedure used for HWD selection, resulted in an acceptable number of heat-waves,

accounting to a fraction of around 2–3 % of the days in the period March–April 1996–

2006, in most of Europe. The procedure overestimates the amount of heat-waves in areas

with snow coverage for a considerable fraction of the year (i.e. alpine and scandinavic).

47
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The placement of heat-waves during summer days was indeed at periods of extreme

temperatures, and the summers of 2003 and 2006 contained a larger number.

The connection of low spring-time soil moisture with HWD occurrence was not

found in the model data. However, there was a connection with soil moisture during

these events.

Heat-waves defined by the selection procedure were found to also contain rainy days,

or days that had in general high soil moisture levels, while the net radiation was not

following any pattern of cloud coverage. This is probably because of a combination of

low temporal resolution of incoming short-wave radiation, and of the blending process

in which the dataset was produced. These days were biasing the results, and their

exclusion provided a closer resemblance to the observations. A filtering of heat-waves

with a duration between 7 and 12 days improved this further. This means that a HWD

definition in the current level of data resolution, is much more efficient if an additional

criterion for either soil moisture, or rain amount is applied.

In the climatology forest and grassland seem to behave close to the expectations,

with grassland partitioning more of the energy towards latent heat, while forest towards

sensible heat. Still the ground flux in both vegetation types remains high compared to

the observations. This is potentially a bias in skin temperature calculation, connected

to sensible and latent heat through the surface energy balance solver, which was not

examined here.

The additional amount of net radiation received during HWDs, is underestimated

by H-TESSEL compared to observations, which is most probably coming from the res-

olution of data; observations are taken on specific locations from flux towers, while the

forcing of H-TESSEL is an average over an area of 10,000 km2. This does not allow for

spikes of radiation that might appear on single locations during heat-waves to be regis-

tered in a 1 × 1 degree resolution, which ultimately leads to a lower additional amount.

This is validated by the fact that net radiation values in the climatology (which is an

average in both cases), is on the same magnitude for H-TESSEL and the observations.

Grassland receives the same amount of net radiation with forest in H-TESSEL, while

it receives less than forest in the observations. This is a consequence of the assignment

of similar albedo for forest and grassland in the model, a fact that still cannot explain

the differences in net radiation partitioning to heat fluxes, between the model and the

observations.

Latent heat tends to be overestimated during HWD anomalies, especially for grass-

land. This, in combination with the fact that sensible heat is not differentiated in the

same amount, points to the calculation of the stomatal resistance and the connection

with vapour pressure deficit, which should be further investigated.

From the CART analysis, it is found that the more conservative nature of forest,

concerning water use, is depicted in the dataset. While grassland seems to regulate
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latent heat only at very low levels of the latter (figure 4.11), forest reduces evaporation

already at median levels of soil moisture.

The differentiation in fluxes during heat-waves, due to soil dry-down was not found

in any period within the dataset. Even for the longest heat-wave duration available (13

days), there was no sign of a change in the relation of latent and sensible heat between

forest and grassland, as simulated by [cite Teuling 2010]. This suggests that even on the

13-day heat-waves, conditions are still on stage I drying.

Finally, latent heat seems to have a direct connection statistically, to net radiation,

2 m temperature, specific humidity and soil moisture, and probably it can be calculated

directly from these variables (with a respective uncertainty). On the other hand, no

statistical relevance was found between sensible heat and the aforementioned variables.

This could be because of the lack of surface wind as an input, in which case it would

suggest that wind affects sensible heat more strongly than latent heat.

5.3 Future work

The main limitations of the analysis here, comes from the low temporal resolution of

the forcing. While it is adequate for assessing the performance of the model on the

long term, events like heat-waves are defined within a low temporal resolution, and are

affected by the evolution of the forcing variables. This can affect not only the selection

procedure of heat-waves, but also their diurnal evolution. A single column run of the

model for specific locations, forced by stationary data would probably provide more

reliable results.

In such a future work, the dependence of the stomatal resistance on the combination

of vapour pressure deficit and root water extraction should be examined, in search for

an improvement of the calculation of latent heat.

Finally, the application of neural networks could be further examined by training

networks with stationary data and different input variables, to investigate if a represen-

tation of fluxes based on statistics would give better results than the model.

5.4 Some final thoughts

This thesis work would have been much more efficient, if the amount of data was divided

into smaller parts from the beginning. In that hypothetical parallel universe, the author

would have started by selecting only a few stations that contain a high percentage of

the respective vegetation type, and would not try to deal with the whole European

continent at once. HWDs would then be determined for each station-gridpoint, which

would probably make the selection faster. Fluxes could be also correlated with station

data from FLUXNET, in order to determine easier which part of the model needs to



50 Chapter 5. Conclusion

be improved. Since parallel universes are not proven to exist, this only remains as a

thought for a similar situation in the future.
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