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Abstract

We consider a cold Bose gas in the unitarity limit. The unitarity limit corresponds to the
limit where the scattering length goes to infinity. In this thesis we first review basic quantum-
mechanical scattering theory and explain the physics of Feshbach resonances. After that we
discuss a many-body theory, which exactly incorporates the two-body physics of a Feshbach
resonance. In a mean-field approximation we obtain a divergence of the energy per particle
in the unitarity limit. Beyond mean field the spectral function is ill behaved. To get more
insight into these problems, we also discuss a model of linearly coupled atoms and phonons. A
generalized Bogoliubov transformation is used to obtain expressions for the quantized atomic
and phonon field operators. Finally, we use these operators to calculate some correlation
functions.
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1 Introduction

Strong interaction is an interesting aspect of quantum gases. In this regime, in contrast to the
weakly interacting case, we cannot use perturbation methods. An important step forward in the
study of these strongly interacting systems, was the discovery of Feshbach resonances in 1993 by
Eite Tiesinga, Boudewijn Verhaar and Henk Stoof [11]. This allowed us to alter the interaction
strength between atoms, by tuning the external magnetic field. Thus by changing this magnetic
field, we can explore both the weakly interacting and strongly interacting regime for cold gases.

In the last couple of years strongly interacting fermions have been intensively studied,
both theoretically and experimentally. More recently, also the strongly interacting atomic Bose
gas has gained theoretical interest [2]. Also the number of experiments for Bose gases in this
regime increases [7],[13]. However, these experiments are rather difficult since at low temperatures
the three-body losses rapidly increase. This is in contrast to fermions, where the three-body
losses are suppressed by the Pauli exclusion principle. In this thesis we are particularly interested
in these strongly interacting cold Bose gases.

For cold gases, the dimensionless interaction strength is determined by the density and the
s-wave scattering length a. If a is negative, the gas is attractive and for positive a the gas is
repulsive. Bose gases with attractive interactions are unstable. Therefore most studies focus on
repulsive Bose gases. Also in this thesis, we will consider repulsive Bose gases. If the scattering
length a tends to infinity, we are in the so-called unitarity limit. In this limit the properties
of the gas become universal, which means that the properties are independent of the details
of the system. By only using dimensional arguments, we only have one energy scale for cold
quantum gases in the unitarity limit [12]. This energy scale is defined as the Fermi energy and is
proportional to n2/3, where n is the particle density. For ultracold fermions in the unitarity limit,
we have for instance that µ = (1 + β)εF ' 0.42εF [1]. In this thesis we will try to obtain a similar
expression for ultracold Bose gases at unitarity.

This thesis is organized as follows. In chapter 2 we discuss basic two-body scattering and
the principle of a Feshbach resonance is explained. Subsequently, in chapter 3 we consider
an effective theory that correctly incorporates the two-atom physics of a Feshbach resonance.
Hereafter, this effective action is used for a mean-field theory which describes the equilibrium
properties of the atomic and molecular condensates. Chapter 4 gives a discussion of the problems
that arise in the Green’s function formalism, if we go beyond mean field. To get more insight into
these problems, we consider a model consisting of linearly coupled atoms and phonons in chapter
5. We determine expressions for the quantized atomic and phonon field operators, in order to
make a comparison with the spectral function obtained in the Green’s function and operator
formalism. Hereafter, the field operators are used to calculate some correlation functions. Finally,
this thesis is concluded in Chapter 6.
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2 Quantum-mechanical scattering

In this chapter we discuss quantum-mechanical scattering. Since we consider dilute gases, two-
body interactions are most important. Therefore we consider the scattering properties of two cold
atoms. The material covered in this chapter is primarily based on [9], [3] and [10].

2.1 Two-body scattering

If two particles interact via an interacting potential V (r1, r2) that only depends on the distance
between their positions r1 and r2, we can split the Hamiltonian in a center-of-mass and a relative
part. In this case both parts are described by separate Schrödinger equations. Because the
Schrödinger equation that describes the relative motion incorporates the scattering physics, we
focus on this part. The relative Schrödinger equation is given by{

−~2∇2

m
+ V (r1 − r2)

}
ψ(r1 − r2) = Eψ(r1 − r2). (1)

For elastic scattering processes, where E is given by the kinetic energy of the incoming wave
2εp = p2/m with p the incoming relative momentum and m the mass of the atoms, the time-
independent Schrödinger equation reads{

2εp − Ĥ0

}
|ψp〉 = V̂ |ψp〉. (2)

Here Ĥ0 = ~2∇2/m and |ψp〉 is the base-independent notation for the scattering state. To formally
solve this equation, we first assume that the interaction potential is zero. In this case the solution
is a simple plain wave |p〉. If we slowly turn on the interaction potential, the wave function will
slowly change too. Therefore, the solution to the relative Schrödinger equation is given by

|ψ±p 〉 = |p〉+
1

2εp − Ĥ0 ± iε
V̂ |ψ±p 〉, (3)

where ε tends to zero. This equation is known as the Lippmann-Schwinger equation. Here, the iε
is introduced to handle the pole of 1/(2εp− Ĥ0). The difference between adding iε or −iε, will be
explained at the end of this section. By multiplying this equation with 〈r| from the left, we obtain

〈r|ψ±p 〉 = 〈r|p〉+

∫
dr̃〈r| 1

2εp − Ĥ0 ± iε
|r̃〉〈r̃|V̂ |ψ±p 〉. (4)

Because,

〈r̃|p̃〉 =
eip̃·r̃/~

(2π~)3/2
, (5)

we can rewrite (4) into

〈r|ψ±p 〉 =
eip·r/~

(2π~)3/2
+

∫
dr̃

∫
dp̃

∫
dq̃〈r|p̃〉〈p̃| 1

2εp − Ĥ0 ± iε
|q̃〉〈q̃|r̃〉〈r̃|V̂ |ψ±p 〉 (6)

=
eip·r/~

(2π~)3/2
+

∫
dr̃

∫
dp̃

∫
dq̃〈r|p̃〉〈q̃|r̃〉 1

2εp − 2εq̃ ± iε
〈p̃|q̃〉〈r̃|V̂ |ψ±p 〉

=
eip·r/~

(2π~)3/2
+

∫
dr̃

∫
dp̃

(2π~)3

eip̃·(r−r̃)/~

2εp − 2εp̃ ± iε
〈r̃|V̂ |ψ±p 〉,

where the following orthonormality condition is used

〈p̃|q̃〉 = δ(p̃− q̃). (7)
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The result of the momentum integral in (6) is well known, and is for example given in table 3.1 of
[10]. By inserting this result, (6) simplifies to

〈r|ψ±p 〉 =
eip·r/~

(2π~)3/2
− m

~2

∫
dr̃
e±ip̃·|r−r̃|/~

4π|r− r̃|
〈r̃|V̂ |ψ±p 〉. (8)

By assuming that the potential is short ranged, we are especially interested at distances which are
larger than the range of this potential. Therefore, we now consider the behaviour of the scattering
wavefunction at distances r � r̃. In this case (8) changes into

〈r|ψ±p 〉 =
eip·r/~

(2π~)3/2
− m

~2

e±ipr/~

4πr

∫
dr̃〈r̃|V̂ |ψ±p 〉e∓ip̃·r̃/~, (9)

where p̃ := pr/r and we used that

|r− r̃| =
√
r2 − 2rr̃ cos(θ) + r̃2 = r

√
1− 2

r̃

r
cos(θ) +

r̃2

r2
≈ r − r̃ cos(θ) = r − r · r̃

r
. (10)

Furthermore, we recognize a Fourier transform in the integral of (9). Hence

ψ±p (r) = 〈r|ψ±p 〉 =
1

(2π~)3/2

{
eip·r/~ +

e±ipr/~

r
f(±p̃,p)

}
, (11)

where

f(p̃,p) := − m

4π~2
(2π~)3〈±p̃|V̂ |ψ±p 〉, (12)

is the scattering amplitude. At this moment we see the difference between the iε or −iε. In the
first case the total wavefunction is a sum of an incoming plain wave and an outgoing spherical
wave. However, if we add −iε, we would have an incoming spherical wave. This is a time-reversed
process. In this thesis we focus on ψ+

p (r).

2.2 T matrix

For many purposes we do not need the full wavefunction but only the scattering amplitude.
Therefore we introduce the operator T̂ 2B. This operator is known as the two-body transition or
T matrix, and is defined by

V̂ |ψ+
p 〉 := T̂ 2B|p〉. (13)

With the help of this definition, the scattering amplitude reads

f(k̃,k) = − m

4π~2
〈k̃|T̂ 2B|k〉. (14)

Here we introduced the wavevector k := p
~ , since wavevectors are more convenient for generaliza-

tion to many-body scattering. Also for many-body physics the following normalization condition

〈r̃|k̃〉 = eik̃·r̃, (15)

is more convenient. Note that this condition is slightly different from the one defined in (5).
Furthermore by multiplying (3) with V̂ from the left, the Lippmann-Schwinger equation changes
into

T̂ 2B|k〉 = V̂ |k〉+ V̂
1

E − Ĥ0 + iε
T̂ 2B|k〉. (16)

Since this equation holds for any incoming plain wave |k〉, we can drop |k〉. The equation for the
T matrix can be solved in an iterative way. This leads to the Born series, which in the limit of
ε ↓ 0 is given by

T̂ 2B = V̂ + V̂
1

E − Ĥ0

V̂ + V̂
1

E − Ĥ0

V̂
1

E − Ĥ0

V̂ + .... (17)
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From this equation the physical meaning of the T matrix is clear. Since 1/(E − Ĥ0) is equal to
the non-interacting atomic propagator at energy E, each term in the Born series corresponds to
a collision process. If the operator V̂ enters n times, this corresponds to scattering viewed as a
n-step process. Thus the T matrix describes the outcome of a collision process, by summing over
elementary interaction processes. In the Born approximation we only consider the first term of
the Born series. Now define Ĥ = Ĥ0 + V̂ , whose complete set of eigenstates are denoted by |ψα〉.
Then the formal solution for the transition matrix is given by

T 2B(z) = V̂ + V̂
1

z − Ĥ
V̂ . (18)

By inserting a completeness relation

T 2B(z) = V̂ +
∑
p

V̂
|ψp〉〈ψp|
z − εp

V̂ +

∫
dq

(2π)3
V̂
|ψ+

q 〉〈ψ+
q |

z − εq
V̂ . (19)

Note that there is a summation over possible bound states energies, since these energies εp < 0
are discrete. Furthermore, there is an integration over the energies εq > 0 due to the continuum
of the scattering states. This expression shows that the T matrix has poles in the complex energy
plane at the energy values of bound states of the potential. Also, there is a branch cut on the
positive real axis due to the continuum of scattering states.

To find an explicit expression for the T matrix, we expand the wave functions in (11) in
terms of spherical harmonics. Note that this expansion is unique, since the spherical harmonics
form a complete orthonormal basis in the Hilbert space of square-integrable functions. So we
write

f(k̃,k) =

∞∑
l=0

(2l + 1)fl(k)Pl(cos(θ)). (20)

Note that the left-hand side does not depend on k̃. This is because k̃ and k have the same length.
Therefore we only have dependence on k = |k|, and the angle between k and r. Furthermore we
write

eik·r =

∞∑
l=0

(2l + 1)iljl(kr)Pl(cos(θ)), (21)

which asymptotically equals

eik·r =

∞∑
l=0

(2l + 1)Pl(cos(θ))

{
eikr − e−i(kr−lπ)

2ikr

}
. (22)

From these expansions we observe that for V̂ = 0 = f(k̃,k), the scattering state is a sum of the
an outgoing wave eikr and an incoming spherical wave e−i(kr−lπ). The effect of turning on the
potential is changing the coefficient in front of the outgoing wave. This coefficient changes as
follows

1→ 1 + 2ikfl(k). (23)

Because of unitarity or probability conservation, the magnitude of the coefficient in front of out-
going and incoming wave must be equal. Furthermore, because of rotational invariance we have
angular-momentum conservation, and therefore |1 + 2ikfl(k)| = 1 holds for every l. Hence

1 + 2ikfl(k) =
1 + ikg(k)

1− ikg(k)
, (24)

or

fl(k) =
g(k)

1− ikg(k)
, (25)
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where g(k) is some function of k. For cold gases the dominant amplitude is f0(l). This can be
understood classically, since at low energies the particle cannot overcome the centrifugal barrier
for l 6= 0. Furthermore, at low energies we can neglect terms which are quadratic in k. So for low
energies

f(k̃,k) ≈ f0(k) = − a

1 + ika
. (26)

Here we used (20), the fact that P0(cos(θ)) = 1 and the s-wave scattering length a is defined as

a = − lim
k→0

f0. (27)

Thus for low energies the T matrix reads

〈k̃|T̂ 2B|k〉 = T 2B(k) =
4π~2

m

a

1 + ika
, (28)

where (14) is used. In terms of a small positive energy E, the T matrix is given by

T 2B(E) =
4π~2

m

a

1 + ia
√
mE/~2

. (29)

And by analytic continuation

T 2B(z) =
4π~2

m

a

1− a
√
−mz/~2

, (30)

where z is an arbitrary complex number. Clearly, for positive a the T matrix has a pole at
Em = −~2/ma2 corresponding to a two-body bound state. This result does not depend on the
details of the interaction potential. This is expected, since at low temperatures the thermal de
Broglie wavelength is large and therefore the particle does not feel the details of the potential.
Thus at low temperatures, any potential with a large positive scattering length a has a bound
state slightly below to the atomic continuum.

2.3 Alkali atoms

Most experimentalists use alkali atoms to perform all kinds of experiments at low temperatures.
Therefore, in this section the internal structure of alkali atoms is briefly discussed. An alkali atom
can be considered as a hydrogen core with charge e and a single outer electron with charge −e.
So to good approximation the Hamiltonian is given by

Ĥ =
p̂2

2me
− e2

4πε0r̂
. (31)

Here the core is assumed to be fixed in space. This is a reasonable assumption, since the core
is much heavier than the electron. Apart from the Coulomb interaction there are also other
interactions. First of all, there is the spin-orbit coupling. This coupling of the spin Ŝ and the
orbital angular momentum L̂ of the outer electron is via the following spin-orbit Hamiltonian

Ĥso =
αso

~2
L̂ · Ŝ. (32)

This coupling splits the energy levels of the atom, which is known as the fine-structure splitting.
Besides this spin-orbit coupling, there is also the coupling of the nuclear spin Î with the electron
spin Ŝ, which is described by

Ĥhf =
αhf

~2
Î · Ŝ. (33)

This interaction leads to the so-called hyperfine splitting of the energy levels and is usually much
smaller than the fine splitting. However, for cold gases most atoms are in the ground state with
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l = 0 and therefore the fine-structure splitting is absent for cold atoms. Thus for cold gases the
hyperfine splitting is the dominant effect.

Finally, there is also the coupling of the magnetic moments of the nucleus and electron to
the external magnetic field. This shift is known as the Zeeman shift. Clearly this coupling is of
experimental relevance as by tuning the magnetic field, the energy levels can be changed. The
coupling to an external magnetic field B shifts the hyperfine states. By assuming the the magnetic
field is directed along the z-axis, this Zeeman coupling changes the hyperfine Hamiltonian into

Ĥ = Ĥhf − γNBÎz + γBŜz. (34)

Here γN corresponds to the coupling of the nucleur spin with the magnetic field and γ is the
coupling strength of the electronic spin with the external magnetic field. These coupling constants
are proportional to the inverse mass and therefore γN << γ. Thus the coupling of the electron to
the external magnetic field is the dominant Zeeman effect.

2.4 Feshbach resonance

As mentioned before in the introduction, the interaction strength of a cold Bose gases can be
controlled by means of a Feshbach resonance. In order to explain these Feshbach resonances,
we consider two cold alkali atoms. These atoms can be in different internal states or so-called
channels. The channels are distinguished by the different quantum numbers of the internal states
of the atoms. At low temperatures these channels are completely described by the spin degrees
of freedom. Because alkali atoms only have one valence electron, the two cold alkali atoms can
be approximately described by a two-channel model. Roughly speaking, there is one channel
where the two valence electrons are in the singlet state and there is a channel where the two
electrons are in the triplet state. Note that generally the singlet potential is deeper than the
triplet potential. This is because in the singlet state the electrons are allowed to be on top of
each other and for the triplet state this is forbidden.

The total spin in the singlet and triplet state is different, and therefore both potentials
differ by a factor of ∆µB due to the Zeeman effect. Here ∆µ is the difference in magnetic mo-
ment. Two cold atoms who scatter with energy E ≈ kbT� ∆µB, in the channel with the smallest
continuum energy, cannot leave this channel due to energy conservation. Therefore this channel
is referred as the open channel and the other is referred as the closed channel. The two channels

E

δ(B)

|x− x′|

∆µB

closed channel

open channel

Figure 1: Schematic picture of a Feshbach resonance. The blue line is the open channel interaction
potential and the red line denotes the closed channel interaction potential. The latter contains the
bound state, which is denoted by the dashed line, that is responsible for the Feshbach resonance.

are coupled due to the hyperfine interaction. The closed channel is assumed to have a bound
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state close to the continuum threshold of the atoms. In general the closed channel contains more
than one bound state. However, by assuming that the energy difference between the bound states
is larger than the thermal energy, near resonance only one bound state is important. For most
atomic gases of interest this condition is satisfied. Furthermore, the difference between the energy
of that bound state and the continuum threshold is denoted by δ(B). If δ(B) is equal to zero, we
are on resonance. Note that δ depends linearly on the magnetic field because of the Zeeman effect.
Therefore we can change the difference between the energy of the bound state and the continuum
threshold of the atoms, by tuning the applied magnetic field. The situation is depicted in Figure 1.

Now consider that we have two colliding alkali atoms in the open channel. Those atoms
can scatter and stay in the open channel, or they can temporarily form a molecule in the closed
channel. Note that for the latter the spin state changes and therefore the outgoing particles
are in a different channel then the incoming particles. Therefore this process corresponds to
multi-channel scattering. The concept of the Feshbach resonance is that by tuning the external
magnetic field, δ(B) can be changed and thereby the scattering properties of the atoms in the
open channel can be tuned. To see that the T matrix and thus the scattering properties depend
on δ(B), we start with the following microscopic action

S[a∗,a, b∗, b] =
∑
k,n

(−i~ωn + εk − µ)ak,na
∗
k,n (35)

+
∑
k,n

(−i~ωn + εk/2 + δ(B)− 2µ)bk,nb
∗
k,n

+
T 2B

bg

2~βV
∑

K,k,q,n,m,l

a∗K/2+k,n/2+ma
∗
K/2−k,n/2−maK/2+q,n/2+laK/2−q,n/2−l

+
g

(~βV )1/2

∑
K,k,n,m

b∗K,naK/2+k,n/2+maK/2−k,n/2−m

+
g

(~βV )1/2

∑
K,k,n,m

bK,na
∗
K/2+k,n/2+ma

∗
K/2−k,n/2−m.

This action can be obtained by starting from an microscopic action which describes atoms in the
open channel and the closed channel. By making a Hubbard-Stratonovich transformation to a
pairing field, which describes two atoms in the closed channel and can be related to the field which
describes the molecular bound state in the closed channel, we end up with the action given in (35).

The coefficients ak,n and their complex conjugates describe the atoms in the open channel.
So the first part of this action corresponds to the noninteracting atoms in the open channel. The
second part of the action describes the noninteracting molecules. The third term accounts for
the background scattering, the interaction of the atoms in the open channel. The fourth term
describes the creation of a molecule by annihilating two atoms and the last term describes the
creation of two atoms by annihilating a molecule. Note that in general the coupling constant g
has energy-dependence. However, the energy dependence is proportional to abg. As we will prove
in a moment, close to resonance this background scattering length can be neglected. Since we are
especially interested in this regime, we can take g energy independent.

To obtain the interatomic scattering properties, we have to eliminate the molecules. By
performing the Gaussian integral over the molecular field, we put i~ωn− εK/2 + 2µ equal to zero.
This is allowed, since the scattering length is a property at zero energy and momentum. After
performing the integration, we end up with

4πabg~2

m
− 2g2

δ(B)
=

4πa(B)~2

m
. (36)

where a(B) is the effective interatomic scattering length. From this equation it is clear that by
tuning δ(B), also the scattering properties can be varied. Thus the consequence of a Feshbach
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resonance is a magnetic field dependent scattering length. This shows the experimental relevance
of a Feshbach resonance. Namely, by changing the magnetic field, the interatomic interaction can
be controlled. Therefore, both the weakly and strongly interacting regime can be investigated. To
make contact with experiments, we write

a(B) = abg

(
1− ∆B

B −B0

)
, (37)

where B0 and ∆B are experimentally characterized. Here B0 is defined as the position and ∆B
is the so-called width of the resonance. This formula is actually confirmed experimentally and the
first experimental proof is given in [4].
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3 Mean-field theory of a Feshbach resonance

In the last section of the previous chapter, we wrote down a field-theoretical description of a
Feshbach resonance. In this chapter we use this action to perform a mean-field theory. However,
at the quadratic level the action given in (35) does not incorporate the right physics. Namely, we
obtain for the molecular propagator

Gm(k, ω) =
~

~ω − εk/2− δ(B) + 2µ
. (38)

The energy of the molecular bound state is determined by the poles of this propagator. So the
energy reads

~ω = εk/2 + δ(B)− 2µ. (39)

As can be seen from this result, the energy of the bound state is proportional to δ. However, recall
from the T-matrix formalism that the bound state energy scales as a−2. Therefore, by using (36)
we obtain that the energy of the bound state should be proportional to δ2. Thus the action in
(35) is not a good description of the atom-molecule system. For a better description we already
have to include some interaction effects into the microscopic action, and start from that effective
action. In this chapter we first consider a correction to the microscopic action, such that the
effective action incorporates the physics of a Feshbach resonance. Hereafter, a mean-field theory
will be discussed.

3.1 Molecular selfenergy

The molecular selfenergy is a correction to the non-interacting molecular propagator. This self-
energy shifts the molecular bound-state energy due to the coupling between the open and closed
channel. To derive a expression for the molecular selfenergy, we start with the action given in (35)
in real space

S[φ∗m,φm, φ
∗
a, φa] =

∫ ~β

0

dτ

∫
dxφ∗m(x, τ)

[
~
∂

∂τ
− ~2∇2

4m
+ δ − 2µ

]
φm(x, τ) (40)

+

∫ ~β

0

dτ

∫
dxφ∗a(x, τ)

[
~
∂

∂τ
− ~2∇2

2m
− µ

]
φa(x, τ)

+

∫ ~β

0

dτ

∫
dxg

[
φ∗m(x, τ)φa(x, τ)φa(x, τ) + φm(x, τ)φ∗a(x, τ)φ∗a(x, τ)

]
.

Note that we neglected the background scattering, since we are interested in regions close to
resonance. Diagrammatically the molecular selfenergy, up to second order in g, is given in Figure
2. Hence

~Σ(x− x̃; τ − τ̃) = −g
2

~
G0(x− x̃; τ − τ̃)G0(x− x̃; τ − τ̃), (41)

where G0(x− x̃; τ − τ̃) is the non-interacting propagator for the atoms. In Fourier space

~Σ(K; iΩn) =
1

~βV

∫ ~β

0

dτ dτ̃

∫
dx dx̃ ~Σ(x− x̃; τ − τ̃)e−iK·(x−x̃)eiΩn(τ−τ̃) (42)

=
−g2

~2βV

∑
k,m

G0(k, iωm)G0(K− k, iΩn − iωm)

=
−g2

~βV
∑
k,m

G0(k, iωm) +G0(K− k, iΩn − iωm)

−i~Ωn + εK−k + εk − 2µ

=
g2

V

∑
k

1 +NBE(εK−k) +NBE(εk)

−i~Ωn − εK−k − εk + 2µ
.
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where in the last step contour integration is used to obtain the Bose-Einstein distribution
NBE(εk) = 1/(eβ(εk−µ) − 1). By setting NBE equal to zero, we neglect many-body effects and
obtain the two-atom molecular selfenergy in vacuum. Furthermore, by defining q = K/2− k, we

x, τ x′, τ ′

Figure 2: Feynman diagram of the molecular selfenergy. The solid lines correspond to atomic
propagators and the dashed lines represent molecules.

obtain in the continuum limit

~Σ(K; Ωn) =
g2

V

∑
q

1

−i~Ωn − εK/2−q − εK/2+q + 2µ
(43)

= g2

∫
dq

(2π)3

1

−i~Ωn − εK/2 − 2εq + 2µ
.

Now define z = i~Ωn − εK/2 + 2µ. Then

~Σ(z) =

∫
dq

(2π)3

g2

z − 2εq
. (44)

As explained in the previous chapter, we are at resonance if δ(B) is equal to zero. However,
the molecular selfenergy shifts the bound-state energy of the molecule and we are no longer at
resonance if δ(B) = 0. Therefore, we shift the molecular selfenergy with ~Σ(0). Then we regain
the normal resonance condition and the two-body molecular selfenergy is given by

~Σ2B
m (z) := ~Σ(z)− ~Σ(0) (45)

= g2

∫
dq

(2π)3

( 1

z − 2εq
+

1

2εq

)
=

mg2

2~2π2
z

∫ ∞
0

dq

z − ~2q2

m

.

By using the method of contour integration, we obtain

~Σ2B
m (z) =

m
3
2 g2

2π~3

√
−z, (46)

where z is an arbitrary complex number. In the following we use (46) as a definition for the
molecular selfenergy. To properly account for the background scattering we should substitute

g2 → g2

1+q2a2bg
in (44), see [3]. Again by using the method of contour integration, we then obtain

for the two-body molecular selfenergy

~Σ2B
m (z) =

m
3
2 g2

2π~3

√
−z

1 + |abg|
√
−mz/~2

. (47)
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3.2 Effective action

By incorporating the molecular selfenergy, the effective action reads

Seff [a∗, a, b∗, b] =
∑
k,n

(−i~ωn + εk − µ)ak,na
∗
k,n (48)

+
∑
k,n

(−i~ωn + εk/2 + δ(B)− 2µ+ ~Σ2B
m (i~ωn − εk/2 + 2µ))bk,nb

∗
k,n

+
g2B

(~βV )1/2

∑
K,k,n,m

b∗K,naK/2+k,n/2+maK/2−k,n/2−m

+
g2B

(~βV )1/2

∑
K,k,n,m

bK,na
∗
K/2+k,n/2+ma

∗
K/2−k,n/2−m,

Note that (48) is an effective action in the sense that all two-body ladder diagrams are taken
into account. Also the coupling g2B is renormalized, by taking into account all two-body ladder
diagrams. For the details we refer to [3]. By including this molecular selfenergy, the retarded
molecular propagator changes into

G+
m(k, ω) =

~
~ω + iε− εk/2− δ(B) + 2µ− ~Σ2B

m (~ω − εk/2 + 2µ+ iε)
, (49)

where ε goes to zero. Note that the molecular selfenergy only contains diagrams up to order g2,
but by writing

G+
m =

1

G−1
0 − ~Σ2B

m

(50)

= G0
1

1− ~Σ2B
m G0

= G0 +G0~Σ2B
m G0 +G0~Σ2B

m G0~Σ2B
m G0 + .....,

we see that the two-body molecular ladder diagrams are indeed incorporated. Here the argument
of the molecular selfenergy is omitted for notational convenience. Furthermore G−1

0 = ~ω−εk/2−
δ(B) + 2µ denotes the non-interacting molecular propagator. The energy of the molecular state
is determined by solving the following equation for x

x− δ(B)− ~Σ2B
m (x) = 0. (51)

First note that for positive detunings δ(B), this equation only has a solution with a nonzero
negative imaginary part. This is expected, since for positive detunings the energy of the molecule
is larger than the two-atom continuum threshold. Therefore this solution corresponds to the decay
of a molecule into two atoms, where the negative imaginary part is related to the lifetime of the
molecule. In contrast, for negative detunings there is a real negative solution corresponding to the
bound-state energy of the molecule. By substituting y =

√
−x, (51) changes into

y2 + δ(B) + αy = 0. (52)

Here α = m
3
2 g2/2π~3. Hence

y =
α

2

(
− 1±

√
1− 4δ

α2

)
(53)

=
α

2

(
− 1 +

√
1 +

8π~4

m2g2a(B)

)
,

where we used (36) for abg = 0. Note that in the second step we have to choose the solution with
the plus-sign, because y =

√
−x > 0. In the experimentally interesting case of broad Feshbach

13



resonances, when δ →∞ and g2 →∞, this expression simplifies to

y =
1

2

(
− α+

(
α+

2~
a(B)

√
m

))
. (54)

So in the limit of δ →∞ and g2 →∞, the solution for the bound state reads

Eb = − ~2

ma(B)2
. (55)

Thus instead of the microscopic action described in the previous section, the effective action of
(48) correctly describes the molecular bound state. In the next section this effective action is used
to obtain the mean-field equations.

3.3 Mean-field equations

The mean-field equations describe the equilibrium properties of the atomic and the molecular
condensate. To obtain these equations, we should substitute a0,0 → a0,0 + φa

√
~βV and b0,0 →

b0,0 +φm

√
~βV into the action and demand that the linear terms in the fluctuations ak,n and bk,n

vanish. Here φm and φa describe respectively the molecular and atomic condensate. By using the
action in (48), we obtain the following mean-field equations

µφa = 2g2Bφ∗aφm, (56)

2µφm = (δ(B) + ~Σ2B
m (2µ− 2~ΣHF))φm + g2Bφ2

a. (57)

Here the Hartree-Fock selfenergy of the non-condensed atoms is introduced. This selfenergy is the
mean-field energy felt by the non-condensed atoms due to the presence of the atomic condensate.
Due to this effect the argument of the molecular selfenergy should be evaluated at 2µ − 2~ΣHF.
This is because by looking at (44), the Hartree-Fock selfenergy shifts the internal energy of the
non-condensed atoms from εk to εk + ~ΣHF. Thus for the condensate, where ωn = εk = 0, we

Figure 3: Diagrammatic representation of the Hartree-Fock selfenergy of the atoms. The dotted
lines are non-condensed atoms. The dashed line is the propagator of condensed atoms. Further-
more the solid line correspond to the full molecular propagator.

have to evaluate the molecular selfenergy at 2µ − 2~ΣHF. Diagrammatically this Hartree-Fock
selfenergy is shown in Figure 3. Thus the Hartree-Fock selfenergy is given by

~ΣHF =
4na|g2B|2

~ΣHF + µ− δ(B)− ~Σ2B
m (µ− ~ΣHF)

, (58)
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where na = |φa|2 is the density of condensed atoms. Note that the argument of the molecular
selfenergy is different from the first factor in the numerator. To explain this, we first recall that
the molecular propagator is given by

~Gm =
1

E − δ(B)− ~Σ2B
m (E)

. (59)

As we want to describe a Feshbach resonance, the Hartree-Fock selfenergy is evaluated at the
continuum energy. Therefore, the energy of a non-condensed atom is equal to ~ΣHF. Because
the energy of a condensed atom is µ, we should evaluate the molecular propagator at µ + ~ΣHF.
However, the molecular selfenergy contains an integral over internal energy. This internal energy
is shifted with the Hartree-Fock selfenergy, εk → εk + ~ΣHF in (45), and therefore the molecular
selfenergy is evaluated at µ− ~ΣHF.

There is also a physical reason to include this Hartree-Fock selfenergy. The molecular
bound state is only stable if the energy of a condensed molecule is smaller than the continuum
threshold of two atoms in vacuum. A condensed molecule has energy 2µ. Because for the
Bose-condensed phase the chemical potential is larger than zero, the energy of the molecular
condensate is also larger than zero. Without the incorporation of the Hartree-Fock selfenergy, the
energy of the condensed molecule is larger than the continuum threshold of the atoms. Therefore
the molecule decays into two atoms and this is not a stable solution of the mean-field equations.
However, by including the Hartree-Fock selfenergy the continuum threshold is shifted by an
amount of 2~ΣHF. Because this Hartree-Fock selfenergy appears to be larger than the chemical
potential, which will be shown in section 3.5, the energy of the condensed molecule is smaller
than the continuum threshold of two atoms. So by including the Hartree-Fock selfenergy, we also
expect a (meta)stable solution of the mean-field equations consisting of an atomic condensate.

3.4 Densities

In this section we have a closer look at the different equilibrium solutions of the mean-field equa-
tions. So, we determine the density of condensed molecules and atoms as a function of the chemical
potential. For a fixed chemical potential, (56) and (57) have the following solutions

1. na = 0 and nm = 0.

2. na = 0 and 2µ− δ − ~Σ2B
m (2µ− 2~ΣHF) = 0.

3. na = µ
2g2

(
2µ− δ − ~Σ2B

m (2µ− 2~ΣHF)
)

and nm = µ2

4g2 .

Here we assumed that g 6= 0 and in the third case 2µ− δ− ~Σ2B
m (2µ− 2~ΣHF) 6= 0. The first case

is the trivial solution. In the second case 2µ−δ−~Σ2B
m (2µ−2~ΣHF) = 0. First notice that na = 0

implies that ΣHF = 0 according to (58). Thus 2µ− δ − ~Σ2B
m (2µ− 2~ΣHF) = 0 simplifies to

2µ− δ(B)− ~Σ2B
m (2µ) = 0, (60)

which is the same equation as we already solved in section 3.2. Recall that this equation only has
a real solution if the detuning δ is negative. For negative detunings

µ = − ~2

2m(a(B))2
=

1

2
Eb, (61)

in the limit of g2 → ∞. Again for positive detuning we get an imaginary chemical potential,
corresponding to the instability of the molecules. This case corresponds to the situation where
we have a molecular condensate and there are no condensed atoms. Because the chemical
potential of the molecules is the same as the molecular bound state, the number of con-
densed molecules is macroscopically large. This is the real ground state of our system, since for
negative detunings the energy of condensed molecules is lower than the energy of condensed atoms.
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To get a better understanding of this atom-molecule system, we focus now on Figure 4.
This figure shows the energy as a function of the detuning. For negative detunings there is a
molecular branch at negative energy and an atomic continuum at positive energy. By looking at
Figure 4, we expect that there are two solutions of the mean-field equations. The first solution
is the real groundstate of the system where there is a condensate of molecules. Furthermore,
since we included this Hartree-Fock selfenergy, we also expect a metastable solution where we
have a condensate of atoms. Because the chemical potential determines the density, since at
low temperatures particles with energies far above the chemical potential get exponentially
suppressed, we expect two different chemical potentials that satisfy the mean-field equations.
There should be a chemical potential around the molecular branch and the other one is around
the atomic continuum. In the next section we show that there indeed is a solution of the chemical

E

δ(B)

Figure 4: The energy as a function of the detuning δ. The blue curve corresponds to the molecular
bound state energy and the arrows denote that there is a atomic continuum for positive energies.

potential which is around the atomic continuum. In this section we found the solution where the
chemical potential is at the molecular branch, which corresponds to the solution of a condensate
of molecules. Thus, there are indeed two different solutions of the mean-field equations. Also in
case 3

nm

na
=
µ

2

1

2µ− δ − ~Σ2B
m (2µ− 2~ΣHF)

. (62)

By using (46), we observe that this ratio goes to zero for a fixed chemical potential and g2 →∞
and δ → ∞. Therefore the molecular density is zero in the limit of a broad Feshbach resonance
and the two-channel model reduces to a single-channel model. Still the situation is different from
a normal single-channel model, because for a broad Feshbach resonance the molecular bound state
causes a magnetic-field dependent scattering length.

3.5 Chemical potential

In the previous section we found that the true ground state of the system is a condensate of
molecules. However, we are interested in the metastable situation of an atomic condensate. Thus
we consider case 3, where 2µ − δ(B) − Σ2B

m (2µ − 2~ΣHF) 6= 0, and obtain the following coupled
equations

µ =
2na(g2B)2

2µ− δ(B)− ~Σ2B
m (2µ− 2~ΣHF)

, (63)

~ΣHF =
4na(g2B)2

~ΣHF + µ− δ(B)− ~Σ2B
m (µ− ~ΣHF)

, (64)
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where the molecular selfenergy is given in equation (46). In this thesis we are especially interested
in the experimentally relevant broad Feshbach resonances, where g2 → ∞. However, because
of (36) we can only take this limit if we also send δ(B) → ∞ and keep the ratio g2/δ constant.
Furthermore, to compare the results with experiments it is more convenient to solve the mean-field
equations for the chemical potential at fixed molecular and atomic densities. Therefore, (63) and
(64) are solved for the Hartree-Fock selfenergy and the chemical potential at fixed densities. Thus
we define a Fermi momentum kF and energy εF, such that na = k3

F/6π
2 and m/~2 = k2

F/2εF.
Then in the limit of a broad Feshbach resonance, the mean-field equations change into

µ =
εF
3π

4kFa

1− kFa
√
−(µ− ~ΣHF)/εF

, (65)

~ΣHF =
εF
3π

8kFa

1− kFa
√
−(µ− ~ΣHF)/2εF

. (66)

To proceed further, these equations are rewritten as one equation for z := (~ΣHF − µ)/εF

z =
4kFa

3π
·

2(1− kFa
√
z)− (1− kFa

√
z/2)

(1− kFa
√
z)(1− kFa

√
z/2)

. (67)

This equation is solved numerically and subsequently this solution is substituted into (65) and
(66), to obtain the mean-field chemical potential and Hartree-Fock selfenergy. These mean-field
quantities are given in Figure 5. Note that the chemical potential is positive and the Hartree-Fock

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

µ
εF
, ΣHF

εF

1
kFa

Figure 5: The chemical potential µ and the Hartree-Fock selfenergy ΣHF in units of the Fermi
energy εF as a function of the inverse scattering length 1/kFa. The red and the blue curve
correspond to respectively the Hartree-Fock selfenergy and the chemical potential µ.

selfenergy is larger than the chemical potential. Hence, this is an equilibrium solution of the
mean-field equations. There is also another well-known mean-field result for the energy of a cold
Bose gas. This result for the energy per particle is given

e =
4π~2

ma2
na3
(

1 +
128

15π

√
na3 + ...

)
. (68)

The first term is the Gross-Pitaevskii result and the second term is the Lee-Huang-Yang correction
[5]. This correction is due to the depletion of the condensate. The result of (68) is obtained from a
φ4-theory, which describes Bose-Einstein condensation. In contrast to our theory, this theory only
consists of atoms. As we can see from Figure 6, the result of our mean-field theory coincides with
this result for small kFa. For large kFa both diverge, but there difference between both curves
increases. This shows that the incorporation of the molecules is important for large scattering
lengths. By using the definitions of the density and mass, we obtain that the Gross-Pitaevskii
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Figure 6: The red line shows the chemical potential µ in units of the Fermi energy εF as a function
of the inverse scattering length 1/kFa. The green curve corresponds to the Bogoliubov result from
equation 68 with the LHY correction and the blue curve is without this correction. Just as the
Bogoliubov result, our two-channel mean-field result diverges in the unitary limit.

result for the energy per particle in units of the Fermi energy εF, diverges as 4kFa/3π.

Now the question arises if we can determine the divergence of our mean field result. By
looking at Figure 7, we observe that p := z(kFa)2 = (kFa)2(~ΣHF − µ)/εF is constant for large
kFa. Thus (67) can be rewritten as

p

(kFa)3
=

4

3π
·

2(1−
√
z)− (1−

√
z/2)

(1−
√
z)(1−

√
z/2)

. (69)

Because p is constant for large kFa, the left-handside of this equation tends to zero as kFa→∞.
Thus by solving for which z the right-handside is equal to zero, we can determine the value of z
in the unitarity limit. By substituting this result into (65), we obtain

µ =
4kFa

3π
(3 +

√
2), (70)

for large kFa. Thus our mean-field chemical potential diverges even faster than the Gross-Pitaevskii
result. The divergence of the energy for large kFa is unphysical. However, in our in a mean-field
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Figure 7: The quantity p := (kFa)2(~ΣHF−µ) as a function of the inverse scattering length 1/kFa.
The value of p is constant in the limit of 1/kFa→ 0.

theory this divergence maybe an artifact of taking the limit of g2 →∞ and δ(B)→∞. Therefore
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we will now have a look at the case when g is finite. This corresponds to realistic cases, since g is
finite in all experiments. First define

0 2 4 6 8 10
0.0

0.4
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1.2

µ
εF

1
kFa

Figure 8: The chemical potential µ as a function of the inverse scattering length 1/kFa for different
values for η. The values for η are 10, 1, 0.5, 0.1 for respectively the blue, red, green and orange
lines.

η2 =
g2m3/2

4π~3
=

√
εF
2

g2m2

2π~4
(6π2na)−1/3 :=

√
εF
2
η̃2, (71)

where η̃2 is dimensionless. Furthermore

1

kFa
= − δ̄

η̃2
. (72)

where (36) is used and the bar means a division through εF, thus x̄ = x/εF for a variable x. Hence

µ̄ =
4

3π

η̃2

2µ̄+ η̃2

kFa
− η̃2

√
−(µ− ΣHF)

, (73)

~Σ̄HF =
8

3π

η̃2

Σ̄HF + µ̄+ η̃2

kFa
− 1√

2
η̃2
√
−(µ− ΣHF)

.

These equations are solved numerically and the result is given in Figure 9. For small η the chemical
potential remains finite in the unitary limit. However, in the limit of g2 →∞ or similarly η̃2 →∞,
we regain the divergence of the chemical potential.
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4 Bogoliubov Theory

In the mean-field theory described in the previous chapter, we have a divergence of the chemical
potential at resonance. However, in this calculation depletion of the condensate is not incorporated.
Note that this depletion of the condensate is due to quantum and thermal fluctuations. Thus to
improve on the mean-field result, we consider the effective action in (48) up to second order in
Gaussian fluctuations. This is known as the Bogoliubov approximation.

4.1 Collective excitation spectrum

In this Bogoliubov approximation, we first study the collective excitation spectrum over the ground
state. The quadratic part of the action can be written as

Seff [a∗, a, b∗, b] =
∑
k,n

(−i~ωn + εk − µ)ak,na
∗
k,n (74)

+
∑
k,n

(−i~ωn + εk/2 + δ(B)− 2µ+ ~Σ2B
m (i~ωn − εk/2 + 2µ− 2~ΣHF))bk,nb

∗
k,n

+ g2B
∑
k,n

(
φ∗mak,na−k,−n + 2φab

∗
k,nak,n

)
+ g2B

∑
k,n

(
φma

∗
k,na

∗
−k,−n + 2φ∗abk,na

∗
k,n

)
.

Recall that we obtained this part of this action, quadratic in the fluctuations, by substituting
a0,0 → a0,0 + φa

√
~βV and b0,0 → b0,0 + φm

√
~βV in (48). Note that we also incorporated the

Hartree-Fock selfenergy. Now define

G−1
a (k, iωn) = −i~ωn + εk − µ, (75)

G−1
m (k, iωn) = i~ωn − εk/2 + 2µ− δ(B)− ~Σ2B

m (i~ωn − εk/2 + 2µ− 2~ΣHF).

For simplicity, we integrate out the molecules and end up with

SB[a∗, a] =
∑
k,n

u†k,n ·G
−1
B (k, iωn) · uk,n, (76)

where

uk,n :=

[
ak,n
a∗−k,−n

]
, (77)

and

G−1
B (k, iωn) =

1

2

[
G−1

a (k, iωn) 0
0 G−1

a (k,−iωn)

]
(78)

+
1

2

[
4|φa|2(g2B)2Gm(k, iωn) 2φ2

a(g2B)2Gm(0, 0)
2(φ∗a)2(g2B)2Gm(0, 0) 4|φa|2(g2B)2Gm(k,−iωn)

]
.

From these equations, we see that integrating out the molecular field results in an effective T
matrix for the atoms in the open channel of the form

TMB = 4|φa|2(g2B)2Gm(k, iωn) (79)

As we already proved in chapter 3, close to resonance the molecular Green’s function has
a pole at the bound state energy given by (55). Therefore, for large scattering lengths also
the effective T matrix has a pole at the bound-state energy. Recall that this is expected
from the formal definition of the T matrix in (19). Also note that in the expressions above,
the chemical potential is equal to the mean-field result given in (63) and as a first approxi-
mation we use n = na = k3

F/6π
2. Thus we neglect the contribution of the non-condensed particles.
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Again we are interested in the limit of g → ∞ and δ → ∞, while keeping the ratio g2/δ
constant. The spectrum of the collective excitations over the ground state is determined by the
quasi-particle dispersion relations. This system has roughly two different dispersions. There is a
Bogoliubov dispersion of the form

~ω ≈ ±
√
ε2k +

8πa~2na

m
εk, (80)

where a is equal to the full scattering length a(B). Physically, this dispersion corresponds to
phonon-like excitations. Furthermore, we also have a solution of the form

~ω ≈ ±
(
− 2

(kFa)2
+ εk/2

)
. (81)

This corresponds to atom-molecule oscillations, for example pairs of atoms moving between the
atomic and molecular condensate. In the discussion above we focused on the real part of the
dispersions. However, the dispersions also have a nonzero imaginary part. This imaginary part
can be negative and positive, where the former corresponds to decay and the latter to exponential
growth. As a final remark, also note the action before and after integrating out the molecules
contain the same dispersions. Namely, by writing the action before integrating out the molecules
as a 4× 4-matrix structure, we obtain that this determinant is proportional to the determinant of
G−1

B (k, ω).

0 1 2 3 4

-4

-2

0

2

4

ω

εk

Figure 9: The two dispersions, given in (80) and (81), as a function of εk for 1/kFa = 1.51.

4.2 The spectral-weight function

To calculate some physical quantities we have to determine the spectral-weight function. This
function is also often called the spectral function and is defined by

ρ(k, ω) =
1

~π
Im[Gret(k, ω+)], (82)

where ω+ = ω + iε and ε goes to zero. The spectral function can be seen as the single-particle
density of states as it gives the energies, amplitudes and lifetimes of the states accessible to a
particle with momentum k in the presence of a medium. Note that this definition is only valid for
systems without spin, but it can also be generalized to systems with spin. By using the Lehmann
representation [10], we have that for bosons the spectral function should be positive for ω > 0
and negative for ω < 0. There is also an intuitive argument, why the spectral function should
satisfy this condition. Namely, the expectation value of the number of particles can be obtained
by multiplying the spectral function with the Bose-Einstein distribution function, followed by
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an integration over ω. Since the Bose-Einstein distribution function is positive for ω > 0 and
negative for ω < 0, the spectral function should have the same behaviour. Otherwise we can
get the unphysical result of a negative density. Furthermore, for the atoms the spectral-weight
function should satisfy∫

d(~ω)ρ(k, ω) = 1, (83)

which is known as the frequency sum-rule. This rule is a consequence of the canonical com-
mutation relations. In this case we can obtain the retarded Green’s function by substituting
iωn = ω + iε in (78), where ε goes to zero. Note that we are only interested in G11, since this
corresponds to the normal average. Numerical plots of the spectral function of the Bogoliubov
theory is given in Figure 10.

In these figures we can see some general features of the excitation spectrum over the ground state.
First of all, for small momenta, we clearly have the four different contributions already discussed
in the previous section. Furthermore, there is also another contribution between roughly ~ω = εF
and ~ω = 2 εF. This corresponds to a contribution of the molecular density of states of the
two-atom continuum [3]. There is also a similar contribution at the corresponding negative values
for ω, but this contribution is so small that it is not visible in the figure. For larger momenta,

-10 -5 0 5 10

-4

-2

0

2

4

ρ
(k
,ω

)

ω

(a) εk = 0.1 εF

-10 -5 0 5 10

-4

-2

0

2

4

ρ
(k
,ω

)

ω

(b) εk = 2.0 εF

-10 -5 0 5 10

-4

-2

0

2

4

ρ
(k
,ω

)

ω

(c) εk = 4.0 εF

-10 -5 0 5 10

-4

-2

0

2

4

ρ
(k
,ω

)

ω

(d) εk = 4.5 εF

Figure 10: Numerical plots of the spectral function of the atom-molecule system over the ground-
state in the limit of g → ∞, δ → ∞ while keeping the ratio constant. In the plots ε = 10−4,
1/kFa = 1.51 and the value of εk/εF varies from 0.1 to 4.5.

this contribution merges with the contribution of the Bogoliubov dispersions. Furthermore, the
contribution of the pole at the molecular bound-state energy moves through this phonon-like
contribution. After they have crossed, the molecular contribution switches sign. This means
that there is a region where the spectral function becomes negative for ω > 0 and positive for
ω < 0. Furthermore, this spectral function also does not satisfy the sum rule. This is a direct
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consequence of the fact that we have a dispersion with a positive imaginary part. Namely, the
sum rule follows from the fact that for large ω, the spectral function behaves as 1/ω. Therefore,
by using contour integration where the contour is closed in the upper complex plane, we have
that the spectral function only satisfies the sum rule, if there are no poles in the upper complex
plane.
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5 Phonon model

In the previous chapter we found a spectral function for which the peaks of the spectral function
have the wrong sign. Furthermore, we did not always satisfy the sum-rule. As explained before, this
has to do with the complex dispersions with positive imaginary part. To get a better understanding
of this problem we therefore now consider another model, where also dispersions with positive
imaginary parts arise. This is a model consisting of atoms and phonons, which are linearly
coupled.

5.1 Dispersion relations

The system of linearly coupled atoms and phonons is described by the following action

S[ψ∗, ψ, φ] =

∫ ~β

0

dτ

∫
dxψ∗(x, τ)

[
~
∂

∂τ
−∇2 + ∆

]
ψ(x, τ) (84)

+

∫ ~β

0

dτ

∫
dxφ(x, τ)

[
− ~2 ∂

2

∂τ2
− c2∇2

]
φ(x, τ)

+ g
√

2

∫ ~β

0

dτ

∫
dx
[
ψ∗(x, τ) + ψ(x, τ)

]
φ(x, τ).

Here c is a constant and ~/2m is put equal to one. The phonon field is real, because it originates
from a classical field that describes displacements of atoms. Furthermore, −∆ plays the role of
a chemical potential. For non-interacting Bose gases the chemical potential is non-positive and
therefore only cases with ∆ > 0 are considered. Notice that there is no chemical potential for the
phonons. This is because phonons can be created or annihilated by random energy fluctuations
and therefore there is no energy cost to add or remove a phonon from the system. Finally, g is
the coupling between the phonons and the atoms, and the factor

√
2 is introduced for notational

convenience. Now define

ψ(x, t) :=
1√
~βV

∑
k,n

ak,ne
i(k·x−ωnτ), (85)

φ(x, t) :=
1√
~βV

∑
k,n

bk,ne
i(k·x−ωnτ), (86)

where ωn = π(2n)/~β are the bosonic Matsubara frequencies. Then in Fourier space the action
reads

S[a∗, a, b∗, b] =
∑
k,n

(−i~ωn + k2 + ∆)a∗k,nak,n (87)

+
∑
k,n

((~ωn)2 + c2k2)b∗k,nbk,n + g
√

2
∑
k,n

(ak,nb
∗
k,n + a∗k,nbk,n).

By considering the partition sum we can integrate out the phonons and end up with an effective
action for the atoms. Thus

Z[a∗, a] =
∏
k,n

∫
d[bk,n]e−S[a∗,a,b]/~ (88)

=
∏′

k≥0,n≥0

∫
d[bk,n]d[b∗k,n]d[b0,0]e−S[a∗,a,b∗,b]/~

:= e−S
eff [a∗,a]/~,
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where we used that b−k,−n = b∗k,n, since φ is real. Furthermore, the prime indicates that in the
product there is no term with k and n equal to zero. Now write

S[a∗, a, b∗, b] =
1

2

∑
k,n

(
(−i~ωn + k2 + ∆)a∗k,nak,n + (i~ωn + k2 + ∆)a∗−k,−na−k,−n

)
(89)

+ 2
∑′

k≥0,n≥0

((~ωn)2 + c2k2)b∗k,nbk,n

+ g
√

2
∑′

k≥0,n≥0

(ak,nb
∗
k,n + bk,na−k,−n + a∗k,nbk,n + b∗k,na

∗
−k,−n)

+ g
√

2(a0,0b0,0 + a∗0,0b0,0),

where the prime again indicates that we do not sum over the term with k and n equal to zero.
From now on we will neglect this zero mode. Then by performing the Gaussian integral we end
up with

Seff [a∗, a] =
1

2

∑′

k,n

u∗k,nG−1uk,n, (90)

where

uk,n :=

[
ak,n
a∗−k,−n

]
, (91)

and

G−1(k, iωn) =

[
−i~ωn + k2 + ∆− g2

(~ωn)2+c2k2 − g2

(~ωn)2+c2k2

− g2

(~ωn)2+c2k2 i~ωn + k2 + ∆− g2

(~ωn)2+c2k2

]
. (92)

Because we neglected the zero mode, there is no term with k = 0 and n = 0 in the effective
action. Furthermore, there is also a constant coming from the Gaussian integration. However,
in the end we are always interested in thermodynamic quantities which are independent of this
constant. Therefore, this constant is neglected. The poles of this interacting Green’s function
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Figure 11: The dispersions of the atom-phonon model for c = 3, g = 1 and ∆ = 1. The blue
curves correspond to ±~ω− and the red lines denote ±~ω+. Furthermore, if |k| is smaller than
roughly 0.4 the former becomes purely imaginary.

G(k, ω) correspond to energies of the quasiparticle excitations of the many-body system. Thus
the quasiparticle dispersion relations are determined by solving det[G−1(k, ω)] = 0 for ~ω. The
four solutions are given by

~ωσ′,σ =
σ′√

2

√
c2k2 + (k2 + ∆)2 + σ

√
8g2(k2 + ∆) + (−c2k2 + (k2 + ∆)2)2 := σ′~ωσ, (93)
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where σ and σ′ are equal to ±1. The dispersion relations are shown in Figure 11 for certain
values of c, g and ∆.

In the limit of g → 0 there are two phonon dispersion relations ~ω = ±c|k| and two
atomic dispersions ~ω = ±(k2 + ∆). However, for some finite g the situation is different. In
this case, the dispersions for large |k| are close to the dispersion for the decoupled system,
but for small |k| the picture is different. Apart from the avoided crossing that normally
occurs for a system with non-zero coupling between two internal states, there is a region where
the dispersions ~ω− are purely imaginary. This means that there is some instability in this system.

To understand this instability we first consider the classical situation of a harmonic oscil-
lator which is linear coupled to a free particle. Schematically the potential of that system will
look like

V (x, y) = αx2 + βx · y, (94)

for some non-trivial constants α > 0 and β. Clearly the only extremum of this potential occurs at
the origin. Whether this extremum is a maximum, minimum or saddle point, determines if this
extremum is stable or unstable. By completing the square, the potential in (94) can be rewritten
as

V (x, y) = α

(
x+

β

2α
y

)2

− β2

4α
y2. (95)

Thus we end up with two harmonic oscillators. Due to this minus sign in front of the second
term, the potential has a saddle point at the origin and therefore there is instability. In our
field-theoretical model of the atom-phonon model there is a similar situation. The phonons are
harmonic oscillators coupled to some other field, in this case a field describing atoms. By rewriting
(87)

S[a∗, a, b∗, b] =
∑
k,n

{
k2 + ∆

}
|ak,n +

g
√

2

k2 + ∆
bk,n|2 +

∑
k,n

−i~ωna∗k,nak,n (96)

+
∑
k,n

{
(~ωn)2 + c2k2 − 2g2

k2 + ∆

}
|bk,n|2,

we observe that if

(k2 + ∆)c2k2 < 2g2, (97)

or equivalently for

k2 <
1

2

{
−∆ +

√
∆2 +

8g2

c2

}
, (98)

there is a minus-sign in front of the harmonic potential of the phonons. As explained before
this corresponds to an instability. Therefore, this explains why for small |k| there are imaginary
solutions. The exact analytic expressions for the dispersions, given by the ~ω±,− in (93), show
that (98) is indeed the criterium for the dispersions to become purely imaginary. Notice that in
the limit of g → 0 the above condition is never satisfied and all dispersions are real. Therefore,
these imaginary dispersions are an effect of the coupling between the phonons and atoms.

5.2 Solving the quantum field theory

From Figure 11 it is clear that there are two different regions. For small |k| there are imaginary
dispersions and for large |k| all dispersion are real. Therefore, we write

ψ(x, t) = ψ<(x, t) + ψ>(x, t) (99)

φ(x, t) = φ<(x, t) + φ>(x, t) (100)

26



for respectively the atomic and phonon field. Here the subscript < denotes the low-momentum
part with |k| < |k1|, and the subscript > corresponds to the high-momentum part with |k| > |k1|.
Furthermore, k1 is the momentum for which ~ω− = 0. Now we first focus on the region where all
dispersions are real.

5.2.1 Real dispersions

In the region where all dispersions are real, the effective action of the atom-phonon model can be
diagonalized by a Bogoliubov transformation. Therefore, new fields dk,n and d∗k,n are introduced
via the transformation[

dk,n
d∗−k,−n

]
:=

[
u∗k −v∗k
−vk uk

]
·
[

ak,n
a∗−k,−n

]
. (101)

In the corresponding operator formalism dk,n and ak,n are bosonic operators. Therefore, both
should satisfy the standard bosonic commutation relations. Hence,

1 = [d̂k,n, d̂
∗
−k,−n] (102)

= [u∗kâk,n − v∗kâ∗−k,−n,−vkâk,n + ukâ
∗
−k,−n]

= (|uk|2 − |vk|2)[âk,n, â
∗
−k,−n]

= |uk|2 − |vk|2.

Thus the fact that the operators must satisfy the normal bosonic commutation relations gives
a normalization condition on the coefficients uk and vk. These coefficients are the non-trivial
solution to the following equation

G−1(k, ω)

[
uk
vk

]
= 0, (103)

where the inverse Green’s function on the left-hand side is evaluated at i~ωn = σ′~ωσ. The
non-trivial solution is given by

uk,σ′,σ = α(k2 + ∆ + σ′~ωσ), (104)

vk,σ′,σ = α(k2 + ∆− σ′~ωσ), (105)

where α is a normalization constant. This constant is determined by the normalization constraint
stated in (102). Hence,

2|α|2(k2 + ∆)(σ′~ωσ + σ′~ω∗σ) = 1. (106)

Clearly, if σ′~ωσ is negative this normalization equation cannot be satisfied and therefore these
solutions are neglected in first instance. Thus from now on we only consider σ′~ωσ := ~ωσ. Before
we go to the operator formalism, we need a completeness relation to make a mode expansion.
Therefore we first discuss some properties of uk and vk. Note that uk and vk are found by solving
(103) or[

k2 + ∆ + g2

(~ω)2−c2k2
g2

(~ω)2−c2k2

g2

(~ω)2−c2k2 k2 + ∆ + g2

(~ω)2−c2k2

] [
uk
vk

]
= ~ω

[
1 0
0 −1

] [
uk
vk

]
, (107)

where ~ω is equal to one of the four possibilities of ~ωσ,σ′ . Due to the fact that on the right-hand
side of this equation there is a matrix unequal to the identity matrix, an inner product is defined
as

(k, l) :=

∫
d3xk†(x)l(x) (108)

=

∫
d3x

[
k1(x)
k2(x)

]† [
1 0
0 −1

] [
l1(x)
l2(x)

]
=

∫
d3x {k∗1(x)l1(x)− k∗2(x)l2(x)} .
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Mathematically this cannot be seen as a proper inner product. This is because (k, k) can be
negative and therefore this inner product is called an indefinite inner product. Also (k, k) can be
zero if k(x) is non-zero. Nevertheless it is convenient for our purposes. Now define

xk,σ(x) =

[
uk,σ
vk,σ

]
eik·x√
V
, (109)

yk,σ(x) =

[
v∗k,σ
u∗k,σ

]
e−ik·x√

V
. (110)

By using this definition, we observe that if xk,σ(x) is an eigenvector with eigenvalue ~ωσ, then
yk,σ(x) is an eigenvector with eigenvalue -~ω∗σ. Furthermore, by using (102) the orthogonality
condition of the eigenvectors reads

(xk,σ, yk′,σ) = 0, (111)

(xk,σ, xk′,σ) = δkk′ , (112)

(yk,σ, yk′,σ) = −δkk′ . (113)

And the completeness relation equals∑
k>|k1|

{
uk,σ(x1)u∗k,σ(x2)− v∗k,σ(x1)vk,σ(x2)

}
=
∑

k>|k1|

eik·(x1−x2)

√
V

. (114)

Notice that there is a completeness relation for both pairs of eigenvectors. By integrating out the
phonons, the Fourier transformed Hamiltonian depends on ω. However, we switch to a Hamiltonian
where ω is replaced by ωσ. This corresponds to expanding the Hamiltonian in terms of eigenstates.
Because substituting ω+ or ω− results in different Hamiltonians, there are two Hamiltonians. In
the operator formalism the solution is given by a linear superposition of the eigenstates of both
Hamiltonians. Thus,[

ψ̂>(x, t)

ψ̂†>(x, t)

]
:=

∑
k>|k1|,σ∈{+,−}

Ek,σ

{
d̂k,σ(t)

[
uk,σ(x)
vk,σ(x)

]
+ d̂†k,σ(t)

[
v∗k,σ(x)

u∗k,σ(x)

]}
. (115)

Here, d̂k,σ and d̂†k,σ are bosonic creation and annihilation operators. Note that for a complex
field, the operators in front of the two terms do not have to be related. However, in this case
they are related by complex conjugates, which follows from (101). Furthermore, the explicit time
dependence of the creation and annihilation operators is obtained from the Heisenberg equation
of motion, which reads

d

dt
Â(t) =

i

~
[Ĥ, Â(t)], (116)

for any observable Â(t). By performing the Bogoliubov transformation the action and thereby the

Hamiltonian of the system becomes diagonal in the new operators d̂k,σ and d̂∗k,σ. Thus

[Ĥ, d̂†p,σ] =
∑

k>|k1|

~ωσ
[
d̂†k,σd̂k,σ, d̂

†
p,σ

]
= ~ωσd̂†p,σ, (117)

and

[Ĥ, d̂p,σ] =
∑

k>|k1|

~ωσ
[
d̂†k,σd̂k,σ, d̂p,σ

]
= −~ωσd̂p,σ. (118)

Hence

d̂†p,σ(t) = d̂†p,σe
iωσt, (119)

d̂p,σ(t) = d̂p,σe
−iωσt. (120)
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Thus [
ψ̂>(x, t)

ψ̂†>(x, t)

]
:=

∑
k>|k1|,σ∈{+,−}

Ek,σ

(
d̂k,σe

−iωσt
[
uk,σ(x)
vk,σ(x)

]
+ d̂†k,σe

iωσt

[
v∗k,σ(x)

u∗k,σ(x)

])
.(121)

Recall that in this expression

uk,σ(x) = αk,σ(k2 + ∆ + ~ωσ)
eik·x√
V

:= uk,σ
eik·x√
V
, (122)

vk,σ(x) = αk,σ(k2 + ∆− ~ωσ)
eik·x√
V

:= vk,σ
eik·x√
V
. (123)

Here

αk,σ =
1√

4~ωσ((k2 + ∆))
, (124)

such that (106) is satisfied. To solve the whole model we also have to find an expression for
the phonon field operator. However, due to the fact that we integrated out the phonons, this
information is lost. Therefore, we now interchange the role of the atoms and phonons. So we start
from the action given in (87) and integrate out the atoms. By performing this Gaussian integral
we end up with the following effective action for the phonons

Seff [b∗, b] :=
1

2

∑
k,n

G−1
ph bk,nb−k,−n (125)

=
∑
k,n

{
−(i~ωn)2 + c2k2 +

2g2(k2 + ∆)

(i~ωn)2 − (k2 + ∆)2

}
bk,nb−k,−n,

where again the constant Tr[log(G−1)] is neglected. Furthermore the poles of Gph are the same
as the poles of the Green’s function of the theory where the atoms were integrated out. In the
operator formalism

φ̂>(x, t) =
1√
V

∑
k>|k1|,σ∈{+,−}

Fk,σ

(
d̂k,σe

i(k·x−ωσt) + d̂†k,σe
−i(k·x−ωσt)

)
. (126)

Note that in this mode expansion the same operators as in (121), the operator expansion for the
atomic field, are used. This is because in both cases the dispersions are the same, and therefore
both field operators create or annihilate the same excitations. Hence, both mode expansions
consist of the same operators.

5.2.2 Imaginary dispersions

Now we consider the region in which there are two imaginary solutions. Again we switch to
the operator formalism. First recall that for an imaginary dispersion, the normalization constant
Kk,σ′,σ, which follows from (106), cannot be chosen such that the new operators d∗k,n and dk,n still
satisfy bosonic commutation relations. This is because for an imaginary dispersion, the norm of
the eigenvectors xk,σ,− is equal to zero. This fact can be proved mathematically. Namely, solving
our eigenvalue equation corresponds to solving

Wkzk = σ′~ωσzk, (127)

where the matrix Wk is of the form

Wk =

[
L −M
M −L

]
, (128)

and

zk =

[
uk
−vk

]
. (129)

29



For the exact expression of L and M we refer to (107). We find

(σ′~ωσ)∗(z, z) = (Wz, z) = (z,Wz) = σ′~ωσ(z, z). (130)

Here we used that

(Wz, z) =

∫
d3x(W (x)z(x))†

[
1 0
0 −1

]
z(x) (131)

= z†k

[
1 0
0 −1

] [
1 0
0 −1

]
W †k

[
1 0
0 −1

]
zk (132)

= z†k

[
1 0
0 −1

]
Wkzk = (z,Wz). (133)

Because σ′~ωσ 6= σ′~ω∗σ we have that (z, z) = 0. This proves that a normal Bogoliubov
transformation cannot diagonalize our action. Therefore we have to come up with a different
approach, which is based on [6].

For a mode expansion of the field operators we need a completeness relation. To obtain
the completeness relation we adjust the normalization condition as follows

(zk,+,−, zk,−,−) = 1. (134)

Recall that the imaginary part of the eigenvalue of the eigenvector zk,+,− is positive, while it is
negative for zk,−,−. This implies for the normalization constants Kk,σ′,−

K∗k,+,−Kk,−,−
{

4(k2 + ∆)~ω−
}

= 1, (135)

where the definition of xk,σ′,σ in (109) is used. So we choose

Kk,−,− = K∗k,+,− =
1√

4(k2 + ∆)~ω−
=

ei
π
4√

4(k2 + ∆)|~ω−|
. (136)

With this normalization condition the completeness relation for the complex modes is given by

1

2

∑
k<|k1|

{
uk,+,−(x1)u∗k,−,−(x2)− v∗k,+,−(x1)vk,−,−(x2) + (137)

uk,−,−(x1)u∗k,+,−(x2)− v∗k,−,−(x1)vk,+,−(x2)
}

=
∑

k<|k1|

eik·(x1−x2)

√
V

.

Furthermore,

1

2

∑
k<|k1|

{
uk,+,−(x1)v∗k,−,−(x2)− v∗k,+,−(x1)uk,−,−(x2) + (138)

uk,−,−(x1)v∗k,+,−(x2)− v∗k,−,−(x1)uk,+,−(x2)
}

= 0.

The completeness relation can be checked by subtracting (138) multiplied by vk,+,−(x2) from (137)
multiplied with uk,+,−(x2), followed by integration over x2. To verify the whole completeness
relation, we have to do this trick for all different uk,σ′,−(x2) and uk,σ′,−(x2). Recall that in these
expressions uk,σ′,−(x) and vk,σ′,−(x) are given by

uk,σ′,−(x) = Kk,σ′,−(k2 + ∆ + σ′~ω−)
eik·x√
V

:= ũk,σ′
eik·x√
V

= ũk,σ′(x), (139)

vk,σ′,−(x) = Kk,σ′,−(k2 + ∆− σ′~ω−)
eik·x√
V

:= ṽk,σ′
eik·x√
V

= ṽk,σ′(x). (140)

Therefore,

ṽ∗k,σ′(x) = ±eiπ2 ũ−k,σ′(x). (141)
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Thus the completeness relation can be rewritten as

−i
∑

k<|k1|

{
ũk,+(x1)ṽ−k,−(x2)− ṽ∗−k,−(x1)ũ∗k,+(x2)

}
=
∑

k<|k1|

eik·(x1−x2)

√
V

. (142)

In addition,∑
k<|k1|

{
ũk,+(x1)ṽ∗k,−(x2)− ṽ∗k,−(x1)ũk,+(x2)

}
= 0. (143)

For the real dispersions we can just use the Bogoliubov transformation from the last section, so
we can write

ψ̂<(x, t) := ψ̂<,at(x) + ψ̂<,ph(x) =
∑

k<|k1|

Ak

[
α̂k · e−iω+tuk,+(x) + α̂†ke

iω+tv∗k,+(x)
]

(144)

+
∑

k<|k1|

Bk

[
β̂k(t)ei

π
4 ũk,+(x) + γ̂k(t)ei

π
4 ṽ∗−k,−(x)

]
,

ψ̂†<(x, t) := ψ̂†<,at(x) + ψ̂†<,ph(x) =
∑

k<|k1|

Ak

[
α̂†ke

iω+tu∗k,+(x) + α̂ke
−iω+tṽk,+(x)

]
(145)

+
∑

k<|k1|

B−k

[
β̂k(t)e−i

π
4 ũ∗−k,+(x) + γ̂k(t)e−i

π
4 ṽk,−(x)

]
.

Here, Ak and Bk are constants which are determined by the commutation relations and the
equations of motion. Furthermore, β̂k and γ̂k are the operators for the complex modes. These
operators satisfy β̂k = β̂†−k and γ̂k = γ̂†−k. Furthermore, we impose

[β̂k(t), γ̂−p(t)] = −iδkp, (146)

and all other commutation relations vanish. To obtain the explicit time dependence of the new
operators, we should first determine the part of the Hamiltonian with the complex operators. By
using (144) and (145), we define[

ψ̂<,ph,k

ψ̂†<,ph,−k

]
:= M

[
β̂k(t)
γ̂k(t)

]
, (147)

where

M :=

[
e+iπ4 ũk,+ e+iπ4 ṽ∗k,−
e−i

π
4 ũ∗k,+ e−i

π
4 ṽk,−

]
. (148)

Here ũk,+ and ṽk,− are defined in (139) and (140). In momentum space the complex part of the
Hamiltonian is given by

Ĥ =
1

2

∑
k<|k1|

[
ψ̂<,ph,k

ψ̂†<,ph,−k

]†
H

[
ψ̂<,ph,k

ψ̂†<,ph,−k

]
, (149)

where

H =

[
k2 + ∆ + T T

T k2 + ∆ + T

]
, (150)

and

T =
g2

(~ω−)2 − c2k2 + iη
. (151)
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Note that we do not use the Hamiltonian with the frequency-dependent T . Instead, we use a
Hamiltonian where the ~ω in T is replaced by the quasiparticle dispersions ~ω−. To obtain the
part of the Hamiltonian with the new operators β̂k(t) and γ̂k(t), we have to calculate

M†HM =

[
D11 D12

D21 D22

]
, (152)

where

D11 = 2(k2 + ∆ + T )|ũk,+|2 − iT{(ũ∗k,+)2 − (ũk,+)2}, (153)

D12 = (k2 + ∆ + T ){ũ∗k,+ṽ∗k,− + ũk,+ṽk,−} − iT{ũ∗k,+ṽk,− − ũk,+ṽ∗k,−},
D21 = D12,

D22 = 2(k2 + ∆ + T )|ṽk,−|2 + iT{(ṽ∗k,−)2 − (ṽk,−)2}.

By using the fact that det[G−1(k, ω−)] = 0, where G−1(k, ω) is defined in (92), we obtain that
~ω− satisfies

(k2 + ∆)2 − (~ω−)2 + 2(k2 + ∆)T = 0. (154)

Therefore,

D11 =
(k2 + ∆ + T )[(k2 + ∆)2 − (~ω−)2] + T [(k2 + ∆)2 + (~ω−)2]

2(k2 + ∆)|~ω−|
(155)

=
−T [k2 + ∆ + T ] + T [k2 + ∆ + T ]

|~ω−|
= 0,

D22 =
(k2 + ∆ + T )[(k2 + ∆)2 − (~ω−)2] + T [(k2 + ∆)2 + (~ω−)2]

2(k2 + ∆)|~ω−|
= D11 = 0,

and

D12 =
(k2 + ∆ + T )[(k2 + ∆)2 + (~ω−)2] + T [(k2 + ∆)2 − (~ω−)2]

2(k2 + ∆)|~ω−|
(156)

=
(k2 + ∆ + T )2 − T 2

|~ω−|
=

(~ω−)2

|~ω−|
= −|~ω−|.

Here, we used (139) and (140) and the fact that (~ω−)∗ = −~ω−. By combining these results, the
Hamiltonian in momentum space reads

Ĥ =
1

2

∑
k<|k1|

{[
β̂k(t)
γ̂k(t)

]† [
0 −|~ω−|

−|~ω−| 0

] [
β̂k(t)
γ̂k(t)

]}
(157)

= −1

2

∑
k<|k1|

{
|~ω−|(β̂†k(t)γ̂k(t) + γ̂†k(t)β̂k(t))

}
= −1

2

∑
k<|k1|

{
|~ω−|(β̂−k(t)γ̂k(t) + γ̂−k(t)β̂k(t))

}
.

Notice that this part of the Hamiltonian is hermitian. With this expression for the complex part
of the Hamiltonian, we can determine the time dependence of the complex operators by using the
Heisenberg equations of motion given in (116). Therefore, we calculate

[Ĥ, β̂k] = ~ω−β̂k, (158)

[Ĥ, γ̂k] = −~ω−γ̂k.

The Heisenberg equations of motion are given by

d

dt
β̂k(t) = |ω−|β̂k(t), (159)

d

dt
γ̂k(t) = −|ω−|γ̂k(t),
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The solution is

β̂k(t) = e|ω−|tβ̂k, (160)

γ̂k(t) = e−|ω−|tγ̂k,

where

[β̂k, γ̂−p] = −iδkp. (161)

Furthermore, we can write

Ĥ =
1

2

∑
k<|k1|

{
− |~ω−|

(
β̂−kγ̂k + γ̂−kβ̂k

)}
. (162)

This representation is consistent with the fact that the Ĥ is time independent. However, at
this point the meaning of the complex mode operator β̂k and γ̂k is not clear. To get a better
understanding of these operators, we introduce bosonic operators bk and b†k as follows,

β̂k =
1√
2

(
b̂k + b̂†−k

)
, (163)

γ̂k =
i√
2

(
b̂k − b̂†−k

)
. (164)

Note that these definitions are in agreement with β̂k = β̂†−k and γ̂k = γ̂†−k. By rewriting,

b̂k =
1√
2

(
β̂k − iγ̂k

)
, (165)

b̂†k =
1√
2

(
β̂−k + iγ̂−k

)
. (166)

By using the fact that β̂k and γ̂k satisfy the commutation relations defined in (161), we obtain

[b̂k, b̂
†
p] = δkp, (167)

and the other commutation relations vanish. Thus bk and b†k are indeed bosonic operators. Now
we can also rewrite the complex part of the Hamiltonian, given in (162), in terms of these bosonic
operators. By using (163) and (164), we obtain

Ĥ =
1

2

∑
k<|k1|

{
~ω−,−b̂kb̂−k + ~ω+,−b̂

†
kb̂
†
−k

}
, (168)

as our expression for the Hamiltonian in terms of the bosonic operators b̂k and b̂†k. Here ~ωσ′,−
are defined in (93). Furthermore in terms of the complex mode operators, the field operators are
given by

ψ̂<(x, t) =
∑

k<|k1|

Ak

[
α̂k · e−iω+tuk,+(x) + α̂†ke

iω+tv∗k,+(x)
]

(169)

+
∑

k<|k1|

Bk

[
β̂ke

iπ4 +|ω−|tũk,+(x) + γ̂ke
iπ4−|ω−|tṽ∗−k,−(x)

]
,

ψ̂†<(x, t) =
∑

k<|k1|

Ak

[
α̂†k · e

iω+tu∗k,+(x) + α̂ke
−iω+tvk,+(x)

]
(170)

+
∑

k<|k1|

B−k

[
β̂ke
−iπ4 +|ω−|tũ∗−k,+(x) + γ̂ke

−iπ4−|ω−|tṽk,−(x)

]
.
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And the expression for the phonon field in the operator formalism

φ̂<(x, t) =
1√
V

∑
k<|k1|

Ck

[
α̂k · ei(k·x−ω+t) + α̂†k · e

−i(k·x−ω+t)
]

(171)

+
1√
V

∑
k<|k1|

Dk

[
β̂ke
|ω−|t+ik·x + γ̂ke

−|ω−|t+ik·x

]
.

Note that φ̂<(x, t) is indeed real, because β̂†k = β̂−k, γ̂†k = γ̂−k and we assume that D∗k = D−k.

5.2.3 Normalization constants

For the full solution of this problem, we have to determine the constants Ek,σ, Fk,σ, Ak, Bk,

Ck and Dk. To find the constants we use that ψ̂(x, t) should satisfy the canonical commutation
relation

[ψ̂(x1, t), π̂ψ(x2, t)] = [ψ̂(x1, t), i~ψ̂†(x2, t)] = i~δ(x1 − x2). (172)

Here in the second step (84) is used to calculate π̂ψ(x2, t). Also φ̂(x, t) should satisfy the canonical
commutation relation. Again by using (84) this commutation relation can be written as

[φ̂(x1, t), π̂φ(x2, t)] = [φ̂(x1, t), 2i~2∂τ φ̂(x2, t)] = i~δ(x1 − x2). (173)

Because the low-momentum and the high-momentum parts commute, we can only satisfy these
commutation relations if

[ψ̂<(x1, t), ψ̂
†
<(x2, t)] =

1√
V

∑
k<|k1|

eik·(x1−x2), (174)

[ψ̂>(x1, t), ψ̂
†
>(x2, t)] =

1√
V

∑
k>|k1|

eik·(x1−x2), (175)

[φ̂<(x1, t), 2~∂τ φ̂<(x2, t)] =
1√
V

∑
k<|k1|

eik·(x1−x2), (176)

[φ̂>(x1, t), 2~∂τ φ̂>(x2, t)] =
1√
V

∑
k>|k1|

eik·(x1−x2). (177)

Furthermore, the field operators should satisfy the equations of motion. The equations of motion
are given by

0 =

{
~
∂

∂τ
−∇2 + ∆

}
ψ̂(x, t) + g

√
2φ̂(x, t), (178)

0 = 2

{
−~2 ∂

2

∂τ2
− c2∇2

}
φ̂(x, t) + g

√
2
{
ψ̂(x, t) + ψ̂†(x, t)

}
. (179)

Thus the low-momentum and high-momentum part completely decouples, and therefore we can
can consider both part separately. For the high-momentum part (175) implies

Ek,+ =
√
Zk, (180)

Ek,− =
√

1− Zk. (181)

for some constant Zk. Furthermore by using (177)

4~ω+F
2
k,+ + 4~ω−F 2

k,− = 1. (182)
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By substituting the mode expansions in the first equation of motion we obtain

g
√

2Fk,+ = −
√
Zk

(k2 + ∆)2 − ~ω2
+√

4(k2 + ∆)~ω+

, (183)

g
√

2Fk,− = −
√

1− Zk
(k2 + ∆)2 − ~ω2

−√
4(k2 + ∆)~ω−

, (184)

and the constraints due to the second equation of motion

2Fk,+(~ω2
+ − c2k2) =

√
Zk

(k2 + ∆)g
√

2√
(k2 + ∆)~ω+

, (185)

2Fk,−(~ω2
− − c2k2) =

√
1− Zk

(k2 + ∆)g
√

2√
(k2 + ∆)~ω−

. (186)

Due to the fact that ~ωσ should satisfy

(k2 + ∆)2 − ~ω2
σ +

2g2(k2 + ∆)

~ω2
σ − c2k2

= 0, (187)

the constraints coming from the second equation of motion are the same as the constraints of
the first equation of motion. By combining these constraints with (182) and using the analytic
expression of ~ω+,σ given in (93), we obtain

Zk =
(k2 + ∆)2 − ~ω2

−
~ω2

+ − ~ω2
−

. (188)

From the analytic expressions of ~ωσ it follows that 0 < Zk < 1 for non-zero coupling. Hence

Ek,+ =

√
(k2 + ∆)2 − ~ω2

−
~ω2

+ − ~ω2
−

, (189)

Ek,− =

√
~ω2

+ − (k2 + ∆)2

~ω2
+ − ~ω2

−
. (190)

Furthermore,

Fk,+ = − 1

g
√

2

√
(k2 + ∆)2 − ~ω2

−
~ω2

+ − ~ω2
−

(k2 + ∆)2 − ~ω2
+√

4(k2 + ∆)~ω+

, (191)

Fk,− = − 1

g
√

2

√
~ω2

+ − (k2 + ∆)2

~ω2
+ − ~ω2

−

(k2 + ∆)2 − ~ω2
−√

4(k2 + ∆)~ω−
. (192)

Now we consider the low-momentum part and determine the constants Ak, Bk, Ck and Dk. First
(174) and (176) imply

A2
k +B2

k = 1, (193)

4~ω+C
2
k + 4|~ω−|DkD−k = 1.

Hence,

Ak =
√
Yk, (194)

Bk =
√

1− Yk,

where Yk is some constant. Furthermore, the field operators should satisfy the equations of motion
defined in (178) and (179). By substituting the mode expansion into these equations, we obtain

g
√

2Ck = −
√
Yk

(k2 + ∆)2 − ~ω2
+√

4(k2 + ∆)~ω+

, (195)

g
√

2Dk = −
√

1− Yk
(k2 + ∆)2 − ~ω2

−√
4(k2 + ∆)|~ω−|

, (196)
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as a constraint coming from the first equation of motion and due to the second equation of motion

2Ck(~ω2
+ − c2k2) =

√
Yk

(k2 + ∆)g
√

2√
(k2 + ∆)~ω+

, (197)

2Dk(~ω2
− − c2k2) =

√
1− Yk

(k2 + ∆)g
√

2√
(k2 + ∆)|~ω−|

. (198)

By using all these equation we obtain that Dk = D−k and therefore by defining

Dk = Ek

√
~ω−√
|~ω−|

, (199)

we have the same equations as when all dispersions were real. Therefore,

Ak =

√
(k2 + ∆)2 − ~ω2

−
~ω2

+ − ~ω2
−

= Ek,+, (200)

Bk =

√
~ω2

+ − (k2 + ∆)2

~ω2
+ − ~ω2

−
= Ek,−, (201)

Ck = − 1

g
√

2

√
(k2 + ∆)2 − ~ω2

−
~ω2

+ − ~ω2
−

(k2 + ∆)2 − ~ω2
+√

4(k2 + ∆)~ω+

= Fk,+, (202)

Dk = − 1

g
√

2

√
~ω2

+ − (k2 + ∆)2

~ω2
+ − ~ω2

−

(k2 + ∆)2 − ~ω2
−√

4(k2 + ∆)|~ω−|
. (203)

So the complete expression for the field operators is given by

φ̂(x, t) = φ̂<(x, t) + φ̂>(x, t) (204)

=
1√
V

∑
k<|k1|

Ck

[
α̂k · ei(k·x−ω+t) + α̂†k · e

−i(k·x−ω+t)
]

+
1√
V

∑
k<|k1|

Dk

[
β̂ke
|ω−|t+ik·x + γ̂ke

−|ω−|t+ik·x

]

+
1√
V

∑
k>|k1|,σ∈{+,−}

Fk,σ

[
dk,σe

i(k·x−ωσt) + d†k,σe
−i(k·x−ωσt)

]
,

where the constants are defined in (192), (202) and (203). Furthermore,

ψ̂(x, t) = ψ̂<(x, t) + ψ̂>(x, t) (205)

=
∑

k<|k1|

Ak

[
α̂k · e−iω+tuk,+(x) + α̂†ke

iω+tv∗k,+(x)
]

+
∑

k<|k1|

Bk

[
β̂ke

iπ4 +|ω−|tũk,+(x) + γ̂ke
iπ4−|ω−|tṽ∗−k,−(x)

]

+
∑

k>|k1|,σ∈{+,−}

Ek,σ

[
d̂k,σe

−iωσtuk,σ(x) + d̂†k,σe
iωσtv∗k,σ(x)

]
,

ψ̂†(x, t) = ψ̂†<(x, t) + ψ̂†>(x, t) (206)

=
∑

k<|k1|

Ak

[
α̂†k · e

iω+tu∗k,+(x) + α̂ke
−iω+tvk,+(x)

]

+
∑

k<|k1|

B−k

[
β̂ke
−iπ4 +|ω−|tũ∗−k,+(x) + γ̂ke

−iπ4−|ω−|tṽk,−(x)

]

+
∑

k>|k1|,σ∈{+,−}

Ek,σ

[
d̂k,σe

−iωσtvk,σ(x) + d̂†k,σe
iωσtu∗k,σ(x)

]
,
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where the constants are defined in (200) and (201). With these expressions for the constants, we
have

[φ̂(x1, t), ψ̂(x2, t)] = [φ̂(x1, t), ψ̂
†(x2, t)] = 0. (207)

This result is expected, because creation or annihilation of a atom is uncorrelated to the creation
or annihilation of a phonon. Now we take the limit of g → 0. First note that in this limit |k1| → 0.

Thus ψ̂<(x, t) = ψ̂†<(x, t) = φ̂<(x, t) = 0 as g → 0. Furthermore by using (93) we have

~ω+ = k2 + ∆ and ~ω− = c|k| if (k2 + ∆)2 > c2k2, (208)

~ω+ = c|k| and ~ω− = k2 + ∆ if (k2 + ∆)2 < c2k2. (209)

Hence

Zk = 1 if (k2 + ∆)2 > c2k2, (210)

Zk = 0 if (k2 + ∆)2 < c2k2, (211)

and

uk,+ = 1 and vk,+ = 0 if (k2 + ∆)2 > c2k2, (212)

uk,− = 1 and vk,− = 0 if (k2 + ∆)2 < c2k2, (213)

in the limit of g → 0. Hence,

ψ̂(x, t) =
1√
V

∑
k

ĉke
i(k·x−(k2+∆)t), (214)

ψ̂†(x, t) =
1√
V

∑
k

ĉ†ke
−i(k·x−(k2+∆)t), (215)

in the limit of zero coupling. Here,

ĉk =

{
dk,+ = ak,+ if (k2 + ∆)2 > c2k2.
dk,− = ak,− if (k2 + ∆)2 < c2k2.

(216)

This is the result of an homogeneous quantum gas. Furthermore, in the limit of g → 0

Bk,+ = 0 and Bk,− = − 1

2
√
c|k|

if (k2 + ∆)2 > c2k2, (217)

Bk,+ =
1

2
√
c|k|

and Bk,− = 0 if (k2 + ∆)2 < c2k2. (218)

Thus in the limit of zero coupling

φ̂(x, t) =
1√
V

∑
k

1

2
√
c|k|

{
p̂ke

i(k·x−c|k|t) + p̂†ke
−i(k·x−c|k|t)

}
, (219)

where

p̂k =

{
−dk,− = −ak,− if (k2 + ∆)2 > c2k2.
dk,+ = ak,+ if (k2 + ∆)2 < c2k2.

(220)

Note that the minus sign in front of dk,− is unimportant as for physical quantities one always

calculates products of an even number operators. So the sum of the number of φ̂(x, t) is even and
therefore the minus sign disappears in physical quantities. Hence, in the limit of g → 0 we get the
expected results.

5.3 Physical quantities

Now that we have the full expressions for the field operators, we can perform some calculations to
obtain physical quantities.
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5.3.1 The spectral-weight function

To calculate some physical quantities we have to determine the spectral-weight function, which
is defined in (82). But first we have to determine the retarded Green’s function. In the operator
formalism, the retarded Green’s function is defined as

Gret(x1, t1,x2, t2) = iΘ(t1 − t2)〈[ψ̂(x1, t1), ψ̂†(x2, t2)]〉. (221)

By using the (205) and (206), we can write

Gret(x1, t1, 0, 0) = iΘ(t1)
∑
p

A2
p{|up,+|2e−iω+t1 − |vp,+|2eiω+t1}eip·x1 (222)

+ iΘ(t1)
∑

p>|k1|

B2
p{|up,−|2e−iω−t1 − |vp,−|2eiω−t1}eip·x1

+ Θ(t1)
∑

p<|k1|

B2
p{ũp,+ṽ−p,−e|ω−|t1 − ũ∗p,+ṽ∗−p,−e−|ω−|t1}eip·x1 ,

where without loss of generality we set t2 = x2 = 0. In this expression for the retarded Green’s
function, there is a part with exponential growth. Because the Fourier transform of a function is
only well-defined if a function is absolute integrable, we have a problem to calculate the retarded
Green’s function in momentum space. However, to compare with the spectral function obtained
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Figure 12: The atomic spectral function of the atom-phonon model for k2 = 0.3, c = 5, g = 1,
ε = 10−2 and ∆ = 1. The four peaks corresponds to the four dispersions ~ωσ′,σ.

from (92), we define∫ ∞
−∞

dt1

∫ ∞
−∞

dx1

V
ũp,+ṽ−p,−e

|ω−|t1eip·x1e−ik·x1eiωt1−εt1 := − ũk,+ṽ−k,−
|ω−|+ iω − ε

(223)

Hence,

Gret(k, ω+) =

∫ ∞
−∞

dt1

∫ ∞
−∞

dx1

V
Gret(x1, t1, 0, 0)e−ik·x1eiωt1−εt1 (224)

= −iA2
k

{
|uk,+|2

1

i(ω − ω+)− ε
− |vk,+|2

1

i(ω + ω+)− ε

}
− iΘ(|k| − |k1|)B2

k

{
|uk,−|2

1

i(ω − ω−)− ε
− |vk,−|2

1

i(ω + ω−)− ε

}
− Θ(|k1| − |k|)B2

k

{
ũk,+ṽ−k,−

1

|ω−|+ iω − ε
− ũ∗k,+ṽ∗−k,−

1

−|ω−|+ iω − ε

}
.
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Note that in the limit of ε→ 0 the last term is real. So the complex dispersions do not contribute
to the spectral function. Furthermore, by using

lim
ε↓0

ε

x2 + ε2
= πδ(x), (225)

the spectral function can be written as

ρ(k, ω) = A2
k{|uk,+|2δ(ω − ω+)− |vk,+|2δ(ω + ω+)} (226)

+ B2
k{|uk,−|2δ(ω − ω−)− |vk,−|2δ(ω + ω−)}Θ(|k| − |k1|).

Because ωσ > 0, it is clear from this result that the spectral function is larger than zero for positive
frequencies and smaller than zero for negative frequencies. Also,∫

dωρ(k, ω) = A2
k{|uk,+|2 − |vk,+|2}+B2

k{|uk,−|2 − |vk,−|2} (227)

= A2
k +B2

k = 1,

if |k| > |k1|. Thus in this region the frequency sum rule for atoms is satisfied. However, if
|k| < |k1|∫

dωρ(k, ω) = A2
k 6= 1. (228)

Thus for small momentum, the frequency sum rule is not satisfied. Instead of using the field
operators, we can also use (92) to obtain the spectral function. First write

G11(k, ω+) =
q + irε

s+ itε
, (229)

where

q = g2 + (k2 + ∆ + ~ω)((~ω)2 − c2k2), (230)

r = 2~ω(k2 + ∆ + ~ω) + (~ω)2 − c2k2, (231)

s = 2g2(k2 + ∆) + [(~ω)2 − c2k2][(k2 + ∆)2 − (~ω)2], (232)

t = 2~ω[c2k2 + (k2 + ∆)2 − 2(~ω)2]. (233)

Note that we are interested in G11(k, ω+), since this corresponds to the normal average. By using
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Figure 13: The atomic spectral function of the atom-phonon model for k2 = 0.15, c = 5, g = 1,
ε = 10−2 and ∆ = 1. The two peaks corresponds to the two real dispersions ~ωσ′,+.

(225) the imaginary part of G11(k, ω+) can be rewritten as

1

π
Im[G11(k, ω+)] =

r · s
t2

δ(s/t)− q

t
δ(s/t) (234)

= −q
t
δ(s/t).
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Here we use that the density is obtained by integrating the spectral function multiplied with the
Bose function and therefore the term with s · δ(s/t) can be neglected. Furthermore, by using

δ(g(x)) =
∑
i

δ(x− xi)
|g′(xi)|

, (235)

where the summation is over all real roots of g, we have that

1

~π
Im[G11(k, ω+)] =

∑
σ∈{+,−}

{C1,σδ(ω − ωσ)− C2,σδ(ω + ωσ)}, (236)

with

C1,σ =
g2 + (k2 + ∆ + ~ω)((~ω)2 − c2k2)

2~ω(c2k2 + (k2 + ∆)2 − 2(~ω)2)

∣∣∣
~ω=~ω+,σ

, (237)

C2,σ =
g2 + (k2 + ∆ + ~ω)((~ω)2 − c2k2)

2~ω(c2k2 + (k2 + ∆)2 − 2(~ω)2)

∣∣∣
~ω=~ω−,σ

, (238)

if |k| > |k1|, and otherwise

1

~π
Im[G11(k, ω+)] = {C1,+δ(ω − ω+)− C2,+δ(ω + ω+)}. (239)

Because

A2
k|uk,+|2 = C1,+, (240)

A2
k|vk,+|2 = C2,+, (241)

B2
k|uk,−|2 = C1,−, (242)

B2
k|vk,−|2 = C2,−, (243)

we have that the spectral function for the atoms obtained from the operator formalism is the same
as the spectral function obtained from the Green’s function in (92). Numerical plots of the spectral
function in the high-momentum and low-momentum region, are given in respectively Figure 12
and Figure 13. Furthermore for the phonon field

ρ(k, ω) = B2
k,+{δ(ω − ω+)− δ(ω + ω+)}+B2

k,−{δ(ω − ω−)− δ(ω + ω−)}Θ(|k| − |k1|)(244)

which can be verified by using the calculation of the spectral function for the atoms for uk,σ =
vk,σ = 1. Hence, we find for the phonon field,∫

dωρ(k, ω) = 0. (245)

By using (172) and (173), the analogy of the frequency sum rule of the atoms is given by∫
dωρ(k, ω)ω = 1. (246)

This rule is only satisfied if all dispersions are real. In analogy with the previous case, where the
atoms are integrated out, we can also use the action from (125) to calculate the spectral function
for the phonons. By doing this, we can verify our expressions for Bk,σ as the spectral functions
should be the same in both formalisms. First write

Gph(k, ω+) =
α+ iβε

γ + iζε
, (247)

where

α = (~ω)2 − (k2 + ∆)2, (248)

β = 2~ω, (249)

γ = 2[2g2(k2 + ∆) + (c2k2 − (~ω)2)((~ω)2 − (k2 + ∆)2)], (250)

ζ = 4~ω[c2k2 + (k2 + ∆)2 − 2(~ω)2]. (251)
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Hence

1

π
Im[Gph(k, ω+)] = −α

ζ
δ

(
γ

ζ

)
(252)

=
∑

σ∈{+,−}

−α
ζ

∣∣∣
~ωσ
{δ(ω − ωσ)− δ(ω + ωσ)}.

Here we used (235). Because

−α
ζ

∣∣∣
~ωσ

= B2
k,σ, (253)

we have that the spectral function obtained from the field-theoretical approach is the same as the
one obtained from the operator formalism. However, we still do not satisfy the frequency sum
rule if there are imaginary dispersions. To obtain a spectral function that satisfies this sum rule,
we should find a generalized Fourier transform of the exponentially growing function. But since
we have the explicit expression for the atomic and the phonon field operators, which satisfy the
commutation relations and the equations of motion, we can switch to the operator formalism to
calculate physical quantities.

5.3.2 Correlations

Because we have the explicit expression for the atomic and the phonon field, and written the
complex mode operators in terms of bosonic operators, we can calculate some correlations. To
calculate these expectation values we need an orthonormal set. Therefore, consider the set
{|N, Ñ〉} = {|N〉 ⊗ |Ñ〉} = {|...., Nk, ....〉 ⊗ |...., Ñn, ....〉}. Here, |N, Ñ〉 corresponds to a state
with N excitations with energy ~ω+ and Ñ excitations with energy ~ω−. Here the single-particle
occupation numbers Nk and Ñn are such that

∑
n Ñn = Ñ and

∑
kNk = N . By relaxing these

constraints, this set becomes an orthonormal basis for the Hilbert space of all symmetric many-
body states. This space is known as Fock space. We define the annihilation operators α̂m, b̂m,
d̂n,+ and d̂n,− acting on a Fock state |N, Ñ〉 by

α̂m|N, Ñ〉 =
√
Nm

(
|...., Nm − 1, ....〉 ⊗ |Ñ〉

)
, (254)

d̂n,+|N, Ñ〉 =
√
Nn

(
|...., Nn − 1, ....〉 ⊗ |Ñ〉

)
, (255)

b̂m|N, Ñ〉 =

√
Ñm

(
|N〉 ⊗ |...., Ñm − 1, ....〉

)
, (256)

d̂n,−|N, Ñ〉 =

√
Ñn

(
|N〉 ⊗ |...., Ñn − 1, ....〉

)
. (257)

where |m| < |k1| and |n| > |k1|. Because α̂k, b̂k and d̂k,σ are bosonic operators this implies

α̂†m

(
|...., Nm, ....〉 ⊗ |Ñ〉

)
=

√
1 +Nm

(
|...., Nm + 1, ....〉 ⊗ |Ñ〉

)
, (258)

d̂†n,+

(
|...., Nn, ....〉 ⊗ |Ñ〉

)
=

√
1 +Nn

(
|...., Nn + 1, ....〉 ⊗ |Ñ〉

)
, (259)

b̂†m

(
|N〉 ⊗ |...., Ñm, ....〉

)
=

√
1 + Ñm

(
|N〉 ⊗ |...., Ñm + 1, ....〉

)
, (260)

d̂†n,−

(
|N〉 ⊗ |...., Ñn, ....〉

)
=

√
1 + Ñn

(
|N〉 ⊗ |...., Ñn + 1, ....〉

)
. (261)

Furthermore the vacuum state |0〉 is defined by

|0〉 := |0〉α ⊗ |0〉b. (262)

Observe that the vacuum state with zero particles |0〉 is the tensor product of the vacuum of the

bosonic operators α̂m and b̂m. Note that the operators b̂m and d̂n,− have the same vacuum. The
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only difference between both is that b̂†m creates excitations with low-momentum and d̂†n,− creates

excitations with high-momentum. The same arguments also hold for the bosonic operators d̂†n,+
and α̂†m. Hence,

α̂m|0〉 = 0, (263)

b̂m|0〉 = 0,

d̂n,−|0〉 = 0,

d̂n,+|0〉 = 0

for all m < |k1| and n > |k1|. From (258),(259),(260) and (261), it follows that any state |N, Ñ〉
in Fock space can be expressed as product of bosonic creation operators

|N, Ñ〉 =
∏

k,p,m,n

1
√
Nk!

√
Np!

√
Ñn!

√
Ñm!

(α̂†k)Nk(d̂†p,+)Np(b̂†n)Ñn(d̂†m,−)Ñm |0〉 (264)

:=
∏

k,p,m,n

(α̂†k)Nk(d̂†p,+)Np |0〉α ⊗ (b̂†n)Ñn(d̂†m,−)Ñm |0〉b
√
Nk!

√
Np!

√
Ñn!

√
Ñm!

.

Note that the order of the creation operators is unimportant since we have bosonic creation
operators. Furthermore we have the constraints∑

m<|k1|

Ñm +
∑

n>|k1|

Ñn = Ñ , (265)

∑
l<|k1|

Nl +
∑

p>|k1|

Np = N. (266)

Furthermore, the inner product between two states is given by

〈N, Ñ|N′, Ñ′〉 =
∏

k,k′,p,p′

α〈0|(α̂k)Nk(d̂p,+)Ñp′ (d̂†p,+)Ñp(α̂†k′)
Nk′ |0〉α√

Nk!
√
Np!

√
Np′ !
√
Nk′ !

(267)

×
∏

n,m,n′,m′

b〈0|(b̂n)Ñn(d̂m,−)Ñm(d̂†m,−)Ñm′ (b̂†n′)
Ñn′ |0〉b√

Ñm!
√
Ñn′ !

√
Ñn!

√
Ñm′ !

.

Hence,

〈N, Ñ|N′, Ñ′〉 = δN,N′δÑ,Ñ′ , (268)

where we used (258) and (259). Thus our basis is indeed orthonormal and therefore it is clear that

〈ψ̂(x, t)〉 = 〈ψ̂†(x, t)〉 = 〈φ̂(x, t)〉 = 0, (269)

by using the explicit expressions of the phonon and atomic field operators given in (169), (170),
(171). We also used the expressions of the complex operators in terms of the bosonic operators
given in (163) and (164). This result can also be understood classically as the expectation value of
the field operators is such that the potential has an extremum. Furthermore, classically we should
expect that the particles remain in this metastable equilibrium. However, due to quantum fluctu-
ations we get a non-zero probability of finding a particle at a different position. To illustrate this,
let us determine some correlation functions. Therefore, we first need to calculate the expectation
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value of products of two complex operators

〈β̂mβ̂m′〉 :=
1

2
〈N, Ñ|

(
b̂m + b̂†−m

)(
b̂m′ + b̂†−m′

)
|N, Ñ〉 (270)

=
1

2
〈N, Ñ|

(
b̂mb̂

†
−m′ + b̂†−mb̂m′

)
|N, Ñ〉

=
1

2
δm,−m′

(
1 + Ñm + Ñ−m

)
,

〈γ̂mγ̂m′〉 := −1

2
〈N, Ñ|

(
b̂m − b̂†−m

)(
b̂m′ − b̂†−m′

)
|N, Ñ〉 = 〈β̂mβ̂m′〉, (271)

〈β̂mγ̂m′〉 :=
i

2
〈N, Ñ|

(
b̂m + b̂†−m

)(
b̂m′ − b̂†−m′

)
|N, Ñ〉 (272)

= − i
2
〈N, Ñ|

(
b̂mb̂

†
−m′ − b̂

†
−mb̂m′

)
|N, Ñ〉

= − i
2
δm,−m′

(
1 + Ñm − Ñ−m

)
,

〈γ̂mβ̂m′〉 :=
i

2
〈N, Ñ|

(
b̂m − b̂†−m

)(
b̂m′ + b̂†−m′

)
|N, Ñ〉 = −〈β̂mγ̂m′〉, (273)

where Ñm is the occupation number of excitations with energy ~ω−. Furthermore, for the bosonic
operators α̂k and α̂†k

〈α̂mα̂
†
m′〉 = (1 +Nm) δm,m′ , (274)

〈α̂†mα̂m′〉 = Nmδm,m′ , (275)

〈α̂mα̂m′〉 = 〈α̂†mα̂
†
m′〉 = 0. (276)

Here Nm is the occupation number of excitations with energy ~ω+. Note that there are similar
expressions for the expectation values of products the bosonic operators d̂k,σ. By using the ex-
pressions of these expectation values, we can determine all kinds of correlation functions. First,
we calculate

〈ψ̂(x, t)ψ̂†(y, t)〉 =
∑
k

[
A2

k{(1 +Nk)uk,+(x)u∗k,+(y) +Nkv
∗
k,+(x)vk,+(y)}

]
(277)

+
1

2

∑
k<|k1|

[
B2

k

(
1 + Ñk

){
cosh(2|ω−|t)

(k2 + ∆)2 − (~ω−)2

2(k2 + ∆)|~ω−|
+ 1

}
eik·(x−y)

V

]

+
1

2

∑
k<|k1|

[
B2

kÑ−k

{
cosh(2|ω−|t)

(k2 + ∆)2 − (~ω−)2

2(k2 + ∆)|~ω−|
− 1

}
eik·(x−y)

V

]

+
∑

k>|k1|

[
B2

k{(1 + Ñk)uk,−(x)u∗k,−(y) + Ñkv
∗
k,−(x)vk,−(y)}

]
,

where we also used the explicit expressions for ũk,σ(x) and ṽk,σ(x) given in (139) and (140). This
expression gives the probability for finding a single atom at time t and position x that was added
at position y at the same time t. For completeness, we will also give the expression for the other
correlation functions

〈ψ̂(x, t)ψ̂(y, t)〉 =
∑
k

[
A2

k{(1 +Nk)uk,+(x)v∗k,+(y) +Nkv
∗
k,+(x)uk,+(y)}

]
(278)

+
i

2

∑
k<|k1|

[
B2

kMk

{
e2|ω−|tũk,+ũ−k,+ + e−2|ω−|tṽ∗−k,−ṽ

∗
k,−

}
eik·(x−y)

V

]

+
∑

k>|k1|

[
B2

k{(1 + Ñk)uk,−(x)v∗k,−(y) + Ñkv
∗
k,−(x)uk,−(y)}

]
.
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Note that the expression for 〈ψ̂†(x, t)ψ̂†(y, t)〉 can be obtained by taking the complex conjugate

of 〈ψ̂(x, t)ψ̂(y, t)〉 and interchanging x and y. Also

〈φ̂(x, t)φ̂(y, t)〉 =
∑
k

[
C2

k(1 +Nk +N−k)
eik·(x−y)

V

]
(279)

+
∑

k<|k1|

[
D2

k cosh(2|ω−|t)Mk
eik·(x−y)

V

]
+
∑

k>|k1|

[
F 2
k,−Mk

eik·(x−y)

V

]
,

and finally,

〈ψ̂(x, t)φ̂(y, t)〉 =
∑
k

[
AkCk{(1 +Nk)uk,+ +N−kv

∗
−k,+}

eik·(x−y)

V

]
(280)

+
1

2

∑
k<|k1|

ei
π
4

[
BkDkMk

{
e2|ω−|tũk,+ + e−2|ω−|tṽ∗−k,−

}
eik·(x−y)

V

]

+
1

2

∑
k<|k1|

[
BkDk

(
1 + Ñk − Ñ−k

) |~ω−|√
4(k2 + ∆)|~ω−|

eik·(x−y)

V

]

+
1

2

∑
k>|k1|

[
BkFk,−{(1 + Ñk)uk,− + Ñ−kv

∗
−k,−}

eik·(x−y)

V

]
,

where

Mk :=
(

1 + Ñk + Ñ−k

)
. (281)

All these correlation functions show the same behaviour. Namely, if time increases the correlation
functions exponentially increase. Furthermore, the expectation value of the number of particles,
which for respectively atoms and phonons is defined as

〈N̂at〉(t) =

∫
dx〈ψ̂†(x, t)ψ̂(x, t)〉, (282)

〈N̂ph〉(t) =

∫
dx〈φ̂(x, t)φ̂(x, t)〉, (283)

also increases exponentially in time. The growth of the number of phonons is a consequence of
the instability for the phonons discussed in section 5.1. Furthermore due to the linear coupling
between the atomic and the phonon field, also the number of atoms grows in time. This model can
also be compared with a laser. In a laser the number of photons grows in time due to stimulated
emission. Therefore, our coupled atom-phonon model can schematically be compared with a laser,
where the role of the photons is played by the phonon. However, in our model also the number
of atoms increases, while in a laser, the number of atoms should remain constant. To obtain a
more realistic model for a laser, we should change the coupling term in our model. For example
we should have a term

g

∫ ~β

0

dτ

∫
dxψ∗(x, τ)ψ(x, τ)φ(x, τ). (284)

Then instead of the linear coupling where an atom is annihilated and a phonon created and visa
versa, we have the processes that describes emission. Namely, this coupling term describes the
process where an atom is annihilated and a phonon and an atom are created. The reversed process
is of course also described by these terms. By incorporating this coupling term, we would have a
more realistic model of a laser.
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6 Conclusions and discussion

In this thesis we considered a gas of ultracold bosons at unitarity. First we discussed a many-body
theory that correctly describes the two-atom physics near a Feshbach resonance. In addition, this
effective theory is used to make a prediction of the energy per particle in the unitarity limit. By
using a mean-field theory, we end up with a divergence of the chemical potential and therefore
also the energy per particle is infinite. Besides this experimental relevant solution of an atomic
condensate, we also found that this mean-field theory incorporates the actual groundstate which
consists of a condensate of molecules.

In the mean-field calculations we neglected the depletion of the condensate. However, for
reliable results, we should also include these fluctuations. In this thesis we started to incorporate
these fluctuations in the theory. However, by using the Bogoliubov approximation we end up with
an ill-behaved spectral function. Namely, for some momenta the spectral function is negative for
ω > 0 and positive for ω < 0. Furthermore, this spectral function does not satisfy the sum rule.
The latter is caused by the poles of in the spectral function in the upper complex plane.

To get a better understanding of these complex dispersions, we also considered another
model where poles with positive imaginary part exist. We showed that these complex dispersions
always occur with a linearly coupled harmonic oscillator, and therefore we studied a model consist-
ing of linearly coupled atoms and phonons. In the operator formalism both fields, which describe
the atoms and phonons, are quantized. To get full expressions for the atomic and phonon field
operators, which satisfy the canonical commutation relations and the equations of motion, we have
to incorporate all dispersions. The fact that we satisfy the commutation relations and nonetheless
violate the sum rule, is caused by the fact that we cannot simply Fourier transform exponentially
growing functions. In this model the imaginary parts are related to the instability of the model,
and therefore we also obtain that correlations and the number of particles are not constant in time.

In the near future, we will continue on incorporating depletion into our theory. For fermions it
is already known how to incorporate the fluctuations [8]. Hopefully, by doing similar calculations
for bosons, we can in the future obtain a more physical result for the energy per particle in the
unitarity limit.
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