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Abstract

Early warning indicators of the collapse of the Atlantic Meridional Overturning Circulation
(MOC) have up to now only been based on temporal correlations of single time series. In this
thesis, we use spatial correlations of the time series of the temperature and salinity fields to
construct complex networks. These networks are constructed at different points approaching
the tipping point of the MOC. In these points, we observe a clear evolution of the network
degree. We explain this evolution by considering the eigenvectors and the empirical orthogonal
functions (EOFs) of the system. To investigate the application of this procedure to grids with
limited spatial resolution, we also construct networks from two different limited grids. We
find a new early warning indicator for the MOC based on the evolution in the network degree.
This indicator is also applicable to the limited grids.
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Chapter 1

Introduction

1.1 Climate variability

In our climate system, variability arises due to several different forcing mechanisms and processes. Because
of this, climate variability occurs on different time scales, ranging from fluctuations of several hours to
climatic transitions of thousands of years (Mitchell (1976)). Figure 1.1 shows an impression that provides
an overview of all these different scales. In the figure, a power spectrum of the variance has been
constructed using many different time series, obtained from various climatic records.

Figure 1.1: An impression of the power spectrum of climate variability showing the amount of variance
in each frequency range. Figure from Dijkstra and Ghil (2005), figure first produced by Mitchell (1976).

Figure 1.1 shows familiar variability on the shorter time scales. For example, daily fluctuations can be
seen as a sharp peak at 1 day and at 3-7 days the variability of midlatitude weather systems is present.
Intraseasonal variability occurs at 30-60 days and interseasonal fluctuations are seen yearly. At slightly
longer time scales interannual variability occurs. The El Niño phenomenon is an important aspect of
these year-to-year variations, occurring roughly every four years for a period of about one year. In the left
of figure 1.1, paleoclimatic variability is present at much longer time scales. In the last two million years
during the Quaternary, glaciation cycles are prominent. Within these glaciation cycles higher frequency
oscillations are also present. The Dansgaard-Oeschger cycle, at a time scale of 1-2.5 kyr is one of these
(Dansgaard et al. (1993)). During a Dansgaard-Oeschger event, rapid temperature changes occur. Figure
1.2 shows the δ18O record (which is a proxy for air temperature) from an ice core in Greenland of the
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past 120 thousand years, with the Dansgaard-Oeschger events indicated by numbers.

Figure 1.2: The δ18O record from an ice core from the North Greenland Ice Core Project. The Dansgaard-
Oeschger events are numbered. Figure from Clement and Peterson (2008).

Variations in the ocean circulation play a key role in climate variability and climate change (Dijkstra and
Ghil (2005)). Since the oceans are important for meridional heat transport, changes in the circulation
can affect the distribution of temperature and precipitation significantly (Vellinga and Wood (2002)). It
is suspected that large-scale transitions of the ocean circulation are responsible for the climate change
during the Dansgaard-Oeschger events. An important transition of the circulation is the reversal of the
Atlantic Meridional Overturning Circulation (MOC).

1.2 Atlantic Meridional Overturning Circulation

An impression of the wind-driven surface ocean currents in the Atlantic Ocean is shown in figure 1.3.
The Gulf Stream is a warm current that flows northward along the west side of the Atlantic basin. With
a volume transport of up to 88 Sverdrup (1 Sv = 106 m3s−1), this is a strong current. For the most
part, the northward volume transport is compensated in the subtropical gyre. However, part of the Gulf
Stream continues poleward as the North Atlantic Drift. This is a slow current that transports warm
water to the north and contributes to the relatively mild European climate. On its way northward, the
relatively warm and saline water of the North Atlantic Drift is cooled. In the Greenland Sea and the
Labrador Sea the water column becomes unstably stratified and convection occurs. In this way, North
Atlantic Deep Water is formed. This water is transported southwards as a deep current. Over the entire
Atlantic, upwelling occurs to compensate for the northern sinking.

The total system of a meridional surface current, sinking, a compensating deep current and upwelling
is referred to as the Meridional Overturning Circulation. During the Dansgaard-Oeschger events it is
thought that a rapid reduction in strength or even reversal of the MOC occurred (Bond et al. (1993),
Rhamstorf (1995), Knutti et al. (2004)). Such an abrupt change is referred to as a tipping point. The
MOC can reach a tipping point when the freshwater forcing in the northern North Atlantic is changed.
This tipping point is associated with a saddle-node bifurcation, which we shall consider in more detail in
chapter 2.

Due to anthropogenic greenhouse forcing the high-latitude temperature and precipitation is expected
to increase (Meehl et al. (2007)). A further input of freshwater into the system is expected due to the
melting of the Greenland Ice Cap. All of these effects decrease the density of the polar surface waters
and therefore the stability of the stratification increases and convective processes are inhibited. As a
consequence, the Atlantic MOC is influenced by anthropogenic warming (Gregory et al. (2005)). Since
changes in the MOC affect the whole climate system (Vellinga and Wood (2002), Meehl et al. (2007)),
it is important to have a good understanding of this dynamical system and its potential tipping points.
Ideally, we would like to find an indicator that provides an early warning signal for the transition in the
Meridional Overturning Circulation.
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Figure 1.3: Wind-driven surface ocean currents in the Atlantic Ocean. Figure from Army Service Forces
Manual M-101 (1943).
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1.3 Tipping points and early warning signals

The sensitivity of the Atlantic Meridional Overturning Circulation with respect to freshwater fluxes in the
northern North Atlantic has been studied extensively using Ocean General Circulation Models (OGCMs).
The issue whether the MOC could collapse into a state where no North Atlantic Deep Water is formed,
and instead only southern sources of deep water are active, has been of specific interest (Bryan (1986),
Maier-Reimer and Mikolajewicz (1989)). This has given rise to the so-called hosing experiment, which is
a procedure where an anomalous freshwater flux is gradually applied over a broad swath in the subpolar
North Atlantic until the overturning cell collapses (Rhamstorf (1995), et al. (2006)). We will further ex-
plain this procedure in chapter 3 and it will also be applied in chapter 5. A diversity of models has shown
that this transition in the MOC can occur due to the presence of a saddle-node bifurcation (Dijkstra
(2005)).

In recent years, there has been an increasing interest to develop early warning indicators for the prox-
imity of saddle-node bifurcation points in so-called slow/fast systems (Kuehn (2011)). As in the case
with the hosing experiment, in these systems a parameter is slowly varied in time until the tipping point
is approached. For the Meridional Overturning Circulation, these early warning indicators are based
on temporal characteristics such as the slowdown (enhanced autocorrelation) and enhanced variance of
the system’s behavior when approaching the tipping point. The techniques that are currently used,
such as degenerate fingerprinting (Held and Kleinen (2004)), degenerate fluctuation analysis (Lenton and
Schnellnhuber (2007)) and potential analysis (Livina et al. (2010)) all require very long time series to be
able to detect the proximity of the saddle-node bifurcation. By using complex network theory, we want
to find a new early warning indicator that is based on spatial rather than temporal correlations.

1.4 Networks in climate

The use of network theory has brought new insights in climate science as well as in other fields. For
example, (virtual) social networks as well as traffic flow can be studied by using networks (Cho (2009)).
Epidemiology has also benefitted from graph theory (Stanley and Havlin (2003)).

A network consists of nodes that are connected by links. The nodes can be virtually anything. In social
networks the nodes are people and the links between them are social ties or interactions. When studying
the climate system, the nodes are generally grid points of certain climate variables, such as temperature
or salinity. The nodes can be seen as oscillators corresponding to the time series of a variable. The
network then consists of interacting oscillators, where the interactions are determined by correlations
(Steinhaeuser et al. (2010)).

(a) (b)

Figure 1.4: (a) Number of total links in the climate network at each geographic location, constructed
from the surface air temperature. Figure from Tsonis and Roebber (2004). (b) Total number of links for
the extratropical network from 30◦N to 90◦N. Figure from Tsonis et al. (2008).

Though the use of network theory in climate science is relatively new, several interesting results have
already been obtained. When constructing a global network from the surface air temperature, Tsonis and
Roebber (2004) found that in general the nodes in the tropics have a lot more links than nodes at higher
latitudes, see figure 1.4a. At higher latitudes some regions with high connectivity are observed. Tsonis
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et al. (2008) show that these regions are associated with atmospheric teleconnections. For example, when
Tsonis et al. (2008) constructed a network with only nodes north of 30◦N, the North Atlantic Oscillation
(NAO) pattern shows up (figure 1.4b).

Specific phenomena have also been studied using networks. Yamasaki et al. (2008) find that during
an El Niño event, the number of links in the global surface temperature network decrease significantly.
This is seemingly in contradiction with the known impact of El Niño on the global climate system. By
using directed links, Gozolchiani and Havlin (2010) found that the number of links going into the El
Niño basin decreases but the number of outgoing links increases. Therefore, it can be concluded that the
equatorial Pacific becomes autonomous during El Niño events. It was also observed that the amount of
links directed into the basin increases just before the occurrence of an event. This result suggests that
it might be possible to predict an El Niño event by using network analysis and opens the possibility of
predicting other climate events.

1.5 Scope of this thesis

In this work, we use a two-dimensional cross-section model of the Atlantic Ocean where only the density-
driven MOC is represented. We then construct networks from the temperature and salinity at different
points along the bifurcation diagram of the Meridional Overturning Circulation. By investigating the
evolution of the network topology, we hope to find a useful indicator that provides a warning signal of
the approaching tipping point.

In chapter 2 we provide some background theory of the MOC and bifurcations, chapter 3 considers
the model and methods we use and results are presented in chapters 4 and 5. In these chapters we also
discuss possible indicators for a warning signal. Our conclusions are given in chapter 6.
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Chapter 2

Theory

We consider some MOC transition theory using the Stommel two-box and three-box models in section
2.1. Based on these box models, we see that bifurcations arise and therefore discuss fixed points and
several types of bifurcations in section 2.2.

2.1 Meridional overturning circulation (MOC)

The ocean circulation is mainly driven by momentum fluxes from the wind and by heat and freshwater
fluxes at the ocean-atmosphere interface. The fluxes of heat and freshwater result in a large-scale density
driven circulation. This circulation manifests itself in the meridional-depth plane and is therefore called
the Meridional Overturning Circulation (MOC), also referred to as the thermohaline circulation.

At low latitudes there is heat input into the system while at higher latitudes there is heat loss.
This meridional temperature gradient results in a density driven surface flow directed from the equator
towards the poles, due to sinking of denser cold water at the poles. On the other hand, there is substantial
evaporation at low latitudes, which increases the salinity and therefore the density. This leads to sinking
near the equator and results in an equator-ward surface flow. From this it is obvious that the surface
heat flux and the freshwater flux have opposing effects. The Stommel two- and three-box models provide
insights as to what happens when the Meridional Overturning Circulation is driven by both fluxes.

2.1.1 Stommel two-box model

The Stommel two-box model consists of an equatorial and a polar box and was first introduced by
Stommel (1961). At the surface, both boxes are connected by an overflow region and at the bottom by
a capillary tube. The volume of the equatorial box is Ve and of the polar box Vp. Both boxes contain
well mixed water with temperatures Te and Tp and salinities Se and Sp, where the subscript e means
equatorial and p polar. The two-box model is sketched in figure 2.1.

The surface flow rate is given by Ψ∗ and is linearly related to the density difference between the two
boxes

Ψ∗ = λ
ρp∗ − ρe∗

ρ0
.

Here, the subscript ∗ indicates dimensional quantities, λ is a hydraulic constant and ρ0 a reference density.
From this equation it follows that the flow rate Ψ∗ is positive if the water is heavier in the polar box, so
if the flow is directed from the equator toward the pole. The densities ρe and ρp are found by using a
linear equation of state,

ρ∗ = ρ0(1− αT (T∗ − T0) + αS(S∗ − S0)),

where T0 and S0 are a reference temperature and salinity, respectively. The quantities αT and αS are
the thermal expansion and haline contraction coefficients.

The circulation in the box model is driven by a density gradient, which is caused by the exchange
of heat and salt at the surface. The exchange at the ocean-atmosphere interface is modelled through
a relaxation to a prescribed surface temperature T a and salinity Sa. The relaxation coefficients for
temperature and salinity are given by CT and CS and they differ for each box. The heat and salt

13
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Figure 2.1: Sketch of the Stommel two-box model. An equatorial and a polar reservoir contain well
mixed water and are connected by a surface overflow region and a capillary tube at the bottom. The
circulation is driven by density gradients between the water in both boxes. The density gradient is caused
by exchange of heat and freshwater at the ocean-atmosphere interface. Figure from Dijkstra (2005).

balances in the equatorial and polar box are then given by

Ve
dTe∗
dt∗

= CTe (T ae − Te∗) + |Ψ∗|(Tp∗ − Te∗), (2.1a)

Vp
dTp∗
dt∗

= CTp (T ap − Tp∗) + |Ψ∗|(Te∗ − Tp∗), (2.1b)

Ve
dSp∗
dt∗

= CSe (Sae − Se∗) + |Ψ∗|(Sp∗ − Se∗), (2.1c)

Vp
dSp∗
dt∗

= CSp (Sap − Sp∗) + |Ψ∗|(Se∗ − Sp∗). (2.1d)

For simplicity, we assume that
CT

e

Ve
=

CT
p

Vp
≡ RT and

CS
e

Ve
=

CS
p

Vp
≡ RS . By scaling time, temperature,

salinity and flow rate with 1
RT

,
VeVpRT

λαT (Ve+Vp) ,
VeVpRT

λαS(Ve+Vp) and
VeVpRT

Ve+Vp
respectively, we find the dimensionless

equivalent of equations 2.1

dT

dt
= η1 − T (1 + |T − S|), (2.2a)

dS

dt
= η2 − S(η3|T − S|), (2.2b)

where the subscript ∗ has been removed to indicate dimensionless quantities. Furthermore, T = Te − Tp,
S = Se − Sp and the dimensionless flow rate is given by Ψ = T − S. The three parameters η1, η2 and η3

are given by

η1 =
(T ae − T ap )λαT (Ve + Vp)

VeVpRT
,

η2 =
RS
RT

(Sae − Sap )λαS(Ve + Vp)

VeVpRT
,

η3 =
RS
RT

.

Here, η1 is a measure of the thermal forcing; η2 a measure of the saline forcing or, alternatively, a
freshwater parameter; η3 a ratio of adjustment time scales to heat and salt perturbations at the surface.
We are interested in the freshwater parameter η2, since for certain values multiple steady states exist.
To find the regime of η2 for which these multiple equilibria exist, we consider the steady equations by
setting the time derivatives of equations 2.2 to zero. Solving for T and S as a function of the parameters
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η1, η2 and η3 then gives

T =
η1

1 + |Ψ|
,

S =
η2

η3 + |Ψ|
.

We can now solve these equations for different values of η1 and η2 and draw a regime diagram. The
regime diagram shows us which solutions exist for certain parameter values, it is shown in figure 2.2.

Figure 2.2: Regime diagram where the boundaries of the different solutions of the Stommel two-box
model are plotted in the parameter space of η1 and η2. The dashed line at η1 = 3.0 can be used for
comparison with figure 2.3. Figure from Dijkstra (2005).

In figure 2.2, two curves L1 and L2 have been indicated. To the right of the curve L1 there is a unique
TH solution, with polar sinking and positive Ψ. To the left of curve L2 there is a unique SA solution,
with equatorial sinking and negative Ψ. In the area bounded by the curves L1 and L2 however, multiple
steady solutions exist and both the TH and the SA solution occur.

To investigate the stability of the steady solution T̄ and S̄, we add perturbations T̃ and S̃, such that
T = T̄ + T̃ and S = S̄ + S̃. If we substitute these expressions for T and S into the evolution equations
2.2, we get an eigenvalue problem that admits solutions of the form

T̃ = T̂ eσt,

S̃ = Ŝeσt.

Here T̂ and Ŝ are eigenvectors of the temperature and salinity respectively and σ = σr + iσi is the
eigenvalue and complex growth factor. The real part σr determines the damping (σr < 0) or growth
(σr > 0) of the perturbations. So by considering the value of σr, we can conclude if a steady solution is
stable or unstable.

Figure 2.3 shows the bifurcation diagram of the two-box model, in which the steady flow Ψ̄ is plotted
against the freshwater parameter η2. This illustrates the occurrence of multiple steady states as we saw
in the regime diagram in figure 2.2 in a different way. In the bifurcation diagram, the value of η1 = 3.0
and is fixed. This is shown by the dotted line in figure 2.2. We again see the points L1 and L2 in figure
2.3. The signs of the real eigenvalues of the temperature and salinity are shown along the branches.

For values of η2 up to point L2 a stable TH solution exists. Similarly, for values of η2 beyond L1 there
is a stable SA solution. In these cases, both of the eigenvalues are negative and hence perturbations are
damped. In between the points L1 and L2 however, one of the eigenvalues is positive and the solution
becomes unstable. We also see that multiple steady states exist for values of η2 between about 0.8 and
1.2, here the stable TH and SA states overlap.
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Figure 2.3: Bifurcation diagram of the Stommel two-box model. The steady flow Ψ̄ is plotted for a
varying parameter η2. The parameter values η1 = 3.0 and η3 = 0.3 are fixed. The ± signs along the
branches indicate the sign of the real eigenvalue σr. The drawn curves indicate stable steady solutions,
dashed curves unstable steady solutions. The points L1 and L2 indicate the transitions from a stable to
an unstable solution and are the same as those shown in figure 2.2. Figure from Dijkstra (2005).

2.1.2 Stommel three-box model

We can extend the Stommel two-box model by including a third polar box, as done by Thual and
McWilliams (1992). The boxes are again connected at the surface and the bottom of each box. The
three-box model is sketched in figure 2.4.

Figure 2.4: Sketch of the Stommel three-box model. An equatorial, a southern and a northern polar box
contain well mixed water and are connected at the surface and at the bottom of each box. As in the
Stommel two-box model the circulation is set up by density gradients. Figure from Dijkstra (2005).

The southern polar box is denoted by the subscript s and the northern polar box by n. The dimensional
evolution equations are an extension of the equations 2.1 and are given by

Vs
dTs∗
dt∗

= CTs (T as − Ts∗) + |Ψs∗|(Te∗ − Ts∗), (2.6a)

Ve
dTe∗
dt∗

= CTe (T ae − Te∗) + |Ψs∗|(Ts∗ − Te∗) + |Ψn∗|(Tn∗ − Te∗), (2.6b)

Vn
dTn∗
dt∗

= CTn (T an − Tn∗) + |Ψn∗|(Te∗ − Tn∗), (2.6c)

Vs
dSs∗
dt∗

= CSs (Sas − Ss∗) + |Ψs∗|(Se∗ − Ss∗), (2.6d)

Ve
dSe∗
dt∗

= CSe (Sae − Se∗) + |Ψs∗|(Ss∗ − Se∗) + |Ψn∗|(Sn∗ − Se∗), (2.6e)

Vn
dSn∗
dt∗

= CSn (San − Sn∗) + |Ψn∗|(Se∗ − Sn∗), (2.6f)
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with the flow rates

Ψs∗ = λ(αT (Te∗ − Ts∗)− αS(Se∗ − Ss∗)),
Ψn∗ = λ(αT (Te∗ − Tn∗)− αS(Se∗ − Sn∗)).

As was the case for the two-box model, the sign of each flow rate is positive when the surface flow

is directed from equator to pole. For simplicity, we again assume that
CT

s

Vs
=

CT
e

Ve
=

CT
n

Vn
≡ RT and

CS
s

Vs
=

CS
e

Ve
=

CS
n

Vn
≡ RS . We introduce the new variables Θs∗ = Te∗−Ts∗, Θn∗ = Te∗−Tn∗, Σs∗ = Se∗−Ss∗

and Σn∗ = Se∗ − Sn∗. We can then find the dimensionless equations by scaling Θ∗, Σ∗ and time with
VsRT

2λαT
, 2VsRT

2λαS
and R−1

T , respectively. For Vs = Vn = Ve

2 we then get

dΘs

dt
= αs −Θs(1 +

3

4
|Ψs|)−

1

4
|Ψn|Θn, (2.8a)

dΘn

dt
= αn −Θn(1 +

3

4
|Ψn|)−

1

4
|Ψs|Θs, (2.8b)

dΣs
dt

= βs − Σs(η3 +
3

4
|Ψs|)−

1

4
|Ψn|Σn, (2.8c)

dΣn
dt

= βn − Σn(η3 +
3

4
|Ψn|)−

1

4
|Ψs|Σs. (2.8d)

Here Ψs = Θs − Σs and Ψn = Θn − Σn. The parameter η3 = RS

RT
as before, αn and αs are thermal

parameters and βs and βn are saline parameters given by

αs =
2λαT
VsRT

(T ae − T as ),

αn =
2λαT
VsRT

(T ae − T an ),

βs =
RS
RT

2λαS
VsRT

(Sae − Sas ),

βn =
RS
RT

2λαS
VsRT

(Sae − San).

If αs = αn and βs = βn, then the forcing is symmetric with respect to the equator. In this case, the
north and south are indistinguishable in the model. To show the structure and stability of the steady
solutions, we again plot a bifurcation diagram in figure 2.5.

Figure 2.5: Bifurcation diagram of the Stommel three-box model with symmetric forcing αs = αn = α =
1.5, βs = βn = β and η3 = 0.3. The parameter β is used as a control parameter and Θn −Θs is plotted
along the vertical axis. The quantity Θn −Θs is zero when the solutions are symmetric with respect to
the equator. Again, the drawn curve indicates stable steady solutions, the dashed curve unstable steady
solutions. The points P1 and P2 indicate the transition points between stable and unstable solutions and
the points L1 and L2 are also shown. Next to the branches, the solutions TH, SA, NPP and SPP which
are illustrated in figure 2.6 are indicated. Figure from Dijkstra (2005).
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The bifurcation diagram has been plotted with a fixed value for αs = αn = 1.5 and by using βs = βn = β
as a control parameter. The difference Θn−Θs is plotted against β and was chosen because it is zero for
equatorially symmetric solutions. For small β we see that there is only one symmetric solution, which
is the TH solution. At the point P1 the TH solution becomes unstable and two equatorially asymmetric
solutions appear. In case of these asymmetric solutions, there is no longer any down- or upwelling at
the equator, only at the poles. We call the solution with downwelling in the north, so positive Ψn, the
MOC+ solution and with downwelling in the south, so negative Ψn, the MOC- solution. For values of β
beyond point P2 the stable symmetric SA solution exists. The four possible solutions are illustrated in
figure 2.6.

(a) TH solution. (b) SA solution.

(c) MOC+ solution. (d) MOC- solution.

Figure 2.6: Sketch of the four possible solutions of the Stommel three-box model. Figure from Dijkstra
(2005).

When αn 6= αs or βn 6= βs the equatorial symmetry of the system is no longer present. We consider
the asymmetrical case with a larger freshwater flux in the northern hemisphere, so αn = αs = α and
βn = βs(1 + ε). In this case, the density is decreased in the north and for a flow driven purely by the
freshwater flux, there is a preference for southern sinking. When the asymmetry in the system is large
enough, we see that the points P1 and P2 in the bifurcation diagram in figure 2.5 disappear. Instead,
what remains is a transition from the MOC+ solution to the MOC- solution via the tipping points L1

and L2 when the freshwater flux increases. A sketch of this bifurcation diagram is shown in figure 2.7.
We will consider this bifurcation diagram in more detail in chapter 5.
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Figure 2.7: Sketch of the bifurcation diagram of the Stommel three-box model with asymmetric forcing
βn = βs(1 + ε) for ε > 0. The stability of the states is not shown. Figure from Dijkstra (2005).
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2.1.3 Physical mechanisms

In both the Stommel two- and three-box models we saw that multiple equilibria of the Meridional Over-
turning Circulation exist. An important physical mechanism that can cause the overlap of steady states
is the salt-advection feedback. To illustrate the effect of this feedback, we consider the TH solution in
the northern hemisphere. In this case, there is sinking at the pole and the surface flow is directed from
the equator to the north. The waters at low latitudes are warmer and more saline than at high latitudes.
Because of this, there is northward heat and salt transport. The enhanced salt transport increases the
density of the polar waters, which strengthens the circulation. On the other hand, the transport of heat
lowers the density of the polar waters and therefore provides a negative feedback on the circulation.

In addition to the advection feedback, the different damping times of salinity and temperature anomalies
are central to the existence of multiple steady states. As we saw in the two- and three-box models,
the relaxation coefficients of temperature RT and salinity RS are not equal to each other. If we define
the response time scales of temperature and salinity as τT = 1

RT
and τS = 1

RS
respectively, then the

parameter η3 = RS

RT
= τT

τS
and η3 < 1. This indicates that the damping time of temperature anomalies

is fast; the atmosphere exerts a strong control on the sea surface temperature anomalies. On the other
hand, the response time τS is slow, salinity anomalies in the ocean do not affect the freshwater flux.

These different response times combined with the advection feedback provide a transition mechanism
of the Meridional Overturning Circulation. For example, imagine that a surface freshwater anomaly is
present in the northern part of the TH solution. Because the density of the water decreases in the north,
the strength of the circulation also decreases. This means that the northward transport of heat and
salt also diminishes. The negative temperature anomaly is rapidly damped at the sea surface, but the
freshwater perturbation is not damped. Therefore, the circulation continues to decrease and this positive
feedback results in a rapid decline in strength of the MOC and possibly a transition to a different solution.
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2.2 Bifurcations

The equations 2.2 and 2.8 that govern the evolution of temperature and salinity in the Stommel two- and
three-box models both form a set of ordinary differential equations

dx

dt
= f(x),

where x represents a parameter, in our case temperature T or salinity S, and f is a function that does
not depend explicitly on time. A solution x̄ of this system is a fixed point if

f(x̄) = 0. (2.11)

Therefore, a fixed point represents an equilibrium solution of the system, since equation 2.11 implies
that dx̄

dt = 0. As we saw earlier, stable and unstable steady states, and so fixed points, exist. We can
investigate the stability of the fixed points by adding a perturbation x̃ such that x = x̄ + x̃. Solving
this system again gives an eigenvalue problem with solutions of the form x̃ = x̂eσt. As before, x̂ is the
eigenvector, σ = σr + iσi is the complex growth factor and the sign of σr determines the damping or
growth of a perturbation. Stable fixed points act as attractors, the solution is attracted towards them.
On the other hand, unstable fixed points act as repellers, the solution diverges away from these points.

Fixed points can be created or destroyed, or their stability can change. Such a qualitative change is
called a bifurcation and the parameter values at which they occur are bifurcation points. Bifurcations
are important because they provide modes of transition as a control parameter is varied. A bifurcation
that needs at least m parameters to occur is called a codimension-m bifurcation. In case of the Stommel
two- and three-box models only one parameter, η2 and β respectively, was required for bifurcations to
occur. So the bifurcations in the box models are of codimension-1.

Transition behaviour can occur in several different ways, depending on how the eigenvalues σ cross the
imaginary axis. In case of a codimension-1 bifurcation, a single real eigenvalue σr or a complex conjugate
pair of eigenvalues can cross the axis. Here, we will only focus on the bifurcations that occur in the
Stommel two- and three-box models, which take place due to the crossing of a real eigenvalue. The two
bifurcations that we saw in the box models are the saddle-node bifurcation and the pitchfork bifurcation.

2.2.1 Saddle-node bifurcation

In a saddle-node bifurcation, fixed points are created and destroyed. As the control parameter is varied,
a stable and an unstable fixed point move towards each other, collide and mutually annihilate.

To describe a bifurcation mathematically, normal forms are used. In general, a normal form is a
simplified form of a mathematical object. In this case, the idea is that close to a bifurcation point,
the dynamics look like the normal form of the specific bifurcation. The normal form of a saddle-node
bifurcation is given by

ẋ = r + δx, (2.12)

where ẋ indicates the time-derivative of x, δ ∈ {−1, 1} and the parameter r can be both positive or
negative. When δ = +1, steady solutions x̄ = ±

√
−r only exist for r < 0, as is shown in figure 2.8a.

In this case, there are two fixed points, one stable and one unstable. As r approaches zero, the two
fixed points move towards each other. When r = 0, the stable and unstable fixed points merge into a
half-stable point in figure 2.8b. As soon as r > 0 the fixed point vanishes entirely, shown in figure 2.8c.
In this example, a bifurcation occurred at r = 0.

So, for δ = +1, fixed points only exist when r < 0. The steady solution is stable when x̄ = −
√
r and

unstable when x̄ =
√
r. For δ = −1 a similar situation arises. Steady solutions x̄ = ±

√
r only exist for

r > 0. In this case, the solution x̄ =
√
r is stable and x̄ = −

√
r is unstable. The bifurcation diagrams of

the saddle-node bifurcation for both δ = +1 and δ = −1 are shown in figure 2.9.
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(a) r < 0 (b) r = 0 (c) r > 0

Figure 2.8: Illustration of a saddle-node bifurcation. Solutions of equation 2.12 for δ = +1 and different
values of r are shown. Fixed points are indicated by filled circles (stable) and open circles (unstable).
Figure from Strogatz (1994).

(a) (b)

Figure 2.9: Bifurcation diagram of the saddle-node bifurcation for (a) δ = +1 and (b) δ = −1. The
drawn curve indicates stable steady solutions, the dashed curve unstable steady solutions. Figure from
Strogatz (1994).

A saddle-node bifurcation occurred in both the Stommel two- and three-box model. The points L1 and
L2 in figures 2.3 and 2.5 are examples of a saddle-node bifurcation.

2.2.2 Pitchfork bifurcation

The pitchfork bifurcation is common in physical problems that contain symmetry. The Stommel three-
box model with symmetrical forcing is such a problem. In this case, fixed points tend to appear and
disappear in symmetrical pairs. The normal form is given by

ẋ = rx− δx3. (2.13)

Two different types of pitchfork bifurcations exist, when δ = +1 the bifurcation is a supercritical pitchfork.
If we again consider the fixed points for different values of r, we see that for r < 0 there is one stable
steady state x̄ = 0, shown in figure 2.10a. When r = 0, shown in figure 2.10b, the origin is still a stable
point, but more weakly. For r > 0 the origin becomes unstable and two new stable fixed points appear,
see figure 2.10c. These stable solutions are x̄ = ±

√
r.

The bifurcation diagram of the supercritical pitchfork is shown in figure 2.11a. From this figure, the
name pitchfork immediately becomes clear.

For δ = −1 we have a subcritical pitchfork bifurcation. This bifurcation diagram is shown in figure
2.11b. Since this type of bifurcation does not occur in either of our box models, we do not consider it
any further here.
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(a) r < 0 (b) r = 0 (c) r > 0

Figure 2.10: Illustration of a supercritical pitchfork bifurcation. Solutions of equation 2.13 for δ = +1
and different values of r are shown. Fixed points are indicated by filled circles (stable) and open circles
(unstable). Figure from Strogatz (1994).

(a) (b)

Figure 2.11: Bifurcation diagram of (a) the supercritical pitchfork bifurcation with δ = +1 and (b) the
subcritical pitchfork bifurcation with δ = −1. The drawn curve indicates stable steady solutions, the
dashed curve unstable steady solutions. Figure from Strogatz (1994).

The supercritical pitchfork bifurcation occurs in the Stommel three-box model. The points P1 and P2 in
figure 2.5 are both bifurcations of this type.

In summary, we have seen that multiple steady states exist in both the Stommel two- and three-box
models. In case of the three-box model two equatorially symmetric and two asymmetric solutions exist
under symmetric forcing conditions. The steady solutions can be either stable or unstable. Transition
between different states occurs at pitchfork and saddle-node bifurcation points when the freshwater flux
is varied. Under asymmetric forcing conditions (increased freshwater input in the north) the pitchfork
bifurcations disappear and transitions between the MOC+ and MOC- solutions occur at saddle-node
bifurcation points.



Chapter 3

Model and Method

In this chapter we describe THCM, which we use to model the Meridional Overturning Circulation, as
well as the software used to construct networks. The method for network construction is also explained.

3.1 THCM

As we saw in the previous chapter, multiple steady states of the MOC exist under certain conditions. In
model simulations, these multiple equilibria can be found by slowly varying the freshwater flux. The cor-
responding bifurcation diagram then shows transitions from one stable state to another. In the transient
behaviour of the flow, unstable steady states are important. Therefore, we want to use a model that can
determine and follow these unstable states in parameter space. This can be done with the ThermoHaline
Circulation Model (THCM, den Toom et al. (2011)), which is a fully implicit ocean model.

In this study, we consider the meridional-depth plane and therefore use a two-dimensional adapta-
tion of THCM with no wind-stress forcing and zero rotation. The governing model equations are the
hydrostatic primitive equations, given by

0 = − 1

ρ0r0

∂p∗
∂θ∗

+AV
∂2v∗
∂z2
∗

+
AH
r2
0

(
1

cos θ∗

∂

∂θ∗

(
cos θ∗

∂v∗
∂θ∗

)
+ (1− tan2 θ∗)v∗

)
,

∂p∗
∂z∗

= −ρ∗g,

0 =
∂w∗
∂z∗

+
1

r0

∂v∗
∂θ∗
− v∗ tan θ∗

r0
,

dT∗
dt∗

=
KH

r2
0 cos θ∗

∂

∂θ∗

(
∂T∗
∂θ∗

cos θ∗

)
+KV

∂2T∗
∂z2
∗
,

dS∗
dt∗

=
KH

r2
0 cos θ∗

∂

∂θ∗

(
∂S∗
∂θ∗

cos θ∗

)
+KV

∂2S∗
∂z2
∗
.

Here, d
dt∗

= ∂
∂t∗

+ v∗
r0

∂
∂θ∗

+w∗
∂
∂z∗

is the material derivative, θ∗ the latitude and z∗ depth. The radius of the
Earth is represented by r0, v∗ and w∗ are the meridional and vertical velocity components respectively,
pressure is represented by p∗, temperature by T∗ and salinity by S∗. The density ρ∗ is related to the
temperature and salinity by the linear equation of state

ρ∗ = ρ0(1− αT (T∗ − T0) + αS(S∗ − S0)),

with expansion coefficients αT and αS and reference temperature T0, salinity S0 and density ρ0.

Furthermore, mixing is represented by eddy diffusivities, with horizontal and vertical diffusivities KH

and KV for both heat and salt and friction coefficients AH and AV for momentum. At the lateral and
bottom boundaries, no-slip and no-flux conditions are imposed. Standard values for the parameters in
these equations are shown in table 3.1.

23
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r0 = 6.37× 106 m ρ0 = 1.0× 103 kg m−3

g = 9.8 ms−2 αT = 1.0× 10−4 K−1

AH = 2.2× 1012 m2s−1 αS = 7.6× 10−4 psu−1

AV = 1.0× 10−3 m2s−1 T0 = 15.0◦C
KH = 1.0× 103 m2s−1 S0 = 35.0 psu
KV = 1.0× 10−4K−1 H = 4000 m
θN = 60◦

Table 3.1: Parameter values of the two-dimensional model.

At the ocean-atmosphere interface mixed boundary conditions are imposed. The surface temperature
is restored to a temperature profile TS ,

TS = T0 +
∆T

2
cos

(
πθ

θN

)
,

where ∆T = 20◦C and the basin is bounded meridionally by [−θN , θN ] and vertically by [−H, 0].
We consider two different cases of freshwater forcing FS , a symmetrical and an asymmetrical forcing

with a larger freshwater flux in the northern hemisphere. In the symmetrical case, the freshwater forcing
is prescribed as a virtual salinity flux by

FS = β
cos
(
πθ
θN

)
cos(θ)

. (3.2)

In this case, the amplitude of the freshwater forcing β is the control parameter. The asymmetrical
freshwater forcing is also prescribed as a virtual salinity flux by

FS = β
cos
(
πθ
θN

)
cos(θ)

+ βnFp(θ). (3.3)

Here, β is the amplitude of the background freshwater forcing and βn is the strength of the anomalous
freshwater flux which is only added over the area [40◦N, 60◦N] (where Fp = 1 and it is zero elsewhere).
In the asymmetrical case, βn is our control parameter.

The equations are discretised in space using an Arakawa B-grid that places the p, T and S points in the
center of a grid cell and the v and w points on its boundaries, as is described by den Toom et al. (2011).
To calculate branches of steady states directly as a function of the control parameter, pseudo-arclength
continuation is used. With this technique, unstable solutions can also be determined, so that a full bi-
furcation diagram can be computed. To converge to individual solutions, the Newton-Raphson method is
employed. The model also implements the Jacobi-Davidson QZ method to solve linear stability problems.

The model domain is a meridional-depth plane that is bounded by the latitudes 60◦S and 60◦N, so
θN = 60◦, and has a constant depth of H = 4000 m. This cross-section is located in the Atlantic Ocean
and has a width of 64◦, which is relevant for the value of the strength of the MOC. Our grid contains
32 points in the meridional direction and 16 points in the vertical direction. That gives us a meridional
resolution of 3.75◦ and 16 vertical layers with a thickness of 250 m.
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3.2 Network construction

Using the software “pynetwork” created by Donges et al. (2012), we construct networks from the data
obtained from THCM.

Suppose that our data is contained in a matrix F , ordered in such a way that each column pi at a grid
point contains a time series of length n (for example of the temperature or salinity). The data in F has
been detrended and the mean of each time series removed. Following several climate studies (for example
Donges et al. (2009)), the linear Pearson correlation coefficient with zero lag can be used to determine
the correlation between two grid points. The correlation matrix r is then given by

rij =

∑n
t=1 pi(t)pj(t)∑n

t=1 p
2
i (t)

∑n
t=1 p

2
j (t)

, (3.4)

where the subscript ij indicates the element of the matrix on the ith column and the jth row.
Each grid point can be seen as a node in the network. From the correlation coefficient rij we can set

up links between each pair of nodes. We consider points that are sufficiently correlated or anti-correlated
as linked. To determine when two nodes are connected, we set a threshold value τ . If the absolute value
of the correlation coefficient between two points is above the threshold, then these points are linked. All
links are contained in the adjacency matrix A, which can be determined from the correlation matrix r as

Aij = H(|rij | − τ),

where H is the Heaviside function.

3.2.1 Network properties

We have now constructed a network from our data matrix F . The network topology can be investigated
with the help of several useful properties.

Distance and closeness

In a network, the ‘distance’ between two nodes is measured by the number of links that have to be
‘crossed’ to get from one node to the other. The link distance is then given by the shortest path between
two nodes. The farness of a node can be found by computing the sum of its link distances to all other
nodes. The closeness is then defined as the inverse of the farness. So, a node with a low closeness has
a low total distance to all other nodes. Therefore, the closeness measures how central a node is in the
network.

Degree

A measure for the total connectedness of a node is given by the degree d. This can be calculated from

di =

N∑
j=1

Aij , (3.5)

where N is the total number of nodes. The degree shows the total number of links that a node possesses.
Therefore, a high degree means that a certain node is connected to a large amount of other nodes in the
network, whereas a low degree indicates that a node is more ‘isolated’ from the rest of the network. In
this thesis, we will focus on the degree d.

Clustering

The extent to which nodes cluster together in a network is measured by the clustering coefficient c. The
computation of the clustering coefficient is illustrated with an example in figure 3.1. Figure 3.1a shows
the links of a node i, in this case i is connected to eight other nodes. These eight nodes define the closest
neighbourhood of i (where node i itself is not part of the neighbourhood).
We then consider the links between these neighbours ∆i, illustrated in figure 3.1b. In this example

∆i = 5. For a number of ki neighbours the total possible connections between them is ki(ki−1)
2 . The

clustering coefficient of node i is then defined as

ci =
2∆i

ki(ki − 1)
.
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(a) (b)

Figure 3.1: Illustration of the method used to find the clustering coefficient of a node i. (a) Links of node
i. (b) Links within the neighbourhood of i. Figure from Tsonis et al. (2008).

It follows that a high clustering coefficient indicates that a lot of nodes in the neighbourhood are connected
to each other; there is high clustering. Some modifications on the exact definition of the clustering
coefficient also exist, see for example Tsonis et al. (2008).

Betweenness

The degree and closeness give us a general idea of how well connected a node is. The importance of a
specific node for the connectedness of the entire network is quantified by the betweenness b, which is
defined as

bp =

N∑
i,j 6=p

σij(p)

σij
.

Here, σij is the total number of shortest paths from node i to j and σij(p) is the number of those paths
that pass through the node p. So, the betweenness of a specific node p is given by the fraction of shortest
paths that go through the node. Therefore, a high betweenness indicates that a node is important for all
connections in the network. For example, in a highly clustered network, nodes that provide connections
between different clusters will have a high betweenness.



Chapter 4

Results: Symmetrical forcing

In this chapter, we consider the symmetrically forced MOC. We construct the bifurcation diagram of the
MOC and create temperature and salinity data at different points along the diagram. From these data
we construct networks and consider the evolution of the network topology when approaching the tipping
point. To provide an explanation for the change in the network topology, we investigate the eigenvectors
and empirical orthogonal functions (EOFs) of the system. We then consider networks constructed from
grids with a limited amount of nodes and define an indicator for an early warning signal.

4.1 Bifurcation diagram

We saw in section 2 that the Meridional Overturning Circulation behaves in a similar fashion as the
Stommel three-box model. As in the box model, multiple steady states of the MOC exist. Here we
consider symmetrical forcing with a freshwater flux as described in equation 3.2. We can then find
the multiple states of the system with THCM by varying the freshwater parameter β. The dynamical
behaviour of the system is shown in the bifurcation diagram in figure 4.1. In this figure, the maximum
of the meridional overturning streamfunction ΨM is plotted against the freshwater parameter β. Notice
that this diagram is qualitatively similar to the bifurcation diagram of the Stommel three-box model in
figure 2.5.
For each value of β there is an equatorially symmetric solution, which is stable except between the two
pitchfork bifurcations, indicated by points P in figure 4.1. For β ≤ 0.175 m yr−1 the symmetric state is
the TH solution, with sinking at the poles, for β ≥ 0.175 m yr−1 it is the SA solution, with sinking at the
equator. The two equatorially asymmetric solutions are connected by the pitchfork bifurcations. They
are stable between the first pitchfork and the saddle-node bifurcations, indicated by an S in figure 4.1.

On the right of figure 4.1 a plot of the steady state MOC is shown for all three branches of the
bifurcation diagram. With the symmetric branch containing the TH- and SA solution and two asymmet-
ric branches with the MOC+ solution (upper branch, positive Ψ, sinking in the north) and the MOC-
solution (lower branch, negative Ψ, sinking in the south).

Four points have been indicated with stars along the positive asymmetrical branch of the bifurcation
diagram in figure 4.1. Point 1 is the farthest away from the saddle-node bifurcation, with each of the
successive points approaching it more closely. The coordinates of these points are given in table 4.1.
The saddle-node is the transition point between a stable steady solution and an unstable solution. If
the freshwater parameter β is increased to a value beyond the saddle-node bifurcation, the system will
rapidly diverge away from the positive asymmetric solution towards the symmetric SA solution. Such an
abrupt change is known as a tipping point. From now on, we will refer to the saddle-node bifurcation on
the positive asymmetrical branch of the bifurcation diagram as the tipping point S of the MOC.
At each of these four points we want to create a time series of temperature and salinity. Since the system
is in a stable steady state, we add a reproducible random white noise perturbation to the forcing in order
to get a useful time series. The freshwater forcing FS from equation 3.2 then becomes

FS = β
cos
(
πθ
θN

)
cos(θ)

+ ∆wr(θ, t),

where wr is the white noise perturbation that depends on latitude θ and time t and Delta = 0.1 is the
amplitude of the perturbation wr.

27
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Figure 4.1: Left: Bifurcation diagram of the symmetrically forced MOC. The maximum of the meridional
overturning streamfunction is shown against the freshwater flux parameter β. The symmetrical branch
and two asymmetrical branches are shown. Stable steady solutions are indicated by drawn curves,
unstable steady solutions by dashed curves. Points P indicate pitchfork bifurcations, points S saddle-
node bifurcations. Points 1 to 4 are indicated for future reference. Right: Examples of the steady state
MOC in the latitude-depth plane are shown for each of the three branches of the bifurcation diagram.
Locations where the examples were taken are indicated by blue points labeled with a, b, c and d in the
bifurcation diagram.

β m yr−1 ΨM ( Sv)
point 1 0.371 11.9
point 2 0.435 12.0
point 3 0.453 11.8
point 4 0.456 11.5

Table 4.1: Coordinates of the four points approaching the tipping point S indicated on the bifurcation
diagram.

We create datasets that cover periods of 500 years, with a resolution of 1 year. An example of the time
series created in this way is shown in figure 4.2. Typical steady state temperature and salinity profiles at
each of the four points are also shown in this figure. From these time series, networks can be constructed
and their properties when approaching the tipping point analysed.
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Figure 4.2: (a) Example time series (constructed in point 1 on the bifurcation diagram) of the maximum
of the streamfunction created by adding white noise to the forcing. Steady state temperature (b) and
salinity (c) profiles at each of the four points approaching the tipping point.
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4.2 Networks

At each of the four points indicated in figure 4.1 we construct networks from both the temperature and
the salinity data, using a threshold value of τ = 0.7. The evolution of the topology can be investigated by
considering several network properties. Here, we have chosen to look at the degree, since this shows the
most obvious evolution when approaching the tipping point and because the degree is relatively simple to
understand intuitively. Figures 4.3 and 4.4 show the degree of the temperature and salinity respectively,
for each of the points along the bifurcation diagram. Each grid point represents a node in the network.
The basin that we have used here contains 16 grid points in the vertical direction and 32 points in the
latitudinal direction, so the highest possible degree is 511.
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Figure 4.3: Degree of the temperature network, constructed using a threshold value τ = 0.7, shown at
each of the four points when approaching the tipping point. Contour lines of the steady state temperature
are plotted in white.

In case of the temperature, we see that a clear change occurs when approaching the tipping point. In
the lower part of the basin, the degree increases until the network becomes almost fully connected. In
point 4, closest to the tipping point, the degree has increased in the largest portion of the basin, with the
exception of the upper layer. At a depth of approximately 1000 m, there is a clear transition between
high degree in the lower basin and low degree in the upper layer. Also, from about 15◦N to 60◦N, a dip
in the transition line can be seen. At around -30◦N a small rise is present.

In the salinity network, the degree also generally increases when approaching the tipping point. The
clear boundary between the lower layers with high degree and the upper layers with low degree is also
present in the salinity network. However, in case of the salinity the transition line is at a deeper level, so
a larger part of the basin consists of nodes with a low degree. Because of this the dip at 15◦N to 60◦N is
less pronounced than in the case of the temperature. Another difference is the maximum degree, which
is around 250 for the salinity network compared to about 350 for the temperature network.
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Figure 4.4: Degree of the salinity network, constructed using threshold value τ = 0.7, shown at each of
the four points when approaching the tipping point. Contour lines of the steady state salinity are plotted
in white.

So, in both figures 4.3 and 4.4 we see a clear evolution of the network degree, most notably the de-
gree in the lower part of the basin increases. The change becomes even more apparent when the degree
distribution is presented, as can be seen in figure 4.5 for the temperature and figure 4.6 for the salinity.
In point 1 one broad peak is present, in point 2 the peaks seem to separate from each other and in points
3 and 4 we clearly see two separate narrow peaks. The peak on the right becomes quite narrow in point
4 and also increases in height.

We have also constructed networks for longer temperature and salinity time series, of 2000 years in-
stead of 500 years, and with threshold values τ = 0.6 and τ = 0.8. The results are similar and are shown
in the appendix.

We will now attempt to explain the change in network topology by considering the eigenvectors and
empirical orthogonal functions (EOFs) of the model system.



32 CHAPTER 4. RESULTS: SYMMETRICAL FORCING

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

degree

oc
cu

re
nc

es

point 1

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

degree

oc
cu

re
nc

es

point 2

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

degree

oc
cu

re
nc

es

point 3

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

degree

oc
cu

re
nc

es

point 4

Figure 4.5: Degree distribution of the temperature network in each of the four points approaching the
tipping point. On the horizontal axis the degree is shown, on the vertical axis the occurrence of a
particular degree.
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Figure 4.6: Degree distribution of the salinity network in each of the four points approaching the tipping
point. On the horizontal axis the degree is shown, on the vertical axis the occurrence of a particular
degree.
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4.3 Eigenvectors

In chapter 2 we saw that a saddle-node bifurcation takes place when a real eigenvalue σr of the linear
stability problem crosses the imaginary axis. Before the tipping point the steady solutions are stable and
so σr < 0. Upon passing the bifurcation however, σr > 0 and perturbations will grow and the solution
becomes unstable. Since the real eigenvalue is of importance in the tipping point, it is interesting to
see whether we can find such an eigenvalue and the corresponding eigenvectors and follow its evolution
through all of the four points.

The eigenvectors of the temperature and salinity in the points 1 and 4 are shown in figures 4.7 and
4.8, with the corresponding eigenvalues indicated below the figures.
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Figure 4.7: Temperature field at the dominant eigenmode, in point 1 and point 4. Note the different
colour scale of the figures. Eigenvalues are indicated below each figure.
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Figure 4.8: Salinity field of the dominant eigenmode, in point 1 and point 4. Note the different colour
scale of the figures. Eigenvalues are indicated below each figure.

In case of the temperature, it is interesting to see that the eigenvector in point 4 has the same general
shape as the degree in figure 4.3. The same dip in the northern hemisphere, and a small rise in the
southern hemisphere can be seen.

Although in the salinity case the shape of the eigenvectors is a lot less clear than those of the tem-
perature, the shape of the eigenvector in point 4 is similar to the dip seen in the network degree.
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4.4 Empirical Orthogonal Functions (EOFs)

The data can be decomposed into spatial empirical orthogonal functions (EOFs) and the time series of
the principal components (PCs). Here, we compute the EOFs for the data sets at each of the four points
approaching the tipping point, using the covariance matrix to set up the eigenvalue problem from which
the EOFs are solved.

Suppose that our data set is again represented by the matrix F , ordered so that each column contains
the time series of a grid point. We then form the covariance matrix R by calculating

R = FTF,

where the superscript T indicates the transpose. Next, we solve the eigenvalue problem

RC = CΛ,

where Λ is a diagonal matrix containing the eigenvalues λi of R. The eigenvectors of R corresponding to
the eigenvalues λi are the column vectors ci of the matrix C. These eigenvectors c are the EOFs that
we are looking for. The ‘importance’ of EOFi can be found by dividing λi by the sum of all the other
eigenvalues. This then gives the fraction of the total variance in R that is explained by an EOF.

Now that we have found the EOFs, the principal component time series of the EOFs can be found by
calculating

ai = Fci,

where the vector ai represents the PC corresponding to the EOF ci.
The data can also be reconstructed from the EOFs and PCs by

F =

N∑
j=1

ajc
T
j , (4.1)

where N is the number of grid points.

We compute the EOFs of the temperature and find that the first three EOFs account for about 90% of
the variability. In figures 4.9 to 4.11 these EOFs are shown. In case of the salinity, the first three EOFs
account for about 80% of the variance. The EOFs of the salinity are shown in figures 4.12 to 4.13, the
percentage of the variance that each EOF explains is indicated below each figure.

It is interesting to see that from point 1 up to point 3 the first two EOFs of the temperature decrease
in importance, while the third increases. In point 4 however, EOF1 increases from roughly 45% to 60%,
EOF2 decreases from about 30% to 20% and EOF3 from 17% to 13%. Apparently, EOF1 becomes more
dominant upon approaching the tipping point.

In case of the salinity however, EOF1 continues to decrease in importance, while EOF2 and EOF3
increase. In terms of the patterns of the EOFs, they do not change a lot from point to point and they
do not show a clear resemblence to the network degree in figure 4.4.
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Figure 4.9: Pattern of the first EOF of the temperature field at each of the four points approaching the
tipping point. The percentage of the variance that is explained by EOF1 is indicated below each figure.

latitude (oN)

de
pt

h 
(m

)

point 1

 

 

−50 0 50

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

0.2

0.4

0.6

0.8

1

(a) 32%

latitude (oN)

de
pt

h 
(m

)

point 2

 

 

−50 0 50

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

0.2

0.4

0.6

0.8

1

(b) 31%

latitude (oN)

de
pt

h 
(m

)

point 3

 

 

−50 0 50

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

0.2

0.4

0.6

0.8

1

(c) 29%

latitude (oN)

de
pt

h 
(m

)

point 4

 

 

−50 0 50

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

0.2

0.4

0.6

0.8

1

(d) 21%

Figure 4.10: Pattern of the second EOF of the temperature field at each of the four points approaching
the tipping point. The percentage of the variance that is explained by EOF2 is indicated below each
figure.
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Figure 4.11: Pattern of the third EOF of the temperature field at each of the four points approaching the
tipping point. The percentage of the variance that is explained by EOF3 is indicated below each figure.
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Figure 4.12: Pattern of the first EOF of the salinity field at each of the four points approaching the
tipping point. The percentage of the variance that is explained by EOF1 is indicated below each figure.
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Figure 4.13: Pattern of the second EOF of the salinity field at each of the four points approaching the
tipping point. The percentage of the variance that is explained by EOF2 is indicated below each figure.
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Figure 4.14: Pattern of the third EOF of the salinity field at each of the four points approaching the
tipping point. The percentage of the variance that is explained by EOF3 is indicated below each figure.
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4.4.1 Reconstructed networks

We would now like to know how these EOFs influence the network. We partly reconstruct the data from
the first three EOFs by using equation 4.1. In this way we get

F1 = a1c
T
1 ,

F2 = a1c
T
1 + a2c

T
2 ,

F3 = a1c
T
1 + a2c

T
2 + a3c

T
3 ,

From F1, F2 and F3 we can create networks and investigate their influence on the total network. As
mentioned in chapter 3, the linear Pearson correlation coefficient is used. In terms of the data matrix F ,
the correlation matrix r can be written as

rij =
(FTF )ij√

(FTF )ii(FTF )jj
,

where the subscripts ij indicate the element of a matrix on the ith column and the jth row.

Consider the correlation matrix of F1 = a1c
T
1 ,

rij =
(c1a

T
1 a1c

T
1 )ij√

(c1aT1 a1cT1 )ii(c1aT1 a1cT1 )jj
,

aT1 a1 returns a number so this can be written as

rij =
aT1 a1(c1c

T
1 )ij√

(aT1 a1)2(c1cT1 )ii(c1cT1 )jj
=

aT1 a1(c1c
T
1 )ij√

(aT1 a1)2(c1cT1 )2
ij

= 1.

From this it follows that a network constructed only from the first EOF is a fully connected network
since all correlations are 1.

However, the networks constructed from F2 and F3 are not fully connected, since the correlation
coefficient contains crossterms. The degree of the networks of F2 and F3 in all four points are plotted in
figures 4.15 and 4.16 for the temperature and in figures 4.17 and 4.18 for the salinity.

In case of the temperature, both the networks constructed from F2 and from F3 show a development in
the degree when approaching the tipping point that is similar to what we observed in figure 4.3. In both
cases, the degree in the lower layers increases and in point 4 there is a clear transition. The dip and
the rise in point 4 that we saw in figure 4.3 are also visible in figures 4.15 and 4.16. However, in case of
the network constructed from F2, there are some small islands of high degree present in the areas of low
degree. Furthermore, the degree in general and in the lower layers specifically is much higher than in the
network from the original data. When including the third EOF in the network constructed from F3, the
islands of high degree disappear and the degree is smaller. The network constructed from F3 resembles
that from the original data very closely.

In general we can say that upon approaching the tipping point, the degree increases in the lower
part of the basin. We also saw that EOF1 becomes more dominant and that the network of F1 is fully
connected.

In case of the salinity, the network constructed from F2 shows entirely different results. This network
shows little resemblance to the network from the original data. With a lot of imagination the patterns
seen in figure 4.17 can also be seen in figure 4.4, but in figure 4.17 it is too pronounced and the degree is
too high. The network constructed from F3 is much more promising. The patterns seen here are similar
to the original network and the degree is lower than in the F2 network. Apparently, in case of the salinity
it is much more important to include the third EOF than it is for the temperature.
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Figure 4.15: Degree of the network constructed from F2, consisting of EOF1 and EOF2 of the temperature,
with threshold value τ = 0.7, shown at each of the four points approaching the tipping point.
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Figure 4.16: Degree of the network constructed from F3, consisting of EOF1, EOF2 and EOF3 of the
temperature, with threshold value τ = 0.7, shown at each of the four points approaching the tipping
point.
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Figure 4.17: Degree of the network constructed from F2, consisting of EOF1 and EOF2 of the salinity,
with threshold value τ = 0.7, shown at each of the four point approaching the tipping point.
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Figure 4.18: Degree of the network constructed from F3, consisting of EOF1, EOF2 and EOF3 of the
salinity, with threshold value τ = 0.7, shown at each of the four points approaching the tipping point.
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4.4.2 Correlation EOFs

To gain more insight into the topology of the network degree, we can also construct EOFs using the linear
Pearson correlation matrix r. In contrast to the EOFs that are normally used, these EOFs account for a
percentage of the correlation, rather than the variance. We have again constructed the first three EOFs,
which account for about 80 to 90% in the temperature case and 80% in the salinity case. EOFs for the
temperature are shown in figures 4.19 to 4.21 and in figures 4.22 to 4.24 for the salinity.

The first correlation EOF of the temperature clearly has the same shape as the network degree in figure
4.3. Also, EOF1 steadily increases in importance when approaching the tipping point, while EOF2 and
EOF3 decrease.

In case of the salinity, EOF1 does become more dominant upon approaching the tipping point and the
importance of EOF2 and EOF3 decreases. The shape of EOF1 also resembles the shape of the network
degree of the original data.
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Figure 4.19: Pattern of the first correlation EOF of the temperature field at each of the four points
approaching the tipping point. The percentage of the variance that is explained by EOF1 is indicated
below each figure.
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Figure 4.20: Pattern of the second correlation EOF of the temperature field at each of the four points
approaching the tipping point. The percentage of the variance that is explained by EOF2 is indicated
below each figure.
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Figure 4.21: Pattern of the third correlation EOF of the temperature field at each of the four points
approaching the tipping point. The percentage of the variance that is explained by EOF3 is indicated
below each figure.
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Figure 4.22: Pattern of the first correlation EOF of the salinity field at each of the four points approaching
the tipping point. The percentage of the variance that is explained by EOF1 is indicated below each
figure.
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Figure 4.23: Pattern of the second correlation EOF of the salinity field at each of the four points ap-
proaching the tipping point. The percentage of the variance that is explained by EOF2 is indicated below
each figure.
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Figure 4.24: Pattern of the third correlation EOF of the salinity field at each of the four points approaching
the tipping point. The percentage of the variance that is explained by EOF3 is indicated below each
figure.
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4.5 Limited grid networks

Ideally, we would like to construct networks from oceanographic data and find an indicator for the tipping
point of the MOC from these networks. However, the resolution of this data is limited. Because of this,
we want to know whether networks constructed from lower spatial resolution grids also show a warning
signal. Therefore we create networks from two different grids with fewer nodes and at different locations.
The first grid contains 32 grid points at the surface and 32 points at the bottom of the basin, we refer
to this as the depth-surface grid. The second grid has 16 points in the north and south of the basin,
which cover the entire depth of the basin. This grid is referred to as the north-south grid. These grids
are shown in figure 4.25 for clarity.
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Figure 4.25: (a) Depth-surface grid. In total 64 grid points, with 32 points at the bottom of the basin
and at the surface. (b) North-south grid. In total 32 points, with 16 points at both the northern and
southern edge of the basin.

Using these grids, we once again construct networks at each of the four points approaching the tipping
point. The degree of the networks constructed from the temperature are shown in figures 4.26 and 4.27.
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Figure 4.26: Degree constructed from the temperature. Depth-surface grid shown in figure 4.25a has
been used. The blue line shows the degree of the bottom of the basin, red that of the surface.
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Figure 4.27: Degree constructed from the temperature. North-south grid from figure 4.25b has been
used. The blue line shows the degree of the nodes in the south, the red line the degree of nodes in the
north. Note that the degree is plotted on the horizontal axis and the depth on the vertical axis.

The degree of the depth-surface grid in figure 4.26 shows different behaviour in the depth and the surface,
as was also the case for the original network in figure 4.3. The degree at the surface (red) does not show
a clear evolution when approaching the tipping point, rather it appears to be latitude dependent. The
degree at the bottom of the basin (blue) does show an evolution. As was the case for the original network,
the bottom nodes become more connected.

The network constructed from the north-south grid in figure 4.27 also shows the same evolution as
expected from the original network. In both the north (red) and south (blue), the degree increase in the
lower part of the basin. In the south a higher degree is reached closer to the surface than in the north.
This effect is also seen in figure 4.3.

As in section 4.2, we also consider the degree distribution, shown in figures 4.28 and 4.29.
In the degree distribution of the original temperature network (figure 4.5), we saw a separation of two
peaks when approaching the tipping point and an increasing occurrence of higher degrees.

The degree distributions of the depth-surface and the north-south grids also show a peak of increasing
height moving to the right when approaching the tipping point. A separation of the two peaks is also
seen, though it is less pronounced in case of the depth-surface grid.

From the above figures, we can conclude that the evolution of the network is still visible when con-
structed from fewer nodes. However, the question is whether this evolution is enough to find an indicator
that can provide a warning signal.
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Figure 4.28: Degree distribution of the temperature network, constructed from the depth-surface grid in
figure 4.25a.
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Figure 4.29: Degree distribution of the temperature network, constructed from the north-south grid in
figure 4.25b.
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4.6 Warning signal

We now want to define a possible indicator that can provide an early warning signal when approaching
the tipping point of the MOC. In the degree distributions in figures 4.5, 4.6, 4.28 and 4.29 we saw a clear
separation of two peaks and an increasing occurrence of higher degrees when approaching the tipping
point. This clear evolution motivates us to use the degree ratio dr as an indicator. The degree ratio is
defined as

dr =
d

dmax
, (4.3)

where d is the highest value of the degree that is observed in the network and dmax is the degree of all
nodes when the network is fully connected.

We compute this quantity at each of the four points indicated in the bifurcation diagram, as well as
in four other intermediate points. We can then plot the degree ratio dr as a function of the freshwater
flux parameter β. In figure 4.30 this is plotted for the original temperature network as well as for the
networks constructed from the depth-surface and north-south grids. Figure 4.31 shows the same for the
salinity. As expected, the degree ratio increases when approaching the tipping point.
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Figure 4.30: Degree ratio as a function of the freshwater flux parameter β, constructed from the original
temperature network (black), the network from the depth-surface grid (blue) and from the north-south
grid (red).
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Figure 4.31: Degree ratio as a function of the freshwater parameter β, constructed from the salinity
networks.
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We can use the degree ratio to define an early warning signal in several different ways. The easiest way
is by simply setting a threshold value for the degree ratio that signals the approaching tipping point.
For example, we can define dr ≥ 0.5 to be the indicator for a warning signal. We see that in case of
the original temperature and salinity networks, this threshold can indeed provide a warning. Especially
for the temperature network an early warning is given, in case of the salinity network the warning is
given later. The indicator is also sufficient for the limited north-south temperature grid. In case of the
depth-surface grid however, no warning is received.

We can also define an indicator in different ways, for example by using the derivative or averages of
the degree ratio. The derivative δd is found by calculating

δd(k) =
dr,k − dr,k−1

βk − βk−1
.

A threshold value then needs to be set for the derivative to provide a warning.
When using averages, we can calculate the average ratio µr as

µr(k) =
µk
µk−1

,

for the kth degree ratio. In this way, we make use of previous records. When the average ratio reaches a
certain threshold, a warning signal can be given.

Because we have only computed the degree ratio for eight different values of β, we find that both of
these two methods cannot give us a good warning signal. Although more advanced measures also exist,
setting a threshold dr ≥ 0.5 in most case provides us with an early warning signal that is sufficient for
the scope of this thesis.
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Chapter 5

Results: Asymmetrical forcing

In this chapter, we consider the asymmetrically forced MOC. We again construct the bifurcation dia-
gram and create temperature networks at different points approaching the tipping point. EOFs are also
investigated. We consider networks from limited grids and find an indicator for a warning signal.

5.1 Bifurcation diagram

The Meridional Overturning Circulation is now forced with an asymmetric freshwater flux, as described
by equation 3.3. We can now find the multiple steady states of the system by varying the parameter βn
for a fixed value of β = 0.34 m yr−1. The resulting bifurcation diagram is shown in figure 5.1. In this
figure, the sum of the maximum Ψ+ and minimum Ψ− values of the strength of the MOC are plotted
against the control parameter βn.
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Figure 5.1: Left: Bifurcation diagram of the asymmetrically forced MOC. The sum of the maximum Ψ+

and minimum Ψ− values of the strength of the MOC are plotted against βn. Stable steady solutions
are indicated by drawn curves, unstable steady solutions by dashed curves. The points S indicate the
saddle-node bifurcations. Points 1 to 4 are indicated for future reference. Right: Patterns of the MOC
on both branches are shown. Locations where the examples were taken are indicated by the blue points
labeled with a and b in the bifurcation diagram.

We see that the only two solutions are the asymmetrical MOC+ and MOC- states. Two saddle-node
bifurcations (indicated with points S in the bifurcation diagram) are present and are connected by un-
stable steady states. For βn = 0, both the stable MOC+ and MOC- solutions exist, as was also the case
for symmetrical forcing (see figure ??). The steady state MOC+ and MOC- solutions are shown in the
left of figure 5.1.

As in chapter 4, four points that approach the tipping point S are indicated with stars in the bifurcation
diagram. The coordinates of these points are given in table 5.1.

51



52 CHAPTER 5. RESULTS: ASYMMETRICAL FORCING

β m yr−1 Ψ+ −Ψ−( Sv)
point 1 0.0499 11.6
point 2 0.140 11.2
point 3 0.154 11.0
point 4 0.166 10.5

Table 5.1: Coordinates of the four points approaching the tipping point S indicated on the bifurcation
diagram.

We again create a 500 year time series of the temperature at each of these four points by adding a
reproducible random white noise perturbation to the forcing,

FS = β
cos( πθθN )

cos(θ)
+ βnFp(θ) + ∆wr(θ, t).

Again, wr is the white noise perturbation that depends on latitude θ and time t and Delta = 0.1 is the
amplitude of the perturbation. Using these time series, we can construct networks.
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5.2 Networks

At each of the four points indicated in the bifurcation diagram, we construct networks from the temper-
ature data, using a threshold value of τ = 0.7. The degree of the temperature network at each of the four
points is plotted in figure 5.2.
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Figure 5.2: Degree of the temperature network, constructed with threshold value τ = 0.7 at each of the
four points approaching the tipping point.

The evolution of the network degree of the temperature is very similar to the case with symmetrical
forcing in figure 4.3. We do see that the highest degree that is reached in this network is about 400, while
in the symmetrical case it was 350.

We can also plot the degree distribution at each point along the bifurcation diagram. This is shown in
figure 5.3. Here we again see that upon approaching the tipping point, two separate peaks in the degree
distribution form. One peak moves further to the right and increases in height. To explain the evolution
of the network degree, we again consider the EOFs of the system.
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Figure 5.3: Degree distribution of the temperature network at each of the four points approaching the
tipping point. On the horizontal axis the degree is shown, on the vertical axis the occurrence of a
particular degree.
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5.3 Empirical Orthogonal Functions (EOFs)

As in chapter 4, we decompose the data and construct the first three EOFs of the temperature data at
each of the four points approaching the tipping point. These three EOFs account for 90% to 97% of the
total variability. Figures 5.4 to 5.6 show the evolution of the three EOFs along the bifurcation diagram.
Below each figure, it is also shown how the importance of each EOF changes.

As was the case for a symmetrically forced MOC, we see that EOF1 increases in importance when
approaching the tipping point. EOF2 and EOF3 on the other hand, decrease in importance.
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Figure 5.4: Pattern of the first EOF of the temperature field at each of the four points approaching the
tipping point. The percentage of the variance that is explained by EOF1 is indicated below each figure.
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Figure 5.5: Pattern of the second EOF of the temperature field at each of the four points approaching
the tipping point. The percentage of the variance that is explained by EOF2 is indicated below each
figure.
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Figure 5.6: Pattern of the third EOF of the temperature field at each of the four points approaching the
tipping point. The percentage of the variance that is explained by EOF3 is indicated below each figure.
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5.3.1 Reconstructed Networks

By once again partly reconstructing the temperature data from the first three EOFs as

F1 = a1c
T
1 ,

F2 = a1c
T
1 + a2c

T
2 ,

F3 = a1c
T
1 + a2c

T
2 + a3c

T
3 ,

we can create networks from F2 and F3. These reconstructed temperature networks are shown in figures
5.7 and 5.8.

The degree of both the network constructed from F2 and from F3 strongly resembles the degree field of
the original network in figure 5.2. For the network constructed from F2 we see that the degree in general
is too high and islands of higher degree appear in the top layer of the basin. The degree is lowered when
EOF3 is added in the network constructed from F3 and the islands also disappear.
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Figure 5.7: Degree of the network constructed from F2 of the temperature, with threshold value τ = 0.7,
shown at each of the four points approaching the tipping point.
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Figure 5.8: Degree of the network constructed from F3 of the temperature, with threshold value τ = 0.7,
shown at each of the four points approaching the tipping point.
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5.4 Limited grid networks

We again consider the limited depth-surface and north-south grids of figure 4.25. We construct the
temperature networks from these two grids at each of the four points. The degree of the networks is
shown in figure 5.9 and 5.10.

In the degree of the depth-surface network we see different behaviour at the surface and at the bottom.
The degree at the bottom of the basin (blue) increases when approaching the tipping point, whereas the
surface degree (red) does not show any clear evolution. The same effect is seen in the degree of the
north-south network.

We can also plot the degree distributions of these networks. This is shown in figures 5.11 and 5.12.
As expected, we once again see that there is a separation of two peaks upon approaching the tipping
point. The number of nodes with high degree also increases.
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Figure 5.9: Degree of the network constructed from the depth-surface temperature grid. The blue line
shows the degree at the bottom of the basin, red the degree at the surface. Latitude is plotted on the
horizontal axis, degree on the vertical.
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Figure 5.10: Degree of the network constructed from the north-south temperature grid. The blue line
shows the degree of the nodes in the south, red the degree of the nodes in the north. Degree is plotted
on the horizontal axis, depth on the vertical.
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Figure 5.11: Degree distribution of the temperature network in each of the four points approaching the
tipping point, constructed from the depth-surface grid.



5.4. LIMITED GRID NETWORKS 61

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

degree

oc
cu

re
nc

es

point 1

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

degree

oc
cu

re
nc

es

point 2

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

degree

oc
cu

re
nc

es

point 3

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

degree

oc
cu

re
nc

es

point 4

Figure 5.12: Degree distribution of the temperature network in each of the four points approaching the
tipping point, constructed from the north-south grid.
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5.5 Warning signal

In chapter 4 we saw that in our case, the most useful indicator that can provide an early warning signal
was the degree ratio dr, defined in equation 4.3. Therefore, we also compute the degree ratio of the
temperature in case of asymmetrical forcing of the MOC. We calculate dr in each of the four points
indicated in the bifurcation diagram in figure 5.1 and in three extra intermediate points. In figure 5.13
the degree ratio of the networks constructed from the original temperature grid (black), the depth-surface
grid (blue) and the north-south grid (red) is plotted against the asymmetrical freshwater flux parameter
βn.
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Figure 5.13: Degree ratio as a function of the asymmetrical freshwater parameter βn, constructed from
the original temperature network (black), the network from the depth-surface grid (blue) and from the
north-south grid (red).

If we again set a threshold dr ≥ 0.5, we see that in case of the temperature, the original network and
the network from the north-south grid provide us with an early warning signal. The network constructed
from the depth-surface grid does not give a warning. These results are the same as for the symmetrical
forcing.



Chapter 6

Discussion and Conclusion

From the results shown in chapters 4 and 5, there was a clear evolution in the temperature and salinity
networks when approaching the tipping point of the Atlantic Meridional Overturning Circulation. In
both the temperature and salinity networks the degree increased in most -but mainly in the bottom- of
the Atlantic basin.

When we considered the eigenvectors of the symmetrically forced system, we saw that they had the
same general shape as the network degree. This suggests that these eigenvectors might be the dominant
modes of the system but it does not satisfactorily explain the evolution of the network.

The empirical orthogonal functions provided us with more insight. We saw that the first EOFs of
the temperature of both the symmetrically and asymmetrically forced MOC explained an increasing
amount of the variance when the tipping point was approached. Since the network of the first EOF is
fully connected, it follows that the total network also becomes more connected and therefore the degree
increases. The second and third temperature EOFs then provide the network with its smaller scale
structure and the lower degree at the surface. In case of the salinity EOFs, the first EOF did not increase
in importance when approaching the tipping point, the third EOF on the other hand did. We also saw
that the third EOF was much more important in the reconstructed salinity networks than was the case
for the reconstructed temperature networks. This is explained by the increasing importance of the third
salinity EOF.

To test whether the evolution of the networks when approaching the tipping point was still appar-
ent when constructed from fewer nodes, we considered limited grids. For both the symmetrically and
asymmetrically forced systems, we constructed networks of the temperature from a depth-surface and
north-south grid. In the lower layers, the increasing network degree was still observed.

To find an indicator that can provide an early warning signal of the approaching tipping point, we
considered the degree ratio and set a threshold value of dr ≥ 0.5. This indicator works well for the tem-
perature networks constructed from the full original grid and from the north-south grid. In case of the
depth-surface grid however, no warning was provided. This is probably because the temperature network
at the bottom of the basin becomes highly interconnected, but does not form links with the nodes at the
surface. Because of this, the degree ratio does not reach above 0.5. By no longer including the nodes at
the surface in the grid, this problem will very possibly be resolved. For the symmetrically forced MOC,
we also considered the degree ratio of the salinity. The threshold of 0.5 does provide a warning signal,
but it is given closer to the tipping point than was the case for the temperature. Since the degree of the
salinity network also increases less rapidly than that of the temperature, this was to be expected. To
provide an early warning signal from the salinity network, it is better to set the threshold of the degree
ratio at a lower value. Using the threshold of the degree ratio as an early warning indicator has the
advantage that no records of previous situations are needed. On the other hand, this indicator might
be prone to errors and false alarms can be triggered. Therefore, the development of a more advanced
indicator is probably desirable.

In conclusion, by constructing temperature and salinity networks in the meridional-depth plane of the
Atlantic MOC, we have shown that there is a clear evolution in the network degree when approaching
the tipping point of the MOC. The degree ratio increases steeply and can be used as an early warning
indicator. The advantages of this indicator with respect to early ones based on temporal correlation, is
that shorter time series can be used. The disadvantage is that the indicator is based on a network of
spatial measurements. We showed, however, that only with a partial set of grid points, the indicator may
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be valuable to warn for the approaching tipping point.
These results should be directly applicable to output from general circulation models. They further-

more show that to apply them to observations, a good spatial resolution in measurements is desirable.
With a potential application to determine whether transitions in the MOC have been involved in the
Dansgaard-Oeschger events, well synchronised records of ocean bottom temperature are desired.



Appendix A

Network tests

A.1 Networks with different thresholds

We have also constructed networks with different threshold values τ = 0.6 and τ = 0.8. The degrees
of these networks for both temperature and salinity are shown in figures A.1 to A.4. Results are not
different from the threshold value of τ = 0.7.
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Figure A.1: Network degree of the temperature, constructed with threshold value τ = 0.6.
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Figure A.2: Network degree of the temperature, constructed with threshold value τ = 0.8.
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Figure A.3: Network degree of the salinity, constructed with threshold value τ = 0.6.
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Figure A.4: Network degree of the salinity, constructed with threshold value τ = 0.8.



68 APPENDIX A. NETWORK TESTS

A.2 Networks from longer time series

We have also constructed networks where THCM was run for a period of 2000 years rather than 500
years. Results are shown in figures A.5 and A.6. The network degree still increases when approaching
the tipping point, however the surface area with a low degree decreases.
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Figure A.5: Network degree of the temperature, constructed from a 2000 year run of THCM. Threshold
value τ = 0.7.
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Figure A.6: Network degree of the salinity, constructed from a 2000 year run of THCM. Threshold value
τ = 0.7.
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