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Abstract

This thesis is about logics that are concerned with reasoning about
knowledge. The acquisition of knowledge can be modelled. There are
several systems to formalize reasoning about knowledge. Two systems
that are used for epistemic logic are intuitionistic logic and the modal
logic S4. Both logics will be discussed. The two differ a lot from
each other, especially in the way that statements are considered to
be true. But classical logic can be reduced to intuitionistic logic and
intuitionistic logic can be reduced to the modal logic S4. This is
done by the tranlations that were introduced by Gödel. One of these
translations will be examined explicitly. The thesis assumes some
familiarity with classical logic.
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1 Introduction

The logic of knowledge is called epistemic logic. Principles of reasoning
about knolwedge can be formalized and these formal statements can then be
verified. There are several kinds of logic that are useful to represent these
statements. We will discuss some logics that are very different from each
other.

An example of a logic that is used to prove statements about knowledge is
intuitionistic logic. This logic was based on the ideas of intuitionism, which
was founded by the Dutch mathematican and philosopher L.E.J. Brouwer
round 1900, see [19]. Intuitionism is a philosophical approach to mathemat-
ics with the idea that mathematical truths are being created rather than
being discovered. This approach is based on the intuitive reasoning of hu-
mans. The charactarization of intuitionism is that mathematical objects only
exist if they can be constructed. Brouwer’s ideas of intuitionism were still
rather vague and therefore needed a formalization. In 1927 the Dutch Math-
ematical Association published a prize question to formalize the intuitionistic
ideas. Brouwer’s student A. Heyting then defined intuitionistic logic and was
awarded the prize. In 1930 he also formalized the meaning of the logical op-
erators in this logic. This logic is based on constructions of objects. This
means that the validity of proofs are derived from constructions. Because of
this intuitive view on truths, some assumptions of classical logic are being
rejected. Hence intuitionistic logic had to be different from the classical one.
As the truth of a mathematical statement can only be verified if it is intu-
itionistically true. If a statement is not constructed yet, it is neither true
nor false. Therefore the law of excluded middle is not valid in intuitiontic
logic and must be rejected. In this thesis we will not discuss predicate logic.
Therefore ”intuitionistic logic” should be read as intuitionistic propositional
logic.

Another logic that is used for knowledge is S4. This is an example of modal
logic, which contains different sorts of modalities, see [20]. It was first intro-
duced in 1918 by C.I. Lewis and further developed by several other logicians
among which S. Kripke in the 1960’s. During these years various modal sys-
tems were created and improved. Modal logic is an extension of classical
logic. It uses modal operators to express modalities, for example the modal-
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ity of knowledge, epistemic logic. The semantics of modal logic consists of
propositions including the modal operators. In epistemic logic they express
both truth and knowledge. Lewis introduced the five different systems S1 up
to S5. In 1943 Alban created S6 and in 1950 Halldén developed S7 and S8.
All of them an extension of the former one. S4 is a type of modal logic that is
very useful for reasoning about knowledge. It has some particular rules that
contain the modal operators. This way statements about truth knowledge
can be derived from other statements about truth and knowledge.

Even if intuitionistic logic and S4 contain very different rules, the two logic
share a correspondence, as will be shown in this thesis. Intuitionistic logic is
embeddable into classical modal logic by means of the Gödel translation, cre-
ated by K. Gödel. This translation is possible, because the modal language
is sufficiently rich. Gödel noticed the resemblance of the semantics that were
used for the logics. He also realized how statements of intuitionistic logic can
be interpreted as statements of S4. By means of the Gödel translation state-
ments in intuitionistic logic can be converted into statements with classical
connectives.

The research on different epistemic logics is very relevant for the study of
artificial intelligence. This topic was first studied for philosophical purpose,
but since the 1980’s epistemic logic has been studied by computer scientists
too. Thinking about the way human reason about knowledge is a requisite
for understanding human intelligence, as this enables us acting and thinking.
Therefore research on knowledge is necessary for developing a simulation on
a computer, because this way we can reason about the knowledge of agents.
To build a computer simulation of a human being (i.e. an agent or robot), the
builder might want to add some knowledge in the form of data to the robot.
The robot must be able to think about the truth of different statements. But
he also has to evaluate the knowledge it has acquired. This thinking must be
based on formal definition, rather than intuitive ideas. Therefore epistemic
logic is very useful for the building of robots and agents and therefore an
interesting topic in artificial intelligence, see, [9].

Thus intuitionistic logic and S4 are two very different logics and both will
be discussed intensively. This paper is organized as follows. In Section 2 we
will go through the concepts of intuitionistic logic and we will present a proof
system, called natural deduction. This system is used for classical logic, but
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it suits even better for intuitionistic logic. Also Kripke models that form a
consistent and complete semantics for intuitionistic logic are presented. Sec-
tion 3 contains an introduction to modal logic and a description of S4. Kripke
models for S4 are clarified and the differences between these models for S4
and intuitionistic logic are shown. In Section 4 both logics will be compared
and it will be demonstrated how intuitionistic logic can be interpreted in S4.
In Section 5 we evaluate the Gödel translation and discuss the importance of
it. The translation has consequences for both philosophers and mathemati-
cians. We will review if the translation is only interesting in a philosophical
way or also for a technical purpose. In this paper we will use the letters φ,
ψ and χ for formulae, whereas the letters p and q range over propositional
variables.
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2 Intuitionistic logic

2.1 Basic principles

Intuitionistic logic is the logic that is used for intuitionism, which is an ap-
proach to mathematics. The idea of this approach is that mathematical
objects only exist when they have been constructed. In intuitionism math-
ematical objects only exist if they can be constructed in the future. It is
based on the human experience of knowledge that is obtained over time. In-
formation is obtained over time and this knowledge will not be lost.

Intuitionistic logic differs from classical logic in its interpretation of what
it is for statements to be true. In classical logic statements are either true
or false, even if it has not been proved yet. In intuitionistic logic this is not
the case. The truth of a statement is constructive. It is based on a proof.
Therefore, aside from being true or false, statements can also be undecided.
There is a lack of proof for its truth.

Intuitionistic logic uses the same connectives as classical logic:

• negation: ¬

• conjunction: ∧

• disjunction: ∨

• implication: →

• equivalence: ↔

Thus an atom is considered true if we have a proof for it. Below here is a
list of the logical connectives that shows how proofs of composite statements
can be constructed from proofs of there parts.

• p ∧ q: p is proved and q is proved

• p ∨ q: p is proved or q is proved

• p→ q: a construction is provided that converts every possible proof of
p into a proof of q
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• ¬p: this can be converted into p → ⊥. This means: every possible
proof of p results into a proof of a contradiction

All formulas that are provable in intuitionistic logic are also provable in clas-
sical logic. But intuitionistic logic is a restriction of classical logic. One of
the main principles that are not valid in intuitionistic logic is the law of ex-
cluded middle. After all, if a statement has not been constructed yet, it is
neither true nor false. This results into many other principle that are valid in
classical logic, but not in intuitionistic logic, for example double elimination
principle, which will be further explained later.

The disjunction property is that if φ ∨ ψ is derivable, then φ is derivable
or ψ is derivable. But in intuitionistic logic a statement can only be true if it
is there is a proof that it is true. If a statement cannot be proved, the com-
plement cannot automatically be inferred. In classical logic the axiom p∨¬p
is a tautology, but the axiom is not valid in intuitionistic logic. Another
axiom that intuitionistic logic does not inherit from classical logic is double
negation elimination principle: ¬¬p → p. The reason why this axiom is not
valid is because if a state makes ¬¬p true, it is simply because ¬p cannot be
proved. But that does not imply that p can be constructed. So p does not
have to be valid in this state. Therefore ¬¬p → p is not a valid axiom in
intuitionistic logic. On the other hand, p → ¬¬p is a valid axiom. This is
because as soon as p is proved in some state, ¬p cannot be proved anymore,
so ¬¬p is valid too. The fact that the law of the excluded middle and the
double elimination principle are not valid in intuitionistic logic, implies that
several other axioms are not valid either.

An example for this is De Morgan laws. These laws convert propositions
that include a disjunction into propositions that include a conjunction and
vice versa: ¬(p ∧ q) ↔ (¬p ∨ ¬q) and ¬(p ∨ q) ↔ (¬p ∧ ¬q). One of these
four implications is invalid in intuitionistic logic: ¬(p ∧ q)→ (¬p ∨ ¬q).

Peirce’s law can be thought of the law of excluded middle in a different
form. This proposition is also not valid in intuitionistic logic. Peirce’s law is
as follows: ((p→ q)→ p)→ p. The constructive invalidity of these proposi-
tions will be proved later.
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2.2 Natural deduction

A useful way to prove propositions in classical logic is using truth tables.
These tables consist of all possible combinations of assignments of truth val-
ues to the atoms. For every single valuation it can be decided if the formula
holds. If the formula holds for all valuations, the formula is valid. If it holds
for at least one valuation, the formula is satisfiable. In classical logic atoms
have only two possible truth values: true and false. In intuitionistic logic
there can not be given any finite truth tables, because there is no excluded
middle. Therefore truth tables is not a valid system to decide the satisfiabil-
ity or validity of propositions.

Another system that is used to verify statements in classical logic is nat-
ural deduction. This proof system was introduced by Gentzen in 1935. The
idea is that conclusions are derived from assumptions. This system is based
on the natural form of reasoning. It contains introduction and elimination
rules for the connectives: conjunction, disjunction and implication. The in-
troduction rules indicate how is verified that the proposition with one of the
connectives is true. The elimination rules tell what statements can be derived
from the truth of the propositions with one of the connectives. One starts
with several premises that are assumed to be true. From these statements
other statements are derived, using the introduction and elimination rules.
Eventually one will come to the conclusion.

These are the introduction rules (I) and the elimination rules (E) of nat-
ural deduction:

• ∧I: If φ is true and ψ is true, then φ ∧ ψ is true

• ∧E: If φ ∧ ψ is true, then φ is true and ψ is true

• ∨I: If φ is true or ψ, then φ ∨ ψ is true

• ∨E: If φ ∨ ψ is true and χ can be derived from φ and from ψ, then χ
is true

• → I: If φ→ ψ is true and φ is true, then ψ is true

• → E: If ψ is verified from φ, then φ→ ψ is true

• ¬I: If φ leads to ⊥, then ¬φ is true
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• ¬E: If φ is true and ¬φ is true, ⊥ is true

• ⊥E: If ⊥ is true, then any proposition χ can be derived

Natural deduction is also a good system for intuitionistic logic. Only the
rules that are allowed to derive new statements are slightly different from
the rules in classical logic. All the rules that are enumerated above are
valid in intuitionistic logic. But classical logic contains an extra rule that is
not valid in intuitionistic logic: reduction to the absurd. This rule encom-
passes that if φ implies ⊥, ¬φ is derived. This rule can not be inherited from
classical logic when using the natural deduction system in intuitionistic logic.
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2.3 Kripke models

The semantics that are used for intuitionistic logic is convenient and sim-
ple. You may think of a mathematician who extends his knowledge in non-
deterministic time. He has a set of objects that he has constructed. At any
moment he can choose to stop or to continue creating new objects. The
mathematican also has a set of statements about the objects. In every stage
he observes his knowledge about the objects and adjusts his set of state-
ments. His current statements are all considered true at the moment. When
going to a next moment he can choose from various stages. These stages are
the possible worlds.

As stated before, natural deduction is a useful system for proving the va-
lidity of a formula. To prove the invalidity of a formula, Kripke semantics
is very helpful. This was introduced by Saul Kripke in the late 1950s and
the early 1960s, see [18]. The Kripke models were first considered for modal
logic, but later also used for intuitionistic logic.

When one wants to prove that a formula is invalid, a counter model can
be created. This model is called a Kripke model. The model consists of
stages that represent the possible worlds. One of these is stages, the root,
encompasses the current situation. The stage has a set of objects that have
been constructed so far. And it includes a set of statements about these ob-
jects that are recognised as true at that moment. So the first stage represents
the present with all the knowledge that is obtained so far.

There are other stages that show what can happen in the future. The stages
are connected by branches. These branches can be seen as various choices for
objects that can be constructed. The obtained knowledge is represented by
atoms. All worlds in the model are accessible from the root via the branches.
The atoms in the worlds show what can be proved in the future. The idealiza-
tion of this semantics is that the amount of information will never decrease.
Knowledge can be obtained, but cannot be lost.

Kripke models are very helpful to see whether statements of intuitionistic
logic are valid or invalid. A model that shows a contradiction for a state-
ment, is a counter model for this statement.
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A Kripke model is a triple 〈K,≤, V 〉 where:

• K is a set of worlds

• ≤ is a partial ordered relation on K

• V is a function on worlds that takes a set of atoms that are known in
these worlds, where V (k) stands for the set of atoms

These worlds assign truth values to statements. If p is true in node k we
write: k 
 p. This denotes k forces p. In every world new statements can be
proved true. ≤ can be seen as an accessibility relation between the elements
of K and tells what worlds can be reached from a particular world. The
model is a structure of worlds with a certain hierarchy. So k ≤ ` means that
the world ` is accessible from the world k. And ` inherits all the formulas
that are valid in k. So the relation ≤ implies what formulas are inherited
in the several worlds. The atoms are persistent, which means that if k ≤ `
then V (k) ⊆ V (`). The relation is reflexive, transitive and antisymmetric.
It is partially ordered, instead of linearly ordered, as worlds can have more
than one accessible world and can also end any time. We say that ` is the
immediate successor of k if k ≤ ` and there is no world m for which k ≤ m
and m ≤ `. With other words, m is not in between the worlds k and `. We
use the notation k 
 φ when φ is valid in every model of K.

These rules are valid in intuitionistic logic: For all k in K:

• k 
 p iff p ∈ V (k)

• k 
 φ ∧ ψ iff k 
 φ and k 
 ψ

• k 
 φ ∨ ψ iff k 
 φ or k 
 ψ

• k 
 φ→ ψ iff for all ` such that k ≤ `, if ` 
 φ then ` 
 ψ

• k 
 ⊥ never occurs

One can show that if a statement has been established in k ∈ K, then for all
` ∈ K where k ≤ `, that statement will be true in `. This theorem means
that the accessible states contain knowledge that is possible in the future and
the knowledge that is obtained in previous states.
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Below is an example of a Kripke model. The world 0 is the root. World
1 is directly accessible from 0. In 1 the atom p is true. This model is a
counter model for the formula p∨¬p. In world 0 neither p nor ¬p is proved.
Then p ∨ ¬p is not always true and therefore this formula is not a tautology
in intuitionistic logic.

Counter model for p ∨ ¬p:

0

1 p

Counter model for ¬(p ∧ q)→ (¬p ∨ ¬q):

0

1 p 2 q

Counter model for ((q → p)→ q)→ q:

0

1 q

Counter model for (p→ q)→ (¬p ∨ q)

0

1 p, q
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3 System S4

3.1 Modal logic

Modal logic is an extension of classical logic that uses modal operators. These
operators express the modality of statements. They qualify the truths of
judgements. The modalities are necessity (using the box operator: 2) and
possibility (using the diamond operator: 3). For example the proposition
”it is necessary that p” implies the proposition ”it is possible that p”, but
not vice versa.

2p means: p is necessarily true 3p means: p is possibly true 3 is equiv-
alent to ¬2¬, because ’possibly true’ means ’not necessarily not true’.

The concenption of modal logic lead to a whole new set of judgements about
what statements implied others. If p and q are necessarily true, then the
proposition p∧ q is necessarily true and vice versa. And if p or q is necessar-
ily true, then p ∨ q is necessarily true. But the reverse is not valid. Another
example for a consequence is: If p → q is necessary, then if p is possible,
so is q. An important rule in modal logic is the Necessitation rule, which
says that if φ is a theorem in the logic, then so is 2φ. This means that if a
statement is a tautology, say p ∨ ¬p, this statement is necessarily true. This
implies that 2(p ∨ ¬p) is also valid.

An example of modal logic is epistemic logic. This logic uses the modal-
ity operators to indicate the knowledge of statements. The box operator
expresses the knowledge of a proposition. As the diamond is equal to the
negation of the box before the negation of a statement, the diamond ex-
presses that it is not known that the statement is not true.

2p means: p is known.
3p means: not p is not known to be true.

Thus 3p means that p is compatible with the present state of obtained
knowledge. When modal logic is used for reasoning about knowledge, the set
of rules in this logic depend on our intuitionistic ideas of obtaining knowl-
edge.

14



3.2 Definition of system S4

There are several systems in modal logic. One of these is called S4 and is
often used to verify statements in epistemic logic. S4 inherits all the rules
of classical logic and includes several other rules. The logic also contains
the Necessitation rule. If some statement is a tautology, one will know this
statement: ` (p ∨ ¬p) ⇒ ` 2(p ∨ ¬p). This means that it is assumed that
everybody knows the axioms that are always true. Apart from these rules,
S4 includes some other rules:

• K: 2(φ → ψ) → (2φ → 2ψ) This is the distribution rule. It means
that if Mary knows φ→ ψ, then if Mary knows φ, Mary knows ψ.

• T: 2φ→ φ If Mary knows φ, φ must be true.

• 4: 2φ→ 22φ If Mary knows φ, Mary knows that she knows φ.

Rule 4 is called the positive introspection axiom. It means that one knows
that one knows what one knows. S4 can be used for several kinds of modal
logic and is among others to prove statements in epistemic logic. Another
system that is often used for epistemic logic is called S5. This system obtains
the rules of S4, but is extended by the axiom: ¬2φ→ 2¬2φ. This axiom is
called the negative introspection axiom. It means that one knows that one
does not know what one knows. System S5 is often used by computer sci-
entists, but not by philosophers as they suppose that humans do not always
know what they do not know.

To decide the validity of statements about knowledge, one can use a system
made for modal logic. This system resembles the natural deduction system
of classical logic, but includes also the rules of S4 (or one of the other logics
if that is preferred). The new rules in S4 enable eliminating and introducing
boxes and diamonds as well.

Not only do we want to prove the validity of statements, we also need models
to visualize the validity of statements. Kripke models are also used for modal
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logics like S4. Again the model exists of world that are accessible from the
root world. In this case the box, which means necessarily true, holds that
the proposition is true in all accessible worlds. Whereas the diamond, which
means possibly true, means that the proposition is true in at least one ac-
cessible world. So 2p is true in world w if and only if p is true in all worlds
that are directly reachable from world w.

3.3 Kripke models for S4

The semantics for S4 also consists of Kripke models. These models can among
others show the soundness and completeness of S4. These models are very
similar to the Kripke models for intuitionistic logic. Only the nodes do not
correspond to time stadia, but to possibilities. The frames consist of a set of
worlds and each pair of worlds can have a accessibility relation or not. This
relation is indicated by an R. Thus k R ` means that world ` is accessible
from world k.

In each world truth values are assigned to all propositons. If p is true in
world k, we write: k � p. If a propositional variable p is necessarily true in
world k (i.e. k � 2p), it means that p is true in all accessible world from k.
And p is possibly true in world k (i.e. k |= 3p), it means that p is true in
at least one accessible world from k. If a world does not have any accessible
worlds, 2p holds for any atom p.

A Kripke model is a tripler 〈K,R, V 〉 where:

• K is a non-empty set of worlds

• R is a binairy relation between worlds that shows which worlds are
accessible from other worlds

• V is a function that determines which propositions are true in a possible
world

In contrast to Kripke models of intuitionistic logic, there is no hierarchy in
these models for S4. Worlds can also have an accessibility relation to their-
selves. We write: wRw if w is accessible from w.
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To sum up, these are the rules that hold for Kripke models for S4:

• k � p iff p is true in k

• k � ¬φ iff k 6� φ

• k � φ ∧ ψ iff k � φ and k � ψ

• k � φ ∨ ψ iff k� φ or k � ψ

• k � 2φ iff for all ` such that k R `, ` � φ

• k � 3φ iff for some ` such that k R `, ` � φ

The accessibility relation for the system S4 has the properties reflexivity and
transitivity. The reflexive property means that all worlds are accessible from
themselves. Hence k R k for every world k. This means that 2φ→ φ holds.
Whereas the transitivity property implies that if k R ` and ` R m then
k R m. This property corresponds to the rule 2φ→ 22φ.
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4 Gödel translation

4.1 Relation of intuitionistic logic and S4

Intuitionistic logic and the modal logic S4 are two very different kinds of
logics. But Kurt Gödel provided a translation to embed one into another,
see [14]. According to Gödel intuitionistic logic can be interpreted into clas-
sical modal logic. This can be done by the Gödel translation, also sometimes
called the Gödel-McKinsey-Tarski translation. He also showed how classical
first-order logic can be embedded into intuitionistic first-order logic using the
Gödel-Gentzen negative translation. The main property of this translation
has the following form: Γ `c φ iff Γ¬¬ `i φ

¬¬. In this thesis this translation
will not be discussed.

The Gödel translation, which is called τ , has the property that it can con-
vert every intuitionistic propositional formula φ into a modal propositional
formula φτ such that: Γ `i φ iff Γτ `S4 φ

τ . The formula Γ `i φ is used for
entailment in intuitionistic logic and Γ `S4 φ is used for entailment in S4. Γτ

means that the translation is applied to every formula in Γ. The symbol `
is used to indicate derivability: we write φ ` ψ for ψ is derived from φ.

Gödel created a mapping from formulae of intuitionistic logic into formu-
lae of S4:

• pτ = 2p for any propositional variable p

• ⊥τ = ⊥

• (φ ∧ ψ)τ = φτ ∧ ψτ

• (φ ∨ ψ)τ = φτ ∨ ψτ

• (φ→ ψ)τ = 2(φτ → ψτ )

• (¬φ)τ = 2¬φτ

To prove that the formula Γ `i φ iff Γτ `S4 φ
τ holds, both directions of the

formula must be proved.
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4.2 From intuitionistic logic to S4

In this subsection we will prove ⇒: If Γ `i φ then Γτ `S4 φ
τ . This proof is

done by induction on the proofs for every logical connective.

Lemma 4.1. `S4 φ
τ → 2φτ .

This Lemma is called the self necessitating rule. If a formula is valid, it is
valid in every possible world. So the formula is necessarily valid φ stands for
any formula containing the logical connectives. This Lemma will be proved
by induction on φ for the following formulae:

Proof. First the base axioms will be proved:

We prove ` ⊥τ → 2⊥τ :
Since ⊥τ =def ⊥ and ` ⊥ → 2⊥ (⊥ elimination), ` ⊥τ → 2⊥τ .

We prove ` pτ → 2pτ :
Since pτ =def 2p and ` 2p→ 22p (rule in S4), ` pτ → 2pτ .

Now the other formulae will be proved:

First induction step: ` (φ ∧ ψ)τ → 2(φ ∧ ψ)τ . Suppose ` φτ → 2φτ

and ` ψτ → 2ψτ , then ` φτ ∧ ψτ → 2φτ ∧ 2ψτ . We need to prove
` φτ ∧ ψτ → 2(φτ ∧ ψτ ). This can be derived from ` φτ ∧ ψτ → 2φτ ∧2ψτ

and from ` 2φτ ∧ 2ψτ → 2(φτ ∧ ψτ ) (rule in modal logic). And given
(φ ∧ ψ)τ =def φ

τ ∧ ψτ and ` φτ ∧ ψτ → 2(φτ ∧ ψτ ), we thus have proved
` (φ ∧ ψ)τ → 2(φ ∧ ψ)τ .

Second induction step: ` (φ ∨ ψ)τ → 2(φ ∨ ψ)τ . Suppose ` φτ → 2φτ

and ` ψτ → 2ψτ , then ` φτ ∨ ψτ → 2φτ ∨ 2ψτ . We need to prove
` φτ ∨ ψτ → 2(φτ ∨ ψτ ). This can be derived from ` φτ ∨ ψτ → 2φτ ∨2ψτ

and ` 2φτ ∨ 2ψτ → 2(φτ ∨ ψτ ) (valid rule in modal logic). And given
(φ ∨ ψ)τ =def φτ ∨ ψτ and ` φτ ∨ ψτ → 2(φτ ∨ ψτ ), we have proved
` (φ ∨ ψ)τ → 2(φ ∨ ψ)τ .

Third induction step: ` (φ → ψ)τ → 2(φ → ψ)τ . Since we know that
(φ → ψ)τ =def 2(φτ → ψτ ), we can replace (φ → ψ)τ by 2(φτ → ψτ ) and
get 2(φτ → ψτ ) → 22(φτ → ψτ ). This is perfectly valid, because of the
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axiom ` 2p→ 22p in S4.

Fourth induction step: ` (¬φ)τ → 2(¬φ)τ . This can be converted into
` (φ → ⊥)τ → 2(φ → ⊥)τ . And this can be proved by the third induction
step.

And because of these induction steps, we have proved the Lemma φτ → 2φτ

for any formula φ.

Now we still have to prove that the formula Γ `i φ ⇒ Γτ `S4 φτ hold,
using Lemma 4.1. This proof will be done by induction, so it will be verified
that φ can be any propositional formula. Below are the several steps of the
construction of the proof.

i We prove Γ `i φ ⇒ φτ `S4 Γτ . Suppose we have Γ `i φ. Then φ is an
element in the assumption set Γ and thus φτ is also in the assumption
set Γτ . And since φ is derivable from Γ, then φτ must also be derivable
from Γτ . Hence φτ `S4 Γτ .

ii We prove the formula for conjunction introduction. Suppose we have
Γ `i φ∧ψ derived from Γ `i φ and Γ `i ψ. Given the induction hypothesis
we have Γτ `S4 φ

τ and Γτ `S4 ψ
τ , hence Γτ `S4 φ

τ∧φτ . But since we know
that φτ ∧ψτ =def (φ∧ψ)τ , we have proved Γ `i φ∧ψ ⇒ Γτ `S4 (φ∧ψ)τ .

iii We leave the proofs for the formulae for conjunction elemination, disjunc-
tion introduction, disjunction elemination and implication elemination to
the reader, since they are similar to the former proof.

iv Suppose we have Γ `i φ → ψ derived from Γ, φ `i ψ. By the induction
hypothesis we get Γτ `S4 φ

τ → φτ . And this formula can be converted
into `S4

∧
Γτ → (φτ → φτ ). Applying the Necessitation rule to this

formula we have `S4 2(
∧

Γτ → (φτ → φτ )). We rewrite this to

`S4

∧
γ∈Γ

2γτ → 2(φτ → φτ ).

And using Lemma 4.1 this entails Γτ `S4 2(φτ → φτ ) and we apply
(φ → ψ)τ =def 2(φτ → ψτ ), which leads to Γτ `S4 (φ → ψ)τ . Hence we
have proved Γ `i φ→ ψ ⇒ Γτ `S4 (φ→ ψ)τ .
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Now we have proved that Γ `i φ⇒ Γτ `S4 φ
τ .

4.3 From S4 to intuitionistic logic

Now the other direction of the arrow will be proved: Γτ `S4 φ
τ ⇒ Γ `i φ.

This is done by turning the formula into Γ 6`i φ ⇒ Γτ 6`S4 φ
τ . If the an-

tecedent of the implication is true, the truth consequent must also be proved.
By the completeness theorem it is sufficient to show that if Γ does not force
φ in intuitionistic logic, Γτ will not force φτ in S4. To show that a formula
is not forced, a Kripke model can be made as a counter model.

Intuitionistic logic and S4 have Kripke semantics with similar models. The
difference lies in the concept of the model. For intuitionistic logic the atoms
contain persistence. This means that if k 
 p is the case, it follows that
for every node ` for which k ≤ `, ` 
 p holds. If the Kripke models of
intuitionistic logic are converted into models for S4, the atoms still retain
their persistence. In S4 the formula k 
 2p simply means that p is assigned
to every node ` that is accessible from k. Therefore if a formula holds in
a Kripke model for intuitionistic logic, it also holds for a Kripke model for
S4. We show k 
i φ ⇒ k 
S4 φ

τ for any formula φ. This will be proved by
induction to φ.

i We prove k 
i p⇔ k �S4 2p

k 
i p ⇔ ∀` ≥ k, ` 
i p

⇔ ∀` ≥ k, ` �S4 p

⇔ k �S4 2p

ii We prove k 
i φ ∧ ψ ⇔ k 
S4 (φ ∧ ψ)τ . Note that ”IH” stands for
induction hypothesis.

k 
i φ ∧ ψ ⇔def k 
i φ and k 
i ψ

⇔IH k �S4 φ
τ and k �S4 ψ

τ

⇔def k �S4 φ
τ ∧ ψτ

⇔def k �S4 (φ ∧ ψ)τ
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iii We prove k 
i φ ∨ ψ ⇔ k 
S4 (φ ∨ ψ)τ .

k 
i φ ∨ ψ ⇔def k 
i φ or k 
i ψ

⇔IH k �S4 φ
τ or k �S4 ψ

τ

⇔def k �S4 φ
τ ∨ ψτ

⇔def k �S4 (φ ∨ ψ)τ

iv We prove k 
i φ→ ψ ⇔ k 
S4 (φ→ ψ)τ .

k 
i φ→ ψ ⇔def ∀` ≥ k, ` 
i φ⇒ ` 
i ψ

⇔IH ∀` ≥ k, ` �S4 φ
τ ⇒ ` �S4 ψ

τ

⇔def ∀` ≥ k, ` �S4 φ
τ → ψτ

⇔def k �S4 2(φτ → ψτ )

⇔def k �S4 (φ→ ψ)τ

We have seen that k 
i φ ⇔ k �S4 φ
τ for any formula φ. Hence if k 6
i φ

then k 6
S4 φ
τ . Clearly the formula Γτ `S4 φ

τ ⇒ Γ `i φ holds. Now we have
proved both directions of Γ `i φ⇔ Γτ `S4 φ

τ .
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5 Evaluation

In this thesis we have seen how reasoning about knowledge can be formalized
in a variety of ways. Through the years many logics have been created that
are useful for studying knowledge. Two of them are discussed in this thesis
and finally a correspondence has been shown.

The principles of intuitionistic logic were discussed and it has been clarified
how it differs from classical logic. We have introduced the Kripke models
that serve for the semantics for intuitionistic logic. Thereafter the idea of
the modal logic S4 was explained and again Kripke models were mentioned.
Both are very useful for reasoning about knowledge, but their concepts are
different and therefore the logics contain different rules. Intuitionistic logic
is a formalization of the mathematical approach intuitionism. Knowledge is
acquired but can not be lost in later stages. S4 uses 2 and 3 as operators
for knowledge. The system inherits the rules of classical logic, but extends
it by modal operators.

For both logics Kripke models form a useful instrument for illustrating state-
ments about knowledge. The models consist of nodes that represent stages.
These stages contain knowledge that is obtained so far. While the Kripke
models for intuitionistic logic look very similar to the ones for S4, they are
interpreted in a different way. In intuitionistic logic the several nodes in a
model can be seen as succesive worlds that contain constructed atoms. Every
node has one or multiple accessible nodes that adopt the obtained atoms and
potentially construct more atoms. The set of obtained knowledge grows and
the model is therefore a dynamic picture. In S4 the nodes in a Kripke model
form a set of all possible worlds. Here 2p means that the agent knows that
p and 3p means that p is compatible with the agent’s knowledge. Therefore
the Kripke models used for S4 are static pictures.

Section 4 demonstrated the interpretation of intuitionistic logic to classi-
cal modal logic. Although their concepts of Kripke models differ slightly,
similarities are noticeable. Thereby a comparison can be made between the
models. Models from intuitionistic logic can be converted into models from
S4, whereby the propositions derived by rules in intuitionistic logic are still
valid in S4. This is done by the Gödel translation that included a set of rules
that were needed by the translation.
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As we have seen, the Gödel translation has an important advantage. By
means of the Gödel tranlation, it follows that every intuitionistically valid
formula is also valid in S4. Therefore the rejection of the law of excluded
middle is not a genuine restriction. It only induces that the interpretation of
theorem has to be changed. Thus intuitionistic appears to be nearer to S4
than to classical logic.

We wondered what kind of consequences the Gödel translation might have.
For philosophers it is an interesting question what the relation is between two
completely different logics that are both meant for the same matter, knowl-
edge. Constructivists pursue a concept of truth that is very radically against
the classical concepts. They stick to an idea where truths are constructed
in an infinite set of worlds. They therefore do not believe in an informal
correspondence of the two logics.

But the Gödel translation shows us a formal correspondence between both
logics. It is very significant that both logics satisfy the same models. Due
to the translation a tranfer was made of the technical view of logic. If all
formulae that are valid in intuitionistic logic are valid in S4 by a translation,
the logics must be very similar. The rejection of the law of excluded mid-
dle does not make a formal difference. For non-intuitionists this means that
there is no informal difference either. But an intuitionist could be opposed
to this analysis and think of the translation as just a formal resemblance.
This means for example that if a computer system uses rules of intuitionistic
logic and another system uses rules of S4, the rules can be translated for the
other system.

When building an agent, we need to think of the knowledge that it con-
tains. Agents must realize what is true and what they know and what they
know that they know etc. For these agents their must be considered about
what logic for knowlegde to use. And if different agents include different log-
ics, their must be thought of a correlation between the two. If one logic can
be converted into another, this is very useful for the building of agents. The
translation helps us clarify the distinction between the two logics. Therefore
the Gödel translation is a great utility for computer scientist and researchers
that study artificial intelligence.

24



References

[1] N. Bezhanishvili and D. de Jongh. Intuitionistic Logic, 2006.

[2] Zalta E.N. Basic Concepts in Modal Logic. Stanford University, 2011.

[3] M.C. Fitting. Intuitionistic logic, Modal Theory and Forcing. North-
Holland Publishing Company, 1969.
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