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Preface

In this article is described part of my research done to graduate from Utrecht university
with a master’s degree in mathematics. The decision was made that I would write an
article on an interesting topic found in my research. However, I was also required to write
down details of the various other topics I looked into during my internship to be able to
graduate from the Utrecht University. The appendix below describes these other topics as
well as supplemental information to the article.
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Abstract

The influenza virus can evade the acquired long term immunity in the human population
through changes in its antigenic profile. Understanding the antigenic evolution is crucial to
the selection of vaccine strains, which should provide immunity against dominant influenza
strain next season. For this purpose, antigenic cartography has been developed to map
the changes of the virus over time, using Hemagglutination Inhibition (HI) assay data.
Here we present a simple model for the antigenic evolution of the influenza virus, based
on a high dimensional random walk in Euclidean space. Using this model we simulate HI
assay data which we use to construct antigenic maps through antigenic cartography. Our
analysis shows that, although the clustered structure of the data is preserved, the number
of dimensions required to describe the data is greatly underestimated. This means that
the techniques used in antigenic cartography to assert the dimension required to describe
the HI assay datasets does not give conclusive results about the actual dimension of the
shape space in which the antigenic evolution takes place. The assumption that the anti-
genic evolution of influenza is influenced by long term immunity in the human population
can therefore not be verified using HI assay data. Our analysis shows that directionless
evolution through a high dimensional shape space forms a parsimonious explanation for
the observed pattern of influenza evolution.
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Introduction

Each year, influenza causes high morbidity and mortality on a global scale, with an es-
timated 250.000 to 500.000 deaths due to infection [12]. Vaccination against influenza
remains the most effective way to prevent a severe infection [1]. However, the virus evolves
rapidly on both a genetic and antigenic scale, eluding the vaccine and the natural immunity
in the population [2]. To combat this, vaccines are updated about once a year for both
the northern and southern hemisphere. The vaccines are based on the currently dominant
strains of the virus, as well as strains which are expected to become dominant which differ
antigenically substantially from strains currently circulating [3]. A better understanding of
the antigenic evolution of influenza could help us to predict future dominant strains better
and aid in strain selection for the vaccine.

The main target of the vacinne is the Hemagglutinin surface protein of the influenza virus,
which is involved in the binding with host cells. This protein is used frequently as anti-
genic determinant of the influenza virus [4]. Hemagglutination Inhibition (HI) assays have
been developed to assess antigenic similarities between strains of influenza [5] based on this
protein. This assay measures the ability of antisera, typically raised in ferrets, to block
binding of strains of influenza with red blood cells. For each strain the maximum dilution
is determined at which the antiserum is still capable of blocking the binding with such cells.

The results of HI assays can be interpreted using so-called antigenic cartography, a form
of multi-dimensional scaling (MDS) [6, 7]. This approach uses the concept of shape space,
a theoretical space which described the antigenic characteristics of the influenza virus [8].
Each strain and each antigen is described by a point using an unknown number of coor-
dinates, where each coordinate describes a molecular property that influences the ability
of the virus to bind with host cells. Included in these properties are geometric quantities
used to describe the shape and size of the binding sites, charge and the ability to form
hydrogen bonds. The number of properties required is called the dimension of shape space
and is equal to the number of coordinates used to describe each point.

Estimates on the dimension of the shape space range from 2 [7] to 12 [9], based on vari-
ous approaches. Antigenic cartography, using the similarities between strains and antisera
obtained through HI assays, has been used to construct maps of the antigenic evolution in
2, 3, 4, and 5 dimensions. However, it is still uncertain whether these methods are able
to correctly estimate the dimension of shape space. Moreover, these estimation may be
hindered by the structure of the data inherent to the HI assays.

Here we present a high dimensional model for the antigenic evolution based on minimal
assumptions. We use antigenic cartography to reconstruct antigenic maps of our simu-
lated influenza evolution. We assess if the clustering structure of the original dataset is
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retained in the reconstructed maps. Furthermore, we estimate the dimension of our simple
evolutionary model, to determine whether methods like antigenic cartography are able to
correctly identify the dimension of influenza’s antigenic evolution.
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Materials & Methods

Model

We described antigenic evolution of the influenza virus by a random walk in high dimen-
sional shape space. We described each strain or antiserum using a point of 15 coordinates,
resulting in 15 dimensional shape space. We used an iterative process to construct a new
strain from the previous one. Then we constructed antisera for a subset of the strains.
We then discarded larger distances and introduced error measurements in the generated
dataset, as to better resemble the data gathered through HI assays. We then constructed
antigenic maps for our datasets in 2, 3 and 4 dimensions. Finally, we analyzed the maps
cluster structures and ability to predict unmeasured distances.

To generate the points for the strains of the influenza virus, we used a random walk in high
dimensional shape space. This random walk is a discrete time process which produces a
new point in each step using the previous point. From point xt we construct point xt+1

by adding a random vector Xt to xt, where Xt = (Xt
1, X

t
2, . . . , X

t
15) with Xt

i independent
identically normally distributed random variables with mean 0 and standard deviation σt.
We started with x0 = 0, the origin of high dimensional shape space.

Some antigenic changes of the influenza virus are larger than others [7]. We incorpo-
rated this in our model by taking either σt = 1 or σt = 5. The choice between 1 and 5
was based on a random vector B = (B1, B2, . . . , Bn−1) where n is the number of strains
we generated. We generated random numbers J1, J2, . . . , Jl, Jl+1 with Jk ∼ Pois(25) for
k = 1, 2, . . . , l, l + 1 and l such that

∑l
k=1 Jk ≤ 273 and

∑l+1
k=1 Jk > 273. We then set

Bi = 1 for i = J1, J1 + J2, . . . ,
∑l

k=1 Jk and Bi = 0 otherwise. In each step of the iterative
process we took σ = 5 if Bi = 1 and else we took σ = 1. We used this iterative process to
construct 273 points.

Next we constructed the points for the antisera. Generally the number of antisera raised
to use in the HI assays is far less than the number of available strains [6, 7]. To incor-
porate this in our model, we selected a subset of strains for which we modeled antisera.
To create the subset of strains we generated random numbers S1, S2, . . . , Sm, Sm+1 with
Si ∼ Pois(3.5) for i = 1, 2, . . . ,m,m + 1, where we picked m such that

∑m
i=1 Si ≤ 273

and
∑m+1

i=1 Si > 273. We then picked strains Sj =
∑j

i=1 Si to be part of the subset for
which we generated antisera. Each antiserum was modeled to be the same point as the
strain that was used to create it. Because only the inter-point distances between strains
and antisera can be measured by the HI assays, we discarded all the strain-to-strain and
antisera-to-antisera distances.

Most recent studies on the antigenic evolution of influenza combined data from several
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different assays [10, 7]. This results in many missing values between strains and antisera
in different tests. Because the HI assays cannot measure large antigenic distances accu-
rately, most of the missing distances in larger HI assay dataset are larger distances. To
accomodate for these limitations of combined HI assay dataset, we considered our own
upper bound on the distances. We take the upper bound such that 80% of the distances
generated by the model are larger than this upper bound. We set each distance larger than
the upper bound as a missing value.

As mentioned above, the HI assay cannot measure large distances accurately; the assay
returns a threshold value when the distance is too large. This threshold value indicates a
minimum inter-point distance for the strain and antiserum in question. To accommodate
for threshold values in simulated data we considered each strain separately. For each strain
we generate a random number Di, with Di ∼ Bin(n, p). We took the parameter n to be
the number of missing distances for strain i and p to be 3.5 divided by n. For each strain
we then randomly selected Di missing values and replaced them with a threshold value
indicating they are larger than the previously set upper bound. We then replaced the Di

largest remaining exact values for this strain and replaced them with missing values. This
ensured that 80% of the strain-to-antisera distances remained missing values.

Typical HI assays use only 10 dilution steps in their measurements [5]. To model this, we
rescaled the distances in our simulated dataset by dividing it by our upper bound described
above. Then, each distance is an element of the interval [0, 10]. To accommodate the
rescaling done in our threshold values, we set each of them to be >10. The HI assay suffers
from interval censoring due to the limited number of dilution steps typically used in the
measurements. We simulated this by rounding down 40% of the remaining exact distances.

Antigenic Cartography

Antigenic Cartography uses a multidimensional scaling (MDS) algorithm to construct a

configuration of points in Rd̂, with d̂ a preset target dimension, that best fits a given set
of distances between these points. In the case of HI assay data we have a configuration
C that consists of N points for our strains and M points for out antisera. We denote the
measured distances, which were generated by our model, between strain i and antiserum j
by Di,j . The inter-point distances in our configuration between strain i and antiserum j is
called di,j . When the measured distance Di,j is an exact value, we wish to ensure that di,j
is close to Di,j . If Di,j is a threshold value, we wish to ensure that di,j is at least as large
as the threshold value indicates it should be. If Di,j is missing we don’t impose anything
on what di,j should be. We use an error function e to indicate how well a configuration of
points fits the given distances. This error function is given below.
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e(C) =

N∑
i=1

M∑
j=1

g(Di,j − di,j) (1)

With:

g(Di,j − di,j) =


(Di,j − di,j)

2 if Di,j is exact
(Di,j − di,j − 1)2h(Di,j − di,j − 1) if Di,j is a threshold

0 if Di,j is missing

Where h(x) = 1/(1 + e−10x). This choice of g and h ensures that, when Di,j is a threshold
value, g(Di,j − di,j) only contributes to the error function when di,j < Di,j − 1. We wished
to find a configuration which minimizes e. We used the conjugate gradient method for the
minimization, where we preformed random restarts to get an approximation of the global
minimum of e.

It is difficult to interpret the minimum value of e (1). A lower value indicates a better fit
and a higher target dimensions d̂ generally decreases the value of e, but it is unclear when
we should be satisfied or when we need to further increase d̂. Using the map of the optimal
configuration found for a target dimension, we measured the map distances between strains
and antisera which were missing in the dataset. We compared the map distances with the
values we discarded for use by the model. We then took the average of these differences
and called this the prediction error. We used this prediction error to judge if an increase in
the target dimension gives an improvement in the constructed antigenic map with respect
to the dataset used.
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Results

Here we present the results of 5 runs, each consisting of 273 strains and associated antisera.
In each run we made a distinction between steps which are larger antigenically than other
steps. We found that the steps taken with a greater variance for the change per coordinate
were larger than those taken with a smaller variance in the change per coordinate (figure
1).

Figure 1: The combined distances between the points subsequently generated of the 5 runs.
The small jumps are distances between points where the change per coordinate has σt = 1
and the large jumps are distances between points where the change per coordinate has
σt = 5.

The number of clusters and antisera generated varied slightly for each run, with an average
of 11.6 and 76.4 respectively. The upper bound on distances we set as measured varied
slightly as well (table 1).

run #clusters #antisera
average

small jump
average

large jump
upper bound

1 11 80 3.84 19.40 25.46

2 11 77 3.74 20.02 28.51

3 12 77 3.76 18.34 26.29

4 13 70 3.79 18.37 27.10

5 11 78 3.84 20.33 27.44

Table 1: Various properties of the simulated runs

The antigenic maps presented here are for the first run (figures 2, 3 and 4), but the ob-
servations are the same for the antigenic maps of the other runs. There appears to be a
1-dimensional direction in the antigenic maps produced. We also found that the clustering
structure of the datasets produced remains intact in the antigenic maps. Furthermore, we
found that the MDS algorithm puts antisera and strains apart even if their actual distance
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is zero in the antigenic map with target dimension two. The maps produced for target
dimensions 3 and 4 are largely the same as the one we produced for target dimension 2,
except that we did find a decrease in the distances in these maps between strains and
antisera which had actual distance zero (table 2).

run 2 dim map 3 dim map 4 dim map

1 1.86 1.00 0.57

2 1.61 1.00 0.65

3 1.78 0.91 0.40

4 1.81 0.90 0.46

5 1.59 0.89 0.56

Table 2: The average distance between the antiserum and their associated strains in the
antigenic maps. The distance between these points is 0 in our model.

We used the prediction error to determine if the resolution of the maps was better in
dimensions 3 and 4 than in dimension 2. The prediction error is the average difference be-
tween the actual distance of two points on one side and the distance in the antigenic maps
produced in target dimension 2, 3 or 4 on the other. We have shown that the prediction
error does not significantly decrease, when we increase the target dimension of our MDS
algorithm (table 3).

run 2 dim map 3 dim map 4 dim map

1 13.72 13.87 13.72

2 14.75 13.21 12.82

3 11.09 12.06 12.26

4 13.72 13.58 15.37

5 15.53 14.50 14.05

Table 3: The prediction error per run per target dimension of the antigenic map.
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Conclusion & Discussion

We have shown that a simple high dimensional model for the antigenic evolution of influenza
can explain the patterns observed in antigenic cartography [7]. We have demonstrated that
the resulting antigenic maps of our model show a 1-dimensional direction of the antigenic
evolution, even though this direction does not exist in our model. We have also seen that
the the clustering structure of the dataset from our model remains intact in the antigenic
maps produced. Finally, we have shown that the distance between strains and antisera,
with true distance 0, decreases when we increase the dimension of our antigenic map. But
the prediction error, the average difference between the true distance of a point and the
predicted distance by the map, does not decrease when we increase the target dimension
of our antigenic maps.

We used the decrease in prediction errors to determine the required dimension for the anti-
genic maps produced by antigenic cartography to describe the simulated HI assay datasets.
The prediction error did not decrease significantly with increasing target dimensions of the
antigenic maps. This leads to the conclusion that 2 dimensions are enough to describe
the datasets, while a 15 dimensional shape space was used to generate them. Therefore
we conclude that this method of prediction errors cannot be used to determine the true
dimension of shape space in which antigenic evolution takes place.

The clustered structure of the modeled HI assay datasets is kept intact when using anti-
genic cartography, even in two dimensional antigenic maps. The clustering structure did
not improve when we increased the dimension of our antigenic maps, therefore we conclude
that two dimensions are enough to describe the clustering structure in HI assay datasets
using antigenic cartography.

It is generally assumed that the antigenic evolution of influenza on long term immunity [?].
In our model each point in the random walk is generated using only the previous point.
This means the model used here does not take long term history into account. However,
the structure of our simulated antigenic evolution does qualitatively not differ much from
the observed influenza evolution. We conclude that it cannot be asserted from HI assay
data that long term immunity plays a role in the antigenic evolution, it could just be the
high dimension of the shape space in which the evolution takes place.

It has been shown that many external factors, e.g. storage and preparation procedures of
the virus strains and variations in animal donors of the red blood cells, influence the test
results of HI assays [11]. Furthermore, the larger HI assays used in recent studies combine
the data from multiple HI assays with possible differences in accuracy [10, 7]. Therefore,
care must be taken when interpreting these results based on HI assay datasets which com-
bine multiple experiments from several laboratories.
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HI assays cannot accurately measure large distances between strains and antisera. This
means many large values in the HI assay datasets are either missing or reported as a thresh-
old value. We believe the lack of these values is an important factor in the results presented
here. A matrix completion algorithm has been constructed to estimate these missing values
[12]. We advise more studies should be done to develop and refine techniques to complete
the HI assay datasets.

In conclusion, we have shown that a simple high dimensional random walk can explain
the results seen in antigenic cartography [7]. This demonstrates that the shape space in
which antigenic evolution of influenza takes place could be high dimensional. Furthermore,
antigenic cartography can produce antigenic maps which show a 1-dimensional direction
of the antigenic evolution, while this direction is not really there. As a result, the data
gathered through HI assays cannot prove that antigenic evolution of influenza depends on
long term history, while this is generally assumed to be true.
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Figure 2: Two dimensional antigenic map for the first run of the model. The dots indicate
strains, color coded to show the clustering structure. The square are antisera. A line
between a point and square indicate the actual distance between this strain and antiserum
is zero.
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Figure 3: Three dimensional antigenic map for the first run of the model. Principal com-
ponent analysis was done, where the first two components (a) and the first and the third
component (b) are shown.The dots indicate strains, color coded to show the clustering
structure. The square are antisera. A line between a point and square indicate the actual
distance between this strain and antiserum is zero.
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Figure 4: Four dimensional antigenic map for the first run of the model. Principal com-
ponent analysis was done, where the first two components (a), the first and the third
component (b) and the second and the fourth components (c) are shown.The dots indicate
strains, color coded to show the clustering structure. The square are antisera. A line
between a point and square indicate the actual distance between this strain and antiserum
is zero.
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Introduction

The influenza virus causes many infections on a yearly basis over the entire world, with
an estimated 250.000 to 500.000 deaths due to an infection each year [1]. Even without
considering the economic damage caused by people calling in sick or having reduced
productivity due to being symptomatically infected, the virus is a major problem for
public health. After shedding the influenza virus it is commonly expected that (life)
long immunity to the disease is attained, as is the case with many other infections. Un-
fortunately, reinfection with the virus is very common.

Genetic changes to the influenza virus are usually assumed to be the cause of its ability
to avoid natural immunity aquired in the human population. The genetic information
of the virus is encoded within RNA molecules, unlike mammels whos genetic material
is DNA. RNA is less stable than DNA, causing it to mutate more frequently. Such mu-
tations are known as genetic changes to the virus. These mutations can cause a change
in the ability of antibodies raised against the unmutated version of the virus to combat
infection by the mutated variant, a change in the antigenic phenotype of the virus.

Over the years, RNA sequencing has been developed in conjunction with phylogenetic
tree construction to map the genetic evolution of the influenza virus. These techniques
make it possible to see the genetic mutations that occur in the virus over time. However,
it is unknown what effect of the near endless posibilities of mutations have on the anti-
genic phenotype of the virus. Thus we are unable to determine the antigenic changes of
the virus over time using these maps.

The virus particles of influenza have so called hemagglutinin proteins on their surface.
These proteins play a major role in the binding between the virus particles and host
cells, e.g. red blood cells. The antigenic phenotype of a strain of the influenza virus
is the ability of various antibodies produced by the immune system to bind with the
hemagglutinin proteins found on the virus particle. Bonds formed this way block the
ability of the virus particle to bind with the host cells, thus limiting the growth of the
virus inside the host.

To evaluate antigenic relations between different strains of the influenza virus (or any
virus in general) a binding assay has been developed called hemagglutination inhibition
assay (HI assay). Antisera to several strains of the virus are raised in animals, usually
ferrets. Then, the ability of the antisera to block binding with red blood cells by the
strains is tested for different titers of the antisera. The red blood cells are usually taken
from chickens or other avian species.

The results of this assay can be viewed as similarities between different strains of the
influenza virus and the antisera specifically raised against these strains. A higher value
indicates that the strain and antiserum are antigenically more similar. To interpret these
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results we’ll use a notion called shape space, a concept suggested as the space in which
antigenic evolution takes place [2]. A technique called antigenic cartography, which is
based on multi-dimensional scaling, has been developed to produce maps of the antigenic
changes of the influenza virus over time. Here we attempt to assess the ability of this
technique to accurately determine the dimension of the underlying shape space through
constructing antigenic maps.
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1 Formulation of the problem

In mathematical terms, shape space is (a subset of) Rn, the standard n-dimensional
euclidean space, on which we have the standard euclidean distance. In this space, each
strain is described as a point. The number of dimensons n is the number of molecular
properties required to describe the ability of the strain to bind with host cells. Antisera
raised against strains are descirbed by points in shape space as well. We interpret the
similarities found by the HI assay as determinants of the distance between strains and
antisera in our shape space.

The abstract, mathematical formulation of the problem now becomes as follows. We
have n objects which lie in Rd with unknown dimension d. We also have a way to de-
termine similarities δ between the objects, where δi,j is the similarity between objects i
and j. We assume that δi,j = δj,i and δi,i = 0. The actual distances between the objects
and the measured similarities do not need to be the same, but there is some (usually
unknown) relation between them. We assume this relation is strictly monotonic. We

want to fit these n points in Rd̂. It is always possible to do this for d̂ = n− 1 regardless
of original dimension d. The question at hand is; is it possible to fit the points in a
dimension d̂ << n− 1?

To tackle this problem, Kruskal et al [3] originally formulated the concept of stress. A

concept which indicates how well a certain configuration of n points in Rd̂ fits the given
similarties. Finding the best possible fit in dimension d̂ then boils down to minimizing

the stress with respect to the coordinates of the n points in Rd̂. Depending on the as-
sumptions made about the dissimilarities, there are different ways to tackle the problem;
they are described in the following sections.

The underlying goal is to study the antigenic evolution of influenza. We will apply these
techniques to data from hemagglutination inhibition (HI) assays, as has been done by
Lapedes et al [4] and Smith et al [5]. The goal is to find the dimension of the underlying
shape space for antibody-antigen affinity or (an approximation of it in a lower dimension).
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2 Metric Multidimensional Scaling (MDS)

Let us assume we know the relation between the results of the HI assays and the actual
distances in the shape space between antisera and strains. Kruskal et al [3] described a
more general situation followed by the aforementioned concept of stress. This methods
can be adopted to this specific case. We have a set of observations from the assay from
which we can deduct the target distance Di,j between points i and j. We wish to set a

target dimension d̂ which is the dimension is which we attempt to find a configuration of

points that fits our data. If we take any configuration of points C = {x1, x2, . . . , xn} ⊂ Rd̂
we wish to measure how well this configuration represents the original n points. We take
the squared error between the target distances Di,j (which we know from δi,j) and the

distances of the configuration di,j , where di,j is the standard Euclidean distance in Rd̂
between points xi and xj . If we sum over all possible distances we get the following
expression:

e(C) =
N∑
j=1

N∑
i=1

(Di,j − di,j)2 (1)

We wish to find the configuration which has the least stress. To do this we minimize this

function over all possible configurations of points x1, x2, . . . , xn ∈ Rd̂. A point in which
the minimum is attained is called a best possible fit in this dimension d̂. We note that
the function e only depends on the inter-point distances in our configuration. Which
means that the value of the function will not change if we translate, rotate or reflect our
configuration C. We call a configuration a perfect fit if the function e becomes 0. Which

only happens if there is a configuration in Rd̂ which has exactly the same distances as
the target distances. Note that, for the distances we gained from the dissimilarities to
make any sense, we need to have that di,i = 0 for all i, the distance from a point to itself
is 0. Using this fact we can discard any terms in emetric with i = j. Also note that we
have assumed δi,j = δj,i. If we combine this with the fact that the euclidean distances
obey the same property, we can conclude that (Di,j −di,j)2 = (Dj,i−dj,i)2. So our error

e (1) becomes e =
∑N

j=2

∑j−1
i=1 2(Di,j − di,j)2 = 2

∑N
j=2

∑j−1
i=1 (Di,j − di,j)2. Where we

can discard the factor 2 when we’re trying to minimize the function. The function we
wish to minimize becomes:

emetric(C) =

j=N∑
j=2

j−1∑
i=1

(Di,j − di,j)2 (2)

We note the following. First, it is a summation of nonnegative terms, so the entire
function is nonnegative. If we have any set of points in Rd for some fixed d and we use
their inter-point distances to construct emetric for target dimension d from it, then this
exact set of points will obviously result in emetric = 0. But this does not need to be the
case when we construct emetric for target dimension d̂ < d. It is difficult to interpret
this value with respect to the minimum value of the error function found in other target
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dimensions. One might wonder why it would be important to interpret error function
values greater than 0, since we wish to obtain the actual shape space in which antigenic
evolution of influenza takes place, so we wish to have a value of 0. But we can not hope
to find a correct answer even if we use the dimension for which the error is 0, since the
HI assays are crude and carry with them many measurement errors [6]. It might even
be possible that the measurements introduce distances which do not satisfy the triangle
inequality. This means a perfect fit can never be found, as no set of points can satisfy
these target distances.
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3 Ordinal MDS

The method of metric MDS, as described in section 2, fails when we can no longer
assume we know the exact relation between the similarities and the actual distances.
We still assume that this relation is monotonic. Which is a much more plausible and
general assumption, more suitable for our data. When using the method of ordinal
MDS, we only make this assumption. Note that a larger similarity between two points
indicates that the distance between the two points should be smaller, so we get that
δi,j > δk,l implies di,j < dk,l. To get this we apply the following trick to our data. To
each combination i, j of the n points, we assign a number α, which is the order, when
ordering from highest to lowest, of δi,j among all the observed similarities. For example,
if δi,j happens to be the largest among all observed similarities, we take α = 1, if it is
the second largest then α = 2. While if δi,j is the smallest then α = N where N is the
total number of similarities measured. By construction we now have that δα+1 < δα,
which implies that dα+1 − dα > 0 for all α ∈ {1, 2, . . . , N − 1}. Lapedes [4] suggests to
use the following function in his article.

eordinal(C) = −
N−1∑
α=1

log (g(dα+1 − dα)) (3)

With g a continuous approximation of the indicator function on R>0, also called a
squashing function. We want a continuous approximation as we will use a minimization
technique which requires a differentiable function, I use g(x) = 0.5(1 + tanh(x)). This
squashing function rapidly approaches 1 for positive values and 0 for negative values.
Since g(x) ∈ (0, 1) for all x we have that − log (g(x)) ∈ (0,∞) for all x. If dα+1−dα � 0
we get that − log (g(dα+1 − dα)) approaches zero. So the entire function approaches zero
if dα+1 � dα for all α ∈ {1, 2, . . . , N}. It is quite evident that this function is much
more complex, as its form depends on the ordering of the measured similarities between
the points.

Note that we need not have a very small value of e if the points in our configuration do
obey dα+1 > dα for all α ∈ {1, 2, . . . , N}. Since the value of − log (g(dα+1 − dα)) need
not be very small if dα+1 and dα only differ by small numbers. So we need to ensure that
we have a different method for checking if a configuration does satisfy the conditions
dα+1 > dα for all α ∈ {1, 2, . . . , N}, rather than trying to get eordinal to become 0.

Note that this function can only be constructed if there are no ties in the ordering of the
δ’s. If there are a decision must be made which of the two will be assigned the smaller
α. If we take a set of randomly generated points which have a continuous distribution
for their interpoint distances, the chance of getting two distances which are exactly
the same is 0. But the data generated by HI assays does not have this nice property.
Typically a two-fold dilution is made in each step of the assay, where the result for a
given strain/antiserum combination is the highest dilution at which the antiserum was
still able to block binding of the virus with red blood cells. It should be clear that this
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results in many similarities being the same.

3.1 Binned data

What we have in reality from our HI assays is not a value of the true similarity of a strain
and antiserum, but an indicator between which possible values it lies. The similarity
is the maximum dilution at which the antiserum still blocks binding of the strain with
RBC’s. So the result for each strain and antiserum combination indicates a range of
possible values for the true similarity, which we will call a bin. First, we assume there
is a bin for each possible value of the similarities, so we assume the assay can at least
assign a value to each possible similarity. We also assume that the range of values any
bin indicates is an interval which does not overlap with the range of values indicated
by any other bin. We do this to ensure that we can still say something about the order
of similarities in different bins. In the case of HI assay data the intervals are closed on
the left and open on the right. The result is that if we look at the range of possible
similarities, which is R>0, that we have a (usually finite) set B of values in R>0 which
are the bin values. Because of our assumptions on these bin values, we can order the bin
values according to which range they indicate. Since there are only a finite number of
similarities measured, the number of different bins is finite and bounded by the number
of different similarities we measure. An example of an arbitrary binning of the positive
real line can be seen in figure 1. The value reported for each bin by the HI assay is the
minimum of the interval, which exists because the intervals are closed on the left.

Figure 1: An example of a binning of the positive reals. With the the red lines indicating
the edges of the bins. A similarity of value 1.9 will return the value of bin 2 when
measured.

Because we knew the total order of the similarities in our previous versions of the prob-
lem, we had that δα > δβ and δβ > δγ implies δα > δγ . In the case of bins we can
have the following situation. Assume δα and δβ lie in the same bin and that δγ lies in a
lower bin. If we only require that δγ < δα we know nothing of the relation between δγ
and δβ. So we need to require that δγ < δβ as well. As mentioned before, the original
formulation of our method of ordinal MDS fails in the case of ties, which is exactly
what happens when we have bins. Rather than completely ordering the distances using
the ordering of the similarities as done before, we now use the ordering, from large to
small, among the bins of the similarities to bin the distances. Now we want to ensure
that all the distances in our bins are smaller than any distances in the subsequent bin.
Previously we had one inequality we wanted to satisfy directly per distance, while the
other inequalities would then be satisfied automatically. When we have bins and a given
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distance, we need an inequality for each distance in the next bin. It is easy to see that
the amount of inequalities we need to satisfy quickly increases when the number of bins
is low compared to the number of similarities. Unfortunately, this is typically the case
in the assays used.

While Lapedes et al use binned data for the ordinal MDS algorithm, as suggested in
[4], no clear explanation is given for the exact modification he made to the algorithm
to accommodate for the existence of these bins in the data. I suggest the following
modification to eordinal:

eord,bins(C) = −
N∑
α=1

∑
β∈Bα

log (g(dβ − dα)) (4)

Here we ordered the distance bins using the ordering of the similarity bins, as we as-
sumed is possible. We take Bα the set of distances in the next bin (which depends on
α). We define Bα = ∅ when α lies in the last bin. If we indeed have that dβ � dα
for all β in the next bin and we have this for all α ∈ {1, 2, . . . , N} we get that eord,bins
approaches zero.

There is another possible workaround which runs into other technical difficulties. If
we ensure that each distance is smaller than the smallest distance in the next bin, it
is obviously smaller than all the distances in this bin. This reduces the amount of
inequalities we want to satisfy back to N − 1. To reduce the amount of inequalities even
further we could only do this for the largest distance in each bin and observe that all
the previous inequalities still hold. The amount of remaining inequalities would be the
number of bins minus 1. The error function to minimize now becomes:

eord,ext(C) = −
#bins−1∑
k=1

log (g( min
β∈Bk+1

dβ − max
α∈Bk

dα)) (5)

The problem with this function is that it becomes rather hard to minimize because it
includes a minimum and a maximum. The function depends on the ordering of the
distances of different configurations, whereas (4) did not. Since the suggested method
of conjugate gradient minimization (see section 5) uses differentiation on the function
this becomes a problem: the form of the gradient of eord,ext depends on the order of the
distances in your current configuration. Whereas, in the previous methods, a general
form of the gradient could be computed depending on the coordinates of the configu-
ration alone. I don’t believe the advantage gained by (vastly) reducing the amount of
inequalities we need to satisfy outweighs the technical difficulties posed by calculating
this gradient.

A third possible solution was suggested to me by Rolf Ypma. It ultimately failed to work,
but I wish to mention it anyway as I found its complications rather interesting. Rolf’s
suggestion was to order the distances in each bin randomly before each computation
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and then use this order to return to the case of ordinal MDS without bins. Iterating
this process over many random orderings and taking the configuration for which the
minimum value is the lowest, could in theory result in the actual desired best fit in a
dimension. At least the result would give an upper bound for the lowest dimension in
which a fit without errors is still possible. However, it is possible to generate points in
dimension d, bin them and then rearrange them in each bin such that the dimension d̂
for which no errors in ordering occur is actually larger than d. Consider the following
example:

• We generate 4 points on the real line, so the original dimension is 1.

• The points are x1 = 0, x2 = 1, x3 = 1.1, x4 = 10

• The corresponding distances are d1,2 = 1, d1,3 = 1.1, d1,4 = 10, d2,3 = 0.1, d2,4 =
9, d3,4 = 8.9

• Take 4 bins constructed such that:

– Bin 1 contains d2,3 = 0.1

– Bin 2 contains both d1,2 = 1 and d1,3 = 1.1

– Bin 3 contains both d2,4 = 9 and d3,4 = 8.9

– Bin 4 contains d1,4 = 10

• We order the distances in bin 2 by setting d1,2 < d1,3 and the distances in bin 3
by setting d2,4 < d3,4

If we want to fit these 4 points into 1 dimension we immediately see that d1,4 has to be
the largest distance, since it is the only distance in the last bin. So points x2 and x3 will
lie in between x1 and x4. From the order we set in bin 2 we can conclude that x2 should
lie closer to x1 than x3. From the order we set in bin 3 we conclude that x2 should lie
closer to x4 than x3. This is clearly not possible. We conclude that we cannot fit these
4 points into 1 dimension without violating the order we set. Hence we conclude that
the method could give a large error even in the original dimension in which the points
lie.

3.2 The number of errors for any given configuration

As mentioned in the previous section, we need a different way to measure the goodness
of fit of a configuration of points to the set of given similarities, other than the function
value of eord,bins. Since the relation between the similarities and distances is not known,
we cannot use the original distances to give some form of error as we did with the metric
MDS algorithm. We did assume that the relation between distances and similarities is
monotonic. We used this relation to determine the ordering between the distance bins.
This ordering is used to calculate the amount of errors of a given configuration with re-
spect to this ordering. For each distance d we check if the distances in all the subsequent
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bins are larger. If we find a distance in a subsequent bin which is smaller we count an
error. The total number of errors found is now our measure for goodness of fit of the
configuration to the similarities.

Let us show how this method works through an example. Assume we have 4 points and
thus 6 distinct similarities. Assume they are ordered in the following way; δ1,2 > δ1,3 >
δ1,4 > δ2,3 > δ2,4 > δ3,4. Finally, assume we have two configurations where the distances
obey d3,4 < d1,2 < d1,3 < d1,4 < d2,3 < d2,4 and d1,2 < d1,3 < d1,4 < d2,3 < d3,4 < d2,4
respectively. In the configuration our method counts 5 errors, since d3,4 is smaller than
each of the other distances, while δ3,4 lies in the last bin. In the second configuration
our method counts 1 error, since d3,4 < d2,4 while δ2,3 > δ2,4.
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4 Peculiarities of HI assay data

So far we have described conventional MDS algorithms, adopted for binned values in the

ordinal case, to tackle to the problem of fitting n objects in Rd̂ with target dimension d̂.
When trying to adapt the algorithms to construct antigenic maps from HI assay data, we
run into other problems specific for the HI assay data. Here we describe these problems,
divided into two categories.

4.1 Missing values

Typically a missing value is not problematic. We just ignore this similarity for any of
the algorithms and ignore it’s associated distance in any configuration of points. We
do this because we cannot say anything about the missing value. We also face the fact
that many large HI assay tables are constructed by combining results from many smaller
assays done over the years. Generally the data has many similarities measured within
what we call clusters, groups of strains/antisera which lie close to each other genetically
(and presumably antigenically as well). We have to consider that the assay suffers from
a sensitivity bound, which means it is hard to measure the similarities between clusters
anyway.

4.2 Threshold values

The assay has a sensitivity bound. Beyond this bound, the assay can only report that
the similarity is smaller than a given value, the result is typically of the form <10.
The ordinal algorithm can work with this, provided the threshold similarities are in
the smallest or largest bin. This is not always the case, since most larger data sets of
HI assays combine data gathered over many years, where the sensitivity bounds might
change over time. If the tested similarity between two points is <40 we do know that
the distance between these points should be larger than the distance between points
with measured similarity 100, 50 or 40. But we cannot compare it to a distance between
points with measured similarity of 10. This complicates the ordinal MDS algorithm.
If we consider (4) we see that we need to adapt the concept of similarities in the next
bin. We order the bins once more on their value but only consider bins that have an
exact similarity rather than a threshold similarity. We only know the upper bound on
the threshold similarity. Therefore we cannot compare it with any bins with an exact or
threshold similarity which is lower. But we based our function eordinal on the similarities
which we can pinpoint as being the next in the ordering. So we should omit our distances
associated with threshold similarities in the summation. We do know which similarities
are larger than our threshold values however. For any bin with a threshold similarity
we associate it to the bin with the lowest exact similarity which is still greater than our
threshold similarity. We get that (4) becomes (figure 2):

eord,thres(C) = −
∑
α∈A

∑
β∈Bα

log (g(dβ − dα)) (6)
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Where A is the set of distances in bins with exact values. Bα is defined as the set of
distances in the next bin in the ordering and any distances in a bin with threshold value
associated with the bin α lies in. Note that Bα need not be empty for α in the last exact
bin. There can be bins with a smaller threshold value. eord,thres will approach zero if
the ordering we had before between the exact bins is not violated and if all distances
in thershold bins are larger than distances in exact bins with a larger value than the
threshold similarity.

Figure 2: Arbitrarely picked binned similarity values with (some) threshold bins. The
arrows indicate the respective sets Bα in (6) for each α. There are no arrows going out
of the threshold values, as they do not have a set Bα associated with them.

The metric MDS algorithm has more severe problems with threshold values, since the
form of emetric given by (2) cannot deal with values which do not have a specific target
distance. When we deal with a threshold similarity, we change the term (Di,j − di,j)2
in the summation of emetric to (Di,j − di,j − 1)2h(Di,j − di,j − 1). With h(x) = 1/(1 +
e−10x), another (continuous) approximation of the indicator function on R>0 and Di,j

the transformation of our threshold value to a distance. This choice ensures that there
is only a (large) contribution to the total error when Di,j − di,j − 1 > 0. So when
di,j < Di,j −1, i.e. when the distance between points i and j is lower than the minimum
distance indicated by the threshold value, with a correction of −1 due to binning. Our
error function now becomes

emet,thres(C) =

N∑
j=2

j−1∑
i=1

ρ(Di,j − di,j) (7)

With ρ(Di,j − di,j) = (Di,j − di,j)
2 if δi,j lies in an exact bin and ρ(Di,j − di,j) =

(Di,j − di,j − 1)2h(Di,j − di,j − 1) if δi,j lies in a threshold bin and h(x) = 1/(1 + e−10x).

14



5 Algorithms and their complexity

In previous sections methods for metric and ordinal MDS were discussed. With a dis-
tinction between (fully) accurate data and data with binning and thresholds. I have
posed before that the complexity of these algorithms is high (and thus their computa-
tional time is as well). Let us continue with giving an explanation for this claim.

As seen in previous sections, each method boils down to choosing a dimension d̂ in which
we want to try and find a fit. We get an error function depending on the coordinates

of any configuration of n points in Rd̂. We continue with minimizing this error function
to obtain a configuration for which the minimum is attained. We call this configuration
the best fit for this dimension d̂.

5.1 Conjugate Gradient Minimization

The minimization of our error function e required to find the best configuration is typ-
ically done through the conjugate gradient method. For this algorithm we need the
gradient of the function we wish to minimize. We start out in an initial configuration
C0 and calculate x0 = −∇e(C0) = s0, the steepest descent direction of e in C0. We
then find the α0 which minimize e(C0 +αx0), where we use an inexact line search. Then
we set C1 = C0 + α0x0. Then we loop the following steps until we either find a gra-
dient which has norm less then ε or n iterations have passed, where ε and n are preset
parameters.

• Calculate the steepest descent direction xn = −∇e(Cn.

• Compute βn = max
[
0, x

T
n (xn−xn−1)

xTn−1xn−1

]
.

• Set sn = xn + βnsn−1.

• Find αn which minimizes e(Cn + αnsn).

• Set Cn+1 = Cn + αn + sn.

Where the αn in each step is calculated through an inexact line search. We apply
this method to various cases we described in sections 2, 3 and 4. Now we wish to say
something about the complexity of each of the different cases.

5.2 Metric MDS

For the metric MDS algorithm we assume to have the exact relation between the simi-
larities and the distances in the underlying shape space. Our function emetric is given by
(2). Let us start with calculating the gradient of this function as we need this gradient
for our minimization process. Taking the derivative to coordinate l of point k we get the
following:
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∂emetric
∂xk,l

=
∂

∂xk,l

∑
i<j

(Di,j − di,j)2

=
∑
i<j

∂

∂xk,l
(Di,j − di,j)2

=
∑
i<j

−2(Di,j − di,j)
∂di,j
∂xk,l

Where
∂di,j
∂xk,l

is 0 when k 6= i, j and
(xk,l−xj,l)

di,j
or

(xk,l−xi,l)
di,j

when k = i or k = j respectively.

We can rewrite the above to:

∂emetric
∂xk,l

=

j=n∑
j=1,j 6=k

−2(Dk,j − dk,j)
xk,l − xj,l
dk,j

(8)

Our sum runs over n−1 different values and our gradient has d̂n components (recall that
d̂ is the target dimension). So we need to calculate n2d̂ terms in the summation. The
summations in emetric are both bounded by n, so for this function we need to calculate
at most n2 terms in the summations.

5.3 Metric MDS with binning, thresholds and missing values

The metric MDS algorithm can easily be adapted to deal with bins. We simply pick each
target distance Di,j to be some value in the bin, usually the middle of the interval the bin
covers. But, as discussed in section 5, the MDS algorithm does run into problems when
incorporating threshold values. The adapted function emet,thres, see (7), is severaly more
complex than our previous function. When calculating the gradient of this function
ρ(Di,j − di,j) = (Di,j − di,j)2 when the similarity between i and j is not a threshold
value, which is exactly the same as before. When the similarity associated with Di,j

is missing, we get that ρ(Di,j − di,j) = 0 and the derivative becomes zero. If it is a
threshold value however, we have that ρ(Di,j − di,j) = (Di,j − di,j − 1)2h(Di,j − di,j − 1)
with h(x) = 1/(1 + e−10x). Once more we take the derivative with respect to coordinate

l of point k. We note that
∂ρ(Di,j−di,j)

xk,l
= 0 if k 6= i, j. Let us calculate

∂ρ(Di,j−di,j)
xi,l

, for

some arbitrary l, when the similarity between i and j is a threshold value.
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∂ρ(Di,j − di,j)
xi,l

=
∂

xi,l
((Di,j − di,j − 1)2 · h(Di,j − di,j − 1))

=
∂(Di,j − di,j − 1)2

xi,l
· h(Di,j − di,j − 1)

+
∂h(Di,j − di,j − 1)

xi,l
· (Di,j − di,j − 1)2

=− 2(Di,j − di,j − 1) ·
xi,l − xj,l
di,j

· h(Di,j − di,j − 1)

+ h′(Di,j − di,j − 1) ·
xi,l − xj,l
di,j

· (Di,j − di,j − 1)2

Where h′(x) = dh
dx(x). We have that h′(x) = d

dx(1/(1 + e−10x)) = 10e−10x

(1+e−10x)2
. Since

Di,j = Dj,i and di,j = dj,i we omit the case k = j, as it is analogue to the case we just
did. We get the following term for our partial derivative:

∂emet,thres
∂xk,l

=

j=n∑
j=1,j 6=k

ρ′(Dk,j − dk,j) (9)

Where we take ρ′(Dk,l − dk,l) to be ∂ρ
xk,l

(Dk,l − dk,l), which we calculated above in all of

the cases. The number of terms in the summation remains the same, but we note that
each individual term becomes more complex.

5.4 Ordinal MDS

In the case of ordinal MDS we only know the relative order of the distances between
our n points. In this case we assume that there are no ties in this order, as this makes
matters more complicated, more on that below. Our error function eordinal is given by
(3). We again need a gradient so let us calculate the derivative to an arbitrary coordinate
xi,j . Note that we use the ordering given by the α’s as they were introduced in section
4. We get the following:

∂eordinal
∂xi,j

=
∂

∂xi,j

(
−
N−1∑
α=1

log (g(dα+1 − dα))

)

= −
N−1∑
α=1

∂

∂xi,j
log (g(dα+1 − dα))

= −
N−1∑
α=1

1

g(dα+1 − dalpha)
· ∂g(dα+1 − dα)

∂xi,j

= −
N−1∑
α=1

g′(dα+1 − dα)

g(dα+1 − dalpha)
· ∂(dα+1 − dα)

∂xi,j
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Where g′(dα+1 − dα) is the derivative of g in the point dα+1 − dα. Recall that g(x) =

0.5(1+tanhx), so g′ = 0.5(1− tanh2 x). Then g′

g becomes 1−tanh2 x
1+tanhx = 1− tanhx. Which

we can denote by h(x). All that remains is to determine ∂dα
∂xi,j

and ∂dα+1

∂xi,j
. They are 0

if distance α (respectively α + 1) does not depend on point i. If distance α (respec-
tively α+ 1) does depend on point i then the derivative becomes

xi,j−xk,j
dα

(respectively
xi,j−xk,j
dα+1

), where k 6= i is the other point distance dα (respectively dα+1) depends on.
This summation can be rather nicely rewritten provided that distances 1 and NM − 1
do not depend on point i. We get:∑

α∈Ii

(xi,j − xkα,j)
dα

(h(dα+1 − dα)− h(dα − dα−1))

Where Ii is the set of all distances depending on point i and kα is the other point distance
dα depends on. If either d1 or dN depends on point i we have a problem, since then either
dα−1 or dα+1 does not exist. We can remedy this by adding distances d0 and dN+1 to our
set of distances and setting d0 = −∞ and dN+1 =∞. We then also extend our function
h(x) by h(∞) = 0 = limx→∞ 1− tanhx and h(−∞) = 2 = limx→−∞ 1− tanhx. Using
these properties, if we have that d1 or dN depends on point i, we see that dN+1−dN = 0
(respectively d1 − d0 = 0) and we’ll get that the term h(dN+1 − dN ) (respectively the
term h(d1 − d0)) vanishes. We conclude that:

∂eordinal
∂xi,j

=
∑
α∈Ii

(xi,j − xkα,j)
dα

(h(dα+1 − dα)− h(dα − dα−1)) (10)

The sum in each component of the gradient runs over at most n− 1 different values. So
we need at most n− 1 terms for each part of our gradient. Since there are nd̂ different
coordinates and thus components of the gradient, the total gradient can then consists of
at most d̂n(n− 1) terms.

5.5 Ordinal MDS with binning, thresholds and missing values

In the case of binning and thresholds, we assume that we don’t know the exact ordering
of the distances between the points. But we have some information on their position.
The error function eord,thres in this case is given by (6). We note that this function
is essentially the same as the function we used without binning, only our summation
index changed. We don’t consider the next distance according to the ordering of our
similarities, but we consider all the distances in the next bin according to the ordering
of the bins. The derivative of the term inside the summations is the same as above, so
we conclude that our gradient is the following:
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∂e

∂xi,j
=
∑
α∈Ii

∑
β∈Bα

(xi,j − xkα,j)
dα

(h(dβ − dα))

−
∑
β∈B′α

(xi,j − xkα,j)
dα

(h(dα − dβ′))
(11)

In the above equation we have Ii the set of distances which depend on point i. Bα and
B′α the sets of distances which are in the next (respectively the previous) bin combined
with any values in threshold bins associated with our distance dα as described in section
4. kα is the other point distance dα depends on.

Since we do not know the number of distances in each bin an upper bound for the
number of terms in the gradient becomes larger. We do know that there are a total of N
similarities, which is bounded by n(n− 1)/2. We know that each distance is considered
twice, once for each point it depends on. We also know that whenever a distance is
considered, all the distances in the previous and next bins are considered. We wish to
know what the worst possible distribution of distances over the bins is for the number
of terms in our gradient.

Proposition 1. The largest amount of terms in the gradient occurs when the N sim-
ilarities are spread over 2 bins with a = bN/2c in the first bin and b = dN/2e in the
second bin. The number of terms is then given by 4d̂ab

Proof: We know that each distance is used 2d̂ times, since it depends on 2 points each
with d̂ coordinates. So the total number of terms in the gradient is the sum of the
number of distances in the previous and next bins for each distance multiplied by 2d̂.
Thus, to find the worst case scenario, we need to maximize this number. Since threshold
values are only associated with at most one bin and exact values have constraints by
distances in at most two other bins, we can assume without loss of generality that all
our similarities are exact values.

Let us consider any distribution over the bins which has distances in more than 2 bins.
We can then shift the distance in the last bin to 2 bins lower. Since these distances are
now in the previous bin with respect to distances in the second last bin while they were
in the next bin before, the number of terms does not decrease. We conclude that the
new distribution over the bins guarantees at least as many terms in the gradient. We
can iteratively repeat this process to conclude that the worst case scenario has distances
in at most 2 bins.

When we are left with distances in two bins, we have the following. We take each dis-
tance 2d̂ times and count the number of distances in the other bin. We see that the
total number of terms is given by 2d̂a · b + 2d̂b · a = 4d̂ab with a and b the number of
distances in the first and second bin respectively. We wish to maximize this number,
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so we can discard the constant factor 4d̂ for now. So we wish to maximize ab with the
constraint that a+b = N and both a and b are positive integers. First note that because
of symmetry we can assume that a ≤ b. We now claim that a = bN/2c and b = dN/2e
is the maximal solution. To see this assume we have x = a − c and y = b + c for some
integer −b ≤ c ≤ a. Then xy = (a− c)(b+ c) = ab+ ca− cb− c2 = ab− (c(b− a) + c2).
Since we assumed that a ≤ b and x 6= a, we have that c must be positive. Therefore,
c(b− a) + c2 is positive and we conclude that xy < ab. �

From the above proposition we conclude that the number of terms in the gradient is
bounded by 4d̂bN/2cdN/2e, with N bounded by n(n− 1)/2.
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6 Principal Component Analysis

A method frequently used to display high dimensional data or reduce the amount of
dimensions of a dataset is Principal Component Analysis (PCA). PCA transforms the
coordinate system for a dataset, ensuring that the maximal variance of the dataset is
explained by the first coordinate, the maximal variance that remains is explained by
the second coordinate, and so on. If the variance in higher coordinates is very low we
can omit these from the dataset to reduce the number of dimensions. We would like
to compare PCA with the results from (metric and ordinal) MDS. This works fine on
our simulated data, as we have the points of our strains and antisera in Rd. This is not
the case when we’re dealing with HI assay data. If we know the relation between the
similarities and distances however, we can apply a trick. As mentioned before, we can
always fit the n points in n− 1 dimensions if we only have the distances between these
points. We do this in the following manner.

Assuming we have a (random) order of the points. We call the first point x1 the ori-
gin, so x1 = (0, 0, . . . , 0). Since x1 and x2 together determine a unique line in our high
dimensional space. We can pick our basis of this space such that all but the first co-
ordinate of x2 are equal to 0. We want to ensure that the distance between x1 and
x2 is equal to the d1,2 given by the δ1,2 in the dataset. This leads to the equation√

(x1,1 − x2,1)2 =
√

(x2,1)2 = d1,2 which we can use to determine x1,2. Note that we
have 2 solutions to this equation if d1,2 > 0. We continue with the fact that x1, x2
and x3 determine a unique plane in our high dimensional space. So we argue that we
could pick a basis of our space such that all the coordinates of x3 besides the first 2 are
0. We have that

√
(x3,1)2 + (x3,2)2 = d1,3 and

√
(x3,1 − x2,1)2 + (x3,2)2 = d2,3 which

we can use to determine x3,1 and x3,2. This argument extends for all points xi with
i = 1, 2, . . . , n. For xi we get that xi,j = 0 when j ∈ {i, i + 1, . . . , n − 1}. We also

get a set of equations
√∑i−1

k=1 (xi,k − xj,k)2 = di,j for j ∈ {1, 2, . . . , i− 1} which can be

used to determine xi,1, xi,2, . . . , xi,i−1. We note that if xi = (xi,1, xi,2, . . . , xi,i−1, 0, . . . , 0)
is a solution to the given set of equations, then x′i = (xi,1, xi,2, . . . ,−xi,i−1, 0, . . . , 0) is
also a solution. Thus two solutions exist if xi,i−1 6= 0, i.e. if we need a new dimension
to describe point xi. Whenever this occurs, we pick one of the two possible solutions.
The existence of at least one solution is guaranteed if we are dealing with exact actual
distances. The points which generated these distances span a subspace of at most di-
mension n−1 in their original space, these points being a solution to the set of equations.

A problem arises with this method when we have no idea what the relation between the
similarities and actual distances is. If the similarities aren’t binned we can use 1/δi,j
instead of the di,j ’s in the above method to get a result. Though the configuration found
this way will obviously not satisfy the exact distances between the original points. It
will at least obey the ordering among the distances of the original points, as the similar-
ities obey the inverse ordering. When we are dealing with bins we could use the value
assigned to a bin for the above method. This will result in errors, since this value is
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merely an indication for the possible real values of the similarities. Usually this value
is the mean or upper/lower bound of a bin. An example to what could go wrong is the
following. Assume we have 3 points in 2 dimensional space x1 = (0, 0), x2 = ( 1√

2
, 0) and

x3 = (0, 1√
2
). The 3 distances then are d1,2 = 1√

2
= d1,3 and d2,3 = 1. Also assume

we have 4 bins, with each distance in each bin getting the minimum of the bin assigned
as value. The 4 bins are [0, 13), [13 ,

2
3), [23 , 1) and [1,∞). So our distances then become

d1,2 = d1,3 = 1
3 and d2,3 = 1. It should be immediately clear that this poses a problem,

since these distances no longer satisfy the triangle inequality. So we could create a sys-
tem which simply has no solution.

When looking at binned data, the value each distance (or more generally, each similarity)
has is merely an indicator of the possible range of values of this distance (or similarity).
In the example above for instance, d1,2 = 1

3 indicates that d1,2 ∈ [13 ,
2
3). We could

incorporate this into our method, by setting that the distances between points should lie
between the bounds of their bins. Then trying to find a solution to this set of inequations.
We then get a whole lot of roots, containing coordinates, which no longer need to be
a specific value but now need to lie between an upper and lower bound, namely the
upper and lower bound of the bin our distance lies in. The trouble with efficiently
finding a solution to this set of inequations is that we can no longer iteratively solve it.
When we have a set of equations to solve as before, we can do them iteratively starting
with solving the solutions for our second point, which had only 1 non-zero coordinate.
Substituting the solutions we found for previous points greatly reduces the complexity
of each equation to solve. Now we have inequations instead of equations, which could be
violated if we just iteratively started picking values for our points. Having a computer
solve these inequations, e.g. plugging them into mathematica, is infeasible as the number
of inequations to satisfy quickly grows with the number of points.
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7 The dataset of Smith et al

Smith et al [5] published a paper on the antigenic evolution of influenza, using a large
dataset of results from HI assays spanning over 30 years of research. The dataset can
be found online, see [7]. The dataset includes 273 strains of influenza and 79 antisera.
Resulting in 79 ·273 = 21567 strain-antiserum distances which could be measured by the
HI assays. The dataset online shows a total of 4252 measured values, while the original
paper [5] reports 4215 values were measured. I assume the online dataset has been up-
dated slightly since the publication of the article. Of the measured values 3279 are exact
values while the remaining 973 are threshold values. When attempting to reconstruct
the exact error function used by Smith et al, we failed to recover the same value of the
function in the minimum found in the aforementioned paper. This configuration in 2
dimensions was also not the minimum when using the aforementioned dataset and the
function emet,thres from (??). We continued the minimization from this point onwards
and got the configuration which can be seen in figure 3. We note that the picture does
not change much. The points seem to move closer to each other, but the cluster structure
appears to stay the same.

As was shown in the article above, the error prediction technique used by Smith et al can
conclude that 2 dimensions are enough to describe a high dimensional model of antigenic
influenza. Thus we wonder what the real dimension is in which antigenic evolution takes
place. We could attempt to find the dimension in which the value of our error function
is 0 when using the large dataset of Smith et al. Due to measurement errors and the
binning in the data however, we cannot hope to find a perfect fit at all.

Instead of attempting to interpret the outcomes of the metric MDS algorithm on the HI
assay dataset, we tried to fit the data in several dimensions using the ordinal version of
the MDS algorithm as introduced by Lapedes et al [4]. Because the complexity of the
ordinal MDS algorithm is rather high, we could not expect results from the algorithm in
a reasonable time frame when using the entire dataset. Instead we isolated clusters of
points from the dataset manually and used these for the algorithm. Here we’ll present
results of 2 of these clusters. The first consisting of strains 153-175 and antisera 41-45 in
the dataset of Smith et al. The second consisting of strains 222-238 and antisera 48-54
in the dataset of Smith et al. Creating a total of 23 · 5 = 115, respectively 17 · 7 = 117,
strain-antisera distance which could be measured. Of these 113, respectively 105, were
actually measured. We attempted fits in 2, 3, 4, 5 and 6 dimensions using the error func-
tion eord,thres from (6). Argueably the minimum value of eord,thres is even harder to
interpret than the value of the metric version, as the function does not even need to be
0 when the configuration obeys the ordering given by the similarities (for more details
see section 4). Here we present the amount of errors instead, counted using the method
explained in section 4 (table 1).

We note that if we only accept a configuration if it makes 0 errors in the ordering
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Figure 3: The minimum found from the configuration found by Smith et al using our
error function emet,thres. The black points indicate the strains and the white points
indicate antisera. The lines indicate the change from the configuration found by Smith
et al to the configuration we found.

of the points then we need 5 and 6 dimensions respectively to map the clusters of the
dataset used in these runs. As before we want to account for errors in the measurements,
meaning we don’t want to enforce a strict threshold of 0 errors. Instead we construct a
different threshold which depends on the dataset. Assume a bin in our dataset contains
many similarities and we have another similarity which is measured as lower than the
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run 2 dim map 3 dim map 4 dim map 5 dim map 6 dim map

1 868 183 55 0 0
2 2052 1505 701 261 0

Table 1: The amount of errors, when using the method explained in section 4, for the
best fit in each dimension using the ordinal MDS algorithm

value of this bin, while it is in fact higher. If we would perform an error counting on the
original points, using the dataset we have to obtain the ordering we want to preserve,
we would get at least as many errors as lie in this large bin. Therefore, we construct
a threshold based on the largest bin in our dataset. The largest bins contain 14 and 7
similarities for the clusters used in run 1 and 2 respectively. Let us assume that for at
most 20% of our similarities an error was made during the measurements, so 26 and 21
similarities respectively. We then propose thresholds of 14 ∗ 26 = 364 and 7 ∗ 21 = 147
for runs 1 and 2 respectively. We see that the cluster used in run 1 fits in 3 dimensions
while the cluster used in run 2 still needs 6 dimensions to be acceptable. We note that
the threshold we constructed can be varied depending on the confidence in the given
dataset, by varying the percentage of data that is expected to consist of measurement
errors.
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8 High dimensional model for antigenic evolution

The model used in the article is based on a 15 dimensional random walk. Each point
is generated from the previous point p by adding a random change of Xp

i ∼ N(0, σ) to
the coordinates i = 1, 2, . . . , 15 with either σ = 1 or σ = 25. Equivalently, each point in
generated by adding random a vector X to the previous point. Where X is distributed
according to the 15 dimensional multivariate normal distribution with mean the zero
vector 0 and covariance matrix the identity matrix I or 25 times the identity matrix,
i.e. 25I. We named the step for which the variance is larger large steps in the article,
let us justify this name.

The distance between two adjacent points in the random walk is given byD =
√∑15

i=1X
2
i ,

which we know to have the chi distribution with 15 degrees of freedom when Xi ∼
N(0, 1). In the case of σ = 5 we can apply a trick. We note that D =

√∑15
i=1

X2
i ·25
25 =

5 ·
√∑15

i=1
X2
i

25 . We have that
√∑15

i=1
Xi
25 is also chi distributed with 15 degrees of free-

dom. Therefore our larger distances are given by 5Y with Y chi distributed in 15 degrees
of freedom, as above. We have that P(5Y ≤ a) = P(Y ≤ a/5), from which we can infer
the cumulative distribution function. In figure 4 the cumulative distribution functions
of both D and 5Y have been plotted.

Figure 4: The cumulative distributions of D and 5Y

As can be seen from the plot, the probability that a large distance, with distribution
5Y , is smaller than a small distance, with distribution D, is very small. Justifying the
notion of smaller and larger distances.

After generating these points and their interpoint distances, we discarded many so our
data would resemble the actual data gathered through HI assays. In figure 5 a plot of
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the matrix used by Smith et al can be found. This figure depicts the bias in the data
gathered towards strains and antisera which lie close in time.

In our model we discarded larger distances for the reason that those cannot be accurately
measured by the HI assays [8]. The points we used in our model are generated using
an iterative process, which means there is a natural time ordering between the points.
Because our random walk takes place in 15 dimensions, we can assume the process
never returns to the previous points generated because we have only a limited number of
points. In the sense that with 15 coordinates changing in each step, the chance that each
of them changes back to (nearly) the previous value is negligible. Thus we expect there
to be an increasing distance between the points which lie further apart chronologically.
These are exactly the distances we’ll throw away in our model.
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9 Simulations on the effect of discarding large distances

We wish to get a better understanding of what the effect of discarding large distances is
on the results of the metric MDS algorithm. For this purpose we did several simulations
to see the effects on the results in different settings. Here we’ll present these results case
by case with an explanation of what we modeled exactly and an interpretation of the
results.

9.1 Only discarding the large distances

Once more we use a random walk, as we did in the model in the article, to generate
50 points in dimensions 5, 10, 15, 20 and 25. We do not make a distinction between
large and small steps, the change per coordinate for each step is a standard normally
distributed random variable. We do not add points for the antisera either, to keep the
computation time of the algorithm somewhat in check. Of all the distances between
these 50 points generated we discarded the largest 75%. We attempted to fit them in
dimensions 2 through d, with d the dimension in which the data was generated. We
calculated the average error between the actual distances which were discarded and the
distances in the resulting map, the prediction error from the article. We repeated this
for 27 runs. The results of the runs combined can be seen for the different dimensions
in figures 6, 7, 8, 9 and 10.

The figures show that the prediction error does not change much when we increase the
target dimension of the algorithm. This holds true for all original dimensions we used,
the dimensions in which we generated the random walk. We conclude that the notion
of prediction error cannot be used to accurately estimate the original dimension of data
used by the MDS algorithm when large distances are missing. Which is exactly the case
in data found through HI assays. We note that the random walk used to generate the
data presented here only generates points for strains and not for antisera. In the case
of HI assay data we only have antisera-strain similarities. If we would designate some
points as antisera in the random walk we generated, we’d only have information about
the distances between those points and all the other points not designated as antisera.
In a way, the model we use here has more information as we have the distances between
all the points, before we started discarding.

9.2 Varying the number of distances discarded

We use the same random walk as above, but we vary the number of distances discarded
in an attempt to see if we can produce better results should we be able to measure more
of the small similarities/distance. Instead of discarding the largest 75% of the distances
we removed the largest 50% and 25% instead. In both cases we only did 15 runs to limit
the time required for the simulation. Results when the largest 50% was discarded can
be found in figures 11, 12 and 13. Results when the largest 25% was discarded can be

28



found in figures 14, 15 and 16.

We see an improvement in the prediction error when we go from target dimension 2 to
3, but not when we increase the target dimension even further. We conclude that even if
we would greatly improve the range of similarities we can measure for use in the metric
MDS algorithm, we still cannot accurately estimate the dimension of the underlying
shape space using the prediction error.

9.3 Increasing the size of the random walk

To see the long term effect of discarding large distances, because they either cannot be
measured by the HI assay or were tested in two different HI assays, we increased the
amount of points generated in the previously used random walk in 15 dimensions to 200.
For completeness we also associated antisera to strains with a probability of 1/3.5, with
the antiserum being the exact same point as the serum it is associated with. We then
discarded the largest 50% of the distances and used the metric MDS algorithm to fit the
strains and antisera in 2 dimensions (figure 17).

The strains loop back onto each other, while the distance between two points increases as
they lie further apart on the random walk used to generated the actual distances between
the points. This is a curious effect caused by the high dimension used to generate the
data and the discarding of the larger distances.
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10 The limit case R∞

We are interested in the behavior of our algorithms in the case that we take our original
dimension to be very high, so that it approaches the limit case R∞. We start by consid-
ering the random walk, in which we only make changes to our coordinates according to
the standard normal distribution. In the case of a fixed, finite dimension d the distance

between two consecutive points is D =
√∑d

i=1X
2
i . We know that the random variable

D has the chi distribution in d degrees of freedom. The first question at hand is, what
happens with this distribution as d becomes large. The mean and variance of a chi
distribution in d degrees of freedom are given by:

µd =
√

2
Γ((d+ 1)/2)

Γ(d/2)
(12)

σ2d = d− µ2d (13)

When we consider the limit of these equations as d goes to∞ we get the following limits,
which can be calculated using mathematica:

lim
d→∞

µd = lim
d→∞

√
2

Γ((d+ 1)/2)

Γ(d/2)
=∞

lim
d→∞

σ2d = lim
d→∞

d−
(√

2
Γ((d+ 1)/2)

Γ(d/2)

)2

=
1

2

We see that the mean of the distance goes to infinity as we increase the dimension. Since
the step we take in each dimension is independent of the other dimensions and has a
standard normal distribution, the step in each direction is almost surely positive. So
each coordinate makes an almost surely positive contribution to the distance. So the
total distances has to increase to infinity as the amount of dimensions does. We note,
since the limit is finite, that the variance is bounded when d becomes large.

This only gives us the distribution of the distances between two points that are actually
adjacent in the random walk. The question is what happens if they are not. Assume we
have 2 points n and m on the random walk with m k steps after n. In that case ml, the
l-th coordinate of m is nl, the l-th coordinate n, plus k independent variables Xi with
Xi ∼ N(0, 1) for i = 1, 2, . . . , k. The sum X(k) of the Xi’s is again a normal variable
with mean 0 and variance k. So we can conclude that the distribution of the difference
between the l-th coordinate of m and n is equal to X(k). Note that the distribution of
X(k) is independent of the coordinate we choose to evaluate.

Now we would like to know how the distance between n and m is distributed. We know

that this distance equals
√∑d

i=1 (X(k))2. Note that, since X(k) ∼ N(0, k), we have that

X(k)√
(k)
∼ N(0, 1). Applying the same trick as in section 9 we get the distribution of the

distance:
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√√√√ d∑
i=1

(X(k))2 =

√√√√ d∑
i=1

(√
k
X(k)

√
k

)2

=
√
k

√√√√ d∑
i=1

(
X(k)

√
k

)2

Where we know that X(k)
√
k
∼ N(0, 1). So the second square root is a random variable

with a chi-distribution in d degrees of freedom.

It is not immediately clear that this limit case has nice properties. For this reason we ap-
ply a trick. We rescale our coordinates by a factor 1/µd. We can do this because rescaling
doesn’t intrinsically change the picture we get, which is all we’re interested in. Due to
this rescaling factor the distance between two points is rescaled by the same factor 1/µd.
We see that the mean and variance of our distribution function for the distance between
two adjacent points in the random walk go to 1 and 0 respectively. We conclude that this
particular limit case is a deterministic process, with the distance between two adjacent
coordinates being 1. From the distribution of the distance between the n-th and m-th
point of our random walk we can infer that this is now a step of fixed distance

√
|n−m|.

We are interested in the outcome of our algorithms when we use these values as input.
Assume we generate n points according to the above relation. Let us first consider the
ordinal algorithm. Since we’re dealing with ties here, we need the version of the algo-
rithm which incorporates them. This algorithm will always find a perfect fit in dimension
1. Because no matter how many points we generate, x1 = 0, x2 = 1, . . . , xn = n − 1 is
always a configuration which obeys the ordering of the distances. Note also that multi-
plication or addition by any real number does not violate this fact, so any configuration
generated from the given one by such manipulations is also a solution for the algorithm
in dimension 1, which does not make errors in the ordering.

Let us now consider the metric MDS algorithm. If we consider target dimension 1 ,we
can prove the following:

Proposition 2. The points x0 = 0 and xi = 1
n

∑i−1
k=1

√
k +
√
n− k for i = 1, 2, . . . , n

are a local minimum of the metric MDS error function emetric (2) w.r.t. the distances
given above between n points.

Proof: We’ll show that the gradient is equal to 0 for the points and distances given in the
proposition. For this we obviously need the gradient of the metric MDS error function.
We have computed this before, it is given by (8). First we note that in dimension 1,
each point only has one coordinate. So the distances between two points xi and xj is
the absolute value of the difference between the two points. Consider coordinate k of
the gradient:

31



∂emetric
∂xk,1

= −2
n∑

j=1,j 6=k
(Dk,j − |xk − xj |)

xk − xj
|xk − xj |

We have set Dk,j =
√
k − j for k > j and Dk,j =

√
j − k for k < j. We also know that

|xk − xj | = xk − xj for k > j and |xk − xj | = −(xk − xj) for k < j since our points
obey x1 < x2 < . . . < xn. We can use this to simplify the above, then we can use the
expressions for the points from the proposition. We get:

− 2

n∑
j=1,j 6=k

(Dk,j − |xk − xj |)
xk − xj
|xk − xj |

=− 2

k−1∑
j=1

(Dk,j − xk + xj)
xk − xj
xk − xj

+
n∑

j=k+1

(Dk,j + xk − xj)
xk − xj
−(xk − xj)


=− 2

k−1∑
j=1

(Dk,j − xk + xj)−
n∑

j=k+1

(Dk,j + xk − xj)


=− 2

k−1∑
j=1

(
√
k − j − 1

n

(
k−1∑
l=1

√
l +
√
n− l +

j−1∑
l=1

√
l +
√
n− l)

)
+ 2

 n∑
j=k+1

(
√
j − k +

1

n

(
k−1∑
l=1

√
l +
√
n− l −

j−1∑
l=1

√
l +
√
n− l)

)
=− 2

k−1∑
j=1

√
k − j −

n∑
j=k+1

√
j − k − 1

n

k−1∑
j=1

k−1∑
l=j

√
l +
√
n− l +

n∑
j=k+1

j−1∑
l=k

√
l +
√
n− l


This expression seems somewhat cumbersome, but it can be simplified using the following
identities:

k−1∑
j=1

k−1∑
l=j

√
l +
√
n− l =

√
1 +
√
n− 1 + 2

√
2 + 2

√
n− 2 + . . .

+ (k − 1)
√
k − 1 + (k − 1)

√
n− (k − 1)

=
k−1∑
l=1

l(
√
l +
√
n− l)

n∑
j=k+1

j−1∑
l=k

√
l +
√
n− l =(n− k)

√
n− (n− k) + (n− k)

√
n− k
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+ (n− (k + 1))
√
n− (n− (k + 1)) + (n− (k + 1))

√
n− (k + 1)

+ . . .+
√
n− 1 +

√
1

=
n−k∑
l=1

l(
√
l +
√
n− l)

n∑
j=k+1

√
j − k =

√
1 +
√

2 + . . .+
√
n− k

=
n−k∑
l=1

√
l

Using these identities, the expression we had for the k-th coordinate of our gradient
becomes:

−2

(
k−1∑
l=1

√
l −

n−k∑
l=1

√
l +

1

n

(
n−k∑
l=1

l(
√
l +
√
n− l)−

k−1∑
l=1

l(
√
l −
√
n− l)

))

Now we can distinguish between the cases n − k ≥ k and n − k < k. First assume
n− k ≥ k. Then the above simplifies to:

− 2

(
−
n−k∑
l=k

√
l +

1

n

n−k∑
l=k

l(
√
l +
√
n− l)

)

= −2

(
−
n−k∑
l=k

√
l +

1

n

n−k∑
l=k

n
√
l

)
= 0

Where we used:

n−k∑
l=k

l(
√
l +
√
n− l) = k(

√
k +
√
n− k) + (k + 1)(

√
k + 1 +

√
n− (k + 1)) + . . .

+ (n− k)(
√
n− k +

√
n− (n− k))

=
n−k∑
l=k

n
√
l

The case n − k < k has the same equations, except that the summation limits are
switched. Therefor this case also satisfies the desired property. �
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When we increase the target dimension, the formula for each coordinate of the gradient
because more complex. A general solution to these equations was not found. Nonetheless
we can still present a picture of the best fit found in 2 dimensions by the algorithm of
100 points with inter-point distances as described above (figure 18).
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11 To do list

During the time I took to do the research presented here, I explored a great many
options for the ordinal and metric MDS algorithms. A great deal of things were also left
untouched or only briefly touched. Here is a short summary of topics and problems I
would’ve liked to look into as well. Anyone who continues with the research presented
here may keep this list in mind.

1. It should be clear that the right censoring, the discarding of large distances, greatly
affects the outcomes of the MDS algorithm. As postulated in the article, future
studies should focus on ways of avoiding this problem through matrix completion
algorithms or similar techniques [9].

2. As explained in section 6, under certain assumptions the number of terms in
the various error functions and gradeints of the error functions are polynomially
bounded. Unfortunately this does not guarantee a low running time, which is not
the case in pratice. It should be wise to try and improve the algorithm’s running
time for future studies.

3. The number of simulations done for the results presented in section 10 was limited
due to time constraints and the aforementioned high computation time of the
algorithms. Though we don’t expect the results to change when we increase the
number of runs, it should still be done for completeness.

4. The metric MDS algorithm as presented here attempts to fit distances to an exact
value gained through HI assays. But the HI assay suffers from interval censoring.
It might be possible to alter the error function used in the algorithms so it does
not penalize the distance between points in a configuration if it lies within a range
of values, instead of when it is exactly equal to the target distance. Though such
a modification could result in insurmountable computation times.

5. The linear relation between the HI assay data and the actual distances in shape
space [4, 5] was found using the ordinal MDS algorithm, which has a very long
running time on larger datasets. Nevertheless I advice that the relation is checked
in the case of a larger dataset, possibly by imputing a subset of the dataset.
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Figure 5: The dataset used by Smith et al. On the horizontal axis we have the antisera
and on the vertical axis we have the strains. The strains and antisera have been resorted
according their year of creation/isolation. A black square marks an exact value for the
strain/antiserum combination. Red squares mark threshold values and grey squares
indicate a missing value
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Figure 6: Boxplot of the prediction error of the random walks in dimension 5 which
generated 50 points with the largest 75% of the distances discarded. The crosses indicate
the average of all the runs per dimension.
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Figure 7: Boxplot of the prediction error of the random walks in dimension 10 which
generated 50 points with the largest 75% of the distances discarded. The crosses indicate
the average of all the runs per dimension.
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Figure 8: Boxplot of the prediction error of the random walks in dimension 15 which
generated 50 points with the largest 75% of the distances discarded. The crosses indicate
the average of all the runs per dimension.
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Figure 9: Boxplot of the prediction error of the random walks in dimension 20 which
generated 50 points with the largest 75% of the distances discarded. The crosses indicate
the average of all the runs per dimension.
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Figure 10: Boxplot of the prediction error of the random walks in dimension 25 which
generated 50 points with the largest 75% of the distances discarded. The crosses indicate
the average of all the runs per dimension.
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Figure 11: Boxplots of the prediction error of the random walks in dimensions 5 (above)
and 10 (below) which generated 50 points with the largest 50% of the distances discarded.
The crosses indicate the average of all the runs per dimension.
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Figure 12: Boxplots of the prediction error of the random walks in dimensions 15 (above)
and 20 (below) which generated 50 points with the largest 50% of the distances discarded.
The crosses indicate the average of all the runs per dimension.
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Figure 13: Boxplot of the prediction error of the random walks in dimension 25 which
generated 50 points with the largest 50% of the distances discarded. The crosses indicate
the average of all the runs per dimension.
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Figure 14: Boxplots of the prediction error of the random walks in dimensions 5 (above)
and 10 (below) which generated 50 points with the largest 25% of the distances discarded.
The crosses indicate the average of all the runs per dimension.
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Figure 15: Boxplots of the prediction error of the random walks in dimensions 15 (above)
and 20 (below) which generated 50 points with the largest 25% of the distances discarded.
The crosses indicate the average of all the runs per dimension.
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Figure 16: Boxplot of the prediction error of the random walks in dimension 25 which
generated 50 points with the largest 25% of the distances discarded. The crosses indicate
the average of all the runs per dimension.
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Figure 17: A random walk in 15 dimensions creating 200 strains and associated antisera
fit into 2 dimensions using the metric MDS algorithm. The black points are the strains
and the green points the antisera. The red lines indicate that the actual distance between
the strain and antiserum is 0. The points start to overlap, even though the actual distance
between points further apart on the random walk is large.
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Figure 18: The best fit in 2 dimensions for 100 points generated using a jump of length
1 in a new direction orthogonal to all the previous ones.
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