
The Dillon-Wolfe Function for Cryptography

Eric Cornet

August 29, 2012

Master thesis:
Mathematical Sciences

Under supervision of:
Gido Schmitz NBV
Jaap van Oosten UU
Second reader:
Gerard Tel UU

Abstract

Boolean functions, f : Fn2 → F2, have applications in cryptogra-
phy. To encrypt and decrypt a message in symmetric cryptography,
substitution permutation networks (SPN) are used. An example of
such an SPN is the Advanced Encryption Standard (AES). An S-
box is a component of an SPN which is essential for the security of
that cipher. Such an S-box consists of vectorial Boolean functions,
F : Fn2 → Fm2 , which satisfies certain cryptographic criteria at high
levels. Two criteria are that an S-box is a permutation and that it is
almost perfect nonlinear (APN). Recently the first APN permutation
in even dimension was found by Dillon and Wolfe [13] and is there-
fore called a Dillon-Wolfe function. It is the purpose of this master
thesis to explain in which context Boolean functions are used as an
S-box in cryptography, to study Boolean functions in general and to
use this to explain how to find a Dillon-Wolfe function. Further we
give a general upper bound on the algorithm that Dillon and Wolfe
used, we determine other cryptographic properties of a Dillon-Wolfe
function and conclude that a Dillon-Wolfe function can be used as an
S-box.

1

Contents

1 Introduction 4

2 Cryptography 6
2.1 Ciphers . 6

2.1.1 Cipher, alphabet and XOR 6
2.1.2 Stream ciphers . 8
2.1.3 Block ciphers and SPN. 10

2.2 Cryptanalysis . 12
2.2.1 An attack . 13
2.2.2 Confusion and diffusion 13
2.2.3 Differential and linear attack 14

3 Coding Theory 16
3.1 Error Correcting Codes . 16

3.1.1 Binary linear codes . 16
3.1.2 Structure of a code . 19

3.2 Simplex Codes . 23
3.2.1 Hamming codes . 23
3.2.2 Simplex and double simplex codes 25

4 Boolean Functions 28
4.1 Definitions and Properties . 28

4.1.1 Basics . 28
4.1.2 Representations ANF and TT 30
4.1.3 The algebraic degree 33

4.2 Fourier and Walsh Transform 36
4.2.1 Properties of Fourier transform 39
4.2.2 Properties of the Walsh transform and nonlinearity . . 45

4.3 Linear and Affine Isomorphisms 49
4.4 Cryptographic Properties . 51

5 Vectorial Boolean functions 54
5.1 Extensions of Definitions and Properties 54

5.1.1 ANF . 54
5.1.2 The algebraic degree and balancedness 56
5.1.3 The Walsh transform and nonlinearity 58

2

5.2 AB and APN . 61
5.3 EA- and CCZ-Equivalence . 63

5.3.1 Equivalences . 63
5.3.2 Invariants . 65

6 The Dillon-Wolfe Function 68
6.1 Boolean Functions and Coding Theory 68
6.2 An APN Permutation . 73

6.2.1 A double simplex code 73
6.2.2 Simplex subcodes LHF 75

6.3 A Dillon-Wolfe Function . 80
6.4 Cryptographic properties of a Dillon-Wolfe function 81

6.4.1 ANF . 81
6.4.2 Compared to other S-boxes 83

6.5 Additional Remarks . 85
6.5.1 A randomized search algorithm 85
6.5.2 Decomposition . 86

6.6 Conclusion . 88

3

1 Introduction

An important component of a particular cryptographic algorithm, a sub-
stitution permutation network SPN, is called the S-box and consists of a
vector of Boolean functions. Boolean functions are functions from Fn2 to F2.
They are selected for an S-box if they have certain cryptographic properties.
Since there do not exist Boolean functions which achieve the maximum of all
properties at once, trade-offs have to be made.

For one, two or three variables, Boolean functions are rather simple func-
tions which can even be investigated by hand. But when the number of vari-
ables grows, the number of different Boolean functions grows exponentially,
since there are 22n different Boolean functions with n variables. Therefore
finding functions with certain properties can not be done by a brute force
search.

It was long an open question if there exists a vectorial Boolean function
which is a permutation and is almost perfect nonlinear APN. In this master
thesis we investigate a recent result of Dillon and Wolfe [13] of an APN per-
mutation in dimension six. We give the theory which is needed to understand
how they have found this Dillon-Wolfe function and how we can determine
whether this Dillon-Wolfe function can be used in an SPN as an S-box. We
also give a general upper bound on the algorithm which Dillon and Wolfe
used to find this APN permutation.

Therefore we start with an introduction in symmetric cryptography and
coding theory. Then we study Boolean functions and vectorial Boolean func-
tions in general and with this theory we can deduce a Dillon-Wolfe function.

Notation Since cryptography and in particular Boolean functions is quite
a new research field in mathematics, there are not many conventions in no-
tations. I tried to follow the notation used by Carlet in [5] and [6] since this
work gives a good overview of the theory developed in the last fifty years.
Most notation will become clear in definitions. Carlet uses two different
kinds of summation which need to be clarified. We use + and

∑
for the

usual summation, that is +,
∑

: Z → Z (or R → R) and ⊕ and
⊕

for
summation modulo 2, i.e. ⊕,

⊕
: Fn2 → F2. With this notation we define the

inner product of two binary vectors as the function · : Fn2 × Fn2 → F2 with
x · y =

⊕n
i=1 xiyi. Since the vector space Fn2 can be identified with the field

F2n in which normally the symbol + is used for addition, we will use + for
the sum of two vectors in Fn2 when n > 1.

Structure of the thesis The thesis consists of five sections. The first

4

four sections contain basic results which are needed for the last section. Be-
low, the content and the purpose of each section is given, together with the
most important references. For important or recent results, the references
are given within the text.

• Section 2. A general idea of symmetric cryptography is given, to give
the reader an idea in which context Boolean functions are used. What
is a cipher, what is a S-box and what kind of attacks are known?
General theories on ciphers are from Buchmann [2]. For the section on
cryptanalysis we used papers of Shannon [18], Biham and Shamir [1]
and Matsui [17]. The figures are from Carlet [5].

• Section 3. An introduction in (linear) coding theory and error correct-
ing codes. Enough to tread Hamming codes and double simplex codes
which are needed for the construction of a Dillon-Wolfe function. The
theory is mainly taken from van Lint [20], Hall [11] and Dillon et al.
[13].

• Section 4. Almost all relevant basic properties for Boolean functions
f : Fn2 → Fm2 for m = 1 are described. This section contains most
of the theory on which I have concentrated in the first months. The
theory comes from Carlet’s overview on Boolean functions [5]. In the
last subsection we give the meaning of properties of Boolean function
for cryptographic applications.

• Section 5. Most notions that have been introduced in the previous sec-
tion can be easily extended to vectorial Boolean functions, F : Fn2 → Fm2
for m ≥ 1. The theory on Boolean functions needed for the construc-
tion of a Dillon-Wolfe function is completed. Most results are from
Budaghyan [3], Carlet [4], [6] and Chabaud and Vaudenay [7].

• Section 6. Coding theory and the theory of vectorial Boolean functions
come together to derive a Dillon Wolfe function. The construction was
introduced in the paper of Dillon et al. [13].

Further, two new results are given. In section 6.2.2 I state a general
upper bound for the algorithm which Dillon and Wolfe have used and in
section 6.4 the cryptographic properties of a Dillon-Wolfe function are
derived and compared to a commonly used S-box, the inverse function.
From this we conclude that the Dillon-Wolfe function can be used as
an S-box.

5

2 Cryptography

The main goal of this section is to give an idea of the context in which Boolean
functions are used in cryptography. In section 2.1 we start with some general
notions of a cryptographic algorithm, up to substitution permutation networks
SPN and the role of an S-box in an SPN. In section 2.2 we will say more on
the possible attacks that can be made to break a cryptographic algorithm and
reveal the secret message. This can be used to determine which properties
of Boolean functions are desired and which are not.

2.1 Ciphers

Two thousand years ago the Romans already used cryptography when they
sent military strategies to the generals who where fighting at the front. The
encryption was done by a cyclic shift on the letters of the alphabet. It is
known [19] that Julius Caesar always used three cyclic shifts, on the Roman
alphabet in his case, to encrypt his confidential messages. Of course there
are 26 cyclic shifts possible on our alphabet. For instance the sender could
let the number of shifts depend on the first letter of the name of the receiver.
If you want to send a secret message to general CORNET, the encryption is
done by two cyclic shifts in such a way that the letters A,B,C,D,... become
the letters C,D,E,F,... respectively. We get,

CORNET

EQTPGV

and the encrypted name of the general would be EQTPGV. The decryption
is obviously done by reversed cyclic shifts. This algorithm is now known as
the Caesar cipher.

2.1.1 Cipher, alphabet and XOR

In the book by Buchmann [2] a general definition of a cryptographic algorithm
is given. A cryptographic algorithm is also called a cipher. A text which is
not (yet) encrypted is called a plaintext and an encrypted plaintext is called
a ciphertext.

Definition 2.1. A cipher is a tuple (P , C,K, E ,D) with the following prop-
erties.

6

i. The set P is the set of all possible plaintexts.

ii. The set C is the set of all possible ciphertexts.

iii. The set K is the set of all possible keys.

iv. E = {Ek : k ∈ K} is the family of all encryption functions Ek : P → C.

v. D = {Dk : k ∈ K} is the family of all decryption functions Dk : C → P .

vi. For every encryption key e ∈ K there exists a decryption key d ∈ K
such that Dd(Ee(p)) = p for all plaintexts p ∈ P .

When using a cipher for the communication of a secret message, a min-
imal requirement is that the decryption key is kept secret. In some ciphers
the decryption key can be computed from the encryption key. For these ci-
phers the encryption key must be kept secret as well and exchanged before
the start of the communication. This kind of ciphers are called symmetric.
The Caesar cipher is an example of a symmetric cipher. In asymmetric key
cryptography the encryption key and the decryption key are distinct and can
not be derived from each other, that is they can not be derived from each
other in a reasonable amount of time. Therefore the encryption key can be
made public. This is also known as public key cryptography. A famous ex-
ample in asymmetric cryptography is the RSA cipher. We will concentrate
in this section on symmetric cryptography.

Every message consists of symbols from an alphabet Σ. If an alphabet Σ
is of size m we identify Σ with the additive group Z/mZ = {0, 1, . . . ,m−1}.
For example we can take the usual alphabet A,B,C,...,Z with 26 symbols,
or the binary alphabet F2. An often used alphabet is the set of (ANSI)
ASCII symbols used in a personal computer. It consists of 128 symbols
which represents all keys on the keyboard and more1. Each symbol has its
unique string of eight bits, seven which determine the symbol and one extra
bit to detect a possible transmission error2. Of course a message in ASCII
symbols can also be viewed as a message in F2. We will only consider the
binary alphabet F2, with exception of the following example.

1For a table of all (ANSI) ASCII symbols see [2]
2More about such extra bits will be explained in section 3.1.2 about error correcting

codes.

7

Example 2.2. Let the alphabet be Σ = Z/26Z corresponding to the usual
alphabet A,B,C,...,Z. The Caesar cipher, used in the introduction to send
a message to general CORNET, consists of P = C = K = Z/26Z, the
encryption function Ee : Z/26Z → Z/26Z with Ee(x) = x + 2 mod 26 and
the decryption function De(x) = x − 2 mod 26. In general the encryption
of the Caesar cipher is x 7→ x + d mod 26, for 1 ≥ d ≥ 25, with decryption
function x 7→ x− d mod 26.

2.1.2 Stream ciphers

A common used operation for encryption and decryption is exclusive or,
abbreviated as XOR.

Definition 2.3. Define the XOR operation ⊕ as bitwise addition modulo 2.
Let x, y be two binary vectors of length n, then x⊕y = (x1⊕y1, . . . , xn⊕yn)
such that for 1 ≤ i ≤ n we have;

xi yi xi ⊕ yi
0 0 0
1 0 1
0 1 1
1 1 0

A particular symmetric cipher which uses the XOR operation is the
stream cipher. In a stream cipher the plaintext p is encrypted by XOR
with the key k, therefore k must be of the same length as p. The ciphertext c
can be decrypted similarly. Let n be the size of the message. The set of plain-
texts equals the set of ciphertexts and the set of all keys, P = C = K = Fn2 .
For p, c, k ∈ Fn2 we have Ek, Dk : Fn2 → Fn2 such that

Ek(p) = p⊕ k = c,

Dk(c) = c⊕ k = p.

This cipher ensures unconditional security if and only if the key is truly ran-
dom and never used twice, this is known as the Vernam cipher3. For most

3The Vernam cipher was used for communication between the USA and the USSR
during the cold war. The keys, of the same length as the message, where carried by
diplomats, Carlet [5].

8

Figure 1: LFSR

applications generating a random key takes too much time and pseudo ran-
dom keys are used. Starting with an initial key K0 = (k1, . . . , km) of length
m < n a keystream K is generated bit by bit, K = k1, . . . , km, km+1, . . . , kn.
The keystream is pseudo random if it ’looks’ random, that is it can not be
distinguished from a random sequence in polynomial time. For more about
pseudo random sequences, see [10].

A cipher containing a keystream is called a stream cipher. The initial key
K0 and the generation algorithm must be shared before the communication
starts. If the keystream does not depend on the (encrypted) message, then it
can be computed synchronously by the sender and receiver. Such ciphers are
called synchronous stream ciphers and are traditionally found in constrained
telecommunication solutions.

Example 2.4. A simple way to generate pseudo random keys is the linear
feedback shift register LFSR. Let K0 = (s1, . . . , sL) be the initial key and
(c1, . . . , cL) be the feedback coefficients. New bits are generated by the re-
cursion relation

sn =
L⊕
i=1

cisn−i.

This operation is represented in figure 1. The keystream is generated bit by
bit. For each next state, sn is computed, where × is the usual multiplication.
The values sn−1, . . . , sn−L move to the right giving the output bit sn−L. The
keystream has a maximum length of 2L−1 bits, since the LFSR has a period
of at most 2L − 1. So the initial random key can be of reasonably smaller

9

size then the plaintext.
The LFSR is cryptographically weak since the Berlekamp-Massey algo-

rithm can recover all secret bits if 2L coefficients of the keystream are known.
There are other ways to generate pseudo random keys, for example the com-
biner model and filter model. In both models LFSR’s are combined with
Boolean functions, for more on this see Carlet [5].

2.1.3 Block ciphers and SPN.

Stream ciphers can encrypt arbitrarily long documents. Another cipher
which can encrypt arbitrarily long documents is a block cipher. Block ciphers
are symmetric ciphers which encrypt and decrypt a block of fixed length of
bits. When a document must be encrypted it is partitioned into blocks of
size n. If needed, the last block of the document is filled up with extra bits
to make it into a block of length n. These extra bits have a certain structure
such that they can be recognized after decryption. The block cipher encrypts
each block separately, hence the set of all plaintexts equals P = Fn2 and the
set of all ciphertexts equals C = Fn2 . The encryption function Ek of a block
cipher is then a permutation on Fn2 and the decryption function Dk is its
inverse.

To increase security of the block cipher, the encryption is repeated several
rounds r. Each round i, 1 ≤ i ≤ r, consist of the same computations but
with a different round key Ki, hence each round a new round ciphertext ci
is produced. This way more keys are needed, K1, . . . , Kr. These round keys
can be produced in a similar way as the keystream.

A particular block cipher is the substitution permutation network SPN.
In general, an SPN with r rounds starts with a block plaintext p ∈ Fn2 of n
bits and uses a keystream K0, K1, · · · , Kr where each round key consists of
n bits. First the initial key K0 is added to p by XOR, producing the round
ciphertext c0. Then each round consists of three components:

• The first component is a highly nonlinear permutation and is called
the Substitution-box, abbreviated as S-box. It actually consists of k
parallel smaller S-boxes which are fixed vectorial Boolean functions
S1, . . . , Sk : Fm2 → Fr2 with n = k · m. An S-box S = (S1, . . . , Sk) :
Fn2 → Fn2 acts on every round ciphertext ci 7→ S(ci).

• The second component is a fixed permutation on the indices of the bits
(x1, . . . , xn) ∈ Fn2 , P : Fn2 → Fn2 , which maps S(ci) 7→ P ◦ S(ci).

10

• The third component of each round is addition of a round key Ki of
length n by XOR.

Hence an SPN is of the form

R0(p) = p⊕K0 = c0,
1 ≤ i ≤ r Ri(ci−1) = P ◦ S(ci−1)⊕Ki = ci,

and cr is the ciphertext of the SPN.
The consequence of these components will be explained in the section on

cryptanalysis. Note that the two functions S and P are fixed each round.
They do not need to be secret and can be made public, hence S−1 and P−1

are fixed and public as well. Therefore decryption can be done if the initial
key and the generation algorithm of the round keys is known.

The vectorial Boolean functions used as S-boxes are very interesting and
of main importance of this thesis. Besides nonlinearity other properties must
be satisfied, this will be explained in the sections about (vectorial) Boolean
functions.

An example of an SPN is given in figure 2. The block length is n = 16
bits, each path represents a bit. The SPN consists of r = 3 rounds. It starts
with adding (XOR) the initial key K0 to the plaintext followed by round 1. A
round consists of four fixed S-boxes S1, S2, S3, S4 : F4

2 → F4
2 acting on blocks

of 4 bits. Followed by a fixed linear permutation P : F16
2 → F16

2 and then an
XOR addition of the round key. In the third round the linear permutation
is omitted. The SPN produces after three rounds a 16 bit ciphertext.

Examples of block ciphers are the Data Encryption Standard DES and
the Rijndael cipher also known as the Advanced Encryption Standard AES.
The DES is a so called Feistel cipher, which is a different block cipher then
an SPN4. It was the standard cipher for decryption of digital communication
in the USA since the seventies. It works on blocks of 64 bits, uses a 64 bit
key and consists of 16 rounds. In the nineties DES was no longer considered
to be secure. The National Institute of Standards and Technology NIST of
the USA organized a contest for the best alternative cipher. In 2001 the
Rijndael cipher, from J. Daemen and V. Rijmen, was announced to be the
next standard cipher, the Advanced Encryption Standard AES. AES works
on blocks of size 128. There can be chosen between keys of length 128, 192
or 256 bits together with 10, 12 or 14 rounds respectively. For a detailed

4Feistel ciphers and in particular DES are explained by Buchmann in [2].

11

Figure 2: A substitution permutation network SPN cipher.

description of the AES algorithm see the announcement of the AES from the
NIST in 2001 [9].

2.2 Cryptanalysis

In cryptanalysis the weaknesses of ciphers are analyzed on possible attacks.
For example the Caesar cipher is very weak since the key space K is very
small, K = Z/26Z. With an exhaustive search on Z/26Z we easily find a
unique reasonable combination of plaintext and key. Another weakness is
that the encryption takes over any statistical structure of the plaintext. If
the language of the message is known, an enemy can use statistics of single
letters, letter combinations and words which commonly occur, such as ”the”,
”and”, ”-tion” and ”that” in the English language.

Although statistics are an important tool in cryptanalysis, we will not go
into it in much detail. We only give a global idea of a cryptographic attack
and possible weaknesses of ciphers.

12

2.2.1 An attack

An attack consists of analyzing the probabilities of all elements of P , C and
K. Given one or more ciphertexts, are there elements in K which have a
higher probability to occur? For a good cipher the spaces P , C and K are
large and the probabilities are uniformly distributed. As Shannon said in
[18]: ”Indeed it is only the existence of these other possibilities that give the
system any secrecy.”

The general assumption in cryptanalysis is that the attacker knows:

1. One or more ciphertexts, encrypted with the same key.

2. The cipher that is used, i.e. the tuple (P , C,K, E ,D).

3. The enemy has unlimited computer time and space capacity.

This are somewhat pessimistic assumptions, but therefore safe. Such an
attack is also known as a ”cipher-only attack”. For some attacks additional
assumption are made, e.g. pairs of plaintexts and ciphertexts are known
(known-plain attack). Since the attacker knows the cipher, an attack comes
down to recover the decryption key d ∈ K.

Definition 2.5. A cryptographic attack is an attempt to recover the decryp-
tion key.

With this key the right decryption function Dd ∈ D can be found and
the original plaintext can be computed. Recall that for a symmetric cipher
the encryption key e ∈ K can be computed from the decryption key d and
so their corresponding functions Dd and Ee. Therefore, by recovering the
encryption key e, the cipher can be broken.

2.2.2 Confusion and diffusion

C.E. Shannon introduced in the paper [18] in 1949 two fundamental principles
for secure ciphers, confusion and diffusion. These two principles are still the
basis of every modern cryptographic algorithm.

Confusion Any algebraic structure of the cipher need to be concealed.
Hence the relation between the plaintext and the ciphertext needs to be
complex, that is: the attacker can not derive any information from the dis-
tribution of the ciphertext.

Diffusion Each bit of the plaintext and key has to have influence on all
bits of the ciphertext.

13

Example 2.6. The S-box and linear permutation of an SPN are used to satisfy
these two principles. We analyze the consequence of a small change in the
input of an SPN. When one bit of a plaintext is changed, the S-box in the
first round changes more then one bit in a nonlinear way. These bits are
spread over the block by the linear permutation. The second round the S-box
changes more bits and those will be spread out over the hole block again by
the linear permutation. Repeating this in more rounds ensures diffusion and
confusion, that is, small changes in the plaintext have large and ”complex”
consequences in the ciphertext.

2.2.3 Differential and linear attack

There are different types of attacks on block ciphers and stream ciphers
known. The two main attacks are the differential attack and the linear attack.
Both attacks consist of a certain idea, the actual technique depends on the
cipher that needs to be broken. They both where developed to break the
DES. So far, no reasonable attacks on the AES cipher are known. Only
theoretical attacks which are faster then brute force, but still have unrealistic
computation time.

The differential attack is first described by Biham and Shamir in 1991
[1]. It is a chosen plaintext attack. This means we assume that the attacker
can choose a plaintext and gets the corresponding ciphertext, so he has an
arbitrary amount of pairs of plain- and ciphertexts. The idea of a differential
attack is to make small differences in the plaintext and look for non-random
behavior in the ciphertext differences. Then use this to recover some of
the key bits of the last round key Kr of the keystream K = K0, K1, . . . Kr.
When enough bits are recovered an exhaustive can be made to find the hole
decryption key. The differential attack was the first serious attack on the
DES cipher.

Remark 2.7. The last round key is closely related to the ciphertext. Recall
the description of a general SPN in section 2.1.3. Let r be the number of
rounds, S the S-box and P the linear permutation. The last round Rr of the
SPN is of the form:

Rr(cr−1) = P ◦ S(cr−1)⊕Kr = c.

Where cr−1 = Rr−1 ◦ · · · ◦R0(p), p the plaintext and c is the ciphertext.

The linear attack is introduced by Matsui in 1993 [17]. It is a known
plaintext attack. This means that the attacker is assumed to have pairs of

14

plaintexts and ciphertexts. Like the differential attack, this is also an attack
on the last round key Kr. The idea is to make a linear approximation of
the (nonlinear) S-box and use this to make a linear approximation of the
whole SPN. Given a plaintext we compute the approximation for c′r−1 and
the approximation for P ◦ S(c′r−1) = c′. This approximation has a certain
probability to be right. This gives us a probability of the last round key Kr to
be right by c′ ⊕ c = Kr. When enough bits are known with high probability
they are assumed to be good. The other bits are found by an exhaustive
search and the decryption key is recovered.

The linear attack was also introduced as an attack on DES. Matsui even
proved that if the attacker can assume that the plaintext is in English and
written in ASCII code, i.e. with a pc keyboard, the three general assumptions
of an attack are sufficient to make a successful ciphertext-only attack.

15

3 Coding Theory

In this section we will introduce some basics of coding theory. In section 3.1
we talk about the three parameters [n, k, d] of a code and basic properties
such as the generator matrix and the parity check matrix of a code. In section
3.2 We will say more about the Hamming code and the corresponding simplex
code since these codes have strong relations with Boolean functions.

3.1 Error Correcting Codes

We start with a famous example where codes are used. In 1972 the first black-
and-white photograph was made from the planet Mars. These photos where
sent from the satellite to the receiver station on the earth. The satellite put a
grid on the photograph and measured the darkness of each square on the scale
of 0 to 63. Each value of darkness can be represented by binary numbers and
transformed into a string of six 0s and 1s to make all 64 different ’words’. The
satellite could send these words to the earth. The received signal will be very
weak and due to thermal noise it could happen that some 0s changed into 1s
and vice versa. One can imagine that this will have major consequences for
the received photograph. To prevent this they did not use six bit words, but
words of a length of 32 bits. This made it possible to construct all 64 words
in such a way that each two words differ on 16 places. If one 0 was chanced
into a 1 it was still clear which word it should have been and the receiver
could correct this error. We will see in this section that with the code used
for the photograph of Mars it is even possible to correct 7 errors.

We compare this idea to the words in our language. We can clearly make
many more words with the letters of the alphabet than we use, or are stated
in the dictionary. If a word is not too small it is not a problem if one of the
letters is changed into another one, in most cases we will detect the error
and correct it easily, even without knowing the context. But from ’in most
cases’ the question arises; how can we order the space of all words efficiently?
Coding theory studies this question.

3.1.1 Binary linear codes

There are different types of codes; here, we are only interested in linear codes.
In general we take a group as an alphabet, but since we investigate codes that
are related to Boolean functions we restrict ourself to the binary alphabet

16

F2. A word w of length n is then an element of the vector space Fn2 , w ∈ Fn2 .
So we will treat only binary linear codes and we will just talk about them as
’codes’.

Definition 3.1. Let n, k be two integers, 0 ≤ k ≤ n. A (binary linear) code
C is a linear subspace of Fn2 of dimension k, i.e. Fk2 ' C ⊆ Fn2 .

The elements of a code C are called codewords and are of length n. The
number of codewords of C is 2k. If a code C consists of only one codeword,
then C is called trivial, i.e. C = {(0, . . . , 0)}. We define the Hamming
distance between two words of Fn2 .

Definition 3.2. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two words in
Fn2 . The Hamming distance between x and y is defined as

dH(x, y) := |{i : xi 6= yi}|, 1 ≤ i ≤ n.

Note that this is a metric on Fn2 . There are two special words in Fn2 .
The all zero word, which is written as 0 := (0, . . . , 0) and the all one word
which is written as 1 := (1, . . . , 1). With this definitions we can define the
Hamming weight of a word x as its Hamming distance to 0.

Definition 3.3. Let x ∈ Fn2 , the Hamming weight of x is

wH(x) := dH(x,0)

Note that this is equal to sum of all coordinates, wH(x) =
∑n

i=1 xi. An
important property of a code is the minimal distance between all codewords.

Definition 3.4. The minimum distance d of a code C is defined as

d := min{dH(x, y) : x, y ∈ C, x 6= y}

If the minimal distance of a code C is 1, then it is possible that a change of
one bit will lead to another codeword. This way an error can not be detected
and certainly not corrected. Clearly, for a code C to detect or correct errors
a higher minimal distance is needed. The minimal distance can be easily
derived from a code C with the following lemma.

Lemma 3.5. Let C be a code, the minimum distance d of C is equal to the
minimum weight of all nonzero codewords, that is

d = min
c∈C\{0}

wH(c).

17

Proof. Since C is linear we have for any two codewords c, c′ ∈ C that c +
c′ ∈ C. Note that we have c − c′ = c + c′ since C ⊆ Fn2 . We get that
dH(c, c′) = dH(c + c′,0) = wH(c + c′) and therefore minc,c′∈C, c 6=c′ dH(c, c′) =
minc∈C\{0}wH(c).

We now have seen the three most important parameters of a code. Let
C be a code with codewords of length n, dimension k and with minimum
distance d, then C is called an [n, k, d] code.5 If d is not known we call C a
[n, k] code.

Example 3.6. Recall the code in the beginning of this section, used for sending
photos of Mars. It is a binary linear code. The length of the codewords are
32, the dimension of the code is 6 since there are 26 = 64 codewords and
the minimal distance between each two codewords is 16. Therefore this is a
[32, 6, 16] code.

Since we have a metric on Fn2 we can define a ball (or sphere) around each
codeword c ∈ C of radius ρ ∈ N by

Bρ(c) := {x ∈ Fn2 : dH(c, x) ≤ ρ}.

For small ρ it is possible that all balls Bρ(c), of all codewords c ∈ C are
disjoint. We have special interest in the maximum radius e for which this is
true.

e := max{e ∈ N : Be(c) ∩Be(c
′) = ∅, for all c, c′ ∈ C, c 6= c′}

For a code C with minimal distance d we have that d = 2e+ 1 or d = 2e+ 2.
If a word w ∈ Fn2 is received it contains possible errors. The receiver needs to
check which ball Be(c) contains the word w and correct w to the codeword c.
We see that e equals the number of errors that can be corrected. It can be
that there are words w ∈ Fn2 that are not contained in any ball Be(c), these
can still be corrected if there is a unique closest codeword c. It can happen
(and it mostly will) that there are words w ∈ Fn2 with no unique closest
codeword c. For these words errors can only be detected but not corrected.
A code C with radius e in which every word w ∈ Fn2 is contained in a ball
Be(c) for some codeword c ∈ C is called perfect.

Example 3.7. The code C of odd length n that only consists of the vectors 0
and 1 is perfect. It has minimal distance d = n and the radius e = (n−1)/2.

5In some literature they write (n, 2k, d) code instead of [n, k, d] code.

18

All words w ∈ Fn2 such that wH(w) ≤ e will be corrected as 0 and words such
that wH(w) ≥ (n− e) = e+ 1 will be corrected as 1. Note further that C is
of dimension 1, therefore C is an [n, 1, n] code.

A perfect code is desirable since it can correct every word in our space,
w ∈ Fn2 , but most codes we will see below are not perfect. Other properties
are desirable as well and trade-offs must be made. For instance for a fixed
dimension k of the code, i.e. the numbers of codewords equals 2k, and a
fixed minimal distance d we want n to be as small as possible since the use of
smaller words has an high advantage for communication (time, power) and
storage. And of course, when fewer bits are used fewer errors can occur. We
will not go into details about the error probability and the information rate
of a code, for more on this see [20].

3.1.2 Structure of a code

For each code there exists an so called generator matrix.

Definition 3.8. Let C be a code of length n and dimension k, the generator
matrix is an k × n matrix G such that the rows of G form a basis of C.

Since the rows of G form a basis of C and by the fact that C is linear it
follows that

C = {a ·G : a ∈ Fk2}.

Note that, since the basis of C is not unique, the generator matrix is not
unique either. For every code C there exists a generator matrix which is
written in a standard form G = (Ik P), where Ik is the k× k identity matrix
and P an k × (n− k) matrix. We will see below that these codes are indeed
equivalent. The standard form (Ik P) is also called the reduced echelon form
since it is equal to the reduced echelon form of any generator matrix G of
the code C. If the generator matrix is written in the standard form, the first
k bits of a codeword are called information bits. When the information bits
are determined, the last n− k bits are fixed. Otherwise the dimension of the
code would be greater than k. These n − k bits are called redundancy bits
or parity check bits.

Remark 3.9. The name parity check bits is used for historic reason. The first
codes where made by adding one extra bit to a string of information bits.
This extra bit depends on the previous bits and ensures that the codeword
is of even weight, hence it is called the parity check bit. An example of such

19

code is the ASCII-code used in the keyboard of a computer. A codeword
c = (c1, . . . , c8) has length n = 8 of which are k = 7 information bits.
The last bit c8 is the parity bit and equals

⊕7
i=1 ci = c8. It follows that

c8 ⊕
⊕7

i=1 ci = 0, hence c is of even weight. The ASCII-code is an [8, 7, 2]
code. For such code, an error can be detected. In such case, the receiver
could ask to send the codeword again.

Example 3.10. Let C be a [6, 3, 3] code. There are 23 = 8 codewords of
length 6 which can be represented by the first three bits of the 6-tuple c =
(c1, . . . , c6). These are called the information bits. The three ’extra’ bits
are called parity check bits and are determined as follows, c4 = c2 + c3,
c5 = c1 + c3, c6 = c1 + c2. The generator matrix G of the code C, becomes

G =

 1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

 .

Note that this generator matrix is in the standard form. Multiply each
element of a ∈ F3

2 with G we get all codewords c, i.e. aG = c,

C = {0, (100011), (010101), (110110),

(001110), (101101), (011011), (111000)}.

The minimum weight of all nonzero codewords is 3, so by lemma 3.5 the
minimum distance d is indeed 3.

We define an equivalence relation for [n, k]-codes.

Definition 3.11. Let C1, C2 be two [n, k]-codes and G1, G2 the k×n gener-
ator matrices respectively. The two codes C1 and C2 are equivalent if there
exists a k× k invertible matrix M and an n× n permutation matrix P such
that

MG1 = G2P.

Observe that M induces a change of the basis of C1 and P induces a
permutation on the columns of G2, that is it induces a fixed permutation on
the bits of each codewords of C2. It is easy to show with linear algebra that
this defines an equivalence relation since both matrices M and P have an
inverse M−1, P−1 respectively.

For each code C there exist a dual code C⊥.

20

Definition 3.12. Let C be a code, the dual code C⊥ is defined as

C⊥ = {x ∈ Fn2 : ∀c ∈ C, x · c = 0}.

Recall that the inner product is defined as x · c =
⊕n

i=1 xici. If C is a
[n, k] code, then its dual C⊥ is a [n, n− k] code. If C consists of even words
only, i.e. ∀c ∈ C wH(c) is even, then the intersection C ∩ C⊥ is larger than
{0}. When C = C⊥ the code C is called self dual. The dual code C⊥ has
again a (n− k)× n generator matrix H. By the definition of the dual code
it follows that for c ∈ C and c′ ∈ C⊥ we have c · c′ = 0. With linear algebra
we get that GHT = 0. In particular we have

c ∈ C ⇔ cHT = 0. (1)

The matrix H is called the parity check matrix of code C since it can be used
by the receiver to check for a word w ∈ Fn2 whether all the parity check bits
are correct, i.e. whether wHT = 0. With relation (1) it is possible to define
a code C by its parity check matrix H. Note that this matrix is not unique
either. If the generator matrix G is written in the standard form G = (Ik P),
then H can be written as H = (P T In−k).

6

Example 3.13. The dual C⊥ of the [6, 3, 3] code C from example 3.10 can be
obtained as follows. Recall the construction of the parity check bits of C,
c4 = c2 + c3, c5 = c1 + c3, c6 = c1 + c2. We want for the parity check matrix
that c2 + c3 + c4 = 0, c1 + c3 + c5 = 0, c1 + c2 + c6 = 0. We get

H =

 0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

 .

This is the 3 × 6 generator matrix for the dual code C⊥. Note that H is of
the form (P T In−k), where G was written in the standard form G = (Ik P).
We have C⊥ = {aH : a ∈ F3

2}. We can derive all codewords of C⊥,

C⊥ = {0, (011100), (101010), (110110),

(110001), (101101), (011011), (000111)}.

So C⊥ is also a [6, 3, 3] code and C ∩C⊥ = 0. Further we have that c ∈ C if
and only if cHT = 0, H is the parity check matrix of code C.

6This holds since we restrict ourselves to binary alphabet.

21

From the construction of H we make the following observation. Let
h1, . . . , hn be all the columns of H and a = (a1, . . . , an) some vector in Fn2 ,
then aHT equals a1h1 + · · ·+anhn. If a1h1⊕· · ·⊕anhn = 0 then the columns
hi, corresponding to every ith bit with ai = 1, are linearly dependent. Using
this notation, the minimal number of dependent columns of H is equal to

min
a∈Fn

2

{wH(a) : a1h1 ⊕ · · · ⊕ anhn = 0}.

Lemma 3.14. Let H be the parity check matrix of a [n, k, d] code C. Then
the minimal distance d is equal to the minimal number of dependent columns
of H.

Proof. We have that c ∈ C if and only if cHT = 0. It follows that each
codeword c with weight l, corresponds to l linear dependent columns of H.
By lemma 3.5 the minimum weight of all nonzero codewords equals d. Hence
d equals the minimal number of linear dependent columns of H.

There exists a natural way to extend a code C with one extra bit.

Definition 3.15. Let C be a code and (c1, . . . , cn) ∈ C a codeword. The ex-
tended code C consists of the codewords (c1, . . . , cn+1), where cn+1 =

⊕n
i=1 ci.

That is

C = {(c1, . . . , cn+1) ∈ Fn+1
2 : (c1, . . . , cn) ∈ C and cn+1 =

n⊕
i=1

ci}.

For all codewords c ∈ C we get that
⊕n+1

i=1 ci = 0, so all codewords are
of even weight. Recall that the minimal distance d is equal to the minimum
weight of all nonzero codewords, lemma 3.5. It follows that if a code C has
an odd minimal distance d, then the extended code C has minimum distance
d + 1. If d is even, then the minimal distance of C equals the minimum
distance of C. The generator matrix of the extended code C can be obtained
from the generator matrix G of C by adding a new column which makes each
row of even weight. Let (gi,j) be the elements of G, then

G =

 g1,1 · · · g1,n
⊕n

i=1 g1,i
...

...
...

gk,1 · · · gk,n
⊕n

i=1 gk,i

 .

22

Note that G is indeed a k×(n+1) matrix. To obtain the parity check matrix

H a row must be added which corresponds to c1 ⊕ . . .⊕ cn+1 = 0, it follows
that

H =


1 · · · 1 1

0

H
...
0

 .

Observe that with this notation H is the (n− k)× (n+ 1) generator matrix
of the extended dual code C⊥.

3.2 Simplex Codes

A colleague of C.E. Shannon at Bell Laboratories was R. Hamming. He
invented the first error correcting code. This code is called the Hamming
code and is seen as the beginning of coding theory, see [11]. Simplex codes
are closely related to Hamming codes and have a connection to Boolean
functions.

3.2.1 Hamming codes

Hamming codes exist only for codes of length 2m − 1, for some integer m.

Definition 3.16. Let m be a positive integer and H be an m × (2m − 1)
matrix such that the columns x ∈ Fn2 are nonzero and pairwise distinct. A
code which is defined by such a parity check matrix H is called a Hamming
code.

Observe that every nonzero vector of Fm2 is a column of H. Since two
nonzero vectors in Fm2 add up to another vector the minimal number of
dependent columns is 3. It follows from lemma 3.14 that the minimal distance
d = 3. We conclude that a Hamming code is a [2m − 1, 2m −m− 1, 3] code.

Example 3.17. We take m = 3, the 3× 7 parity check matrix H

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

This defines a [7, 4, 3] Hamming code. All codewords can be found by as
follows.

23

Firstly, all words of weight three can be found by looking at all combina-
tions of three linear dependent columns. We get the codewords:

(1, 1, 1, 0, 0, 0, 0), (1, 0, 0, 1, 1, 0, 0), (1, 0, 0, 0, 0, 1, 1),

(0, 1, 0, 1, 0, 1, 0), (0, 0, 1, 1, 0, 0, 1), (0, 0, 1, 0, 1, 1, 0).

Secondly, we take all linear combinations of these codewords and get:

0, (0, 1, 1, 1, 1, 0, 0), (0, 1, 1, 0, 0, 1, 1), (1, 0, 1, 1, 0, 1, 0), (1, 1, 0, 1, 0, 0, 1)

(1, 1, 0, 0, 1, 1, 0), (0, 1, 1, 0, 0, 1, 1), (0, 0, 0, 1, 1, 1, 1), (1, 0, 1, 0, 1, 0, 1),1.

These are all 24 = 16 codewords. Since the minimum distance d = 3 = 2e+1,
this code can correct e = 1 error. If we make a ball B1(c) of radius 1
around every codeword c, then each B1(c) will consist of n + 1 = 23 words.
Since we have 24 codewords the union of all balls covers the whole space,
24 · 23 = 27 = |F7

2|. Therefore this [7, 4, 3] Hamming code is a perfect code;
in fact, all Hamming codes are perfect codes.

We can identify a vector space Fm2 with the field extension V = F2m .
Let ω be a primitive element of V with minimal polynomial fωmin(x) over F2

of degree m. We have that ω generates the multiplicative group V ∗ of V ,
〈ω〉 = {ω, ω2, . . . , ω2m−1 = 1} = V ∗ and {1, ω, ω2, . . . , ωm−1} is a basis of V .
Then (a1, . . . , am) ∈ Fm2 corresponds to the element a1 + a2ω + a3ω

2 + · · ·+
amω

m−1 ∈ V .
The m×2m−1 matrix H consisting of columns x ∈ V ∗ defines a Hamming

code and is denoted as

H = [x] := [ωt : t ∈ {0, 1, . . . , 2m − 2}].

More generally we have the following lemma.

Lemma 3.18. Let f : V → V be a function, then

H = [f(x)] := [f(ωt) : t ∈ {0, 1, . . . , 2m − 2}], (2)

defines a Hamming code if and only if the function f is a permutation on V
which leaves zero fixed, f(0) = 0.

Proof. Note that we can view f as f |V ∗ : V ∗ → V ∗ a permutation on V ∗. By
definition of a Hamming code, every column of [f(x)] will be nonzero and
distinct. The lemma follows immediately.

24

3.2.2 Simplex and double simplex codes

Simplex codes are constructed from Hamming codes.

Definition 3.19. Let C be a Hamming code. The dual of a Hamming code
C⊥ is called a simplex code.

A simplex code C⊥ is generated by the parity check matrix H of the cor-
responding Hamming code. By lemma 3.18, every simplex code corresponds
to a permutation f on V which leaves zero fixed, by the generating matrix
H = [f(x)].

Corollary 3.20. Let f : V → V be a function and H the m× 2m− 1 matrix

H = [f(x)] = [f(ωt) : t ∈ {0, 1, . . . , 2m − 2}].

Then H generates a simplex code if and only if f is a permutation and f(0) =
0.

The simplex code is then defined as C⊥ = {aH : a ∈ V }. Using the
notation from (2) we get for each a ∈ V that a codeword is of the form
[a · f(ωt) : t ∈ {0, 1, . . . , 2m− 2}], where a and f(ωt) are vectors in V written
in the basis {1, ω, . . . , ωm−1}. We denote such a simplex code C⊥ as

C⊥ := 〈f(x)〉.

Example 3.21. Let ω be a primitive element of V and fωmin(x) = x3 + x + 1
it’s minimal polynomial over F2. Then V ' F2[x]/fωmin(x), ω generates the
multiplicative group of V , i.e. 〈ω〉 = V ∗, and {1, ω, ω2} form a basis of V
together with the relation w3 + w + 1 = 0. We can define the simplex code
C⊥ by the 3× 7 generator matrix

H = [x] = (1, ω, . . . , ω6) =

 1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .

The simplex code C⊥ is the set {aH : a ∈ V }. We get the codewords

{0, (1, 0, 1, 1, 1, 0, 0), (0, 1, 0, 1, 1, 1, 0), (0, 0, 1, 0, 1, 1, 1),

(1, 0, 0, 1, 0, 1, 1), (1, 1, 0, 0, 1, 0, 1), (1, 1, 1, 0, 0, 1, 0), (0, 1, 1, 1, 0, 0, 1)}

25

Observe that the codewords are ordered in such way that each next codeword
is a cyclic shift to the right. Codes for which this is possible are called
cyclic codes. There exist simplex codes and Hamming code which are cyclic.
An example of a noncyclic Hamming code is example 3.17, the dual of this
Hamming code is a noncyclic simplex code.

For two codes C1, C2 we can make a new code C by taking the direct sum
of all codewords, that is

C = {c⊕ d : c ∈ C1, d ∈ C2}.

Definition 3.22. The direct sum of two distinct simplex codes is called a
double simplex code.

Let f1 and f2 two distinct functions as in corollary 3.20 which generate
two simplex codes C⊥1 and C⊥2 respectively. We write a double simplex code
C⊥ as

C⊥ := 〈f1(x)〉 ⊕ 〈f2(x)〉.

Let H1 and H2 be the generator matrices for C⊥1 and C⊥2 respectively. The
2m × 2m − 1 generator matrix H of the double simplex code C⊥ is of the
from

H =

[
H1

H2

]
=

[
f1(x)
f2(x)

]
.

We are interested in a particular double simplex code.

Definition 3.23. Let f be a nontrivial permutation on V which vanishes at
0. Define the double simplex code C⊥f generated by f as the double simplex
code where f1(x) = x and f2(x) = f(x), that is

C⊥f := 〈x〉 ⊕ 〈f(x)〉.

The generator matrix of this simplex code is then defined as

Hf :=

[
x

f(x)

]
.

Proposition 3.24. Let f1, f2 : V → V be two permutations such that C⊥ =
〈f1(x)〉 ⊕ 〈f2(x)〉 is a double simplex code. Then C⊥ is equivalent to the
double simplex code C⊥f ′ = 〈x〉 ⊕ 〈f ′(x)〉 with f ′ = f2 ◦ f−11 .

26

Proof. Since f1, f2 are permutations on V with f1(0) = f2(0) = 0, f ′ is also
a permutation on V and f ′(0) = f2 ◦ f−11 (0) = 0. Let H and Hf ′ be the
2m × (2m − 1) generator matrices of C⊥ and C⊥f ′ respectively. Then H and
Hf ′ are equal up to a permutation of the columns, that is for f1(x) = y we
have

H =

[
f1(x)
f2(x)

]
=

[
y

f2 ◦ f−11 (y)

]
=

[
x

f ′(x)

]
P = Hf ′P,

for some (2m − 1) × (2m − 1) permutation matrix P . Hence the two codes
C⊥ and C⊥f ′ are equivalent.

More can be said of these double simplex code using vector Boolean func-
tions f : Fm2 → Fm2 . This will be done in section 6 where coding theory and
Boolean functions will be combined to derive the Dillon-Wolfe function.

27

4 Boolean Functions

With the work of George Boole on logical reasoning with the variables 0
and 1, he created a basis on which others could build and which eventually
became the concept of the digital computer. Functions which have as input
and output only zero’s and one’s are named after Boole: Boolean functions.
These functions are often used in cryptography.

In this section we introduce Boolean functions and study their properties.
We start in section 4.1 with basic definitions such as the Hamming weight,
the algebraic normal form and the notion of the algebraic degree of a func-
tion. In section 4.2 we define the Fourier transform and the Walsh transform
and we will derive several propositions for these transforms. In section 4.3 we
define an equivalence relation for Boolean functions and deduce some invari-
ant properties of Boolean functions. In section 4.4 we analyze the properties
of Boolean functions for their use on cryptographic ciphers.

4.1 Definitions and Properties

We distinguish two kinds of Boolean functions.

Definition 4.1. For n,m ∈ N, m 6= 0, a function f : Fn2 → Fm2 is called
a Boolean function if m = 1. For m > 1, f is called a vectorial Boolean
function.

In this section we look only at Boolean functions, this gives already quite
a rich theory. Vectorial Boolean functions will be studied in chapter 5. When
we talk about a Boolean function f : Fn2 7→ F2 we say, f is a Boolean function
on Fn2 and write f ∈ BFn.

4.1.1 Basics

We start with some basic definitions for Boolean functions and derive some
simple properties from them.

Definition 4.2. A Boolean function f on Fn2 is called linear if it is a sum of
single variables, for (a1, . . . , an) ∈ Fn2 that is

f(x) =
n⊕
i=1

aixi.

28

We will just write x for the vector (x1, . . . , xn) if it is clear from the
context what we mean. Linear functions can also be denoted as an inner
product a · x =

⊕n
i=1 aixi with a = (a1, . . . , an) ∈ Fn2 . Combining these

functions with the two constant functions, 0 and 1, we get an affine function.

Definition 4.3. Boolean functions on Fn2 which are the sum of a constant and
a linear Boolean function are called affine functions. That is, for a0 ∈ F2 and
a = (a1, . . . , an) ∈ Fn2 we have the affine functions (a · x)⊕ a0 = a0

⊕n
i=1 aixi

where ’·’ is the inner product.

Definition 4.4. Let x = (x1, . . . , xn) be a vector of Fn2 , then the support of
x is the subset I of N = {1, 2, . . . , n} corresponding to all xi 6= 0, i.e.

supp(x) := {i ∈ N : xi 6= 0}.

For Boolean vectors we get the following. Let x, y ∈ Fn2 and I, J ⊆ N
their support respectively. Then y is said to be in the support of x if J ⊆ I,
we write supp(y) ⊆ supp(x). The support of a function f is the subset of Fn2
such that f(x) 6= 0, that is supp(f) = {x ∈ Fn2 : f(x) 6= 0}.

Recall from chapter 3 that the Hamming weight of a vector x ∈ Fn2
is defined by the number of nonzero elements and therefore equal to the
cardinality of the support, wH(x) = |{xi ∈ x : xi 6= 0}|. The Hamming
weight of a Boolean function and the Hamming distance between two Boolean
functions is defined similar.

Definition 4.5. The Hamming weight of a Boolean function f on Fn2 is equal
to the cardinality of the support, that is

wH(f) = |{x ∈ Fn2 : f(x) 6= 0}|.

Definition 4.6. The Hamming distance of two Boolean functions f, g on Fn2
is defined as

dH(f, g) := wH(f ⊕ g).

Note that the Hamming weight of a Boolean function f ∈ BFn is equal to∑
x∈Fn

2
f(x). There is a class of functions with a particular kind of support.

Definition 4.7. A Boolean function f on Fn2 is called balanced if the output
is zero as many times as it is one, that is

|{x ∈ Fn2 : f(x) = 0}| = |{x ∈ Fn2 : f(x) = 1}|.

29

So for a balanced function f we have that 2|supp(f)| = |Fn2 |. Therefore
we have for the Hamming weight of a balanced function that wH(f) = 2n−1.
There are

(
2n

2n−1

)
different Boolean functions on Fn2 which are balanced. We

give the simplest family of balanced functions.

Lemma 4.8. All nonzero linear functions l on Fn2 are balanced.

Proof. Let l(x) ∈ BFn be a nonzero linear function and b ∈ Fn2 such that
l(b) = 1. Note that such b always exists. Then the map x 7→ x + b which
maps from l−1(0) to l−1(1) is one to one since l(x + b) = l(x) ⊕ 1. Hence
|l−1(0)| = |l−1(1)| and l is balanced.

More general, all non constant affine functions are balanced since the
function l(x)⊕ 1 is balanced if l(x) is balanced.

Before we derive more results we need representations for Boolean func-
tions.

4.1.2 Representations ANF and TT

There are different ways to represent a Boolean formula in n variables. We
give two of them. A Boolean function f ∈ BFn can be represented by its
truth table TT. That is a table of values, for each x ∈ Fn2 the value of f(x)
is given, see table 1 for an example.

x1 x2 x3 f(x)
0 0 0 1
1 0 0 0
0 1 0 1
1 1 0 1
0 0 1 1
1 0 1 0
0 1 1 1
1 1 1 0

Table 1: Truth table of a Boolean function f ∈ BF3.

The second representation is called the algebraic normal form ANF and
is a polynomial representation of a Boolean function.

30

Definition 4.9. A Boolean function f on Fn2 can be written in the algebraic
normal form, ANF. For N = {1, 2, . . . , n} we write

f(x1, . . . , xn) =
⊕

I∈P(N)

aI(
∏
i∈I

xi), aI ∈ F2,

or just

f(x) =
⊕

I∈P(N)

aIx
I , aI ∈ F2.

Different values of aI define different Boolean functions and since |P(N)| =
2n we have that every Boolean function can be represented uniquely. We give
an example

Example 4.10. The Boolean function f from the TT in table 1 can be written
in its ANF, f(x) = 1⊕ x1 ⊕ x1x2 ⊕ x1x2x3.

There exist several ways to go from the ANF to the TT representation
and vice versa. From ANF to TT we can just compute the values of the
Boolean function f(x) for all vectors x ∈ Fn2 by brute force, of course there
exist algorithms which are more efficient. From TT to ANF can also be easily
computed. We first give the definition of an atomic formula.

Definition 4.11. For a vector u ∈ Fn2 the atomic formula fu is the Boolean
function with support {u}, i.e. supp(fu) = {u}.

Let u = (u1, . . . , un) and ui the complement of the coordinate ui, i.e.
ui = 1⊕ui. Then the atomic formula equals fu(x) = (u1⊕x1) · . . . · (un⊕xn),
since for such fu we have that fu(x) = 1 if and only if x = u.

Observe that from a TT, the support of a Boolean function is easily
derived. The Boolean function f is equal to the sum of all atomic formulas
fu such that u is in the support of f . Hence the ANF is obtained by

f(x) =
⊕

u∈supp(f)

fu(x).

Example 4.12. We compute the ANF of the Boolean function from the TT
of table 1. The support of f is {(0, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (0, 1, 1)}.

31

We get the following atomic formulas;

f000(x) = (1⊕ x1)(1⊕ x2)(1⊕ x3) = 1⊕ x1 ⊕ x2 ⊕ x3 ⊕ x1x2 ⊕ x1x3
⊕x2x3 ⊕ x1x2x3

f010(x) = (1⊕ x1)x2(1⊕ x3) = x2 ⊕ x1x2 ⊕ x2x3 ⊕ x1x2x3
f110(x) = x1x2(1⊕ x3) = x1x2 ⊕ x1x2x3
f001(x) = (1⊕ x1)(1⊕ x2)x3 = x3 ⊕ x1x3 ⊕ x2x3 ⊕ x1x2x3
f011(x) = (1⊕ x1)x2x3 = x2x3 ⊕ x1x2x3

Now we take the sum of all atomic formulas and get f(x) = 1⊕ x1 ⊕ x1x2 ⊕
x1x2x3.

Remark 4.13. Each atomic fu contains the monomial of n variables, xN =
x1x2 · · ·xn. Since we take the sum over all atomic functions modulo 2, f(x)
contains this monomial xN if and only if the number of elements in the
support of f(x) is odd. We will say more on this in the section about the
algebraic degree.

Remark 4.14. There exist other representations of Boolean functions, for
example the Disjunctive Normal Form DNF. Each atomic function corre-
sponds to a conjunctive clause. For instance the atomic formula f010(x) =
(1⊕x1)x2(1⊕x3) corresponds to φ010(x) = (¬x1∧x2∧¬x3). The ANF equals
the sum of the atomic functions fu and the DNF equals the disjunction of the
corresponding conjunctive clauses φu, i.e. f(x) ' φ(x) =

∨
u∈supp(f) φu(x).

Let f be a Boolean function and
⊕

I∈P(N) aIx
I its ANF. To compute the

value f(x) for an x ∈ Fn2 , we have that all monomials xI with I outside the
support of x will be equal to zero, i.e. ∀I ∈ P(N) such that I 6⊆ supp(x) we
have xI = 0. Therefore we can compute f(x) by taking the sum of all the aI
such that I is in the support of x, that is

f(x) =
⊕

I⊆supp(x)

aI . (3)

Conversely we have the following lemma.

Lemma 4.15. Let f be a Boolean function on Fn2 and f(x) =
⊕

I∈P(N) aIx
I

the ANF. For all I ∈ P(N) we have

aI =
⊕

x∈Fn
2 , supp(x)⊆I

f(x)

32

Proof. We write bI =
⊕

x∈Fn
2 , supp(x)⊆I

f(x) and get the function g(x) =⊕
I∈P(N) bix

I . With relation (3) we obtain

g(u) =
⊕

I⊆supp(u)

bI =
⊕

I⊆supp(u)

(
⊕

x∈Fn
2 , supp(x)⊆I

f(x))

=
⊕

x∈Fn
2 , supp(x)⊆supp(u)

2wH(u)−wH(x)f(x).

If x 6= u, this sum is 0 since it vanishes modulo 2 and if x = u we get that
g(u) = f(x). By the uniqueness of the ANF we have for all I, aI = bI .

With this result we obtain another way to compute the ANF from the
TT of a function, simply by computing each aI , I ⊆ P(N). This way, several
additions are done multiple times. There exist a divide and conquer butterfly
algorithm which is more efficient. It is called the Fast Möbius transform and
has a computational complexity of n2n XORs, instead of the 22n XORs of a
brute force computation. The idea of the algorithm is to use the following
property. We define the function fi(x1, . . . , xn−1) = f(x1, . . . , xn−1, i) with
i ∈ F2, then for every u = (u1, . . . , un) ∈ Fn2 we have that asupp(u) equals⊕

supp(x1,...,xn−1)⊆supp(u1,...,un−1)

f0(x1, . . . , xn−1) if un = 0,

⊕
supp(x1,...,xn−1)⊆supp(u1,...,un−1)

f0(x1, . . . , xn−1)⊕ f1(x1, . . . , xn−1) if un = 1.

The algorithm works almost similar as the Fast Fourier Transform algorithm
which will be explained in detail in section 4.2. For details see Carlet [5].

4.1.3 The algebraic degree

An important property of a Boolean function f is the highest degree of a
monomial in the ANF of f .

Definition 4.16. Let f be a Boolean function on Fn2 and f(x) =
⊕

I∈P(N) aIx
I

its ANF. The algebraic degree of f is defined as the maximum number |I|
such that aI is non zero, i.e.

d◦(f) := max
I∈P(N)

{|I| : aI 6= 0}.

33

Example 4.17. We give some examples.

1. The function f(x) = 1⊕x1⊕x4⊕x1x2⊕x1x2x3⊕x1x3x4 has algebraic
degree d◦(f) = 3.

2. All constant functions have degree 0.

3. If f is an affine function, then d◦(f) ≤ 1.

We derive some properties of the algebraic degree. For the first result we
use lemma 4.15.

Proposition 4.18. Let f be a Boolean function on Fn2 . The degree d◦(f)
equals the maximum dimension of the subspace {x ∈ Fn2 | supp(x) ⊆ I} on
which f takes the value 1 an odd number of times.

Proof. Let f be a Boolean function on Fn2 of degree d and
⊕

I∈P(N) aIx
I its

ANF. From lemma 4.15 we know that aI =
⊕

x∈Fn
2 ,supp(x)⊆I

f(x). It follows
that aI = 0 if f takes the value 1 an even number of times on the subspace
{x ∈ Fn2 : supp(x) ⊆ I}. By definition we have d◦(f) = maxI∈P(N) {|I| :
aI 6= 0}. So the algebraic degree is equal to the maximal dimension of the
subspace {x ∈ Fn2 | supp(x) ⊆ I} on which f takes the value 1 an odd number
of times.

From this proposition we deduce a relation between the weight and the
algebraic degree of a Boolean function.

Corollary 4.19. Let f be a Boolean function on Fn2 . The function f has
maximal degree if and only if the weight of f is odd, i.e.

d◦(f) = n ⇔ wH(f) is odd

Proof. This follows from proposition 4.18 for the subspace I = Fn2 . It also
follows from remark 4.13.

Proposition 4.20. Let f be a Boolean function on Fn2 . If the algebraic degree
of f is at most d, then the weight of f is at least 2n−d, i.e.

d◦(f) ≤ d ⇒ wH(f) ≥ 2n−d.

34

Proof. Let f ∈ BFn, d◦(f) = d and let xI be a monomial in the ANF of f such
that |I| = d. Consider all 2n−d restrictions of f which keep all coordinates
outside I fixed. We write fJ for such a restriction, where J ⊆ N\I. Each
restriction fJ can be viewed as a function on Fd2 and is of algebraic degree d
since it contains the monomial xI . Note that by construction of fJ all other
monomials are of degree strict less then d.
Viewing fJ as a function on Fd2 of maximal algebraic degree it follows from
corollary 4.19 that fJ has odd weight. In particular we have wH(fJ) ≥ 1.
Since the weight of f is equal to the sum of the weights of its restrictions,
wH(f) =

∑
J⊆N\I wH(fJ) and since there are 2n−d restrictions fJ of f . It

follows that wH(f) ≥ 2n−d as desired.

Corollary 4.21. Let f, g be two distinct Boolean functions on Fn2 . If the
algebraic degree of f and g is at most d, then their Hamming distance is at
least 2n−d, i.e.

d◦(f), d◦(g) ≤ d ⇒ dH(f, g) ≥ 2n−d.

Proof. Observe that for two distinct Boolean functions f, g ∈ BFn such that
d◦(f) ≤ d and d◦(g) ≤ d, we have that d◦(f ⊕ g) ≤ d. Further we have that
dH(f, g) = wH(f ⊕ g). Now apply proposition 4.20 to the function f ⊕ g.

Definition 4.22. Let f be a Boolean function on Fn2 . The derivative in the
direction of a ∈ Fn2 is defined as

Daf(x) = f(x)⊕ f(x⊕ a).

The derivative has two simple non surprising properties.

Lemma 4.23. Let f, g ∈ BFn, e ∈ Fn2 and r ≤ n, then the following holds;

i. De(f ⊕ g) = Def ⊕Deg.

ii. If e 6= 0, then d◦(f) = r ⇒ d◦(Def) ≤ r − 1.

Proof. To prove i we just write out the definition.

De(f ⊕ g)(x) = (f ⊕ g)(x)⊕ (f ⊕ g)(x⊕ e)
= f(x)⊕ g(x)⊕ f(x⊕ e)⊕ g(x⊕ e)
= Def(x)⊕Deg(x).

35

To prove ii write f in its ANF,
⊕

I∈P(N) aIx
I . Since f is the sum of monomials

we have by i that it is sufficient to prove the statement for a single monomial.
Let xI be a monomial of degree r and e = (e1, . . . , en) ∈ Fn2 , then Dex

I =
xI ⊕

∏
i∈I(xi⊕ ei). Where the product

∏
i∈I(xi⊕ ei) is of the form

∏
i∈I(xi⊕

ei) = xI ⊕ g(x), for some g ∈ BFn with d◦(g) < r, hence

d◦(Dex
I) = d◦(xI ⊕

∏
i∈I

(xi ⊕ ei)) = d◦(g(x)) ≤ r − 1.

4.2 Fourier and Walsh Transform

A number of properties of Boolean functions can be shown using the discrete
Fourier transform which we will refer to as just the Fourier transform. We de-
fine the Fourier transform for pseudo-Boolean functions. A pseudo-Boolean
function ϕ is a real valued function on Fn2 , i.e. ϕ : Fn2 → R.

Definition 4.24. Let ϕ be a pseudo-Boolean function and u ∈ Fn2 . We define
the Fourier transform at u as

ϕ̂(u) =
∑
x∈Fn

2

ϕ(x)(−1)u·x.

Where u · x is the inner product.

Observe that the Fourier transform itself is again a pseudo-Boolean func-

tion. From this definition we deduce two easy properties: ϕ̂+ ψ = ϕ̂+ ψ̂ and
r̂ · ϕ = r · ϕ̂ for r ∈ R. An important pseudo-Boolean function is the sign
function of a Boolean function f , fχ(x) = (−1)f(x). This function has instead
of the outcome 0, 1 the outcome 1,−1 respectively. The Fourier transform of
the sign function is called the Walsh transform7.

Definition 4.25. Let f be a Boolean function on Fn2 and fχ the sign function
of f . The Fourier transform of fχ is called the Walsh transform.

The Walsh transform at u ∈ Fn2 equals;

f̂χ(u) =
∑
x∈Fn

2

fχ(x)(−1)u·x =
∑
x∈Fn

2

(−1)f(x)(−1)u·x =
∑
x∈Fn

2

(−1)f(x)⊕u·x.

7In some literature this is called the Walsh-Hadamard transform.

36

The set of all values of the Fourier transform, ϕ̂(a) for a ∈ Fn2 , is called the
Fourier spectrum of ϕ. Analogue we have the Walsh spectrum.

To compute the Fourier of Walsh spectrum of a function we can use
the elegant Fast Fourier Transform FFT algorithm. The main idea of the
algorithm is the following relation.

Let ϕ be a pseudo-Boolean function on Fn2 , we write a′ = (a1, . . . , an−1),
x′ = (x1, . . . , xn−1) and deduce

ϕ̂(a1, . . . , an) =
∑

(x1,...,xn)∈Fn
2

ϕ(x)(−1)(a1,...,an)·(x1,...,xn)

=
∑

x′=(x1,...,xn−1)∈Fn−1
2

(−1)a
′·x′ [ϕ(x1, . . . , xn−1, 0) + (−1)anϕ(x1, . . . , xn−1, 1)].

When we make a table of the values of ϕ(x) with the bits of x ∈ Fn2 in
lexicographic order and the bit of higher order on the right. (Note that if
ϕ is a Boolean function then this is just a truth table.) We can divide the
table in an upper and a lower half. Together with the relation above we get
the following. Define the two (n− 1) variable pseudo-Boolean functions

ϕ0(x1, . . . , xn−1) = ϕ(x1, . . . , xn−1, 0)

ϕ1(x1, . . . , xn−1) = ϕ(x1, . . . , xn−1, 1).

To compute the values of ϕ̂(a) for the upper half of the table we need to
compute the Fourier transform at (a1, . . . , an−1) of ϕ0 + ϕ1. For the lower
half we need to compute the Fourier transform at (a1, . . . , an−1) of ϕ0 − ϕ1.
Observe that we can easily compute the values of ϕ0 + ϕ1 and ϕ0 − ϕ1 since
we already have a table of values of ϕ(x).

Algorithm The FFT algorithm is as follows:
Input: ϕ(x1, . . . , xn) a pseudo-Boolean function on Fn2 .
Output: ϕ̂(a) for every a ∈ Fn2 .

1. Make a table of values ϕ with the bits in lexicographic order and the
bit of higher order is on the right.

2. Replace every value of ϕ(x1, . . . , xn) in the table as follows:
If xn = 0, replace ϕ(x1, . . . , xn) by ϕ0(x1, . . . , xn−1) +ϕ1(x1, . . . , xn−1).
If xn = 1, replace ϕ(x1, . . . , xn) by ϕ0(x1, . . . , xn−1)−ϕ1(x1, . . . , xn−1).

3. Repeat step 2 on the new functions ϕ0 + ϕ1 and ϕ0 − ϕ1.

37

x1 x2 x3 f(x) fχ(x) I II f̂χ(x)
0 0 0 1 −1 −2 −4 −2
1 0 0 0 1 2 2 −6
0 1 0 1 −1 −2 0 2
1 1 0 1 −1 0 2 −2
0 0 1 1 −1 0 0 −2
1 0 1 0 1 0 −2 2
0 1 1 1 −1 0 0 2
1 1 1 0 1 −2 2 −2

Table 2: Table of values of a FFT algorithm applied on the function f(x) =
1⊕ x1 ⊕ x1x2 ⊕ x1x2x3.

The algorithm ends when there are no variables left. The complexity of the
FFT algorithm on a Boolean function is n2n XORs. Which is much better
then the complexity of a brute force computation 22n XORs. The command
”replace” in the algorithm can, of course, be satisfied by adding a extra
column to the table consisting of the new obtained values. This gives a more
constructive view of the FFT algorithm. We will show this in an example.

Example 4.26. We compute the Walsh transform f̂χ of the Boolean function
f(x) = 1⊕x1⊕x1x2⊕x1x2x3 from table 1. The results of the FFT algorithm
can be seen in table 2. On top of each column is stated what is computed
in that particular column. In column I the table is divided into an upper
and a lower half. For the upper half the values of fχ(x1, x2, 0) + fχ(x1, x2, 1)
are computed and for the lower half the values of fχ(x1, x2, 0)− fχ(x1, x2, 1)
are computed. Note that the two values of each addition or subtraction can
be found in the previous column (That is the strength and the elegance of
this algorithm!). So the first value is computed by fχ(0, 0, 0) + fχ(0, 0, 1) =
−1 + (−1) = −2, the second value by fχ(1, 0, 0) + fχ(1, 0, 1) = 1 + 1 = 2 and
so on. The last value of the column is computed by fχ(1, 1, 0)− fχ(1, 1, 1) =
−1 − 1 = −2. This method is repeated in the next column but then the
upper and lower half are seen as separate tables. We apply step 2 of the
algorithm on the two functions;

gχ0(x1, x2) = fχ(x1, x2, 0) + fχ(x1, x2, 1)

gχ1(x1, x2) = fχ(x1, x2, 0)− fχ(x1, x2, 1).

38

We explain the computation of the upper half, that is the upper half of
column II. The first two entries are computed by gχ0(x1, 0) + gχ0(x1, 1).
Again note that the values of gχ0(x1, 0) and gχ0(x1, 1) can be found in column
I. We compute −2 + (−2) = −4 if x1 = 0 and 2 + 0 = 2 if x1 = 1. In the
same way we compute the second two entry’s by gχ0(x1, 0)− gχ0(x1, 1), that

is −2− (−2) = 0 and 2− 0 = 2. For the last column the values of f̂χ(x) are
computed by applying the algorithm on the following functions;

hχ00(x1) = gχ0(x1, 0) + gχ0(x1, 1)

hχ01(x1) = gχ0(x1, 0)− gχ0(x1, 1)

hχ10(x1) = gχ1(x1, 0) + gχ1(x1, 1)

hχ11(x1) = gχ1(x1, 0)− gχ1(x1, 1)

For instance the value of f̂χ(0, 0, 0) is now equal to hχ00(0) + hχ00(1) and the
values of hχ00(0) and hχ00(1) are the first two values of the previous column.

We obtain f̂χ(0, 0, 0) = −4 + 2 = −2.

4.2.1 Properties of Fourier transform

In order to use the Fourier transform for describing more properties of Boolean
functions we first need to derive some general results. We start with a lemma
and two propositions for pseudo-Boolean functions. The lemma is a simple
observation from lemma 4.8.

Lemma 4.27. Let E ⊆ Fn2 be a linear subspace and let l be a nonzero linear
Boolean function on E. Then we have∑

x∈E

(−1)l(x) = 0

Proof. Lemma 4.8 can be extended to the vector space E ⊆ Fn2 . A nonzero
linear Boolean function l(x) on E is balanced, that is |{x ∈ E : l(x) = 0}| =
|{x ∈ E : l(x) = 1}|. It follows that

∑
x∈E(−1)l(x) = 0.

Observe that this also holds for l a non constant affine function, since for
l ⊕ 1 we have

∑
x∈E(−1)l(x)⊕1 = −

∑
x∈E(−1)l(x) = 0.

The first proposition is more technical. Recall that, when n > 1, we use
+ for the addition of two vectors a, b in the vector space Fn2 .

39

Proposition 4.28. Let ϕ be a pseudo-Boolean function on Fn2 and a, b, u ∈
Fn2 . For the pseudo-Boolean function ψ(x) = (−1)a·xϕ(x+ b) we have that

ψ̂(u) = (−1)b·(a+u)ϕ̂(a+ u).

Proof. We deduce,

ψ̂(u) =
∑
x∈Fn

2

ψ(x)(−1)u·x =
∑
x∈Fn

2

ϕ(x+ b)(−1)a·x⊕u·x

=
∑
x∈Fn

2

ϕ(x)(−1)(a+u)·(x+b) =
∑
x∈Fn

2

ϕ(x)(−1)(a+u)·x⊕(a+u)·b

= (−1)b·(a+u)
∑
x∈Fn

2

ϕ(x)(−1)(a+u)·x = (−1)b·(a+u)ϕ̂(a+ u).

For the second proposition we first define some simple notions. Let E ⊆
Fn2 be some subset, then 1E is the indicator function of the set E, i.e.

1E(x) :=

{
1 if x ∈ E
0 if x /∈ E

Further we write E⊥ for the set of orthogonal elements in Fn2 , i.e. E⊥ = {x ∈
Fn2 : ∀y ∈ E, x · y = 0}. Note that, similar to the dual codes in definition
3.12, we have that {0} ⊆ E ∩ E⊥ and this relation can be strict.

Proposition 4.29. Let E ⊆ Fn2 be a linear subspace and let 1E be the indi-
cator function of E, then

1̂E = |E|1E⊥ .

Proof. For u ∈ Fn2 we have that,

1̂E(u) =
∑
x∈Fn

2

1E(x)(−1)u·x =
∑
x∈E

(−1)u·x

Since u · x is a linear function we can use lemma 4.27 and deduce∑
x∈E

(−1)u·x =

{
0 if u · x is a nonzero linear function, i.e. u /∈ E⊥.
|E| if u · x is the zero function, i.e. u ∈ E⊥.

This proves that 1̂E(u) = |E|1E⊥(u) as desired.

40

In particular, if E = Fn2 we have that 1̂Fn
2

= |Fn2 |1{0} = 2nδ0, where δ0 is
the Dirac symbol which is defined by

δ0(u) :=

{
1 if u is the null vector,
0 otherwise.

With these two propositions we will show more properties of pseudo-Boolean
functions using the Fourier transform. We start by deducing the Poisson
summation formula in its general form.

Theorem 4.30. Let ϕ be a pseudo-Boolean function on Fn2 and E ⊆ Fn2 a
linear subspace. We have for all a, b ∈ Fn2 that∑

u∈a+E

(−1)b·uϕ̂(u) = |E|(−1)a·b
∑

x∈b+E⊥
(−1)a·xϕ(x).

We denote a+E for the subspace {x ∈ Fn2 : ∃e ∈ E such that a+ e = x}.
These subspaces of Fn2 are affine subspaces and are also called flats.

Example 4.31. Let E ⊆ F3
2 be the vector space spanned by (x1, x2, 0) and

a = (0, 1, 1), then a+E is the set of all vectors in F3
2 of the form (x1, 1⊕x2, 1),

or just (x1, x2, 1).

Note that for all a ∈ Fn2 we have dimE = dim(a + E). We give a proof
of the theorem.

Proof. We first prove case I were a = b = 0, that is∑
u∈E

ϕ̂(u) = |E|
∑
x∈E⊥

ϕ(x).

We deduce∑
u∈E

ϕ̂(u) =
∑
u∈E

∑
x∈Fn

2

ϕ(x)(−1)u·x =
∑
x∈Fn

2

ϕ(x)
∑
u∈E

(−1)u·x =
∑
x∈Fn

2

ϕ(x)1̂E.

By proposition 4.29, it follows that∑
x∈Fn

2

ϕ(x)1̂E =
∑
x∈Fn

2

ϕ(x)|E|1E⊥ = |E|
∑
x∈E⊥

ϕ(x).

To prove the general Poisson summation formula we apply proposition
4.28 to the case I. We take the pseudo-Boolean function ψ(x) = (−1)a·xϕ(x+

41

b), by proposition 4.28 we have that ψ̂(u) = (−1)b·(a+u)ϕ̂(a+u). Substituting
this into case I, we get ∑

u∈E

ψ̂(u) = |E|
∑
x∈E⊥

ψ(x)∑
u∈E

(−1)b·(a+u)ϕ̂(a+ u) = |E|
∑
x∈E⊥

(−1)a·xϕ(x+ b)∑
u∈a+E

(−1)b·uϕ̂(u) = |E|
∑

x∈b+E⊥
(−1)a·(x+b)ϕ(x)∑

u∈a+E

(−1)b·uϕ̂(u) = |E|(−1)a·b
∑

x∈b+E⊥
(−1)a·xϕ(x).

This proves the Poisson summation formula.

We state a simple consequence of the Poisson summation formula.

Corollary 4.32. For all pseudo-Boolean functions on Fn2 we have

̂̂ϕ = 2nϕ.

Proof. Let ϕ be a pseudo-Boolean function. We use the Poisson summation
formula for a = 0 and E = Fn2 and obtain∑

u∈Fn
2

(−1)b·uϕ̂(u) = 2n
∑

x∈b+{0}

ϕ(x).

Which is equivalent to ̂̂ϕ(b) = 2nϕ(b).

We see that the Fourier transform is its own inverse up to division of a
constant. Together with proposition 4.29 we deduce another corollary.

Corollary 4.33. Let ϕ be a pseudo-Boolean function on Fn2 . We have that
ϕ is constant if and only if the Fourier transform ϕ̂(a) is zero for all a ∈
Fn2\{0}.

42

Proof. To prove corollary 4.33 we first assume that ϕ is constant. We have
that ϕ is of the form ϕ = r × 1Fn

2
for some value r ∈ R. From proposition

4.29 it follows that

ϕ̂ = r̂ × 1Fn
2

= r × 1̂Fn
2

= r|Fn2 |1{0}.

This proves that ϕ̂(a) = 0 for all a ∈ Fn2\{0}.
For the other direction we assume that ϕ̂(a) = 0 for all a ∈ Fn2\{0}. We get
that ̂̂ϕ(a) =

∑
y∈Fn

2

ϕ̂(y)(−1)a·y = ϕ̂(0) =
∑
x∈Fn

2

ϕ(x).

From corollary 4.32 we know that ̂̂ϕ(a) = 2nϕ(a). Combining this we have
that

∑
x∈Fn

2
ϕ(x) = 2nϕ(a) for all a ∈ Fn2 . Hence ϕ must be constant.

The roles of ϕ and ϕ̂ in corollary 4.33 can be interchanged. Since ϕ̂
is again a pseudo-Boolean function, we can substitute ϕ for ϕ̂. Together

with corollary 4.32 it follows that ̂̂ϕ(a) = 2nϕ(a) = 0, so ϕ(a) = 0 for all
a ∈ Fn2\{0}.

Another important result is Parseval’s relation. To derive this relation
we need the convolutional product.

Definition 4.34. The convolutional product ⊗ between two pseudo-Boolean
functions ϕ, ψ on Fn2 is defined as

(ϕ⊗ ψ)(x) =
∑
y∈Fn

2

ϕ(y)ψ(x+ y).

There exists a nice relation between the convolutional product and the
normal multiplication, denoted as ×, of the Fourier transform of two pseudo-
Boolean functions.

Lemma 4.35. Let ϕ and ψ be two pseudo-Boolean functions on Fn2 , then

i. ϕ̂⊗ ψ = ϕ̂× ψ̂,

ii. ϕ̂⊗ ψ̂ = 2nϕ̂× ψ.

43

Proof. To prove i we first observe that u · x = u · y⊕ u · (x+ y) in the vector
space Fn2 . Then it is just a matter of writing out the definitions;

ϕ̂⊗ ψ(u) =
∑
x∈Fn

2

(ϕ⊗ ψ)(x)(−1)u·x

=
∑
x∈Fn

2

∑
y∈Fn

2

ϕ(y)ψ(x+ y)(−1)u·y⊕u·(x+y)

=
∑
y∈Fn

2

ϕ(y)(−1)u·y

∑
x∈Fn

2

ψ(x+ y)(−1)u·(x+y)


=

∑
y∈Fn

2

ϕ(y)(−1)u·y

∑
z∈Fn

2

ψ(z)(−1)u·z

 = ϕ̂(u)ψ̂(u).

To prove ii we apply i on the two functions, ϕ̂ and ψ̂ and use two times
corollary 4.32. We get,

̂̂
ϕ⊗ ψ̂ = ̂̂ϕ× ̂̂ψ = 22n(ϕ× ψ) = 2n

̂̂
ϕ× ψ.

From which it follows that ϕ̂⊗ ψ̂ = 2nϕ̂× ψ.

With these results it is an easy task to deduce Parseval’s relation.

Theorem 4.36. Let ϕ be a pseudo-Boolean function, then∑
u∈Fn

2

ϕ̂2(u) = 2n
∑
x∈Fn

2

ϕ2(x).

Proof. We take ϕ = ψ and evaluating the relation of lemma 4.35ii in zero,
we get

(ϕ̂⊗ ϕ̂)(0) = 2nϕ̂× ϕ(0) = 2n
∑
x∈Fn

2

ϕ2(x).

By definition of the convolutional product we also have that

(ϕ̂⊗ ϕ̂)(0) =
∑
u∈Fn

2

ϕ̂2(u).

This proves Parseval’s relation.

44

In the next paragraph we will apply the results above on Boolean func-
tions and the Walsh transform. Here we give already two consequences of
Parseval’s relation. First we apply Parseval’s relation on the sign function,
this gives a simple but strong result.

Corollary 4.37. Let f be a Boolean function on Fn2 and fχ its sign function,
then ∑

u∈Fn
2

f̂χ
2
(u) = 22n.

Proof. We apply theorem 4.36 on fχ. The corollary follows immediate since
the values of fχ are ±1.

Second, we apply Parseval’s relation on a Boolean function. It follows
that the weight of f equals the mean of f̂ 2(u) of all u ∈ Fn2 .

Corollary 4.38. Let f be a Boolean function on Fn2 , then

1

2n

∑
u∈Fn

2

f̂ 2(u) = wH(f).

Proof. For every f ∈ BFn we have that f 2 = f , we deduce

1

2n

∑
u∈Fn

2

f̂ 2(u) =
∑
x∈Fn

2

f 2(x) =
∑
x∈Fn

2

f(x) = wH(f).

4.2.2 Properties of the Walsh transform and nonlinearity

The results of the previous paragraph are useful when we apply them to
Boolean functions or the sign function, i.e. Walsh transform. This way we
can derive important properties of Boolean functions.

The Walsh transform of a Boolean function evaluated in 0 is given its
own notation.

Definition 4.39. Let f be a Boolean function on Fn2 , the map f 7→ f̂χ(0) is
denoted with F , i.e.

F(f) := f̂χ(0) =
∑
x∈Fn

2

(−1)f(x).

45

Recall definition 4.22 of the derivative of a Boolean function Daf(x) =
f(x) + f(x + a), a ∈ Fn2 . We will show the relation between the Walsh
transform and the derivative using the Wiener Khintchine Theorem which
we state as a lemma.

Lemma 4.40. Let f be a Boolean function on Fn2 and fχ its sign function,
then

f̂χ ⊗ fχ = f̂χ
2
.

Proof. Let f ∈ BFn and apply lemma 4.35i to the sign function fχ.

We deduce the following relation.

Corollary 4.41. Let f be a Boolean function on Fn2 , fχ its sign function and
u ∈ Fn2 , then

f̂χ
2
(u) =

∑
b∈Fn

2

F(Dbf)(−1)u·b.

Proof. Let b ∈ Fn2 , f ∈ BFn and fχ the sign function. By definition of the
convolutional product we have that

(fχ ⊗ fχ)(b) =
∑
x∈Fn

2

(−1)f(x)(−1)f(x+b) =
∑
x∈Fn

2

(−1)Dbf(x) = F(Dbf).

We take the Fourier transform of fχ ⊗ fχ evaluated in u and get

f̂χ ⊗ fχ(u) =
∑
b∈Fn

2

F(Dbf)(−1)u·b.

Applying the Wiener-Khintchine Theorem proves the desired.

We will deduce a relation between the Walsh transform and the weight.
Recall that for the weight of a function f we have that wH(f) =

∑
x∈Fn

2
f(x).

First we make the following observation.

Lemma 4.42. Let f a Boolean function on Fn2 . Then f̂(0) equals the Ham-
ming weight of f .

Proof. We have

f̂(0) =
∑
x∈Fn

2

f(x)(−1)0·x = wH(f).

46

In particular, let g be another Boolean function on Fn2 . The Hamming
distance between f and g equals the Fourier transform of the sum f ⊕ g
evaluated in 0, i.e.

dH(f, g) = wH(f ⊕ g) = f̂ ⊕ g(0).

We use lemma 4.42 to describe the weight of a Boolean function by its Walsh
transform evaluated in zero.

Lemma 4.43. Let f be a Boolean function on Fn2 , then

wH(f) = 2n−1 − f̂χ(0)

2
.

Proof. Observe that we can write the sign function of f as fχ = (−1)f =
1− 2f . We get

f̂χ = 1̂− 2f = 1̂− 2f̂ = 2nδ0 − 2f̂ .

The last equality is obtained from proposition 4.29 since the constant 1 equals
the indicator function of Fn2 , i.e. 1 = 1Fn

2
, and therefore 1̂ = 2nδ0, where δ0 is

the Dirac symbol. Rewriting this gives

f̂ = 2n−1δ0 −
f̂χ
2
.

Together with lemma 4.42 we obtain the desired;

wH(f) = f(0) = 2n−1 − f̂χ(0)

2
.

Nonlinearity We use lemma 4.43 to look at the distance of a Boolean
function f to all affine functions, this way we can see how ’nonlinear’ the
function f is. The nonlinearity of a Boolean function measures the minimal
distance to all affine functions.

Definition 4.44. Let f be a Boolean function on Fn2 , the nonlinearity of f
is defined as

NL(f) := min
a∈Fn

2 , a0∈F2

|{x ∈ Fn2 : f(x) 6= a0 ⊕ a · x}|.

47

Recall that for a ∈ Fn2 and a0 ∈ F2, l(x) = a · x ⊕ a0 defines a affine
function on Fn2 . We use lemma 4.43 to prove that the nonlinearity is related
to the maximum value of the Walsh transform.

Proposition 4.45. Let f be a Boolean function on Fn2 and let f̂χ its Walsh
transform. Then we have,

NL(f) = 2n−1 − 1

2
max
a∈Fn

2

|f̂χ(a)|.

Proof. Let l(x) be an affine function on Fn2 . We can write l(x) = a · x ⊕ a0
for a ∈ Fn2 and a0 ∈ F2. With lemma 4.43 we get

dH(f, l) = wH(f ⊕ l) = 2n−1 − 1

2
̂(f ⊕ l)χ(0),

where

̂(f ⊕ l)χ(0) =
∑
x∈Fn

2

(−1)f(x)⊕a·x⊕a0 = (−1)a0
∑
x∈Fn

2

fχ(x)(−1)a·x = (−1)a0 f̂χ(a).

This proves the proposition since we have that

NL(f) = min
a∈Fn

2 , a0∈F2

dh(f, a · x⊕ a0) = 2n−1 − 1

2
max
a∈Fn

2

|f̂χ(a)|.

So the nonlinearity of a function is high when the amplitude of the Walsh
transform f̂χ(a) is low. From this proposition and corollary 4.37 of Parseval’s
relation we deduce an upper bound on the nonlinearity of a function.

Corollary 4.46. Let f be a Boolean function on Fn2 , then

NL(f) ≤ 2n−1 − 2
n
2
−1.

Proof. From corollary 4.37 we have that
∑

a∈Fn
2
f̂χ

2
(a) = 22n. We deduce

maxa∈Fn
2
f̂χ

2
(a) ≥ 2n, from which its follows that

max
a∈Fn

2

|f̂χ(a)| ≥ 2
n
2 .

Together with proposition 4.45 this proves that NL(f) ≤ 2n−1 − 2
n
2
−1.

48

This upper bound is called the covering radius bound8. A Boolean func-
tion which reaches the covering radius bound is called bent. Note that bent
functions on Fn2 can only exist for n is even (and they do exist for every even
n). The Walsh transform at point a ∈ Fn2 of a bent function equals 2

n
2 for

every a, hence the Walsh spectrum has the same average value for every a.
Another extreme is the nonlinearity of an affine function. For such an

affine function l we have that NL(l) = 0, so there exists a value a ∈ Fn2 such

that |l̂χ(a)| = 2n. From corollary 4.37 of Parseval’s relation it follows that

for all other vectors b ∈ Fn2 , b 6= a we have f̂χ(b) = 0. In other words, the
Walsh spectrum has one high peak and is low for all other vectors. More
generally, functions with low nonlinearity have low values for most points
but have high peaks at some points. While functions with high nonlinearity
have only values near the average 2

n
2 and no real peaks.

4.3 Linear and Affine Isomorphisms

Recall the definition of the ANF of a Boolean function on Fn2 ,

f(x) =
⊕

I∈P(N)

aIx
I .

A permutation onN = {1, . . . , n} gives another representation and by unique-
ness of the ANF, a different Boolean function. But how different are these
two functions?

Let L be an affine isomorphism of dimension n, that is L(x) = Mx + a,
where M is a non-singular n×n matrix and a is a vector in Fn2 . It follows that
L−1 is also an affine isomorphism with L−1(x) = M−1x+ b and b = M−1a.

Definition 4.47. Two Boolean functions f, g on Fn2 are called affine equiv-
alent if there exist an affine isomorphism L : Fn2 → Fn2 , L(x) = Mx + a as
above, such that f ◦ L = g.
If the vector a = 0 then f and g are called linear equivalent.

Since L−1 is again an affine isomorphism it is easy to show that this
defines an equivalent relation. All non constant affine functions are affine
equivalent and form a equivalence class.

8The name, covering radius bound, comes from coding theory. This bound equals the
covering radius bound for Reed-Muller codes of order 1. In this code every codeword
corresponds to a Boolean function of order 1, see van Lint [20].

49

We are interested in which properties of Boolean functions are invariant
under affine isomorphisms and therefore hold for a whole equivalence class.
We take a closer look at the following notions; the algebraic degree, the
Hamming weight, the nonlinearity and the Fourier transform.

Lemma 4.48. The algebraic degree is an affine invariant. Let f be a Boolean
function on Fn2 and L an affine isomorphism on Fn2 , then

d◦(f ◦ L) = d◦(f).

Proof. Let L be an affine isomorphism, f ∈ BFn and xI be a monomial of
the ANF of f . For each monomial xI we have that d◦(xI ◦ L) ≤ d◦(xI)
and therefore we have d◦(f ◦ L) ≤ d◦(f). Since the inverse L−1 is also an
affine isomorphism we can apply the above to the function f ◦ L−1. We get
d◦(f ◦ L−1 ◦ L) = d◦(f) ≤ d◦(f ◦ L−1) and it follows that d◦(f ◦ L) = d◦(f).
This shows that the algebraic degree is an affine invariant.

Lemma 4.49. The Hamming weight is an affine invariant. Let f be a
Boolean function on Fn2 and L an affine isomorphism on Fn2 , then

wH(f ◦ L) = wH(f).

Proof. Let f ∈ BFn and L an affine isomorphism, then L−1 is also an affine
isomorphism and wH(f ◦ L) =

∑
x∈Fn

2
f(L(x)) =

∑
L−1(x)∈Fn

2
f(x) = wH(f).

With lemma 4.49 we can prove that the nonlinearity is an affine invariant.
In particular the property that a Boolean function is bent is invariant under
an affine isomorphism.

Lemma 4.50. The nonlinearity is an affine invariant. Let f be a Boolean
function on Fn2 and L an affine isomorphism on Fn2 , then

NL(f ◦ L) = NL(f).

Proof. Let f, l ∈ BFn, l a nonconstant affine function and L an affine iso-
morphism. Since the weight is an affine invariant we have that

wH((f ⊕ l) ◦ L) = wH(f ⊕ l).

For the LHS we have

wH((f ⊕ l) ◦ L) = dH((f ◦ L)⊕ (l ◦ L),0) = dH(f ◦ L, l ◦ L)

50

and for the RHS we have

wH(f ⊕ l) = dH(f, l).

So dH(f ◦ L, l ◦ L) = dH(f, l) and since all nonconstant affine functions are
affine equivalent we have that NL(f ◦ L) = NL(f).

In the last lemma of this subsection we look at the effect on the Fourier
transform of a composition of a pseudo-Boolean function and a linear iso-
morphism. Let M be a nonsingular n × n matrix, L(x) = Mx a linear
isomorphism and let L−1(x) = M−1x be the inverse of L. We write M ′ for
the transpose of M−1 and L′(x) = M ′x for the adjoint operator of L−1, i.e.
u · L−1(x) = L′(u) · x.

Lemma 4.51. Let ϕ be a pseudo-Boolean function on Fn2 and L be a linear
isomorphism, then

ϕ̂ ◦ L = ϕ̂ ◦ L′.

Proof.

ϕ̂ ◦ L(u) =
∑
x∈Fn

2

ϕ(L(x))(−1)u·x =
∑
x∈Fn

2

ϕ(x)(−1)u·L
−1(x)

=
∑
x∈Fn

2

ϕ(x)(−1)L
′(u)·x = ϕ̂ ◦ L′(u).

4.4 Cryptographic Properties

In section 2.2 we explained the two principles of C.E. Shannon; confusion
and diffusion. In a substitution permutation network SPN an S-box and a
linear permutation need to satisfy these principles. The S-box consists of
a vector of nonlinear Boolean functions. As we have seen, there are more
properties for Boolean functions then nonlinearity. We will analyze some
of these properties on their consequences for the cipher and the principles
confusion and diffusion.

Nonlinearity The first criterion of an S-box is that it is nonlinear, since
otherwise the SPN would be easily solvable by linear algebra. Nonetheless,
as in a linear attack, a linear approximation of the S-box can be made. It

51

gets harder to make a good linear approximation when the nonlinearity of the
S-box is higher. Hence a good (high) nonlinearity ensures more confusion. In
this view it is desirable to use an S-box that is bent. Unfortunately this can
not be derived together with other properties such as the algebraic degree
and balancedness which will be explained below. We need to be satisfied
with S-boxes which are highly nonlinear but not bent.

Algebraic degree An S-box with high algebraic degree makes the re-
lation between the ciphertext and the encryption key more complex, hence
causes more confusion. We state Rothaus Bound without a proof. The proof
makes use of the dual of a bent function and this is beyond the scope of this
thesis. For a proof see Carlet [5].

Proposition 4.52. Let f be a Boolean function on Fn2 with n ≥ 4. If f is
bent, then the algebraic degree is less or equal to n/2.

With this result, bent function are clearly not optimal and trade-offs must
be made when one chooses an S-box.

Balancedness Recall that a function f ∈ BFn is balanced if wH(f) =
2n−1. If a Boolean function is not balanced one output value will have a higher
probability to occur. Since this disadvantage can be used in an attack, only
balanced (coordinate) functions are used in an S-box. In particular, the S-
box of an SPN needs to be a permutation, hence needs to consist of balanced
coordinate functions. More of this will be explained in the next section about
vectorial Boolean functions.

In lemma 4.43 we have seen that wH(f) = 2n−1 − 1
2
f̂χ(0). And from

corollary 4.46 we know that if f is a bent function, then the Walsh transform
f̂χ(a) equals ±2

n
2 for all a ∈ Fn2 . Hence the weight of a bent function equals

2n−1± 2
n
2
−1 and a bent function is not balanced. This is another reason why

bent functions are not optimal S-boxes.
Strict avalanche criteria and propagation criteria The idea of a

differential attack is to make a small difference in the input of the cipher and
look at the behavior of the output. Ensuring that many derivative functions
are balanced makes it hard to assign good statistics on the output differences.
This causes a better diffusion.

Definition 4.53. A Boolean function f on Fn2 satisfies the propagation
criteron with respect to E ⊂ Fn2 if for each x ∈ E the derivative Dxf is
balanced.

52

We say that a Boolean function f satisfies PC (k) if E consists of all
nonzero vectors of weight less or equal to k, i.e.

E = {x ∈ Fn2 : 1 ≤ wH(x) ≤ k}.

This is equivalent with F(Def)=0, for all 0 < wH(e) ≤ k, since F(Def) =∑
x∈Fn

2
(−1)Def(x). Propagation criteria PC is a general form of strict avalanche

criteria SAC. A function satisfies SAC if the derivative is balanced for all
vectors of weight one, which is equivalent to PC (1). There is a relation
between the maximal nonlinearity and the maximal propagation criterion.

Proposition 4.54. Let f be a Boolean function on Fn2 , f is bent if and only
if f satisfies PC(n).

Proof. Recall the corollary 4.41 of the Wiener-Khintchine theorem, we have

that f̂χ
2
(a) =

∑
x∈Fn

2
F(Dxf)(−1)a·x. We deduce,

f̂χ
2
(a) =

∑
x∈Fn

2

F(Dxf)(−1)a·x = 2n +
∑

x∈Fn
2 \{0}

F(Dxf)(−1)a·x.

From this it follows that f̂χ
2
(a) = 2n if and only if F(Dxf) = 0 for all

x ∈ Fn2\{0}. That is, f̂χ(a) ∈ {±2
n
2 } if and only if Dxf is balanced for all

x ∈ Fn2\{0}. So f is bent if and only if f satisfies PC (n).

We have seen that we cannot use bent functions as an S-box; it follows
that we can not use functions which satisfy PC (n) either.

Other properties These are the most important properties of Boolean
function which are used as an S-box. There are more properties of Boolean
functions which are interesting for cryptographic applications, such as PC (k)
of order l, resiliency, linear structures and algebraic immunity. More about
these properties can be found in Carlet [5].

53

5 Vectorial Boolean functions

In this section we will introduce vectorial Boolean functions. These functions
are used in cipher systems, in particular for S-boxes. We extend properties
of the previous chapter, introduce new properties such as almost bent AB
and almost perfect nonlinear APN, look at two different kind of notions of
equivalence; EA-equivalence and CCZ-equivalence and we show a connec-
tion between Vectorial Boolean functions and coding theory. The theory
developed here will be used in the next section to deduce the Dillon-Wolfe
function.

5.1 Extensions of Definitions and Properties

Most notions and properties that we have seen in section 4.1 can be extended
to vectorial Boolean functions F : Fn2 → Fm2 , where n,m are positive integers.
Such a function F is called an (n,m)-function and can be viewed as a vector
of Boolean functions fi : Fn2 → F2,

F (x) =

 f1(x)
...

fm(x)

 .

These Boolean functions fi, 1 ≤ i ≤ m, are called the coordinate functions
of F and for b ∈ Fm2 \{0}, the inner product b · F is called a component
function. This component function b·F is used in most extensions of previous
definitions. Note that a component function is a Boolean function on Fn2 ,
since it is a linear combination of coordinate functions.

5.1.1 ANF

When we write the coordinate functions in the algebraic normal form ANF,
we obtain the ANF of a vectorial Boolean function.

Definition 5.1. Let F be a (n,m)-function and N = {1, . . . , n}. We can
represent F uniquely in the algebraic normal form ANF by,

F (x1, . . . , xn) =
∑

I∈P(N)}

aI

(∏
i∈I

xi

)
, aI ∈ Fm2 .

54

Or we just write

F (x) =
∑

I∈P(N)

aIx
I , aI ∈ Fm2 .

Recall our convention to write + for the addition of vectors in Fm2 . But
for a single coordinate, the addition is done modulo 2 and is written as ⊕.

Example 5.2. Let F be a (3, 3) function and for I ∈ P({1, 2, 3}) the vectors
aI are:

a∅ =

 1
0
1

 , a{1} =

 0
1
1

 , a{2} =

 0
0
1

 , a{3} =

 1
0
0

 ,

a{1,2} = a{1,3} =

 0
1
0

 , a{2,3} =

 0
0
0

 , a{1,2,3} =

 1
1
1

 .

We get the vectorial Boolean function,

F (x1, x2, x3) =

 1
0
1

+

 0
1
1

x1 +

 0
0
1

x2 +

 1
0
0

x3

+

 0
1
0

 (x1x2 ⊕ x1x3) +

 0
0
0

x2x3 +

 1
1
1

x1x2x3

=

 1⊕ x3 ⊕ x1x2x3
x1 ⊕ x1x2 ⊕ x1x3 ⊕ x1x2x3

1⊕ x1 ⊕ x2 ⊕ x1x2x3

 .

For the ANF of a vectorial Boolean function we have similar relations as
relation 3 and lemma 4.15 for Boolean functions, see section 4.1.2.

Lemma 5.3. Let F be an (n,m)-function and
∑

I∈P(N) aIx
I its ANF, then

i.
F (u) =

∑
I⊆supp(u)

aI ,

ii.
aI =

∑
x∈Fn

2 ,supp(x)⊆I

F (x).

55

Proof. Note that we can compute each coordinate of F and aI separately.
Let F = (f1, . . . , fm) the coordinate functions and aI = (aI1, . . . , aIm). Then
for 1 ≤ i ≤ m we have

i.
fi(u) =

⊕
I⊆supp(u)

aIi,

ii.
aIi =

⊕
x∈Fn

2 ,supp(x)⊆I

fi(x).

Applying relation (3) on i and lemma 4.15 on ii proves the desired.

5.1.2 The algebraic degree and balancedness

The algebraic degree of a vectorial Boolean function is defined as the maxi-
mum degree of all coordinate functions.

Definition 5.4. Let F be an (n,m)-function and F = (f1, . . . , fm) the co-
ordinate functions. The algebraic degree of F is defined as the maximum
algebraic degree of all fi, that is

d◦(F) := max
1≤i≤n

d◦(fi).

For any two coordinate functions fi, fj, we have that

d◦(fi ⊕ fj) ≤ max(d◦(fi), d
◦(fj)).

From this it follows that the algebraic degree of F is equal to the maximum
degree of all component functions, i.e.

d◦(F) = max
b∈Fm

2

d◦(b · F).

In a similar way as for Boolean functions, a vectorial Boolean function F
is called affine if d◦(F) ≤ 1. If F is affine and F (0) = 0 (where the input
0 ∈ Fn2 and the output 0 ∈ Fm2), then F is called linear. For (n,m)-functions
we have also a minimum degree, that is the minimum degree of all component
functions,

d◦min(F) := min
b∈Fm

2 \{0}
d◦(b · F).

56

Example 5.5. We compute the algebraic degree for the function F from ex-
ample 5.2

F (x) =

 1⊕ x3 ⊕ x1x2x3
x1 ⊕ x1x2 ⊕ x1x3 ⊕ x1x2x3

1⊕ x1 ⊕ x2 ⊕ x1x2x3

 .

Clearly d◦(F) = 3 since every coordinate function is of algebraic degree 3.
We make a table of all component functions b·F , but leave out the coordinate
functions.

(1, 1, 0) · F (x) = 1⊕ x1 ⊕ x3 ⊕ x1x2 ⊕ x1x3
(1, 0, 1) · F (x) = x1 ⊕ x2 ⊕ x3
(0, 1, 1) · F (x) = 1⊕ x2 ⊕ x1x2 ⊕ x1x3
(1, 1, 1) · F (x) = x2 ⊕ x3 ⊕ x1x2 ⊕ x1x3 ⊕ x1x2x3

The minimum degree of the component functions is 1 and therefore d◦min(F) =
1.

We define the notion of a balanced vectorial Boolean function.

Definition 5.6. A vectorial Boolean function F : Fn2 → Fm2 with m ≤ n,
is called balanced if each output value in Fm2 is reached equally many times,
that is 2n−m times.

It follows that (n, n)-functions which are balanced, are permutations on
Fn2 . The question arises if, for a (n,m)-function F to be balanced, the com-
ponent functions need to be balanced as well. To answer this, we define the
pre-image of F for b ∈ Fm2 as F−1(b) := {x ∈ Fn2 : F (x) = b}.

Proposition 5.7. Let F be an (n,m)-function and b ∈ Fm2 nonzero. Then
F is balanced if and only if all component functions b · F are balanced.

Proof. We start with two observations:

I. By definition, F is balanced if and only if |F−1(y)| = |F−1(z)| for all
y, z ∈ Fm2 .

II. We define the pseudo-Boolean function ψ(b) :=
∑

x∈Fn
2
(−1)b·F (x). For

all nonzero b ∈ Fm2 we have, ψ(b) = 0 if and only if b ·F (x) is balanced.

57

Corollary 4.33, applied to the Fourier transform ϕ̂ of a pseudo-Boolean func-
tion ϕ, states that: ϕ̂ is constant if and only if ϕ(a) = 0 for all a ∈ Fn2\{0}.
Hence, by II, we need to prove that ψ̂ is constant if and only if F is balanced.

To prove this, we first observe that for an (n,m)-function F , x ∈ Fn2 and
y ∈ Fm2 the map b 7→ b · (F (x) +y) is a linear Boolean function on Fm2 . Hence
this map is either balanced or zero and we obtain∑

b∈Fm
2

(−1)b·(F (x)+y) =

{
2m if x ∈ F−1(y),
0 else.

= 2m1F−1(y)(x).

Where 1F−1(y) is the indicator function of the set F−1(y). We take the sum
over all x ∈ Fn2 and get∑

x∈Fn
2

∑
b∈Fm

2

(−1)b·(F (x)+y) = 2m|F−1(y)|.

Now we are ready to compute the Fourier transform of ψ at y ∈ Fm2 ;

ψ̂(y) =
∑
b∈Fm

2

ψ(b)(−1)b·y =
∑
b∈Fm

2

∑
x∈Fn

2

(−1)b·F (x)(−1)b·y

=
∑
x∈Fn

2

∑
b∈Fm

2

(−1)b·(F (x)+y) = 2m|F−1(y)|.

This proves that ψ̂ is constant if and only if |F−1(y)| = |F−1(z)| for all
y, z ∈ Fm2 . Which means, by observation I, that F is balanced. Hence F is
balanced if and only if b · F is balanced for all b ∈ Fm2 \{0}.

5.1.3 The Walsh transform and nonlinearity

The Walsh transform of an (n,m)-function at the value a ∈ Fn2 is defined for
each component function b · F with b ∈ Fm2 \{0}.

Definition 5.8. Let F be an (n,m)-function, a ∈ Fn2 and nonzero b ∈ Fm2 .
The Walsh transform at (a, b) is defined as

λF (a, b) =
∑
x∈Fn

2

(−1)b·F (x)+a·x.

58

The values of the Walsh transforms determine an important property of
a vectorial Boolean function F . The set of all values at a ∈ Fn2 and b ∈ Fm2 ,
b 6= 0, is called the Walsh spectrum of F :

ΛF := {λF (a, b) : (a, b) ∈ Fn2 × Fm2 \{0}}.

We have seen in the previous chapter that the Walsh transform of a Boolean
function is related to the nonlinearity. We define the nonlinearity of a vec-
torial Boolean function.

Definition 5.9. Let F be an (n,m)-function and b ∈ Fm2 nonzero. The
nonlinearity of F is defined by the minimum nonlinearity of all component
functions b · F , that is

NL(F) := min
b∈Fm

2 \{0}
NL(b · F).

In words; the minimum Hamming distance between the component func-
tions and all affine functions on Fn2 . Since the component function is just a
Boolean function on Fn2 we can use our results from section 4.2.2. We extend
proposition 4.45 and corollary 4.46.

Proposition 5.10. Let F be an (n,m)-function and λF (a, b) the Walsh
transform of F at (a, b) ∈ Fn2 × Fm2 \{0}, then

i.

NL(F) = 2n−1 − 1

2
max

a∈Fn
2 , b∈Fm

2 \{0}
|λF (a, b)|.

ii.
NL(F) ≤ 2n−1 − 2

n
2
−1.

Proof. For i: By proposition 4.45 we have for b ∈ Fm2 \{0}

NL(b · F) = 2n−1 − 1

2
max
a∈Fn

2

| ̂(b · F)χ(a)|.

This proves i since ̂(b · F)χ(a) = λF (a, b).
For ii: The covering radius bound from corollary 4.46 holds for every com-

ponent function b · F and therefore holds for any vectorial Boolean function
as well.

59

A vectorial Boolean function F is called bent if it attains the covering
radius bound. Hence F is bent if and only if all component functions of F
are bent. Proposition 4.54 states that a Boolean function is bent if and only
if all derivatives are balanced. We can extend this result to vectorial Boolean
functions. The derivative of a vectorial Boolean function is defined similar
as for Boolean functions.

Definition 5.11. Let F be an (n,m)-function and a ∈ Fn2\{0}. The deriva-
tive of F in the direction of a is:

DaF (x) := F (x) + F (x+ a).

Note that the derivative is an (n,m)-function as well.

Proposition 5.12. An (n,m)-function F is bent if and only if the derivative
DaF is balanced for all nonzero a ∈ Fn2 .

Proof. An (n,m)-function F is bent if and only if the component functions
b · F are bent for all b ∈ Fm2 \{0}. By proposition 4.54, b · F is bent if and
only if it satisfies PC(n), i.e. Da(b · F) is balanced ∀a ∈ Fn2 , a 6= 0. We
rewrite this derivative and deduce, Da(b ·F)(x) = (b ·F)(x)+(b ·F)(x+a) =
b · (F (x) + F (x+ a)), hence

Da(b · F)(x) = b ·DaF (x).

By proposition 5.7, b ·DaF (x) is balanced for all nonzero a ∈ Fn2 if and only
if DaF (x) is balanced for all nonzero a ∈ Fn2 . This proves the desired.

A vectorial Boolean (n,m)-function F is called perfect nonlinear if all
derivatives DaF , a ∈ Fn2\{0}, are balanced. For nonzero a ∈ Fn2 and b ∈ Fm2 ,
we denote δF (a, b) for the cardinality of the pre-image (DaF)−1(b), that is

δF (a, b) := |{x ∈ Fn2 : F (x) + F (x+ a) = b}|.

An (n,m)-function with n = m, is perfect nonlinear9 if for all (a, b) ∈
Fn2\{0}× Fm2 we have that δF (a, b) = 1. This is impossible since solutions of
F (x) + F (x + a) = b come in pairs, if x is a solution, then x + a is another
solution. Hence there exist no perfect nonlinear or bent (n,m)-functions for

9Perfect nonlinear function are also called planar functions.

60

n = m. It can be shown that bent, and hence perfect nonlinear, functions
only exist for m ≤ n

2
, see Carlet [6].

For an (n,m)-function F , the values of δF determine an important prop-
erty. The set of all values of δF is called the differential spectrum:

∆F := {δF (a, b) : (a, b) ∈ Fn2\{0} × Fm2 }.

The Walsh spectrum ΛF and the differential spectrum ∆F of an S-box
F determine the resistance to cryptographic attack. High values of λF (a, b)
make a linear attack easier, hence bent function are optimal against linear
attacks. Unfortunately bent functions do not exist for (m,m)-functions. For
the differential spectrum, small values of δF (a, b) posses the best optimum
against a differential attack, but we have seen that there exist no perfect
nonlinear (m,m)-functions either. In the next section we will say more about
(m,m)-functions and their optimum properties.

5.2 AB and APN

There are several criteria on which a vectorial Boolean function can be chosen
to be used as an S-box. One criteria is that the S-box is a permutation. This
ensures that no information is lost (although there are ciphers known with
S-boxes which are not permutations). From now on we assume that n = m.
We have seen that (m,m)-functions can not be bent and perfect nonlinear.
Below, we will give other optimal bounds for (m,m)-functions.

We state a better upper bound for the nonlinearity of an (m,m)-function
without a proof10.

Lemma 5.13. Let F be a (m,m)-function, then

NL(F) ≤ 2m−1 − 2
m−1

2 .

Clearly, this bound can only be attained for m odd.

Definition 5.14. An (m,m)-function F with m odd is called almost bent
AB if

NL(F) = 2m−1 − 2
m−1

2 .

10This is a particular case of the Sidelnikov-Chabaud-Vaudenay bound which was intro-
duced in [7]

61

The name ’almost bent’ is somewhat misleading, note that this bound is
an optimum for an (m,m)-function F . From proposition 5.10 i we deduce a
consequence for the Walsh transform of a AB function.

Lemma 5.15. An (m,m)-function F is AB if and only if λF (a, b) ∈ {0,±2
m+1

2 }
for all a, b ∈ Fm2 , b 6= 0.

Proof. Clearly, if λF (a, b) ∈ {0,±2
m+1

2 } for all a, b ∈ Fm2 , b 6= 0, then
maxa,b∈Fm

2 ,b 6=0 |λF (a, b)| = 2m+1 and hence F is AB by proposition 5.10 i.
For the other direction observe that

λ := max
a,b∈Fm

2 ,b 6=0
λF (a, b)2 ≥

∑
a,b∈Fm

2 ,b 6=0 λF (a, b)4∑
a,b∈Fm

2 ,b 6=0 λF (a, b)2
.

Equality is attained only if for all a, b ∈ Fm2 , b 6= 0,

λF (a, b)2 ∈ {0, λ}.

If F is AB, then by proposition 5.10 i we have maxa,b∈Fm
2 ,b 6=0 |λF (a, b)| = 2

m+1
2

and hence λ = 2m+1. This proves the desired.

We state an optimal bound for the values of the differential spectrum of
an (m,m)-function.

Definition 5.16. An (m,m)-function F is called almost perfect nonlinear
APN if for all a, b ∈ Fm2 , a 6= 0,

F (x) + F (x+ a) = b

admits at most two solutions, i.e. δF (a, b) ∈ {0, 2}.

Again, the name ’almost perfect nonlinear’ is a little misleading. We have
seen that solutions of δF (a, b) come in pairs, hence APN is an optimum for
(m,m)-functions. We can rewrite this definitions as follows.

Lemma 5.17. Let F be an (m,m)-function, then F is APN if and only if
the system of equations {

x+ y = a
F (x) + F (y) = b

admits at most two solutions for all a, b ∈ Fm2 ,a 6= 0.

62

Proof. This follows immediate since we can substitude y = x+ a.

Remark 5.18. It was long a big open question if there exists a vectorial
Boolean function (S-box) of even dimension which is a permutation and
APN. The Dillon-Wolfe function is an (6, 6)-function and is the only known
function which achieves both properties. This function has the best possible
resistance against differential attacks. We will say more on the construction
of a Dillon-Wolfe function in section 6.

5.3 EA- and CCZ-Equivalence

We have already seen an equivalence relation on Boolean functions. In this
section we will define two equivalent relations on vectorial Boolean (m,m)-
functions and will see which notions are invariant under these equivalences.

5.3.1 Equivalences

We extend the equivalence relation on Boolean functions to vectorial Boolean
functions. Since a vectorial Boolean (m,m)-function F maps from Fm2 to Fm2 ,
we can compose F on the left and right by an affine permutation.

Definition 5.19. Let F,G be two (m,m)-functions and A,A1, A2 : Fm2 → Fm2
such that, A is an affine function and A1, A2 are two affine permutations. The
two functions F and G are called extended affine EA equivalent if

G = A1 ◦ F ◦ A2 + A.

If A = 0, we call F and G affine equivalent.

We will show that the above defines an equivalence relation. Let

Im, A,A1, A2, B,B1, B2 : Fm2 → Fm2 ,

be functions with Im the identity map, A,B affine functions, A1, A2, B1, B2

affine permutations. Let F,G,H be (m,m) functions, we obtain an equiva-
lent relation with linear algebra:

• Reflexive: F = Im ◦ F ◦ Im + 0.

• Symmetric: If G = A1 ◦ F ◦ A2 + A, then

F = A−11 ◦G ◦ A−12 + (A−11 ◦ A ◦ A−12),

with A−11 ◦ A ◦ A−12 an affine function.

63

• Transitive: If G = A1 ◦ F ◦ A2 + A and H = B1 ◦G ◦B2 +B, then

H = (B1 ◦ A1) ◦ F ◦ (B2 ◦ A2) + (B1 ◦ A ◦B2 +B)

with (B1 ◦A1) and (B2 ◦A2) affine permutations and (B1 ◦A ◦B2 +B)
an affine function.

There exists a more general notion of equivalence, called CCZ-equivalence,
which was first stated by Carlet-Charpin-Zinoviev in [4]. We define the graph
of an (m,m)-function as:

GF := {(x, F (x)) : x ∈ Fm2 }.

Definition 5.20. Let F, F ′ be two (m,m)-functions and L a linear permu-
tation on F2m

2 . The functions F and F ′ are called CCZ-equivalent if

L(GF) = GF ′ .

We give a step by step description of the linear permutation L and the
relation between F and F ′.

• Two vectorial Boolean functions F, F ′ : Fm2 → Fm2 and a linear per-
mutation L : Fm2 × Fm2 → Fm2 × Fm2 of the form L = (L1, L2), where
L1, L2 : F2m

2 → Fm2 are two linear functions.

• Apply this L = (L1, L2) on the graph GF we get

L(GF) = L(x, F (x)) = L(L1(x, F (x)), L2(x, F (x))).

We define two functions F1 and F2 as

F1(x) := L1(x, F (x)) and F2(x) := L2(x, F (x)).

So we can write L(x, F (x)) = (F1(x), F2(x)).

• Now, if F1(x) is a permutation, then F−11 exists and we have

L(x, F (x)) = (x, F2 ◦ F−11 (x)).

So, if the function F ′ is of the form F ′ = F2 ◦ F−11 , then L(GF) = GF ′

and F and F ′ are CCZ-equivalent.

64

This CCZ-equivalence defines an equivalence relation. Let F, F ′, F ′′ be (m,m)-
functions and L,L′ two affine permutations as described in the definition
above.

• Reflexive: Take L = (L1, L2) such that L1(a, b) = a and L2(a, b) = b,
then L(x, F (x)) = (x, F (x)) and L(GF) = GF .

• Symmetric: Suppose L(GF) = GF ′ , since L is an affine permutation the
inverse L−1 is also an affine permutation and L−1(GF ′) = L−1◦L(GF) =
GF .

• Transitive: Suppose that L(GF) = GF ′ and L′(GF ′) = GF ′′ . Since L′◦L
is again an affine permutation we have L′ ◦ L(GF) = L′(GF ′) = GF ′′ .

If F and F ′ are CCZ-equivalent and the function L1(a, b) depends only on
one variable, then L2(a, b) depends on one variable as well. Hence L1 and
L2 are linear permutations and therefore F1 and F2 are linear permutations.
This makes F and F ′ EA-equivalent. The converse is not true in general.

Example 5.21. Let L1(a, b) = L1(a) and L2(a, b) = b, then F1(x) = L1(x)
and F2(x) = L2(F (x)). We get that F ′ = F2 ◦ F−11 = L2 ◦ F ◦ L−11 , hence F
and F ′ are EA-equivalent.

If F and F ′ are CCZ-equivalent and the function L(a, b) = (L1, L2)(a, b) =
(b, a), then F ′ = F−1. Hence F and the inverse F−1 are CCZ-equivalent. We
will see below that F and F−1 are not EA-equivalent in general, hence CCZ-
equivalence is strictly more general then EA-equivalence.

It can be hard to prove that two functions are not CCZ-equivalent. One
way is to look at the invariant properties of the two functions. We will say
more about invariant properties in the next section.

5.3.2 Invariants

Some properties of vectorial Boolean functions are invariant under EA- or
CCZ-equivalence. We have seen that EA-equivalence is more strict that CCZ-
equivalence, hence if a property is EA-invariant it is also CCZ-invariant. We
take a closer look at: the algebraic degree, the Walsh spectrum, nonlinearity
and the differential spectrum.

Proposition 5.22. The algebraic degree is EA-invariant for (m,m)-functions
F with d◦(F) ≥ 2.

65

Proof. Let F = (f1, . . . , fm) be an (m,m)-functions and A,A1, A2 : Fm2 → Fm2
functions such that A an affine function and A1, A2 two affine permutations.
Suppose d◦(F) ≥ 2, we proof that d◦(F) = d◦(A1 ◦ F) = d◦(F ◦ A2). This
proves the desired since adding an affine function A does not change the
algebraic degree, i.e. d◦(F + A) = d◦(F).

First, observe that A1 ◦ F is a vectorial Boolean function for which each
coordinate function is equal to a component function of F . Therefore we
have that d◦(A1 ◦ F) = maxb∈Fm

2 \{0} d
◦(b · F) = d◦(F).

Second, observe that for 1 ≤ i ≤ m, the ith coordinate function of (F ◦A2)
equals fi ◦A2. Therefore we have that d◦(F ◦A2) = max1≤i≤m d

◦(fi ◦A2). By
lemma 4.48 the algebraic degree of a Boolean function is an affine invariant.
Hence d◦(F ◦ A2) = max1≤i≤m d

◦(fi) = d◦(F).

If d◦(F) ≤ 1 then F is affine. So if A = F , then the two functions F and
F +A = 0 are EA-equivalent but do not have that same algebraic degree in
general. Hence the algebraic degree is only an EA-invariant for functions of
algebraic degree greater or equal then two.

The proof of the minimal degree being an EA-invariant if d◦min(F) ≥ 2 is
very similar.

We have seen that an (m,m)-function F and the inverse F ′ (if it exists)
are CCZ-equivalent. Since in general d◦(F) 6= d◦(F ′), the algebraic degree is
not CCZ-invariant.

Proposition 5.23. The Walsh spectrum is CCZ-invariant.

Proof. Let F and F ′ be two (m,m)-functions which are CCZ-equivalent, with
L(GF) = GF ′ . We write L? for the adjoint operator of L, i.e. (a, b) ·L(x, y) =
L?(a, b) · (x, y). For a, b ∈ Fm2 , b 6= 0, we have that

λF ′(a, b) =
∑
x∈Fm

2

(−1)b·F
′(x)+a·x =

∑
x∈Fm

2

(−1)(a,b)·(x,F
′(x))

=
∑
x∈Fm

2

(−1)(a,b)·L(x,F (x)) =
∑
x∈Fm

2

(−1)L
∗(a,b)·(x,F (x)) = λF (L?(a, b)).

Since L is a permutation, L? is also a permutation and the two Walsh spectra
ΛF and ΛF ′ are equal up to a permutation of the elements. Hence the Walsh
spectrum is CCZ-invariant.

By lemma 5.10, the nonlinearity is directly related to the Walsh trans-
form. It follows that the nonlinearity is CCZ-invariant as well. We state a
particular consequence.

66

Corollary 5.24. The property almost bent AB is CCZ-invariant.

For the differential spectrum we have a similar result.

Proposition 5.25. The differential spectrum is CCZ-invariant.

Proof. Let F and F ′ be two (m,m)-functions which are CCZ-invariant, with
L(GF) = GF ′ . Let a, b ∈ Fm2 , a 6= 0, by lemma 5.17 we have

δF ′(a, b) = |{F ′(x) + F ′(x+ a) = b}| = |{(x, F ′(x)) + (y, F ′(y)) = (a, b)}|
= |{L(x, F (x)) + L(y, F (y)) = (a, b)}|
= |{(x, F (x)) + (y, F (y)) = L−1(a, b)}| = δF (L−1(a, b)).

Since L is a permutation, L−1 is a permutation as well and the differential
spectra of ∆F and ∆F ′ is equal up to a permutation. Hence the differential
spectrum is CCZ-invariant.

We state a particular consequence.

Corollary 5.26. The property APN is CCZ-invariant.

We have seen that the Walsh spectrum and the differential spectrum are
CCZ-invariant. Since the values of the Walsh spectrum and the differential
spectrum determine the success of a linear or differential attack respectively,
we have that CCZ-equivalent S-boxes have the same resistance against such
attacks.

67

6 The Dillon-Wolfe Function

We have seen some criteria according a vectorial Boolean function to be
selected as an S-box. Two of these criteria are: the (m,m)-function is a
permutation and low values of the differential spectrum, ideally APN. There
are many examples of APN permutations known for odd dimensions m, see
for instance lemma 6.1 below, but for even dimension this was a big open
question if such a function would exist. It was even conjectured by Hou in
[12] that no APN permutation exits in even dimension.

For the first nontrivial case m = 4 it was proved by Hou [12] that this
conjecture was true. For higher dimensions m ≥ 6, no proof was known. If
the conjecture is false and an APN permutation would exist, where do we
need to look? The space of bijective (m,m)-functions is huge, i.e. 26! ' 2296,
hence the first step is to narrow this space down. In which subspace could
such a function occur and do we need to investigate? When the subspace is
small enough we can do an exhaustive search.

Building on previous results of K.A. Browning and M.T. McQuistan [14],
J.F. Dillon and A.J. Wolfe published the article [13] in 2009, in which they
proved that the conjecture was false. Dillon and Wolfe found a vectorial
Boolean (6, 6)-function which is an APN permutation. We will explain how
Dillon and Wolfe found this so called Dillon-Wolfe function.

Dillon and Wolfe used a connection between Boolean functions and coding
theory. This will be explained in the first section of this chapter. In the
second section we give the general idea in which direction we need to search
to find an APN permutation. And we give an algorithm to deduce an APN
permutation from a known APN (m,m)-function. In the third section we
give the results stated by Dillon and Wolfe and in the fourth section we give
the cryptographic properties of a Dillon-Wolfe function and compare these to
other S-boxes. When Dillon and Wolfe discovered the existence of an APN
permutation, they tried to find such a function with a randomized search
algorithm. This we will be explained in section five.

6.1 Boolean Functions and Coding Theory

There exist some connections between Boolean functions and (binary linear)
codes. To show this we can use the identification of the vector space Fm2 with
the finite field F2m as described in section 3.2.1 about Hamming codes. An
element in F2m can be identified with a vector in Fm2 and using a primitive

68

element ω of F2m which generates the multiplicative group F∗2m of F2m , i.e.
〈ω〉 = F∗2m . This identification can be used to represent a vector Boolean
(n,m)-function using the finite fields F2n and F2m . We do not go into detail
how to derive the ANF from this representation and vice versa, for more of
this representation see Carlet [5]. We first use this representation to give an
example of an APN function. Secondly, we show a relation between codes
and APN functions and thirdly, we prove that CCZ-equivalent functions
generate equivalent codes. Recall our convention for addition of vectors in
Fm2 , we write + for addition in F2m .

We give an example of a (m,m)-function which is APN.

Lemma 6.1. The function F : F2m → F2m, F (x) = x3, is APN for every
m ≥ 1 and a permutation for every odd m.

Proof. We first prove that F is APN. For a, b ∈ F2m , a 6= 0, we have

F (x) + F (x+ a) = x3 + (x+ a)3 = x3 + x3 + ax2 + a2x+ a3 = b.

Note that in the finite field F2m the factor 2 vanishes. The equation

ax2 + a2x+ a3 = b

admits at most two solutions since it is quadratic. Hence F (x) is APN for
all m ≥ 1.

To prove that F is a permutation for odd m, we need to prove that F
does not generate a subgroup of the multiplicative group F∗2m since F (0) = 0.
That is, we want to prove that 3 6 |(2m − 1). We have that

2m − 1 ≡ (−1)m − 1 mod 3 ≡
{

0 mod 3 if m is even,
1 mod 3 if m is odd.

It follows that 3 6 |(2m− 1) if and only if m is odd, hence F is a permutation
if m is odd.

We recall the construction of definition 3.23. A vectorial Boolean (m,m)-
function F generates the 2m× 2m − 1 matrix HF by

HF =

[
x

F (x)

]
.

The columns (x, F (x)) in HF are nonzero and pairwise distinct. To do com-
putations on HF it is useful to give an order on the columns (x, F (x)). Using

69

the identification of F2m with Fm2 we can give an order on the columns of HF

by

HF =

[
x

F (x)

]
=

(
1 ω ω2 . . . ω2m−2

1 F (ω) F (ω2) . . . F (ω2m−2)

)
.

The parity check matrix HF defines the code CF and is a generator matrix
for the dual code C⊥F . Let the parameters n be the length of a code and k
be the dimension of the code. Recall that if CF is an [n, k] code, then the
dual code C⊥F is an [n, n − k] code. Therefore both codes are of length
n = 2m− 1. Since HF consists of 2m rows the dimension of the code at least
k ≥ 2m − 1 − 2m. If F is a permutation and F (0) = 0, then by definition
3.23 C⊥F is a double simplex code.

There is an equivalent definition of a APN function using the code CF
which was first stated in the paper about CCZ-equivalence of Carlet et al.
[4]. We will not give the full proof since it uses some deep results from coding
theory, but we give the main idea such that the connection becomes clear.

Proposition 6.2. Let F be a vectorial Boolean function, F : F2m → F2m,
with F (0) = 0. Let ω ∈ F2m be a primitive element and let CF be the code of
length 2m − 1, defined by the 2m× (2m − 1) parity check matrix

HF =

(
1 ω ω2 . . . ω2m−2

1 F (ω) F (ω2) . . . F (ω2m−2)

)
.

Then F is APN if and only if CF has minimum distance 5.

Proof. The proof consists of two steps.
First step: We show that the code CF has minimal distance 3 ≤ d ≤ 5.

By lemma 3.14 we have that d equals the minimal number of dependent
columns of HF . Since any two columns of HF are distinct we have d ≥ 3.
The code CF is an [n, k, d] code with n = 2m − 1 and k ≥ 2m − 1− 2m. It is
known that there exist no such codes with d ≥ 6, see [4]. Hence the minimal
distance of CF is 3 ≤ d ≤ 5.

Second step: We show that F is APN if and only if d = 5. We have
seen in the section on coding theory that c = (c1, . . . , cn) ∈ CF if and only if
c(HF)T = 0, so we have

c ∈ CF ⇔
n∑
i=1

ciω
i = 0 and

n∑
i=1

ciF (ωi) = 0.

70

Suppose d = 3, 4, then by lemma 3.14, there are three or four pairwise distinct
columns (ωi, F (ωi)) of HF which are linear dependent. That is, there exist
four distinct elements x, y, x′, y′ ∈ F2m such that

x+ y + x′ + y′ = 0 and F (x) + F (y) + F (x′) + F (y′) = 0.

For d = 3 one of these elements is zero and F (0) = 0. For d = 4 none element
equals zero. Hence there exist a, b ∈ F2m , a 6= 0, such that a = x+y = x′+y′

and b = F (x) + F (y) = F (x′) + F (y′) and the set of equations{
x+ y = a
F (x) + F (y) = b

admits four solutions. It follows from lemma 5.17 that F is not APN.
Conversely, if F is APN, then d 6= 3, 4. Therefore d = 5 if and only if F

is APN.

We can prove that two CCZ-equivalent (m,m)-functions generate equiva-
lent codes. Recall definition 3.11, two [n, k] codes C1 and C2, with generator
matrices G1 and G2 respectively, are equivalent if

MG1 = G2P,

where M is an k×k invertible matrix and P is an n×n permutation matrix.

Theorem 6.3. Let F, F ′ be two (m,m)-functions, F (0) = F ′(0) = 0 and
HF , HF ′ the corresponding 2m× (2m−1) generator matrices of the two codes
C⊥F , C

⊥
F ′ respectively. If F and F ′ are CCZ-equivalent functions, then C⊥F and

C⊥F ′ are equivalent codes.

Proof. Assume that F, F ′ are two (m,m)-functions which are CCZ-equivalent.
Then there exist a linear permutation L on F2m

2 such that for the two corre-
sponding graphs we have

L(GF) = GF ′ .

Since L is a linear permutation, we can write L as a 2m×2m invertible matrix.
Since F (0) = 0 we have that each element of the graph GF\{(0, F (0))} is a
column of HF , this holds for F ′ as well. Hence

LHF = HF ′P,

where P is some (2m − 2) × (2m − 1) permutation matrix which induces a
permutation on the columns of LHF . Therefore the two codes generated by
HF , HF ′ are equivalent.

71

We take a closer look at this construction. Recall that the linear per-
mutation L is of the from L = (L1, L2) with L1, L2 : F2m

2 → Fm2 two linear
functions. We can define L, L1, L2 in terms of matrices and get

L =

(
A B
C D

)
L1 = (A B) L2 = (C D).

Where each A,B,C,D is an m×m matrix. With this notation we get

F1(x) = L1(x, F (x)) = Ax+BF (x),

F2(x) = L2(x, F (x)) = Cx+DF (x).

Apply the matrix L on HF gives use

LHF =

(
A B
C D

)[
x

F (x)

]
=

[
Ax+BF (x)
Cx+DF (x)

]
=

[
F1(x)
F2(x)

]
.

If the functions F and F ′ are CCZ-equivalent, then F1(x) is a permutation
and F ′ = F2 ◦ F−11 . Hence, for F1(x) = y, we have[

F1(x)
F2(x)

]
=

[
y

F2 ◦ F−11 (y)

]
=

[
x

F ′(x)

]
P

where P is an (2m − 1) × (2m − 1) permutation matrix which induces a
permutation on the columns.

The converse is true if the function F ′ is a permutation. By definition
3.23, these are precisely the functions for which the corresponding code C⊥F ′
is a double simplex code.

Corollary 6.4. Let F, F ′ and the corresponding codes C⊥F and C⊥F ′ as in
theorem 6.3. If C⊥F and C⊥F ′ are equivalent codes and C⊥F ′ is a double simplex
code, i.e. if F ′ is a permutation with F ′(0) = 0, then the functions F and
F ′ are CCZ-equivalent.

Proof. Let HF and HF ′ be the generator matrices of the corresponding codes.
Since the two codes are equivalent there exist a invertible 2m × 2m matrix
M and a (2m−1)× (2m−1) permutation matrix P such that MHF = HF ′P ,
i.e.

M

[
x

F (x)

]
=

[
x

F ′(x)

]
P.

72

Since P induces a permutation on the columns of HF ′ and since the two
functions x and F ′(x) are permutations which leaves zero fixed, we have that[

x
F ′(x)

]
P =

[
F ′1(x)
F ′2(x)

]
.

Where F ′1 and F ′2 are again two permutations with F ′1(0) = F ′2(0) = 0. In
particular we have that

M

[
x

F (x)

]
=

[
F ′1(x)
F ′2(x)

]
,

where M is a linear permutation on F2m
2 and F ′1 a permutation. It follows

that F ′ = F ′2 ◦ F ′−11 and M(GF) = GF ′ . Hence the two functions F and F ′

are CCZ-equivalent.

6.2 An APN Permutation

The general idea of Dillon and Wolfe is to start with a (6, 6)-function F which
is APN but not a permutation. Suppose we find a function F ′ which is CCZ-
equivalent to F . Then there exist two (m,m)-functions F1(x, F (x)), F2(x, F (x))
such that F ′ = F2 ◦ F−11 and F1 is a permutation. If we can find a CCZ-
equivalent function F ′ such that the above holds and F2 is a permutation,
then F ′ is an permutation as well. By proposition 5.25 APN is CCZ-invariant,
hence we have found an APN permutation F ′. We give a more detailed de-
scription of this idea below.

6.2.1 A double simplex code

To find CCZ-equivalent functions we will use results from coding theory but
first we make the following observation.

Lemma 6.5. Let F be an (m,m)-function and a permutation. Then there
exists an (m,m)-permutation F ′, with F ′(0) = 0, which is CCZ-equivalent
to F .

Proof. Let a ∈ Fm2 such that F (a) = 0 and define the linear permutation
A2(x) = x + a on Fm2 . Then, by definition 5.19, the two functions F and
F ′ = F ◦A2 are EA-equivalent, hence also CCZ-equivalent and F ′(0) = 0.

73

Without loss of generality we will assume that the permutations F on Fm2
will vanish at zero, F (0) = 0. This makes it possible to use some results of
the previous section.

We recall some observations from coding theory about double simplex
codes. By definition 3.22 a double simplex code is the direct sum of two
different simplex codes. From corollary 3.20 it follows that a double simplex
code C⊥ is defined by the 2m× (2m − 1) generator matrix

H =

[
F1(x)
F2(x)

]
,

where F1 and F2 are two distinct permutations on Fm2 with F1(0) = F2(0) =
0. We denote such a double simplex code C⊥ by

C⊥ = 〈F1(x)〉 ⊕ 〈F2(x)〉.

In particular if F is an (m,m)-function and an APN permutation with
F (0) = 0. By definition 3.23, F defines a 2m × (2m − 1) generator matrix
HF and a double simplex code C⊥F with

HF =

[
x

F (x)

]
and C⊥F = 〈x〉 ⊕ 〈F (x)〉.

Recall from relation (2) that if we identify an (m,m)-function F with a
function on F2m , then for a primitive element ω of F2m , the codewords of
〈F (x)〉 are of the form [a · F (ωi) : i ∈ {0, 1, . . . , 2m − 2}].

We use these double simplex codes to show how we can make a CCZ-
equivalent function which is an APN permutation. We take the following
steps:

Step 1 Let F be an APN (m,m)-function with F (0) = 0, but not a
permutation. Now, suppose that the code C⊥F is nonetheless equivalent to a
double simplex code. Then we can write the code C⊥F as

C⊥F = 〈x〉 ⊕ 〈F (x)〉
= 〈F1(x)〉 ⊕ 〈F2(x)〉.

Where F1 and F2 are two (m,m)-functions which are permutations with
F1(0) = F2(0) = 0. We can define the (m,m)-function F ′ = F2 ◦F−11 , which

74

is also a permutation with F ′(0) = F2 ◦ F−11 (0) = 0. It follows that the two
codes C⊥F and C⊥F ′ are equivalent, since

HF =

[
x

F (x)

]
=

[
F1(x)
F2(x)

]
=

[
x

F ′(x)

]
P = HF ′P,

where P is a (2m − 1) × (2m − 1) permutation matrix which induces a per-
mutation on the columns. Since F (0) = F ′(0) = 0, it follows from corollary
6.4 that the functions F and F ′ are CCZ-equivalent. Hence the function F ′

is an APN permutation.
Step 2 How can we find such an equivalent double simplex code? If F

and F ′ are CCZ-equivalent, then there is an linear permutation L on F2m
2

such that L(GF) = GF ′ . We will analyze this L to see if we can produce such
map ourself. As in the proof of theorem 6.3 we can view the map L = (L1, L2)
as a matrix which we can multiply with the generator matrix HF , we get

LHF = L
[

x
F (x)

]
=

[
L1HF

L2HF

]
=

[
F1(x)
F2(x)

]
.

If LHF = HF ′ generates a double simplex code, then each matrix L1HF and
L2HF generates a different simplex subcodes. We have that L is of rank 2m,
since it is invertible. Therefore the matrices L1, L2 are of rank m.

Final step The two simplex subcodes generated by L1HF , L2HF need to
be different, hence the row spaces only have the zero codeword in common.
We call such two codes disjoint since every (linear) code contains the zero
codeword. Therefore, to find a CCZ-equivalence, we can generate a list of
all simplex subcodes LHF with L a m × 2m matrix of rank m and look for
any two codes from this list which are disjoint. If we succeed, the code C⊥F
is equivalent to a double simplex code from which we can deduce a CCZ-
equivalent function F ′ of F which is an APN permutation.

6.2.2 Simplex subcodes LHF

We will deduce an algorithm which generates all simplex subcodes LHF .
Since the matrix L is of rank m and since the code LHF needs to generate a
simplex code, we can make two restrictions for our search.

First With linear algebra we have for an m×m invertible matrix S, that

(SL)HF = S(LHF).

75

Therefore we can let L be of reduced row echelon form. That is, we can take
L of the form

L = (Im B′),

where Im is the m×m identity matrix and B′ is a m×m matrix.
Second The m× (2m− 1) matrix LHF need to generate a simplex code,

hence each column must be nonzero and pairwise distinct. That is, each
column is nonzero and each sum of two columns is nonzero. To ensure this,
we make the following restriction for L. We define the set

Σ := {
[

x+ y
F (x) + F (y)

]
: x, y ∈ Fm2 , x 6= y}

and consider matrices L which do not vanish on the set Σ, i.e. Lv 6= 0 for
all v ∈ Σ.

Using these two restrictions we can generate L such that LHF will be a
simplex code. To do this we divide Σ into subsets Σk, 0 ≤ k ≤ 2m, which
consists of vectors of which the last 2m− k bits are zero, i.e.

Σk := {c ∈ Σ : c = (c1, . . . , ck, 0, . . . , 0), ck 6= 0}.

The vectors in Σ are of length 2m, but we can view a vector c = (c1, . . . , ck, 0, . . . , 0) ∈
Σk as a vector of length k. The set Σ0 is empty, since (0,0) is not contained
in Σ.

We can generate L one column at the time working from left to right,
i.e. L = [. . . , li, . . .], 1 ≤ i ≤ 2m. We start with m columns from the
m × m identity matrix Im = [l1, . . . , lm]. Observe that for all vectors c =
(c1, . . . , ck, 0, . . . , 0) ∈ Σk, 1 ≤ k ≤ m, we have that ck 6= 0 and therefore

[l1, . . . , lk]

 c1
...
ck

 6= 0.

Therefore we are only interested in the sets Σm+1, . . . ,Σ2m.
For each next column lj ∈ Fm2 , m+ 1 ≤ j ≤ 2m, we check for all vectors

(c1, . . . , cj, 0, . . . , 0) ∈ Σj if

[l1, . . . , lj−1, lj]

 c1
...
cj

 6= 0. (4)

76

If such vector lj exists, we repeat this step for lj+1.
Relation (4) ensures that LHF will be a generator matrix of a simplex

code. If the equation equals zero, then there are two possibilities:

I. The vector c = (c1, . . . , cj, 0, . . . , 0) ∈ Σj is a column of HF . No matter
how we complete L, LHF will contain the zero column.

II. The vector c is of the form

c =

[
x+ y

F (x) + F (y)

]
.

Hence, no matter how we complete L, LHF will contain two equal
columns

[l1, . . . , lj−1, lj]

[
x

F (x)

]
= [l1, . . . , lj−1, lj]

[
y

F (y)

]
.

Hence, if we find an L, the matrix LHF is of the form LHF = [F1(x)] with;
by I, F1(0) = 0 and by II, F1 a permutation on Fm2 . We summarize this
construction in the following algorithm which can generate a list of all simplex
codes.

Algorithm
Input: An (m,m)-function F and the corresponding matrix HF .
Output: All m × 2m matrices L = [l1, . . . , l2m] such that LHF generates a
simplex code.

i. Compute the set Σ and order it into the subsets Σ1, . . . ,Σ2m.

ii. Set the first m columns of L equal to the m ×m identity matrix, i.e.
[l1, . . . , lm] = Im.

iii. Given [l1, . . . , lj], m ≤ j ≤ 2m, check for each lj+1 ∈ Fm2 if, for all
c = (c1, . . . , cj+1, 0, . . . , 0) ∈ Σj+1,

[l1, . . . , lj+1]

 c1
...

cj+1

 6= 0. (5)

For each lj+1 such that (5) holds for all c ∈ Σj+1, start a branch by
repeating this step for [l1, . . . , lj+1]. If no vector lj+1 ∈ Fm2 exists, then
quit the branch with [l1, . . . , lj].

77

iv. For each vector l2m that is found in iii, output L = [l1, . . . , l2m].

The algorithm outputs one or more matrices L and each LHF generates a
simplex subcode of C⊥F . Note that the algorithm always outputs the matrix
L = [l1, . . . , lm,0, . . . ,0] since [l1, . . . , lm,0, . . . ,0]HF = [x] generates a sim-
plex subcode. With this algorithm we obtain a list of all simplex subcodes
of CF .

We compare each pair of simplex subcodes to see if there exists two which
are disjoint. If there are no two disjoint simplex subcodes, then it is proven
that F is not CCZ-equivalent to a permutation with F (0) = 0. Therefore,
by lemma 6.5, if F is APN, then F is not CCZ-equivalent to an APN per-
mutation.

Dillon and Wolfe did not give any indication on the computation time
of this algorithm. We will show a general upper bound. The algorithm will
produce a tree of results since each vector lj+1, found at iii, induces a new
branch. The number of times that relation (5) need to be checked depends
on the number of branches at each iteration of step iii. Hence it is hard to
determine a tight bound on the computation time. We computed an upper
bound which is far from being strict.

Proposition 6.6. Relation (5) needs to be checked at most 2m
2+2m−1 times.

Proof. We prove the proposition in four observations.
I. We compute an upper bound for the cardinality of Σ = {(x, F (x)) +

(y, F (y)) : x, y ∈ Fm2 , x 6= y}. Recall that F is an (m,m)-function. For
x, y ∈ Fm2 , we have that |{(x, F (x)) + (y, F (y))}| ≤ 2m · 2m. We leave out
all 2m vectors with x = y, and divide by 2 since (x, F (x)) + (y, F (y)) =
(y, F (y)) + (x, F (x)). Hence we have

|Σ| ≤ 22m − 2m

2
= 22m−1 − 2m−1.

II. We also compute an upper bound of the cardinality of the subsets Σk,
1 ≤ k ≤ 2m. For a vector c ∈ Σk, the k-th bit is nonzero and all i-th bits
i > k are zero, i.e. c = (c1, . . . , ck−1, 1, 0, . . . , 0). Hence the cardinality of Σk

is at most 2k−1. Note that |Σ2m| ≤ 22m−1 − 2m−1 since Σ2m ⊆ Σ.
III. Let Bj be the number of branches after each j-th iteration of step

iii of the algorithm. Then Bj ≤ 2mj, since at each iteration there can arise
|Fm2 | = 2m branches.

78

IV. If F is given, we can compute Σ and Σm+1, . . . ,Σ2m. From III we
deduce that 2jm|Σm+j| is an upper bound on the number of times that relation
(5) is checked at the j-th iteration. Hence the sum of the upper bound of
each iteration 1 ≤ j ≤ m is an upper bound for the whole algorithm, that is

m∑
j=1

2jm|Σm+j| = 2m|Σm+1|+ · · ·+ 2m
2|Σ2m|. (6)

Using the results from I and II we get a general upper bound R,

m∑
j=1

2jm|Σm+j| ≤ 2m2m + · · ·+ 2(m−1)m22m−2 + 2m
2

(22m−1 − 2m−1) =: R.

This bound R consists of m terms. We compare the last term to the first
m− 1 terms to prove the proposition. For the last term in this sum we have

2m
2

(22m−1 − 2m−1) = 2m
2+2m−1 − 2m

2+m−1.

And for the first m− 1 terms of the sum we have

2m2m + 22m2m+1 + · · ·+ 2(m−1)m22m−2

= 2m+m + 22m+m+1 + · · ·+ 2jm+m+j−1 + · · ·+ 2m
2+m−2

=
m−1∑
j=1

2jm+m+j−1

Each term 1 ≤ j ≤ m − 2 is at least 2m+1 times smaller then the previous
term 2m

2+m−2, therefore we have

m−1∑
j=1

2jm+m+j−1 ≤ (m− 2)

(
2m

2+m−2

2m+1

)
+ 2m

2+m−2 ≤ 2m
2+m−1.

From this we get an upper bound on R,

R = 2m
2+2m−1 − 2m

2+m−1 +
m−1∑
j=1

2jm+j+m−1 ≤ 2m
2+2m−1.

This proves the upper bound of the number of times relation (5) needs to be
checked.

79

Note that this bound is far from being tight. Branches will pour out
quickly hence the algorithm is done much faster. For a given function F
relation (6) gives a bound which is tighter, especially when the subset Σ2m

does not reach its maximal cardinality.
Nonetheless proposition 6.6 shows that for dimension 6, relation (5) need

to be checked 247 times, which can be done by a strong computer. This is a
considerably lower amount compared to checking all possible permutations
26! ' 2269.

6.3 A Dillon-Wolfe Function

Dillon and Wolfe have applied the algorithm on every function appearing
on the Banff, Edel-Pott or MAGMA lists of all known CCZ-inequivalent
APN functions of dimension 6, 8 and 10. Unfortunately I could not find the
articles of the Banff list and the MAGMA list. Carlet devotes a section in [6]
on known APN functions including the so called ”non power mappings” from
Edel, Kyureghyan and Pott. Most results on the list of Carlet are recently
discovered and it could very well be that since the publication of this list,
new APN functions have been found. Brinkmann and Leander classified in
[16] all APN functions up to dimension five. For dimension six and higher,
it is not proven that all CCZ-classes of APN functions have been found.

The search of Dillon and Wolfe was successful in dimension 6, for the
APN function

κ(x) = x3 + x10 + ux24,

where u is a primitive element of F26 with minimal polynomial fumin = x6 +
x4 + x3 + x + 1. The APN function κ is called the Kim map, since it was
discovered by Kim Browning11.

The algorithm generated a list of 222 matrices LHκ of which each matrix
generates a different simplex subcodes of C⊥κ . There where two sets of 16
simplex subcodes for which any pair from different sets are disjoint. Hence
they found 16 × 16 = 256 pairs of simplex subcodes for which each pair
L1Hκ, L2Hκ generates a double simplex code by[

L1Hκ

L2Hκ

]
=

[
F1(x)
F2(x)

]
.

11This is stated by Dillon in [8] without a reference. In [13], Dillon calls the map the
#5 map of the Banff list.

80

For each of the 256 pairs F1, F2, the functions F ′ := F2 ◦ F−11 and F
′−1 =

F1◦F−12 defines an APN permutation. Hence Dillon and Wolfe have found 512
different APN permutations which are, by construction, all CCZ-equivalent
to the Kim map κ.

We investigate the cryptographic properties of a Dillon-Wolfe function in
the next section.

6.4 Cryptographic properties of a Dillon-Wolfe func-
tion

In [13], Dillon and Wolfe present the first APN permutation FWD that they
found in an 8× 8 matrix. Such representation is called a look up table. The
function FDW can be seen as a permutation on {0, . . . , 63}. The six bits
binary representation of each integer is seen as a vector (i, j) ∈ F3

2 × F3
2 and

i, j can again be seen as an integer 0 ≤ i, j ≤ 7. The value of FDW (i, j) can
be found in the i-th row of the j-th column. The APN permutation FDW is
defined by the matrix

0 54 48 13 15 18 53 35
25 63 45 52 3 20 41 33
59 36 2 34 10 8 57 37
60 19 42 14 50 26 58 24
39 27 21 17 16 29 1 62
47 40 51 56 7 43 44 38
31 11 4 28 61 46 5 49
9 6 23 32 30 12 55 22


.

We used Mathematica to compute the ANF of this function and some cryp-
tographic properties. With this, we can compare a Dillon-Wolfe function to
other S-boxes to see if it is a cryptographically strong S-box.

6.4.1 ANF

The ANF of the (6, 6)-Dillon-Wolfe-function FDW above, can be computed
with Mathematica. We write FWD = (f1, . . . , f6) where each fi is a coordi-

81

nate function, 1 ≤ i ≤ 6. The result is stated below.

f1(x) = x1 ⊕ x2 ⊕ x5 ⊕ x6
⊕x1x3 ⊕ x1x5 ⊕ x3x5 ⊕ x3x6
⊕x1x2x4 ⊕ x1x2x5 ⊕ x1x3x5 ⊕ x1x4x5 ⊕ x2x4x5 ⊕ x3x4x5
⊕x1x2x6 ⊕ x2x3x6 ⊕ x1x4x6 ⊕ x2x4x6 ⊕ x2x5x6 ⊕ x3x5x6
⊕x1x2x3x4 ⊕ x1x2x3x5

f2(x) = x1 ⊕ x2 ⊕ x4 ⊕ x5
⊕x1x4 ⊕ x3x4 ⊕ x3x5 ⊕ x4x5 ⊕ x3x6 ⊕ x4x6
⊕x1x2x4 ⊕ x1x3x4 ⊕ x2x3x4 ⊕ x1x2x5 ⊕ x1x3x5
⊕x1x2x6 ⊕ x1x3x6

f3(x) = x3 ⊕ x4 ⊕ x5
⊕x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x1x5 ⊕ x2x5 ⊕ x3x5 ⊕ x4x5 ⊕ x1x6 ⊕ x3x6
⊕x1x3x6 ⊕ x2x3x6 ⊕ x1x4x6 ⊕ x2x4x6 ⊕ x3x4x6 ⊕ x3x5x6
⊕x1x2x3x6

f4(x) = x1 ⊕ x3 ⊕ x6
⊕x2x4 ⊕ x3x4 ⊕ x3x5 ⊕ x4x5
⊕x1x2x4 ⊕ x2x3x4 ⊕ x1x2x5 ⊕ x1x3x5

f5(x) = x1 ⊕ x3 ⊕ x5 ⊕ x6
x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x3x5 ⊕ x4x5 ⊕ x1x6 ⊕ x2x6 ⊕ x5x6
⊕x1x3x4 ⊕ x1x3x5 ⊕ x2x4x5 ⊕ x3x4x5 ⊕ x1x2x6 ⊕ x1x3x6
⊕x1x4x6 ⊕ x2x4x6 ⊕ x3x4x6 ⊕ x3x5x6
⊕x1x2x3x6

f6(x) = x3 ⊕ x4 ⊕ x5 ⊕ x6
⊕x1x2 ⊕ x1x3 ⊕ x3x4 ⊕ x1x5 ⊕ x2x5 ⊕ x4x6 ⊕ x5x6
⊕x2x4x5 ⊕ x1x2x6 ⊕ x2x3x6 ⊕ x1x4x6 ⊕ x1x5x6 ⊕ x3x5x6
⊕x1x2x3x5

By definition 5.4, the algebraic degree of FDW is equal the maximum algebraic
degree of the coordinate functions.

Proposition 6.7. The algebraic degree of every Dillon-Wolfe function is 4.

With the ANF it is possible to compute the Walsh spectrum of FDW . This
can be done by applying the Fast Fourier Algorithm on FDW in Mathematica.

82

This algorithm is described in section 4.2. In particular we can compute the
maximum value of the Walsh transform of FDW .

Proposition 6.8. The maximum value of the Walsh transform of every
Dillon-Wolfe function is 16.

By proposition 5.23, the Walsh spectrum is invariant under CCZ-equivalence.
Therefore all Dillon-Wolfe functions have the same maximum value of the
Walsh transform.

Further more we have, by proposition 5.10, that the nonlinearity is di-
rectly related to the Walsh transform by

NL(F) = 2m−1 − 1

2
max

a∈Fm
2 , b∈Fm

2 \{0}
|λFDW

(a, b)|.

Hence we have the following consequence.

Corollary 6.9. The nonlinearity of every Dillon-Wolfe function equals 24.

By lemma 5.13 the upper bound on the nonlinearity of (6, 6)-functions

equals b32 − 22 1
2 c = 26. Hence a Dillon-Wolfe function is considered to be

highly nonlinear.
We summarize the properties of a Dillon-Wolfe function in dimension six.

• Permutation, in particular the function is balanced.

• The algebraic degree is 4.

• Almost perfect nonlinear, i.e. max{δ(a, b) ∈ ∆F} = 2.

• Nonlinearity is 24.

In the next section we will compare these cryptographic properties to other
S-boxes.

6.4.2 Compared to other S-boxes

In [15], Kavut classifies (6, 6)-functions which are permutations, so called
rotation-symmetric, and he gives their cryptographic properties. This is a
class of functions which are considered as good S-boxes. For instance all
power mappings xd : F2m → F2m are contained in this class, in particular the

83

so called inverse functions x−1 = x2
m−2, for more about such mappings see

Carlet [6].
The inverse functions have good cryptographic properties and are mostly

chosen as an S-box, for instance in the Advanced Encryption Standard AES.
We list the cryptographic properties of the inverse function for even and

odd dimension in table 3. We see that in odd dimension the inverse function
can be AB and APN, only the algebraic degree is significantly lower as in even
dimension. Nevertheless there is often chosen for an S-box in even dimension,
this is mainly for implementation reasons, [15].

m is even m is odd
Permutation yes yes
Algebraic degree m− 1 m+1

2

max{δ(a, b) ∈ ∆} 4 2

Nonlinearity 2m−1 − 2
m
2 2m−1 − 2

m−1
2

Table 3: Cryptographic properties of the inverse function.

In table 4 we compare the cryptographic properties of an inverse function
in dimension six to a Dillon-Wolfe function. We see that a Dillon-Wolfe func-

inverse function Dillon-Wolfe
Permutation yes yes
Algebraic degree 5 4
max{δ(a, b) ∈ ∆} 4 2
Nonlinearity 26 24

Table 4: The inverse function in dimension six compared to the Dillon-Wolfe
function.

tion has almost the same cryptographic properties as the inverse function,
hence we can conclude that a Dillon-Wolfe function is a good candidate for
an S-box.

84

6.5 Additional Remarks

6.5.1 A randomized search algorithm

After Dillon and Wolfe discovered an APN permutation in dimension six,
they tried to find one by a randomized search. To do this they used the
properties of an extended (double) simplex code. We will give the general
idea of the algorithm, but we will not go into detail. For more about this
randomized search algorithm see the article of Dillon and Wolfe [13].

It can be proved that all nonzero codewords of a simplex code C⊥ are of
weight 2m−1 and therefore that all nonzero codewords of a extended simplex
code C⊥ are of length 2m and have weight 2m−1, see Hall [11]. We call such
codewords balanced.

Let F be an APN (m,m)-function, F (0) = 0 and let HF be the generator

matrix of the extended code C⊥F , i.e.

C⊥F = {(a, b)HF : (a, b) ∈ Fm2 × Fm2 }.

We define the set of all balanced codewords in C⊥F as

B := {(a, b) ∈ Fm2 × Fm2 : (a, b)HF is balanced}.

Dillon and Wolfe claim that, since the map (a, b) 7→ (a, b)HF is an isomor-

phism between Fm2 ×Fm2 and C⊥F and therefore also an isomorphism between
F2m
2 and C⊥F , we need to find two m-dimensional subspaces S1, S2 ⊂ Fm2 ×Fm2

which have all nonzero elements in the set B and intersect only in (0,0). The

matrices S1HF and S2HF will then define two ’disjunct’ extended simplex
subcodes, hence S1HF and S2HF define two ’disjunct’ simplex subcodes. We
have seen that the functions [F1(x)] = S1HF and [F2(x)] = S2HF are permu-
tations which leaves zero fixed, that F and F ′ = F2◦F−11 are CCZ-equivalent
and that therefore F ′ will be an APN permutation.

Randomized search algorithm We can use the following randomized
search algorithm to find S1 and S2. We write 〈a1, . . . , ai〉 for the vector space
spanned by the vectors a1, . . . , ai ∈ F2m

2 .
Input: An APN (m,m)-function F , with F (0) = 0. An upper bound

on the number of restarts at II and an upper bound on the total number of
starts at I.
Output: Two ’disjoint’ simplex subcodes of C⊥F , if they exist.

85

I. Compute the set B = {(a, b) ∈ Fm2 × Fm2 : (a, b)HF is balanced} and
set B1 = B.

II. Choose b1 ∈ B1 randomly.

III. Given b1, . . . , bi, 1 ≤ i ≤ m, choose bi+1 ∈ B1\〈b1, . . . , bi〉 randomly
such that bi+1 + s ∈ B1 for all s ∈ 〈b1, . . . , bi〉.

IV. If bm is found, set S1 = 〈b1, . . . , bm〉 and proceed to step V.
If no bi can be found, 1 ≤ i ≤ m, make a restart at step II.

V. Set B2 = B\S1.

VI. Repeat step II and III for the set B2 instead of B1.

VII. If bm is found at step IV, then set S2 = 〈b1, . . . , bm〉.
If no bi can be found, 1 ≤ i ≤ m, make a restart at step VI.
If the upper bound on the number of restarts at II is reached, then
start again at step I.
If the upper bound on the number of total starts at I is reached, then
quit the algorithm.

Dillon and Wolfe applied this algorithm on the Kim map κ(x) in dimen-
sion m = 6. They found that the set B of all balanced codewords in C⊥κ has
cardinality |B| = 1071, but the solutions poured out quickly.

6.5.2 Decomposition

Dillon and Wolfe [13] discovered a surprisingly simple decomposition of the
code C⊥F , where the function F is linear equivalent to the Kim map κ. We
give an overview of this decomposition.

Recall that for a (6, 6)-function F and the code C⊥F with generator matrix
HF , every codeword c ∈ C⊥F is of the form c = (a, b)HF for some (a, b) ∈
F6
2 × F6

2. We identify the vector space F6
2 with the field F26 as we have seen

in section 3.2.1. Using the trace function Tr(x) instead of the usual inner
product ”·”, we have for every a, b ∈ F2m

2 a codeword c ∈ C⊥F = 〈x〉 ⊕ 〈F (x)〉
of the form

c = [Tr(ax)⊕ Tr(bF (x))] where x ranges over F26 .

86

Let u be a primitive element of F26 with minimal polynomial fumin =
x6 + x4 + x3 + x+ 1, the Kim map is defined as

κ(x) = x3 + x10 + ux24.

The function Dillon and Wolfe used for the decomposition is F (x) = u ·κ(x).
Note that F and κ are linear equivalent and since κ(x) is APN, F (x) is APN
as well.

Since u is a primitive element of F2m and {1, u, u2, u3, u4, u5} forms a basis
of F26 , we can decompose this field as

F26 = F23 ⊕ uF23 .

So we can write C⊥F = A⊕ B, where

A = {[Tr(ax)] : a ∈ F26} and B = {Tr(bF (x)) : b ∈ F26}.

And using the decomposition F26 = F23 ⊕ uF23 , we can write

A = A1 ⊕A2, B = B1 ⊕ B2,

with

A1 = {[Tr(ax)] : a ∈ F23}, A2 = {[Tr(ax)] : a ∈ uF23},
B1 = {[Tr(bF (x))] : b ∈ F23}, B2 = {[Tr(bF (x))] : b ∈ uF23}.

Changing the pairs of the decomposition we get

A1 ⊕ B1 and A2 ⊕ B2.

We have obtained two codes in which all nonzero codewords are balanced,
hence they are two simplex codes. The two functions 〈F1(x)〉 = A1⊕B1 and
〈F2(x)〉 = A2 ⊕ B2 are permutations and F is CCZ-equivalent to F2 ◦ F−11 .
Therefore the function F2 ◦ F−11 is an APN permutation.

Dillon and Wolfe conclude that this surprisingly nice decomposition makes
it likely that such a decomposition can be generalized to higher dimensions.
Hence this needs to be investigated in the future.

87

6.6 Conclusion

Using the relation between coding theory and vectorial Boolean functions we
deduced the construction of Dillon and Wolfe to show the existence of an
APN permutation in dimension six. This so called Dillon-Wolfe function is
the first known example of an APN permutation in even dimension.

We have seen the algorithm of Dillon and Wolfe in section 6.2.2. For a
given APN (m,m)-function F , this algorithm finds all APN permutations
which are CCZ-equivalent to F . Hence it can be applied to every known
CCZ-equivalent class of APN functions. In particular we have seen that, in
dimension six, this algorithm has a reasonable computation time.

Dillon and Wolfe applied the algorithm to all known APN functions, up
to CCZ-equivalence, in dimension 6, 8 and 10. Only the Kim map κ in
dimension six produced an APN permutation. Dillon and Wolfe expect that
the surprisingly nice structured decomposition, described in section 6.5.2,
can be extended to higher dimensions. Once they discovered the existence of
an APN permutation they developed a randomized search algorithm to find
such functions.

We have further seen what a substitution permutation network SPN is
and which cryptographic properties are needed for an S-box to make the SPN
a strong cipher. The cryptographic properties of a Dillon-Wolfe function
appeared to be very good, that is comparably good as the inverse function
which is frequently used as an S-box. Therefore, when designing an SPN and
an S-box need to be chosen, a Dillon-Wolfe function need to be considered.

88

References

[1] E. Biham and A. Shamir. Differential cryptanalysis of des-like cryp-
tosystems. Journal of Cryptology, Vol 4(no.1):3–72, 1991.

[2] J.A. Buchmann. An Introduction to Cryptography. Undergraduate Texts
in Mathematics. Springer-Verlag New York, second edition, 2003.

[3] L. Budaghyan. The Equivalence of Almost Bent and Almost Perfect
Nonlinear Functions and their Generalizations. PhD thesis, University
Magdeburg, 2005.

[4] V. Zinoviev C. Carlet, P. Charpin. Codes, bent functions and permuta-
tions suitable for des-like cryptosystems. Designs, Codes and Cryptog-
raphy, 15(2):125–156, 1998.

[5] C. Carlet. Boolean functions for cryptography and error correcting
codes. In Y. Crama and P.L. Hammer, editors, Boolean Methods and
Models in Mathematics, Computer Science, Engineering, volume 134
of Encyclopedia of Mathematics and it’s Applications, pages 257–395.
Cambridge University Press, 2010.

[6] C. Carlet. Vectorial boolean functions for cryptography. In Y. Crama
and P.L. Hammer, editors, Boolean Models and Methods in Mathemat-
ics, Computer Science, and Engineering, volume 134 of Encyclopedia of
Mathematics and it’s Applications, pages 398–469. Cambridge Univer-
sity Press, 2010.

[7] F. Chabaud and S. Vaudenay. Links between differential and linear
cryptanalysis. Proceedings of EUROCRYPT’94, Lecture Notes in Com-
puter Science, (950):356–365, 1995.

[8] J.F. Dillon. Apn polynomials: An update. Slides from a talk at the
International Conference on Finite Fields and their Applications, july
2009. at the University College in Dublin.

[9] Federal Information Processing Standard Publication. Announcing the
Advanced Encrypting Standard (AES), 2001. Publication is available at
http://csrc.nist.gov/publications/.

89

[10] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudo-
randomness. Number 17 in Algorithms and Combinatorics. Springer-
Verlag, 1999.

[11] J.I. Hall. Notes on coding theory. Manuscript of a book, available at
www.nth.msu.edu/ jhall.

[12] Xiang-Dong Hou. Affinity of permutations on Fn2 . Discrete Applied
Mathematics, 154:313–325, 2006.

[13] M.T. McQuistan A.J. Wolfe K.A. Browning, J.F. Dillon. An apn per-
mutation in dimension six. American Mathematical Society, 518:33–42,
2010.

[14] R.E. Kibler M.T. McQuistan K.A. Browning, J.F. Dillon. Apn poly-
nomials and related codes. Journal of Combinatorics, Information and
System Science, Special Issue in honor of Prof. D.K Ray-Chaudhuri on
the occasion of his 75th birthday. to appear.

[15] S. Kavut. Results on rotation-symmetric s-boxes. Information Sciences,
201:93–113, 2012.

[16] G. Leander M. Brinkmann. On the classification of apn functions up to
dimension five. Designs, Codes and Cryptography, (49):273–288, 2008.

[17] M. Matsui. Linear cryptanalysis method for des cipher. Advances in
Cryptology - EUROCRYPT’93, Lecture Notes in Computer Science 765,
pages 386–397, 1994.

[18] C.E. Shannon. Communication theory of secrecy systems. Bell system
technical journal, 28:656–715, 1949.

[19] A. Sinkov. Elementary Cryptanalysis: a mathematical approach. Math-
ematical Association of America, second printing edition, 1978.

[20] J.H. van Lint. Introduction to Coding Theory. Number 86 in Gradu-
ate Texts in Mathematics. Springer-Verlag Berlin Heidelberg New York,
third edition, 1999.

90

